
file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Front Matter
Table of Contents
About the Author

Core C++ A Software Engineering Approach
Victor Shtern
Publisher: Prentice Hall PTR
First Edition July 24, 2000
ISBN: 0-13-085729-7, 1280 pages

Master C++ the right way: From the software engineering perspective!

● Master C++ the right way!
● Object-oriented approach to coding throughout
● Harness C++’s strengths; avoid its dangers
● Build more easily maintainable code

Build more powerful, robust, maintainable C++ software!
For developers with experience in any language, Victor Shtern’s Core
C++ teaches C++ the right way: by applying the best software engineering
practices and methodologies to programming in C++. Even if you’ve
already worked with C++, this comprehensive book will show you how to
build code that is more robust, far easier to maintain and modify, and far more
valuable.
Shtern’s book teaches object-oriented principles before teaching the
language, helping you derive all the power of object-oriented development to
build superior software. Learn how to make design decisions based on key
criteria such as information hiding and pushing responsibilities from clients
down to server classes. Then, master every key feature of ANSI/ISO C++ from
a software engineer’s perspective: classes, methods, const modifiers,
dynamic memory management, class composition, inheritance, polymorphism,
I/O, and much more.
If you want to build outstanding C++ software, coding skill isn’t
enough. Objects aren’t enough. You must design, think, and program
using today’s best software engineering practices -- and with Core
C++, you will.
So, Core C++ delivers:

● The application of software engineering principles to C++ programming
● A strong emphasis on writing code for easier future maintainance and

modification
● A practical understanding of object-oriented principles before teaching

the language
● Insight into the latest ANSI/ISO C++ features
● Thorough explanations that respect your intelligence
● Hundreds of realistic, to-the-point code examples
● Levity Breaks: Stories and vignettes that illustrate key topics, concepts,

and ideas through humor
Every core series book:

● Demonstrates practical techniques used by professional developers.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1 of 1187) [8/17/2002 2:57:43 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

● Features robust, thoroughly tested sample code and realistic examples.
● Focuses on the cutting-edge technologies you need to master today.
● Provides expert advice that will help you build superior software.

Table of Content
Table of Content
Preface

How Is This Different from Other C++ Books?
Who This Book Is For
How This Book Is Organized
Conventions Used in This Book
Accessing the Source Code
Feedback
Acknowledgments

Part I: Introduction to Programming with C++
Chapter 1. Object-oriented approach: What's So Good About It?

The Origins of the Software Crisis
Remedy 1: Eliminating Programmers
Remedy 2: Improved Management Techniques
Remedy 3: Designing a Complex and Verbose Language
The Object-Oriented Approach: Are We Getting Something for Nothing?
Characteristics of the C++ Programming Language
Summary

Chapter 2. Getting Started Quickly: A Brief Overview of C++
The Basic Program Structure
Preprocessor Directives
Comments
Declarations and Definitions
Statements and Expressions
Functions and Function Calls
Classes
Dealing with Program Development Tools
Summary

Chapter 3. Working with C++ Data and Expressions
Values and Their Types

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (2 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Integral Types
Floating Point Types
Working with C++ Expressions
Mixed Expressions: Hidden Dangers
Summary

Chapter 4. C++ Control Flow
Statements and Expressions
Conditional Statements
Iteration
C++ Jump Statements
Summary

Chapter 5. Aggregation with Programmer-Defined Data Types
Arrays as Homogeneous Aggregates
Structures as Heterogeneous Aggregates
Unions, Enumerations, and Bit Fields
Summary

Chapter 6. Memory Management: the Stack and the Heap
Name Scope as a Tool for Cooperation
Memory Management: Storage Classes
Memory Management: Using Heap
Input and Output with Disk Files
Summary

Part II: Object-oriented programing with C++
Chapter 7. Programming With C++ Functions

C++ Functions as Modularization Tools
Argument Promotions and Conversions
Parameter Passing in C++
Inline Functions
Parameters with Default Values
Function Name Overloading
Summary

Chapter 8. Object-Oriented Programming with Functions
Cohesion
Coupling
Data Encapsulation
Information Hiding
A Larger Example of Encapsulation

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (3 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Shortcomings of Encapsulation with Functions
Summary

Chapter 9. C++ Class as a Unit of Modularization
Basic Class Syntax
Binding Together Data and Operations
Elimination of Name Conflicts
Implementing Member Functions Outside of Class
Defining Class Objects of Different Storage Classes
Controlling Access to Class Members
Initialization of Object Instances
Constructors as Member Functions
Default Constructors
Copy Constructors
Conversion Constructors
Destructors
Timing of Constructor and Destructor Invocations
Class Scope and the Overriding of Names in Nested Scopes
Memory Management with Operators and Function Calls
Using Returned Objects in Client Code
More on the const Keyword
Static Class Members
Summary

Chapter 10. Operator Functions: Another Good idea
Overloading of Operators
Limitations on Operator Overloading
Overloaded Operators as Class Members
Case Study: Rational Numbers
Mixed Types as Parameters
Friend Functions
Summary

Chapter 11. Constructors and Destructors: Potential Trouble
More on Passing Objects by Value
Operator Overloading for Nonnumeric Classes
More on the Copy Constructor
Overloading the Assignment Operator
Practical Considerations: What to Implement
Summary

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (4 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Part III: Object-Oriented Programming with Aggregation and Inheritance
Chapter 12. Composite Classes: Pitfalls and Advantages

Using Class Objects as Data Members
Initialization of Composite Objects
Data Members with Special Properties
Container Classes
Summary

Chapter 13. Similar Classes: How to Treat Them
Treating Similar Classes
Syntax of C++ Inheritance
Accessing Base and Derived Class Services
Accessing Base Components of a Derived Class Object
Scope Rules and Name Resolution Under Inheritance
Constructors and Destructors for Derived Classes
Summary

Chapter 14. Choosing between Inheritance and Composition
Choosing a Technique for Code Reuse
Unified Modeling Language
Case Study: A Rental Store
On Class Visibility and Division of Responsibilities
Summary

Part IV: Advanced uses of C++
Chapter 15. Virtual Functions and other Advanced Uses of Inheritance

Conversions Between Nonrelated Classes
Conversions Between Classes Related Through Inheritance
Virtual Functions: Yet Another New Idea
Multiple Inheritance: Several Base Classes
Summary

Chapter 16. Advanced Uses of Operator Overloading
Operator Overloading: A Brief Overview
Unary Operators
Subscript and Function Call Operators
Input/Output Operators
Summary

Chapter 17. Templates: Yet Another Design Tool
A Simple Example of a Class Design Reuse
Syntax of Template Class Definition

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (5 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Template Classes with Several Parameters
Relations Between Instantiations of Template Classes
Template Specializations
Template Functions
Summary

Chapter 18. Programming with Exceptions
A Simple Example of Exception Processing
Syntax of C++ Exceptions
Exceptions with Class Objects
Type Cast Operators
Summary

Chapter 19. What We Have Learned
C++ as a Traditional Programming Language
C++ as a Modular Language
C++ as an Object-Oriented Language
C++ and Competition
Summary

Preface

Congratulations! You have opened one of the most useful C++ books on the market! It will teach
you the strengths and weaknesses of C++, and it will do this better than any other book I have seen.
And I have seen a lot of C++ books.

How Is This Different from Other C++ Books?

Of course, any author can claim that his or her book is one of the best on the market. What sets this
book apart is its software engineering and maintenance perspective on writing C++ code. Very few
C++ books (if any) do that.

Why is the software engineering and maintenance approach important? The point is that C++
changed not only the way we write computer programs, it also changed the way we learn
programming languages. In the "good old days," you would spend a day or two looking at the basic
syntax of the language, then you would try your hand at simple programming problems. Then you
would learn more-complex syntax and would tackle more-complex problems. In a week or two (or
in three or four weeks for a really complex language), you would have seen it "all" and could pose
as an "expert."

It's different with C++; a very large and very complex language. Granted, it is a superset of C, and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (6 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

you can learn to write simple C programs (and, hence, C++ programs) very quickly. But things are
different for complex programs. If the programmer does not know C++ well, a complex C++
program will not be portable; its code will be difficult to reuse, and it will be difficult to maintain.

C++ is a great language¡Xit was created as a general-purpose engineering language, and its design
is a clear success. Today, C++ is a language of choice for business, engineering, and even real-time
applications. Significant effort was spent on the design of the language, to ensure that C++
programs provide great performance, that they support dynamic memory management, and that
different parts of programs could be made relatively independent. Yet in all three areas, things can
potentially go wrong even with a syntactically correct and thoroughly tested C++ program:

1. It can be slow¡Xmuch slower¡Xthan a comparable C program.

2. It can contain memory management errors that affect the program only when memory
usage changes (e.g., another program is installed); these errors might crash the program or
quietly produce incorrect results.

3. It can contain dependencies between different parts of the program so that the maintainer
has a hard time understanding the intent of the designer; a poorly written C++ program can be
harder to maintain and reuse than a non-object-oriented program.

How important is this? If you are writing a small program that will be used only for a short time,
then execution speed, memory management, maintainability, and reusability may not be of great
importance. All that counts is your ability to quickly produce a solution. If this solution is not
satisfactory, you can cut your losses by throwing the program away and writing another one. For
this, any C++ book would do (but hey, you can still buy this one and enjoy its informal style and
original insights into the language and its usage).

However, if you are working in a group, creating large applications that cannot be easily discarded
and will be maintained for a long time, everything matters. The software engineering and
maintenance approach I am advancing in this book is very useful and quite unique. Most books on
the market do not mention these issues at all. (Just check their indexes and see for yourself.) When
they do, they fail to spell out the techniques that can remedy a tough situation.

Another important characteristic of this book is its approach to the presentation of the material.
There are many books on the market that do a good job enumerating the features of the language
but do a mediocre job teaching you how to use the language. This is similar to learning a natural
language. If you read a French grammar book, will it enable you to speak French? I did not study
French, but I did study English, and I know¡Xreading grammar books does not help to develop
language fluency. In this book, I will show you how to use and how not to use the language,
especially from the point of view of reusability and future maintenance.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (7 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Another teaching issue is that C++ features are so intertwined that it is hard to present C++ in a
linear fashion, from simple to more complex. Many C++ authors do not even try. They say that
these efforts "offend the intelligence of the reader." As a result, they might mention in Chapter 3 a
concept that is explained only in Chapter 8, leaving the reader intimidated and frustrated.

My approach to teaching C++ is different. I introduce topics cyclically, first as a general overview
and then again at a greater depth, with bells and whistles, and nowhere will your understanding
depend on material in later chapters.

I developed my approach through years of teaching working software professionals. At Boston
University Metropolitan College, most of my students hold professional jobs and come to classes in
the evening in search of professional growth. I also taught numerous professional development
seminars and on-site training courses. I developed great empathy for the students and their struggle
with language concepts and programming techniques, and I translated this experience into a well-
thought-out sequence of topics, examples, counterexamples, and recommendations. I think that my
approach to teaching C++ is fairly unique, and you will benefit from it.

Who This Book Is For

This book is written for professionals who are looking for a no-nonsense presentation of practical
details combined with a deep understanding of C++ subtleties.

This book is written for you if you are looking for practical details of new technologies with a
thorough discussion of their use.

It is written for you if you have experience in other languages and are moving to C++. If you are an
experienced C++ programmer, you will find this book useful and sometimes an eye-opener. If this
is your first programming book (and this is perfectly all right if it is), you will be well rewarded for
the effort spent on reading it.

How This Book Is Organized

I decided not to follow other authors who give you a detailed tour of their books, explaining what is
covered and where. Unfamiliar terms, concepts and techniques will not make much sense to you
now and will probably be quite boring. This is why I put the summary of the book into its final
chapter, Chapter 19, "What We Have Learned," and you can read it if you are interested. It makes
more sense there.

Instead, let me tell you what parts of the book might be of interest to you, depending on your
background and experience.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (8 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ If you are experienced in C++, Parts 3 and 4 will be most useful to you with their
coverage of C++ power and programming pitfalls. If, in your initial study of C++, you were
rushed to objects without building your muscle in procedural programming, memory
management, and creating maintainable code, a review of Parts 1 and 2 will also be helpful
(and interesting).

ϒΠ If you are an experienced C programmer who wants to move on to C++, Parts 2, 3, and 4
are written for you. If you briefly review Part 1, you might find the discussion of C from the
software engineering and maintenance perspective interesting.

ϒΠ If you a programmer with experience in high-level languages other than C, C++, or Java,
you should probably start with Part 1.

ϒΠ If you are looking for an introduction to programming, you should skip Chapter 1,
"Object-Oriented Approach: What's So Good About It?": It will be too abstract for you at this
stage. Study the other chapters of Part 1 first, then go back to Chapter 1, and then continue
with Parts 2, 3, and 4.

Conventions Used in This Book

All the code presented in the numbered listings in this book has been thoroughly debugged and
tested using several compilers, including Microsoft Visual C++, Borland, and GNU compilers. This
code can be run without any modifications. The code snippets outside of the listings have also been
debugged and tested. They are runnable, but they require a harness to be run.

Throughout the book, the code listings and snippets are presented in a monospace font. The same is
true of C++ terms in the text of the book. If, for example, I am discussing a C++ class whose name
is "Account," I will write it as Account, the way it would be written in program code. When I talk
about private data members, I will use the regular font for the word "private" and the monospace
font for the keyword private.

Icons denote statements that are particularly useful or need your special attention. They are notes,
tips, and alerts.

NOTE

This icon flags information that deserves special attention, such as an interesting fact about the
topic at hand or one that the reader may want to keep in mind while programming.

ALERT

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (9 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This icon flags information that, while useful, may cause unexpected results or serious frustration.

TIP

This icon flags particularly useful information that will save the reader time, highlight a valuable
programming tip, or offer specific advice on increasing productivity.

Accessing the Source Code

It is important to practice when you learn a language. Studying C++ without practicing it is as
effective as taking a driver education course without driving: You'll learn a lot of useful things
about driving, but you will not be able to drive. I strongly recommend that you experiment with the
programs discussed in this book. The source code for all the listings can be found at the following
site:

ftp://ftp.prenhall.com/pub/ptr/c++_programming.w-050/core_c++/

Feedback

This book was thoroughly reviewed, carefully edited, and meticulously proofread. Still, some errors
might remain.

In my drive to produce a unique book, I might have made statements that are groundless,
unjustified, or plain erroneous. Or, they could be controversial and you might want to debate them.

Please do not hesitate to contact me at the following e-mail address:

shtern@bu.edu.

For each typo or error that is pointed out to me or for each valid point regarding a discussion in the
book, I promise to mention the names of the first two people who do so in the next edition of this
book.

Acknowledgments

Many people helped me to make this book a reality and I am grateful to all of them. First, I would
like to thank Bjarne Stroustroup for designing this wonderful and powerful programming language.
We owe it all to him.

Next, I would like to thank Timothy Budd, Tom Cargill, Jim Coplien, Cay Horstmann, Ivor Horton,
Bertrand Meyer, Scott Meyers, and Stephen Prata. They wrote programming books that have

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (10 of 1187) [8/17/2002 2:57:44 PM]

ftp://ftp.prenhall.com/pub/ptr/c++_programming.w-050/core_c++/
mailto:shtern@bu.edu

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

helped me to develop my own vision of C++ programming.

I am indebted to my students at Boston University and to participants in professional development
seminars and on-site training courses that I have taught. Their questions and concerns helped me
understand what works and what does not work in teaching C++.

At Boston University, my sincere thanks go to Tanya (Stoyanka) Zlateva, Jay Halfond, and Dennis
Berkey. I am grateful for their faith in this project. By giving me the time to complete it, they made
this book possible.

I would like to acknowledge the work of technical reviewers Steve Glass, Dan Costello, and C. L.
Tondo. Their efforts purged the book of many embarrassing mistakes that I myself did not notice.

At Prentice Hall, I would like to thank the book's development editor, Jim Markham, for his help
and encouragement. It was Jim who first told me that my writing was of good quality despite the
fact that English is not my first language. He also prodded me not to go off on tangents of soul
searching but to stick to the schedule instead. He almost succeeded.

I would also like to thank Jan Schwartz, the Prentice Hall production editor, and her copyediting
staff who patiently struggled with my Russian way of using articles and prepositions and made the
book sound like English.

Most and foremost, I would like to thank Tim Moore, my Prentice Hall acquisitions editor. He
found time to listen to my proposal, had imagination to believe me, and had enthusiasm to tell
everybody in sight that this was going to be a great book. If it were not for Tim, this book would
never have happened. Thanks, Tim, your efforts are very much appreciated!

I am grateful to my family who encouraged me, admired me, and let me do my writing without
distracting me too much with the mundane needs of running the household. The last detail is
particularly important: While I was writing this book, my wife was writing hers. I also encouraged
her, admired her, and let her do her writing without distracting her too much from the mundane
needs of running the household.

Last, but not least, I would like to acknowledge the late Senator Henry M. Jackson (D, Washington)
and Representative Charles Vanik (D, Ohio), the authors of the Jackson-Vanik amendment that
linked human rights with foreign trade benefits, which is under fire from many quarters. I am one
of the fortunate people whose life was affected by this linkage. Because of this, the difference
between freedom and bondage is an immediate personal experience for me rather than a nice, but
abstract, concept. And for that I am very grateful.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (11 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Part I: Introduction to Programming with C++

The first part of this book is about foundations of programming with C++. As everybody knows,
C++ is an object-oriented language. But what does this mean? Why is using an object-oriented
programming language better than using a traditional non-object-oriented language? What should
you pay attention to while programming so that you reap the benefits of object orientation? Often,
people take the object-oriented approach for granted, and this reduces the effectiveness of its use.

The first chapter answers these questions. It is all about breaking the program into parts. A large
program has to be written as a collection of relatively independent, but communicating and
cooperating, components. If, however, you break apart what should be kept together, you introduce
excessive communications and dependencies between parts of the program, and the code becomes
more difficult to reuse and maintain. If you leave together, in the same component, what can and
should be broken into separate pieces, you wind up with complex and confusing code which
is¡Xguess what¡Xdifficult to reuse and maintain.

There is no magic in using objects. Using them in and of themselves brings no benefits. However,
thinking about your program in terms of objects helps you to avoid these two dangers: breaking
apart what should belong together and keeping together what should be put into separate parts.
Chapter 1, "Object-Oriented Approach: What's So Good About It?" discusses these issues¡Xit
shows which problems should be solved with the use of the object-oriented approach and how the
object-oriented approach solves these problems.

Chapter 2, "Getting Started Quickly: A Brief Overview of C++," gives you a brief introduction to
the language, including objects. The introduction is high level only. (You have to read other
chapters of the book to see the details.) Nevertheless, this chapter covers enough to enable you to
write simple C++ programs and prepares you for the detailed study of the strong and weak features
of C++.

Other chapters in Part 1 present the basic non-object-oriented features of the language. According
to the promise I made in Chapter 1, I pay particular attention to writing reusable and maintainable
code. For each C++ construct, I explain how to use and how not to use it. Even though I do not
discuss objects yet, the presentation becomes quite complex, especially in Chapter 6, "Memory
Management: The Stack and The Heap." After all, C++ is a complex language. Skip topics that you
find obscure and come back to them later, when you have more time to concentrate on coding
details.

Chapter 1. Object-oriented approach: What's So Good About It?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (12 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Topics in this Chapter

ϒΠ The Origins of the Software Crisis

ϒΠ Remedy 1: Eliminating Programmers

ϒΠ Remedy 2: Improved Management Techniques

ϒΠ Remedy 3: Designing a Complex and Verbose Language

ϒΠ The Object-Oriented Approach: Are We Getting Something for Nothing?

ϒΠ Characteristics of the C++ Programming Language

ϒΠ Summary

The object-oriented approach is sweeping all areas of software development. It opens new horizons
and offers new benefits. Many developers take it for granted that these benefits exist and that they
are substantial. But what are they? Do they come automatically, just because your program uses
objects rather than functions?

In this chapter, I will first describe why we need the object-oriented approach. Those of you who
are experienced software professionals, can skip this description and go on directly to the
explanation of why the object-oriented approach to software construction is so good.

Those of you who are relatively new to the profession should read the discussion of the software
crisis and its remedies to make sure you understand the context of the programming techniques I
am going to advocate in this book. It should give you a better understanding of what patterns of
C++ coding contribute to the quality of your program, what patterns inhibit quality, and why.

Given the abundance of low quality C++ code in industry, this is very important. Many
programmers take it for granted that using C++ and its classes delivers all the advantages, whatever
they are, automatically. This is not right. Unfortunately, most C++ books support this incorrect
perception by concentrating on C++ syntax and avoiding any discussion of the quality of C++ code.
When developers do not know what to aim for in C++ code, they wind up with object-oriented
programs that are built the old way. These programs are no better than traditional C, PL/I (or
whatever¡Xinsert your favorite language) programs and are as difficult to maintain.

The Origins of the Software Crisis

The object-oriented approach is yet another way to fight the so-called software crisis in industry:
frequent cost overruns, late or canceled projects, incomplete system functionality, and software

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (13 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

errors. The negative consequences of errors in software range from simple user inconvenience to
not-so-simple economic losses from incorrectly recorded transactions. Ultimately, software errors
pose dangers to human lives and cause mission failures. Correction of errors is expensive and often
results in skyrocketing software costs.

Many experts believe that the reason for software crisis is the lack of standard methodology: The
industry is still too young. Other engineering professions are much older and have established
techniques, methodologies, and standards.

Consider, for example, the construction industry. In construction, standards and building codes are
in wide use. Detailed instructions are available for every stage of the design and building process.
Every participant knows what the expectations are and how to demonstrate whether or not the
quality criteria have been met. Warranties exist and are verifiable and enforceable. Consumer
protection laws protect the consumer from unscrupulous or inept operators.

The same is true of newer industries, like the automobile industry or electrical engineering. In all
these areas of human endeavor we find industry-wide standards, commonly accepted development
and construction methodologies, manufacturer warranties, and consumer protection laws. Another
important characteristic of these established industries is that the products are assembled from
ready-made components. These components are standardized, thoroughly tested, and mass-
produced.

Compare this with the state of the software industry. There are no standards to speak of. Of course,
professional organizations are trying to do their best, coming up with standards ranging from
specification writing to software testing to user-computer interfaces. But these standards only
scratch the surface¡Xthere are no software development processes and methodologies that would be
universally accepted, enforced, and followed. Mass-market software warranties are a joke: The
consumer is lucky if the manufacturer is responsible for the cost of distribution medium. Return
policies are nonexistent: If you open the box, you forfeit your right to ever get your money back.

The products are crafted by hand. There are no ready-made, off-the-shelf components. There is no
universally accepted agreement what the components and the products should do. In its legal suit
against Microsoft, the United States government got into an argument over the definition of the
operating system and its components¡Xwhether the browser is part of the operating system or just
another application, like a word processor, spreadsheet, or appointment scheduler. The operating
system is as important to the computer as the ignition system to the car (probably even more so).
But could you imagine a legal argument over the composition of the ignition system? We all know
that when the technology required it, a carburetor was part of the ignition system. When technology
changed, it was eliminated without public discussion.

The young age of the software industry has definitely contributed to the situation. Hopefully, some

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (14 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

elements of this dismal picture will disappear in the future. However, this young age did not
prevent software industry from becoming a multibillion dollar one that plays a crucial role in the
economy. The Internet changed the way we do commerce and search for information. It also
changed the stock market landscape beyond recognition.

Doomsayers heralded the Year 2000 problem as a major menace to the economy. It is not important
for the purposes of this discussion whether or not those fears were justified. What is important is
that the software industry has matured enough in terms of sheer power. If a software problem can
potentially disrupt the very fabric of the Western society, it means that the industry plays an
important role in the society. However, its technology lagging behind other industries, mostly
because of the nature of the software development process.

Very few software systems are so simple that one person can specify it, build it according to the
specification, use it for its intended purpose, and maintain it when the requirements change or
errors are discovered. These simple systems have a limited purpose and a relatively short time span.
It is easy to throw them away and start from scratch, if necessary; the investment of time and
money is relatively small and can easily be written off.

Most software programs exhibit quite different characteristics. They are complex and cannot be
implemented by one person. Several people (often, many people) have to participate in the
development process and coordinate their efforts. When the job is divided among several people,
we try to make these parts of the software system independent from each other, so that the
developers can work on their individual pieces independently.

For example, we could break the functions of the software system into separate operations (place an
order, add a customer, delete a customer, etc.). If those operations are too complex, implementing
them by an individual programmer would take too long. So, we divide each operation into steps and
substeps (verify customer, enter order data, verify customer credit rating, etc.) and assign each
piece to an individual programmer for implementation (Figure 1-1).

Figure 1-1. Breaking the system into components.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (15 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The intent is to make system components independent from each other so that they can be
developed by people working individually. But in practice, these separate pieces are not
independent. After all, they are parts of the same system; so, they have to call each other, or work
on shared data structures, or implement different steps of the same algorithm. Since the parts that
different developers work on are not independent, the individual developers have to cooperate with
each other: they write memos, produce design documents, send e-mail messages and participate in
meetings, design reviews, or code walkthroughs. This is where the errors creep in¡Xsomething gets
misunderstood, something gets omitted, and something is not updated when related decisions are
changed.

These complex systems are designed, developed, and tested over a long time. They are expensive.
Some are very expensive. Many users depend on their operations. When requirements change, or
errors or missing requirements are discovered, such systems cannot be replaced and thrown
away¡Xthey often represent an investment too significant to be discarded.

These systems have to be maintained, and their code has to be changed. Changes made in one place
in the code often cause repercussions in another place, and this requires more changes. If these
dependencies are not noticed (and they are missed sometimes), the system will work incorrectly
until the code is changed again (with further repercussions in other parts of the code). Since these
systems represent a significant investment, they are maintained for a long time, even though the
maintenance of these complex systems is also expensive and error-prone.

Again, the Year 2000 problem comes to mind. Many people are astonished by the fact that the
programmers used only two last digits to represent the year. "In what world do these programmers
live?" asks the public. "Don't they understand the implications of the switch from year 1999 to year
2000?" Yes, this is astonishing. But it is not the shortsightedness of the programmers that is
astonishing, rather it is the longevity of the systems designed in the 1970s and 1980s. The
programmers understood the implications of Year 2000 as well as any Y2K expert (or better). What
they could not imagine in the 1970s and 1980s was that somebody would still be using their

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (16 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programs by the year 2000.

Yes, many organizations today pour exorbitant amounts of money into maintaining old software as
if they are competing with others in throwing money away. The reason for this is that these systems
are so complex that rebuilding them from scratch might be more expensive than continuing to
maintain them.

This complexity is the most essential characteristic of most software systems. The problem
domains are complex, managing the development process is complex, and the techniques of
building software out of individual pieces manually are not adequate for this complexity.

The complexity of system tasks (this is what we call "the problem domain"), be it an engineering
problem, a business operation, mass-marketed shrink-wrapped software, or an Internet application,
makes it difficult and tedious to describe what the system should do for the users. The potential
system users (or the marketing specialists) find it difficult to express their needs in a form that
software developers can understand. The requirements presented by users that belong to different
departments or categories of users often contradict each other. Discovering and reconciling these
discrepancies is a difficult task. In addition, the needs of the users and marketers evolve with time,
sometimes even in the process of formulating requirements, when the discussion of the details of
system operations brings forth new ideas. This is why programmers often say that the users (and
marketing specialists) do not know what they want. There are still few tools for capturing system
requirements. This is why the requirements are usually produced as large volumes of text with
drawings; this text is often poorly structured and is hard to comprehend; many statements in such
requirements are vague, incomplete, contradictory, or open to interpretation.

The complexity of managing the development process stems from the need to coordinate activities
of a large number of professionals, especially when the teams working on different parts of the
system are geographically dispersed, and these parts exchange information or work on the same
data. For example, if one part of the system produced data expressed in yards, the part of the
system that uses this data should not assume that the data is expressed in meters. These consistency
stipulations are simple, but numerous, and keeping them in mind is hard. This is why adding more
people to a project does not always help. New people have to take over some of the tasks that the
existing staff has been working on. Usually, the newcomers either take over some parts of the
project that existing staff was supposed to work on later, or the parts of the project are further
subdivided into subparts and are assigned to the newcomers.

The newcomers cannot become productive immediately. They have to learn about the decisions
already made by the existing staff. The existing staff also slows down, because the only way for the
newcomers to learn about the project is by talking to the existing staff and hence by distracting this
staff from productive work.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (17 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Building software from individual pieces by hand adds to the problem: it is time consuming and
prone to error. Testing is arduous, manual, and unreliable.

When I came to United States, my boss, John Convey, explained to me the situation in the
following way. He drew a triangle where the vertices represented such project characteristics as
schedule, budget, and system functionality (Figure 1-2). He said, "We cannot pull out all three.
Something has to give in. If you implement all the system functionality on the budget, you will not
be able to complete work on time, and you will ask for an extension. If you implement all
functionality on schedule, chances are you will go over budget and will have to ask for more
resources. If you implement the system on budget and on schedule (that does not happen often, but
it is possible), well, then you will have to cut corners and implement only part of what you
promised."

Figure 1-2. The mystery triangle of software projects.

The problems shown in the triangle have plagued the software industry for a long time. Initial
complaints about the software crisis were voiced in 1968. The industry developed several
approaches to the problem. Let us take a brief look at a list of potential remedies.

Remedy 1: Eliminating Programmers

In the past, hardware costs dominated the cost of computer systems; software costs were relatively
small. The bottleneck in system development seemed to be in communication between the
programmers and software users, who tried to explain to the programmers what their business or
engineering applications had to accomplish.

The programmers just could not get it right because they were trained as mathematicians, not in
business, engineering, and so forth. They did not know business and engineering terminology. On
the other hand, business and engineering managers did not know design and programming
terminology; hence, when the programmers tried to explain what they understood about the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (18 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

requirements, communication breakdown would occur.

Similarly, the programmers often misunderstood the users' objectives, assumptions, and constraints.
As a result, the users were getting not exactly what they wanted.

A good solution to the software crisis at that time seemed to be to get rid of programmers. Let the
business and engineering managers write applications directly, without using programmers as
intermediaries. However, the programmers at that time were using machine and assembly
languages. These languages required intimate familiarity with the computer architecture and with
the instruction set and were too difficult for managers and engineers who were not trained as
programmers.

To implement this solution, it was necessary to design programming languages that would make
writing software faster and easier. These languages should be simple to use, so that engineers,
scientists, and business managers would be able to write programs themselves instead of explaining
to the programmers what should be done.

FORTRAN and COBOL are the languages that were initially designed so that scientists, engineers,
and business managers could write programs without communicating with the programmers.

This approach worked fine. Many scientists, engineers, and business managers learned how to
program and wrote their programs successfully. Some experts predicted that the programming
profession would disappear soon. But this approach worked fine only for small programs that could
be specified, designed, implemented, documented, used, and maintained by one person. It worked
for programs that did not require cooperation of several (or many) developers and did not have to
live through years of maintenance. The development of such programs did not require cooperation
of developers working on different parts of the program.

Actually, Figure 1-3 is correct for small programs only. For larger programs, the picture is rather
like Figure 1-4. Yes, communication problems between the user and the developers are important,
but the communication problems between developers are much more important. It is
communication between developers that cause misunderstandings, incompatibilities and errors
regardless of who these developers are¡Xprofessional programmers, professional engineers,
scientists, or managers.

Figure 1-3. Communication breakdown between the user and the developer.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (19 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 1-4. Communication breakdown between program developers.

Even Figure 1-4 is an oversimplification. It shows only a few users, who specify the requirements
and evaluate the effectiveness of the system. For most software projects, there are many users
(marketing representative, salespeople) who specify the system, and more than one person who
evaluates it (often, this is not the same person).Inconsistencies and gaps in specifying what the
system should do (and in evaluating how well it does it) add to the communication problems among
developers. This is especially true when a new system should perform some of its functions
similarly to an existing system. This often leads to different interpretations among developers.

Another attempt to get rid of programmers was based on the idea of using superprogrammers. The
idea is very simple. If ordinary programmers cannot create parts of the program so that these parts
fit together without errors, let us find a capable individual who is so bright that he (or she) can
develop the program alone. The superprogrammers' salaries have to be higher than the salaries of
ordinary programmers, but they would be worth it. When the same person creates different parts of
the same program, compatibility problems are less likely, and errors are less frequent and can be
corrected quicker.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (20 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In reality, the superprogrammer could not work alone¡Xthere was too much mundane work that
could be performed by ordinary people with smaller salaries. So, the superprogrammers had to be
supported by technicians, librarians, testers, technical writers, and so on.

This approach met with limited success. Actually, each development project was an unqualified
success¡Xproduced on schedule, under budget, and with complete functionality despite that
pessimistic model on Figure 1-2. However, communication between the superprogrammer and the
supporting cast was limited by the ordinary human capabilities of the supporting cast.

Also, the superprogrammers were not available for long-term maintenance; they either moved on to
other projects, were promoted to managerial positions and stopped coding, or they moved on to
other organizations in search of other challenges. When ordinary maintenance programmers were
maintaining the code created by a superprogrammer, they had as much trouble as with the
maintenance of code written by ordinary programmers, or even more trouble because
superprogrammers tend to produce terse documentation: to a superprogrammer, even a complex
system is relatively simple, and hence it is a waste to provide it with a lengthy description.

Nowadays, very few people promise that we will learn how to produce software systems without
programmers. The industry turned to the search for the techniques that would produce high-quality
programs with the use of people with ordinary capabilities. It found the solution in the use of
management techniques.

Remedy 2: Improved Management Techniques

Since hardware costs continue to plummet, it is the cost of software development and maintenance
that dominates the cost of computer systems rather than hardware cost. An expensive software
system represents a significant investment that cannot be discarded easily and rewritten from
scratch. Hence, expensive systems are maintained longer even though they are more expensive to
maintain.

Continuing increase in hardware power opens new horizons; this entails further increases in code
complexity and software costs (both for development and for maintenance).

This changes priorities in the software development process. Since the hopes for resolving this
problem with the help of a few exceptionally bright individuals were dashed, the industry turned to
methods of managing communication among ordinary individuals¡Xusers and developers and,
especially, managing developers working on different parts of the project.

To facilitate the communications between users and developers, the industry employed the
following two management techniques:

ϒΠ the waterfall method (partitioning the development process into separate distinct stages)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (21 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ rapid prototyping (partial implementation for users' earlier feedback)

The Waterfall Method

There are several variations of the waterfall approach used in managing programming projects.
They all include breaking the development process into sequential stages. A typical sequence of
stages might include requirement definition, systems analysis, architectural design, detailed design,
implementation and unit testing, integration testing, acceptance testing, and maintenance. Usually,
a separate specialized team of developers performs each stage. After a period of trial use and the
review of utility of the system, a new (or amended) set of requirements could be defined, and the
sequence of steps might be repeated.

Transitions between stages are reflected in the project schedule as milestones related to a
production of specific documents. The documents developed during each stage are ideally used for
two purposes: for feedback from the previous stage to evaluate correctness of the development
decisions and as an input document for the next stage of the project. This can be done either
informally, by circulating the document among interested parties, or formally, by running design
reviews and walkthrough meetings with representatives of each development team and the users.

For example, the requirement definition process produces the requirements document used as a
feedback to the project originators or user representatives and as an input document for the systems
analysts. Similarly, the systems analysis stage produces the detailed system specification used as a
feedback to the users and as an input document for the design stages. This is the ideal. In practice,
people who should provide the feedback might have other pressing responsibilities and might
devote only limited time to providing the feedback. This undermines the whole idea of quality
control built into the process.

In addition, the further the project proceeds, the more difficult it becomes to get meaningful
feedback from the users : The vocabulary becomes more and more computer oriented, the charts
and diagrams use notation that is unfamiliar to the users, and design reviews often degenerate into a
rubber stamp.

The advantage of this approach is its well-defined structure with clearly defined roles of each
developer and specific deliverables at each milestone. A number of methods and tools exist for
project planning and evaluating the duration and cost of different stages. This is especially
important for large projects when we want to ensure that the project is moving in the right
direction. The experience accumulated in one project helps in planning for subsequent similar
projects.

The disadvantage is its excessive formalism, the possibility to hide from personal responsibility
behind the group process, inefficiency, and the time lag of the feedback mechanism.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (22 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rapid Prototyping

The rapid prototyping method takes the opposite approach. It eliminates the formal stages in favor
of facilitating the feedback from the users. Instead of producing the formal specification for the
system, the developers produce a system prototype that can be demonstrated to the users. The users
try the prototype and provide the developers with much earlier and more specific feedback than in
the waterfall approach. This sounds great, but is not easy to do for a large system¡Xproducing a
rapid prototype might not be rapid at all and could easily approach the complexity and expense of
producing the whole system. The users who should try the prototype might be burdened with other,
more direct responsibility. They might lack skills in operating the system, they might lack skills in
systematic testing, and they might lack skills (or time) in providing the feedback to the developers.

This approach is most effective for defining system user interface: menus, dialog boxes, text fields,
control buttons, and other components of the human-computer interactions. Often, organizations try
to combine both approaches. This works; often, it works well, but it does not eliminate the problem
of communication among developers working on different parts of the system.

To improve communication among developers, a number of formal "structured" techniques were
developed and tried with different degrees of success. For writing system requirements and
specifications, structured English (or whatever language is spoken by the developers) is used to
facilitate understanding of the problem description and identification of the parts of the problem.
For defining the general architecture and specific components of the system, structured design
became popular with conjunction with such techniques as data flow diagrams and state transition
diagrams. For low-level design, different forms of flowcharts and structured pseudocode were
developed to facilitate understanding of algorithms and interconnections among parts of the
program. For implementation, the principles of structured programming were used. Structured
programming limited the use of jumps within the program code and significantly contributed to the
ease of understanding code (or at least significantly decreased the complexity of understanding
code).

It is not necessary to describe each of these techniques here. These formal management and
documentation techniques are very helpful. Without them, the situation would be worse. However,
they are not capable of eliminating the crisis. Software components are still crafted by hand, and
they are connected through multiple interconnections and dependencies. The developers have
difficulties documenting these interconnections so that those who work on other parts of the system
would understand the mutual expectations and constraints. The maintenance programmers also
have difficulties understanding complex (and poorly documented) interconnections.

As a result, the industry turned to techniques that alleviate the effects of interconnections. We are
currently witnessing a shift from methodologies that allow us to write software faster and easier to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (23 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

methodologies that support writing understandable software. This is not a paradox¡Xit is a shift in
attitude toward program quality.

Remedy 3: Designing a Complex and Verbose Language

Earlier programming languages, such as FORTRAN, COBOL, APL, Basic, or even C were
designed to facilitate the work of writing code. These programming languages were relatively
small, terse, and easy to learn. Beating around the bush in writing code was frowned on, while
succinct programming expressions were viewed as a manifestation of superb programming skills.

Lately, there's been a clear shift in programming language design. Modern languages, such as Ada,
C++, and Java use the opposite approach. These languages are huge and difficult to learn. Programs
written in these languages are invariably longer than similar programs written in more traditional
languages. The programmers are burdened with definitions, declarations, and other descriptive
elements of code.

This verboseness contributes to code consistency. If the programmer uses inconsistent code in
different parts of the program, the compiler discovers that and forces the programmer to eliminate
the inconsistency. With older languages, the compiler would assume that inconsistency was
introduced intentionally to achieve some purpose known to the programmer. Language designers
and compiler writers liked to say that "We do not want to second-guess the programmer." With
such permissible languages, finding an error often required elaborate run-time testing and might
result in errors escaping the hunt altogether. Modern languages treat code inconsistency as a syntax
error and force the programmer to eliminate it even before the program has a chance to run. This is
an important advantage, but it makes writing code much more difficult.

Another advantage of this verboseness is that code expresses the intent of the programmer better.
With traditional languages, the maintenance programmer often had to guess what the code designer
meant. Detailed comments in source code were needed to help the code reader, but the code
designers often did not have the time (or skills) to comment code adequately. Modern languages
allow the code designer to make the code more self-documented. "Redundant" declarations reduce
the need for comments in code and make it easier for the maintenance programmer to understand
the intent of the code. This is a new tendency in industry, and we will see specific coding examples
that support this approach.

These modern languages are both huge and complex; they are, of course, too large and too complex
for managers or scientists or engineers to use. These languages are designed for professional
programmers who are trained in the art of partitioning the software system into cooperating parts
without excessive interconnections among parts (and excessive shared knowledge among
developers). The basic unit of modularization in older languages was a function. They provided no
means to indicate in the program code that certain functions were logically closer to each other than

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (24 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

to other functions. New languages also use functions as units of program modularization, but they
also give the programmer the means to aggregate functions together. In Ada, this means of
aggregation is called package. Ada package can contain data, and package functions can operate on
that data, but there is only one instance of that data in the Ada program. C++ and Java make the
next step: their unit of aggregation, class, allows the programmer to combine functions and data so
that the program can use any number of data instances, objects.

However, the use of modern programming languages does not create any advantages in and of
itself. Using these languages, you can write programs that are as bad as programs written in any
traditional language, with multiple links between parts of the program, with obscure code that
needs extensive documentation, so that the maintainer's focus of attention is spread over different
levels of computations. This is where the object-oriented approach comes into play. In the next
section, I will discuss why the object-oriented approach is so good.

The Object-Oriented Approach: Are We Getting Something for Nothing?

Everybody is excited about the object-oriented approach (well, almost everybody). Almost
everybody knows that this approach is better than what preceded it (even though not everybody
knows why). Those who are not excited about the object-oriented approach do not really doubt its
effectiveness. They doubt whether the organizational changes are worth the trouble: expense of
training the developers and the users; efforts to produce new standards, guidelines, and
documentation; project delays due to learning; and assimilation of new technology with all related
mistakes and false starts.

The risks are significant, but so are the rewards (or so we think). The major boost for the object-
oriented approach comes from the availability and broad acceptance of languages that support
objects; C++ is without a doubt the most significant factor here.

Is the object-oriented approach just a new buzzword? Will it be replaced by something else in due
time? Does it have real advantages? Are there any drawbacks or tradeoffs to be made?

Let us be frank: There is no reason why the object-oriented approach (and the use of classes in
C++) is advantageous for writing small programs. The advantages of the object-oriented approach
outweigh drawbacks for large complex programs only.

There are two components to the program complexity:

ϒΠ the complexity of the application itself (what the application does for its users)

ϒΠ the complexity of the program implementation (introduced by the decisions made by
designers and programmers while implementing the program)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (25 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

We cannot control the complexity of application¡Xit is defined by the goal of the program. We
cannot expect that in future applications that complexity will somewhat decrease; if anything, it is
going to increase with further increase in hardware power that puts more and more complex tasks
within our reach.

It is the second component of complexity that we should control. Every time we decide that part of
the work should be done in one unit of the program and another part of the work should be done in
another unit of the program, we introduce additional complexity of cooperation, coordination, and
communications among these units. This risk is particularly high when we tear apart the actions
that should belong together and put them in different units of the program. Doing that creates
significant additional complexity in the program.

Why would one want to tear apart what should belong together? Nobody does this intentionally or
maliciously. However, often it is not easy to recognize which things belong together and which do
not. To recognize these situations, we have to learn how to evaluate the quality of design. And, by
the way, what is design?

What Does the Designer Do?

Many software professionals think that design is about deciding what the program should do, what
functions it should perform for the user, what data it has to produce, what data it needs to do the
job. Others add such tasks as deciding what algorithms should be used to do the job, what the user
interface should look like, what performance and reliability should we expect, and so on. This is
not design. This is analysis.

Design comes later, when we already know what functions the program should perform for the
user, its input and output data, data transformation algorithms, user interface, and so on. Design, in
general, is a set of the following decisions:

ϒΠ What units a program will consist of. When you design a software program, this decision
produces a set of functions, classes, files, or other units the program might consist of.

ϒΠ How these units will be related to each other (who uses whom). This design decision
describes which unit calls the services of which other unit and what data these units exchange
to support the services.

ϒΠ What the responsibility of each individual unit is going to be. It is while making this set
of design decisions that one could go wrong and break apart what should belong together. But
this observation is too general to be useful in practice. You need specific design techniques
catered to specific units of modularity.

Come to think of it, this is true not only of software design, but of any creative activity. Be it a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (26 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

musical composition, a book, a letter to a friend, or a painting, we have to decide what components
the product should have, how these components are related to each other, and what the role of each
component in achieving the common goal is. The more complex the task, the more important
design is for the quality of the result. A simple e-mail message does not need careful planning. A
software user manual does.

Structured design uses functions as units of modularity. The designer identifies the tasks that the
program should perform, partitions these tasks into subtasks, steps, substeps, and so on, until these
steps are small enough; after that, each step is implemented as a separate, presumably independent
function.

Data-centered design assigns modules so that each module is responsible for processing a specific
element of input or output data. The designer identifies the data that the program uses as its input
and the data that the program produces as its output. Then the designer breaks complex data into
components until processes that are needed to produce output data from input data are small
enough. After that, each data transformation process is implemented as a separate, presumably
independent, function.

There are numerous variations of these techniques catered toward different types of applications:
database applications, interactive applications, real-time, and so on.

All high-level programming languages provide functions, procedures, subroutines, or other similar
units of modularity (e.g., COBOL paragraphs) and support these modular design techniques. These
methodologies are useful, but they do not eliminate the problem of design complexity: The number
of interconnections between program modules remains high, because the modules are linked
through data. References to data make the module code obscure. The designers (and then
maintainers) have too many factors to consider, and they make errors that are hard to find and
correct.

Software designers use several criteria that allow them to minimize complexity and mutual
dependencies between cooperating parts of the code. Traditional software quality criteria are
cohesion and coupling. Modern object-oriented criteria are information hiding and encapsulation.

Design Quality: Cohesion

Cohesion describes relatedness of the steps that the designer puts into the same module. When a
function performs one task over one computational object, or several related steps directed toward a
specific goal, we say that this function has good cohesion. When a function performs several
unrelated tasks over one object, or even several tasks over several objects, we say that the function
has poor, weak, low cohesion.

High-cohesion functions are easy to name; we usually use composite terms that contain one active

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (27 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

verb for the action and one noun for the object of the action, for example, insertItem,
findAccount (if the name is honest, which is not always the case). For low-cohesion functions, we
use several verbs or nouns, for example, findOrInsertItem (unless, of course, we want to hide the
designer's failure and we just call the function findItem that finds the item in a collection or inserts
the item if it is not found).

The remedy for poor cohesion (as for any design flaw) is redesign. Redesign means changing the
list of parts (functions) and their responsibilities. In the case of poor cohesion, it means breaking
the function with weak cohesion into several cohesive functions.

This approach works most of the time but should not be taken to the extreme. Otherwise, it will
result in too many small functions, and the designer (and the maintainer) winds up with a larger
number of things to remember (function names and their interfaces).

This is why cohesion is not used alone; it is not a very strong criterion. It needs other criteria to
complement it. Make sure, however, that you consider it when you evaluate design alternatives.

Design Quality: Coupling

The second traditional criterion, coupling, describes the interface between a function (a server, a
called function) and the calling functions (server's clients). The clients supply the server function
with input data values. For example, the function processTransaction (a client) might call the
function findItem (a server) and pass the item ID and the text of an error message as input data to
findItem. The server depends on the correctness of its input data to produce correct results (e.g.,
find the item, display the right error message).

The clients depend on results produced by the server. For example, the function findItem might
produce for its client (processTransaction) the flag that says whether the item was found or not
and the index of the item if it was found. This represents the server output. The total number of
elements in server input and output represents the measure of coupling. We try to minimize
coupling by reducing the number of elements in the function interface.

The criterion of coupling is more powerful than cohesion is. It is very sensitive to design decisions
when the designer tears apart operations that should belong together. Almost invariably, these
design decisions result in extra communication among modules and in additional coupling. For
example, transaction error processing should be done in one place and should not be torn between
processTransaction and findItem.

The solution to excessive coupling is, of course, redesign: reconsidering the decisions as to what
function does what. If part of the operation on data is done in one function, and another part of the
operation is performed in another function, the designer should consider allocating both parts to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (28 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

same function. This decreases complexity of design without increasing the number of functions in
the program. For example, moving error processing from findItem to processTransaction
eliminates the need for passing the text of error message to findItem and passing the flag back to
processTransaction.

NOTE

Cohesion and coupling are discussed in more details later when we look at specific coding
examples in Chapter 9, "C++ Class as a Unit of Modularization."

At this stage I would like to make sure that when you look at C++ source code, you analyze it from
the point of view of cohesion, coupling, and tearing apart what should belong together.

Design Quality: Binding Together Data and Functions

What contributions does the object-oriented approach make to these quality criteria? Remember,
improving software quality does not mean making code aesthetically nicer, because aesthetics does
not reduce complexity of code. Improving quality means making program modules more
independent, making code more self-documented, and the intent of the designer easily understood.

The object-oriented approach is based on binding together data and operations. We will spend a
good deal of time discussing the syntax for doing that. It is important, however, before we look at
the object syntax, to understand what this syntax tries to accomplish and why it is so expedient to
use this syntax.

Why is binding together data and operations beneficial? The problem with the functional approach
to the program design is that the "independent" functions are connected with other functions
through data. For example, one function can set a value of a variable, and another function might
use its value (findItem sets the value of the index, and processTransaction uses that index).
This creates interdependencies between these two functions (and probably between other functions,
too).

One solution to this problem is to merge these two functions. When it works, this solution has to be
used. But it does not work all the time. Often, we call the server function repeatedly, and probably
from different client functions. Eliminating the server function (findItem) does not make sense.

In addition, some other functions might set and use that value (the item index might be used in
functions deleteItem, updateItem, and so on). In a small program, it is not difficult to trace all
instances of accessing and modifying the value of a variable and find the source of the problem if
something is done incorrectly. In a large program, this is more difficult, especially for the
maintainer who does not completely understand the intent of the designer. Even the original

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (29 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

designer, who returns to the program after several weeks or months of interruption, often feels at a
loss in understanding the program and locating the functions that use a particular value.

It would be beneficial to indicate the set of functions that access and modify a particular variable by
placing functions together in the source code. This would help the maintainer (and the designer
when he or she returns to the program) to understand the intent of the designer at the time of
writing the program. Many software designers do that because they understand the importance of
the self-documenting characteristics of the code.

However, this is often hard to do. Functions are often placed in the source code so that they are
easy to locate, in alphabetical order. Even when they are grouped according to the variables they
access, there is no assurance that all relevant functions are indeed grouped together. When the
designer (or the maintainer) needs a quick fix to some problem and adds a function that accesses
this variable at some other place in the program, this is not a syntax error. The compiler will accept
the program. The execution results will be correct. And the future maintainer might never notice
that additional function. With functional programming, it is not easy to make sure that all functions
that access or modify particular data are listed in the same place.

The object-oriented approach resolves this problem by binding together data values and functions
that access and modify these values. C++ combines data and operations in larger units called
classes. We do not tear related things apart, we put them together, reducing the number of things to
remember about other parts of the program. Data can be made private, assuring that only the
functions that belong to the class can access these particular values. Hence, the knowledge of the
designer (that is, the list of functions that access data) is expressed explicitly in the syntactic unit:
class description. The maintenance programmer is assured that no other function accesses or
modifies these values.

Figure 1-5 shows a relationship between two objects, a server and a client object. Each object
consists of data, methods, and the border. Everything that is inside the border is private and is not
available to other parts of the program. Everything that is outside of the border is public and is
available to other parts of the program. Data are inside the border and are invisible from outside.
Methods (functions) are partially inside and partially outside of the border. The outside part
represents the method interface known to the clients. The inside part represents the code
implementation hidden from the client code.

Figure 1-5. The relationship between server and client objects.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (30 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

NOTE

This notation was developed by Booch for design and programming with Ada. It proved to be very
useful for any object-oriented programming and design. When the client method needs the server
data to do its job, it does not specify the names of server data, because that data is private and is
not available outside of the server class. Instead, the client method calls the server method that
accesses the server data. Since the server method implementation is inside the server, it has no
difficulty accessing private server data.

Design Quality: Information Hiding and Encapsulation

When we decide what data and functions should belong together, we should choose among a large
number of alternatives. Some alternatives are clearly not good, while some others are better.
Choosing which one to implement can be a chore.

The criterion of encapsulation requires us to combine data and operations so that the client code
would be able to do its job by calling server functions without explicitly mentioning the names of
server data components.

The major advantage of this approach is that the list of functions that access server data is
immediately available to the maintainer in the form of class description.

Another advantage is that the client code contains less data-related manipulation and hence
becomes self-documented. Let us say that the application has to set the variables describing a
customer¡Xfirst and last name, middle initial, street address, city, state, zipcode, social security

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (31 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

number, and so on¡X16 values in all. If the client code is written using the traditional approach, the
designer writes the client code with 16 assignment statements. Now the maintainer has to decide:

ϒΠ whether or not all components of the customer description are assigned values

ϒΠ whether or not the values assigned here, only to components of the customer description
or some other data, are also handled

It might take some time and effort to answer both questions, and this contributes to complexity.

If this code is written using the object-oriented approach, the data is private, and the client code
cannot mention the names of variables describing the customer¡Xname, address, and so on. Instead,
the client code calls an access function such as setCustomerData. This passes the designer's intent
to the maintainer immediately.

The criterion of information hiding requires us to combine data and operations and distribute
responsibilities among operations so that the client code will be independent from the data design.

For example, we might not need to check the validity of the state and zip code values and check
whether they are consistent. It is appropriate to push this job down to the server rather than to the
client. If the assignment of zip codes to states changes, or if a city secedes from the state and
becomes a separate state, we will have to change only the server and not the client code. Had we
assigned this responsibility to clients, we would have to change each place zip code is used.

The important advantage of the object-oriented approach over the traditional approach is the
narrow scope of modification changes. Let us say that we switch from a five-digit zip code to a
nine-digit zip code. With the traditional approach, all client code has to be inspected, because the
customer data can be handled anywhere. If in some places you miss adding the code that handles
additional digits, it is not a syntax error, and it has to be discovered during regression testing.

With the object-oriented approach, you have to change the functions that handle customer zip code,
and the client code that calls these functions is not affected. So, the major advantages of
encapsulation and information hiding are:

ϒΠ There is a clear indication what functions access specified data by binding together data
and functions in class descriptions.

ϒΠ The meaning of client code is clear from function names, not from the interpretation of a
large number of low-level computations and assignments.

ϒΠ When the data representation changes, the class access functions change, but the range
of changes in the client code is narrow.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (32 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Design Issue: Name Conflicts

Less crucial but still very important is the issue of name conflicts in a large program. The names of
the functions must be unique in a C++ program. If one designer chose the function name
findItem, no other designer can use this name for another function in the same program. At first
glance it looks like a simple problem. So, anybody who wants to use this name will use a slightly
modified name, for example, findInventoryItem or findAccountingItem.

For many developers, the need to come up with unique names is an annoying restriction. But this is
not just a problem of creativity in naming. This is the problem of excessive communication
between developers.

Let us say you are a member of a 20-person development team, and you want to name the function
you are working on findItem. Let us say there are three other developers on the team that write
client code that will call this function. With the object-oriented approach, only these three
developers should know that you are writing a findItem function. All others do not have to learn
about that and can concentrate on other things.

With the traditional approach, all 20 developers have to be notified about your decision. Of course,
they will not devote all their working time to learning the name of your function. But still, all of
them will have to know the names of your functions and the functions designed by all other
developers. Notice that you also have to learn (or keep handy) the list of all function names that all
other developers are designing, even though you do not use them. Many organizations develop
sophisticated standards for function names to avoid name conflicts and spend significant resources
training developers to use these standards, enforcing compliance, and managing change when the
standards have to evolve.

This can easily become a chore that channels human attention from other issues. After all, the
power of our attention is limited, and the thinner it is spread, the higher is the likelihood of errors.
The object-oriented approach alleviates this problem. It allows you to use the same function name
for as many functions as you want if these functions belong to different classes. Hence, only those
developers who actually call your functions should know about your names. All others can devote
their energy to other issues.

Design Issue: Object Initialization

Another less crucial but still important issue is object initialization. In the traditional approach,
computational objects are initialized explicitly in the client code. For example, the client code must
explicitly initialize the components of the customer description. With the object-oriented approach,
a call to setCustomerData takes care of that. Still, the client code has to call this function. If this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (33 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function is not called, this is not a syntax error but a semantic error, and it has to be discovered at
run time during testing. If customer processing requires system resources (files, dynamic memory,
etc.), these resources also have to be returned by the client code explicitly, for example, by calling
the appropriate function.

The object-oriented approach allows us to do these operations implicitly. When the client code
creates an object by passing the necessary initializing data (we will see the syntax for doing that
later), there is no need to explicitly call initializing functions. At the end of computations, resources
allocated to the object can be returned without explicit action of the client code.

NOTE

This discussion is quite general. Later in the book, I will spare no effort trying to indicate the
features of C++ that contribute to these characteristics of the object-oriented approach. When
reading the rest of the book, please come back to this chapter often to make sure that the trees of
syntax do not hide from your view a beautiful forest of object-oriented programming.

What Is an Object, Anyway?

In object-oriented programming, we design a program as a set of cooperating objects rather than as
a set of cooperating functions. An object is a combination of data and behavior. As a programmer,
you might be familiar with other terms for data, such as data fields, data members, or attributes. We
often refer to object behavior using such terms as functions, member functions, methods, or
operations.

Data characterizes the state of an object. When similar objects can be described in the terms of the
same data and operations, we generalize the idea of the object in the concept of the class. A class is
not an object. A class is a description of common properties (data and operations) of objects that
belong to that class. A class does not live in the memory of the computer during program
execution. An object does. Every object of a specific class has all the data fields defined for the
class. For example, each InventoryItem might have an i.d. number, item description, quantity on
hand, purchase price, retail price, and so on. We describe these common properties in the definition
of class InventoryItem. During the program execution, objects of the class InventoryItem are
created and allocated memory for their data fields. These objects can change independently of each
other. When the values of data fields change we say that the state of the object changes.

All objects of the same class are characterized by the same behavior. Object operations (functions,
methods, or operations) are described in the class definition together with data. Each object of a
specific class can perform the same set of operations. These operations are performed on behalf of
other objects in the program. Usually, these are operations over object data; these operations can
retrieve the values of data fields, or they can assign new values to data fields, or compare values,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (34 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

print values and so on. For example, an inventory item object can have, among others, such
functions that set retail price to a given value or compare the item's i.d. number with the given
number.

A computer program can have more than one object of the same kind. The term object is used to
describe each such object instance because an object is an instance of a class. Some people also use
the term object to describe the group of objects of the same kind. More often, however, it is the
term class that is used to describe the set of potential object instances of the same kind. Each object
of the same class has its own set of data fields, but the corresponding fields in different objects
have the same names. For example, two inventory item objects might have the same (or different)
values of retail price; the i.d. number will probably be different for different inventory item objects.
All objects of the same class can perform the same operations, that is, they respond to the same
function calls. All objects of the same kind have the same properties (data and operations). When
we call an object function that changes the state of the object or retrieves information about the
state of the object, we say that we are sending a message to the object.

This is a very important detail. In a C++ program, a function call usually involves two objects. One
object sends a message (calls the function), another object receives the message (sometimes we say
it is a target of the message). We will call the object that sends the message the client object; we
will call the target of the message the server object; although this terminology sounds similar to the
client-server terminology used for the client-server computer system architecture, it means different
things. Actually, these terms were used in object-oriented programming much earlier than the first
client-server systems became popular. We are going to spend a lot of time talking about client-
server relationships among objects in a C++ program.

As you are going to see later, the objects in a C++ program look syntactically very much like
ordinary variables¡Xintegers, characters, and floating point numbers. They are allocated memory
pretty much the way ordinary variables are: allocated on the stack or on the heap (again, we will
see the details later). A C++ class is a syntactic extension of what other languages call structures or
records that combine data components together. The C++ class includes both data declarations and
function declarations.

So, when the client code needs to use the object, like comparing an item i.d. number with a given
value or setting the value of the item retail price, it does not mention the names of the object data
fields. Instead, it calls the functions provided by the object and these functions do the job for the
client; they compare item i.d. numbers and set the value of the retail price.

Advantages of Using Objects

Although it does not sound like a big deal¡Xthe client code mentions the names of object functions
rather than the names of object data fields¡Xthe difference is significant. Experience shows that the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (35 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

design of data structures is more volatile and amenable to change than is the design of operations.
By using the names of functions rather than the names of data fields, we insulate the client code
from potential changes in the server object design. By doing so, we improve the maintainability of
the program, and this is one of the important goals of the object-oriented approach.

Also, when the client code calls a server function, for example, compareID, the intent of the client
designer is immediately clear to the maintainer. When the client code retrieves and manipulates IDs
of the objects, the meaning of the code has to be deduced from the meaning of elementary
operations rather than from function names.

In summary, the goal of the object-oriented approach is the same as for other software development
methodologies: to improve software quality as perceived by the ultimate user (program
functionality and total development and maintenance costs).

Proponents of the object-oriented technology hope that the object-oriented approach allows us to
reduce complexity of program code. With less complexity to deal with, we hope to decrease the
number of errors in software and to increase productivity during development and maintenance.

Software complexity can be reduced by partitioning programs into relatively independent parts that
can be understood in isolation, with few references to other parts of the program. When we use
classes as program units, we have a chance to decrease interconnections between the parts. We pay
for that by increasing interconnections between parts of the class; class member functions operate
on the same data. But this is fine¡Xa class is usually developed by the same person, and it is
interpersonal communication that is prone to omissions, inconsistencies, and misunderstanding.
Reduced dependencies between classes reduce coordination among team members assigned to
these classes, and the number of errors.

Unlike interconnected parts, independent classes can be easier to reuse in other contexts; this
improves productivity during development of the system and possibly productivity during
development of other software systems.

Interconnected parts have to be studied together, which is slow and prone to error. Independent
classes can be easier to understand: This improves productivity during program maintenance.

The object-oriented technology is not without its risks and costs. Developers, users, and
managers¡Xall have to be trained, and training costs are significant. Object-oriented projects seem
to take longer than traditional projects do, especially during the first phases of the project, analysis
and design. Object-oriented programs contain more lines of code than do traditional programs. (Do
not be scared¡XI am talking about lines of source code, not about the size of object code¡Xthe size
of executable code really does not depend on the development methodology.) Most important, the
languages that support object-oriented programming (especially C++) are complex. Using them
entails certain risk that the benefits will not be realized, that the object-oriented program will be

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (36 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

larger, more complex, slower, and more difficult to maintain than the traditional program.
Hopefully, this book will teach you not only how to use C++ but also what to avoid. The proper use
of this powerful and stimulating language will help you realize the promise of the object-oriented
technology.

Characteristics of the C++ Programming Language

C++ is a superset of the C programming language. C itself is a descendant of several generations of
early languages; it was created and implemented with conflicting goals in mind. This is why C++
contains features that are inconsistent and sometimes irritating. In this section, I will briefly review
the major characteristics of C and then will show how C++ uses this "inheritance" to achieve its
goals.

C Objectives: Performance, Readability, Beauty, and Portability

The first goal of C was to give software developers a performance-oriented systems programming
language. This is why C and C++ do not support run-time checking for errors that could cause
incorrect program behavior but could be found by the programmer during testing. This is why C
and C++ contain low-level operators that emulate assembly language instructions and allow the
programmer to control computer's resources, such as registers, ports, and flag masks.

NOTE

If you do not know what registers, ports, and masks mean, do not worry; this will not prevent you
from mastering C++; just rest assured that fate has spared you hundreds of hours of debugging
anguish of assembly language programming.

The second goal of C was to give software developers a high-level language suitable for
implementing complex algorithms and sophisticated data structures. This is why C and C++ allow
the programmer to use loops, conditional statements, functions, and procedures. This is why C and
C++ support processing of different data types, arrays, structures, and dynamic memory
management. (If you are not comfortable with these terms, do not worry; this will not prevent you
from mastering C++ using this book.) These features support code readability and maintainability.

The third goal of C was to allow software developers to write source code that is elegant and
aesthetically pleasing. It is not exactly clear what "elegant" and "aesthetically pleasing" meant; it
probably meant different things to different people, but the consensus was that if the program is
succinct, terse, and puts a lot of processing into a few lines of well-designed code than it is elegant
and aesthetically pleasing. As a consequence of this approach, the language affords the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (37 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programmers significant "freedom" in writing code without flagging this code as syntactically
incorrect. We are going to see more of this issue later.

The fourth goal of C was to support program portability at the level of the source code; this is why
C and C++ executable object code is not expected to run under different operating systems or on
different hardware platforms. However, the source code is expected to be compiled by different
compilers or for different platforms without changes, and it should run exactly the same way
without modifications.

The first three goals were achieved reasonably well, even though they were somewhat conflicting.
C was used for the development of the UNIX operating system, which gradually became very
popular and was implemented on a large number of hardware platforms, including multiuser
environments (mainframes, minicomputers, PC servers) and single-user environments (PCs). C was
also used for implementing system utilities, database systems, word processors, spreadsheets,
editors, and numerous applications.

The conflict between readability and succinct expressiveness (programming aesthetics) was not
resolved. Those developers who valued readability learned how to use C to produce readable code.
Those developers who valued expressiveness learned how to use C to produce succinct code and
even had competitions for writing the most obscure and expressive code.

The fourth goal, the portability of C code was also met, but with significant reservations. That is,
the language itself is portable: If the language statements are compiled under different operating
systems or on different hardware platforms, the program will execute in exactly the same way. The
catch is that any real C program contains much more than C language statements: it contains
numerous calls to library functions.

The implicit goal of the C language design was to create a small language. Initially, it had only 30
keywords. If you compare it with COBOL or PL/I, the difference is staggering. As a result, the
language is very small. It does not have the exponentiation operation, it cannot compare or copy
text, and it does not include input or output operations. However, you can do all of that (and much
more) using library functions that come with the compiler. The language designers felt that it was
up to compiler vendors to decide what library functions should be used to compare or copy text, to
perform input or output operations, and so on.

This was not a good idea. It was at odds with the idea of source code portability. If different
compilers and different platforms were using different library functions, then the program could not
be ported to a different platform without modifications to library function calls. It could not even be
recompiled on the same platform using a different compiler. Also, this approach was at odds with
the idea of "programmer portability." A programmer who learned one library had to be retrained to
be able to use another library.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (38 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is no small matter, and vendors of compilers for different platforms recognized its importance
and developed the "standard" library that programmers could use on different machines without
making too many modifications to program code. "Too many" means that some modifications had
to be made. Because of the lack of one strong center for standardization, several versions of UNIX
were developed, and libraries of different compiler vendors behaved somewhat differently on
different machines under different operating systems.

American National Standards Institute (ANSI) spearheaded the standardization effort and codified
ANSI C in 1983-1989 with the goal of promoting portability. The ANSI version of the language
also incorporates some new ideas, but does it with backward compatibility, so that the legacy C
code could be recompiled by new compilers.

Today, even though C source code is mostly portable, problems do exist, and porting a program to
a different machine or operating system might require changes. Skills of C programmers are also
mostly portable; and programmers can move from one development environment to another with
little retraining (but some training might be needed).

The C designers also did not see the "catch" in introducing diverse libraries. We pay for that
"flexibility" with increased costs of code porting and programmer retraining. The experience that
the industry accumulated dealing with these issues is one of the reasons why Java designers pay so
much attention to enforcing uniform standards. The Java language is extremely unforgiving and
flags many C idioms as syntax errors. The issue of backward compatibility with C has a relatively
low priority in Java design. Clearly, Java designers did not want to sign on that dotted line.

C++ Objectives: Classes with Backward Compatibility with C

One C++ design goal was to expand the power of C by supporting the object-oriented approach to
programming. Here, "expand" should be taken literally. C++ is designed for 100% backward
compatibility with C: Every legal C program is a legal C++ program. (Actually, there are some
exceptions, but they are not important.) Hence, C++ shares with C all its design features, good or
bad (until death do us part).

Similar to C, C++ is token oriented and case sensitive. The compiler breaks the source code into
component words regardless of their position on the line, and elements of the program code should
not be in specific columns (e.g., they have to be in FORTRAN or COBOL). The C++ compiler
ignores all white space between tokens, and the programmers can use white space to format code
for readability. Case sensitivity helps avoid name conflicts but can result in errors if the
programmer (or the maintainer) does not pay (or does not have time to pay) attention to subtle
differences in capitalization.

Similar to C, C++ only has a few basic numeric data types, fewer than in other modern languages.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (39 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

To add insult to injury, some of these basic data types have different ranges on different machines.
To make matters even more confusing, the programmers can use so-called modifiers that change
the legal range of values acceptable on a given machine. This has implications both for software
portability and maintainability.

To compensate for the scarcity of built-in data types, C++ supports data aggregation into composite
types: arrays, structures, unions, and enumerations; data aggregates can be combined to form other
aggregates. This feature is also borrowed from C.

C++ supports a standard set of flow control constructs: sequential execution of statements and
function calls, iterative execution of statements and blocks of statements (for, while, do loops),
decision-making (if, switch constructs), jumps (break, continue, and, yes, there is the goto
statement too). This set of control constructs is the same as in C, but there are some differences in
the use of for loops.

Similar to C, C++ is a block-structured language: Unnamed blocks of code can be nested to any
depth, and variables defined in inner blocks are not visible to the outer blocks. This allows
programmers who write the inner blocks to use any names for local variables without the fear of
conflict (and need for coordination) with the names defined by the programmers who write the
outer blocks.

On the other hand, a C (and C++) function (i.e., a named block) cannot be nested inside another
function, and the function names must be unique in the program. This is a serious limitation. It
increases pressure on coordination among programmers during development and makes
maintenance more difficult. C++ partially corrects this problem by introducing the class scope.
Class methods (that is, functions defined inside the class) have to be unique within the class only,
not within the program.

C++ functions can be called recursively in exactly the same way as C functions can. Older
languages did not support recursion because recursive algorithms represent a miniscule fraction of
all algorithms. Naive use of recursion can waste both time and space during execution. However, a
few algorithms where recursion is useful really benefit from it, and recursion is a standard feature
in modern programming languages (but not in scripts).

Exactly as in C, C++ functions can be placed in one file or in several source files. These files can
be compiled and debugged separately, thus enabling different programmers to work on different
parts of the project independently. Compiled object files can be linked together later to produce an
executable object file. This is important for labor division in large projects.

Very much like C, C++ is a strongly typed language: It is an error to use a value of one type where
a value of another type is expected, for example, in expressions or in passing arguments to a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (40 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function. Today, this is a common principle of programming language design. Many data type
errors that would manifest themselves at run time can be flagged at compile time. It saves the time
spent on testing and debugging.

Even more than C, C++ is a weakly typed language (yes, it is both a strongly typed and weakly
typed language). Conversions among numeric types are done silently both in expressions and in
parameter passing. This is an important departure from modern language design and prone with
errors that cannot be discovered at compile time. In addition, C++ supports conversions between
related classes. On the one hand, this allows us to use a nice programming technique called
polymorphism. On the other hand, this feature prevents the compiler from catching substitutions
made inadvertently.

C++ inherits from C support for the use of pointers for three purposes: a) passing parameters from a
calling function to a called function, b) dynamic memory allocation from the computer heap (for
dynamic data structures), and c) manipulating arrays and array components. All techniques for
using pointers are prone to error; these errors are particularly difficult to discover, localize, and
correct.

Very much like C, C++ is designed for efficiency: Array bounds are checked neither at compile
time nor at run time. It is up to the programmer to maintain program integrity and avoid corruption
of memory if an invalid index is used. This is a popular source of errors in C/C++ programs.

Similar to C, C++ is designed for writing succinct and terse code: It gives a special meaning to
punctuation and operator characters such as asterisks, plus signs, equal signs, braces, brackets,
commas, and so forth. These symbols can have more than one meaning in a C++ program: The
meaning depends on context, and this makes learning and using C++ more difficult than learning
and using other languages.

C++ adds a number of new features to C. The most important feature is support for objects. C++
expands C structures to classes; they bind together data and functions as a unit of code. Classes
encourage information hiding by localizing data representation within their borders so that the data
components are not available outside of the class. Classes support encapsulation by providing
access functions (methods) that are called by client code. The use of class scope reduces name
conflicts in C++ programs.

Classes facilitate hierarchical approach to design so that higher-level classes reuse lower-level
classes. Class composition and class inheritance allow the programmers to implement complex
models of the real world and manipulate program components easily.

There are a number of other features in the language that help the designer express code intent in
the code itself, not in comments.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (41 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

However, the C++ language, similar to C, was designed for an experienced programmer. The
compiler does not try to second-guess the programmer, assuming that he or she knows what he or
she is doing. (And we do not always, do we?) It is important to know what we are doing. If the
developer is not careful, a C++ program can be quite complex and intimidating to a reader and
difficult to modify and maintain. Type conversions, pointer manipulation, array processing, and
parameter passing are also frequent sources of obscure errors in C++ programs.

Hopefully, sound software engineering practices recommended in this book will help you to
understand what you are doing and to avoid pitfalls of unnecessary complexity.

Summary

In this chapter, we looked at different solutions to the software crisis. The use of object-oriented
languages seems to be the most effective way of avoiding budget overruns, missed deadlines, and
scaled-down releases. However, writing programs in object-oriented languages is more difficult
than writing them in traditional procedural languages. Used correctly, object-oriented languages
facilitate the reading of a program, not the writing of it. Actually, this is very good. After all, we
write source code only once, when we type it in. We read code many, many times over¡Xwhen we
debug it, test it, and maintain it.

As an object-oriented language, C++ allows you to bind together data and functions in a new
syntactic unit, class, which extends the concept of type. Using C++ classes, you write the program
as a set of cooperating objects rather than as a set of cooperating functions. Using classes promotes
modularization, and code design with high cohesion and low coupling. Classes support
encapsulation, class composition, and inheritance. This contributes to code reuse and
maintainability. The use of classes eliminates naming conflicts and contributes to understanding
code.

It is important to learn how to use C++ correctly. The indiscriminate use of the features that C++
inherited from C could easily eliminate all advantages of object-oriented programming. Our
discussion of these features was by necessity cursory and introductory. Later in the book, I will try
to do my best to show you how to make the best use of C++ features. This presentation will be full
of specific technical details. As I mentioned earlier, I think it is a good idea to come back to this
chapter from time to time to make sure that you do not lose sight of powerful object-oriented ideas
behind low-level syntactical details.

In the next chapter, we will start our road toward the correct use of C++ by reviewing its basic
program structure and most important programming constructs.

Chapter 2. Getting Started Quickly: A Brief Overview of C++
file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (42 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Topics in this Chapter

ϒΠ The Basic Program Structure

ϒΠ Preprocessor Directives

ϒΠ Comments

ϒΠ Declarations and Definitions

ϒΠ Statements and Expressions

ϒΠ Functions and Function Calls

ϒΠ Classes

ϒΠ Dealing with Program Development Tools

ϒΠ Summary

In this chapter, I will briefly preview the basic programming constructs of the C++ language before
going on to discuss them in more depth in the chapters that follow. Because C++ is a large
language, anything that is "brief" is not going to cover much of the language, and anything that
indeed reviews the most important features of the language is not going to be "brief." I will try to
strike a reasonable compromise.

Studying a language like C++ feature by feature cannot give you a general picture that would
connect different features into a cohesive whole. Many features are intertwined and cannot be
discussed separately. This is why you need this preview. It will give you the first look at the most
important concepts and constructs of the C++ language, will enable you to write your first C++
programs, and will prepare you for studying these concepts and techniques in depth and in breadth.

The programs in this book are written using the ISO/ANSI standard C++. This version of the
language adds new features and also changes the syntax of some existing features. There are still
many compilers in use in industry that implement only some features of the new language. There
are too many different vendors and too many different compiler versions to discuss their
differences in implementing standard C++ in detail. Eventually, older compilers will be replaced by
newer versions. However, the industry will have to deal with the code written in prestandard C++
for many years to come. This old code will be supported by newer compilers as well, because
backward compatibility is one of the important goals of C++ design, and standard C++ adds new

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (43 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

features without making old features illegal. As a rule, I will cover new standard C++ syntax
without mentioning that explicitly. Where necessary, I will make reference to older ways of writing
code to make sure you can deal with legacy code with confidence.

The Basic Program Structure

Listing 2.1 shows the source code for your first C++ program. It welcomes you to the world of C++
(as most first programs in programming language books do). In addition, just to demonstrate more
features than a canonical "Hello World" program does, it makes some simple computations and
prints the result of raising the value of pi (3.1415926) to the power of two.

Example 2.1. Your first C++ program.
#include <iostream> // preprocessor directive
#include <cmath> // preprocessor directive
using namespace std; // compiler directive
const double PI = 3.1415926; // definition of a constant
int main(void) // function returns integer
{
 double x=PI, y=1, z; // definitions of variables
 cout << "Welcome to the C++ world!" << endl; // function call
 z = y + 1; // assignment statement
 y = pow(x,z); // function call
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl;
 return 0; // return statement
} // end of the function block

Do not worry if this program looks obscure. By the end of this chapter, you will understand every
detail here (and more).

Similar to other modern programming languages, C++ allows us to write instructions to the
computer in the form of human-readable source code. The C++ compiler translates the source code
into machine-readable object code. During program execution, machine language instructions are
executed one after another and produce the results.

Most computations are performed over values that are stored in computer memory. For our
purposes, we can think of computer memory as an array of locations with values. Locations cannot
be referred to by the values that are stored in them. They can be referred to either by their numeric
addresses (in the object code) or by their symbolic names (in the source code). For example, our
first C++ program contains the statement:

 z = y + 1;

It instructs the computer to fetch the value that is stored at the location named y, increment that

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (44 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

value (without changing the contents at location y), and put the result into the location labeled z.
The real addresses of locations named y and z are specified in the executable code but not in the
source code; the programmer makes up these symbolic names but has no interest in what memory
addresses are assigned by the compiler to each name.

In real memory, integers, floating point numbers, and characters (text) are allocated different
numbers of bits and bytes, and their bit patterns are handled differently at run time. To generate
executable code correctly, the compiler has to understand the programmer's intent. This is why
before the statement z=y+1; can be executed, the compiler has to be told that y and z are indeed
symbolic names for locations in memory (and not for other things, e.g., functions) and that the
values stored in memory under these names are of the type double (one of C++ designations for
numbers with fractional parts).

So, most of the source code that the programmer writes either defines the objects that the program
manipulates (here, their names are x, y, z and others specified in #include and #define
directives) or describes what should be done with these objects (add, assign, pass as a parameter to
a function).

The source code for a C++ program can be an ordinary text file created by a text editor, like Emacs
or Vi on Unix, Edt on VMS, or by an Integrated Development Environment (IDE) on PC or Mac.
Here we save it as a file on the hard disk.

Usually, you give your source code files the names you see fit, but you are limited as to what file
name extension to use. Depending on the compiler, source files should be saved with file name
extension .cc, .cpp, or .cxx. Using other extensions is possible but less convenient. When standard
extensions are used, only the name of the source file has to be specified, and the development tools
append the extension automatically. Nonstandard extensions are allowed (and frowned on) but they
have to be specified explicitly.

The source file can define several functions (our first C++ program has only one; its name is main).
The program can consist of several source files (this program has only one). Each source file has to
be compiled, producing the object file. Most environments require that the compiled program
(object files) be linked before it can be executed. (You will learn more about that later in the
chapter.) Figure 2-1 shows the output of execution of our first C++ program.

Figure 2.1. Output of our first C++ program produced by a Microsoft compiler.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (45 of 1187) [8/17/2002 2:57:44 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This output was produced by the executable file generated by the Microsoft Visual C++ compiler,
Professional Edition version 6.0. It is a part of Microsoft Development Studio, which integrates
several development tools in the same package. The program was called by the Development
Studio. The last line of the output is generated by the compiler, not by the program. Otherwise, the
window would be removed from the screen immediately after program termination, and the user
would not be able to inspect the program output. Older versions of the Microsoft compiler do not
add this message, but they do not remove the window from the screen either¡Xthe user has to do
that. The program can also be run as a stand-alone application directly from the DOS prompt. In
that case, the last line does not appear. Figure 2-2 shows the result of running this program from the
DOS prompt.

Figure 2.2. Output of our first C++ program run from the DOS command prompt.

The numeric output on different machines might be somewhat different as well. This depends on
the default setting for the number of digits in the output. C++ allows the programmer to explicitly
specify the format of the output, so that it does not depend on the compiler settings, but it is rather
complex and does not belong to this preview. You will see the examples of doing that later.

Our first C++ program demonstrates the following components that should be present in any C++
program:

ϒΠ preprocessor directives

ϒΠ comments

ϒΠ declarations and definitions

ϒΠ statements and expressions

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (46 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ functions and function calls

In the following sections I'll discuss the use of each kind of program component in more detail.

Preprocessor Directives

In most other languages, what you write in the source file is what the compiler sees during
compilation. This is not the case in C++. The compiler is not the first tool that deals with the source
code on its way to becoming an executable program. The first tool that processes the source code is
the preprocessor. What is this? Well, it is an interesting invention that C++ inherited from C. Its
goal is to decrease the amount of source code that the programmer writes during development (or
reads during debugging or maintenance).

The preprocessor processes the source file and passes the results of processing to the compiler for
compilation. Most of the program statements are ignored by the preprocessor and are passed to the
compiler unmodified. The preprocessor pays attention only to preprocessor directives (and to
statements that are related to them).

The preprocessor directives start with a '#' and take up the whole line. You cannot put more than
one directive on a single source line. If the directive does not fit into one source line, it can be
continued on the next line, but the previous line should be ended by a special continuation
character, the escape character '\'. The pound sign '#' should be the first character on the line. What
about the free format of C++ source code? In the previous chapter, I told you that you can format
C++ code the way you (and not the compiler) see fit. Well, formally, preprocessor directives are
not part of the C++ (or C) language, and the preprocessor is not part of the compiler.

In practice, of course, you cannot write even a simple C++ program without using preprocessor
directives, but in theory, these directives are not part of the language! In practice, it is the compiler
vendors that supply the preprocessors, but in theory, compilers and preprocessors are not related.
Lately, compiler vendors have relaxed the rule: The '#' does not have to be the first character on the
line, but it should be the first nonblank character.

Listing 2.1 uses two #include preprocessor directives. The #include directive causes direct text
substitution: The preprocessor fetches the whole file whose name is specified as the directive
argument and replaces the directive by the contents of the file taken verbatim. This can be used to
combine several source files into one source file that is then compiled as a whole. The most popular
use of this directive is to include function headers that describe functions used by the source code.

The names of these header files are put in the angle brackets to indicate to the preprocessor that it
has to search for this file in the standard directory where the compiler stores its header files. For
example, the #include directives used in the first program specify two header files. The first one is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (47 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

needed for using the function pow(), the second one is needed for using the operator << and the
object cout. We will learn more about functions, operators, and objects later. This is just one of
the examples of the complexity of C++¡Xit is impossible to discuss even a simple program without
using components that cannot be understood without learning much more than a simple program.

#include <iostream>
#include <math>
using namespace std;

The last line in this code segment from our first program is the using namespace directive. It is
not a preprocessor directive. It instructs the compiler to recognize the code brought in by the header
files. This is a new language feature. If you are using an older compiler, it might reject these three
lines. For such a compiler, the using namespacedirective should not be used. The names of the
header file used in older code should have extension .h. Hence, the first three lines of the program
in Listing 2.1 should be replaced with the following two lines.

#include <iostream.h>
#include <math.h>

The preprocessor directives direct the preprocessor to search the compiler directory for the
include files (function pow() that computes powers of floating point numbers, object cout that
represents the standard output, i.e., the screen, and operator << that displays the values on the
monitor screen).

Other header files could describe functions that are not part of the standard library. They are
usually written by the programmers working on the project. When the names of these files are used
in the #include directives, they are enclosed in double quotes, for example,

#include "c:\work\mydef.h"

This directive directs the preprocessor to copy into the source file the contents of the file mydef.h
from directory c:\work. In this example, I am using the absolute path in the file name. This is
convenient if the source file is moved to one directory and the header file stays in another directory.
In this case, the directive does not have to be modified. Often, however, the whole directory tree for
a project is moved to another directory. When the location of the header file changes, the source
file that uses that header file has to be modified. To avoid this, programmers use relative paths in
the #include directives.

After being processed by the preprocessor, the #include directive itself disappears from the source
file and is not passed on to the compiler.

The #include directives are extremely important: The program will not compile without them.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (48 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

However, they are not very sophisticated: All you have to know is what function requires what
header file. The compiler help facility will assist you with that.

The definition of a constant in Listing 2.1 initializes the variable with a symbolic name PI to the
value of 3.1415926. (It is customary to use capital letters for symbolic constants to distinguish them
from variables whose values can change during program execution.) Later, the compiler will
process this line of code:

double x=PI, y=1, z; // definitions of variables

The executable code will copy the value allocated at the address PI the location at the address x.
An alternative method to introduce the constant PI is to use the #define directive. The #define
directive is also used for text substitution: Its first argument specifies the text to be substituted, and
the second argument specifies the text to be used as the substitute. When the preprocessor finds in
the further text of the source file the symbol that corresponds to the first directive argument, it
replaces that symbol with the second directive argument. This is an example from our first C++
program:

#define PI 3.14159266

This directive directs the preprocessor to replace every occurrence of PI with 3.1415926. When the
preprocessor processes this line of code,

{ double x=PI, y=1, z; // definitions of variables

it passes to the compiler the following line.

{ double x=3.1415926, y=1, z;

Notice that the preprocessor removes the comments so that the compiler does not see them either.
(We will discuss comments in the next section.)

The #define directive can be used to define macros, that is, sequences of computations that are
inserted in the source code rather than a simple symbol as in the above example. Logically, they are
used in the code in the same way as functions, combining a number of operations under a single
name. Macros are faster than functions, and they are very popular in C. In C++, we use inline
functions instead of macros. This is why I will not discuss macros in further detail, even though a
few years ago you had to know how to write macros to pass as a C programmer. Macros are great
fun, but they are a source of errors that are difficult to debug.

Another important set of preprocessor directives controls conditional computations. The #ifdef

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (49 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

directive includes the code that follows it if the symbol used with this directive is defined. The
scope of this directive is limited by the #endif directive. For example, the following code is
included in the compilation if the symbol CPLUSPLUS is defined; otherwise, the preprocessor hides
this code from the compiler because it is not needed when the program is compiled as a C program.

#ifdef CPLUSPLUS
 . . .whatever is needed when the program is written in C++
#endif

Notice that the symbol does not have to have a value; the use of the symbol in a #define directive
is enough for the symbol to be defined for the purposes of the #ifdef directive. Also notice that the
symbolic names are in uppercase. It is not necessary, but it is a common programming convention.
Another popular convention is to use lowercase, but start the symbol name with two underscore
characters:

#define __cplusplus
 #ifdef __cplusplus
 . . .whatever is needed when the program is written in C++
#endif

Another method to indicate the scope of the #ifdef directive is to use the #else directive. The
code that follows the #else directive (until the #endif directive is found) is not included in the
computation when the code that follows the #ifdef directive is included, and vice versa. For
example,

#define MT
 #ifdef MT
 #define NFILE 40
 #else
 #define NFILE 20
#endif

This code is similar to what you find in the header files; if the symbol MT is defined, the limit for
the number of files is 40; if we remove its definition from the source file, the limit will be 20.

The #ifndef directive is opposite to the #ifdef directive. It includes the source code that follows
it (until the #else or #endif directive) only if the symbol used in that directive is not defined. If
the symbol is defined, the code that follows the #ifndef directive is skipped; if the #else directive
is present, the code that follows it (until the #endif directive) is passed on to the compiler. The
next example is again borrowed from a header file:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (50 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#ifndef NULL
 #define NULL 0
#endif

This is a very popular technique to make sure that the symbol is defined and defined only once
even though it is repeated in several files. If this definition is found in another file again, it will be
silently ignored.

The preprocessor directives for conditional compilations are often used to support program
portability. If the application should work in several environments, and the code for the application
is basically the same for each environment with the exception of localized segments, you put these
segments inside the conditional compilation directives. When the system is ported from one
environment to another, all that it takes is to replace the #define directive for one symbol with the
#define directive for another symbol.

This sounds simple and effective. The reality is somewhat more complex, and the preprocessor
directives can be easily abused. This is why it is important to limit the use of preprocessor
directives to simple #include directives for header files. Use other directives when you become
more comfortable with the language.

Comments

C++ has two types of comments: block comments and end-of-line comments. Block comments
start with a two-character symbol '/*' and end with a two-character symbol '*/'; end-of-line
comments start with a two-character symbol '//' and end at¡Xyes, you've guessed it¡Xthe end of
line; that is, at a next newline character in the source file. The two-character symbols are quite
common in C++. Most of them are inherited from C. Using the two-character symbols for operators
and in other contexts instead of additional keywords was one of the ways the designers of C
managed to design the language with only 30 keywords (and persuaded everyone that C was indeed
a very small language).

The characters of two-character symbols (all two-character symbols in C++, not just comments)
have to be typed next to each other. They cannot be separated by white space (or, for that matter, by
any other character).

Text within comments of either type is equivalent to white space and hence is logically invisible to
the compiler; actually, it is invisible to the compiler because the preprocessor removes the
comments before the text of the source code is compiled. Here is an example of a block comment:

/* Comments are directed to a human, not to a compiler.
 Any symbol could be in a comment, including tabs, new
 lines, //, /*. We can format comments nicely, so that

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (51 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 the structure of the text is clear to the reader. */

Many programmers use block comments as a preface to functions or significant segments of the
algorithm. In these comments, they describe the purpose of the algorithm, input data used for
processing, output data that is the result of computations, and other functions that are called to
accomplish the task. Often, the update history is documented as well: the initial author and the date
of the first version, authors and dates of updates, and the purpose of each update. The exact format
of these block comments varies from organization to organization. It is, of course, important to
stick to an uniform format. Even more important is to stick to the habit and provide the comments.
Can anything be more important than providing comments? Sure: updating the comments when the
code changes. There are few things more detrimental to maintenance than comments that are
incorrect.

NOTE

In C, only block comments are available. If the programmer wants to comment on individual lines
of code, the block comments are used for individual lines similar to the way I did it for our first
C++ program. I think that the designers of C felt that the programmers will not be bothered by the
need to finish each line comment with a two-character symbol ' */ '.

Listing 2.2 shows our first C++ program written for an older compiler: I use the .h extension for
library header file, the #define directive instead of const, and the C-type block comments.

Example 2.2. Your first C++ program with block comments.
#include <iostream.h> /* preprocessor directives */
#include <math.h>
#define PI 3.1415926
int main(void) /* function returns integer */
{
 double x=PI, y=1, z; /* definitions of variables */
 cout << "Welcome to the C++ world!" << endl; /* function call */
 z = y + 1; /* assignment statement */
 y = pow(x,z); /* function call */
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl;
 return 0; /* return statement */
} /* end of the function block */

To avoid typing useless characters, C++ designers added the end-of-line comments to the language,
which work the same way as block comments: Everything between the two-character symbol '//'
and the next end of line is invisible to the compiler.

There are two differences between the two types of comments in C++. The first one is obvious: end-

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (52 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

of-line comments cannot span several lines, whereas block comments can; this is why block
comments were introduced into the language to begin with. This difference is significantly
mitigated (or even rendered irrelevant) by the fact that an end-of-line comment can take the whole
line.

 // Comments are directed to a human, not to a compiler.
 // Any symbol could be in a comment, including tabs, new
 // lines, //, /*. We can format comments nicely, so that
 // the structure of the text is clear to the reader.

The second difference is more subtle. The end-of-line comment can contain any character,
including other comment symbols. Its delimiter is the new line character (ASCII code 12). The
block comment can contain any character, including other comment symbols, with the exception of
the end-of-block comment symbol '*/'. In other words, block comments cannot be nested. The
preprocessor misses the nested opening symbol '/*' because it is just part of the comment; when it
finds the nested closing symbol '*/', it accepts it as the end of comment and passes the rest of the
comment (including the second closing symbol '*/') on to the compiler; the compiler gets confused
and generates misleading error messages.

 /* Here, the second opening symbol /* is invisible */
 and the compiler thinks the last line is no comment */

This is a manifestation of the age-old tension between programmers and compiler (and
preprocessor) designers, or rather between the size of the tools we use and their intelligence. The C
language (and its successor C++) favors tool designers. After all, every programmer is told that
nesting of block comments is not allowed. So, when the error occurs, the programmer should be
able to figure out what is going on easily.

Why do programmers want to use nested comments? Often, we would like to experiment with
some alternative version of the code, especially when we are not sure how it works. Let us look at
our first C++ program as an example. What should we do if we want to see how it works without
three lines in the middle? The simplest way to achieve that is to comment this code out. Listing 2.3
shows how our example looks now:

Example 2.3. Your first C++ program with code blocked out.
#include <iostream.h> /* preprocessor directives */
#include <math.h>
#define PI 3.1415926
int main(void) /* function returns integer */
{
 double x=PI, y=1, z; /* definitions of variables */
 cout << "Welcome to the C++ world!" << endl; /* function call */
/* beginning of the block to be cut out

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (53 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 z = y + 1; /* assignment statement */
 y = pow(x,z); /* function call */
 cout << "In that world, pi square is " << y << endl;
*/ // end of the block to be cut out
 cout << "Have a nice day!" << endl;
 return 0; /* return statement */
} /* end of the function block */

The preprocessor comments out the first line (z = y + 1;) correctly, but it perceives the '*/'
symbol at the end of that line as the end of comment. Then the preprocessor passes the second and
the third lines to the compiler against our wishes. Finally it passes the solitary symbol '*/' at the
end-of-block comment to the compiler, and the compiler chokes on it and gives an error message
like this (different compilers can produce very different error messages):

Compiling¡K

c:\data\ch02.cpp
c:\data\ch02.cpp(11) : warning C4138: '*/' found outside of comment
c:\data\ch02.cpp(11) : error C2059: syntax error : '/'

DEMO.EXE - 1 error(s), 1 warning(s)

This is yet another reason why it is better to use end-of-line comments as line comments. If I used
the end-of-line comments in this example, the block comment would work correctly. Of course, we
can use conditional compilations described in the previous section. But they are more complex than
block comments are, prone to name conflicts, and are used for porting the finished program to
different environments rather than for experiments in the process of writing the program.

One more comment about comments. In C++, strings are represented as sequences of characters in
double quotes. Within double quotes, comment symbols are interpreted literally, not as comment
delimiters. In other words, comments do not work within strings in double quotes. Consider, for
example, the following statement

cout << "Hello /* there */ world" << endl;

This statement does not print Hello world but Hello /* there */ world.

ALERT

Block comments do not work inside strings in double quotes. You have to cut the text out rather
than comment it out.

TIP

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (54 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Blank lines could be (and should be) used for readability, to separate logically distinct code
segments. This should not be overdone, because it can result in excessive spreading of code
vertically.

Declarations and Definitions

When the programmer designs the logical flow of computations, the results of one step of
computation are often used as data for another step. Hence, these results should be stored in
memory and retrieved when needed again. In our first C++ program, one is added to the value
denoted as y, and the result is used as the second argument in a call to function pow (it raises its
first argument to the power of its second argument). To be able to store the value in memory and
quickly access it for further use, the value should have a physical address in the computer memory.
Since we do not want to use physical addresses in our source code, the value should have a
symbolic name that the programmer will use in the program.

In Listing 2.1 and Listing 2.2, the sum of the value stored at location y and 1 is stored at a location
that I called z. How the address and the name are connected is not a concern for the programmer;
this is a problem for the compiler designer. The task of the programmer is to decide what values
should be stored in memory and what names to use to denote these values. The technical term for
the name that a programmer gives to a memory location is identifier. Actually, the programmer has
to invent identifiers not only for variables, but also for such program components as constants,
functions, data types, and labels (more about these components later).

The syntactic rules for identifiers are simple: they can start with a letter or an underscore '_'
character only, not with a digit or any other special character. Other characters of an identifier can
be capital letters A¡VZ, lowercase letters a¡Vz, digits 0¡V9, or underscores. Theoretically, the total
number of characters in an identifier is not limited. In practice, the compiler might not distinguish
among identifiers if they are identical in their first 31 characters (the old limit on the identifier
length). If this is not enough for you, look for a way to make the names shorter.

With the exception of the underscore, no other special symbol ($, #, etc.) is allowed. Embedded
spaces are not allowed either.

Even though it is legal to start an identifier with the underscore character, it is better to avoid it
because system-defined identifiers may begin with an '_' or '__', and that might result in unexpected
name conflicts. Use the underscore only in the middle of an identifier to separate identifier name
components (sum_of_squares). Another popular technique is to capitalize the first letter of each
identifier component, (SumOfSquares).

Good taste and programming prudence require that we use mnemonic names for identifiers.
Mnemonic here means that the name of the identifier is somehow connected to the purpose for

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (55 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

which its value is used by the program. From that point of view, the names I used in the first C++
program (x, y, and z) are not particularly good. They can be used only if the values are used only
a few times, in relatively simple computations, and there is no ground for confusion. The name PI
is better¡Xit conveys the meaning of the value (at least for those in the know).

NOTE

C++ is a case-sensitive language. This means that if the program uses two identifiers that are
different in capitalization only, the compiler will distinguish between them. For example, cnt,
Cnt, and CNT are all different names for the C++ compiler. This is a common cause of errors for
programmers with experience in other languages that do not distinguish between upper- and
lowercase.

As I mentioned in the previous section, the constants defined by the program are often in uppercase
to distinguish them from program objects whose values can change during program execution (PI
in the first C++ program).

C/C++ keywords are reserved words that cannot be used as programmer-defined identifiers; they
are all in lowercase. Here is the list of keywords that are common both to C and C++, sorted
alphabetically:

auto break case char const continue default do double
else enum extern float for goto if int long
register return short signed sizeof static
struct switch typedef union unsigned void volatile while

Here is the list of keywords that are reserved words in C++ but not in C:

asm bool catch class const_cast delete
dynamic_cast explicit export false friend inline mutable
namespace new operator private protected public
reinterpret_cast static_cast template this throw
true try typeid typename using virtual wchar_t

I do not think you should try to remember all of these keywords now. They will be discussed in due
time. Moreover, if you use these keywords as identifiers for your variables, the compiler will tell
you that you should not do it. So, the goal of this list is not to prevent you from using these
keywords but to explain to you why the compiler complains if you use these keywords as
identifiers.

In other, more-permissive languages, if the programmer feels that a value has to be stored in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (56 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

memory, the programmer may invent an appropriate identifier and use it on the left-hand side of the
assignment without much ado:

sum_of_squares = 0;

Not so in C++. If you do that in a C++ program, the compiler will tell you that sum_of_squares is
an undeclared identifier, and this is a syntax error in C++. Before the identifier is used as a name
for a variable in a C++ the program, it has to be defined.

The names of variables denote locations (addresses) in computer memory that hold typed values.
These values can change during program execution.

This is different from the name PI used in our first C++ program. In Listing 2.1, it is defined as a
constant; any attempt to change its value (for example, PI = 0;) will be flagged as a syntax error.
In Listing 2.2, it is also a constant specified with the #define preprocessor directive. After the
preprocessor substitutes its value, it becomes a constant value that cannot be changed. For example,
the statement PI = 0; will be converted to 3.1415926 = 0; this is a syntax error.

Variables in memory hold typed values, meaning that the programmer must make a commitment to
the type of value that is going to be stored in these variables. The type of the variable describes the
range of values permissible for that type and the operations allowed over values of this type. The
definition establishes an association between the identifier and its type; each definition ends with a
semicolon as follows:

 int num;
 double sum_of_squares;
 char letter;

The first definition using the keyword int says that the identifier num is used for an integer
variable. Its size is four bytes (32 bits), its range of values is from -2147483648 to +2147483647.
(As you will see later, the sizes of types are machine dependent.)

Operations specific to this type are the four arithmetic operations, modulo operation (finding a
remainder), comparisons, shifts left or right, logical operations, and increment and decrement (more
about this in Chapter 3, "Working with C++ Data and Expressions.")

The second definition using the keyword double says that the identifier sum_of_squares is used
for a double floating point variable. Its size is eight bytes, its absolute value (positive or negative)
can reach 1.7976931348623158e+308 (here, e+308 denotes 10 to the power of 308¡Xa rather large
number). Operations specific to this type include the four arithmetic operations, increment and
decrement, and comparisons.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (57 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The third definition using the keyword char says that the identifier letter is used for a character
variable. Its size is one byte and it can contain the values that represent characters according to
ASCII coding conventions. As far as operations over characters are concerned, C++ treats
characters as small integers.

Integer values are used for counting and math computations. The operations over integers are the
fastest available on each specific machine. This is why integer values are used in all cases where
their range and precision are sufficient. Floating-point values have a fractional part; they are used in
business and scientific calculations where whole numbers do not provide sufficient precision (or
the range of two trillion is not enough).

The concept of type is fundamental to both functional and object-oriented programming. Every
value handled by a C++ program must have a type. If the type is used incorrectly, the compiler
flags this usage as a syntax error. This might happen when a value of one type is used where a
value of another type is expected. Concern about using the values of the correct type is always at
the focus of attention of the C++ programmer.

C++ has only few built-in data types, that is, data types that are immediately available from the
language. They are integers (65), floating point numbers (65.0), or characters ('a').

All these types are primitive (or scalar) types that is, the values of these types cannot be
decomposed into components that could be manipulated by the program. For example, the double
floating point value has as its components an integer part and a fractional part (and also an
exponent part), but the C++ language does not allow the programmer to access these parts directly.
We can access the whole value only. Hence, C++ types are an abstraction tool: They allow us to
concentrate on what can be done to a value rather than on how the individual components of the
value are manipulated.

C++ partially makes up for the scarcity of fundamental types by introducing some variations of
integers and floating point types of other sizes, ranges, and precision. This does not change the
situation much. More important, C++ supports techniques for combining individual primitive
values into aggregates¡Xarrays, structures, and classes. The values of these aggregate types are
composite values; they consist of several components, and C++ supports techniques for accessing
the individual components of these aggregates.

When the definition of a variable is elaborated (or executed) at run time, space is allocated for that
variable, whether this variable is of primitive or of aggregate type; after that, the variable can be
used to store and to retrieve the values of its declared type. There is nothing special about this; all
modern strongly typed languages work this way.

Some programmers use a separate source code line for each definition, so that each one stands out
for easier review. Others say that the large number of separate short lines makes reviewing

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (58 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

definitions difficult; they put several definitions on the same line:

 int num; double sum_of_squares;

When the variables are of the same type, they can be defined separately; each definition includes
the type name and ends with a semicolon, such as:

 int a; int b; int c;

It is perfectly OK to combine these definitions; the name of the type is used only once, and the
names of the variables are separated by commas; the definition ends with a semicolon, for example:

 int a, b, c; // acceptable shorthand

In other words, the scope of the type name (in this case, int) includes the names of all variables
found between the type name and the next semicolon; variables a, b, and c are all integers. These
two styles of definitions are equivalent, but you should not confuse the two. For example, this
definition is a syntax error:

 int a, b, int c; // syntax error

On the other hand, these definitions are perfectly all right:

 int a, b; int c; // no syntax error

The difference is small but important. The C++ programmer should always be cognizant about
differences of this kind.

For a C++ programmer, the difference between a comma and a semicolon is crucial. Make sure you
do not confuse the two.

Most programmers define variables at the beginning of a function block or a file. This is what I did
in our first C++ program. This is the only way to define variables in C. C++, however, allows the
programmer to define variables in the middle of code closer to their first use. Listing 2.4 shows
how Listing 2.1 could look like if I used a more flexible way to define variables:

Example 2.4. Your first C++ program with definitions in the middle of the code.
#include <iostream> // preprocessor directive
#include <cmath> // preprocessor directive
using namespace std; // compiler directive
const double PI = 3.1415926; // definition of a constant
int main(void) // function returns integer
{
 cout << "Welcome to the C++ world!" << endl; // function call

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (59 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 double y=1, z; // definitions of variables
 z = y + 1; // assignment statement
 double x=PI; // definition of variable
 y = pow(x,z); // function call
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl;
 return 0; // return statement
} // end of the function block

For program execution, it does not make any difference how far in advance the variable is defined.
The output of this version of the program is the same as we discussed on Figure 2-1. Presumably,
the distance between the definition and the use of a variable in the source code makes a difference
for a human reader, especially if the variable is used once or twice without much interruption. If the
next use of the variable is separated from the first one, and the maintainer wants to check the
definition of this variable, it might be more convenient to find the definition at the start of the
function rather than in the middle.

Another term that you should be familiar with is declaration. In other languages, declarations and
definitions are synonyms. C++ inherited from C a subtle distinction between the two. While
definitions associate the name of the variable with its type and allocate the space for the variable,
declarations only associate the name and the type, because the space for the variable is allocated
elsewhere. This happens, for example, in a multifile program when a variable is defined in one file
and is also used in another file. In the file that uses this variable, the variable is defined as external
using the keyword extern:

 extern int count;

Now we can use the variable count in the source code of this file. All references to the variable
count in this file will be translated into the address of the variable count that is defined in another
file.

Another difference between definitions and declarations is that the definitions must be unique in the
program; declarations can be repeated as many times as you want. For example, these definitions
are not allowed (even if you wanted to do this):

 int a; int a; // syntax error

On the other hand, these declarations are acceptable:

 extern int count; extern int count; // this is OK

This does not look smart either, but there are situations where you might want to do something like
this. And if you do it by mistake, the compiler will not tell you that this is an error. The point I am

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (60 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

making here is a fundamental one, and we will see it generalized for functions and for types.

ALERT

A definition must be unique, but a declaration might be repeated.

After the variables are defined (or declared), they can be manipulated by the program. Before their
values are used by the program, they have to receive these values. Failure to do so represents the
use of uninitialized variables, a common cause of errors in programs.

There are two ways for a variable to receive a value: assignment statement and initialization. In this
example, I am using assignment statements (each statement ends with a semicolon):

 double x, y, z;
 x = PI; y = 1;

As you probably noticed, in the first C++ program I used initialization for variables x and y (but not
for z).

 double x = PI, y = 1, z;

The result is exactly the same: the variable x receives the value 3.1415926536, variable y receives
the value 1, and z remains uninitialized. While we are dealing with variables of primitive types, the
difference between assignment and initialization is not important from a practical point of view.
When we start dealing with programmer-defined objects, the difference will become crucial. I think
I will tell you the story about the bagel and cream cheese once again when we discuss initialization
of objects.

Variables can be initialized only at definition and not at declaration. For example, the variable
count can be initialized only in the file where it is defined (where the space for this variable is
allocated). In the file where the variable is declared (as an external variable) the variable can be
assigned and accessed without limitations, but it cannot be initialized. This attempt, for example,
will be flagged as an error:

 extern int count = 0; // syntax error

This is only an introduction to the topic of C++ data types. Chapter 3 discusses C++ types in more
detail along with operations available on the values of these types.

Statements and Expressions

A statement is a program unit that is executed as a logical whole so that its component steps are

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (61 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

hidden from the programmer, and the details of these steps should not attract the programmer's
attention (at least, not at the moment). A program statement is an abstraction tool: It allows us to
concentrate on what is being done rather than on how this is done.

For example, declarations and definitions that we discussed in the previous section are statements.
We are not interested in the details of memory allocation, such as whether variable a is next to
variable b or to variable c, whether the address of variable a is greater than variable c, whether the
word starts with the senior byte, and so on. All that we want is to be sure that memory for three
integer variables is allocated:

 int a, b, c;

The assignments we saw in the previous section represent the second type of statement. The target
of the assignment (the variable that receives the value) is on the left-hand side of the assignment;
the expression that specifies the value sent to the target is found on the right-hand side of the
assignment statement. In our first C++ program, we had the following assignment:

 z = y + 1;

When this statement is executed, the value stored in the variable denoted y is added to 1 and the
result 2 is stored in the location that corresponds to the variable z. The value stored in variable y is
not affected by its usage. It changes only when the name of the variable appears on the left-hand
side of the assignment statement, as a target of the assignment.

Let me repeat that the definitions at the beginning of Listing 2.1 contain initializations and not
assignments. Even though the syntax is similar, different functions are called for C++ objects:

 double x=PI, y=1, z; // x and y are initialized, not assigned

Expressions that are found on the right-hand side of assignment statements are, well, expressions.
They consist of operators and operands. Operands are either variables or literal numbers or smaller
expressions. In the first C++ program, the expression that was used to set the value of variable z
contained the operands y and 1. If necessary, parentheses can be used to structure complex
expressions, for example,

 z = (y + 1) * (y - 1); // expression with subexpressions

Here, the operands y + 1 and y - 1 are smaller expressions. Every expression returns a typed
value that can be used in an assignment statement or in another expression.

Expressions can be formed using 55 different C++ operators, including arithmetic operations '+', '-',
'*', '/', comparisons '<', '>' and others. 55 is a large number of operators to learn. Since there are not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (62 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

enough special symbols to denote all these operators, two-symbol operators are common in C++
(for example, comparison for equality is denoted as '=='). Operators are organized into 18 levels of
precedence. This is also a lot to learn. Many programmers prefer to use parentheses to indicate the
order of computations rather than rely on the precedence of operators. We are going to see more
details in the next chapter.

There is an important difference between components of the left-hand side and the right-hand side
of the assignment. We can mix both names of variables and literal values in C++ expressions.
When the name of the variable is specified (y), the expression uses not the address denoted by the
name but the value that is stored in that location. When the value is specified (1) the expression
again uses the value directly, even though this value is also stored at some specific address. As the
target of the assignment, we can use only names of the variables. Well, this is not that simple, but
the main fact is: A literal value cannot appear on the left-hand side of the assignment. For example,
this looks like a nice equation, but this is not legal C++ code:

 1 = z - y; // impossible in C++

The third type of statement is a function call. A function call specifies the name of the function to
be executed, the arguments that it should use (when it has arguments), and the value it returns (if it
returns a value).

Our first C++ program consists of one function (main). It uses (calls) the function pow. There is a
common convention among programmers and technical writers to distinguish between function
names and all other names when writing about C++ code. We do that by appending empty
parentheses to the function name regardless of the number of arguments, for example, main() and
pow(), similar to the way it is done in code.

The library function pow() uses two arguments, the base value and the power to raise the base to. It
returns the result of raising the value stored in the first argument to the power specified by the
second argument. The returned value can be used as a component of an expression. This is why this
function is called using the following syntax:

 y = pow(x,z);

When the first argument is 3.1415926 and the second argument is 2, the return value is 9.869604.
(As in other languages, computations on nonintegers are approximate.)

When the function is called during the program execution, the execution of the calling function is
suspended and the called function executes its code. When the called function terminates (returns),
the execution of the calling function is resumed. If the calling function calls another function, the
process repeats itself.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (63 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The C++ input/output library calls are much more difficult to explain than other library calls are.
They use predefined classes, objects, and overloaded operators that we will discuss in detail much,
much later. Let us give it a try. We use library objects cout (for output) and cin (for input)
together with two kinds of two-symbol operators. The insertion operator '<<' is used with the library
object cout and sends output to the computer screen using the names of variables that should be
displayed. Literal numeric values and strings in double quotes can be used too. The extraction
operator '>>' is used with the library object cin and accepts input from the keyboard into variables
whose names are specified as operands.

It sounds sophisticated, but basic input/output is very simple. Since each input or output statement
has to specify its own object (cin or cout), they are not intermixed. Hence, input and ouput
operators '>>' and '<<' are not intermixed in the same statement. Listing 2.5 shows an example that
accepts two integer numbers from the keyboard and displays their sum.

Example 2.5. An interactive program with input and output statements.
#include <iostream>
using namespace std;
int main(void)
{
 int a, b, c; // definitions of variables
 cout << "Type two integers, press Enter ";
 cin >> a >> b; // two function calls: extraction
 c = a + b;
 cout << "Their sum is " << c << endl;
 return 0;
}

The output of this program is represented in Figure 2-3.

Figure 2.3. Output of the program with interactive I/O.

Each use of the operators << and >> represents a function call. The endl library component
represents a so-called manipulator. Each element of output, including strings in double quotes (and
characters in single quotes), literals (numeric values), variables, or expressions has to have its own
operator. The same applies to each element of input. Using commas or spaces to separate
input/output components is incorrect; for example, this is in error:

cout << "Their sum is ", c endl; // typical errors: a comma, a space

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (64 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

To add insult to injury, the compiler often is unable to correctly diagnose the source of the problem.
In error messages, you are going to read about missing semicolons, missing arguments, mismatch
in parameters, and other interesting problems. This is yet another indication that you should not
spend too much effort trying to decipher compiler messages. Use this message mostly as an
indication that the code has a problem and rely on your logic to identify that problem.

ALERT

Each component of input and output has to have its own >> operator or << operator. Using
commas or spaces to separate components is not allowed. Mixing input and output operations in
the same statement is not allowed either.

The iostream library is powerful and flexible. You will find, however, the code for formatted
output with the use of this library is verbose. C++ also supports another set of "standard" library
functions: printf(), scanf(), and their variations. They come from C and are quite common in
legacy C and C++ code. To use them, you should include the header file stdio.h. It is easier to
write code for formatted output with the use of these functions than with the use of iostream
functions. However, the stdio.h functions are more prone to error. The iostream library is more
popular than these older functions are¡Xthey are not "standard" anymore. Unfortunately, we cannot
just forget about the stdio.h library and switch completely to the iostream library because the
stdio.h functions are often used for Windows and GUI programming and in string processing.

Similar to other types of statements, a function is an abstraction tool. In the client source code (e.g.,
in our first C++ program) it specifies what has to be done without clouding the picture with the
details as to how it is done.

We looked at three most popular types of statements: definitions (and declarations), assignments,
and function calls. The fourth type of statement is a type definition. Type definitions combine the
components into aggregate type such as structures or classes that can be manipulated as a whole.
We are going to have the first brief look at type definitions in the section "Functions and Function
Calls," and most of the book will be devoted to programming with classes.

The last type of statement is a compound statement, or a statement block. It is a sequence of
statements enclosed in braces. The compound statement can appear everywhere where a single
statement can (including another compound statement). For example, in our first C++ program we
can combine the last three statements in a statement block, as shown in Listing 2.6.

Example 2.6. Your first C++ program with a nested statement block.
#include <iostream> // preprocessor directives
#include <cmath>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (65 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

const double PI = 3.1415926; // definition of a constant
int main(void)
{
 double x=PI, y=1, z; // definitions of variables
 cout << "Welcome to the C++ world!" << endl;
 z = y + 1;
 y = pow(x,z);
 { // start of statement block
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl;
 return 0;
 } // end of statement block
} // end of the function block

Here, it does not buy us much: The program executes exactly as before. However, there are many
language constructs in C++ (for example, conditional and loop constructs) that have a slot for one
C++ statement only. If the logic of computations cannot be squeezed into one statement, we have a
problem. The use of a statement block resolves this problem.

The one-character block delimiters '{' and '}' should be paired; it is a syntax error if they do not
match. They open and close a scope, that is, a structural element of a program. You see that the
main() function is also delimited by braces; the source code of every function is. The difference
between a compound statement and a function body is that the compound statement does not have a
name (it is an unnamed statement block), and the function body is a named block.

Statements in a C++ program are executed one after another, from top down. Ideally, each
statement is placed on a separate line and indented so that the control structure is evident to the
reader. For example, in Listing 2.6 the statements in the main() function are indented to the right
relative to the preprocessor directives and the main() function header; statements in the nested
statement block are indented farther to the right relative to other statements in the main() function.

It is OK to put several statements on the same line if they are consecutive steps to achieving the
same goal:

 z = y + 1; y = pow(x,z); // two substeps of the algorithm

Statements on the same line are executed from left to right. How many statements should we put on
the same line of code? The answer is related to the issue of minimizing the eye movements when
reading source code. When each statement is allocated a separate line, the coding segments become
too long. As the result, the eye has to travel long distances through the code so that at the bottom of
the page we do not remember exactly what we saw on the top of the page or two pages earlier.
Packing several statements on the same line alleviates this problem¡Xwe can see more code at a
glance¡Xbut now the eye travels more in horizontal direction, and there is a danger that we will

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (66 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

overlook an action packed in the middle of some line among other statements. To a large extent, it
is a matter of taste. In any case, statements that you put on the same line should be directed toward
a common goal.

In C++, each statement has to be terminated by a semicolon. In some other languages, the
semicolon separates statements, so that the last statement in the sequence does not have it. In C++
every statement ends with a semicolon. Well, not quite so. Compound statements do not end with a
semicolon. Notice that in our first C++ program, both right braces (for the unnamed block and for
the main() function) are not followed by a semicolon.

Actually, the semicolon can turn any expression into a statement. For example, this is legal in C++:

 y + 1;

This, of course, is totally useless. No other language would allow this. But it is legal in C and hence
it is legal in C++. Why should you worry whether a senseless thing is legal or not? You are not
going to write it, right? Wrong. This is not as harmless as it looks. If you did this by mistake, for
example, by accidentally erasing the target of the assignment, the compiler does not stand by to
guard you against the error. What should have been a syntax error (and is an error in other, less-
permissive languages) is not discovered immediately. It becomes a run-time error that can be
discovered only by hard labor during debugging.

Flow control constructs also can be viewed as a kind of statement. They modify sequential flow of
execution of statements. There are three kinds of flow control statements:

ϒΠ conditional statements

ϒΠ loops

ϒΠ function calls

NOTE

In this section, we will look only at a small set of control constructs. You will find a more detailed
treatment in Chapter 4, "C++ Control Flow."

The simplest conditional statement is the if statement. Its general form is

 if (expression) statement_to_execute;

Syntactically, the if statement is a single statement. When the statement_to_execute is a simple
statement, it ends with a semicolon. For a compound statement, no semicolon is used after the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (67 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

closing brace. Parentheses around the conditional expression are mandatory, not optional.

The statement_to_execute that follows the conditional expression is executed if the expression
is true; if the expression is false, the statement is skipped. Indentation is often used to stress the
flow of control. The next segment of code checks whether the temperature in Fahrenheit is above
the freezing point and displays an encouraging message if it is or keeps silent if it is not:

if (fahr > 32) // expression is commonly on a separate line
 cout << "Do not worry about starting your car" << endl;

The second form of conditional statement has two branches: One is executed when the condition is
true, another is executed when the condition is false. Each branch can contain one statement
(terminated by a semicolon) or a compound block (without a semicolon); for example,

if (fahr > 32) // no "then" keyword in C++
 cout << "Do not worry about starting your car" << endl;
else
 cout << "Be careful in the morning" << endl;

There is no then keyword in C++; it is implied. The else keyword has to be used. Notice the
indentation that stresses the flow of control.

The simplest loop statement is a while statement:

 while (expression) statement_to_execute;

Syntactically, the loop body is a single statement; for a simple statement_to_execute, it ends
with a semicolon. When the loop body is a compound statement, no semicolon is needed after the
closing right brace at the end of the statement. Parentheses around the expression are mandatory.

The loop body, statement_to_execute, is executed if the expression is true. Then the loop
expression is tested again; if it is true, the next iteration through the loop body takes place and the
loop expression is tested again. The loop body is skipped if the expression is (becomes) false, and
the next statement (whatever it is) is executed.

In Listing 2.7, the program computes the squares of numbers 8, 9, 10, and 11, and displays the
numbers and their squares in the form of a table (the output is shown in Figure 2-4). It first prints
the table header and a blank line, and then it uses the variable num as the loop variable. Before the
loop, it initializes num to 8; this value is used in the first pass through the loop. In the body of the
loop it increments num by 1; in the loop condition, it checks whether the value of num is still less
than 12; if yes, the body of the loop (in braces) is executed, and the value of num is incremented
again. The loop execution continues until the value of num becomes 12: The loop condition

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (68 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

becomes false, the loop body is skipped, and the last statement of the program is executed.

Figure 2.4. Output of the loop computing the squares of numbers.

Example 2.7. An example of a loop with formatted output.
#include <iostream>
#include <iomanip>
using namespace std;
int main (void)
{
 int num = 8, square; // num is initialized before loop
 cout << "Numbers Their Squares" << endl << endl;
 while (num < 12) // num is used as a loop variable
 {
 square = num * num; // num is used in the body
 cout << " " << num << " " << square << endl;
 num = num + 1; // it is modified at loop end
 } // no ';' at end of the block
 cout << endl <<"Have a nice day." << endl;
 return 0;
}

When the operator << sends the characters to the screen using the object cout, it displays
characters next to each other without intervening spaces. When it finishes the conversion of one
value (e.g., num) from binary form to characters and starts converting another value (e.g., square),
it also does not insert intervening spaces. This unformatted output is, of course, ineligible. For
quick and dirty output, blank spaces can be inserted between output components: This is what the
cout statement does in the loop in Listing 2.7.

This method of formatting is rarely satisfactory. When different passes through the loop produce
values with different number of characters, the columns get out of alignment, as they do in Figure 2-
4. This can be corrected by using a manipulator setw that specifies the number of output positions
(width of the output) allocated for the next output component. The setw manipulator has to be
inserted into the output stream with the operator << the same as any other output component. For
example, inserting setw(4) allocates four output positions for the next component. If you want to
format several components, each one has to be preceded by its own setw manipulator, even when

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (69 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the width of the output is the same for each component.

Let us replace the loop cout statement in Listing 2.7 with the following statement:

 cout << setw(4) << num << setw(10) << square << endl;

For this scheme to work, the program has to include the iomanip header file (see Listing 2.7). The
output of this version of the program is shown in Figure 2-5. For numeric values, the output is
aligned to the right in the specified width; for character strings, it is aligned to the left. If the output
value does not fit into the specified width, the cout object takes as many positions on the screen as
necessary and pushes the rest of the output to the right. The output is never truncated because of its
excessive width.

Figure 2.5. Output of the loop with the width specified for each output value.

Make sure that you are comfortable with the elements of loop design and with tracing the loop
iterations. A correctly designed while loop should contain the following:

ϒΠ initialization of the current value of the loop variable before the loop started

ϒΠ the use of the current value of the loop variable in the body of the loop

ϒΠ change (increment) of the current value in the loop body (often, at the end of the loop
body)

In our example in Listing 2.7, the variable num is used as the loop variable. It is initialized when it
is defined, before the loop. Its value is used in the body of the loop. It is incremented in the body of
the loop (at its end). Its value is used to decide whether it is time to terminate the loop.

Functions and Function Calls

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (70 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Functional modularization allows us to divide the job of software implementation among
programmers: We put groups of functions in different source files, assign a programmer to each
file, and let the programmers work in parallel. Obviously, a programmer can work on several
functions or several files, but several programmers cannot work simultaneously on the same
function. If the function is so large that several programmers should work on it, it should be broken
into several functions.

Other advantages of using functions include:

ϒΠ caller's code is expressed in terms of function calls (whose names should reflect the
meaning of the operations) that is more readable than lower-level computations

ϒΠ size of the source (and object) code can decrease if the same operations are done in
different parts of source code¡Xit is the shorter function calls that are repeated in the source
(and object) code rather than longer low-level operations

ϒΠ using standard libraries (and placing project-specific functions into project libraries)
improves source code reusability within the project and from one project to the next project

Breaking the program into separate functions changes the structure of the program but does not
change its output (if it is done correctly). However, the quality of the program might be quite
different for different modularization decisions: Independent functions make programs easier to
understand and to maintain.

Let us take a look at different possible implementations of Listing 2.1. Since this program is tiny,
these examples will not demonstrate advantages related to readability, program size, and
reusability. However, these examples will allow us to demonstrate the syntax and semantics
(meaning) of using functions.

In the first redesign (see Listing 2.8), I implement the initial greeting as a separate function with a
long name displayInitialGreeting(). This function is called from main(). Hence, main() is
its client, and the function itself is a server of main().

Example 2.8. Your first C++ program with one server function.
#include <iostream>
#include <cmath>
using namespace std;
const double PI = 3.1415926;

void displayInitialGreeting() // function header
{
 cout << "Welcome to the C++ world!" << endl; // its body

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (71 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

} // end of the function block

int main(void)
{
 double x=PI, y=1, z;
 displayInitialGreeting(); // function call
 z = y + 1;
 y = pow(x,z);
// cout << "In that world, pi square is " << y << endl;
// cout << "Have a nice day!" << endl;
 return 0;
} // end of the function block

Of course, displayInitialGreeting() is rather a silly function because it consists of only one
statement. However, even such a silly function demonstrates that using functions in C++ requires
coordination of three elements of the program:

ϒΠ function header

ϒΠ function body

ϒΠ function call

The function header specifies the function interface: its return type, function name, parameter list
(in parentheses) with types and names of formal parameters (if any). If the function uses no
parameters, the parameter list in parentheses is empty; if the function returns no value, the return
type is void.

Its name describes the meaning of processing and follows a popular convention of combining an
active verb that describes the action (display) and a noun that describes the object of the action
(InitialGreeting). Following the popular programming convention, we put the first word of the
function name in lowercase; the first letters of other words (if any) are capitalized.

We see that the displayInitialGreeting() function does not return any value (it has void return
type). This is why it needs no return statement. If you want, you can use it, but it should not return
any value. The function also uses no parameters (it has an empty parameter list). Parentheses in the
header are used even if there are no parameters. The keyword void can be used to indicate the
absence of formal parameters:

void displayInitialGreeting(void) // void in parameter list
{
 cout << "Welcome to the C++ world!" << endl // function body
 return; // avoid unnecessary code
}

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (72 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The function body is a sequence of statements enclosed in matching braces; it is a statement block
(a compound statement). Each statement is terminated by a semicolon, but the block itself does not
have a terminating semicolon. If necessary, the function body can have definitions and declarations
of variables that are necessary to support the computations within the function. Each function body
has its separate name space (scope). This means that the names of the variables defined within the
function (local variables) do not conflict with the names of variables defined within other functions,
and the function designer does not have to coordinate the names of local variables with other
designers.

Similar to C, function definitions in C++ cannot be nested; hence, function names are global within
the program and have to be unique. The function designer has to coordinate the function name with
other designers regardless of whether they need to call this function or not.

The displayInitialGreeting() function does not define any local variables. To emphasize the
limits of the function body, both the opening brace and closing braces are allocated separate source
code lines. Some programmers feel that this extends the vertical dimension of the source code
without the benefit of readability; they would not allocate separate lines for the braces. However,
they would leave an empty line between functions:

void displayInitialGreeting() // function header
{
cout << "Welcome to the C++ world!" << endl;
} // function body

The third element of using the function, the function call, consists of the function name followed by
the list of actual arguments in parentheses. If there are no arguments, parentheses are still used.
Unlike in the function header, the keyword void cannot be used in the function call.

displayInitialGreeting(void); // incorrect function call

This is yet another feature that C++ inherited from C we are left to wonder about. For the designers
of the C language, the simplicity of design was never a priority. After all, does it take much to
remember that you can use void in the function header but not in the function call? Not really. At
least not for them. They discounted the fact that accumulation of such features could lead to
confusion for programmers.

Actually, a real C expert knows the answer to this question and probably will even call this answer
simple. But it is not. I have taught C++ seminars to a very large number of C programmers; most of
them were good programmers, some of them were excellent C programmers, but it was very
infrequent that any seminar participants came up with the answer, and only after much prodding
and hints. I will tell you this answer when we accumulate more knowledge about the language.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (73 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When a function is called, the calling function (client function) suspends its execution, and control
passes to the called function (server function). Its statements are executed sequentially. When the
execution reaches the closing brace of the server function body, the server function terminates, and
control returns to the calling function (this is why the function termination is called return). After
that, the client function resumes its execution.

Next, let us take a look at a function with parameters. Listing 2.9 shows yet another version of our
first C++ program; it has a function displayResults() that implements the functionality of the
local block in the previous version. The function accepts a value of type double as a parameter and
displays it on the screen with additional messages to the user.

Example 2.9. Your first C++ program with two server functions.
#include <iostream>
#include <cmath>
using namespace std;
const double PI = 3.1415926;

void displayInitialGreeting() // function header
{
cout << "Welcome to the C++ world!" << endl; // its body
}

void displayResults(double y) // function header
{
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl; // its body
}

int main(void)
{
 double x=PI, y=1, z;
 displayInitialGreeting(); // function call
 z = y + 1;
 y = pow(x,z);
 displayResults(y); // another function call
 return 0;
}

The function displayResults() does not return any value to its caller (it has the void return
type), but its parameter list is not empty. You see that the parameter definition is similar to
definitions of variables: The programmer chooses a name for the parameter and specifies its type.
The result of this definition at execution time is similar to the results of variable definition: When
the function is called, memory for the parameter of the appropriate type is allocated. This location
is used when the parameter name is mentioned in the function body (e.g., a reference to the variable
y in the first cout statement). The value of the parameter is initialized to the value of the actual

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (74 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

argument in the function call.

The function call specifies the name of the function and the list of actual arguments in parentheses.
Here, the list contains only one argument (its name is the same as the name of the formal
parameter, but this is just a coincidence). Notice that the actual argument is an expression, not a
definition of a variable: You specify its type in the function header but not in the function call. This
form of the function call would be incorrect:

 displayResult(double y); // error

Next, let us look at a function with a non-void return type and several parameters. Listing 2.10
shows yet another version of our first C++ program. (Indeed, there are many ways to skin the cat.)
It has a function computeSquare() with two parameters of type double; the function returns a
value of type double.

Example 2.10. Your first C++ program with three server functions.
#include <iostream>
#include <cmath>
using namespace std;
const double PI = 3.1415926;

void displayInitialGreeting() // void return type
{
 cout << "Welcome to the C++ world!" << endl;
}

double computeSquare(double x, double y) // non-void return
{
 double z; // a local variable
 z = y + 1;
 y = pow(x,z);
 return y; // mandatory return statement

}

void displayResults(double y) // function header
{
cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl; } // function body

int main(void)
{
 double x=PI, y=1;
 displayInitialGreeting(); // function call
 y = computeSquare(x,y); // another function call
 displayResults(y); // yet another call

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (75 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return 0;
}

Notice that there are no limitations on the types of parameters and return values; the fact that they
are all double in this example is again a pure coincidence.

Notice that each parameter is specified by its type and name, pretty much like in a definition of a
variable; even when parameters are of the same type, each parameter should be described
separately; we cannot use the comma-separated definitions similar to definitions of variables.
Remember that story about the herring? The parameter list in this function definition is incorrect:

double computeSquare(double x, y) // syntax error
{
 double z;
 z = y + 1;
 y = pow(x,z);
 return y;
}

NOTE

Parameters and return values can be of any type. The type of each parameter has to be specified
separately, even if they are all the same.

Since the header of the function computeSquare() specifies a non-void return value (in this case,
double), the function body must contain a return statement. The keyword return is used, and a
value of type double is specified as its argument. Some programmers put the return value in
parentheses, but this is not necessary. The body of the function computeSquare() defines a local
variable z, assigns it a value, computes the value of variable y, and returns this value to the caller.
(There are several subtleties in this code that we will discuss in more detail in Chapter 5,
"Aggregation with Programmer-Defined Data Types.") When the client code calls this function, it
passes to it the values of arguments, and these values are used inside the function. Since the
function returns a value, its return value can be used by the client code in an expression as if it were
a value of that type (in this example, double).

 y = pow(x,z);

Make sure that you distinguish between the terms parameter and argument. A parameter is a
variable defined within a function header and used within the body of the function; an argument is
a variable defined in the client function and used in the function call. Often, we use terms formal
parameters and actual arguments.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (76 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For simplicity of the example, I used the same names both for formal parameters and for
corresponding actual arguments for the function computeSquare(). This does not happen often in
real life. In a large program, the client function is developed by one programmer, and the server
function is developed by another programmer. There is no need to coordinate the names of
parameters. It is enough for the client programmer to learn the types of parameters and return
values.

Often, the server function is developed earlier than the client function is; it is put into the library,
and its source code is not available. Even if it is available, it is an extra burden on the client
programmer to research the server source code and to learn the names of formal parameters.
Fortunately, there is no need for that. The names of actual arguments do not have anything to do
with the names of formal parameters. Here is yet another version of function computeSquare()
that could be used in Listing 2.10 with nothing else changed that stresses this independence.

double computeSquare(double base, double exponent)
{
 double power = exponent + 1; // a local variable
 return pow(base,power); // return statement
}

In all these examples, I put the definitions of server functions before the calls to these functions in
the client function. This is similar to the situation with ordinary variables¡Xthe definition lexically
precedes the use of the variable. What happens if I place these functions in the source file in a
different order? Here we again bump into a limitation that C++ inherited from C: If the definition
of the function does not lexically precede the function call, the compiler will play dumb and tell
you it does not know what the identifier displayInitialGreeting() and others are. Listing 2.11
shows an incorrect version of our program.

Example 2.11. Incorrect C++ program with functions following the function calls.
#include <iostream>
#include <cmath>
using namespace std;
const double PI = 3.1415926;

int main(void)
{
 double x=PI, y=1;
 displayInitialGreeting(); // syntax error
 y = computeSquare(x,y); // another syntax error
 displayResults(y); // and another syntax error
 return 0;
}

void displayInitialGreeting() // function definition

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (77 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{
 cout << "Welcome to the C++ world!" << endl; // body
}

double computeSquare(double base, double exponent)
{
 double power = exponent + 1; // a local variable
 return pow(base,power); } // return statement

void displayResults(double y)
{
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl; // function body
}

My compiler tried to give me "helpful" information about terms and functions being redefined:

Compiling¡K
c:\data\ch02.cpp
c:\data\ch02.cpp(7) : error C2065: 'displayInitialGreeting' : undeclared
identifier
c:\data\ch02.cpp(7) : error C2064: term does not evaluate to a function
c:\data\ch02.cpp(8) : error C2065: 'computeSquare' : undeclared identifier
c:\data\ch02.cpp(8) : error C2064: term does not evaluate to a function
c:\data\ch02.cpp(9) : error C2065: 'displayResults' : undeclared identifier
c:\data\ch02.cpp(9) : error C2064: term does not evaluate to a function
c:\data\ch02.cpp(13) : error C2371: 'displayInitialGreeting' : redefinition;
 different basic types
c:\data\ch02.cpp(17) : error C2371: 'computeSquare' : redefinition;
 different basic types
c:\data\ch02.cpp(23) : error C2371: 'displayResults' : redefinition;
 different basic types
DEMO.EXE - 9 error(s), 0 warning(s)

Your compiler might produce somewhat different messages, but this is not the point. Usually, the
initial reaction of a beginning C++ programmer is that of disbelief: "What do you mean the
identifier is not defined? It is defined, right here, before your eyes! Hey, compiler, are you blind?"
The compiler is not blind. It is the same tradeoff between the interests of the compiler designer and
the compiler user. The compiler user loses to the general rule: Everything that is used in the code
has to be defined before it is used. "Everything" means everything, including the names of the
variables and the function names.

The purpose of applying this requirement to the function calls is obvious: It is important that the
compiler check whether the function name is spelled right, the function is called with the correct
number of arguments, and the arguments are of the correct types. The error messages, of course,
could be more helpful. And, of course, this check could be achieved without asking the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (78 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programmer to do something about it. The second pass through the source code (as in some older
languages) would eliminate the problem altogether.

In C++, the programmer is asked to resolve this problem by using function prototypes. A function
prototype has the same syntactic form as the function header. The only difference is that the
prototype has to be terminated by a semicolon. There are no limitations on the placing of the
prototypes with the exception that it should lexically precede the first call to this function. It is a
common convention to put prototypes at the beginning of the source file with client functions.

The relationship between function definitions and function prototypes is a generalization of the
relationship between definitions and declarations of variables. A function prototype is a declaration
of the function, and it can be repeated as many times as needed. A function definition can be found
in the program only once.

The added benefit of using function prototypes is that now there is no need to put the function
definitions in the same file as the client function. The prototypes are enough to satisfy the compiler.
Listing 2.12 is a corrected version of Listing 2.11 with server function prototypes at the top of the
file and the function definitions moved elsewhere.

Example 2.12. Corrected C++ program with prototypes preceding the function calls.
const double PI = 3.1415926;
void displayInitialGreeting(); // function prototypes
double computeSquare(double x, double y);
void displayResults(double y);

int main(void)
{
 double x=PI, y=1;
 displayInitialGreeting(); // function calls
 y = computeSquare(x,y);
 displayResults(y);
 return 0;
} // end of the function block

Even for this tiny example, we can see the advantages of using functions. The code of the main()
function is purged of details of how things are done. It only says what is being done. To know the
details of how it is being done, the maintainer can turn to the source code of the server functions in
different files. Since each function is in a separate file, the attention of the maintainer will not be
distracted by irrelevant details. The programmer even does not have to mention the names of the
source files with server functions. The object code for these functions, however, has to be linked
with the object code for main(). The #include files are also gone. They are included in the source
code of the server functions that call the library functions. The client programmer does not have to
know what services its server uses.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (79 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If a server function is used by different client functions in several files, the prototype of this server
function should be included in each file. Often, programmers put prototypes into separate header
files and include them in the files where client functions are implemented. The difference between
including standard library files like iostream and programmer-defined header files is the use of
path names and double quotes. Listing 2.13 is our program where the prototypes are moved to the
file c:\data\cppbook\ch02\display.h:

Example 2.13. Your first C++ program with prototypes in a separate file.
const double PI = 3.1415926;
#include "c:\data\cppbook\ch02\display.h" // prototypes

int main(void)
{
 double x=PI, y=1;
 displayInitialGreeting(); // function calls
 y = computeSquare(x,y);
 displayResults(y);
 return 0;
} // end of the function block

The use of parameter names in function prototypes is optional. The compiler does not use them for
checking the correctness of function calls; only the types of the arguments are used. The parameter
names could be useful for documentation purposes. If the parameter names are not used, the
c:\data\cppbook\ch02\display.h file could look this way:

 void displayInitialGreeting();
 double computeSquare(double, double); // no parameter names
 void displayResults(double);

Classes

My next task is to describe the syntax for combining functions with data into an aggregate data
type. C++ supports this by providing the struct and class keywords and the rules for merging
components into an aggregate that can be handled as a whole. In the class definition, you specify
the types and the names of the data members (data fields) and the headers or the bodies of member
functions (that access these data fields). The class name can be used by client code as a type name.
This means that we can define variables of this type (objects), pass them as parameters to functions,
and so on.

Let us consider representing time of day as a combination of hours and minutes. We want to have
an object that can store time data and display the time stored in it. The client code might request the
military time representation (18:45), or conventional representation (6:45 P.M.)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (80 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Here, I create a class description with two integer data fields, hours and minutes, which can be
accessed from outside of the class. It describes the composition of class objects (instances and
variables) that will be defined and manipulated later in the program:

struct TimeOfDay // keyword struct is used
{
int hours; // one data member: an integer
int minutes; // another data member: also an integer
};

A common convention for class names is to capitalize the first letter of each component of the
name. The opening and closing braces denote the class scope¡Xthe boundary that separates
everything within the class from what is outside. Unlike in other cases of using scope braces, the
semicolon after the closing brace is mandatory. Just to make sure you do not think that C++ is
straightforward and boring.

The definitions of class data fields are similar to definitions of variables. They associate the type
and the name of the field. When an object (instance or variable) of class TimeOfDay is created,
memory is allocated for each field according to its type.

TimeOfDay time1, time2; // two objects are allocated

When the fields are of the same type, you can use only one type name for several data fields with
the comma separator between field names. This is again similar to definitions of variables of built-
in C++ types.

struct TimeOfDay
{
 int hours, minutes; // two integer data members
};

Again, you can use this syntax for defining variables and class data fields but not for function
parameters.

Notice that data fields should be private. They should not be accessed from outside of the class. My
next step is to provide member functions (methods) that access the class data fields on behalf of the
client code. These access functions should be public so that the client code can use them to set and
display time in the military and conventional formats. For example, I can implement functions
setTime(), displayMilitaryTime(), and displayTime(). The function setTime() should
have two parameters: one for hours and one for minutes. Other functions have no parameters. They
display the values stored in the object. Listing 2.14 shows the syntax for the class definition with
data members and member functions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (81 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 2.14. Your first C++ class that combines data and functions.
#include <iostream>
using namespace std;
class TimeOfDay { // keyword class is used
 private: // keyword private makes data hidden
 int hours, minutes;
 public:
 void setTime(int hrs, int min)
{
 hours = hrs; minutes = min;
}

 void displayMilitaryTime(void)
{
 cout << hours << ":" << minutes;
}

 void displayTime(void)
{
 if (hours > 12)
cout << hours-12<<":"<<minutes<<"P.M.";
 else
 cout << hours <<":"<<minutes<<"A.M.";
 }
 };

The function setTime() copies the values of parameters into the data fields of the object. The
function displayMilitaryTime() displays hours and minutes. The function displayTime()
checks whether hours (in military representation) exceeds 12; if yes, it subtracts 12 from hours
and displays the difference with minutes and the P.M. label; if not, it displays hours with minutes
and the A.M. label. The C++ iostream library is used in this example.

These member functions are inside the class and hence handle class data without limitations: They
can set and access data values as appropriate for the goals of the client code. Their very existence is
related to the needs of the client code, not to the needs of the class itself. This is why these member
functions are defined as public: They can be called by the client code. To call these functions, the
client code has to define class objects using the standard syntax for defining C++ variables; in these
definitions, the client code connects the type name (TimeOfDay) and the names of the variables
(e.g., time1, time2).

I saved the class definition in a header file c:\data\cppbook\ch02\time.h. To be able to use this
class, the source file with the client code has to include this header file. Otherwise, the compiler
will complain that TimeOfDay is not defined. Listing 2.15 shows an example of the client code that
defines TimeOfDay objects, analyzes the return value of the class functions, and formats its output

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (82 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

accordingly. (It has to include the class header file.)

Example 2.15. Client code for your first C++ class that combines data and functions.
#include <iostream>
using namespace std;
#include "c:\data\cppbook\ch02\time.h"

int main(void)
{
 TimeOfDay time1, time2; // class instances
 int hours = 19, minutes = 15; // integer variables
 time1.setTime(7,35);
 time2.setTime(hours, minutes); // initialize objects
 cout << "First time: ";
 time1.displayMilitaryTime(); // message to first object
 cout << endl << "First time: ";
 time1.displayTime();
 cout << endl << "Second time: ";
 time2.displayMilitaryTime(); // message to second object
 cout << endl << "Second time: ";
 time2.displayTime();
 return 0;
}

Here, the variables time1 and time2 are of type TimeOfDay. They are defined similar to variables
of a built-in type. In essence, the class definition expands the set of types available in C++ and adds
to it our modest contribution: the TimeOfDay type. Although the contribution is modest, the class
facility is very significant. It opens enormous opportunities for extending the power of the
language. The relationship between client code and class code is shown in Figure 2-6. When the
client code needs access to private parts (to set time or display time), it does not access the data
directly (the dashed line in Figure 2-6). Instead, it calls the member functions setTime(),
displayTime(), and displayMilitaryTime() (solid lines in Figure 2-6), and these functions
access private data on behalf of the client code.

Figure 2.6. Client code uses access functions instead of accessing data directly.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (83 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

A call to a member function is called a message to the object. Notice the message syntax: When a
member function is called, you should specify on what object we want that function to operate
(using the dot selector operator). When the target object is time1, it is the hours and minutes data
fields of object time1 that get displayed. When the target object is time2, it is the field values
inside time2 that are displayed. Figure 2-7 shows the output of the program.

Figure 2.7. Output of the TimeOfDay access functions.

Unlike other functions we saw earlier, member functions cannot be called by just using the function
name (and supplying arguments if necessary):

 displayTime(); // syntax error

Come to think of it: What time do I want to display? Of what object? I did not specify that, and the
compiler has no means of figuring out what I meant. This is why this function call is an error. The
target of the message must be specified. However, this target must be of the same type as the
member function being called; a variable of another type cannot be used as the target. For example,
this is also incorrect.

 hours.displayTime(); // syntax error

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (84 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The variable hours is of type int. You can add, subtract, and do other operations over an integer
value, but displayTime() is not among these operations. This is why this statement is an error too.
The target has to be of the correct type.

The potential for extending the C++ language with classes is supported by using class composition
and class inheritance. I could have given here simple examples of class composition and
inheritance, but this will make the preview too long. Even without examples of composition and
inheritance, the preview did its job¡Xyou have had your first glimpse of C++. You can write simple
C++ programs¡Xnot elegant yet, but robust and working. Most importantly, you can now study
C++ building on this firm foundation.

Before you go on to discuss the details of the language, you should consider the issues related to
linking and execution of C++ programs.

Dealing with Program Development Tools

As I mentioned earlier, you should use a text editor to create C++ source code. This code is
compiled by a C++ compiler that will generate error messages if your source code has syntactic
errors and will enable you to run your program if there are no syntax errors. In this section, we will
look at more sophisticated tools that you can use for creating and running a C++ program. I will
explain the role of each tool and the way to use these tools most effectively. Of course, the specifics
depend on whether you use command-line assorted tools (e.g., the GNU compiler under UNIX) or
an Integrated Development Environment (the Microsoft IDE under Windows).

Many development environments require (or suggest) that in addition to saving your source files,
you also add your files to a project (the project can have several source files). Treated as a unit, the
project files can be used to collect information about your program that is helpful for program
analysis and debugging. Also, the vendors of integrated environments often provide the capability
of generating a multifile framework for you so that you add your application code to class and
function skeletons generated by the tool. This might be useful for an experienced programmer, but
it can be a hindrance while you are studying the language. Instead of concentrating on specific
language topics, you have to study the code generated for you by the tool, and this code can use
language features you are not familiar with.

TIP

To avoid unnecessary complexity and to simplify the extraneous tasks of project management, it is
a good idea to stay with one-file programs while you are experimenting with the language. Some
integrated environments create a default project for you whether you like it or not. Go along and
accept it, but try to avoid using the environment-generated code for your first explorations in C++.
This will make your life simpler.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (85 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Saving your files after editing and before testing the program is a good idea. If you do not and your
program contains run-time errors that crash the system, you lose the changes that you introduced.
Only a few people today write code changes on paper before typing them in, and one can lose a
significant amount of work as the result of a crash. Saving the file to disk (under a different name)
before compiling reduces this danger. To help you to know the status of your source file, some
editors display the indication of the status of the screen. If the code is changed but the file is not
saved yet, the editor puts an asterisk next to the file name at the top of the editor window or
displays a message at the bottom of the editor window. After the file is saved, the asterisk (or the
message) disappears.

Yet other integrated environments do not trust your common sense and save your source file when
you ask to compile it, even when your changes are experimental and you are not sure whether you
want to keep them or roll them back.

If the source file does not contain syntactic errors, the compiler produces an object file that has the
same name as the source file does. Depending on the system, the file name extension for object
fields is .o or .obj. If the code contains syntactic errors, the object file is not created. Instead, the
compiler generates error messages that tell you on what line in your source code the error(s)
occurred and what kind of error it is. With older tools, you had to count the lines in your source file
or rely on the line numbers displayed by the editor. Newer tools eliminate the need for tracing line
numbers even though they also tell you the line number in error. When you click on the error
message in the message window, the tool moves the focus to the editor window with the cursor on
the line that the error message indicated. This is a very useful feature.

When you become comfortable with the language, you will find compiler error messages both
understandable and helpful. Well, at least some of them. Until that time of bliss, please make
yourself a rule: Never take compiler error messages literally, never analyze them, or at least stop at
the very first difficulty. Do not persist. Do not hang on. Do not persevere. Do not do anything that
is so commendable in our society of people who never give up. It is a wasted effort with error
messages. It is never worth the trouble.

At least 90% of error messages are incomprehensible to a beginner. Are there any exceptions? Sure
there are exceptions. About 10% of error messages are relatively easy to understand. But you see, it
is exactly those cases where you could understand what the error is as soon as you glance at the line
of code that contains the error, and you do not need any error messages to help you. This is why I
recommend that you do not waste your time, energy, and emotions on error messages. Later on,
when you become used to their terminology, you might benefit from that information, and it will be
worth your while to look at the message and decide what direction you want to take. But at initial
stages of studying the language, reading error messages will do you more harm than good.

The reason for this situation is that the compiler designers want to be most helpful to you and give

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (86 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

you the most detailed analysis of the situation. Small wonder that their error messages use
advanced C++ terminology that the beginner should not understand. Often, the problem can be
caused by different kinds of errors, and the compiler has neither the time nor the knowledge to do
detailed analysis and to correctly pinpoint the cause of the error. So the error message that sounds
so technical and specific often has little to do with the error you actually made.

I will be frank with you: Do not expect much help from compiler error messages. Rely on your own
wits instead. The only reliable piece of information that the error messages provide is the place
where the error originated. And even that information is not always correct. Sometimes, the error
originates on the previous line. So, when you get that error message (yes, you will, no doubt about
that), do not concentrate only on the line indicated in the message; check the previous line too.

Often, the compiler generates more than one error message. Many programmers, when in doubt of
what caused the first message, start analyzing the second, third, and other messages if they seem to
make more sense.

Do not follow this logic. Do not analyze the second error if you do not understand the first one.
After correcting the first error, do not start correcting the next error immediately. This is not right.
It is a holdover from the old days, when the turnaround of the compilation was several minutes or
even several hours. With turnaround time that long, it made sense to spend more human time on
analysis of compiler error messages (even if some of them were spurious) and eliminate as many
errors at once as possible.

Today a compilation takes only a few seconds. It is very inexpensive. The time that you spend
analyzing the second and the third error is often wasted: After you correct the first error, other
errors either change or disappear. They are generated not because you made mistakes, but because
the compiler lost the track of flow of your source code after the first error. Your time is more
expensive than the compilation time, and hunting phantom errors rarely pays. With experience, you
will learn to distinguish spurious errors from real ones; then you will be able to correct several
errors at once. Until that time, use the extension of the rule of not trusting the compiler: analyze
only one error, then recompile.

Following is another version of Listing 2.1 with a small single error in it. The compiler generated
three error messages with line numbers and causes of all three errors spelled out for you.

#include <cmath> // preprocessor directive
#include <iostream> // preprocessor directives
using namespace std; // compiler directive
const double PI = 3.1415926; // definition of a constant
int main(void) // function returns integer
{
 double x=PI, y=1, z, // definitions of variables
 cout << "Welcome to the C++ world!" << endl; // function call

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (87 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 z = y + 1; // assignment statement
 y = pow(x,z); // function call
 cout << "In that world, pi square is " << y << endl;
 cout << "Have a nice day!" << endl;
 return 0; // return statement
} // end of the function block

Compiling¡K
ch02.cpp
C:\Data\ch02.cpp(7) : error C2143: syntax error : missing ';' before '<<'
C:\Data\ch02.cpp(7) : error C2143: syntax error : missing ';' before '<<'
C:\Data\ch02.cpp(10) : error C2296: '<<' : illegal, left operand has type
'double'
C:\Data\ch02.cpp(10) : error C2297: '<<' : illegal, right operand has type 'char
[29]'
C:\Data\ch02.cpp(11) : error C2296: '<<' : illegal, left operand has type
'double'
C:\Data\ch02.cpp(11) : error C2297: '<<' : illegal, right operand has type 'char
[17]'
Error executing cl.exe.

ch02.exe - 6 error(s), 0 warning (s)

All this intelligent looking activity is totally in vain, much like trying to save your loafers by
crawling in the mud in search of rubber shoes lost at another corner. You can spend hours chasing
your tail and trying to add semicolons before operators << on line 7 or hunting for help types of
operands on lines 10 and 11. All that is taking place at a wrong corner. Lines 7, 10, and 11 contain
no errors no matter what the compiler says. Line 5 does. It looks like I fell asleep at the keyboard
and pressed the comma key instead of the semicolon.

And one more comment about compiler errors. Programmers make errors of this kind quite often.
These are small, simple, and we do not expect them. Combined with misleading error messages,
they are hard to find. Often, we suspect other statements, especially when we have some misgivings
about their syntax. We might start changing these statements. This makes them incorrect and
generates more error messages. We analyze them, try something else, make things worse, and so
on. After spending much time (and emotion) and finally resolving the problem we say: "How could
I make such a stupid error? And how was I able to look at the code without seeing it when it is so
obvious? How could I be so dumb?"

I want to expand my advice on not taking compiler error messages literally. Do not evaluate
yourself on the basis of these errors. After all, you found them and corrected them. The time that
you spend on that is not very important. It is important, but not very important. Your confidence in
your skills is much more important. And frequent self-criticism can undermine your confidence. In
addition, this blame is utterly unfair; it comes at the moment when you deserve a pat on the
back¡Xyou just resolved that elusive problem! Please do not blame yourself. Develop the feeling of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (88 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

self-confidence and competence.

Sometimes the compiler generates warning messages. When you get enough experience, it is a
good idea to analyze them similarly to error messages because these warnings often reflect real
errors. Until that time, disregard the warnings. They are often misleading. They do not prevent the
compiler from generating object code and from running and debugging your code. Hence, you can
test your code at run time. But later on, do make a point of understanding warnings and eliminating
them.

The next step after the successful compilation is linking (or "building" under some tools). When the
program consists of several source files, each file can be (and should be) compiled separately while
it is being developed. When the source code contains declarations of identifiers (variables or
functions) that are defined in another file, the compiler has a problem¡Xit does not know addresses
of these identifiers because the compiler compiles one file at a time. The linking stage takes place
when all source files are successfully compiled. The linker goes over all object files and resolves
external references to identifiers defined in other files.

During linking, the linker adds more precompiled code to your object code which comes with C++
libraries. Although the library source code is usually available, it is not recompiled each time one of
your functions calls pow(), operator, <<, or another library function. The library functions are
compiled in advance, and the linker resolves these external references in the same way as any
others.

The result of the linking stage is an executable program file. For a single file program, its name is
the same as the name of your source file. For a multifile program, the name of the executable file is
the same as the name of the project (the programmer usually can choose any name). The extension
is usually .exe.

Linking errors are not frequent. When they occur, they are caused either by misspelled function
names or by incorrect manipulation of the project.

The executable file can be run. Most IDEs give you a choice of running the program in the
debugging mode or in production mode. Debugging mode is fine, but I recommend you do not use
the debugger. During your first steps with C++, you will be busy learning the language, the editor,
the compiler, and the linker¡Xyou cannot avoid that. Learning the debugger is a major undertaking.
The return on the time you would invest in it is small, at least until you start writing complex C++
programs. Until then, inspection of program output (and adding extra print statements when
necessary) is sufficient.

Here, another warning is appropriate. It is all too often that the programmer looks at the output of
the program and does not see that the output is incorrect. I have no good explanation, but this is a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (89 of 1187) [8/17/2002 2:57:45 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

fact. This is probably related to the human capacity of self-deception and denial, but I am not sure.
Whatever the reason, we often miss run-time errors.

Some programmers try to avoid that by writing expected output down before the program is run.
This is helpful but does not give the total assurance.

Make sure you are always vigilant when you check the test results.

Summary

Congratulations! You have reviewed the most important components of the C++ programming
language. You know what preprocessor directives to use, how to define variables and functions,
how to control the flow of execution with conditional statements and loops, how to comment your
code, and how to disregard misleading compiler messages. You even saw how to define and use a
C++ class. Very good!

Actually, this is enough for writing most of the C++ code you want to write. This is similar to
learning natural language. Pidgin English is much smaller and simpler than English, but it is
amazing how much you can express using only a fraction of language facilities available to an
experienced native speaker. This is probably yet another manifestation of the rule that 80% of all
work is done by 20% of contributors.

However, we should not limit ourselves to these 20% of the language. It is time to move on and
start learning language facilities available to an experienced programmer.

Chapter 3. Working with C++ Data and Expressions

Topics in this Chapter

ϒΠ Values and Their Types

ϒΠ Integral Types

ϒΠ Floating Point Types

ϒΠ Working with C++ Expressions

ϒΠ Mixed Expressions: Hidden Dangers

ϒΠ Summary

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (90 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In this chapter, we will study how to work with C++ data: what data types are available, what
operations over values of these data types are supported, and what pitfalls the C++ programmer
should be aware of. As with many other aspects of the language, C++ combines opposites. Its set of
numeric data types is very small, and differences between existing types are not that drastic, so that
the choice between them is not always clear-cut. Its set of operators is very large. Some C++
operators are quite complex; others have unusual notation. What is common to both C++ data types
and operators is potential for portability problems. Things very often do not work the same way on
different machines.

C++ inherits from C exceptional flexibility for converting the values from one type to another and
for combining them into sophisticated expressions. Let us take a look at what is available.

Values and Their Types

In C++, every value, at every moment in its lifetime (during program execution), is characterized
by its type. C++ variables are associated with their types at the time of definition. The type
describes three characteristics of the value:

ϒΠ the size of the values of that type in computer memory

ϒΠ the set of values that are legal for the type (the method of interpretation of the bit pattern
that represents the value of that type)

ϒΠ the set of operations that are legal on the values of that type

For example, the values of type int on my machine are allocated four bytes, and the set of legal
values ranges from -2,147,483,648 to +2,147,483,647. The set of legal operations includes
assignment, comparisons, shifts, arithmetic operations, and some others. The values of the type
TimeOfDay that I defined in the section "Classes," in Chapter 2, "Getting Started Quickly: A Brief
Overview of C++," are allocated the size of two int values (unless the compiler adds more space to
align values in memory for faster access). The set of TimeOfDay legal values is any combination of
values for the first integer (from 0 to 23) and for the second integer (from 0 to 59). The set of
TimeOfDay legal operations includes setTime(), displayTime(), and
displayMilitaryTime(); it includes assignment but not comparisons. Sure, TimeOfDay
components can be compared (they are integers, and the rules of int apply to them) but not the
TimeOfDay values: You should distinguish between properties of the type and properties of its
components. If the client code has to compare TimeOfDay values, class TimeOfDay has to support
this by implementing functions such as isLater() or compareTime() or something like that.
(Again, notice the client-server terminology I am using here.)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (91 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Every C++ variable has to be defined by specifying the type of its values. In addition, type also
characterizes the values of constants, functions, and expressions. This means that you can combine
typed values into expressions that give other typed values as results, and these values can be used in
other expressions and so on.

In most cases, the type is denoted by an identifier, that is, the type has a name (e.g., int or
TimeOfDay). This is common and natural, but this is not the only way to define types. C++ allows
so-called anonymous types that do not have specific names. These types are not common.

Type names of built-in C++ types are reserved words: int, char, bool, float, double, and
void (actually, this is it, this is the whole list). In this list void denotes the absence of the value that
can be manipulated in an expression. We use it to indicate that further use of the value in other
expressions is not appropriate. For example, the function computeSquare() in the section
"Functions and Function Calls," in Chapter 2, returns the value that can be used in expressions, and
the function displayResults() in the same section cannot be used this way: It returns no value. If
you try to use it incorrectly, the compiler will tell you that this is an error.

int a, b;
a = computeSquare(x,y) * 5; // this is legal C++
b = displayResults(PI*PI) * 5; // this is an error

Other languages do not have this special "type" because they distinguish between functions (that
return values) and procedures (that do not return values). C++ inherited from C the function syntax
that doubles both as a function and as a procedure. Logically, the absence of the specified return
type should be interpreted as the absence of the return value; not so in C. To add insult to injury,
the absence of type specification in C denotes the integer type and requires a return statement that
returns an integer value. C++ implements a compromise. If you do not specify the return type, the
compiler does not go after you and does not demand that the function return an integer value (as the
C compiler does); the new C++ compiler assumes that you want the void return type.

displayResults(double y) // C++ it is void
{
cout << "In that world, pi square is " << y << endl;
cout << "Have a nice day!" << endl; // no error in C++
}

However, if you use this function as an operand in an expression, C++ assumes that you are using
an old C convention and want to return an integer. At run time, displayResults() silently returns
junk. As they say, the compiler "does not second-guess the programmer" and removes compile time
protection.

b = displayResults(PI*PI) * 5; // not a syntax error

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (92 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If you supply the return statement, the function with no return type is treated as if it returns an
integer value.

displayResults(double y) // C++ assumes it is int
{
cout << "In that world, pi square is " << y << endl;
cout << "Have a nice day!" << endl;
return 0; // no syntax error
}

The client code can use the return value as it sees fit.

b = displayResults(PI*PI) * 5; // this is legitimate

The use of int as a default return type goes back to the days when most C functions were designed
to return values and saving the programmer three keystrokes was viewed as a nontrivial advantage.
Avoid this practice. If the return type is integer, say int. If a function returns no value, denote
return type as void.

ALERT

Always specify the return type of a function. If the function returns no value, specify type void. Do
not rely on C++ default.

The types defined by the program in addition to built-in C++ types are called user-defined types. I
do not like this terminology, because users do not define types. A user is a person or an
organization that uses the implemented system to achieve the stated objectives. It is the
programmer who defines the type composition and the name of the type, similar to the type
TimeOfDay in the section "Classes," in Chapter 2. This is why I prefer to call these types
programmer-defined types.

Although different types in C++ are of different sizes, there is nothing unusual for values of
different types to have the same size in memory. For different types, it is the interpretation of the
bit pattern that distinguishes the values. For example, the bit pattern 01000001 is interpreted as
value 65 if it is stored in an integer variable; the same bit pattern is interpreted as A if it is stored in
a variable of character type.

In the old days, programmers had to know how to read binary numbers, octal numbers,
hexadecimal numbers, ASCII codes, EBCDIC codes, remember by heart the powers of 2 to the
16th power (sometimes to the 20th or even 32nd power), understand one-complement and two-
complement representation for negative numbers and whatnot. Today, most programmers do not
need that. Still, the computer hardware is built in sizes that are increments of 8 bits. A byte has 8

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (93 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bits, a half-word has 16 bits, a word has 32 bits. On some machines, it is a word that has 16 bits,
and a double word has 32 bits. This is why it is a good idea to know at least the ranges of values
that can be stored in memory of different sizes.

So, 4 bits can represent 16 different combinations of bits (one hexadecimal digit). Usually, these 16
combinations are assigned to integer numbers from zero to 15. Similarly, 8 bits can represent 256
values (2 to the power of 8). These 256 bit combinations are assigned to integer numbers from zero
to 255. What if we want to represent both positive and negative numbers, not just positive? We still
have only 256 bit combinations at our disposal. The range from -128 to +128 would not do because
this range has 257 values, not 256. The common solution is to represent numbers from -128 to
+127.

Two bytes (16 bits) can represent 65,536 bit combinations (this magic number is 2 to the power of
16). For positive numbers, the range is from zero to 65,535. For signed values (positive and
negative numbers) the range is from -32,768 (2 to the power of 15) to +32,767 (2 to the power of
15 minus 1). Similarly, 32 bits (four bytes) can represent 4,294,967,296 values. For signed
numbers, four bytes cover the range from -2,147,483,648 (2 to the power of 31) to +2,147,483,647.
This is probably all that you should know about binary numbers.

Integral Types

On all computer architectures, the C++ integer type represents the most basic type. What does
"basic" mean? It simply means that the values of this type are always the fastest to operate on the
given platform. The keyword int is used to denote this type.

int cnt;

The size of int defines the range of values available for representation (2 to the power of the
number of bits). The industry is now shifting from 16-bit architectures to 32-bit architectures, but
both architectures are going to be used for some time. Most stationary installations will use 32-bit
computers, but embedded systems and communications systems will continue to use 16-bit
computers, and the number of these systems is going to grow as computers find their way into cars,
major appliances, or even toasters.

This means that programs written for one architecture might not run exactly the same way on
another architecture.

What happens if the value that can be stored in an integer does not fit? The answer is: nothing
much. There is no such thing as arithmetic overflow in C++. You want to add 1 to 32,767 on a 16-
bit machine? Go ahead and do it. The result will be -32,768. You want to add another one? Go
ahead and do it. The result will be -32,767.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (94 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 3.1 shows a program that I ran on a 16-bit platform (it was a 32-bit machine with a 16-bit
compiler). The limit header file contains library constants for implementation-dependent numeric
values for the given platform. The constant INT_MAX is one such value (32767). In this example, I
am using the while loop similar to one discussed in Chapter 2, and the iostream library. The
output of this program is presented on Figure 3-1. The variable num happily goes around the clock
and assumes negative values. Each element in the cout statement has its own output operator <<;
even the separator (in double quotes) between the printed values of variables cnt and num.

Figure 3-1. Integer overflow does not terminate the program; it silently produces
incorrect results.

Example 3.1. Demonstration of integer overflow.
#include <limits>
#include <iostream>
using namespace std;

int main(void)
{
 int num = INT_MAX - 2;
 int cnt = 0;
 cout << "Integer overflow in C++:" endl;
 cout << "Incrementing from " << num << endl;
 while (cnt < 5)
 {
 num = num + 1;
 cnt = cnt + 1;
cout << cnt << " " << num << endl;
}
cout << "Thank you for worrying about integer limits" << endl;
 return 0;
}

Earlier versions of C++ (and C) did not allow run-time values to be used to initialize variables; they
had to be computed at compile time. However, you could always initialize variables not only to a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (95 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

specific value, but also to an expression (for example, INT_MAX-2 in Listing 3.1). In modern C++,
the initializing expression can be of arbitrary complexity. It can even include the run-time return
values of function calls. For example, this is legal in C++:

 int a = computeSquare(x,y) * 5; // this is legal C++

This is quite a feat from the point of view of compiler design. This is why older C and C++
compilers do not support this feature. Now see if you think that I am repeating myself. Did I not
say in the section, "Values and Their Types," that you can use the return value of a function in
computations?

 a = computeSquare(x,y) * 5; // legal in C and C++

Make sure you see the difference. The example from the section, "Values and Their Types"
demonstrates assignment. It is always possible in C++, C, or any other language. The example from
this section demonstrates initialization. Although the code is quite similar, they mean two different
things. Initialization allocates memory and sets its value. Assignment deals with the object
(variable) that is already allocated, has its address in memory (and probably some initial value at
that address), and the value at this address is being replaced. I mentioned that difference in Chapter
2, and you will see further implications later.

Despite this progress in compiler writing, C++ does not expect its compilers to be two-pass
compilers. They are all one-pass compilers and have no ability to see forward. This is why they
cannot use a value that is not defined yet even if it is defined on the next line. For example, this is
an error:

 int a = b, b(5); // error in C++

Here, variable b cannot be used to initialize variable a. The inverse order is legitimate. (Notice the
syntax for initialization that is similar to a function call: It is not allowed in C but is acceptable in
C++.)

 int b(5), a = b; // this is acceptable

Integer Type Qualifiers

C++ inherits from C a technique for fine-tuning integer ranges: the use of qualifiers. These are
keywords that change either the size of memory allocated for integers or the interpretation of the bit
pattern: signed, unsigned, short, and long.

The signed qualifier we have been using all along is a default, and it does not have to be specified.
This definition for the variable cnt means exactly the same thing as the previous one:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (96 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 signed int cnt; // signed is default

The unsigned qualifier can be used for variables that cannot take on negative values (indices,
counters, tallies, inventory quantities, etc.). This qualifier does not change the size of the memory
allocated for the value (16 bits or 32 bits) but it changes the interpretation of the bit pattern. The
legal range of unsigned integers is not from -32,768 to +32,767 but from zero to 65,535 on a 16-
bit machine, and from zero to 4,294,967,295 on 32-bit machine. Listing 3.2 shows the previous
example where an unsigned integer is used instead of signed. The output of this version is
presented in Figure 3-2. We see that the problem disappears. Well, it disappears at this stage. Of
course, it will manifest itself at the upper range of unsigned integers, but it will manifest itself
differently. When the unsigned number overflows, its value silently goes back to zero rather than
to a large negative value. I am not sure this is much better.

Figure 3-2. For unsigned integer values, the overflow happens at larger values than for
plain integers with the same memory size.

Example 3.2. Demonstration of unsigned int type.
#include <limits>
#include <iostream>
using namespace std;

int main(void)
{
 int unsigned num = INT_MAX - 2;
 int cnt = 0;
 cout << "Integer overflow in C++:" << endl;
 cout << "Incrementing from " << num << endl;
 while (cnt < 5)
 {
 num = num + 1;
 cnt = cnt + 1;
cout << cnt << " " << num << endl;
}
 cout << "Thank you for worrying about integer limits" << endl;
 return 0;
}

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (97 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Using unsigned numbers is a nice idea (not so much for extending the range of the values but for
passing on to the maintainer the knowledge of the designer) that the value of the particular variable
cannot be negative. On the other hand, if this intent will somehow get lost on the maintainer, and
the unsigned variable will be used for negative values, the results will be quite disastrous. Listing
3.3 shows the previous version of the program where the variable num is initialized to 2 and is
unwittingly decremented in a loop. The output of the program is shown in Figure 3-3.

Figure 3-3. Unsigned variables cannot hold negative values; when decremented, they
assume large positive values without warning.

Example 3.3. Negative values in an unsigned variable.
#include <iostream>
using namespace std;
int main(void)
{
 int unsigned num = 2;
 int cnt = 0;
 cout << "Negative values in an unsigned variable" << endl;
 cout << "Count down starting with +1" << endl;
 while (cnt < 5)
 {
 num = num - 1;
 cnt = cnt + 1;
cout << cnt << " " << num << endl;
 }
 cout << "Thank you for worrying about integer limits" << endl;
return 0;
}

Two qualifiers that control the amount of memory allocated to an integer are long and short:

 int cnt; short int short_cnt; long int long_cnt;

The goal here is not only to provide a larger range for integers, but also to save space where it can
be saved. C++ programmers are supposed to be concerned with performance, both in terms of
execution time and in terms of space. Using signed integers (without qualifiers) provides the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (98 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

fastest data type, using long integers protects from overflow at the expense of memory, and using
short integers allows the programmer to avoid wasting memory. For example, the variable cnt in
the previous examples changes from 0 to 5. Why should it be allocated 32 bits on a modern
machine? Actually, a byte would be more than enough. Using the short integer data type for this
variable might sound like a good option for a machine with scarce memory.

How important is it to use the short qualifier to save memory and the long qualifier to expand the
range of values? These size qualifiers make the program more complex. Many programmers use
them only if they do know that the problem of overflow (or memory scarcity) exists and they know
that the use of qualifiers resolves the problem (often neither one is the case). Otherwise, most
programmers use regular integers without qualifiers and do not worry about these issues. This is
especially true on modern 32-bit machines. The use of four bytes for regular integers protects the
program from early overflow. The abundance of memory makes savings from using short integer
irrelevant.

As is often the case with C++ features inherited from C, the situation is not exactly what you think.
Logically, a short integer should be allocated less memory than an integer, and a long integer
should be allocated more memory than an integer. The C (and C++) standard, however, requires
from the compiler designers only that the shortint not be longer than the regular int and that the
longint not be shorter than the regular int. This is not as confusing as it sounds. On 16-bit
machines, both shortint and int variables are allocated the same amount of memory, 16 bits, and
longint variables are allocated 32 bits. On 32-bit machines, this is quite the opposite. How is it
opposite? Simple: shortint values are allocated 16 bits, and both int and longint are allocated
32 bits.

C++ has the sizeof operator that can be used to compute the size of data in bytes; its argument can
be either a variable name or a type name. For any platform, the following relation between returned
values of the sizeof operator holds.

 sizeof(short int) <= sizeof(int) <= sizeof(long int)

There is an interesting consequence of this design: shortint and longint are always of the same
size no matter whether the machine is 16 bits or 32 bits. On any architecture, shortint is always
16 bits, and longint is always 32 bits. This is why those programmers who are concerned with the
issues of portability do not use plain vanilla integers. They use shortint for relatively small values
and longint for all other values that might not fit into shortint. These are usually the
programmers who design embedded and communications systems. In these systems, computer
memory is often at a premium because of size and price limitations, and the same code should be
able to run on multiple hardware platforms.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (99 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

TIP

Integers are either 16 bits or 32 bits depending on the hardware; short integers are always 16 bits,
and long integers are always 32 bits. Their use eliminates the portability issue.

Is it possible to combine the unsigned qualifier with the short and long qualifiers, as in these
examples?

 unsigned short int short_cnt; long unsigned int long_cnt;

Yes, it is possible. (Notice that the order of qualifiers does not matter.) This can be found, for
example, in hard disk controllers, where the size of the file or the number of cylinders requires
large integers that can never be negative. Still, for most applications, it is a good idea to avoid extra
complexity and use regular integers.

One more comment. At the beginning of this chapter, I mentioned the old rule that when the type
name is omitted the default type is integer. This rule applies to this situation too. When you use
long and short data types, there is no need to specify the keyword int.

 int cnt; short short_cnt; long long_cnt; // same meaning

Integer literal values can be represented as decimal, octal, values and hexadecimal values. For
example, decimal 64 can be represented as octal 100 or as hexadecimal 40. To avoid confusion, the
integer literal starts with 0 to denote the octal system and with 0x (or 0X) to denote the
hexadecimal system. So, 100 means 100 (decimal), but 0100 is octal and means 64 in decimal, and
0¡Ñ100 is hexadecimal and means 256 in decimal.

Literal values are allocated memory pretty much in the same way as variables are; the only
difference is that we cannot manipulate their addresses and hence cannot change the values that are
stored there. So, 63 can be allocated two bytes as a short literal and four bytes as a long literal. To
indicate the difference, we can denote short and long constants using qualifiers in upper-or in
lowercase: 63s, 63S, 63l, 63L. The same is true for unsigned values: 63u, 63U, or 63us or 63UL.
This is rarely of practical importance.

Characters

The character type is treated by C++ as just another kind of integer. Its size is 1 byte (8 bits). It can
represent any ASCII symbol: a letter, a digit, or a nonprintable control character. Here are examples
of definitions for character variables.

 char c, ch; char first, last;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (100 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There are no short and long qualifiers for characters. However, signed or unsigned qualifiers are
allowed for characters. Unfortunately, the default is not standardized; on some machines, the type
char means unsigned char; on other machines, the type char means signedchar.

Why do you care? Usually, you do not, and this is why it has not been standardized. The difference
becomes important, however, when you treat char values as integers in computations. For
example, a signed char can contain the "end-of-file" library constant EOF whose value is defined
as -1; unsigned char can contain positive values only. So, if you try to put -1 into an unsigned
char, you will find there the code for 255, not -1. Since the char type can be signed or unsigned
implicitly, this can introduce portability issues.

As any variable, a char variable can be initialized at definition or assigned a value later. Small
integers can be used for initialization and assignment, and their values will be interpreted as
character codes. Character literals are enclosed in single quotes and can be characters, octal or
hexadecimal numeric values, or escape sequences. It is important not to confuse single quotes and
double quotes. Single quotes are used to denote character literals; double quotes are used to denote
string literals (sequences or arrays of characters).

 char c = 'A', ch = 65; // both c and ch contain 'A'

This is an example of using a character literal in quotes and using a decimal literal number. Other
character representations start with the escape character '\'. The escape character is not treated as an
ordinary character; it is a signal to the compiler to treat what follows in a special way, for example,
as an octal or a hexadecimal value.

 c = '\0101'; ch = '\0¡Ñ41'; // octal and hex values for 'A'

Here, the quotes and the escape characters are not really necessary. You can use octal and hex
values directly, similar to the way the decimal value 65 was used above, by starting an octal literal
with a 0 and a hexadecimal literal with a 0x (or 0X).

 c = 0101; ch = 0¡Ñ41; // octal and hex values for 'A'

The escape characters are necessary only if these values are embedded in a string. Also, the use of
the escape character indicates to the maintenance programmer that we are dealing with characters
and not with numbers. The most common escape sequence is the new line character '\n'. Other
escape sequences are '\r' (carriage return), '\f' (form feed or new page), '\t' (tab character), '\v'
(vertical tab character), and '\a' (sound bell).

Since single and double quotes have a special significance in C++, we have to use the escape
character to represent them too, '\"' and '\"'. The same is true of the escape character itself. If you

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (101 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

need to display it, two escape characters in a row are used: '\\'.

There are two more escape sequences: '\b' and '\0'. The first denotes a backspace. The second
denotes numerical zero. It is not a printable character (a printable '0' has numeric value 48), but it is
an important character. At the end of every string, a C++ compiler inserts this character, and it is
used to find the end of the string. For example, the string literal " Hello " contains not five but six
characters; the last character is that zero code inserted by the compiler. Since we have not discussed
arrays yet, we cannot discuss strings in more detail now, but later on we will see a lot of them.

C++ treats characters as small integers. Hence, you can perform arithmetic operations and
comparisons on character values. Listing 3.4 shows an example of this kind of character
manipulation: The program first prints the alphabet in capital letters and then prints the alphabet in
lowercase. It also shows the use of an escape character to output a single quote, a double quote, and
the escape character itself. The output of the program is shown in Figure 3-4.

Figure 3-4. Output of the program (Listing 3.4) that performs arithmetic operations on
character variables.

Example 3.4. An example of manipulating character values.
#include <iostream>
using namespace std;
int main(void)
{
char ch; int cnt;
 ch = 65; cnt = 0; // ch contains 'A'
 while (cnt < 26)
 {
 cout << ch;
ch = ch + 1; cnt = cnt + 1;
}
 cout << endl;
 ch = 'a' - 1; // ch contains character '`'
 while (ch < 'z')
 {
 ch = ch + 1; // ch contains 'a', 'b', ¡K 'z'
 cout << ch;
}
 cout << endl;
 cout << "Single \' and double \" quotes are special\n";
 // new line: same as endl

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (102 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "And so is the escape character \\" << endl;
 return 0;
}

Performing arithmetic operations on characters is not a nice practice because it can confuse a
maintenance programmer. Another problem is that it works only on computers with contiguous
character sets (e.g., ASCII). The code in Listing 3.4 would produce nonprintable results if it were
used on a machine with a noncontiguous character set (e.g., EBCDIC). However, character
arithmetic is done quite often because it produces the code that is aesthetically pleasing.

Character variables are allocated one byte. This means that the character type can support character
sets with only 256 characters (including control and nonprintable characters). This is more than
enough for the English language but leaves almost everyone else in the cold to invent their own non-
ASCII character sets. The Unicode character set tries to standardize these efforts so that English,
French, Russian, Chinese, and Japanese characters fit into the same 16-bit character set.

C++ supports this effort by providing a wide character type, wchar_t, which can represent
extended character sets. The amount of memory allocated for this type is based on one of the
integer types, for example, int or short int. To represent the literal values for wide characters,
the prefix L is used. (It must be in uppercase.)

 wchar_t wc = L'a';

C++ allows the programmer to use any character set. For portability, ASCII is probably the best
option.

Boolean Values

Most modern programming languages support boolean values that can take values true and false
only. These values are useful for computing logical expressions and for choosing execution paths
through the program code.

C does not support the boolean type. Instead, C treats any nonzero value as true and the zero value
as false. C allows you to perform logical operations on these values (again, any nonzero result is
interpreted as true, and any zero result is interpreted as false). This is sufficient for handling
logical expressions. As you are going to see later, this also allows us to make errors that are not
identified by the compiler. Initially, C++ inherited the same approach. The new standard, however,
tries to rectify the situation somewhat by introducing the type bool with two values, true and
false.

 bool flag = false, result = true;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (103 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

I am saying "somewhat rectify" rather than "rectify" because the use of the boolean type does not
eliminate the error-prone features inherited from C. They are still used as legitimate C++ idioms.
The boolean values themselves are treated as small integers. If you try to print the values flag and
result defined above, the first one will be printed as zero (not as false), and the second one will
be printed as one (not as true).

The boolean values take only one byte of memory. Since the boolean type has only two different
values, boolean variables could take even less memory than one byte. One bit would be enough;
that is, the compiler could pack eight boolean values in one byte. This, however, would require
additional code for packing and unpacking these values, because modern computers cannot directly
address a unit of memory that is less than one byte. Actually, many computers cannot directly
address units of memory that are less than two bytes. As far as the speed of execution is concerned,
modern computers are the fastest when they access units of memory in four byte chunks. This is
why integers are allocated four bytes on many modern machines.

You are going to see more of these boolean values later when you start working with relational and
logical operators.

Floating Point Types

Integers and characters are integral types: the values of these types are separated from each other by
values that are multiples of one. They cannot contain fractional parts. Or, rather, whatever bit
pattern they contain, that bit pattern cannot be interpreted by the C++ compiler as a fraction. Other
types are used if the fractional part is needed.

C++ does not have fixed point numbers that would give the programmer control over the number of
digits after the decimal point. Instead, the programmer can use floating point values that consist of
a mantissa (with whole and fractional parts) and an exponent. The exponent is expressed in literal
numbers as a power of ten, but in the computer memory it is, of course, expressed as a power of
two.

There are three floating point types in C++:float, double, and longdouble. There is no such
thing as shortdouble: The type float does this job. The size of these types is machine dependent.
Usually, type float is allocated four bytes, type double is allocated eight bytes, and type
longdouble is allocated 10 bytes (or just eight bytes, the same as for double).

The number of mantissa digits that can be represented by a floating point number is also machine
dependent. Usually, type float values have seven digits; double values have 15 digits, and
longdouble values have 19 digits.

The range of values depends on the number of bits allocated for the exponent part of the value. For

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (104 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

float values, the exponents are in the range of -38 to 38. For double values, the range is from -
611 to 611. For longdouble, it is from -4932 to 4932, more than enough to represent all cosmic
data.

Here are examples of defining floating point variables:

 float pi; double r; long double d;

The goal of the hierarchy of the floating point types is the same as for integer types: to give the
programmer the choice of making a tradeoff between the memory size and the precision and
magnitude of values that can be handled by a variable. For the applications where the precision of
calculations does not matter but the space is scarce (most real-time embedded systems), float type
could be used. For the applications where the precision of calculations is vital (navigation),
longdouble could be used, even though these values take more space and computations are
performed slower. For all others, double would do.

It is probably fair to say that for most applications, float is too short and longdouble is too costly
in terms of time and space; unless there are strong indications to the contrary, type double should
be used. All functions in the C++ math library expect double arguments and return double values
(the function pow() that I used for our first C++ program in Chapter 2).

Floating points data types have fixed precision: for type double, both very large and very small
numbers have the same number of digits on a given platform. As I mentioned, C++ has no fixed
decimal point data type (with a given number of digits after the decimal point).

Floating point literal values can be in radix notation (with a decimal point) or in scientific notation
(E or e denotes the exponent).

 double r=5.3; long double d=530.0e-2;

These two numbers represent the same value. Ten to the power of -2 is one divided by 10 to the
power of +2, that is, divided by 100.

In this case, scientific notation has no advantage over normal (radix) notation. Scientific notation is
convenient for compact representation of very large or very small values.

Most floating point literals have all three components of the mantissa: integer part, decimal point
(only one, of course), and fractional part. Not all three components need to be present in all the
cases.

However, it is important to use the representation that distinguishes a floating point value from an
integer. Hence, it is OK to miss the integer part if the decimal point and the fractional part are both

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (105 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

present. It is also OK to omit the fractional part if both the integer part and the decimal point are
present.

 double small = .09, large = 5.;

It is even OK to skip both the decimal point and the fractional part if the exponent is present to
distinguish the value from an integer.

 double big = 500e2;

In scientific notation, the exponent has to be an integer. Even though mathematically it can be
anything, C++ accepts only integer exponents. The exponent can be optionally signed even when it
is positive.

 double big = 500e+2; // big = 500e+2.2; is no good

Similar to integer literal values, C++ allows us to distinguish between literals of different types by
using qualifiers that can be appended to the value. The qualifier 'f' or 'F' denotes a float floating
point value, and the qualifier 'l' or 'L' denotes a longdouble value. You might assume that the
qualifier 'd' or 'D' denotes a double floating point value, but that would be, although logical, an
incorrect conclusion. All floating point literals without a qualifier are double values by default.

 float pi = 3.14f; double r = 5.3; long double d = 5.3 L;

Working with C++ Expressions

Expressions consist of operands and operators. Operands are anything that have a typed value, that
is, variables, function return values, or expressions, which in turn consist of operators and
operands. Operators are symbols whose meaning is reserved in C++. Application of an operator to
operand(s) results in a value that can be used in another expression. White space is useful for
readability but is not required.

 x = (a + b) * (a + 2*b) * (a+3*b); // space is optional

Two operator attributes affect the order of evaluation: operator precedence level (higher level
operators are performed first), and operator associativity (operators of the same precedence are
evaluated either from left to right or from right to left).

There are 56 operators in C++: 18 levels of priority to learn (or to struggle with). Table 3.1 lists
C++ operators. Obviously, it is not possible to learn this table by reading it. I put it here for your
reference, not for memorizing. You will learn it gradually by using these operators. When in doubt
about the precedence of operators, use parentheses. After all, even if you remember all precedences

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (106 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

by heart, the maintenance programmer who comes after you might not know this table so well and
might confuse the order of evaluation.

Table 3.1. C++ Operators
Category Operators Associativity

Scope resolution :: left to right
Primary () [] ->typeid dynamic_cast left to right
 static_cast reinterpret_cast const_cast
Secondary ++ ¡X ~ ! + -* & right to left
 Sizeof new delete (type) right to left
Member selection ->*.* left to right
Multiplicative * / % left to right
Additive + - left to right
Shifts << >> left to right
Relational < <= > >= left to right
Equality == != left to right
Bitwise AND & left to right
Exclusive OR ^ left to right
Inclusive OR | left to right
Logical AND && left to right
Logical OR || left to right
Assignment = *= /= %= += -= right to left
 <<= >>= &= |= ^=
Conditional ?: right to left
Throw throw
Comma , left to right

High-Priority Operators

At the top of the table, at the highest priority, we see operators that bind their operands more
strongly than other operators (which is just another way of saying that they are of the highest
priority). For example, parentheses are high-priority operators. No matter what other operators you
use in the expression, subexpressions in parentheses are going to be evaluated first.

Two other operators that we can discuss now are plus '+' and minus '-' operators. As unary
operators, they take only one operand, for example, +2.0, -2.0. You might ask what the
difference is, between a unary plus or minus and the addition and subtraction operator we are all
familiar with and that are of lower priority. Well, the difference is that the unary plus or minus
takes only one operator and the addition or subtraction operator takes two. This distinction allows
us to write mixed expressions with unary operators that do not require extra parentheses for
evaluation, for example, 2.5- -0.25. Since the unary minus is an operator, it can be separated

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (107 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

from its operand by any number of blanks, for example, 2.5- -0.25. This does not interfere with
the evaluation of the expression. Of course, if you want to be appreciated by the maintenance
programmer, you will write this expression as 2.5-(-0.25) without worrying about these
subtleties.

The sizeof operator was discussed earlier in the chapter. This is the only C++ operator that can
operate both on a type identifier and on the name of the variable.

 int x = sizeof(int); int y = sizeof(x); // same values

Here, x gets the number of bytes allocated to any integer; y gets the number of bytes allocated to a
particular variable x (which happens to be an integer). As any unary operator, sizeof can be used
without parentheses around the operand when the operand is the name of a variable.

 int x = sizeof(int); int y = sizeof x; // same results

You might think that the same is allowed when the operand is the type name, but this is not the
case: the parentheses here are mandatory.

 int x = sizeof int; int y = sizeof x; // not OK

Unfortunately, that is all that can be said about high-priority operators now. We will see more of
them later.

The same is true of member selection operators at the next level of priority and the throw operator
near the end of the table. The type operator (cast) will be discussed later in the chapter.

Arithmetic Operators

At the fifth and sixth levels of priority in Table 3.1, we come to the multiplicative and additive
operators that can be discussed, but there is little to be discussed. Multiplication and division are of
higher priority than addition and subtraction. When we need to change the order of evaluation, we
use parentheses.

 x = (a + b) * (a + 2*b) * (a+3*b); // buyers beware

C++ does not raise any exception in case of overflow, and it is the responsibility of the programmer
to prove that overflow is not possible no matter what input data the program processes.

Arithmetic operations are legal both on integers and floating point values. Even though the same
division operator '/' can be applied to integers and floating point values, it behaves differently. On
floating point values, it results in a floating point value computed with appropriate precision. On

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (108 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

integers, it results in an integer that is truncated towards zero. For example, 7/3 is 2.333333 for
floating point operands and two for integer operands.

The modulo operator '%' returns the remainder of integer division. It is valid for integral types only
(integers, characters), not for floating point values. For example, 7 divided by 3 is 2 with 1
remaining. Hence, 7 modulo 3 is 1. Similarly, 8 divided by 3 is 2 with 2 remaining. Hence, 8
modulo 3 is 2. Since 9 divided by 3 is 3 with no remainder, 9 modulo 3 is zero.

int x1=7, x2=8, x3=9; int r1, r2, r3;
r1 = x1 % 3; r2 = x2 % 3; r3 = x3 % 3; // r1 is 1, r2 is 2, r3 is 0

The same holds when the first operand is smaller than the second. For example, 5 divided by 7 is
zero with 5 remaining. Hence, 5 modulo 7 is 5. Similarly, 6 divided by 7 is zero with 6 remaining.
Hence, 6 modulo 7 is 6. Since 7 divided by 7 is 1 with no remainder, 7 modulo 7 is zero.

int a1=5, a2=6, a3=7; int r1, r2, r3;
r1 = a1 % 7; r2 = a2 % 7; r3 = a3 % 7; // r1 is 5, r2 is 6, r3 is 0

This is rather straightforward for positive operands. For negative operands, the results are machine
dependent. Fortunately, you never have to use the modulo operator for negative operands. The most
common use of this operator is when trying to decide whether there is free space at the end of the
container or we already filled it with data (and have to go back to the beginning of the container).
The length of container and the position of the next item within the container are never negative.

Left- to - right associativity means that when several operators of the same priority are used in the
same expression, they are evaluated from left to right. This is not important for multiplication and
addition but is important for subtraction and division. It is all the same whether we evaluate a+b+c
as (a+b)+c or as a+(b+c). It is important to make sure that we evaluate a-b-c as (a-b)-c and not
as a-(b-c). Similarly, a/b/c means (a/b)/c and not a/(b/c).

The increment operator '++' and decrement operator '--' are trademarks of C/C++ programming.
They are addition and subtraction operators with one operand equal to 1. Hence, they need only one
operand to be specified. They implement assembly language-minus;type processing: one is added
or subtracted as an uninterrupted high-priority operation. In a sense, these operators create a side
effect on their operands.

 int x = 6, y = 10; x++; y-; // now x is 7, y is 9

In their basic form these operators are very simple. The increment operator increments its operand
by 1; the decrement operator decrements its operand by 1. This example is exactly equivalent to the
following code:

int x = 6, y = 10; x = x + 1; y = y - 1; // now x is 7, y is 9

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (109 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Programmers who come to C++ from languages other than C often wonder why they should use the
increment and decrement operators if they are exactly equivalent to conventional addition and
subtraction. In old days, the answer was that the object code generated by the compiler for
decrement and increment operations was more efficient than the object code generated for
conventional addition and subtraction. This is not valid anymore. With modern techniques of
compiler design and object code optimization, there is no difference in performance.

Today, the issue is mostly a matter of style. Of course, you do not have to use the increment and
decrement operators. You can use conventional addition and subtraction, and your program will be
every bit as elegant, correct, and fast as the program written with the increment and decrement
operators. It is just that your boss (and probably your peers) will have some lingering doubts
whether you are really as expert at C++ as you seem to be.

Actually, the increment and decrement operators are quite versatile. They are not limited to integral
values. Floating point values are allowed too.

 float small = 0.09; small++; // now small is 1.09

Also, there are two types of increment and decrement operators: prefix and postfix operators. What
I used in previous examples were postfix operators: the operator followed the operand that was
modified by the operator. The prefix operator is the operator that precedes its operand. This is an
example of using the prefix operators:

 int x = 6, y = 10; ++x; --y; // now x is 7, y is 9

You probably want to know what is the difference. The results seem to be the same as for the
postfix operators. Indeed, the use of prefix operators in this context is equivalent to the following
code:

 int x = 6, y = 10; x = x + 1; y = y - 1; // now x is 7, y is 9

As you see, it is exactly the same as before. The difference between the prefix and postfix operators
is how they are used in expressions. You see, the result of these operations (as any other operation
in C++, and this is a very important principle) is a value. In our examples, both x++ and ++x return
value 7, and both y-- and --y return value 9. These values can be used in any other expression
where an integer value is acceptable. And it is here where the prefix and postfix operators behave
differently.

When a prefix operator is used, the value of the operand is first incremented (or decremented), and
then the resulting value is used in the expression.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (110 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 int x=6, y=10, a, b; a = 5 + ++x; b = 5 + --y; // a is 12, b is 14

Notice spaces preceding the prefix operators; they are useful to avoid confusion. The compiler (and
the maintainer) might be confused over 5+++x, even though neither the compiler nor the
maintainer is going to be confused over 5+--y.

When a postfix operator is used, the value of the operand is first used in the expression, and only
then is the variable incremented or decremented.

 int x=6, y=10, a, b; a = 5 + x++; b = 5 + y--; // a is 11, b is 15

You probably feel that it is not too difficult to write confusing code using the increment and
decrement operators. You are probably right. However, these operators are immensely popular in
their simplest form, when a counter or an index has to be incremented or decremented at each
iteration of a loop. Look at Listing 3.1 (or other loops in earlier in the chapter). No experienced
C++ programmer would write this code without using the increment operators (see Listing 3.5; its
output is, of course, the same as for Listing 3.1).

Example 3.5. Demonstration of the increment operator.
#include <limits>
#include <iostream>
using namespace std;
int main(void)
{
 int num = INT_MAX - 2;
 int cnt = 0;
 cout << "Integer overflow in C++:" << endl;
 cout << "Incrementing from " << num << endl;
 while (cnt < 5)
 {
 num++; cnt++; // increment operators
 cout << cnt << " " << num << endl;
}
 cout << "Thank you for worrying about integer limits" << endl;
 return 0;
}

You will probably come to love the increment and decrement operators very soon. If you are not
comfortable with them now, no problem¡Xuse the same arithmetic operators as in other languages.
However, if you avoid increment and decrement operators altogether, your boss might suspect that
you are not as fluent in C++ as you try to suggest. Make sure that from time to time you do what
everybody else does.

The next two subsections, "Shift Operators" and "Bitwise Logical Operators," can be skipped to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (111 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

make your first reading easier.

Shift Operators

Next in the table of C++ operators, we see the shift operators '<<' and '>>'. Wait a minute! These are
not shift operators! These are the insertion and extraction operators that we used with the output
object cout and the input object cin. This is right. Here we are dealing with the design technique
called operator overloading. The shift operators were used in C from time immemorial. When C++
was designed, its designers decided to apply the existing operators to a new context. That is, instead
of learning new operators (or new keywords), you learn new meanings for the existing operators.

I am not sure what is easier, but the technique of overloading operators is not really new. For
example, how many meanings does the operator '+' have in plain C++? It is used a) as a unary plus,
b) for adding integer numbers, c) for adding floating point numbers (and these operations are
implemented differently from each other and from integer addition), d) as part of prefix and postfix
increment operators¡Xand we have not finished the discussion of operators yet.

The shift operators shift bits of an integral value of its left operand to the left or to the right; the
second operand specifies the number of bits to shift the first operator. Actually, this is not as bad as
it sounds. Let us consider the right shift first.

 int x=5, y=1, result; result = x >> y; // result is 2

The operator shifts the bit pattern of its left operand (in this case, x that contains 5) to the right the
number of positions specified by the right operand (in this case, y that contains 1). The binary
representation of integer 5 is 101. When we shift this bit pattern one position to the right, we wind
up with the bit pattern 10; it corresponds to integer 2. In this form, the shift right represents a fast
method of dividing integers by 2 (or by a power of two specified by the second operand).

The left shift operator moves the bits in the opposite direction. Here, the bit pattern 101 becomes
1010, which corresponds to decimal 10.

 int x=5, y=1, result; result = x << y; // result is 10

When bits are shifted to the left, the bits that shifted out from the first operand are lost; the right
bits of the operand are filled with zeros (as in the last example). Similarly, when bits are shifted to
the right, the bits that are shifted out are lost, but what happens on the left end of the operand is
machine dependent.

The left-most bit of the signed integer value is the sign bit; if it is zero, the value is positive; if it is
1, the value is negative. When the number is positive, there is no problem: the zero in the sign bit is
shifted to the right, and the zeros are shifted in from the left into the sign bit. If the value is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (112 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

negative, the one from the sign bit is shifted to the right, and here the portability problem arises. On
some machines, ones are shifted into the sign bit (and propagate further as appropriate); this is
called the arithmetic shift. On other machines, zeros are shifted into the sign bit (and propagate
further to the right); this is called the logical shift.

Bitwise Logical Operators

The bitwise logical operators include the bitwise AND operator '&', the bitwise exclusive OR
operator '^', the bitwise inclusive OR operator '|' and the higher-priority bitwise complement
(negation) operator '~'. The first three operators are binary, and the last operator is a unary operator
(it needs only one operand).

Similar to shift operators, logical operators work on bit patterns. They operate on each bit of the
two operands individually. Each individual operation on two corresponding bits of operands
contributes to the corresponding bit of the result.

The bitwise AND operator sets the result bit to 1 if both corresponding operand bits are 1; it sets
the result bit to 0 if at least one operand bit (or both) is 0. In the examples that follow, I consider
only four bits of operands and the result assuming that all other bits are set to zero. To illustrate the
AND operator, let us assume that the first operand is 12 (its binary code is 1100) and the second
operand is 10 (the binary code 1010). Comparing each individual bit in the first operand with the
corresponding bit in the second operand, you see that only for the senior bit of the result are both
operand bits 1; for all other bits, either one operand or both has a 0; hence the value of the result is
1000 (decimal 8): 1100 & 1010 is 1000.

The bitwise inclusive OR operator sets the result bit to 1 if one or both operand bits are 1; the result
bit is set to 0 only if both operand bits are 0. For the operand values 12 (binary 1100) and 10
(binary 1010), all bits of the result with the exception of the right-most one will be set to 1, giving
the binary code 1110 (decimal 14): 1100 | 1010 is 1110.

The bitwise exclusive OR operator sets the result bit to 1 if only one operand bit is 1; it sets the
result bit to 0 if both operand bits are the same (both are 1 or both are 0). For our example, the first
and last bits of the operands are the same, and the second and the third bits are different, giving the
binary code 0110 (decimal 6): 1100 ^ 1010 is 0110.

The bitwise complement operator sets the result bits to the inverse of the operand bits; if the
operand bit is 1, the result bit is zero, if the operand bit is zero, the result bit is one. For example,
complementing 12 (binary 1100) results in binary code 0011 (decimal 3), that is, ~1100 is 0011.

These operators are often used when the application deals with a large amount of status
information: the communication channel might be on or off, the device might be ready or not ready,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (113 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the wire might have high voltage or low voltage, the customer might be eligible for a senior
discount, have good credit rating, and so on. On a large machine, we can afford to allocate an
integer for each of these values, even though we will be using only one bit, setting it either to 0 or
to 1. On a smaller machine, we can use a set of boolean values, allocating one byte for each of
these values. On a small machine, both approaches are wasteful. This is why these kinds of
information are often packed into status words so that each bit (flag) in the bit patterns has its own
meaning. To extract the value of a specific bit from the status word or to set the value of individual
bits, we use shifts and logical operators with constants with specific bit patterns (masks).

Let's say that the third bit from the right in the status word (whose name, for example, is flags)
means that a device is turned on. When the device is turned on, the program should set this bit to 1.

To be able to set this bit to 1, you should have a variable (whose name, for example, is onMask)
whose third bit is set to one. If you apply the inclusive OR operator to the third bit of variables
flags and onMask, the third bit of the result will be set to one no matter what the state of the third
bit in flags is. This is faster than checking what the third bit in flags is and then deciding whether
to go ahead with inclusive OR. The problem is that you cannot apply logical operators to individual
bits¡Xthey are applied to all bits of the operands simultaneously. This means that all other bits in
the variable onMask (with the exception of the third bit) should have a value such that it does not
change the value of other bits of the variable flags. For the inclusive OR operation, this value is 0.

This is exactly how you design masks to handle packed bits: you set selected bits to the values that
assure the required state, and you set the other bits to the values that do not change the existing
state. In this example, the variable onMask should have the third bit set to 1 and all other bits set to
0. For a 4-bit representation, this gives the bit pattern 0100 or decimal 4:

int flags, onMask = 4;
flags = flags | onMask; // this sets the 3rd bit to 1

When the device is turned off, this should be reflected by reseting the third bit to 0 and leaving the
other bits unchanged. You need another mask (whose name is, for example, offMask) that has the
third bit set to 0 so that the logical AND operator with any value would produce 0. To leave other
flag bits unchanged, you should set other bits of the mask to 1. Hence, the variable offMask should
have the bit pattern 1011, or decimal 11.

There is a catch, however. This bit pattern is 11 only when its size is 4 bits. For 8 bits, the bit
pattern should be 11111011, and its decimal value is 244. For 16 and 32 bits, you need yet other
value. This is a typical example of the portability problem. The solution here is a simple one. All
these bit patterns represent the negation of the bit pattern 0100 for different word sizes. Hence, the
portable method of initializing the variable offMask is to use the bit pattern that is the inverse of
the bit pattern 0100:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (114 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int offMask = ~onMask;
flags = flags & offMask; // this resets the 3rd bit to 0

To check whether or not the third bit is on, you can AND the mask onMask with the variable
flags. This operation will set all the bits in the result to 0 with the exception of the third bit
(because all the bits in onMask are zeros with the exception of the third bit). If the third bit in flags
is 0 (the device is off), the result is 0 (false). If the third bit in flags is one (the device is on), the
result is non-zero (true). Another method to access the bit value is to shift the flags pattern two
positions to the right and AND the result with the mask that has all zeros except for the right-most
bit. If the result is 1, the bit was set, if the result is 0, the bit was 0 (We will talk about the equality
operator shortly.):

 if (((flags >> 2)&1)==1) cout << "3rd bit ON\n"; // test it

Those of you who are not going to develop embedded and communications systems are not going
to shift the values around much, and you can pay little attention to this material. Those of you who
are will have to practice more because shifts and logical operations are quite common in these
systems.

Relational and Equality Operators

The relational operators are used in all applications. C++ supports four relational operators: less
than '<,' less than or equal '<=,' greater than '>,' and greater than or equal '>=.' The symbols in two-
character operators have to be next to each other as with any other two-symbol C++ operator.
These operators are mostly used in comparisons in conditional statements and in loops. For
example, in Listing 3.1 the loop condition checks whether cnt < 5. If this is the case (during first
iterations), the loop body is executed. If the value of cnt increases so that it becomes 5, the
condition 5 < 5 is not true, and the loop is terminated. What can be simpler than that? Well, this is
yet another thing inherited from C that is not as simple as it looks.

C++ has no built-in boolean type with values that are independent from integers. The boolean type
we discussed earlier is implemented as a small integer: true is 1, and false is 0. That is, the result
of comparison in C++ is not just true or false (as in all other programming languages), but
numbers 1 and 0. The size of this integer is only 1 byte, but it can be converted to an integer of a
larger size if necessary.

Hence, the value of x > y is 1 if x is greater than y; otherwise it is 0; the value of x < y is 1 if x is
less than y; otherwise it is 0. Similarly, x >= y is 1 if x is not less than y, and 0 if x is less than y.
The value of x < =y is 1 if x is not greater than y, and 0 if x is greater than y.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (115 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This does not change the form of simple comparisons and the way they work. But the use of logical
values as numbers creates an enormous potential for abuse. For example, what is the value of x >y
> z? In most programming languages (there are some exceptions though), this is just a syntax error
and the end of the story.

In C++, it is a perfectly valid expression. Since relational operators associate from left to right, we
compare x and y first. If x is greater than y, the result is 1, and we compare 1 with z; if 1 is greater
than z, the value of the expression is 1; otherwise it is 0. If, however, x is not greater than y, the
result is 0, and we compare 0 with z; if 0 is greater than z, the value of the expression is 1;
otherwise it is 0. I doubt that anybody who could write this expression meant anything like that.

Next in the table we find equality operators. C++ supports two operators: the equality operator '=='
and the inequality operator '!='. Again, the symbols in these operators should not be separated.
When the comparison is true, the operator returns 1; when the comparison is false, the operator
returns 0.

So, the value of x == y is 1 if x is equal to y; otherwise it is 0; the value of x != y evaluates to 1
if x is not equal to y; otherwise it returns 0.

Let us assume that you want to set the value of z to 10 if x is equal to y and to 9 if x and y have
different values. In all programming languages (including C and C++) you can write something
simple and straightforward:

if (x == y) // set z to 10, or to 9
 z = 10;
else
 z = 9;

In C++, you can proudly write:

 z = 9 + (x == y);

It is more difficult to understand, but it is definitely more concise and elegant.

The situation is aggravated by the fact that any value, not just 1, is equivalent to the true value and
can be used instead. In addition, in C++, everything returns a value, including the assignment
operator. For example, this assignment statement sets the variable x to the value of y and returns
this value for further use in expressions if necessary.

 x = y;

This means that if you accidentally misspell the equality operator '==' as the assignment operator

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (116 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

'=,' you are on your own. This misspelling of the equality operator is not a syntax error (as it should
have been); it is a perfectly valid C++ expression.

Let's assume, for example, that in the example above the value of x is 1 and the value of y also is 1.
This means that the expressions should set the value of z to 10. Now let us assume that we
misspelled the first expression as:

 if (x = y)
 z = 10;
 else
 z = 9;

This statement sets the value of x to y (which does not change the value of x because both x and y
have the same value 1 in this example), returns this value to the if statement, interprets it as true
(because it is not 0), and sets z to 10. Everything is fine.

With a little testing, you can easily persuade yourself that the code works correctly. If you are
diligent enough and test for a different set of values, say, x is 1 and y is 2, it will take some
vigilance to discover that the value of z is still 10 and not 9 (again, the assignment x = y will
return a value of 2 here and this is again true because it is not 0).

Now let us assume that we misspelled the second expression as

 z = 9 + (x = y);

The assignment will return the new value of x that is changed to the value of y and this new value
will be added to 9 to be used in setting the value of z. The variable z will be set neither to 9 nor to
10 but to 11.

If you see this for the first time, you might think that it is not a big deal, because the difference
between the assignment operator '=' and the equality operator '==' is not that small and can be easily
spotted. Sure. I am not saying that the difference is small. I am simply stating that whatever the
explanation is, we all collectively in the software industry waste an enormous amount of time,
energy, money, and emotion hunting these errors when we misspell '==' as '=', and we do that too
often.

Please always check whether you spelled it right, both in assignments and in comparisons! I am
putting here just one exclamation point because I do not want to look too emotional, but I would
really like to attract your attention to this issue.

ALERT

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (117 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Misspelling the equality operator '==' as the assignment '=' is not a syntax error. It results in a
legitimate C++ expression and the compiler silently produces incorrect code. Always check all
your conditions for this error.

Logical Operators

The next set of operators includes logical operators: logical AND operator '&&', logical OR operator
'||' (inclusive), and logical negation operator '!'. Similar to bitwise operators, the AND and the OR
operators are binary operators (they require two operands), and the negation operator is a unary
operator. There is no exclusive OR among logical operators.

Logical operators are immensely popular. They are as important as relational operators. You can
hardly find a program where these operators are not used. Why then is their notation a derivative of
the bitwise operators, almost as an afterthought? Because C++ inherited these operators from C,
and in C, these operators are indeed secondary to the bitwise operators.

Unlike bitwise operators, logical operators treat each of their operators as the whole; if the value is
0, it is considered to be false; if the value is nonzero, whatever it is, it is considered to be true.

The logical AND operator '&&' returns 1 (of the size of bool) only if its operands are both nonzero;
otherwise, it returns 0.

 if (x < y && y < z) cout << "y is between x and z\n";

The logical OR operator '||' returns 1 if any of its two operands is nonzero; it returns 0 only if its
both operands are 0.

 if (x > 0 || y > 0) cout << "At least one is positive\n";

The logical negation operator '!' returns 0 if its operand is nonzero; it returns 1 if the operand is 0.
You can always avoid using this operator by rearranging other conditions appropriately. Sometimes
it is simpler to use the negation. For example, consider a program that grants a discount to senior
citizens (age >= 65) with good credit rating (rating == 2). It is not too difficult to negate these
conditions for somebody who is not eligible for a discount, but the programmer might find it
simpler to write

 if (!(age >= 65 && rating == 2)) cout << "No discount\n";

Both integer and floating point objects can be used as logical operands: Any nonzero value
evaluates to true, and any 0 value evaluates to false. Notice that there is no need for operands of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (118 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

logical operations to be in parentheses. However, the logical expression of the if statement (and of
the while statement) has to be in parentheses; this is why there are two sets of parentheses in the
last example.

As in other languages, the logical operators evaluate from left to right; unlike in other languages,
the '&&' operator binds tighter than the '||' operator. This allows you to write complex logical
expressions without using parentheses. For example, the same discount of 10% might be offered to
senior citizens with credit rating 2 and to first-time customers with an order of $200 or more. This
can be expressed in the following form.

if (age >= 65 && rating == 2 || first_time == true && total_order > 200.0)
discount = 0.1;

This is not always a better way to write complex logical expressions. In a complex expression, it
might be a good idea to use parentheses to indicate to the maintenance programmer what the
components of the expression are.

if ((age >= 65 && rating == 2) || (first_time == true && total_order > 200.0))
discount = 0.1;

In this example, parentheses around logical subexpressions are optional. Sometimes they are
mandatory. For example, senior citizens might be eligible for a discount if their credit rating is
either 1 or 2. The logical expression without parentheses is incorrect.

if (age >= 65 && rating == 1 || rating == 2)
 discount = 0.1; // incorrect logical expression

This statement gives the discount to senior citizens with rating 1 and to all customers with rating 2,
not to senior citizens only (remember, the AND operator '&&' is of higher priority than the OR
operator '||'). The use of parentheses corrects the problem.

if (age >= 65 && (rating == 1 || rating == 2))
discount = 0.1; // correct logical expression

NOTE

The logical operator AND '&&' is of higher priority than is the logical operator OR '||'. Use
parentheses to help the maintainer to understand the meaning of complex logical expressions.

The C++ logical operators are a short circuit. This means that the first operand is evaluated first,
and the second operand is not evaluated if the result is determined by the first evaluation. In the
next example, if x is not less than y, it makes no sense to check whether y is less than z: we will
not be able to conclude that y is between x and z; in this case, the second condition will not be

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (119 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

evaluated.

 if (x < y && y < z) cout << "y is between x and z\n";

In this example, you save a few microseconds; this is not a big deal; later on, we will see examples
where this property allows you to protect the integrity of your code.

Assignment Operators

The assignment operator (and its variants) is of low precedence. This is appropriate because it has
to be performed after all other operations in the expression are complete; the fact that the
assignment is an operator opens some exciting syntactic possibilities and also creates some dangers.
Anything that has an address in memory can be used as a target of the assignment, and its value can
be used directly in other expressions.

The technical term associated with having an address in memory is lvalue. It means just that¡Xthat
the expression can be used on the left-hand side of the assignment operator. It has an address, and
the value at this address is modified when it is used as the target of the assignment. So far we have
seen only one kind of lvalue: the name of a variable. There are other lvalues in C++, and we will
see them later. Notice that being an lvalue does not prevent the value from being used on the right-
hand side of the assignment.

The other kind of C++ value is rvalue. It has a value but has no address in memory available for the
program for changing the value. Examples of rvalues are literal values, return values of functions,
results of binary operations. Rvalues can be used on the right-hand side of the expression only and
cannot be used as a target of the assignment. Here are examples of incorrect attempts to use an
rvalue as an lvalue. They are all flagged as syntax errors.

5 = foo(); // a literal should not be used as an lvalue
foo() = 5; // return value should not be used as an lvalue
score * 2 = 5; // result of operation should not be used as an lvalue

Unlike in other languages, the C++ assignment is a binary operator that has an rvalue that can be
used; this allows for chained assignments.

 int x, y, z; x = y = z = 0;

Assignment associates from right to left:x = y = z = 0; means x = (y = (z = 0)); and not
(((x = y)= z)= 0); since x = y is not an lvalue, it cannot be assigned to. This feature can be
easily abused.

 x = (a = b*c)*4; // this is legal in C/C++
 x = a = b*c*4; // this has a different meaning

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (120 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 x = 4*a = b*c; // syntax error: there is no lvalue for 4*a

In addition to the traditional assignment operator, C++ has a number of variants¡Xarithmetic
assignment operators. Their goal is to shorten arithmetic expressions. For example, instead of
saying x = x + y; we can say x + = y; The result is the same. These assignment operators are
available for all binary operators ('+=', '-=', '*=', '/=', '%=', '&=', '|=', '^=', '<<=', and '>='). They are
almost as popular as the increment and decrement operators and are used for the same purposes.
Here is an example of a segment of code that computes the sum of squares of first 100 integers.

double sum = 0.0; int i = 0;
while (i++ < 100)
 sum += i*i; // arithmetic assignment
cout << "The sum of first 100 numbers is " << sum << endl;

Here is the same segment of code that uses more traditional operators:

double sum = 0.0; int i = 0;
while (i < 100)
{
i = i + 1;
 sum = sum + i*i;
}
cout << "The sum of first 100 numbers is " << sum << endl;

As I mentioned earlier, the object code generated by the compiler is the same in both cases. The
difference is purely aesthetic, and every C++ programmer has to learn to appreciate the
expressiveness of shorthand operators.

Conditional Operator

The next operator in the hierarchy of C++ operators is the conditional operator. It is the only C++
operator that is a ternary operator: it has three operands. The operator itself consists of two
symbols, '?' and ':', but unlike all other two-symbol operators, these symbols are separated by the
second operand. This is the general syntactic form of the conditional operator:

operand1 ? operand2 : operand3 // evaluate operand2 if operand1 is true

Here, operand1 is the test expression; it can be of any scalar type (simple, with no program
accessible components), including float. This operand is always evaluated first. If the result of
evaluation of the first operand is true (nonzero), then operand2 is evaluated and operand3 is
skipped. If the result of evaluation of the first operand is false (0), then operand2 is skipped and
operand3 is evaluated. The value that is returned for the further use is either the value of operand2
or the value of operand3; the choice is done on the basis of the value of operand1.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (121 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Do not be misled by the use of true and false in this description. The expression operand1 can of
course be a boolean expression, but it does not have to be. C++ allows you to use any type that can
assume 0 and nonzero values.

In the next example, I set the value of variable a to the smallest of the values of variable y and
variable z. The operand1 here is the expression y < z; if this expression is true, the operand2
(in this case, variable y) is evaluated and its value is returned as the value of the expression; if the
expression y < z is not true, the value of operand3 (in this case, variable z) is returned. In case
of a tie, it is the value of z again, but it does not matter.

 a = y < z ? y : z; // a is set to minimum of y, z

Notice that, unlike in all other cases of using logical expressions, operand1 does not have to be in
parentheses. (It is probably easier to read if you use parentheses.) The conditional operator is
concise and elegant, but it might be hard to read, especially if the result is used in other
expressions. In this example, the same purpose can be achieved by using the if statement

if (y < z)
 a = y; // a is set to minimum of y, z
else
 a = z;

Here is another example that demonstrates the advantages of the conditional operator; its return
value here is used as part of another expression (the output statement). If the score of the applicant
is greater than 80, the statement prints "Your application has been approved." Otherwise, it prints
"Your application has not been approved."

cout << "Your application has" << (score > 80 ? " " : " not")
 << " been approved.\n";

The traditional approach is more verbose but may be easier to read:

if (score > 80)
 cout << "Your application has been approved.\n";
else
 cout << "Your application has not been approved.\n";

Comma Operator

Other languages do not treat the comma as an operator. C++ does. It connects operands that are
evaluated from left to right and returns the right-most expression for further use. It is convenient if
you need to evaluate several expressions in the place where C++ syntax allows a single expression

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (122 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

only.

 expr1, expr2, expr3, ¡K , exprN

Each expression is evaluated starting with the left-most one; since the comma has the lowest
priority, it is executed last; the value of the last expression is the value returned. It is often used as
the side effect of the left-most expressions. Here is our previous example, where I wanted to get rid
of block delimiters.

double sum = 0.0; int i = 0;
while (i < 100)
 i = i + 1, sum = sum + i*i; // no block delimiters are needed
cout << "The sum of first 100 numbers is " << sum << endl;

This is not a good idea, but treating the comma as an operator makes it legitimate. This is an
example of an intentional abuse, and it is relatively harmless. The use of the comma as an operator
is more dangerous when it happens unintentionally, and results in incorrect code but is not flagged
as a syntax error because the code does not violate C++ syntactic rules. Consider, for example, the
first example of the loop that computes the sum of squares.

double sum = 0.0; int i = 0;
while (i++ < 100)
 sum += i*i, // arithmetic assignment
cout << "The sum of first 100 numbers is " << sum << endl;

The only difference between the first version and this version is that I put a comma at the end of the
loop body instead of the semicolon. Unfortunately, this error did not render the code syntactically
incorrect. It compiles and runs¡Xand runs incorrectly. It prints the results 100 times rather than
once. This is an error that is easy to spot. But if the statement after the loop did something less
conspicuous, the existence of the error would be harder to discover. Beware of the comma operator
that shows up in the wrong places in the disguise of a legitimate C++ operator.

ALERT

Erroneous use of the comma might not be reported by the compiler since the comma is a legitimate
C++ operator.

Mixed Expressions: Hidden Dangers

C++ is a strongly typed language. This means that if the context requires a value of one type, it is a
syntax error to use a value of another type instead. This is an important principle that allows the
programmers to weed out errors with less effort: Instead of hunting the errors down in the laborious
process of run-time testing, the programmer is told by the compiler that the code is incorrect.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (123 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Consider, for example, the TimeOfDay type that I used in Chapter 2. It is a composite type (not a
scalar) with two integer components. Notation exists for setting the field values and for accessing
them, and that is all. You cannot add 2 to a TimeOfDay variable or compare it with another
TimeOfDay variable (at least not with what we have seen of C++ yet). This is why the following
segment of code is syntactically incorrect:

TimeOfDay x, y;
x.setTime(20,15); y.setTime(22,40); // this is OK: legitimate operations
x += 4; // syntax error: incorrect operand type
if (x < y) // syntax error: incorrect operand type
 x = y - 1; // syntax error: incorrect operand type

However, C++ is weakly typed when it comes to numeric types. The last three lines in the example
above would be syntactically correct if x and y were of type int. However, they would also be
correct for any other numeric type: unsigned int, short, unsigned short, long, unsigned
long, signed char, unsigned char, bool, float, double, long double. Moreover, these
three lines would be syntactically correct even if the variables x and y belonged to different
numeric types. The operations would be correctly performed at run time despite the fact that these
variables would have different sizes and their bit patterns would be interpreted differently.

This is quite different from other strongly typed languages. For example, the following code is
acceptable (and quite common) in C++.

 double sum;
 . . .
 sum = 1; // no syntax error

From the point of view of modern strongly typed languages, this is a clear example of
programmer's inconsistency that would be flagged at compile time. In one place¡Xthe program, the
programmer says that the variable sum is of type double. In another place (and this place can be
separated from the first place by large number of lines of code), the programmer treats this variable
as an integer. If this code is flagged as a syntax error, the programmer has an opportunity to think
about it and decide how to eliminate this inconsistency: Either define the variable sum as integer or
replace the last line of code with

 sum = 1.0;

In modern strongly typed languages, the arithmetic operations must be performed on the operands
of exactly the same type. For a C++ programmer, the whole issue is moot: both versions of this
statement are acceptable and generate very little discussion.

Ideally, of course, all operands of an expression should be of the exact same type according to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (124 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

principle of strong typing. However, this rule is relaxed somewhat for numeric types. C++ allows
us to mix values of different numeric types in the same expression.

At the object code level, C++ follows the same rule as other modern languages do: All binary
operations are performed over operands of exactly the same type. It is only at the source code level
that we can mix different types. When expressions are evaluated, values of numeric types could be
(and often are) changed into values of other numeric types so that the operations are actually
performed over operands of exactly the same types.

This is done for your convenience, so that you could write mixed-type expressions without making
them syntactically incorrect. But we pay for that. We pay for that by learning the rules of
conversion among types and then worrying whether the results of the conversions are correct.

There are three kinds of type changes in mixed-type expressions:

ϒΠ integral promotions

ϒΠ implicit conversions

ϒΠ explicit conversions (casts)

Integral promotions (widening) are applied to "small" integer types to convert their values into
"natural" integer size. These promotions are applied to bool, signed char, and short int values;
after they are retrieved from memory, they are always promoted to int for use in expressions.
These conversions always preserve the value being promoted because the size of int is sufficient
for representing any value of these "smaller" types. In this example, two short values are added
and the result and its size are printed out:

short int x = 1, y = 3;
cout << "The sum is " << x + y <<" its size is " << sizeof(x+y) << endl;
 // it prints 4 and 4

The computations are not performed on short values. They are performed on corresponding
integer values. The conversion is rather simple. On a 16-bit machine, it is trivial because the short
and int types are of the same size. On a 32-bit machine, two more bytes are added to the short
value and are filled with the value of the sign bit (zero for positive, 1 for negative numbers). These
promotions preserve the value being promoted.

Similarly, unsigned char and unsigned short int are promoted to int. This can cause no
problem on a 32-bit machine, because the range of integers on these machines is larger than the
range of short values is even when they are unsigned. The situation is different on a 16-bit
machine. The maximum unsigned short value on these machines is 65,535, and this is larger

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (125 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

than the maximum int value (32,767). Still, there is no reason to worry. If the value does not fit
into the integer range, the compiler expands it to unsigned int. Again, the promotion is
transparent to the programmer.

The floating point promotions are similar to integral promotions. They promote float values to
double. No computation is performed on float. When a float value is retrieved from memory,
it is promoted to double.

The integral and floating point promotions are dry, technical, and boring. You should know about
them because they take time, and that might be important for time-critical applications. For
example, when processing a large number of characters in a communications application, the
programmer might choose to keep the characters in memory as integers to avoid promoting them
implicitly each time a character value is retrieved from memory. This is a typical case of the time-
space tradeoff that is common in programming. The good news, however, is that integral
promotions are not going to hurt you from the point of view of correctness of the program. Other
conversions can.

Implicit conversions are generated by the compiler in:

ϒΠ expressions with mixed types of operands and

ϒΠ assignments (according to the target type).

When an expression contains operands of numeric types of different sizes, widening conversions
are performed over the "shorter" operand, converting its value into a value of a "larger" type. After
that, the operation is done over the two operands of the same, "larger" type. If the expression
contains more than one operator, the expression is evaluated according to the operators'
associativity (usually from left to right), and the conversions are performed at each step as
appropriate. This is the hierarchy of sizes for conversions in expressions:

int --> unsigned int --> long --> unsigned long --> float --> double --> long
double

Similar to promotions, these implicit conversions preserve the value of the operand being
promoted. However, it is up to the programmer to make sure that the necessary conversion takes
place. Failure to do that might result in the loss of accuracy (see Listing 3.6 and Listing 3.7).

Assignment conversions change the type on the right-hand side of the assignment to the data type
of the assignment target on the left-hand side; again, the operation itself (the assignment) is always
performed over operands of exactly the same type. If truncation takes place, a loss of precision is
possible, but this is not a syntax error. Many compilers in their infinite goodness would issue a
warning about the possible loss of precision, but the operation is legal in C++. If this is what you

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (126 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

want, this is what you get. Or, in other words, the C++ programmer has all the right to shoot
himself (or herself) in the foot.

In addition to loss of precision, there are two other possible implications of implicit conversion:
execution speed and correctness of the results.

Consider the code in Listing 3.6 for converting the temperature measurements from Celsius to
Fahrenheit. The sample output of this program is shown in Figure 3-5.

Figure 3-5. Code in Listing 3.6 produces correct results with implicit conversions to
double.

Example 3.6. Demonstration of implicit type conversions.
#include <iostream>
using namespace std;
int main()
{
 float fahr, celsius;
 cout << "Please enter the value is Celsius: ";
 cin >> celsius;
 fahr = 1.8 * celsius + 32; // conversions ?
 cout << "Value in Fahrenheit is " << fahr << endl;
 return 0;
}

The type of the literal 1.8 is double. The variable celsius of type float is converted to double
before multiplication; since the type of the literal 32 is int, it is converted to double before
addition to make sure that the addition is performed on the operands of the same type. The result of
the computation is of type double. Since the variable fahr is of type float, the result of
computation is converted again before the assignment takes place. Of course, three conversions are
not much. But if these computations have to be repeated many times, this can impair the
performance of your program. And a C++ programmer should always be concerned about
performance or at least be ready to discuss the issues related to performance.

A remedy of this kind for a problem could be either using explicit type suffixes or doing
computations in double.

Here is the example of using explicit type suffixes.

float fahr, celsius;¡K

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (127 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

fahr = 1.8f * celsius + 32f; // floats are promoted to double

Here is the example of doing computations in double.

double fahr, celsius;¡K
fahr = 1.8 * celsius + 32.0; // no conversions

Even if you are not concerned with performance (and yes, often we are not concerned with
performance) and design your code for readability, you should remember the issues related to
implicit conversions. For example, the standard conversion from Celsius to Fahrenheit uses the
coefficient 9/5. I converted 9/5 to 1.8 just for the sake of example. Normally, I would not want to
risk errors by doing manual computations and I would implement the program as in Listing 3.7.
After all, in an interactive program, the execution time is spent waiting for the user to input data or
displaying data for the user, and a few extra conversions are not going to change much. The sample
output of this program is shown in Figure 3-6.

Figure 3-6. Code in Listing 3.7 produces incorrect results after delayed conversion to
double.

Example 3.7. Example of the loss of precision in integer computations.
#include <iostream>
using namespace std;
int main()
{
 double fahr, celsius;
 cout << "Please enter the value is Celsius: ";
 cin >> celsius;
 fahr = 9 / 5 * celsius + 32; // accuracy ?
 cout << "Value in Fahrenheit is " << fahr << endl;
 return 0;
}

The reason for the incorrect output is that, despite my expectations, no conversion from integer to
double took place. Since binary operators associate from left to right, it is integer 9 that is divided
by integer 5, and the result is 1. Even. The result would be different had I coded this line of code as

fahr = celsius * 9 / 5 + 32; // accuracy ?

Here, the variable celsius is of type double, and all computations are performed in type double.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (128 of 1187) [8/17/2002 2:57:46 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

As you see, the programmer needs a tool for making sure that the desired conversion takes place.
C++ provides the programmer with casts, the means to explicitly control conversions between
numeric types. A cast is a unary operator of high priority. It consists of the type name in
parentheses, which is placed before the value to be converted to the type indicated in the cast. For
example, (double) 9 converts integer 9 into double 9.0; similarly, (int)1.8 converts double 1.8
into integer 1. Well, let me take that back. This is how programmers describe the casts (converting
9 to double and so on). In reality, 9 is not converted; that is, it remains an integer. A new value is
produced of type double, which is numerically equivalent to integer 9.

NOTE

We say that casts convert values. In reality, the cast produces a value of the target type and
initializes it using the numeric value of the cast operand.

The offending line in Listing 3.7 could be coded with explicit casts as:

fahr = (double)9 / (double)5 * celsius + (double)32;

Actually, to avoid the truncation problem, it would be enough to say

fahr = (double)9 / 5 * celsius + 32;

This would convert integer 9 to double 9.0, and hence the integer value 5 would be converted
implicitly to double 5.0.

This form of the cast is inherited by C++ from C. C++ also supports another form of the cast that is
similar to the syntax of the function call: The type name is used without parentheses, but the
operand is used in parentheses. Using the C++ cast, the computation from Listing 3.7 will look this
way.

fahr = double(9) / 5 * celsius + 32;

In addition, C++ supports four more types of casts: dynamic_cast, static_cast,
reinterpret_cast, and const_cast. These casts will be discussed later. Some programmers use
explicit conversions (casts) to a type that is appropriate for the expression to indicate to the
maintenance programmer what their intent was at the time of design. Some programmers feel that
casts clog the source code and make the task of a maintenance programmer more difficult. Some do
not use casts because they do not want to do extra typing.

One more comment about expression evaluation. On several occasions, I mentioned that operands
are executed from left to right, and that could create an impression that the components of the
expression are also evaluated from left to right. This is incorrect. C++ makes no commitment to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (129 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

order of evaluation of expression components, only to the order of executing the operators in an
expression.

This is a subtle distinction that often escapes the attention of programmers. Often, it does not
matter. For example, in the expression that converts Celsius to Fahrenheit, the operators are
evaluated from left to right, and it does not matter in what order the values of 9, 5, celsius, and
32 are evaluated. They are independent from each other. It matters when you use the operators with
side effects within another expression. What, for example, is the result of this code?

 int num = 5, total;
 total = num + num++; // 10 or 11?
 cout << "The sum is " << total << endl;

Since I am using a postfix operator here, the value of num is used in the expression before it is
incremented, so that the value of total equals 10. But this assumes that the components of the
expression are evaluated from left to right. If they are evaluated from right to left, then num++ is
evaluated first, the value 5 is saved for use in computations, and the value of num becomes 6; then
the left operand num is evaluated, but its value is already 6, so the value of total becomes 11, not
10.

On my machine the result is 10. On your machine the result might be also 10. This does not mean
anything. C++ explicitly outlaws any program that relies on the left-to-right order of evaluation of
expression components. What is the remedy? Do not use side effects in expressions. You want the
result to be 10 on all machines? Do the following:

 int num = 5, total;
 total = num + num; // 10, not 11 num++;
 cout << "The sum is " << total << endl;

Do you want the result to be 11 on all machines? This is not difficult either:

 int num = 5, total;
 int old_num = num; num++;
 total = num + old_num; // 11, not 10
 cout << "The sum is " << total << endl;

It is always possible to say explicitly what you mean. Try to do it.

Summary

All right, this is enough on C++ types and expression evaluation. As you see, it is always a good
idea to think about the ranges of types you are using. This is important both from the point of view
of portability and from the point of view of correctness of the results. Unless you have specific

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (130 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

reasons to do otherwise (like your boss tells you to), use types int and double, but make sure that
they work correctly for you.

We covered a lot of ground in this chapter, and it might take some time for the material to settle
down. Experiment with the examples, and rely on the material covered in Chapter 2 as the
foundation of your work in C++. Do not use advanced features too much, too soon.

Mix numeric types in expressions freely as you see fit, but think about conversions and their effects
on performance and correctness. Use explicit casts moderately, do not use expressions with side
effects as part of another expression. Avoid unnecessary complexity: It will confuse your compiler,
your maintainer, and yourself too.

Make sure you know what you are doing.

Chapter 4. C++ Control Flow

Topics in this Chapter

ϒΠ Statements and Expressions

ϒΠ Conditional Statements

ϒΠ Iteration

ϒΠ C++ Jump Statements

ϒΠ Summary

In the previous chapter, we discussed the cornerstone of C++ programming: data types and
operators that combine typed values into expressions and statements. In this chapter, we will look
into the next level of programming¡Xputting statements together to implement algorithms capable
of decision making and executing different segments of code depending on external circumstances.

The proper use of control constructs is one of the most important factors that define the quality of
code. When the flow of execution is sequential and the statements are executed one after another in
fixed order, it is relatively easy for the maintainer to understand the code. For each segment of
code, there exists only one set of initial conditions and hence only one result of the computations.
But sequential programs are too primitive; they cannot do much. Every real-life program executes
some segments of code for some conditions and other segments of code for other conditions.
Control should be transferred from one segment of code to another. The more flexible the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (131 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programming language is from the point of view of control structures, the more power it places in
the programmer's hands.

When a segment of code can be executed either after one segment or after another segment, there
exists more than one set of initial conditions and hence more than one possible result of the
computations. Keeping in mind all alternatives becomes difficult. Programmers make errors writing
the code, maintainers make mistakes reading the code and making changes. This is why modern
programming languages try to limit what the programmer can do when transferring flow of control
from one segment of code to another. This approach is known as structured programming. The
programmer uses only a small set of disciplined control constructs (loops and conditional
statements) so that each segment of code has one (or two) entry and one (or two) exit.

C++ takes the middle approach. It comes with a rich set of control constructs that change the flow
of control in the program. These constructs are flexible and powerful enough to support complex
decision making in the program. At the same time, they are disciplined enough to discourage
convoluted designs that would be difficult to understand and to maintain.

Statements and Expressions

In C++, unlike in other languages, the difference between an expression and an executable
statement is quite small: Any expression can be converted to a statement by appending it with a
semicolon. Here are some examples of expressions and executable statements.

x * y // valid expression that can be used in other expressions
x * y; // valid statement in C++, but quite useless
a = x * y // valid expression that can be used in others (do it with caution)
a = x * y; // valid C++ statement, useful and common
x++ // valid expression that can be used in others (do it with caution)
x++; // valid C++ statement, common and useful
foo() // call to a function returning a value (a valid expression)
foo(); // call to a function with return value unused (a valid statement)
; // null statement, valid but confusing

As in other languages, C++ statements are executed sequentially, in order of their occurrence in the
source code. Logically, each statement is a unit that is executed as a whole, without interruption.

Executable statements can be grouped into blocks (compound statements). Blocks should be
delimited by curly braces. Syntactically, a block of statements is treated as a single statement and
can be used anywhere a single statement is expected. Each statement in a block has to be
terminated by a semicolon, but the closing brace of the block should not be followed by a
semicolon.

Merging statements into a block has two important advantages. First, you can use the block with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (132 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

several statements in the place where syntactically only one statement is allowed. Second, you can
define local variables within a block. The names of these variables will not conflict with the names
of variables defined elsewhere. The first property is crucial for writing control statements. Without
it, no realistic program could be written. The second property is important for writing functions.
Again, without it no realistic program could be written. Here is a general syntactic form of a
compound statement.

{ local definitions and declarations (if any);
 statements terminated by semicolons; } // no ; at the end

Compound statements can be used as function bodies, nested blocks within functions, and as
control statement bodies. If you forget the rule of not putting the semicolon after the compound
statement and put it there, in most cases it wouldn't hurt¡X you would wind up with a useless null
statement that generates no object code. Sometimes, however, it can change the meaning of the
code. It is better not to use the semicolon after the closing brace (you will have to remember the
exceptions where the semicolon is necessary, like in a class definition and in a few other cases).

Compound statements are evaluated as a single statement, after the previous one and before the
next one; inside the block, the normal flow of control is again sequential, in order of lexical
occurrence.

C++ provides a standard set of control statements that can change sequential flow of execution in
the program. These control statements include:

conditional statements: if, if-else statements

loops: while, do-while, for statements

jumps: goto, break, continue, return statements

multientry code: switch statements with case branches

In a conditional construct, the statement it controls can be either evaluated once or skipped
depending on a boolean expression of the conditional. In a loop, its statement can be evaluated
once, several times, or skipped depending on the loop boolean expression. The boolean expression
is an expression that returns true or false. It is often called a logical expression, a conditional
expression, or just an expression. In C++, any expression can be used as a boolean expression, and
this expands the flexibility of C++ conditional statements and loops. In other languages, using a
non-boolean expression where a boolean expression is expected results in a syntax error.

In a switch, an appropriate case branch (out of several branches) is selected depending on the
evaluation of an integral expression. Jumps unconditionally change the flow of control. Often, they

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (133 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

are used in conjunction with some other control construct (a conditional statement, a loop, or a
switch).

In summary, for all control constructs, the scope of the action is only a single statement. When the
logic of the algorithm requires that several statements are executed as the result of testing the
logical expression, a compound statement in braces can be used instead. No semicolon should be
used after the closing brace, but each statement in the block (including the last) should be followed
by a semicolon.

In the rest of this chapter, we will look at each type of C++ flow control statements in detail, with
examples and specific recommendations of what to do and what not to do while using these control
statements for writing C++ code.

Conditional Statements

Conditional statements are probably the most ubiquitous control construct in C++ programs. You
can hardly write a few statements of code without bumping into the need to do something only in
the case when some condition holds; otherwise, you would do a different thing.

There are several forms of conditional statements that you can choose from while writing C++
code. Complex forms of conditional statements require diligent testing, but they often provide
opportunities for making source code more concise and more elegant.

Standard Forms of Conditional Statements

The C++ conditional statement in its most general form has two branches, the True branch and the
False branch. Only one of these branches can be executed when the conditional statement is
executed.

Here is the general form of the conditional statement in context, between a statement that precedes
it and a statement that follows it.

previous_statement;
if (expression) // no 'then' keyword is used in C++
 true_statement; // notice the semicolon before 'else'
else
 false_statement; // notice optional indentation
next_statement;

The if and else keywords must be in lowercase. There is no 'then' keyword in C++. The
expression must be in parentheses.

After the previous_statement is executed (it can be anything, including one of the control

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (134 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

constructs), the expression in parentheses is evaluated. Logically, it is a boolean expression; we
want to know whether the condition is true or false. When this conditional expression is true,
the true_statement is executed, and the false_statement is skipped. When the condition is
false, the false_statement is executed, and the true_statement is skipped. Since we are
studying C++ and not Pascal, Basic, Java, or PL/I, the conditional expression does not have to be
boolean. It can be any expression of any complexity. Its value is evaluated, and any nonzero value
(it does not even have to be integer) is processed as true, and the 0 value is processed as false.

After one of these two statements, true_statement or false_statement, is executed, the
next_statement is executed unconditionally. Again, it can be anything, including one of control
constructs.

Listing 4.1 shows a program that prompts the user to enter the temperature measurement in Celsius,
accepts the data, and then tells the user whether the temperature is valid (above absolute 0). In case
you are not sure what the value of absolute 0 is, especially in Celsius, it is 273 degrees below the
freezing point; or -273¢XC.

Notice the uses of the new line escape sequence both at the beginning and at the end of the strings
in double quotes that are printed by the cout object. Also notice the use of the endl manipulator at
the end of the program. If your operating system does not use buffering output, there is no
difference between the new line escape character '\n' and the endl manipulator. With buffering,
endl sends the output to the buffer and "flushes" the buffer, that is, performs the actual output from
the buffer, whereas '\n' only sends the output to the buffer and flushes it only when the buffer
becomes full. This sometimes improves program performance, but many programmers do not
worry about the difference.

The output of the program is shown on Figure 4-1.

Figure 4-1. Output of the program from Listing 4.1.

Example 4.1. A conditional statement
#include <iostream>
using namespace std;
int main ()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (135 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{
 int cels;
 cout << "\nEnter temperature in Celsius: ";
 cin >> cels;
 cout << "\nYou entered the value " << cels << endl;
 if (cels < -273)
 cout <<"\nThe value " <<cels <<" is invalid\n" // no ;
 <<"It is below absolute zero\n"; // one statement
 else
 cout <<cels<<" is a valid temperature\n";
 cout << "Thank you for using this program" << endl;
 return 0;
}

Notice the indentation I used in the general example of the conditional statement above and in
Listing 4.1. It is customary to indent the keywords if and else at the same level as the previous
and the next statements. It is customary to indent both the true_statement and the
false_statement a few spaces to the right. This makes the flow of control clearer to the
maintenance programmer (and to the code designer at the time of debugging). How much to indent
is a matter of taste. I feel that two spaces are enough. If you indent more, you will shorten the line,
especially when you use nested control constructs, when either the true_statement or the
false_statement (or both) are themselves conditional statements, or loops, or switch statements.

Notice that when the input temperature is invalid, the program displays two output lines. Normally,
the code for doing that would look this way.

cout <<"\nThe value " <<cels <<"is invalid\n"; // ; at end
cout <<"It is below absolute zero\n"; // two statements

Written this way, these two statements have to be placed within the braces of the compound
statement. The reason for that is when the code is part of a conditional statement, each branch of a
conditional statement has the space for one statement only, not for two.

Listing 4.1 uses a different technique. The cout statement can be arbitrarily long and can span any
number of source code lines, provided the line breaks are between statement components, not in the
middle of a token. This means that it is incorrect to break the line in the middle of the string. It is all
right, however, to break the string in two if needed.

The false_statement is optional. It can be omitted if some action has to be performed only if the
boolean expression evaluates to true. Here is a general form of a conditional statement without
the false_statement:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (136 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

previous_statement;
if (expression)
 true_statement;
next_statement;

This conditional statement has neither then nor else as a keyword. Listing 4.2 shows a "scaled-
down" version of the program in Listing 4.1. The user is warned when the input data is invalid (that
is, the temperature is below absolute 0), but the program proceeds to do its job. (For simplicity's
sake, the "job" is omitted here, and only the concluding statement is displayed.) The results of the
run are shown in Figure 4-2.

Figure 4-2. Output of the program from Listing 4.2.

Example 4.2. A conditional statement without the else part.
#include <iostream>
using namespace std;
#define ABSOLUTE_ZERO -273

int main ()
{
 int cels;
 cout << "\nEnter temperature in Celsius: ";
 cin >> cels;
 cout << "\nYou entered the value " << cels << endl;
 if (cels < ABSOLUTE_ZERO)
 cout <<"\nThe value " <<cels <<" is invalid\n"
 <<"It is below absolute zero\n"; // one statement
 cout << "Thank you for using this program" << endl;
 return 0;
}

Like the previous listing, the keyword if is indented at the same level as the previous and the next
statements; the code in the true clause is indented to the right to indicate the control structure.

Notice the use of a named constant for absolute 0 instead of a literal value that I used in Listing 4.1.
It is considered good programming practice to use named constants for each literal value and put
their definitions together in the program. This makes maintenance easier: The maintainer knows
where to find the value, and one change is effective for every occurrence of the value in the
program. This is much better than chasing each occurrence of the literal in code and introducing

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (137 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bugs by overlooking changes. In this small example, -273 is the only numeric value used in the
program, and it is used only once. If you want to change this value, it is all the same in what place
in the program you change it (and after all, how many times are you going to change the value of
the absolute 0 during program maintenance?). Hence, it is all the same whether you use a constant
or a literal here. However, the use of symbolic constants is a good practice.

NOTE

The true_statement and false_statement in conditionals can be compound statements if
necessary.

Listing 4.3 shows a modified program from Listing 4.1. I use two statements in the true branch,
and I also use two statements in the false branch. Notice the use of the const keyword. As I
mentioned earlier, this is a more-popular technique in C++ than using the #define preprocessor
directive. The output of the program is shown in Figure 4.3.

Figure 4-3. Output of the program from Listing 4.3.

Example 4.3. A conditional statement with compound branches.
#include <iostream>
using namespace std;
const int ABSOLUTE_ZERO = -273;
int main ()
{
 int cels;
 cout << "\nEnter temperature in Celsius: ";
 cin >> cels;
 cout << "\nYou entered the value " << cels << endl;
 if (cels < ABSOLUTE_ZERO)
 {
 cout <<"\nThe value " <<cels <<" is invalid\n";
 cout <<"It is below absolute zero\n"; // a block
 }
 else
 {
 cout <<cels<<" is a valid temperature\n"; // a block

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (138 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

cout << "You can proceed with calculations\n";
}
 cout << "Thank you for using this program" << endl;
 return 0;
}

Compound statements must use the opening and closing braces. The statements in each compound
statement are indented more to the right to indicate that they are executed sequentially. This helps
the maintainer to understand the intent of the designer of the code at the time of implementation.
Some programmers put the opening and the closing brace of each compound statement on lines by
themselves. They feel that this helps to underline the structure of code. I am not sure whether each
brace deserves this treatment. Doing so expands the code listing vertically and that makes it more
difficult to grasp the general meaning of code (especially when you work with the screen display
rather than with the hard copy printout). This is why I use the vertical white space sparingly.

Common Errors in Conditional Statements

Conditional statements add to the complexity of code. Errors in conditional statements are often
hard to find. If we are lucky, the errors render the code syntactically incorrect. Often, the errors
result in incorrect execution. Since not all parts of the conditional statement are executed every
time, it takes additional planning and additional test runs to discover these errors.

Errors often happen in transmitting the intent and knowledge of the program designer to the
maintainer. They manifest themselves in incorrect indentation or in incorrect use of braces
delimiting compound statements.

Missing braces is a common error in control structures. Let us assume that I wrote the conditional
statement in Listing 4.3 in the following way:

if (cels < ABSOLUTE_ZERO)
{
 cout <<"\nThe value " <<cels <<" is invalid\n";
 cout <<"It is below absolute zero\n"; } // a block
else
 cout <<cels<<" is a valid temperature\n"; // no braces
 cout << "You can proceed with calculations\n";

This version of the program looks fine. It compiles fine. It runs fine. At least, when the input data is
20, the program output is exactly the same as in Figure 4-3. However, if you run this program using
the value -300 as input, the output will look as shown in Figure 4-4.

Figure 4-4. Output of the modified program from Listing 4.3.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (139 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

I hope you see that this output is incorrect. The reason is that indentation is visible to the human
reader only, not to the compiler. Despite the indentation that shows that both cout statements
belong to the else branch, the compiler sees it differently. Without the braces, the compiler thinks
that the second cout statement is the next_statement rather than part of the false_statement.
This is what the compiler thinks I wrote:

if (cels < ABSOLUTE_ZERO)
{
 cout <<"\nThe value " <<cels <<" is invalid\n";
 cout <<"It is below absolute zero\n"; // a block
}
else
 cout <<cels<<" is a valid temperature\n"; // no braces
cout << "You can proceed with calculations\n"; // next_statement

Fortunately, a similar error in the true branch of an if statement will result in a syntax error:

if (cels < ABSOLUTE_ZERO)
 cout <<"\nThe value " <<cels <<" is invalid\n";
 cout <<"It is below absolute zero\n"; // this is nonsense
else
{
 cout <<cels<<" is a valid temperature\n"; // a block
 cout << "You can proceed with calculations\n";
}

Here, the compiler accuses me of misplacing the else keyword because the compiler sees the
following code:

if (cels < ABSOLUTE_ZERO) // an 'if' without an 'else' is ok
 cout << "\nThe value " << cels << " is invalid\n";
cout << "It is below absolute zero\n"; // this is nonsense
else // this 'else' does not have the
'if'
{
 cout << cels << " is a valid temperature\n"; // a block

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (140 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "You can proceed with calculations\n";
}

The compiler thinks that the first cout statement belongs to an if statement without the else
clause, and this is perfectly legitimate. The compiler thinks that the second cout statement is the
next_statement, and this is also OK. Then the compiler finds the else keyword and gives up.

TIP

Make sure that you watch your braces relentlessly. They are a very common source of errors.

A related issue is the use of a semicolon at the end of C++ statements. As I have mentioned earlier,
the absence of a semicolon after a C++ statement leads to trouble. Beginning C++ programmers
often struggle with this rule. Some programmers become so anxious about this issue that they start
putting a semicolon at the end of each line whether or not it is needed there. When you use an extra
semicolon in your source code, you wind up with a null statement that does not do anything and is
mostly harmless. (This is an observation, not a quote from a travel book.)

However, an extra semicolon is not always harmless. Let us assume that I wrote the #define
directive in Listing 4.2 this way:

 #define ABSOLUTE_ZERO -273; // incorrect #define

This is, of course, incorrect: There should be no semicolon here (but yes, there should be a
semicolon at the end of the const definition in Listing 4.3). However, the compiler does not tell me
that this line is in error. Instead, the compiler accuses me of writing the conditional statement
incorrectly. The reason for that is that the #define directive works as literal substitution. Every
time the preprocessor finds the identifier ABSOLUTE_ZERO in the program, the preprocessor
substitutes its value into the source code. And its value now is -273; and not -273. This is perfectly
legitimate for the preprocessor, but the compiler gets from the preprocessor the following
conditional statement to deal with:

if (cels < -273;) // semicolon in expression: error
 cout << "\nThe value " <<cels << "is invalid\n"
 << "It is below absolute zero\n"; // one statement

A semicolon at the end of an expression turns the expression into a statement. The compiler tells
you that the expression cels<ABSOLUTE_ZERO contains an extra semicolon. You see with your own
eyes (Listing 4.2) that this expression contains no semicolon. You think the error is caused by
something else, and you start changing everything around this line that is suspicious. The more you
have to suspect, the worse things go. The distance between the place where the error is made (the
#define directive) and where it manifests itself (the conditional statgement) makes the analysis of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (141 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the situation difficult. This is one reason why the use of the const keyword is encouraged over the
use of #define directives.

Sometimes one might put a semicolon at the end of the line with the conditional expression. Let us
assume that I wrote the conditional statement from Listing 4.3 this way:

if (cels < ABSOLUTE_ZERO); // the true branch
{
 cout <<"\nThe value " <<cels <<" is invalid\n"; // next_statement
 cout <<"It is below absolute zero\n"; // a block
}
else // nonsense for the
compiler
{
 cout <<cels<<" is a valid temperature\n";
 cout << "You can proceed with calculations\n";
}

This is a syntax error. As happens all too often, the compiler is not able to direct you to the
offending line; instead, it tells you that you misplaced the else keyword. For the compiler, the
extra semicolon after the conditional expression makes it into a perfectly valid statement. It does
not do much, but this is not a problem in C++. This is what the compiler thinks I wanted this code
to look like:

if (cels < ABSOLUTE_ZERO)
 ; // it does not do much
{
 cout <<"\nThe value " <<cels <<"is invalid\n";
 cout <<"It is below absolute zero\n"; // next statements
}
else // misplaced 'else'
{
 cout <<cels<<" is a valid temperature\n";
 cout << "You can proceed with calculations\n"; }

The compiler sees the conditional statement without the else, a block with two statements that
follows the conditional statement and then the else keyword that comes out of the blue, and it flags
this line as in error, not the line where the error is made. Make sure that if you make an error like
that you do not spend too much time understanding the compiler error message or rearranging the
structure of your code.

Next, let us assume that I put an extra semicolon after the logical expression in the version of the
program shown in Listing 4.2. The conditional statement from Listing 4.2 will look this way:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (142 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

if (cels < ABSOLUTE_ZERO); // this is definitely harmful
 cout << "\nThe value " <<cels <<" is invalid\n"
 << "It is below absolute zero\n";

This conditional statement has no else clause. The misplaced else is not an issue here, and this
version of the program compiles without any problem. The compiler fails to notify you about the
error, and you are left to fend for yourself during debugging and testing. When I run this version of
the code using the value 20 as input data, the results are different from what you see in Figure 4-2.
The output of the modified program is shown in Figure 4-5.

Figure 4-5. Output of the modified program from Listing 4.2.

This is the kind of error that is psychologically hard to catch during debugging. When the program
produces voluminous correct output, a little extra line can easily escape the programmer's attention.
Make sure you watch your semicolons as relentlessly as you watch your braces.

Using control constructs raises a new issue, the issue of program testing. Actually, it is not a new
issue, but for control statements it requires more planning, skills, and yes, vigilance. When testing
sequential programs, it is usually sufficient to run the program once. If the program is correct, the
results are correct, and additional testing will not bring any extra return on additional time, effort,
and expense. If the program is incorrect, the results will be incorrect. This will be obvious from the
first run unless, of course, the programmer is dozing off or thinking about something else or simply
is in a hurry to move on to other things.

NOTE

All listings in previous chapters were sequential programs with only one path of execution. This is
why they had only one screen shot as evidence of program correctness.

Even for sequential programs, running the program only once is not always sufficient. It is
important to run them for at least two sets of data. The reason for this is the possibility of accidental
correctness. To illustrate this point, consider the example of conversion from Celsius to Fahrenheit
implemented in Listing 3.7. As you remember, the statement I used to implement the computations
was incorrect:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (143 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 fahr = 9 / 5 * celsius + 32; // accuracy ?

When the programmer designs input test data, the important consideration is the simplicity of
manual computations. This is quite reasonable, because often the algorithms are so complex that
manual computations for a general case are hard to do correctly. In this case, it is quite realistic to
expect that the programmer would test the program in Listing 3.7 by entering 0 as input data. The
results are shown on Figure 4-6. As you can see, they are correct. This is why one set of data is not
sufficient, even for sequential segments of code.

Figure 4-6. Output of the program from Listing 3.7.

Let us go back to the example in Listing 4.1. Is running the program for the input data 20 (as in
Figure 4-1) sufficient? Obviously not, because there are statements in the program that have never
been executed during that program run. What if these statements transfer money to the
programmer's account? Launch an intercontinental missile? Crash the program? Or just silently
produce incorrect output? The first principle of testing is that the set of test data should exercise
each statement in the program at least once (or more, if you want to protect the program from errors
that are hidden behind accidental correctness). Hence, the program from Listing 4.1 needs the
second test run in addition to the one on Figure 4-1.

Figure 4.7 shows the second test run of the program in Listing 4.1. We see that the results are
correct, and that increases our confidence in the correctness of the program. The output confirms
that both branches of the conditional statement are indeed there, and they do the right thing.

Figure 4-7. The second run of the program from Listing 4.1.

Is this testing sufficient? Probably not. If the value of absolute 0 was typed incorrectly, for
example, as -263 instead of -273, the results of both tests would still be correct. This leads us to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (144 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

second principle of testing: The set of test data should exercise the boundaries of conditional
expressions. This means using -273 as input data. If absolute 0 were entered as -263, the program
would incorrectly print that the temperature -273 is invalid. Hence, using -273 as input would
discover the error that the input value 0 on Figure 4-2 is not capable of discovering.

But this is not the end of the story. What if the value of absolute 0 is typed as -283 instead of -273?
Using -273 as input would not find this error: The condition -273 < -283 will evaluate to false,
and the program will print (correctly) that this is a valid temperature. This leads us to the third
principle of testing: The boundaries of conditional expressions have to be exercised for both true
and false outcomes.

In the case of integer data, this means using the value -274 as input. In the case of floating point
data, the programmer has to choose some small increment over the boundary, like -273.001 or any
other value that makes sense in the context of the application.

In general, if the code contains the condition x < y, it has to be tested with two test cases, one for
x equals y (the result should be false) and another for x equals y - 1 for integers or equals y
minus a small value for floating point data (the result should be true).

Similarly, if the code contains the condition x > y, it also has to be tested with two test cases, one
for x equals y (the result should be false) and another for x equals y + 1 for integers or equals y
plus a small value for floating point data (the result should be true).

Unfortunately, this is not all. These guidelines do not work for conditions that include equality. If
the code contains the condition x <= y, the test case x equals y will return true, not false as in
the case of x < y. To test for the false result, the code should be tested for x equals y + 1 (or y +
a small number). Similarly, if the code contains the condition x >= y, the test case x equals y
should return true rather than false, and the second test case should be for x equals y - 1 (or y -
small number).

This makes things quite complex. Each condition in the program has to be tested separately, with
two test cases for each condition, and that makes the number of test cases large. Some programmers
just do not have the patience to analyze, design, run, and inspect numerous test cases. They limit
themselves to visual code inspection. This is unfortunate. The code inspection is useful but not a
reliable tool for finding errors.

When the numbers are tested for equality (or inequality), the situation becomes even more
complex. Listing 4.4 shows the program that prompts the user for a nonzero integer, accepts the
input value and then checks whether this number is 0 (to protect itself against division by 0). If the
number is not 0, the user is praised for correct behavior, and the program computes the inverse and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (145 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the square of the input value. If the input value is 0, the program criticizes the user for not
following the instructions. Of course, it is a rather trivial example, but it demonstrates the issues
involved without making things too complicated.

Example 4.4. Checking values for inequality (incorrect version).
#include <iostream>
using namespace std;

int main ()
{
 int num;
 cout << "\nPlease enter a non-zero integer: ";
 cin >> num;
 if (num > 0) // it should be (num != 0)
 {
 cout << "\nYou followed the instructions correctly";
 cout << "\nThe inverse of this value is " << 1.0/num;
 cout << "\nThe square of this value is " << num * num; }
 else
 cout <<"\nYou did not follow the instructions";
 cout << "\nThank you for using this program" << endl;
 return 0;
}

Notice that if I were to say 1/num instead of 1.0/num, the output would be incorrect because
integer division truncates the results. Figure 4-8 shows that the program passes the test for input
value 20: It displays correct output.

Figure 4-8. Output of the first test for Listing 4.4.

Since one test case is not enough, I test the program with the input data that violates the program
instructions to make sure I exercise the else branch of the if statement. As you see from Figure 4-
9, the program passes this test, too: It reprimands the user for not following the instructions.

Figure 4-9. Output of the second test for Listing 4.4.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (146 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

But wait, this program is incorrect! I did make a typo while working on the program: Instead of num
!= 0, I typed num > 0. By the way, mistyping a relational operator is quite a common mistake.
When writing number-crunching applications, programmers sometimes forget to correctly
implement and test behavior that corresponds to negative numbers. To demonstrate this error, I
have to test the program a third time, using a negative input number, as in Figure 4-10.

Figure 4-10. Output of the third test for Listing 4.4.

You can see that the program admonishes the user for the error instead of accepting the input. You
can also see the corrected version of this program in Listing 4.5.

Example 4.5. Checking values for inequality (correct version)
#include <iostream>
using namespace std;
int main ()
{
 int num;
 cout << "\nPlease enter a non-zero integer: ";
 cin >> num;
 if (num != 0) // now this is correct
 {
 cout <<"\nYou followed the instructions correctly";
 cout <<"\nThe inverse of this value is " << 1.0/num;
 cout <<"\nThe square of this value is " << num * num; }
 else
 cout <<"\nYou did not follow the instructions";
 cout << "\nThank you for using this program" << endl;
 return 0;
}

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (147 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This leads us to yet another principle of testing. For conditional expressions with the equality
operator, three tests should be used: one test for equality (it should return true) and two tests for
inequality on each side of the boundary (these tests should return false). The same is true for
conditional expressions with the inequality operator: The test for equality should return false, and
two tests for inequality should return true.

TIP

For if statements with relational operators, use test values on the border and next to the border;
using test values that are far from the border could miss an error.

I summarize these principles in Table 4.1. The condition is represented as x op y, where operator
op can be either '<', '>', '<=', '>=', '==', '!='. For each operator, the table lists the test
cases and the expected value of the conditional expression. The values of x and y are assumed to be
integers. For floating point numbers, a small increment should be used instead of 1. For equality
and inequality tests of nonnumeric data, two tests will be sufficient rather than three.

Table 4.1. Test Cases for Testing Simple Conditional Expressions
Expression Test Outcome

x <y x equals y False
 x equals y - 1 True
x >= y x equals y True
 x equals y - 1 False
x >y x equals y False
 x equals y + 1 True
x <= y x equals y True
 x equals y + 1 False
x == y x equals y True
 x equals y + 1 False
 x equals y - 1 False
x != y x equals y False
 x equals y + 1 True
 x equals y - 1 True

You see that test cases for x < y and for x >= y are the same, but the outcomes are exactly the
opposite. Test cases for x > y and for x <= y are again the same, but the outcomes are inverse
from each other. Similarly, test cases for x == y and for x != y are the same with inverse results.
This means that x < y and x >= y are negations of each other. Every condition that uses x < y
can be rewritten as !(x >= y) and vice versa, and every condition that uses x >= y can be

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (148 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

rewritten as !(x < y). When one condition is true, the second condition is false, and vice
versa.

Similarly, conditions x > y and x <= y are negations of each other. So are conditions x == y and
x != y. When one condition in each pair is true, the second one is false.

It is an important programming skill to be fluent in negating logical conditions. For the conditional
statement, it is a matter of formatting the code properly. For example, if the true branch takes
many complex statements and the false branch takes only one or two, the false branch might be
lost in the code. Some programmers prefer to put a shorter sequence of statements as the true
branch of the conditional statement. For example, the conditional statement in Listing 4.5 could be
written this way:

if (num == 0) // negation of (num != 0)
 cout <<"\nYou did not follow the instructions";
else
{
cout <<"\nYou followed the instructions correctly";
 cout <<"\nThe inverse of this value is " << 1.0/num;
 cout <<"\nThe square of this value is " << num * num;
}

As I mentioned earlier, it is important not to mistype the operator '==' as the operator '='. This is
also a common source of errors that are hard to find. For example, the conditional statement above
could easily be written as

if (num = 0) // this is perfectly valid in C++
 cout <<"\nYou did not follow the instructions";
else
{
 cout <<"\nYou followed the instructions correctly";
 cout <<"\nThe inverse of this value is " << 1.0/num;
 cout <<"\nThe square of this value is " << num * num;
}

This code raises no syntax or run-time errors. Some compilers might issue a warning, but it is a
totally legitimate C++ idiom. Some programmers are so annoyed at the prospect of this kind of an
error that they put the literal on the left-hand side of comparison and the variable on the right-hand
side, for example,

if (0 == num) // you will not use a constant as lvalue
 cout <<"\nYou did not follow the instructions";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (149 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

else
{
 cout <<"\nYou followed the instructions correctly";
 cout <<"\nThe inverse of this value is " << 1.0/num;
 cout <<"\nThe square of this value is " << num * num;
}

If you misspell this comparison as the assignment 0 = num, the compiler will flag this as an error,
because C++ literal values, although they are saved in memory like anything else, do not have the
address that can be manipulated by the program (they are rvalues). It is a common tendency in
programming language design to push as many errors as possible from the category of run-time
errors into the category of compile-time errors. It was not always this way. I remember once I was
working in FORTRAN on PDP-11, and somehow I managed to set the value of constant 1 to 2. So
every time my source code was saying 1, the compiler was using the value 2. All my loops went
berserk, and I could not figure out why.

Another common technique for writing logical conditions is to use the fact that in C++ any nonzero
evaluates to true, and 0 evaluates to false. For example, many programmers would write the
conditional statement in Listing 4.5 this way:

if (num) // a popular C++ idiom, same as if (num!=0)
{
 cout <<"\nYou followed the instructions correctly";
 cout <<"\nThe inverse of this value is " << 1.0/num;
 cout <<"\nThe square of this value is " << num * num; }
else // the 'else' should be closer to the 'if'
 cout <<"\nYou did not follow the instructions";

Make sure that you are comfortable with this C++ idiom. It is very popular. If the inverse of this
logical condition is used (that is, num == 0), many programmers would write this conditional
statement this way:

if (!num) // a popular C++ idiom, same as: if (num == 0)
 cout <<"\nYou did not follow the instructions";
else // the 'else' should be closer to the 'if'
{
 cout <<"\nYou followed the instructions correctly";
 cout <<"\nThe inverse of this value is " << 1.0/num;
 cout <<"\nThe square of this value is " << num * num;
}

Notice that if !(num) ¡K is incorrect: the logical condition must be in parentheses. It is easy to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (150 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

overuse this feature and write code that the maintainer will have a hard time understanding.

The examples that we have discussed so far were relatively simple. To implement more complex
processing tasks, we can use compound conditions and nested conditional statements. In compound
conditions, the testing should exercise not only the true and false outcome of the compound
condition, but also each possible reason for the true and false outcome. Consider, for example, the
following conditional statement where processOrder() is a function defined elsewhere.

if (age > 16 && age < 65)
processOrder();
else
cout << "Customer is not eligible\n";

We can test the true branch of this conditional in only one way: by setting both age > 16 and age
< 65 to true. We can test the false branch in two ways: by setting age < 65 to false (e.g.,
when age is 65) or by setting age > 16 to false (when age is 15). Which one to choose? If you
only use the first way, you will not display an error if the first condition is set to true incorrectly,
for example, if age > 0. If you only choose the second way, you will not find the error if the
second condition is true but is incorrect, for example, if age < 250. This is why both ways of
traversing the false branch of the conditional statement should be tested. This is more testing than
for a simple conditional statement, but this is natural. The design of test cases for setting individual
conditions to true or false should be done according to Table 4.1.

Notice that we do not test for the third way of traversing the false branch, when both age > 16
and age < 65 are false. Some programmers justify skipping this combination because these
conditions are related: their truth value depends on the value of the same variable age. Depending
on the value stored in the variable age, these conditions can both be true (the middle of the range
of values), either of them can be false (the lower and the higher ranges of values), but they cannot
both be false: The value cannot belong both to the lower and to the higher ranges of values. This
is not the issue, however. For the AND operation, we test the false values of these conditions
individually; testing them together is a waste of time and money.

Similar considerations apply to the test of OR compound conditions. Consider the following
example which compares two floating point values:

if (amt1 < amt2 - 0.01 || amt1 > amt2 + 0.01)
{
// is difference more than 1 cent?
 cout << "Different amounts\n";
}
else
 cout << "Same amount\n";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (151 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

We can test the false branch of this statement in only one way: by setting both conditions to
false. We can test the true branch in two ways: either by setting the first condition to true or by
setting the second condition to true. Which one to choose? The answer is the same as in the case
of the AND operator: We have to test both to make sure that both conditions are tested adequately
according to the guidelines in Table 4.1.

The good news is that we do not have to make up test cases for the third way to traverse the true
branch, where both conditions are true. These conditions are related (they both depend on the
values of variables amt1 and amt2), and they cannot be made true simultaneously. Even if the
conditions were not related, this test would be redundant.

Table 4.2 shows what test cases have to be included in the test design for compound conditions.

Table 4.2. Test Design for Compound Conditions
Operation First Condition Second Condition Outcome

AND True True True
 True False False
 False True False

OR True False True
 False True True
 False False False

As I mentioned, the fact that the conditions in compound statements are related does not affect the
testing strategy much. Consider, for example, the following conditional statement with independent
conditions. Here, the functions processPreferredOrder() and processNormalOrder() are
defined elsewhere and are called in different branches of the conditional statement. The customer
gets preferential treatment if the previous business exceeds $1,500, and the current purchase
amount reached $200.

if (amount > 200 && previous_total > 1500)
 processPreferredOrder();
else
 precessNormalOrder();

To test this code we have to design three test cases. One test case should traverse the true branch,
when both amount > 200 and previous_total > 1500 are true (e.g., amount = 200.01,
previous_total = 1500.01). Two test cases should traverse the false branch. One test case
should set the condition amount > 200 to true but previous_total > 1500 to false (e.g.,
amount = 200.01, previous_total = 1500.00). The second test should set amount > 200 to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (152 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

false but previous_total > 1500 to true (e.g., amount = 200.00, previous_total =
1500.01). Each test case should be designed at the boundary conditions according to Table 4.1.
These conditions are independent, and we can set both amount > 200 and previous_total >
1500 to false (amount = 200.00, previous_total = 1500.00). However, this test would
not weed out any errors not discovered by the previous tests and would not increase our confidence
in the correctness of the code.

Similarly to the AND operation, the OR operation over independent conditions has to be tested for
three test cases: when the first condition is true and the second is false, when the first condition
is false and the second condition is true, and when both conditions are false. Consider the
following example, where displayRelaxationPackage() and displayActivePackage() are
functions defined elsewhere.

if (age > 65 || previous_history == 1)
 displayRelaxationPackage();
else
 displayActivePackage();

The test cases for this code should cover three situations:

ϒΠ age > 65 is true and previous_history == 1 is false

ϒΠ age > 65 is false and previous_history == 1 is true

ϒΠ both age > 65 and previous_history == 1 are false

The first two test cases traverse the true branch of the conditional statement, and the last test case
covers the false branch. Since the conditions in the logical operation are independent, they can be
set to true simultaneously. However, there is no need to test for the case where both age > 65 and
previous_history == 1 are true because this test does not weed out errors that would not be
displayed by three previous tests.

TIP

For the && operation, test it for three cases: first condition is false, second condition is false,
both conditions are true. For the || operation, test it for three cases: first condition is true,
second condition is true, both conditions are false.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (153 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Nested Conditionals and Their Optimization

Nested conditional statements are very popular. Putting conditional statements in the branches of a
conditional statement is not very different from using other kinds of statements. Indentation to the
right displays the structure of the code and helps the maintainer understand the intent of the code
designer. If there is a need to put more than one statement in the branch, braces are used for the
compound statement. The only caveat with using nested conditional statements is matching ifs and
elses. Each else should be matched with the closest if:

if (condition)
 if (condition1)
 true_statement1;
 else // this belongs to the if with condition1
 false_statement1;
else // belongs to if (condition)
 if (condition2)
 true_statement2;
 else // this belongs to the if with condition2
 false_statement2;

This is a no-brainer, where each conditional statement is a complete statement with both
true_statement and false_statement present. The situation might become more complex if one
of these statements were missing. This might happen when the programmer finds similarities in
conditions or in statements and tries to optimize the source code, that is, to make it more concise
and expressive.

Let us consider a section from the mail order processing system that evaluates the size of the order
and customer status. If the order amount exceeds the size of a small order (e.g., $20), there is no
service charge; in addition, preferred customers get a discount (10%), and the customer savings are
displayed. For small orders, there is no discount for any customer; in addition, regular (but not
preferred) customers are charged a service charge ($2 per order). As you see, the description of the
processing rambles somewhat. This is often the case because writers of requirements are only
human, and human language is not always precise and terse. Come to think about it, some
redundancy in requirements might actually be helpful because it prevents misunderstanding when
the programmer tries to interpret text that is too concise.

Listing 4.6 shows one possible interpretation of the requirements. Despite the fact that there are
three conditional statements in this code, in effect, there are only two checks (the size of the order
and the status of the customer). Since these conditions are independent, we need two test cases for
each condition (small order, large order, preferred status, and regular status). The results of the runs
of the program are shown on four screen shots in Figure 4-11 through Figure 4-14.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (154 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 4-11. Output for Listing 4.6 (small amount, preferred customer).

Figure 4-14. Output for Listing 4.6 (large amount, regular customer).

Example 4.6. Nested conditional statements.
#include <iostream>
using namespace std;

int main ()
{
 const double DISCOUNT = 0.1, SMALL_ORDER = 20;
 const double SERVICE_CHARGE = 2.0;
 double orderAmt, totalAmt; int preferred;
 cout << "\nPlease enter the order amount: ";
 cin >> orderAmt;
 cout << "Enter 1 if preferred customer, 0 otherwise: ";
 cin >> preferred;
 if (orderAmt > SMALL_ORDER)
 if (preferred == 1)
{
 cout << "Discount earned " <<orderAmt*DISCOUNT<< endl;
 totalAmt = orderAmt * (1 - DISCOUNT);
}
 else
 totalAmt = orderAmt;
 else
 if (preferred == 0)
 totalAmt = orderAmt + SERVICE_CHARGE;
 else
 totalAmt = orderAmt;
 cout << "Total amount: " << totalAmt << endl;
 return 0;
}

The implementation in Listing 4.6 maps back onto the requirements fairly well, but its redundancy
will leave many programmers uneasy. There are related tests in different branches (preferred ==

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (155 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

1 and preferred == 0) that beg for optimization. There is similar processing in different branches
(totalAmt = orderAmt) that beg for the same thing. One of the ways to optimize this code is to
start with the assignment totalAmt = orderAmt and then check whether it has to be modified
because of the discount for large orders by preferred customers or because of the service charge for
small orders by regular customers.

This technique often allows one to eliminate the else clause. Our first solution in Listing 4.6 can
be described by the following pseudocode:

if (some_condition_holds_true)
 do_processing_the_first_way;
else
 do_processing_the_second_way;

The optimized solution I am going to implement starts with doing the processing the second way
and then either modifying it or leaving the result alone. Its pseudocode looks like the following:

do_processing_the_second_way;
if (some_condition_holds_true)
 do_processing_the_first_way;

This optimized implementation is shown in Listing 4.7. The results of the first two test cases are
exactly the same as shown in Figure 4-11 and 4-12. The tests for regular customers, however, give
the results shown in Figure 4-15 and 4-16. They are different from the results shown in Figure 4-13
and 4-14. Why is that so?

Figure 4-15. Output for Listing 4.7 (small amount, regular customer).

Figure 4-16. Output for Listing 4.7 (large amount, regular customer).

Figure 4-12. Output for Listing 4.6 (large amount, preferred customer).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (156 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 4-13. Output for Listing 4.6 (small amount, regular customer).

Example 4.7. An optimized nested conditional statement.
#include <iostream>
using namespace std;

int main ()
{
 const double DISCOUNT = 0.1, SMALL_ORDER = 20;
 const double SERVICE_CHARGE = 2.0;
 double orderAmt, totalAmt; int preferred;
 cout << "\nPlease enter the order amount: ";
 cin >> orderAmt;
 cout << "Enter 1 if preferred customer, 0 otherwise: ";
 cin >> preferred;
 totalAmt = orderAmt; // do it the second way
 if (orderAmt > SMALL_ORDER) // change totalAmt if not a small order
 if (preferred == 1)
{
 cout <<"Discount earned " <<orderAmt*DISCOUNT<< endl;
 totalAmt = orderAmt * (1 - DISCOUNT);
}
 else // this is an optical illusion
 if (preferred == 0) // for small order, check customer status
 totalAmt = orderAmt + SERVICE_CHARGE;
 cout << "Total amount: " << totalAmt << endl;
 return 0;
}

This implementation shows us an optical illusion: The indentation has to convey to the maintainer
(and to the tester) the intent of the original designer. However, it is different from how the compiler
understands the code. According to the rule of matching the else keyword, the compiler sees the
conditional statement as:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (157 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

totalAmt = orderAmt; // do it the second way
if (orderAmt > SMALL_ORDER) // change totalAmt if not a small order
 if (preferred == 1)
 {
 cout <<"Discount earned " <<orderAmt*DISCOUNT<< endl;
totalAmt = orderAmt * (1 - DISCOUNT);
}
 else
 if (preferred == 0)
 totalAmt = orderAmt + SERVICE_CHARGE; // no processing for small orders

In this solution, small orders are not processed, no matter what kind of customer is making the
order. (The correctness of results for small order and preferred customers is accidental.) For large
orders, it imposes the service charge incorrectly. Human understanding and compiler understanding
go their separate ways and do not intersect; they only pretend to describe the same thing.

In this case, it is not too difficult to establish a common point of view and eliminate pretending. All
it takes is to put the branches of the conditional statement within braces. After all, a compound
statement does not have to be one that consists of several statements. It can contain a single
statement only. What makes a statement a compound statement is not the number of statements
bound together but the braces that denote the block. The conditional statement in Listing 4.7 should
look this way.

totalAmt = orderAmt; // do it the second way
if (orderAmt > SMALL_ORDER) // modify totalAmt if not a small order
{
if (preferred == 1)
 {
 cout <<"Discount earned " <<orderAmt*DISCOUNT<< endl;
totalAmt = orderAmt * (1 - DISCOUNT);
}
}
else
 if (preferred == 0) // for small order, check customer status
 {
totalAmt = orderAmt + SERVICE_CHARGE;
}

Many programmers find this coding style effective, and they use braces each time they design a
conditional statement (or any other control construct, for that matter). This helps to avoid another
common problem: Often, we start with one statement in a branch of a conditional statement and
hence do not use braces. Then, we find we have to add another statement. We add it, and
sometimes forget to add the braces, especially if the change is made by the maintainer. Putting the
braces around each branch of a conditional statement reduces the number of things the maintainer

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (158 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

has to think about when making changes. And this is a very important advantage. So, the canonical
for the conditional statement should look this way:

if (expression)
{
true_statement; // ready for future expansion
}
else
{
false_statement; // ready for future expansion
}

Another good example of nested conditional statements and their optimization is the leap year
problem. Generally, a leap year is a year that can be divided by 4 evenly, without a remainder. This
is where the modulo operator can be put to good use. As part of the implementation, we could write
something like this:

if (year%4 != 0)
{
// if the year cannot by divided by 4, it is not a leap year
cout << ¡§Year " <<year <<" is not a leap year" << endl;
}
else
{
 cout << "Year " << year << " is a leap year" << endl;
}

Actually, for an algorithm that is that simple, it is surprisingly accurate. It accumulates 1 day error
approximately every 130 years. This is why when this algorithm was finally replaced by a more
accurate algorithm after being about 1700 years in operation, the calendar correction was only 14
days.

So the more-accurate rule is that if the year is divisible by 4, it is a leap year, but if it is divisible by
100, it is not a leap year. Our code could look something like this:

if (year % 4 != 0)
{
// if year is not divisible by 4, it is not a leap year
cout << ¡§Year " <<year <<" is not a leap year" << endl;
}
else // when it is divisible by 4, it is a leap year
 if (year % 100 == 0) // unless it is divisible by 100
 {
 cout << ¡§Year " <<year <<" is not a leap year" << endl;
}
 else

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (159 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 {
 cout << "Year " << year << " is a leap year" << endl;
}

This is, as they say, the truth and only the truth, but it is not the whole truth. This rule shaves away
one day every hundred years, and this is too much. So, the correct rule is that if the year is divisible
by 100 it is not a leap year unless the year is divisible by 400. Then it is a leap year again. "Unless"
is difficult to translate from requirements into code. The logical operator AND (&&) or a nested
conditional is often used. Listing 4.8 gives a solution to this problem. If the year is not divisible by
4, it is not a leap year, period. If it is divisible by 4 and is divisible by 100, it is still not a leap year
unless it is divisible by 400¡Xthen it is a leap year. If the year is divisible by 4 but is not divisible
by 100, it is a leap year. Systems analysis is not easy. Imagine doing it every day for a living.

Example 4.8. A solution to the leap year problem.
#include <iostream>
using namespace std;
int main ()

{
 int year;
 cout << "Please enter year: ";
 cin >> year;
 if (year % 4 != 0) // not divisible by 4, period
 cout << ¡§Year " << year <<" is not a leap year" << endl;
 else
 if (year % 100 == 0)
 if (year/%/400 == 0) // divisible by 400 (hence, by 100)
 cout << ¡§Year " << year <<" is a leap year" << endl;
 else // divisible by 4 and by 100 but not by 400
 cout << ¡§Year "<<year<<" is not a leap year" << endl;
 else // divisible by 4 but not divisible by 400
 cout << "Year " << year << " is a leap year" << endl;
 return 0;
}

There are three conditional expressions here, so the worst case scenario might involve six test
cases. However, the expressions are related. There are only four branches to exercise, and we can
get away with only four test cases. We need to cover the following cases:

ϒΠ year % 4 != 0 is true (e.g., 1999)

ϒΠ year % 4 != 0 is false (that is, year % 4 == 0 is true), year % 100 == 0 is true, and year %
400 == 0 (e.g., 2000)

ϒΠ year % 4 == 0 and year % 100 == 0 are both true, but year % 400 == 0 is false (e.g.,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (160 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

1900)

ϒΠ year % 4 == 0 is true but year % 100 == 0 is false (e.g., 2004)

Figure 4-17 shows the results of the execution of this code for the year 2000. There are a number of
problems with this code that have little to do with its correctness but are directly related to its
aesthetic attributes. There are three levels of nesting, and this clearly calls for merging of
conditions. The case where year % 4 == 0 is true has two branches for the leap year, and they also
should be combined. How to do that? First, experiment with negating conditions so that similar
branches are brought closer to each other, for example,

Figure 4-17. Output for Listing 4.8 (year is divisible by 4, 100, and 400).

if (year % 4 != 0) // not divisible by 4, end of story
 cout << ¡§Year " << year <<" is not a leap year" << endl;
else
 if (year % 100 == 0)
 if (year % 400 != 0) // divisible by 100 but not by 400)
 cout << ¡§Year "<<year<<" is not a leap year" << endl;
 else // divisible by 4, by 100 and by 400
 cout << ¡§Year " << year <<" is a leap year" << endl;
 else // divisible by 4 but not divisible by 100
 cout << "Year " << year << " is a leap year" << endl;

Now you can combine the two conditions that follow each other using the AND operation, and the
last two clauses for a leap year can be combined, too. That gives a more concise solution:

if (year % 4 != 0) // not divisible by 4, period
 cout << ¡§Year " << year <<" is not a leap year" << endl;
else
 if (year % 100==0 && year % 400!=0)// by 100 but not by 400
 cout << ¡§Year "<<year<<" is not a leap year" << endl;
 else // divisible by 4 but not divisible by 100
 cout << "Year " << year << " is a leap year" << endl;

Isn't this nice? There are only two levels of nesting, and this is quite acceptable. But the same
processing related to non-leap year is repeated, and this is not good enough for a C++ programmer.
The year is not a leap year when the year is not divisible by four or when the condition (year % 100
== 0 and year % 400 != 0) is true. This calls for the OR operation, right? Listing 4.9 gives us the
answer that is not only correct and efficient, but also is concise and elegant.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (161 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 4.9. An optimized solution to the leap year problem.
#include <iostream>
using namespace std;
int main ()

{
 int year;
 cout << "Please enter year: ";
 cin >> year;
 if (year % 4 != 0 || year % 100 == 0 && year % 400 != 0)
 cout << ¡§Year " << year << " is not a leap year" << endl;
 else
 cout << "Year " << year << " is a leap year" << endl;
 return 0;
}

Running this program with the test cases just discussed produces the same results as for Listing 4.8
(Figure 4-17).

There is no question that the program in Listing 4.9 is better than the program in Listing 4.8.
Whether or not the time spent on eliminating six extra lines of code (and proving that it was done
correctly) is well spent is debatable.

Sometimes, when I spend a few hours trying to optimize complex conditional statements, I feel
proud of the results. Whether these efforts bring more than just the use of boiled water and whether
such use of time is economically justifiable is not clear. See for yourself.

Iteration

Conditional statements play a very important role in programming. They are the workhorse of
every program. But they cannot do the job alone. In every program, we deal with the situation when
we have to repeat the same sequence of statements, for different customers, transactions, online
clients, and so on. These tasks require iteration.

For repeated actions, C++ provides three iterative statements: while loops, do-while loops, and
for loops. Each kind of C++ loop controls the repetition of a single statement (which ends with a
semicolon) or a compound statement (block) enclosed in braces (and there is no semicolon after the
closing brace of the block). To control iterations, all types of loops use logical expressions similar
to logical expressions used in conditional statements. These logical conditions evaluate to true or
false (nonzero or 0). They are tested for each loop repetition. When the loop condition becomes
false, the iterations are terminated. If the condition is true, the body of the loop (the statement or
the block) is repeated. Notice that I said "for each loop repetition" and not "before each loop

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (162 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

repetition" because the loops differ in the way in which the loop conditions are tested. No matter
what the loop design, the loop body has to do something that affects the loop condition. If that does
not happen, the loop condition might stay true forever¡Xa serious menace for every program that
uses loops.

The while loop tests the loop condition before each iteration through the loop body and stops the
iterations when the loop condition becomes false. The loop expression is tested before the first
iteration too. Hence, zero repetitions of the body is possible if the loop condition is false when the
loop is first entered.

The do-while loop tests the loop condition after each iteration and stops looping when the
condition becomes false. Since the condition is tested the first time only after the first iteration
and not before it, the loop always results in at least one repetition.

The for loop is often designed to produce a predefined fixed number of repetitions.

Usually, the same algorithm could be designed using any loop format, and the choice is a matter of
taste. Sometimes, one of the formats fits better than other forms: it takes fewer statements, or the
statements fit together better.

The Use of the WHILE Loop

The while loop is executed as a single statement; the difference between other statements and the
loop is that the loop body can be executed repeatedly depending on the value of the logical
condition of the loop.

The while loop has the following logical structure:

previous_statement;
while (expression) // this is the loop expression
 statement; // this is the loop body
next_statement;

The control construct repeats the loop body while its logical condition (expression) is true.
Eventually (or even before the first pass) the condition becomes false. When this happens, the
loop statement is skipped and next_statement is executed. When the loop controls several
statements, block scope delimiters (braces) are used.

while (expression)
{
 statement; // notice the indentation

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (163 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 . . .
 statement; // end of loop body
}

It is a common error to try to design a loop so that the body does not change the value of the
expression to false; the execution continues in an "infinite loop" and the program has to be
terminated with the help of the operating system.

Usually, loop design revolves around the concept that can be called current data. We process some
data items repeatedly. This means that the data item has to be initialized, evaluated, processed
(printed, used in computations, saved, or whatever the algorithm needs). Then it has to be modified
for the next iteration and evaluated again and processed again, and so on until the last item is
processed. The processing steps could be folded into the while loop format using the following
pattern:

initialize_current_data;
while (evaluate_current_data) // decision point
{
 process_current_data; // main goal of this code
 change_current_data; // do not forget this step!
}

Let us consider an example of transaction processing. For simplicity sake, let's assume that the
program enters and adds up five amounts (I will make it more realistic soon). Since I know the total
number of transactions, I can have a variable that counts the number of transactions already
processed. This is part of current data: It has to be initialized to 0 and incremented by 1 after each
transaction. Another element of current data is the total of the amount entered. It also has to be
initialized to 0, and the transaction amount is added to the total at each iteration. However, the total
cannot be used to check whether or not the loop should be terminated. The count of transactions
can. Hence, the components of the loop are as follows:

ϒΠ initialize_current_data: set count to 1, total to 0

ϒΠ evaluate_current_data: test if count of transactions does not exceed 5

ϒΠ process_current_data: enter next transaction amount, add it to total

ϒΠ change_current_data: increment transaction count by 1, go test it

Listing 4.10 shows an implementation of this design. This design is hardly practical. It is unlikely
that the application is written for the specific size of the data set.

Example 4.10. A while loop with an infinite number of iterations.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (164 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <iostream>
using namespace std;
int main ()
{
 double total, amount; int count;
 total = 0.0; count = 1; // initialize current data
 while (count <= 5) // evaluate current data
 {
 cout << "Enter the amount: ";
 cin >> amount; // enter current data
total += amount; // process current data
 }
 cout<< "\nTotal of 5 transactions is " << total << endl;
 return 0;
}

This is a typical example of a programming error. The loop executes as long as count does not
exceed 5. When count reaches the value 6, the loop should terminate. The problem is that count
will never reach 6 (or any other value) because the loop body does not change the value of count.
To correct the situation, the loop body should increment the value of count by 1 during each
iteration. Doing it at the bottom of loop body is appropriate.

while (count <= 5) // evaluate current data
{
 cout << "Enter the amount: ";
 cin >> amount; // enter current data
 total += amount; // process current data
 count++; // change current data: do not forget it!
}

We would like to be able to write applications where a segment of code (e.g., processing a
transaction) is applied as many times as needed for each element of input data, and the size of the
data set is different for different runs of the program. Hard-coding the size of the data set as in
Listing 4.10 is not appropriate. The program has to know when the last element of the data set is
processed. One of the ways to solve this problem is to ask the user directly how many items there
are to process and use this value as the limit in the loop condition. However, the user is not always
available. Input data, for example, can come through a communications line from a remote
computer. In this case, the first item of data is often the count of data items that follow. But the size
of the data set might not be known in advance, or it might be too large: It is one thing to count five
items and another thing to count several hundred or several thousand items.

A more common approach to iterative processing is to enter data items one by one, while they are
available, and ask the user (or the input file or a communication line) whether there is yet another
item to process.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (165 of 1187) [8/17/2002 2:57:47 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There are two ways to do this. One is to have separate variables to store the transaction data and the
user response to the question whether there are more data. After entering each transaction, the user
answers the question whether there are more entries to process. The second way is to enter a special
value (called the sentinel value) that tells the application that the data set is finished. A sentinel is a
special value that is not valid as normal data and is used only to indicate the end of valid data, like a
negative or 0 value for transaction amounts. When the data arrive through communications lines,
the sentinel value is the last value in the data set.

For transaction amounts, such a special value could be 0 or a negative value. Listing 4.11 shows the
implementation of the loop with a negative or 0 sentinel value.

Example 4.11. Implementing the while loop with a negative or zero sentinel value.
#include <iostream>
using namespace std;
int main ()
{
 double total, amount; int count;
 total = 0.0; count = 0; // different initialization
 amount = 1.0; // an artificial trick: why 1 and not 10?
 while (amount > 0) // evaluate current data
 {
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter current data
 total += amount; // process current data
count++;
}
cout << "\nTotal of " << count << " transactions is "
 << total << endl;
return 0;
}

In Listing 4.10, the loop continued as long as count did not exceed 5. Before the first pass through
the loop, count was 1, before the second pass it was two, before the fifth pass it was 5, and after the
fifth pass, when count <= 5 became false, it was 6. This is no good for Listing 4.11, where at
the end of the run we want the value in count to reflect the number of items processed. This is why
count is initialized to 0 in Listing 4.11 rather than to one.

This is the concern that a C++ programmer (actually, any programmer) should always think about
when building the loops. Are my initial values correct? Do they assure correct terminating values?
This is why I used such a small value of items in this example: to make sure I can trace the loop
iterations easily. The output of a sample run for Listing 4.11 is shown in Figure 4-18.

Figure 4-18. Output for Listing 4.11 with a negative or zero sentinel value.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (166 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

But wait a minute¡Xthe number of transactions is incorrect! Before the user entered -1.0, the value
of count was 3, and it was correct. After the user entered -1.0, it became 4, and this was not
correct. To add insult to injury, this negative amount was also added to total, and the value of
total was not correct either.

There are a number of solutions to these technical problems. We can initialize count to -1. Or we
can decrement count after the loop. The same can be done to the total amount. The code after the
loop could look this way:

count--; total -= amount; // after-loop correction
cout << "\nTotal of " << count << " transactions is "
 << total << endl;

This solution is not elegant, but it works. Another solution is to add a conditional statement in the
middle of the loop and change the values of total and count only if the value of amount is not a
sentinel value:

while (amount > 0) // evaluate current data
{
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter current data
 if (amount > 0) // test for end of data
 {
 total += amount; // process current data
 count++;
}
}

You see that all these fixes eliminate the problems by contributing to the complexity of code. They
are not elegant. Often (but not always) this is a manifestation of a conceptual problem. And indeed,
there is another problem with the solution in Listing 4.11, and this problem is not technical. It is
conceptual. It is the issue of the first pass through the loop. When memory for C++ variables is
allocated, it contains random values (which is not the whole truth, and we will talk about that later).
This random value in some runs of the program might be 0. This means that the program will
terminate without processing input data. To prevent that, I initialize amount to some value just to
prevent the loop from terminating prematurely.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (167 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is not correct from the software engineering point of view. I am using the value 1.0 that has no
semantic meaning in the context of the application. If it were 2.0, the result would be the same.
This value sends no message from the designer to the maintenance programmer and hence clogs the
channel of communication between them. The maintainer will spend some time figuring out what
this 1.0 means before he or she realizes that it means nothing. Granted, this doesn't take a long
time. However, it is from these kinds of glitches that the complexity of applications increases above
what it should be.

Another problem with this loop is that it does not treat the sentinel value correctly. When the user
enters the negative amount (or a negative amount arrives as the end of transmission through a
communications line), this value is first added to total and only after that is used to terminate the
loop.

A good solution to these problems is to change the structure of the loop body. In Listing 4.11, the
body of the loop first accepts amount (it might be a sentinel) and then processes it. What I suggest
here is to first process amount that has been entered earlier, during the previous iteration, and only
at the end of the loop body accept amount for the next iteration. The loop structure should look like
this:

while (amount > 0) // evaluate current data
{
 total += amount; // process current data
 count++;
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
}

But what about the very first iteration through the loop? The value 1.0 that I used in Listing 4.11 is
not appropriate. Should I initialize the variable amount to 0? When 0 is added to total, no harm is
done. This is possible, but it will terminate the loop on the first test¡Xthe condition amount > 0
will evaluate to false. Also, this solution would not work if we needed to print the amount that
was entered or process it in some other nontrivial way.

A good solution here is what is known as a prime read technique. You accept the first value before
the loop, process that value at the top of the loop, and then accept the next value at the bottom of
the loop and process it at the top of the loop during next iteration. You can see this solution on
Listing 4.12, and the results of the test run on Figure 4-19.

Figure 4-19. Output for Listing 4.12 with the prime read.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (168 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 4.12. Implementing the while loop with the prime read.
#include <iostream>
using namespace std;
int main ()
{
 double total, amount; int count;
 total = 0.0; count = 0; // different initialization
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter current data (first time)
 while (amount > 0) // evaluate current data
 {
 total += amount; // process current data
 count++;
 cout << "Enter amount (negative or zero to end): ";
cin >> amount; // change current data
 }
 cout << "\nTotal of " << count << " transactions is "
 << total << endl;
 return 0;
}

All our problems (and their complex fixes) are gone. The variables count and total are initialized
to their logical initial value (0). The variable amount is not initialized at all because whatever value
we would want to put there will not be used¡Xit will be overwritten by the input operation. There is
no postprocessing after the loop that adjusts the values modified incorrectly by the loop.

The drawback of this solution is that the input statements are coded twice. In real life, it is not a big
deal because entering and verifying input data takes more than two statements and will probably be
encapsulated in a function. So, we will have two calls to that input function, and we can live with
that. But no, nothing is perfect.

Before I go on to discuss the do-while loops, I would like to illustrate some other issues of the
while loop design. I will use processing of a stream of characters as an example. For simplicity of
the example, I will just echo the characters, count their total, and also count the number of spaces,
if any. The processing should continue until the user presses the Enter key (the character '\n'). I
will use the loop structure with the prime read. The first character is entered before the while loop;
at the top of the loop I echo the character that has been entered before; count the number of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (169 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

characters; and check whether it is a blank character. At the bottom of the loop, the next character
is read. The loop condition checks whether or not this next character is the newline character. If it is
not (the loop condition is true), processing continues, the top of the loop echoes the character and
counts it, and then the bottom of the loop accepts the next character. If it is the newline character,
the loop condition evaluates to false, and the loop terminates.

To enter the character, I use the get() function from the iostream library, which I send as a
message to the cin object. You already saw the message syntax in the section, "Classes" in Chapter
2, and it is nice to continue using it. Actually, all that you should know to use it correctly is that the
function call cin.get() returns the next character from the input buffer.

Listing 4.13 shows the solution to this problem, and Figure 4-20 demonstrates the results of the test
run.

Figure 4.20. Run results for Listing 4.13 (processing input characters).

Example 4.13. The while loop with the prime read for reading characters.
#include <iostream>
using namespace std;
int main ()
{
 char ch; int count = 0, spaces = 0; // initialize counters
 cout << "\nType a sentence, press Enter\n";
 ch = cin.get(); // prime read for the loop
 while (ch != '\n') // no semicolon after the condition
 {
 cout << ch; // process data: echo, check, count
 if (ch == ' ')
 spaces++;
 count++;
 ch = cin.get(); // change current data
 }
 cout << "\nTotal number of characters " << count << endl;
 cout << "Number of spaces is " << spaces << endl;
 return 0;
}

Here again we bump into the difference between how things look and what they are in reality. The

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (170 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

code indicates that the first character the user entered is displayed before the user entered the
second character, and the second character is displayed before the user enters the third character,
and so on. If you run this program, you will see that the characters are not displayed at all until you
press the Enter key. After that they are displayed all at once. The reason is that the call cin.get()
reads not from the keyboard but from an internal buffer in computer memory. When the user
presses keyboard keys, the data are sent to the buffer but become available to the program only
after the user presses the Enter key or when the buffer becomes full. The use of buffers can
improve program performance when the program needs frequent file I/O operations, each for small
amount of data. With buffering, the slow external file I/O is done only once for a larger amount of
data. (It takes almost the same time, independent of the amount of data.) After that, multiple I/O
operations are directed to the buffer in memory much faster. (it does not do much for this program.)
So, do not be surprised if you do not see the output while you are typing data.

Notice that the loop condition while (ch != \n) is tested immediately after the statement ch =
cin.get(); the first time around it is the statement before the loop; at all other times it is the
statement at the bottom of the loop body. This code structure invites the use of popular C++ idiom:
combining the assignment and testing of the condition. Listing 4.14 shows this important idiom.

Example 4.14. The while loop with the assignment in the loop condition.
#include <iostream>
using namespace std;
int main ()
{
 char ch; int count = 0, spaces = 0; // initialize counters
 cout << "\nType a sentence, press Enter\n";
 while ((ch = cin.get()) != '\n') // change current data
 {
 cout << ch; // process next symbol
if (ch == ' ')
spaces++; // OK for a single line
 count++;
}
 cout << "\nTotal number of characters " << count << endl;
 cout << "Number of spaces is " << spaces << endl;
 return 0;
}

This is a very popular C++ idiom. You could not use it in the program in Listing 4.12 because the
input statement there (cin >> amount;) does not return the value entered by the user. Actually, it
does return a value, but this is the value of the cin object, not the value entered by the user. The
input statement in Listing 4.13 (ch = cin.get();) does return the character value and can be
used in the loop condition here, in Listing 4.14.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (171 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice the parentheses around the input statement in Listing 4.14. Omitting them is not a syntax
error, but it changes the meaning of the code.

cout << "\nType a sentence, press Enter\n";
while (ch = cin.get() != '\n') // no parentheses around input statement
{
cout << ch;
 if (ch == ' ')
 spaces++; // process next symbol
 count++;
}

Priority of operators is important here. The assignment operator is of lower priority than is the
comparison for inequality. This means that the compiler sees this code as

 while (ch = (cin.get() != '\n')) // quite a different story

The character is entered and then is compared with the newline character. For all characters (except
the very last character in the input) the result of comparison is true (they are not newline
characters), and the variable ch gets the value 1 (it is not a printable code). The characters are
displayed incorrectly, and the number of spaces is reported as 0.

Do not complain about C++ operations performed in the wrong order. Know that order, and avoid
problems. Use parentheses if in doubt (and even if you are not in doubt).

Iterations with the DO-WHILE Loop

The do-while loop is very similar to the while loop. Often, they can be used interchangeably. The
major difference is that the do-while loop tests its condition at the bottom of the loop body, after
each iteration, whereas the while loop tests its condition at the top of the body, before each
iteration.

Similar to the while loop, the do-while loop controls the repeated execution of the body
consisting of a single statement (or a statement block in braces). The do-while loop has the
following general structure:

previous_statement;
do
 statement; // or { statements }
while (expression);
next_statement;

After the previous_statement is executed, the loop body following the do keyword is executed.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (172 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

After that, the loop expression is evaluated. If it evaluates to true, the loop body is executed again.
If the expression evaluates to false, the iterations are terminated and the next_statement is
executed.

Because of this structure, the loop body is guaranteed to be executed at least once. The loop body
must change the loop expression eventually for the loop to terminate and to avoid the infinite
iterations.

To prevent confusion, programmers often use braces, even for a loop body with a single statement,
like the following:

do
{
statement;
}
while (expression);

In the do-while loop, it is necessary to put the semicolon after the loop expression to avoid a
syntax error. This is just the opposite of the situation with the while loop, where you do not put the
semicolon after the loop condition. Make sure you see that putting a semicolon after the loop
expression in the while loop does not confuse the compiler enough to generate a syntax error, but
confuses it enough to generate incorrect code (a semantic error). To indicate to the maintenance
programmer that this while keyword is special and hence the semicolon should be used at the end
of the line, some programmers put the closing brace on the same line as the while keyword.

do
 { statement;
} while (expression); // the brace warns about the presence of the semicolon

The strategy for the loop body design is similar to that of the while loop.

initialize_current_data;
do {
change_current_data;
 process_current_data;
} while (evaluate_current_data);

For the example of transaction processing and computing the total amount, components of this
structure should perform the following operations:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (173 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

initialize_current_data: set total and count to zero
change_current_data: enter new value of amount
process_current_data: if positive, increment total and count
evaluate_current_data: test if the amount is a sentinel

Listing 4.15 shows this version of the program. The output of this version is of course the same as
on Figure 4-19 for Listing 4.12.

Example 4.15. The do-while loop without the prime read.
#include <iostream>
using namespace std;

int main ()
{
 double total, amount; int count;
 total = 0.0; count = 0; // initialize current data
do {
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter (change) current data
if (amount > 0) // check for end of data
 {
 total += amount; // process current data
 count++;
}
} while (amount > 0); // evaluate current data
 cout << "\nTotal of " << count << " transactions is "
 << total << endl;
return 0;
}

You can see that the do-while loop simplifies initialization and eliminates the need for the prime
read (compare with Listing 4.12). On the other hand, it requires an extra conditional statement in
the middle of the loop body to avoid erroneous treatment of the sentinel value as a legitimate input
value.

Counting space characters in an input line can be done in a do-while loop as in Listing 4.16. The
use of do-while loop eliminates the need for the prime read. Similar to the previous example in
Listing 4.15, this structure requires checking the body of the loop for whether the sentinel value has
arrived. Hence, evaluation of current data is done twice¡Xfirst time in the body of the loop and the
second time in the loop logical condition.

Example 4.16. The do-while loop for character input.
#include <iostream>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (174 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main ()
{
 char ch; int count = 0, spaces = 0; // initialize data
 cout << "\nType a sentence, press Enter\n";
do {
 ch = cin.get(); // change current data
 if (ch != '\n') // check for end of data
 {
 cout << ch;
 if (ch == ' ')
spaces++; // process current data
 count++;
}
 } while (ch != '\n'); // evaluate current data
 cout << "\nTotal number of characters " << count << endl;
 cout << "Number of spaces is " << spaces << endl;
 return 0;
}

Here, the value of character ch is set by the assignment and is soon tested in the conditional
statements. This opens the opportunity to combine the assignment and the test in one statement, as
in Listing 4.17.

Example 4.17. The do-while loop with assignment within a conditional statement.
#include <iostream>
using namespace std;

int main ()
{
 char ch; int count = 0, spaces = 0; // initialize data
 cout << "\nType a sentence, press Enter\n";
 do {
 if ((ch = cin.get())!= '\n') // change current data
{
cout << ch;
 if (ch == ' ')
spaces++; // process current data
 count++;
}
 } while (ch != '\n'); // evaluate current data
 cout << "\nTotal number of characters " << count << endl;
 cout << "Number of spaces is " << spaces << endl;
 return 0;
}

Again, this optimization does not change program performance or correctness, but it makes code
more concise and elegant.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (175 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Iterations with the FOR Loop

The for loop is usually considered an appropriate loop when the number of repetitions is known in
advance, before the loop starts. This is not an important factor. This form of iteration visually
brings together the three most important elements of the loop design: initialization of the current
value before the first iteration, evaluation of the current value before the start of next iteration, and
change of the current value after the iteration (before the next iteration). In other loops, these
elements are spread through different places in the loop.

The for statement has the following standard form, where we combine three expressions that
control the execution of the loop body in parentheses (initialization of current data, its evaluation,
and its modification). Just to make sure that learning C++ is never dull, these expressions are
separated by semicolons. They are separated, not terminated (as statements are). This is why the
last expression does not have a semicolon before the closing parenthesis.

previous_statement;
for (InitialExpr; ContinuingExpr; IncrementExpr)
 statement; // compound statement in braces is OK
next_statement;

InitialExpr is evaluated only once, before the first iteration; this is a convenient place to initialize
values for the loop setup: index, count of items, total amount, and so on.

IncrementExpr is evaluated at the end of each iteration, immediately after the loop body is
executed. This is a convenient place to change current data, increment indexes, counts, tallies, and
so on.

ContinuingExpr is evaluated before the first iteration and before each succeeding iteration. This
expression evaluates the need for the next loop iteration. If this expression evaluates to true, the
loop statement is executed, and immediately after that IncrementExpr is executed; after that,
ContinuingExpr is evaluated again to decide the need for the next iteration. If this expression
evaluates to false, the loop is terminated.

Make sure you see that the for loop is equivalent to the following while loop:

previous_statement;
InitialExpr;
while (ContinuingExpr)
{
statement; // or a sequence of statements
 IncrementExpr;
}

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (176 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

next_statement;

Listing 4.18 shows the implementation of the transaction processing example using the for loop.
The initialization includes setting count to 0; the test for continuation includes the test for the
sentinel value (this is why the prime read is still needed); the increment includes incrementing the
variable count.

Example 4.18. Implementing transaction processing in a for loop.
#include <iostream>
using namespace std;

int main ()
{
 double total, amount; int count;
 total = 0.0; // different initialization
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter current data
 for (count=0; amount>0; count++) // three expressions
 {
 total += amount; // process current data
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
 }
 cout << "\nTotal of " << count << " transactions is "
 << total << endl;
 return 0;
}

Each of three expressions in the for loop is an expression. This "profound" observation means that
a sequence of expressions separated by commas can be used for each of these expressions.
Remember, a comma is a full-fledged operator in C++: it evaluates its operands (expressions) from
left to right and returns the rightmost value. In the for loop, return values are of no
importance¡Xthey are discarded. The only exception is the ContinuingExpr that defines whether
the next iteration should take place. This means that we can expand the InitialExpr as in Listing
4.19.

Example 4.19. A for loop with comma operator in its initial expressions
#include <iostream>
using namespace std;

int main ()
{
 double total, amount; int count; // no initialization
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter current data

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (177 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 for (total=0.0, count=0; amount>0; count++)
 {
total += amount;
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
 }
 cout << "\nTotal of " << count << " transactions is "
 << total << endl;
 return 0;
}

An even more interesting representation is possible for the character processing example as shown
in Listing 4.20. Here, the comma-separated expressions are used in the initial expression, and the
assignment is used as a part of comparison in the continuing expression (compare this version with
Listing 4.13 and Listing 4.16).

Example 4.20. The for loop with assignment in its ContinuingExpr.
#include <iostream>
using namespace std;

int main ()
{
 char ch; int count, spaces; // no initialization
 cout << "\nType a sentence, press Enter\n";
 for (count=0, spaces=0; (ch=cin.get())!='\n'; count++)
 {
cout << ch; // process next input symbol
if (ch == ' ')
spaces++;
}
 cout << "\nTotal number of characters " << count << endl;
 cout << "Number of spaces is " << spaces << endl;
 return 0;
}

The next interesting thing that we can do in a for loop is to define variables within the loop, in its
InitialExpr. Consider, for example, Listing 4.21. The program adds up the squares of first
natural numbers. The number of squares to add is entered by the user. The for loop initializes the
variable n to 1, tests whether the value of n reached the limit num, and increments n after each
iteration. Since variable n is used in the loop only, there is no need to define it in the broader scope.
This is why this variable is defined in the for statement rather than in the main() function. This is
a popular C++ idiom. The test run of the program is shown in Figure 4-21.

Figure 4-21. Run results for Figure 4-21 (adding squares of natural numbers).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (178 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 4.21. Computing sum of squares using the for loop.
#include <iostream>
using namespace std;

int main ()
{
 int sum=0, num;
 cout << "\nEnter the number of squares to add: ";
 cin >> num;
 for (int n = 1; n <= num; n++)
 {
sum += n * n;
}
 cout << "Total of squares is " << sum << endl;
 return 0;
}

As we saw in Listing 4.19 and Listing 4.20, C++ allows the programmer to initialize several
variables in the initial expression of the for loop. C++ also allows you to define several variables
in the initial expression provided they are all of the same type. In Listing 4.22, both variable n and
variable sum are defined in the loop. In addition, the variable sum is updated in the continuing
expression using the comma operator as a tool. The output of this version is the same as for Listing
4.21. As you see, the loop body degenerates into an empty statement.

Example 4.22. A for loop that degenerates to an empty statement.
#include <iostream>
using namespace std;

int main ()
{
 int num;
 cout << "\nEnter the number of squares to add: ";
 cin >> num;
 for (int sum = 0, n = 1; n <= num; sum+=n*n, n++); // !!
 cout << "Total of squares is " << sum << endl;
 return 0;
}

Many programmers do not like to use a semicolon at the end of the loop statement. It is not a
common place for the semicolon, and it can confuse the maintenance programmer. To pass the
designer's knowledge to the maintainer, these programmers put the semicolon on a separate line,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (179 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

for example,

for (int sum = 0, n = 1; n <= num; sum+=n*n, n++)
 ; // !!

Some programmers stay away from empty statements altogether because they are too confusing,
using instead the structure similar to Listing 4.21, with at least one statement in the body of the
loop. The biggest problem with Listing 4.21 is that of portability. The variable sum is defined
within the loop, but it is used after the loop terminates. The original C++ allowed that. However,
the new standard C++ treats it as a syntax error; you can define in the loop only those variables that
are not used outside of the loop. Most compilers compile this code, but it should not be used. It is
probably a good idea not to optimize for loops too much.

C++ Jump Statements

The conditional and the loop statements are indispensable tools of programming. We cannot write
even the simplest program without using them. They are an essential necessity. Other control
statements are useful but not necessary. They represent syntactic fluff that makes our programs
more concise and aesthetically appealing.

These other C++ control statements are different sorts of jumps. Program designers love jumps
because they allow them to transfer control to any place in the program source code effectively and
efficiently. However, the program that uses jumps is more difficult to analyze than the program that
does not use jumps. To understand the results of the execution of a program statement when the
flow of control is sequential, the maintainer has to understand only those statements that precede
immediately the one being analyzed. When the program control can jump to that statement from
different places in the program, all these places can affect how this statement works. This makes
the task of the maintainer more difficult. This is why jumps have a bad reputation in programming.

C++ tries to strike a compromise. It does allow jumps so that the programmers are able to write
concise and powerful code. On the other hand, it restricts the jumps so that the maintenance
programmer does not have too difficult a task to do.

The BREAK Statement

The break statement is used for immediate exit from a loop; after executing this statement, control
flow jumps to the statement that follows the loop. It can be used with the while, for, and do-
while loops. Abandoning a loop in the middle, however drastic, does not make the flow of control
too confusing. However, the break statement cannot be used to get out of a branch of an if
statement: this would result in too convoluted a flow of control. Later in this section, you will see
the use of the break statement within switch statements.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (180 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It does not make much sense to execute the break statement unconditionally. That would mean that
the loop is not executed at all. The break statement is usually executed in a conditional statement;
the logical expression of this conditional specifies the condition for terminating the loop. Often, this
simplifies the loop condition; for example, the loop might be set up to go "forever".

Consider, for example, Listing 4.12 with a loop that processes input data until a sentinel value
appears. The loop condition uses the value of the variable amount. Hence, this variable has to be
initialized before the loop, and this is the job that the prime read does.

cout << "Enter amount (negative or zero to end): ";
cin >> amount; // enter current data
while (amount > 0) // evaluate current data
{
total += amount; // process current data
 count++;
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
}

Using the break statement allows me to replace the loop condition with something that does not
change, for example, while(1 == 1). Since this condition is always true, there is less chance to
make a mistake writing this expression. Since this condition does not use the value of amount,
there is no need to initialize this value. Hence, the need for prime read is eliminated, and the new
value of amount can be accepted at the top of the loop, not at the bottom. The problem with this
loop structure is how to terminate the loop when the sentinel value appears. The break statement
provides the solution. I want to continue iterations when amount > 0. Hence, the loop termination
condition is the negation of this one, that is, amount <= 0.0. When this (negated) condition holds
true, the break statement is executed and control flow leaves the loop and jumps to the next
statement.

while (1 == 1) // loop forever
{
cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
 if (amount <= 0.0)
break; // explicit break
 total += amount; // process current data
 count++;
}

One might argue that moving the test amount > 0 from the loop expression to the break statement
does not change code complexity much. But it allows me to eliminate the prime read.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (181 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The do-while version of this algorithm (see Listing 4.15) does not use the prime read, but it has to
check twice whether the next input value is a legal value, in the middle of the loop and in the loop
condition:

do {
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter (change) current data
 if (amount > 0) // evaluate current data
 {
total += amount; // process current data
 count++;
}
} while (amount > 0); // evaluate current data again

The use of the break statement allows me to replace the loop condition with the trivial condition
that is always true (like, 1==1 or even 1). To terminate the loop when the sentinel value appears, the
condition amount > 0 has to be negated similar to the previous example. When amount <= 0, the
break statement transfers control to the statement that follows the loop. The structure of the loop is
simplified somewhat; there is no need for the local compound statement with its braces. Notice that
the loop while(1) is a legitimate alternative to while(1 == 1) since a nonzero value is true in
C++.

do {
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter (change) current data
 if (amount <= 0) break; // evaluate current data
 total += amount; // process current data
 count++; // no need for compound statement
} while (1); // no need to evaluate current data here

Yet another example of the use of the break statement is range checking, which is often used for
input validation. Let us assume that the user has to enter the response, for example, in the range
from 1 to 5. If the user makes a mistake, the input has to be repeated until a legal value is entered.
In Listing 4.23, the do-while loop is used because its body has to be executed at least once. The
variable error_flag is set to 1 if the input value is invalid and to 0 if it is within the range.

Example 4.23. Using the do-while loop for input validation.
#include <iostream>
using namespace std;
const int N = 5;

int main ()
{
 int num, error_flag;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (182 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 do {
 cout << "Enter number between 1 and " << N << ": ";
 cin >> num;
 if (num < 1 || num > N)
{
cout << "This is incorrect; please repeat.\n";
 error_flag = 1;
}
 else
 error_flag = 0;
 } while (error_flag == 1);
 cout << "Your input is " << num << endl;
 return 0;
}

This is a popular technique for communication between different parts of the program. In one part
of the program (the loop condition), we have to know what happened in another part of the program
(the body of the loop). To make it possible, in one part of the program we test the variable that is
set in another part of the program.

Some programmers do not like proliferation of flags and other control variables whose only goal is
to carry information from one part of the program to another. This increases coupling and
complexity of the code. Another way to implement this algorithm is to repeat the test in the loop
condition instead of using the error flag.

do {
 cout << "Enter number between 1 and " << N << ": ";
 cin >> num;
 if (num < 1 || num > N)
 cout << "This is incorrect; please repeat.\n";
 } while (num < 1 || num > N);

This is a more concise solution. Yet another approach is to use the infinite loop and break it when
the value is legitimate. Since I continue the loop with request for data when either n < 1 or num >
N, I terminate the loop when this condition becomes false.

do {
 cout << "Enter number between 1 and " << N << ": ";
 cin >> num;
 if (!(num < 1 || num > N)) break;
 cout << "This is incorrect; please repeat.\n";
} while (true);

Notice here the third form of the "forever" loop, with the true literal value as the condition for
continuation.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (183 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Many programmers prefer to negate the compound condition explicitly. To do that, we replace each
&& operator with the || operator, each || operator with the && operator, and negate each individual
condition. Consider, for example, the expression a1 && (~a2) || a3 where a1, a2, and a3 are
boolean expressions. Its negation is (~a1) || a2 && (~a3). In our case, negation of num < 1 is
num >= 1 and negation of num > N is num <= N. The condition for breaking the loop now is as
follows:

do {
 cout << "Enter number between 1 and " << N << " : ";
 cin >> num;
 if (num >= 1 && num <=N)
break; // nice and simple
 cout << "This is incorrect; please repeat.\n";
} while (true);

Some programmers feel uncomfortable negating compound conditions, but this is a very useful
skill and has to be practiced as much as possible.

The break statement is one of the tame and effective jumps in C++. Other jumps are either more
dangerous or not as effective.

The CONTINUE Statement

The continue statement is a tamer modification of the break statement. Similar to break, it is
also used within the loop constructs. It skips the remainder of the loop body between the continue
statement and the end of the loop body.

The continue statement can be used for while, do-while, and for loops. In the while and do-
while loops, it jumps and returns to the bottom or to the top of the loop to test the loop condition.
In a for loop, the continue statement does not bypass the increment expression; it only jumps
over the remainder of the loop body.

Consider, for example, Listing 4.11 (without the prime read) and its modification that solves these
problems by updating current data only if the sentinel value is not entered yet:

while (amount > 0) // evaluate current data
 { cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
 if (amount > 0) // test validity of data
 { total += amount; // process current data
 count++; } }

Instead of using a block in the conditional statement, I can negate its condition and use the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (184 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

continue statement.

while (amount > 0) // evaluate current data
{
cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // change current data
 if (amount <= 0)
continue; // test validity of data
 total += amount; // process current data
 count++;
}

The improvement is not really very spectacular. As I mentioned, the continue statement is tame. It
can always be replaced by a conditional statement. It is not that often that you see the use of the
continue statement that significantly improves code. Actually, I saw such an example once, and I
thought that it was good use of continue and I had to write it down. But I did not write it down
because something distracted me, and now I cannot tell you what that example was.

The GOTO Statement

The goto statement is a queen of jumps. It is the use of unrestricted goto statements that caused so
much discussion whether the jumps are actually harmful and why they should be outlawed. And
indeed, many modern languages ban unrestricted jumps. So does C++.

In C++, goto jumps are allowed within the single function scope only. This means that both the
goto statement and its target (the statement the flow of control jumps to) have to be within the
same function. In addition, no jumps are allowed over definitions. This is quite restrictive relative
to a conventional jump. This is why the C++ goto statement is less harmful than in older
languages. This is what a C++ goto statement looks like:

void foo
{ ¡K
 goto label1; // no colon after the label name
 int x; // a jump over a definition: syntax error
 ¡K
 label1: statement; // a colon after the label name
 ¡K
 goto label1; } // no jumps over definitions: OK

A label is an identifier; it is put in front of the statement that assumes control and also at the end of
the goto statement. The programmer makes up label names. Unlike identifiers for names of
variables, functions, and types, labels do not have to be defined before they are used. They are just
used. The label identifiers have their own name space. This means that their names do not conflict

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (185 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

with other identifiers: names of variables, functions, or types.

A colon should follow the label that is used as the target of a jump. No colon should follow the
label that is used in the goto statement; the semicolon is used instead.

Listing 4.24 shows the transaction processing example implemented without loops, with
conditional statements and jumps only. Isn't it nice?

Example 4.24. Transaction processing with goto jumps.
#include <iostream>
using namespace std;
int main ()
{
 double total=0.0, amount; int count=0; // initialize
start:
 cout << "Enter amount (negative or zero to end): ";
 cin >> amount; // enter (change) current data
 if (amount <= 0) goto finish; // evaluate current data
 total += amount; // process current data
 count++;
 goto start; // go back to the start of loop
finish:
 cout << "\nTotal of " << count << " transactions is " << total << endl;
 return 0;
}

Some programmers, especially those that plan their code using flowcharts, like this style of
programming. For a small example like this it probably does not matter whether you use jumps or
loops. It is a good idea, however, to avoid using goto statements. Use them only if their use gives
obvious (and important) performance advantage.

The RETURN and EXIT Jumps

The return statement represents a jump that terminates the execution of a function that executes
the return. If this function is the main() function, the program is terminated. If this function is
some other function that is called from main() directly or indirectly, that function is terminated and
control is returned to the function that called the terminated function.

If the function return type is non-void, the function must have a return statement. If the function
return type is void, the return statement is optional.

The return statement might or might not have arguments. If the function is defined as a void
function, its return statement must not have an argument. The original C++ inherited two forms of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (186 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

main() from C: the one with the int return type and another with the void return type. The new
standard C++ favors the first form of main(), but you will see a lot of legacy C++ code with the
main() function that does not have a return type; hence, these functions did not use the return
statement. If a void main() function were to use the optional return statement, it would look this
way.

void main(void)
{ . . .
 return; } // no argument, no parentheses

When the return statement is used in a void function, it must have no argument and no
parentheses: return 0 is an error; return() is an error.

In previous examples, I used the main() function that returns an integer value. As any non-void
function, this main() function must have a return statement, and that statement must return an
integer value (or a value that can be converted into an integer). This main() function looks like
this:

int main(void)
{ . . .
 return 0; } // argument mandatory, parentheses optional

Actually, C++ compilers must accept (grudgingly) this form of the main() function:

main(void) // default return type is integer
{ . . .
 return (0); } // optional parentheses

As I mentioned earlier, the missing return type information in C++ does not mean the absence of
the return value (void). It means int. This is in keeping with the philosophy inherited from C that
a concise program is better than a program that is not so concise, and the programmer who wants to
write concise programs (by omitting the return type) should be encouraged to do so and supported
them with appropriate language features.

Recently, this philosophy is being supplanted by the opinion that concise programs force the
maintenance programmer to spend more time and effort understanding the program. That means
that the concise program looks more complex to the maintainer than a program that is not so
concise. The programmer who wants to write concise programs should be asked to please think
more about readability and understandability of code¡Xthinking especially about the maintenance
programmer, who may not be well trained and as experienced as the original programmer is.

The return statement makes the return value available to the calling function. For example, the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (187 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

cin.get() function calls that I used in the previous examples made a character value available to
the algorithms we have discussed. This means that within that function get(), there is some
statement like return c; here, c is the name of some variable (the name could be different) of type
char.

When the main() function returns a value, it is the operating system that accepts this value and
makes a judgment about normal or abnormal termination of the program. Many platforms disregard
the program return value.

This does not mean that you can omit a return statement if the function you are writing (including
the main() function) returns a typed value. You made a commitment (non-void return type), and
you have to live up to it: If the function's return value is not defined as void; the function should
have a return statement that returns the value (expression) of the appropriate type. Parentheses
around the return expression are optional (but used).

There are no limits on how many return statements a function could have. If a return is executed
in the middle of the function, the rest of the function body is not executed.

Let us consider a simplified example of a primitive calculator that asks the user to enter two
operands and an operator and displays the result of the operation (Listing 4.25). For the sake of the
example, I am using here the main() function that does not return a value. A sample of the program
run is shown on Figure 4-22.

Figure 4-22. Run results for Listing 4.25 (division by zero).

Example 4.25. A simplified primitive calculator.
#include <iostream>
using namespace std;
void main(void)

{
 double op1, op2; char ch;
 cout << "Enter operand, operator, another operand: ";
 cin >> op1 >> ch >> op2;
 if (ch == '+')
 cout << "Result is " << op1 + op2 << endl;
 else
 if (ch == '*')

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (188 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "Result is " << op1 * op2 << endl;
 else
 if (ch == '-')
 cout << "Result is " << op1 - op2 << endl;
 else
 if (ch == '/')
 if (op2 != 0.0)
 cout << "Result is " << op1 / op2 << endl;
 else
 cout << "Division by zero" << endl;
 else
 cout << "Illegal operator" << endl;
}

I called this calculator program primitive because it performs only four arithmetic operations and
does not remember results. It has enough functionality for this discussion, however. I called this
calculator simplified because it does not do what a real program should do to validate its input. The
discussion of input validation would take us too far from our topic.

First, I would like to discuss formatting. The code represents a deeply nested conditional statement,
and I wrote it indenting to the right a couple of spaces for each level of nesting. This formatting
describes what this code made of (nested conditional statements) well. However, it does not stress
for the maintainer what this code does.

This code chooses one of five alternatives (addition, multiplication, subtraction, division, illegal
operation) but the structure of the code does not pass the designer's knowledge and intent on to the
maintainer of the program.

Below is a different version of the conditional statement that reflects the logic of processing.

if (ch == '+') // first case
 cout << "Result is " << op1 + op2 << endl;
else if (ch == '*') // second case
 cout << "Result is " << op1 * op2 << endl;
else if (ch == '-') // third case
 cout << "Result is " << op1 - op2 << endl;
else if (ch == '/') // fourth case: more complex
 { if (op2 != 0.0)
 cout << "Result is " << op1 / op2 << endl;
 else
 cout << "Division by zero" << endl; }
else // fifth case
 cout << "Illegal operator" << endl;

Return statements can turn the different branches of processing into independent conditional
statements that follow each other without intervening else keywords.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (189 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

if (ch == '+') // first case
 { cout << "Result is " << op1 + op2 << endl; return; }
if (ch == '*') // second case
 { cout << "Result is " << op1 * op2 << endl; return; }
if (ch == '-') // third case
 { cout << "Result is " << op1 - op2 << endl; return; }
if (ch == '/') // fourth case: more complex
 { if (op2 != 0.0)
 cout << "Result is " << op1 / op2 << endl;
 else
 cout << "Division by zero" << endl;
 return; }
cout << "Illegal operator" << endl;

Another popular termination technique is a call to the function exit() from the standard library
file stdlib.h. While the return statement terminates only the function (if it is the main()
function, the program is terminated), a call to exit() terminates the program no matter what
function makes this call. The function exit() is called with one integer argument; according to a
popular convention, 0 indicates normal termination, 1 indicates abnormal termination. Using these
values, the program passes on to the operating system the information about the way it terminates
(see the earlier story about the Russian psychiatrist).

To protect the programs that want to communicate this way with the operating system from future
changes in conventions, the file stdlib.h (or, according to the new standard, cstdlib) defines
two symbolic literal constants, EXIT_SUCCESS and EXIT_FAILURE. These constants are
recommended for the instead of literal values 0 and 1. Listing 4.26 shows the primitive calculator
program using these constants.

Example 4.26. Calls to the library function exit().
#include <iostream>
#include <cstdlib>
using namespace std;

void main(void)
{
 double op1, op2; char ch;
 cout << "Enter operand, operator, another operand: ";
 cin >> op1 >> ch >> op2;
 if (ch == '+') // first case
 cout << "Result is " << op1 + op2 << endl;
 else if (ch == '*') // second case
 cout << "Result is " << op1 * op2 << endl;
 else if (ch == '-') // third case
 cout << "Result is " << op1 - op2 << endl;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (190 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 else if (ch == '/') // fourth case: more complex
 { if (op2 != 0.0)
 cout << "Result is " << op1 / op2 << endl;
 else
 cout << "Division by zero" << endl; }
 else // fifth case: error
 { cout << "Illegal operator" << endl;
 exit(EXIT_FAILURE); } // tell them we are bust
 exit(EXIT_SUCCESS); // tell them we are OK
}

Actually, the values of these library constants are currently 0 and 1. The idea behind using the
constants is that some day, for some reason, the operating system will expect a different set of
values from the C++ program, then the programs that use literal values 0 and 1 will be in
trouble¡Xoperating systems will misunderstand them. The values of the library constants,
EXIT_SUCCESS and EXIT_FAILURE, can be modified in the library, and the programs that rely on
these names will always be able to communicate with the operating system correctly. I find this
logic somewhat forced, but many programmers use these constants.

The SWITCH Statement

The switch statement is a tool for making multiway decisions in a program. It provides alternative
execution paths based on the value of an integral expression. The expression in parentheses follows
the keyword switch. The rest of the statement consists of branches that are placed within the
braces. (The opening and the closing braces are mandatory.)

Each branch consists of the keyword case, a value of the same type as the switch expression, a
colon, and a set of one or more statements terminated by semicolons. The closing brace of the
switch statement is not followed by a semicolon. Here is the general form of the switch
statement:

switch(expression) { // braces are mandatory
 case ConstantExpr1: statements; // first branch
 case ConstantExpr2: statements; // other branches

 default: statements; // default branch
} // semicolon after the closing brace

The switch expression can be only of type char, short, int, or long (integral types). Floating
point types (float, double, or long double) are not allowed. Neither are programmer-defined
types: arrays, structures, or classes.

The case labels must be constant expressions, that is, compile-time constants. They should be of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (191 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

same type as the switch expression.

For example, the simplified primitive calculator from Listings 4.25 and 4.26 can be implemented
using the switch statement with the operator as the switch expression. Listing 4.27 shows the
implementation of the calculator.

Example 4.27. Calculator with the switch statement (bad program).
#include <iostream>
#include <cstdlib>
using namespace std;

void main(void)
{
 double op1, op2; char ch;
 cout << "Enter operand, operator, another operand: ";
 cin >> op1 >> ch >> op2;
 switch(ch) { // mandatory braces
 case '+': cout << "Result is " << op1 + op2 << endl;
 case '*': cout << "Result is " << op1 * op2 << endl;
 case '-': cout << "Result is " << op1 - op2 << endl;
 case '/': if (op2 != 0.0)
 cout << "Result is " << op1 / op2 << endl;
 else
 cout << "Division by zero" << endl;
default: cout << "Illegal operator" << endl;
 exit(EXIT_FAILURE); } // mandatory braces
exit(EXIT_SUCCESS); // next statement
}

The literal labels in the case branches are not variables. They are compile-time constants (here,
'+', '*', and so on). In the same switch statement, no two case labels can have the same value.
(It is OK if they are in different switches.)

During the execution, the value of the switch expression (in this case, variable ch) is compared
(top-down) with the case literals. If the expression value matches a label, execution continues with
the statements that follow the label, until the end of the switch statement.

If no literal matches the switch expression, it is not an error. In this case, the statements that follow
the default keyword are executed. The default label is optional. Usually, it is the last label in the
switch statement, but it can be put in the middle. If it is absent and no label matches the value of
the switch expression, all the statements in the switch construct are skipped and the next statement
executed. Notice that the statements of the switch cases do not have to be taken into block braces.
The braces do not change the order of execution: All the statements are executed sequentially.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (192 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

An example of the execution for Listing 4.27 is shown on Figure 4-23. We see that the C++ switch
statement is not a multibranch construct. It is a multientry construct. If a multibranch construct is
needed, it can be built from a switch statement using a break, goto, or return statement to
terminate each branch. Listing 4.28 shows a better design for our switch statement. The results of
the program run are the same as in Figure 4-22.

Figure 4-23. Run results for Listing 4.27 (incorrect program).

Example 4.28. Calculator with the switch statement (better program)
#include <iostream>
#include <cstdlib>
using namespace std;

void main(void)
{
 double op1, op2; char ch;
 cout << "Enter operand, operator, another operand: ";
 cin >> op1 >> ch >> op2;
 switch(ch) { // mandatory braces
 case '+': cout << "Result is " << op1 + op2 << endl;
 break;
 case '*': cout << "Result is " << op1 * op2 << endl;
 break; case '-': cout << "Result is " << op1 - op2 << endl;
 break;
 case '/': if (op2 != 0.0)
 cout << "Result is " << op1 / op2 << endl;
 else
 cout << "Division by zero" << endl;
 break;
 default: cout << "Illegal operator" << endl;
 break; } // break is optional here
 exit(EXIT_SUCCESS); // next statement
}

The break statement within the switch transfers control to the next statement that follows the
closing brace of the switch. The exit() statement terminates the function as before.

The goto statement can be used to transfer control out of the switch branches, but for most cases,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (193 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the break statement is sufficient. Some programmers put the break statement even before the
closing brace of the switch. The break statement here is useless, but it might prevent errors if
further branches are added to the switch statement and the break statement were not inserted. This
is not an important issue, but it is definitely a good way to make the job of the maintainer easier.

The fact that the switch statement is a multientry statement rather than a multibranch statement
can be used to avoid repeating code if more than one branch require the same processing. Consider,
for example, the variable response that contains the user response to the application prompt. Let us
say that I want to do one thing when the user enters either 'y' or 'Y' and another thing when the
user enters either 'n' or 'N' and yet another thing if the response is different. The switch
statement for processing user response could look this way:

switch (response) {
 case 'y': case 'Y':
 cout << "Thank you for confirmation\n"; break;
 case 'n': case 'N':
 cout << "Request is canceled\n"; break;
 default: cout << "Incorrect response\n"; }

When the response is, for example, 'y', the implicit null statement between case'y': and
case'Y': is executed and then the statement following the next label (in this case, 'Y') is
executed.

Of course, a series of conditional statements could do the same job, but the switch statement does
it better¡Xit is easy to read and its execution is easy to trace. It is a very powerful tool.

Summary

There is lot to say about C++ control flow constructs. C++ has all the traditional conditional and
loop statements that allow the programmer to express complex algorithms. What is unique to C++
is the ability to put assignment statements within the logical expressions in conditional statements
and in the loop. Combined with C++ capability to treat any nonzero value as a true boolean value
gives in the hands of a C++ programmer a powerful tool for writing concise and forceful code.

For beginning programmers, it might be difficult to understand this kind of code. In your study of
C++, it is important to allocate enough time for mastering these features. All too often, C++
programmers concentrate on studying classes and objects and neglect the skills that represent the
foundation for writing professional C++ code.

Other C++ control constructs, jumps and switches, are not as indispensable for writing C++ code as
are conditional statements and loop statements. You can write robust C++ code without using them.
However, they are indispensable as tools of your professional skills. Without using these statements

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (194 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

and using them correctly, your code cannot be considered professional C++ code. Make sure you
allocate enough time to study and practice these elements of the C++ language.

Chapter 5. Aggregation with Programmer-Defined Data Types

Topics in this Chapter

ϒΠ Arrays as Homogeneous Aggregates

ϒΠ Structures as Heterogeneous Aggregates

ϒΠ Unions, Enumerations, and Bit Fields

ϒΠ Summary

In the previous chapter, we studied the tools for implementing algorithms in C++. Conditional
statements, loops, and jumps are the language constructs you use to indicate how computations
should be performed and in what sequence. In this chapter, you will take the next step toward
learning how to implement well-designed C++ programs. We will discover how to expand the set
of data types that comes with the language.

C++ allows the programmer to define collections of data: arrays (homogeneous collections),
structures (heterogeneous collections), and derived data types. As I mentioned earlier, they are
sometimes called user-defined data types. This is the compiler writer's point of view rather than the
programmer's. For the compiler writer, it is the programmer who is the user. For the programmer,
the user is a person who runs the program (or uses its results). This is why I call the types that the
programmer defines for the program programmer-defined data types.

You can define variables of programmer-defined data types (they are also called computational
objects, or just objects) as if these programmer-defined data types were built-in types¡Xintegers,
characters, and so on.

The C++ syntax for defining the variables is the same, and the rules of handling variables are the
same. In effect, you expand the meager set of C++ data types by adding to it programmer-defined
data types. Programmer-defined data types can also be used as building blocks for defining other,
more-complex programmer-defined types. In this chapter, I will concentrate on the discussion of
arrays, structures, and their variations: unions, bit fields and enumerations.

C++ classes as collections of data and functions can be discussed only after we discuss C++
functions in greater detail. The coverage of functions presented in Chapter 2, "Getting Started

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (195 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Quickly: A Brief Overview of C++," is sufficient for understanding the basic concepts about
functions, but not for understanding classes and different ways to build them.

I am going to cover a lot of ground in this chapter, and the material I discuss is going to be diverse
and complex. You may want to make your road to learning classes easier and skip those parts of
this chapter that are not direct prerequisites for understanding classes. If this is the case, concentrate
on arrays (one-dimensional only) and structures (but not on hierarchical structures). Unions and bit
fields are programming techniques that have little to do with classes. I do not mean to say that they
are not important. You can come back to this chapter when you feel you want to expand the breadth
of your programming skills.

I am not so sure about enumerations. Formally, you do not need enumerations to understand
classes, but C++ programmers often use enumerations to define sizes of class components. When
you study Chapter 9, "C++ Class as a Unit of Modularization," you will see some enumerations
used. These are quite intuitive, but if you feel you need more discussion of enumeration type, come
back to this chapter and look it up.

Arrays as Homogeneous Aggregates

An array is a set of elements of the same data type. One can visualize an array as a set of
contiguous memory locations. These locations are all of the same size and represent components of
the same type. We can define arrays of integers, or floating point values, or characters, or any
programmer-defined type as long as this type is known at the place in the source code where the
array is being defined.

Arrays as Vectors of Values

The ordinary variables we studied in Chapter 3, "Working with C++ Data and Expressions," are
called scalars or atomic variables (simple variables).

They are characterized by a single value. Sometimes you might want to distinguish between
different components of the value, for example, between the whole part and the fractional part of a
floating point number. However, the language does not support this distinction. It treats these
variables as having no components. This is why these variables are called scalar or atomic
variables. To extract the fractional part of a floating point number, you have to invent some C++
code to do that. This is not too difficult (library functions are available), but there is no language-
defined, built-in way to do that.

fraction = x - floor(x); // get fractional part of x

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (196 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Here, x and fraction are double floating point numbers, and floor() is a function defined in the
math.h (or cmath) library header file that returns the largest integer (converted to double) that does
not exceed its argument. The language itself, however, treats the values of built-in types as atomic.

Arrays are vectors¡Xtheir state is characterized by a set of values, not by a single value. Each
component value is available immediately by using native C++ notation (the subscript operator).

Arrays are useful when each array element undergoes the same processing by the program. This is
why arrays have to be homogeneous: All elements of the array have to be of the same type. Then
the program can go over the elements of the array, performing the same operations over each
element. This is why array components are usually processed in a loop. The fact that the array
components are of the same type is important. This prevents any problem that might arise if an
operation can be applied to one array component but cannot be applied to another.

Arrays are ordered collections of data. This means that each element of the array has the previous
element and the next element. There are two obvious exceptions: the first array element does not
have the previous element, and the last element of the array does not have the next element. The
array has a name, but individual array elements do not have individual names. The program
accesses them using the name of the array appended with the subscript (or index), the position of
this element in the ordered collection.

Arrays are finite. The number of elements in the array has to be known at compile time and cannot
be changed during program execution. The programmer has to decide how many elements will be
stored in the array, make a commitment at the time of writing the program, and stick to this
commitment for good and for bad.

This is a serious limitation. If the programmer allocates too much space for program arrays, this
space will be wasted, and the program might not have enough memory for other purposes. If the
programmer does not allocate enough space, the program corrupts memory during execution time,
and the application can crash or produce incorrect results. If the programmer wants to change the
size of the array, this can be done only through editing the program source code, recompiling, and
relinking it. This is simple for a small program, but very difficult for a complex production program
or for a program distributed to thousands of customers.

Sometimes, the size of the array is known exactly. For example, an array with the hours worked for
different days of the week should have seven components (unless you expect a day or two to be
added to the week in the near future). The same is true for the array whose components contain the
number of days in a month (unless the number of months in the year changes). The same is true for
an array whose components represent the chessboard. In most cases, however, we try to find a
"reasonable" compromise, allocating more elements than we think we are going to need but not too
many (twice the amount). The compromise is "reasonable" if this decision is supported by the code

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (197 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

that checks for array overflow and takes a "reasonable" action when it occurs. For some people,
"reasonable" might mean program termination. For others it means termination of input with
notification of the user.

Sometimes, the position of an element in the array has an application-related meaning. For
example, the name of the doctor running the hospital ward on a given day is related to the day of
the week. When data come in, it does not necessarily come for the first element first and for the
second element next. Some array elements might not have valid data at all. When arrays are used in
this way, we have to design a way for the program to tell the difference between the elements that
have valid data from the elements that do not. These arrays are called sparse arrays.

Most arrays are used as contiguous arrays. The first data item to be stored in the array is stored in
the first element. The next data item is stored in the next element. Here, we also need to distinguish
between elements that contain valid data and the elements that do not. The advantage of this
approach is that there is no need to mark each array element as valid or unused. All array elements
up to a specific location are used; all array elements after that location are unused.

There are two ways to implement contiguous arrays. One is to keep count of valid values inserted
into the array. Then the loops that process valid elements of the array could use this count to
terminate iterations. Another way to implement contiguous arrays is to have a special value that is
inserted after the last valid element of the array. Then the loops that process valid array elements
would stop when they find this special value. This special value is called a sentinel (it is similar to
the sentinels I used to determine the end of input in Chapter 4, "C++ Control Flow"). It should be
different from the values that a valid array element can assume.

Defining C++ Arrays

As any C++ variable, an array variable has to be defined before it can be used. The array definition
connects the name of the array with the type of the array elements and with the number of elements
in the array. As any definition, array definitions cause memory for the array to be allocated during
execution time. As any definition, array definitions end with a semicolon. You can define each
array on a separate line, or you can combine several definitions on the same line, for example:

int hours[7]; char grade[35]; double amount[20];

This line defines three arrays: array hours[] of 7 integer components, array grade[] of 35
character components, and array amount[] of 20 double floating point components. Notice empty
square brackets attached to the name of the array in this paragraph. This notation indicates that the
variable we are discussing is a vector with several values rather than a scalar with a single value.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (198 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For arrays of different types, as in the previous examples, each array has to be defined separately,
ending its definition with the semicolon. For arrays of the same type, it is all right to define several
arrays separating the definitions with commas (and ending the last definition with a semicolon).
Actually, one can combine definitions of arrays and scalar variables if their type is the same, for
example:

int category[7], i, num, scores[35], n;

Some programmers choose the names for their arrays using plural. When an array is passed as a
parameter to a function, it is more appropriate to indicate that the function gets a set of scores rather
than an individual score, for example, sum(scores). Others choose array names using singular.
When an individual element of the array is referred to using its index, for example, category[i],
it is more appropriate to indicate that it is a single category that is manipulated rather than a set of
categories. In the broader scheme of things, this issue is not very important.

Although the array size should be known at compile time, it does not have to be a literal value. It
can be a #defined symbolic literal, an integer constant, or an integer expression of any complexity.
The only requirement is that this expression could be evaluated at compile time, not at run time.
For example:

#define MAX_RATES 35 // array size as a #defined value
int const NUM_ITEMS = 10; // array size as a constant
int rates [MAX_RATES]; double amount[2*NUM_ITEMS];

An array can be initialized at definition just like any other C++ variable. The programmer supplies
initial values similar to initializing scalar variables. These initial values are specified in a comma-
separated list of values delimited by braces. Since commas are separators and not terminators, the
last initializer before the closing brace does not have a comma after it.

int hours[7] = { 8, 8, 12, 8, 4, 0, 0 }; // 7 values
int side[5] = { 40,35,41 } ; // other array elements are 0's
char option[2] = { 'Y', 'N', 'y', 'n' }; // syntax error
int week[52] = { , , 40, 48 }; // syntax error

The first initial value initializes the first component of the array, the second initializer goes to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (199 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

second component, and so on. Initial values should be of the same type as the array type or, if the
types are different, conversion between the values of the two types should be allowed. These
conversions are the same as the conversions discussed in Chapter 3 for mixed numeric types in
expressions. (For example, it is OK to initialize an array of components of type double using
integer initial values.)

In these examples, I supplied values for each component of the array hours[]. It is all right to
supply fewer values than there are components, as for array side[]: The components are
initialized starting with the first one until all initial values are exhausted. Those components that are
left without values are initialized to zero of the appropriate type. It is not all right to supply more
initial values than there are components in the array, as I did for array option[]. And it is not
allowed to skip some components by using commas, as I did for array week[]. Job Control
Language (JCL) allows this syntax, but C++ is not JCL.

Similar to scalar variables, an array variable defined in one file might be used in algorithms that are
implemented in another file. To make it possible, that other file has to declare the array variable
using the same name. The major difference between the array definition and declaration is that the
declaration does not specify the size of the array. Array declarations do not allocate memory for the
array. (This is the task for array definitions.) Although C++ declarations and definitions are similar,
the programmer has to distinguish between them.

For example, some other file might need the values of components of array hours[], or it might
compute the values that these components have to be assigned to. In that file, array hours[] would
be declared this way:

extern int hours[]; // declaration: no memory allocated

For this declaration to be valid, the original definition of the array hours[] should be placed
outside of any function as a global variable.

Similar to declarations of scalar variables, array declarations are used to establish the address of the
array in memory. Now the code in this file can access elements of array hours[] as if the array
were defined in this file. Since array declarations (as any other declarations) do not allocate
memory, they do not support initialization.

C++, however, allows the programmer to use the declaration syntax for defining arrays. This is
done when the size of the array is specified by the number of initializers rather than by an explicit
compile-time constant, for example,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (200 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

double rates[] = { 1.0, 1.2, 1.4 }; // three elements

Here, despite the declaration notation for array rates[], three elements of the array are allocated
and initialized. This definition is equivalent to the following definition.

double rates[3] = { 1.0, 1.2, 1.4 }; // explicit count

The advantage of the first definition is that one saves keystrokes for the size of the array. On the
other hand, the first definition forgoes the opportunity to define a constant for the size of the array,
and such a constant could come in handy in the algorithms for array processing.

One of the ways to resolve this problem is to compute the number of array components using the
sizeof operator you saw in Chapter 3. Dividing the size of the array by the size of one component,
you get the number of array components.

int num = sizeof(rates) / sizeof(double);

Notice the sequence of topics that the discussion of C++ arrays goes through. It is similar to the
discussion of other data definition facilities. Each time, we discuss the meaning of the new C++
facility to be introduced (variables in Chapter 3, arrays in this chapter, then structures, classes,
composite classes, and derived classes), the syntax of the definitions (and declarations if
appropriate), and then we discuss the initialization issues. This sequence of discussion is no
accident. Initialization is extremely important in C++, and we will be studying the methods of
initialization related to each kind of memory usage in C++.

Operations over Arrays

The discussion of initialization is invariably followed by the discussion of array operations. What
can we do with arrays? C++ is very limited in this regard. You cannot assign one array variable to
another, and you cannot compare two arrays, add two arrays, multiply them, and so on. The only
thing that you can do to an array is to pass it as an argument to a function. This is why when we
want to assign one array to another, or compare two arrays, and so on, we write our own code or
use library functions if they are available.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (201 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

All operations can be performed over individual array elements only. When we copy one array to
another, we copy each array element individually. When we compare arrays, we compare
corresponding array elements individually. In these operations, we refer to individual array
elements by using the subscript operator and the index (also called subscript) value.

For example, side[2] denotes the element of array side at index 2. For all intents and purposes,
side[2] is an ordinary scalar integer variable. Since array side[] is an array of integers, you can
do to side[2] all you can do to any integer variable as an lvalue or as an rvalue. It is just the name
that is different¡X instead of the identifier that we use for an integer variable, we use the array
name plus the index and the subscript operator.

side[2] = 40; // use as lvalue
num = side[2] * 2; // use as rvalue

On the first line, side[2] gets the value 40 to store at its location. On the second line, the value
stored at location side[2] is multiplied by 2 and the result is stored in variable num (it has to be
numeric). As we see, individual array elements do not have individual names. Their names are
composed from the name of the array and the value of the subscript (index).

The C++ notation for array elements is quite conventional. What is unusual is that C++ treats the
square brackets as the operator rather than just an element of notation. And if you look at Table 3.1
in Chapter 3, you will see that this operator is of high priority, on the top of the C++ operator table.
As any operator, the subscript operator has operands. What are they? It is the name of the array and
the value of the subscript. The operator is applied to name side and value 2, the result of the
operation is side[2], the name of the array component.

I know this sounds pretty abstract and remote from practice. What difference does it make whether
it is an operator or special notation? At this point it makes no difference. Later on, we will use this
operator in some interesting contexts.

The subscript does not have to be a literal value or even a compile-time value. Any run-time
numeric expression can be used as a subscript. If the expression is a floating point, character,
short, or long value, it is converted to an integer. Here, for example, the function foo() is called
at run time, and its return value is used to compute the subscript.

side[3*foo()] = 40; // is this legal?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (202 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For this to be legal, the function foo() should be defined and its return value (the value of
subscript) should be within the range of legal indices. If only part of the array elements is assigned
values, the index has to be the index of one of these elements. If all array elements are assigned
values, the index has to be within the first and last components. Indices that are outside of this
range refer to locations in memory that do not belong to the array and hence should not be referred
to as components of the array.

Index Validity Checking

Now brace yourself, fasten the seat belt, and get ready for a bombshell. The programmer cannot
choose the range of index values for an array arbitrarily: It is fixed for all C++ arrays. This is
unpleasant because often we want to assign some meaning to the index. For example, we might
have an array revenue[] that stores revenue data from 1997 to 2006; it would be convenient to
have the range from 1997 to 2006 as the range of array indices. Other languages allow
programmers to choose subscript ranges, but C++ does not: In this case, the interests of compiler
writers got precedence over the interests of application programmers. In C++, the range is fixed.
More over, it starts with 0.

Yes, the index of the first array component for any C++ array is 0 and not 1, and this is very
important.

For example, if the array side[] has five components, the legal array components are side[0],
side[1], side[2], side[3], and side[4]. Notice that side[5] is not a legal component of
this array.

What happens if you make a mistake and refer to side[-1], or side[6], or even to side[5]?
Does the compiler tell you that you made a mistake? No. A subscript value can be a run-time value,
not known at compilation time, and the compiler writers give up on checking. Even when the index
is a compile-time literal value that can be easily checked, the compiler does not check the index
validity.

C++ skips this validity check with the air of deference to the programmer. If you say side[-1] in
your code, you obviously meant something, and it is not the job of the compiler to second-guess
you and tell you that you are wrong. No, there is no built-in compile-time validity check for
indices.

Is there a run-time check? After all, some other languages validate every reference to array
components against the legal range of indices. Not C++. Index or subscript validation at run time
would affect performance, and this is a sacred cow in C++. And what if you do not have a
performance problem in your program? What if you want to check the validity of the index at run
time? No problem. Do it yourself; check the value of the index against its legal limits. No, there is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (203 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

no built-in run-time validity check for indices.

Of course, the underlying assumption for this kind of language design is that the programmer
knows what he or she is doing at every moment and does not need any help from the compiler or
the run-time system. Needless to say, this assumption is totally baseless, and errors in handling
subscripts are a common source of errors and worries for C++ programmers.

The reason for this rigidity (inherited from C) is that the array name is used as the address of the
first element of the array. The displacement of the first element from the beginning is zero. The
displacement of the second element is one length of the element (depending on its type). The
displacement of the third element is two lengths of the element. The compiler knows the size of the
element, and it is simpler to compute the address of the element using its displacement than using
its position in the array.

When the index value is invalid, the compiler still uses this index as displacement to compute the
address of the component in memory, and the program corrupts its memory. However, if this
address is not used for something useful, you can get away with that.

ALERT

There is no compile-time index validity check in C++. There is no run-time index validity check in
C++. The computer memory can be corrupted by your program. Watch out!

Let us look at some consequences of errors in handling indices. Listing 5.1 shows a program that
correctly assigns values to the sides of a polygon, but prints them incorrectly: The first value of the
index is 1, the last value of the index is 5. The program output is shown on Figure 5-1.

Figure 5-1. Output reveals the error in code.

Example 5.1. Erroneous scan over the array.
#include <iostream> // or #include <iostream.h>
using namespace std;

int main()
{
 int size[5] = { 39, 40, 41, 42, 43 };

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (204 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 for (int i = 1; i <= 5; i++) // bad start, bad end
 cout << " " << size[i]; cout << endl;
 return 0;
}

In this case, inspection of the output tells you that there is an error in the code. Often, however, if
the programmer is consistent in making errors, inspection of the output shows no sign of error.
Listing 5.2 shows the program that assigns the sides of a polygon incorrectly and prints them
incorrectly. The program does not use the location side[0] that belongs to the array. Instead, it
used the memory location side[5] that does not belong to the array. As Figure 5-2 shows, the
output is correct although the program corrupts the memory location it refers to as side[5].

Figure 5-2. Correct output hides errors in array handling.

Example 5.2. Error is hidden by correct output.
#include <iostream> // or #include <iostream.h>
using namespace std;

int main()
{
 int size[5];
 size[1]=39; size[2]=40; size[3]=41; size[4]=42; size[5]=43;
 for (int i = 1; i <= 5; i++) // bad start, bad end
 cout << " " << size[i]; cout << endl;
 return 0;
}

How dangerous is corruption of memory? If the memory that this code corrupts is not allocated for
anything useful (and there are plenty of machines around with huge memories that are not allocated
for anything useful), this is not a problem. If the corrupted memory is used by the program, the
error is difficult to find. As Listing 5.2 shows, it is even difficult to realize that the program is
incorrect and where to start looking for the error. Listing 5.3 expands this example. As you can see
from Figure 5-3, the value in a[0] is incorrect: It changes from 11 to 43 even though there is no
second assignment to a[0]. It is quite unlikely that in a real-life setting one would suspect that
handling the array side[] might change the values in array a[]. On your machine, this program
might corrupt memory in a different way. Despite whatever it does, this innocent-looking little
program is incorrect.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (205 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 5-3. Array a[] is corrupted by handling of array side[].

Example 5.3. Error in one place corrupts memory in another.
#include <iostream.h>
void main()
{ int a[3]; int size[5];
 a[1]=11; a[2]=12; a[3]=13; // a victim of corruption
 size[1]=39; size[2]=40; size[3]=41; size[4]=42; size[5]=43;
 for (int i = 1; i <= 5; i++) // bad start, bad end
 cout << " " << size[i];
 cout << endl;
 for (i = 0; i < 3; i++) // correct start, end
 cout << " " << a[i];
 cout << endl; }

Correct iteration over array components should start with 0, not with 1. Iteration should end one
value short of the array size. If array size is 5, the correct form of the test is i<5; if array size is 3,
the correct form of the test is i<3. In general, if the number of valid array elements is in variable
NUM, the correct form of the continuation test is i<NUM. The loop over array a[] in Listing 5.3 is
designed correctly. Notice that index i is defined in the first loop, not at the beginning of the
program. Its name is known until the end of the function. Hence, the second loop does not define
this variable but uses it as if it were defined at the beginning of the function. My compiler
(Microsoft Visual C++ version 6.0) does not implement standard C++ correctly¡Xthe scope of
index variable i should be the first loop only, not throughout the function.

Validity of indices is something a C++ programmer has to think about all the time. When you
iterate over all elements of the array, you should start the iteration with index 0. You should end the
iteration with index one less than the number of elements. This is a very simple rule. It is not
difficult to remember. It is not difficult to use. And most of the time we get it right. But at one time
or another, every programmer makes mistakes in accessing array components, and these mistakes
are very costly, especially when they are made at the time of maintenance. If you add together all
the time, effort and, frustration that the software industry has wasted on errors in handling array
subscripts, the result would be staggering. This is why C++ programmers should think about the
validity of indices all the time.

TIP

Start iterations over the array with the index set to 0. Continue while the index value is less than the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (206 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

number of valid array elements.

Multidimensional Arrays

C++ supports multidimensional arrays. Theoretically, there is no limit to the number of array
dimensions. When defining a multidimensional array, you specify the type of array components,
the name of the array, and, in separate brackets, the number of elements in the first direction,
number of elements in the second direction, and so on. For example, a two-dimensional array of
two rows and three columns (let us keep it simple) of integers would be defined as

int m[2][3]; // 2 rows of arrays, 3 elements each

Multidimensional arrays can be initialized using syntax similar to initialization of one-dimensional
arrays: The initial values are listed in a block with comma separators.

int m[2][3] = { 10, 20, 30, 40, 50, 60 };

Here, the first three values go to the first row of the matrix, and the last three values go to the
second row. For larger arrays, you can indicate the group of values that belongs to the same row by
using the scope braces. Row initializers are separated by commas. This will help the maintenance
programmer to identify data for each row easier.

int m[2][3] = { { 10, 20, 30 }, { 40, 50, 60 } };

Similar to one-dimensional arrays, you can specify fewer initial values than there are elements in
each row. The remaining elements will be assigned the zero value. For example,

int m[2][3] = { { 10, 20 }, {30, 40 } };

This is equivalent to the following explicit definition where the first three values go to the first row,
and the last three values go to the second row.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (207 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int m[2][3] = { 10, 20, 0, 30, 40, 0 };

Similar to one-dimensional arrays, you cannot specify more initial values than there are slots in a
row. This is a syntax error.

int m[2][3] = { { 10,20,30,40 }, { 50,60 } }; // error

The method of defining the size of the array by specifying initial values is available for
multidimensional arrays as well, but only partially. You can omit the number of rows, but you must
supply the number of columns, and the compiler will count the number of initial values and will
figure out the number of rows.

int m[][3] = { { 10, 20, 30 }, { 40, 50, 60 } };

You cannot omit the number of columns, whether or not you specify the number of rows. This is an
error.

int m[2][] = { { 10,20,30 }, { 40,50,60 } }; // error

The compiler could count the row groups and figure out the structure of the matrix, but it does not
do it. It is probably better to specify the array dimensions explicitly anyway.

Access to an element of the multidimensional array requires several indices, one for each
dimension. Similar to one-dimensional arrays, each index represents a displacement of the element
and hence starts with 0 and ends at the value one less than the number of elements in each
dimension. For example, the first element of the second row in the matrix m[][] is denoted as
m[1][0]. This notation can be used both as an rvalue (as an operand in an expression) and as an
lvalue (as a target of an assignment).

When traversing the elements of a multidimensional array, nested loops should be used. In the
nested loops for multidimensional arrays, the inner loop ends all its iterations first for one iteration

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (208 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

of the outer loop, then for the next iteration of the outer loop, and so on.

Listing 5.4 shows the nested loop that displays each element of matrix m[][] row-wise. The inner
loop changes index j from 0 to 2 for each value of the outer loop index i (which changes from 0 to
1). The output of the program is shown in Figure 5-4.

Figure 5.4. A two-dimensional array is displayed row-wise.

Example 5.4. Example of manipulating a two-dimensional array.
#include <iostream.h>
void main()
{ const int ROWS = 2, COLS = 3;
 int m[ROWS][COLS] = { { 10, 20, 30 }, { 40, 50, 60 } };
 for (int i=0; i < ROWS; i++) // done once for each row
 { for (int j=0; j<COLS; j++) // done for each index i
 cout << " " << m[i][j];
 cout << endl; } // end of row: once for each index i
}

Those programmers who switch to C++ from other languages find this notation for
multidimensional array elements somewhat difficult (or just new). They sometimes use only one set
of brackets and separate indices by commas. For example, instead of m[1][0], the programmer
might use m[1,0]. Unfortunately, the compiler does not stand by to tell you that you made an
error. Instead, the compiler quietly accepts this comma expression for indices and leaves it to
chance and to your ingenuity to notice that the program is incorrect. Figure 5-5 shows the output of
the program in Listing 5.4 where m[i][j] was mistakenly written as m[i,j].

Figure 5-5. Listing 5.4 output with m[i][j] spelled as m[i,j].

There are two reasons for this mishap, both of which are inherited from C. One is that the comma is
a full-fledged C++ operator. When the compiler evaluates the comma-separated index expression
[i,j], it first evaluates i (or 1), then finds the comma, drops the value of i and evaluates the next
expression, j (e.g., 0). Then the compiler returns this value as the index. For all intents and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (209 of 1187) [8/17/2002 2:57:48 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

purposes, m[i,j] could have been written as m[j]. The second reason is that m[j], with one
index only, is a legal notation for a row at displacement j¡Xnot all indices are required for
multidimensional arrays.

NOTE

To refer to a component of a two-dimensional array, use the form with two sets of brackets:
a[i][j]. Do not use the comma: a[i,j] leads to trouble.

Multidimensional arrays are supported in C++ as syntactic fluff, only for the convenience of the
programmer. Under the hood, they are implemented as one-dimensional arrays. Some programmers
prefer to use a one-dimensional array with ROWS*COLS components and compute the index for
element in the ith row and jth column as i*COLS+j. (Do not forget: indices start with 0 and end
with ROWS*COLS-1.) Listing 5.5 shows the same program as in Listing 5.4, where the array is
explicitly treated as a one-dimensional array. The output of this program is the same as in Figure 5-
4.

Example 5.5. Using a one-dimensional array to implement a matrix.
#include <iostream>
using namespace std;

int main()
{
 const int ROWS = 2, COLS = 3;
 int m[ROWS * COLS] = { 10, 20, 30, 40, 50, 60 }; // same size
 for (int i=0; i < ROWS; i++)
 { for (int j=0; j < COLS; j++)
 cout << " " << m[i*COLS + j]; // do it hard way
 cout << endl; } // end of row: done once for each i
 return 0;
}

Which way of handling indices is better? It might depend on the application and on personal
preference, so it is hard to recommend one over another.

Often, when you choose the array representation, it does not matter whether you use a one-
dimensional or multidimensional array, whether you use one index or several indices. Just make
sure you are ready to handle index manipulations.(Bring your car with you if it makes you feel
more confident.)

Defining Character Arrays

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (210 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The significance of character arrays is based on the fact that text is represented in C++ as arrays of
characters (they are often called strings). All that was said in this chapter about arrays (one- and
multidimensional) applies to arrays of characters as well.

Whatever you do with any arrays¡Xprinting, saving to file, copying into another array, comparing
with another array, and so on¡Xyou have to know where the array ends. Often, the array definition
is not available for reference. Even when available, the definition is useless, because the size of the
array should be larger than any set of elements that is stored in the array. This is why the actual
number of elements in the array is often smaller than the size of the array.

As I mentioned earlier, there are two approaches to dealing with this problem: one is to keep the
count of elements in the array and the other is to use a sentinel value at the end of the array. For
noncharacter arrays, either method could be used. For character arrays, C++ uses the second
method. The sentinel value for character arrays that C++ uses is the numeric 0, because 0 is a
special code that is different from any legal character code. (It is often called the zero terminator
character or just the terminator.)

To distinguish this code from the character '0' (in ASCII, 48 in decimal, 0¡Ñ30 in hex), the sentinel
character is often represented as the escape sequence '\0' (0 in decimal, 0¡Ñ0 in hex).

When an array of characters or a literal string is passed as an argument to any of the C+ library
functions, the functions expect the text to be appended with this sentinel character. Whenever a
function generates a character array, it appends the sentinel character to the end of the text in the
array so that the array can be used by other library functions.

char t[4] = { 'H','i','!','\0' }; // four array elements
cout << t << endl; // It displays "Hi!"

Here, the array t[] is initialized using the standard syntax for one-dimensional arrays and then is
passed to the operator function << as an argument. This function keeps printing the string characters
one after another until it finds the zero code; then it stops.

The escape character representation is mandatory only when this value is part of a string literal. In
many contexts, the numeric 0 can be used. Here, for example, it is OK to use the zero (0) code
instead of the escape zero character ('\0'). Some programmers prefer to use the character notation.

char t[4] = { 'H', 'i', '!', 0 }; // some prefer '\0'

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (211 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This notation is inconvenient for initializing long character arrays. Recognizing this practical need,
C++ allows a special dispensation: You have the right to use a string literal instead of a set of
character initial values. The compiler will understand what you mean, will put each character into
its position in the array, and will add the zero terminator at the end.

char t[4]="Hi!"; // t[0] is 'H', t[1] is 'i', etc.
char u[]="Today is a nice day."; // 21 characters with terminating 0

The string literal "Hi!" has four characters, the fourth being the code 0. The string literal "Today
is a nice day." has 21 characters including the code 0; hence, array u[] has 21 components, not
20. The sentinel character needs an extra array element to be stored there. Failure to provide the
space for this extra element could cause problems. This, for example, is a syntax error.

char v[3]="Hi!"; // Four initial values for 3 elements

It is all right to define a character array with more space than there are initializing characters. It is
OK to define a character array and leave its contents undefined.

char last[30]="Jones", first[30]; // space is available

Access to individual string components is, of course, similar to ordinary arrays. Each array
component is of type char. The first index is 0.

t[0] = 'N'; t[1] = 'o'; // t[] contains "No!" now, not "Hi!"

When dealing with character and string literals, it is important to remember which one requires
single quotes, and which one needs double quotes. For example, 'o' above is a character literal, but
"o" is a string literal. It consists of two characters: character 'o' and character '\0'.

Operations on Character Arrays

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (212 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Individual characters can be assigned to each other or compared with other characters. They can be
shifted, added, and so on. None of these operations is available for strings (character arrays).
Fortunately, the C++ library comes with a large number of functions that operate on string arrays.
As an argument to a function, the array name is used without a subscript.

Function strcpy() implements assignment for character arrays. It takes two arrays as arguments
and copies the components of the second argument into the corresponding components of the first
one. Copying takes place until the zero code in the second argument is found. The zero terminator
is copied too, making the target array a well-formed array that can be used as an argument to other
functions.

strcpy(u,t); // Now u[] contains "No!", too

Because no function is going to look at the string contents beyond the sentinel, there is no need to
clean up the rest of the string. Before this function call, the string u[] had the contents "Today is
a good day \0" where " \0 " is the sentinel character. After the function call, it has "No!\0y is
a good day.\0" but nothing after the first " \0 " is relevant anymore. (Here, the use of the escape
character is mandatory.) For all intents and purposes, the contents of this string is "No!".

There is no problem with passing a string literal as argument to a function that expects a character
array because every string literal has the zero terminator at the end. The only requirement is that the
function not change the state of the array because the literal is a constant and its contents cannot be
changed by the function.

strcpy(t,"Yes"); // Now t[] contains "Yes" plus zero
strcpy("Yes",t); // No, you cannot do that: syntax error

Function strcat() implements the operation += for character arrays. It also takes two character
arrays as its arguments and copies the second argument into the first one. Unlike strcpy(), it does
not replace the contents of the first parameter with the new contents but rather appends it to the
current contents. The result is concatenation of two strings.

strcat(u," means No!"); // u[] contains "No! means No!"

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (213 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The appended characters start from the position where the null terminator used to be before
concatenation and overwrites it and other characters that might be in the array. The null terminator
is inserted after the appended characters so that the contents of array u[] now is "No! means
No!\0e day.\0" Since no C++ function looks beyond the terminator, the string contains "No!
means No!" for all intents and purposes.

Function strcmp() implements the comparison operation for its two character arrays arguments. It
compares the corresponding characters one after another until it either finds two different
characters at the same displacement or reaches the sentinels. If the function finds two different
characters, it compares their lexicographical order, that is, which one precedes another in the table
of ASCII codes. If the strings are ordered and the character in the first argument precedes the
character in the second argument, strcmp() returns -1. If the strings are out of order and the
character in the second argument precedes the character in the first argument, the function returns
1. If the function reaches both sentinels at the same displacement, it returns 0 and the strings are
considered the same.

For example,strcmp("Hi", "Hello") returns 1: The strings are out of order. On the other hand,
strcmp("Handler", "Hello") returns ¡V1, and so does strcmp("Hell", "Hello") because the
sentinel in the first string is compared with character 'o' in the second string. Since lowercase letters
follow uppercase letters in the ASCII table, strcmp("hello", "Hello") returns 1, and the true
branch of this conditional statement is executed.

if (strcmp("hello","Hello")) cout << "Not ordered\n";

NOTE

All C++ library functions stop processing the string when they find a terminating zero. Symbols
that follow the zero are not available to library functions. Use strlen() to evaluate the number of
symbols preceding the terminating zero.

Another useful library function is strlen(), which accepts a character array as an argument and
returns the number of characters in the string that precedes the zero terminator. For example,
strlen("Hello") returns 5, and strlen(t) returns 3 (it contains "Hi!"). All library functions
stop looking at the string contents as soon as they find the sentinel character.

String Functions and Memory Corruption

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (214 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

None of these functions will check whether there is enough space to do the operation. The formal
reason is that no C++ function knows the total number of elements in the array it receives as its
argument, whether it is a character array or any other type. But the real reason is that this check
might affect program performance, and this is why a C++ programmer should think about the
available space (along with other issues) all the time and make sure that enough space is available.

In addition, these functions give "undefined results" if two arrays are overlapping in memory. This
means that the results might be correct or incorrect, but there is no assurance either way.

Listing 5.6 shows a program that deals with the available space recklessly. What can be simpler
than reading two items of data and echoing them back? The program passes the arrays first[] and
last[] to the extraction function >> that fills the arrays with input characters and appends them
with the zero terminators.

The program output is shown in Figure 5-6. When the data are short enough, there is no problem.
When data are longer, the problem (in this trivial example) becomes evident. One can say those six
characters for the first or the last name are not much. Moreover, there are only five slots available
because the sixth one is taken by the terminating null. Do you think that 20 characters is enough?
My friend Galina Beloselskaya-Belozerskaya would have a problem and overflow that array¡Xher
name contains 33 characters including the blank and the terminating zero.

Figure 5-6. Array overflow on input silently damages other data.

And what if the key stuck on the user's keyboard? The user will notice and correct this obviously
erroneous entry, but other memory locations might be silently damaged.

Example 5.6. A simple example of array overflow.
#include <iostream>
using namespace std;
int main()
{
 char first[6], last[6]; // are not these arrays too short?
 cout << "Enter first name: "; // I enter "John\0" (5 symbols)
 cin >> first; // no protection against overflow
 cout << "Enter last name: "; // I enter "Johnson\0" (8 symbols)
 cin >> last; // no protection against overflow
 cout << first << " " << last << endl; // just to check results
 return 0;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (215 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

}

Here, array first[] contains the string "John\0" (the last two symbols, '\0' represent one memory
location whose contents is 0). Array last[] contains "Johnson\0" (eight symbols including the
terminating zero). However, array last[] has space available for only six symbols. Where do the
two symbols "n\0" go? On my machine, array first[] actually follows array last[] in memory.
Why that is so, is not important. What is certain is that these two characters have to go somewhere.
After entering the last name, the array first[]contains these two characters "n\0" plus whatever
is left from "John\0", that is, "n\0hn\0". When I print the array first[] with cout, printing
stops when the first '\0' is found, immediately after printing 'n'.

How do you like it? This is quite interesting; and quite dangerous. On your machine it might work
somewhat differently. Some compilers allocate space in 4-byte chunks, so that the arrays will
actually contain eight characters each rather than six, and you have to use a longer name to see
memory corruption. Some compilers do not place array first[] after array last[]. Whatever the
case, the important fact is that string processing is prone to memory corruption.

Dynamic memory management is a good solution to this problem, but we do not have the necessary
tools yet. Another practical solution is to limit the number of characters that can be put into an
array. This could be done by using the input function get() which allows the programmer to
specify the upper limit on the number of characters read as input.

cin.get(first,6); // read up to 5 characters + null

If function get() finds the newline character before the number of characters reaches the limit
minus one, it stops input, and the newline character '\n' remains in the input buffer as the first
character to be read next time. Another null character is appended to the array, and everything is
fine.

If the user keeps typing away without pressing the Enter key, the input is terminated when the
number of characters read reaches the limit minus one. The terminating null is appended so that the
string is well formed. When the user finally presses the Enter key, the extra characters remain in the
input buffer terminated by the new line character. They will be read by the next input statement (if
there is one).

The use of function get() poses two problems. Let us say that the first name contains only three
characters (e.g., "Amy"). Next, the last name is entered.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (216 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

cin.get(last,6); // it stops when it finds new line

The first thing that this statement finds in the input buffer is the newline character leftover from the
previous call to get() that read "Amy". This call to get() reads this character and terminates. As a
result, the empty string is read into array last[]. Get it? Whatever the user types does not get into
the array last[] and is left in the input buffer. If the first input was too long ("Vladimir"), only
five characters were put into array first[] with the terminating zero. The rest of the input ("mir")
is left in the input buffer waiting for the next input request. Whatever the user types for the last
name does not get into array last[]. The program will read characters from the input buffer
("mir") and will stop at the newline character in the buffer (leaving it there).

We see that function get() cannot do this job alone. It needs function ignore() that reads input
characters and throws them away. It expects you to specify the upper limit on the number of
characters to throw out and the delimiter character that stops throwing characters out. (Here, we
will use the newline character.)

Listing 5.7 shows this solution to the problem of input data overflow. It also demonstrates the next
problem, this time related to copying and concatenation. The program forms the customer name out
of the last name, comma, space, and the first name. If the number of characters copied into array
name[] exceeds the size of the array, the characters are still copied into whatever memory space
happens to be adjacent to the array. Figure 5-7 shows the results of execution. Even though array
name[] contains "correct" data, array last[] is silently damaged, even though no program
statement explicitly changes its contents.

Figure 5-7. Array overflow on concatenation silently damages other data.

Example 5.7. An example of array overflow in concatenation.
#include <iostream> // or #include <iostream.h>
#include <cstring> // or #include <string.h>
using namespace std;
int main()
{
 char first[6], last[6]; char name[10]; // name = last, first
 cout << "Enter first name: ";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (217 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cin.get(first,6); cin.ignore(2000,'\n'); // has to remove CR
 cout << "Enter last name: ";
 cin.get(last,6); cin.ignore(2000,'\n'); // it stops at first CR
 cout << first << " " << last << endl;
 strcpy(name,last); // copy last[] into name[]
 strcat(name,", "); // append a comma and a space
 strcat(name,first); // append first[] to name[]
 cout << "Customer: " << name << endl;
 cout << first << " " << last << endl; // "just in case"
 return 0;
}

Here, array first[] contains "John" and array last[] contains "Smith"; these arrays are
protected from overflow on input. Then I concatenate the name component in array name[] as
"Smith, John"; this string contains 12 characters including terminating zero. Since array name[]
has only 10 characters, two last characters, "n\0", go elsewhere. On my machine, they go into
array last[]. As the result, array last[] contains these two characters and whatever was left
from "Smith", that is, "n\0ith\0". When the last cout statement of the program prints the first
name, it prints correctly; when it prints the last name, it prints "n" and stops.

To deal with this problem, the C++ library string.h offers functions strncpy() and strncat(),
which are similar to strcpy() and strcat() but have a third argument that specifies the limit of
the number of characters to be copied.

Their use is shown in Listing 5.8. Function strncat() terminates copying when the specified
number of characters is copied (or the end of the second argument is reached) and appends the null
terminator. It is safe. Function strncpy() appends the null terminator only if the length of the
second string is shorter than the specified limit. When the limit is reached, it terminates copying but
does not append the sentinel character. Hence, strncpy() does not always create a well-formed
string. It is not safe to use. Figure 5-8 shows that the use of L does protect the target array from
overflow. The target array name[]contains truncated data ("Smith, Joh" instead "Smith, John"),
but this data are well formed.

Figure 5-8. Truncation of data to prevent memory corruption.

Example 5.8. An example of preventing array overflow in concatenation.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (218 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <iostream>
#include <cstring> // notice a new header file
using namespace std;
int main()
{
 char first[6], last[6], name[10];
 cout << "Enter first name: ";
 cin.get(first,6); cin.ignore(200,'\n'); // it has to remove CR
 cout << "Enter last name: ";
 cin.get(last,6); cin.ignore(200,'\n'); // it stops at first CR
 cout << first << " " << last << endl;
// strncpy(name,last,4); // no null if length>=count
 strcpy(name,last);
 cout << "After copy: " << name << endl;
 strcat(name,", ");
 strncat(name,first,3);
 cout << "Customer: " << name << endl;
 cout << first << " " << last << endl; // "just in case"
 return 0;
}

Or is it? I calculated my truncation strategy incorrectly. Array name[] contains 10 characters, and
the string "Smith, Joh" contains 11 characters, including the zero terminator. Where does this
zero go? On my machine it wound up as the first character in array last[], corrupting its contents
as "\0mith" instead of "Smith". When the last cout was printing the array last[], it found the
zero as the first character and did not print anything.

TIP

For all operations on strings, make sure that long input data do not overflow character arrays and
do not damage unrelated program data. These errors are hard to find because they are unrelated
data that are damaged.

Did I scare you? If I did, that was my intent. C++ programmers exercise tremendous influence.
They write programs that affect lives of many people. The language they use is powerful and
beautiful. It is dangerous in inexperienced hands¡Xpretty much like a handgun or an automobile.
Make sure that you make all the effort necessary to use this potent language correctly.

Two-Dimensional Character Arrays

A character array can contain more than one word. For many text processing applications, the text
has to be broken into separate words and organized into arrays of words for processing. An array of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (219 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

character arrays is, of course, a two-dimensional array of type char. Let us, for example, consider
an array of days of the week. We want to search this array to check whether input data in array
day[] contains the days of the week "Sunday" or "Monday" or "Tuesday" and so on. Even if these
words are of different lengths, we represent these data as a two-dimensional array of characters that
has seven rows for seven days of the week. The rows have to be the same length. The maximum
length has the word "Wednesday" that has nine characters. With yet another position for the
terminating zero, the array has to have ten columns.

char days[7][10], day[10];

If we want to check whether or not array day[] contains a legal day of the week, we compare this
array with each row of array days[][]. We can do that the hard way, comparing each element in
the ith row (i changes from 0 to 6). If the characters of array day[] are the same as the characters
in the ith row of array days[][], we stop the iterations of index i because the input data are found
in the array. Hence, in the outer loop we should know what happens in the inner loop. This is
usually done using a control flag (e.g., variable found). Before the inner loop starts, we set it to 1
(true); if different characters are discovered by the inner loop, the inner loop sets this variable to
0 (false), indicating to the outer loop that the word was not found. If all the characters in array
day[] and in the ith row of array day[][] are the same, the assignment found = 0; is never
executed, flag value remains 1, and the break statement terminates the outer loop.

for (i = 0; i < NUM; i++)
{ found = 1; j = 0;
 do {
 if (day[j] != days[i][j]) // word is not found
 { found = 0; break; } // stop, do it for next i
 j++;
 } while (day[j] != '\0');
 if (found == 1) break; } // break outer loop

Some C++ programmers would code the last four lines more concisely.

do
{ if (day[j]!=days[i][j++]) // compare and increment
 { found = 0; break; } // stop, do it for next i
 } while (day[j]!='\0'); // no need for separate j++
 if (found) break; } // any nonzero value is true

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (220 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Using the concise form of the conditional statement is safe and appropriate. Combining comparison
and increment is reckless. Here, j is used in two subexpressions, and as I told you in Chapter 3, we
do not know in what order they are evaluated. On my machine, this code executed incorrectly. On
your machine, it might execute correctly. It does not matter: A prudent C++ programmer has to be
aware of the issue and avoid this style of coding.

Often, we simplify this kind of processing by using the strcmp() library function. Listing 5.9
shows the program that prompts the user for the day of the week, searches the two-dimensional
array of characters, and displays the number of the day that was found. Notice that after the search
loop is terminated, the program must decide why the loop was terminated: either because the word
was found or because we ran out of array elements without finding a match. There are several ways
to do this. Here, I check the value of index i. If it is equal to the number of elements in the array,
this means that the search was unsuccessful. If it is less than the number of elements, the loop was
terminated by the break statement. Figure 5-9 shows the results of the run. I did not test all
possible legal input values, and this is not prudent: "Friday" is misspelled in the array
initialization.

Figure 5-9. Cutting corners in testing is asking for trouble.

Example 5.9. Using a two-dimensional array of characters for search.
#include <iostream>
#include <cstring>
using namespace std;
#define NUM 7 // do we expect the week length to change?

int main(void)
{
 int i; char day[10];
 char days[NUM][10] = { "Sunday","Monday","Tuesday",

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (221 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 "Wednesday","Thursday","friday","Saturday" };
 do { // do until the user enters "end"
 cout << "Enter day of the week or 'end' to finish: ";
 cin.get(day,10); cin.ignore(2000,'\n'); // this is prudent
 cout << "Your input: " << day << endl;
 if (strcmp(day,"end")==0) break;
 for (i = 0; i < NUM; i++)
 if (strcmp(day,days[i])==0) break; // stop search if found
 if (i == NUM) // check why we got here
 cout << "Input \"" << day << "\" is incorrect\n";
 else
 cout << day << " is day no. " << i+1 << endl;
 } while (1==1); // go on forever
 cout << "Thank you for using this program" << endl;
 return 0;
}

Array Overflow in Insertion Algorithms

The algorithm in Listing 5.9 used the array of data (days of the week) for searching only, and the
issue of array overflow did not come up. The size of the array was the same as the number of valid
elements in the array. Usually, arrays have to be filled with data before they can be used for further
processing. The data take the first part of the array, and each new element is appended after the
current last element. At each moment, the part of the array used for data is a contiguous set of
elements, and the second part of the array contains locations that are available for use but do not
contain valid data.

Further processing should be done, not over each element of the array but over each element in the
contiguous part filled with valid data. This is why it is often necessary to keep track of how many
valid data elements there are in the array. The algorithms that append (or insert) elements in the
array must worry about array overflow.

Listing 5.10 shows the algorithm that enters transaction data. This is an extension of examples
discussed in Chapter 4. Those examples used a bogus negative value to indicate the end of input.
Here, we want to do that in a more-civilized way, by asking the user to terminate the input by
typing " end. " (Hitting the Enter key to indicate the end of input is not a bad idea, but it can be
done accidentally.) To be able to treat input data both as text and as numbers, the program enters
data into array buff[] and checks whether it is the "end" sentinel. If it is not the sentinel, the
program converts the string into a floating point number calling a library function atof() defined
in the header file cstdlib (or stdlib.h). In this function name, 'a' stands for ASCII, 'to' stands
for "to" and 'f' stands for ¡K well, I wish I could say for float, but I have to be frank with you:
This function returns double. There are also functions atoi() (ASCII to integer) and atol()
(ASCII to long), but there is no atod() function. These functions can convert up to 100 characters,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (222 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

so a 20-character buffer is OK. If the buffer does not contain numeric data, atof() returns 0, and
the program warns the user. A better strategy is to check whether the input data contain anything in
addition to a number, but that would require functions strtod() and strtol() (string to double
and to long) and the use of pointers, and we are not ready to do that yet.

Otherwise, the program accumulates the value of total, saves the input value in the array, and
increments the index. At the end of input, variable count will contain the number of valid values in
the array. This is why further processing (printing the transaction values) uses a loop that iterates
until the index reaches count and not the number of array elements NUM. Notice the use of the
library function width(), which specifies the minimum number of positions in output that are
allocated for the next value. The default width is zero: The value takes only as many output
positions as it needs. If the number of characters in the output value is less than the requested
width, the rest is filled with spaces (numbers are right aligned, strings are left aligned). If the
number of characters to display is greater than the width requested, the width is disregarded and the
value takes as many positions as it needs.

Notice also debugging statements that display the input data and the data converted to numeric
form. Things often go wrong when the program interprets input data incorrectly but we do not
know about it. It is always a good idea to check what the program actually gets as input. The
example of the program run is shown on Figure 5-10.

Figure 5-10. Using contiguous array for storing input data.

Example 5.10. Filling the contiguous array with transaction data.
#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (223 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main ()
{
 const int NUM = 100; // the size can of course
change
 double total, amount, data[NUM]; int count;
 char buff[20];
 total = 0.0; count = 0; // initialize current data
do { // do until the user
enters "end"
 cout << "Enter amount (or 'end' to finish): ";
 cin.get(buff,20); cin.ignore(2000,'\n');
// cout << "You entered '" << buff << "'" << endl; // debugging
 if (strcmp(buff,"end")==0) break;
 amount = atof(buff); // convert to double up to
100 chars
// cout << "Amount: " << amount << endl; // debugging aid
 if (amount <= 0) // zero if non-numeric
input
 cout << "This value is discarded as incorrect.\n"
 << "Please reenter it correctly.\n";
 else
 { total += amount; // process current data
 data[count] = amount;
 count++; }
 } while (1 == 1);
 cout << "\nTotal of " << count << " values is "
 << total << endl;
 if (count == 0) return 0;
 cout << "\nTran no. Amount\n\n";
 for (int i = 0; i < count; i++)
 { cout.width(4); cout << i+1;
 cout.width(11); cout << data[i] << endl; }
 return 0;
}

The program in Listing 5.10 does a good job using the contiguous set of array elements to store
data. The second loop does not display all available array elements, only those that the first loop
put into the array. However, the program does not prevent array overflow if the number of input
values exceeds the array length.

To prevent array overflow and corruption of memory, the first loop should test whether index
count points to a legal array element. Remember, the first illegal index value is NUM, the number of
elements in the array. So, as long as count is less than NUM, the value could be saved in the array.
Otherwise, the input should be terminated.

Real-life programs contain long arrays, and to test the protection from overflow, one has to supply

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (224 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

hundreds or thousands of values. This is time consuming and prone to error. Listing 5.11 shows the
version of the program in Listing 5.10 that implements protection against overflow. To avoid using
large sets of data, the size of the array is decreased to 3. This is a good debugging technique.

In the example in the previous section, the character array was not modified, and the index value
was a reliable indicator of why the loop was terminated. If the index value was less than the
number of elements, it meant that the item was found. Otherwise, the loop tested all array elements
unsuccessfully. In this example, this approach is not 100 percent reliable, because count could
reach NUM when the user entered exactly NUM values. This is a very rare occurrence for very large
arrays, extremely rare. This is why some programmers do not account for it in code. This is not
right. Listing 5.11 tests whether the user entered "end"¡Xif not, the loop was terminated because of
array overflow. Figure 5-11 shows the results of execution.

Figure 5-11. Using a very short array to test for overflow protection.

This version of the code also shows the use of the const keyword with array LAST[]. This allows
the maintenance programmer to easily change the terminator to "finish" or an empty string or
anything else, without chasing all occurrences of "end" in the source code. The same is true of the
symbolic literal NUM. Changing a constant literal is much better than global editing. Once, I wanted
to change the size of my array from 100 to 300, and I did that using the global replace command.
This was a financial application that counted on the fact that each dollar contained exactly 100
cents. After this global replacement, one dollar in my program was worth 300 cents, and my boss
did not like that.

Example 5.11. Entering input data in the array with overflow protection.
#include <iostream>
#include <cstring>
#include <cstdlib> // to support atof()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (225 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

using namespace std;
int main ()
// { const int NUM = 100; // the size can of course change
{
 const int NUM = 3; // for debugging only
 const char LAST[] = "end"; // literal for termination
 double amount, total, data[NUM];
 char buff[20]; int count;
 total = 0.0; count = 0; // initialize current data
do { // do until the user enters "end"
 cout << "Enter amount (or '" << LAST << "' to finish): ";
 cin.get(buff,20); cin.ignore(2000,'\n');
 if (strcmp(buff,LAST)==0) break; // end of input data
 amount = atof(buff); // convert to double up to 100 chars
 if (amount <= 0) // zero if non-numeric input
 cout << "This value is discarded as incorrect.\n"
 << "Please reenter it correctly.\n";
 else if (count < NUM)
 { total += amount; // process current data
 data[count] = amount;
 count++; }
 else
 { cout << "Out of memory: input is terminated\n";
 break; }
 } while (1 == 1);
 if (strcmp(buff,"end") != 0)
 cout << "The value " << amount << " is not saved\n";
 cout << "\nTotal of " << count << " values is "
 << total << endl;
 if (count == 0) return 0;
 cout << "\nTran no. Amount\n\n";
 for (int i = 0; i < count; i++)
 { cout.width(4); cout << i+1;
 cout.width(11); cout << data[i] << endl; }
 return 0;
}

Notice that if you do not include the cstdlib (or stdlib.h) header file, the compiler will flag a
call atof()as a syntax error, telling you that it does not know what that atof() function is. Let us
call a lie a lie. The compiler knows what the library functions are and where they are. What do you
do if you do not remember what header file atof() needs? You ask the compiler. Under UNIX,
you type man atof. Under Windows, you highlight atof in your source code and hit F1 for Help.
Immediately the Help page is displayed, which tells you all there is to be known about atof(),
including the name of its header file.

Defining Array Types

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (226 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In all previous examples in this chapter, the arrays we used were array variables rather than array
types. If we needed another array with the same structure as a given array (that is, with the same
type and number of components), we had to define another array from scratch.

double data[NUM];
double tax[NUM];

If these definitions are in different places in the program, it would take extra effort on the part of
the maintainer (or the fellow designer) to understand that these two computational objects have the
same structure. Again, the issue here is writing code in such a way that the knowledge of the
designer (in this case, that two arrays have the same structure) is passed on to the maintenance
programmer.

A good way to convey that knowledge would be to define a type, like SalesData, for arrays of
NUM components of type double, and use this type name to define any number of variables of that
type,

SalesData data;
SalesData tax;

This is exactly the way we use built-in scalar types to define variables of this type. C++ allows us
to do that by using the typedef keyword. In general, typedef is a facility to define new names,
including the type names, on the basis of other names known to the compiler. Its general form is a
statement that connects the known type and the new name that is equivalent to the known type.

typedef known_type new_type_name;

After this statement (terminated by the semicolon), the program can use both known_type and
new_type_name as synonyms.

A simple example of the use of typedef would be the following segment of code that processes
inventory information.

int idx, quant, const MAX=30, qty[MAX];
for (idx = 0; idx < MAX; idx++)
 { cin >> quant;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (227 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 qty[idx] = quant; }

Here, variables idx, quant, MAX, and elements of array qty[] are all integers. However, they are
integers of a different nature: one is the index of the array, and others describe quantities of
inventory items. Statements like qty[idx]=quant; make sense. Statements like idx=quant; do
not make sense; you cannot mix apples and oranges in computations. As far as C++ rules are
concerned, both kinds of statements are legitimate. One way to stress their different nature is to
introduce two new type names.

typedef int Index; //one kind of integers
Index idx;
const Index MAX=30;
typedef int Stock;
Stock quant, qty[MAX]; //another kind of integers
for (idx = 0; idx < MAX; idx++) //comparison between the same type
 { cin >> quant;
 qty[idx] = quant; } //assignment between the same type

Here, idx and MAX are of the same type, Index; small wonder: Their comparison is legitimate.
Variables quant and qty[idx] are of the same type, Stock, and the assignment is appropriate. If
the programmer had said, for example, idx=quant; this assignment would be suspect because
these variables are of different types.

In this example, the typedef facility is used to define a new name for the existing type, int, and
not to introduce a new type. It is only for the programmer that these types are different. For the
compiler, Index and Stock are aliases for the same type name.

For defining an array type, we use a somewhat different form of typedef that defines a new type.

int const MAX = 30;
typedef double SalesData[MAX];

In this definition, the keyword typedef precedes a syntactically complete definition of an array. If
it were not for typedef, this definition would introduce a new name, SalesData, defined through
type double and constant MAX, as the name of an array variable. Since typedef is present, this
definition introduces the new name, SalesData, as the name of a new type. According to what

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (228 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

follows typedef, this type defines an array of MAX components of type double. (Of course, MAX
can be any compile time constant, including a literal integer value.)

Now we can use this type name to define variables of this type. Each variable is an array of MAX
components of type double, even though the definition of the variable includes only the type name
and the name of the variable. Each of these two array definitions allocates memory for MAX
components of type double.

SalesData data;
SalesData tax;

Variables data and tax can be used as any array variables by using the same notation for array
components as ordinary array variables do.

for (int idx = 0; idx < MAX; idx++)
 { tax[idx] = data[idx] * 0.05; }

Although the form of typedef that we used for defining types Index and Stock is different from
the form used for defining type SalesData, they work in the same way. They define as a new type
name the only element of typedef that is not yet defined in the typedef statement (Index and
Stock in the first case, SalesData in the second case).

We will see more on the use of typedef in the next section.

Structures as Heterogeneous Aggregates

The next programmer-defined aggregate data types on our agenda are structures. C++ structures are
a powerful aggregation tool for combining related components. There is more than one method to
define a structure in C++, and we will discuss the most popular ones. All methods allow the
programmer to define structure components (fields, or data members), that is, to list the types and
names of the components.

Defining Structures as Programmer-Defined Types

The structure definition starts with the keyword struct followed by the programmer-defined name
that will be used as a type name to define variables in the program. The structure fields are declared
within scope curly braces followed by a semicolon. Each field declaration is similar to a declaration
of a variable: It includes the type and the programmer-defined name but cannot include

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (229 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

initialization.

struct Account { // 'Account' is a type name now
 long number; // 'number' is a field name
 double balance;
 double overdue; } ; // semicolon follows the brace

Each field declaration ends with a semicolon. If the fields that follow each other in the structure
definition are of the same type, they can be declared using only one type name and commas as
separators. This structure definition defines exactly the same type as the previous one¡Xno
difference.

struct Account { // 'Account' is a type name now
 long number; // 'number' is a field name
 double balance, overdue; } ;

C++ supports yet another syntax for defining a structure that it inherited from C: using typedef to
define a new type.

typedef struct tagAccount {
 long number;
 double balance, overdue; } Account;

This is the same use of typedef that we saw in the previous section for integers.

 typedef known_type new_type_name;

Here, known_type is represented by the definition of struct tagAccount, and Account is
new_type_name (similar to all previous examples of using typedef, the name Account is the only
name that is not defined yet). Actually, struct tagAccount is also a type name and can be used
anywhere type Account is used, but this name is less convenient, because the keyword struct
makes this type name different in form from the names of built-in types. This form of defining the
structure type name is very popular in C, but it is not needed in C++.

Creating and Initializing Structure Variables

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (230 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The structure definition does not allocate any memory. It defines a template for future memory
allocations: how much memory to allocate, how to interpret that memory, and what names to use to
access values in that memory. When the structure name is used in definitions of variables, it is used
in the same way as are built-in primitive types int, double, and so on.

 Account a1, a2; // memory for two Account variables

Two variables of type Account are created here. Each one has fields with names number,
balance, and overdue. The total size of each Account variable is the total size of one long and
two double values plus some alignment space (in case a value cannot start at an arbitrary address
and must be aligned at an address divisible by 4 or 8).

The braces in the structure type definitions in the previous section should be taken seriously. They
denote a block with its separate scope similar to the other scopes (more on that in the next chapter).
The names that are defined within that scope are not known outside of the scope. Since number is a
long data member, not a long variable, we cannot use its name without any qualification.

 number = 800123456L; // there is no such thing as number

This is nonsense because it does not specify to what account this number belongs. The C++ dot
operator, or selector operator (of high priority), selects fields of structure variables. Similar to array
components accessed by indices, structure fields can be accessed uniformly as lvalues and as
rvalues using the same dot notation.

a1.number = 800123456L; // field is used as lvalue
if (a1.number == 800123456L) // field is used as rvalue
 a2.number = a1.number; // both lvalue and rvalue

Similar to arrays, the number of elements in a structure should be specified at compile time. Array
components are of the same type; they do not have individual names, but they are ordered. Array
components can be referred to using the name of the array variable and the element's subscript. The
result is a value of the type specified in the array definition. Structure components are not ordered.
They have individual names and can be of different types. They can be referred to using the name
of the structure variable and the name of the component. The result is the value of the type
specified for that component in the structure definition.

Again, structure fields are not ordered. The definition of the Account field could be done in any

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (231 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

order, and that should not change anything in the program that uses this structure.

When structure variables are created, their fields do not contain useful values. C++ supports the
initialization syntax similar to that for arrays, where a value of appropriate type is specified for
each structure component.

 Account a1 = { 800123456L, 532.84, 0 } ;

This syntax is valid for structures with public fields only, the structures whose fields can be
accessed by client code, (and structures we discuss in this chapter all have public fields). We will
learn later how to use constructors to initialize structure and class variables with nonpublic fields.

Similar to nonaggregate variables, it is OK to initialize a structure variable from another structure
variable that was defined earlier.

 Account a3=a1; // it has 800123456, 532.84, 0 in fields

Hierarchical Structures and Their Components

The goal of using C++ structures is to support data abstraction and encapsulation. Structure fields
represent attributes of objects relevant to the application: for example, personnel data, medical
records, inventory data, and customer data. They also represent related pieces of information that
are often used together: task control block, parser symbol table, font metrics structure,
communication packet, and so on. Structures are popular both in systems programming and in
application programming.

Each structure variable represents a single composite object whose components can be used either
individually or as a whole. Structure variables can be handled as a unit, then they are passed to
functions. Inside functions, these components can be handled individually. Structure variables can
be further combined into arrays, linked lists, queues, and so on.

 Account cards[500]; // array of 500 structures

When we access the fields that belong to the elements of this array, we have to use hierarchical
notation. The subscript operator and the dot selector operators are of the same priority and associate
from left to right. This is how you access the number field of the component at index 75 of array
cards. (You read the code from right to the left.)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (232 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

cards[75].number = 800123456L;

And, of course, we can use structures as components of other structures. For example, we can
combine the customer name, address, and account data into a new type.

struct Customer
 {
 char name[30]
 char address[70];
 Account acct;
 } ;

This format gives to each brace and each field a line of its own to indicate the composition of the
structure. Other programmers prefer a more-succinct format.

struct Customer
 { char name[30], address[70];
 Account acct; } ;

When a Customer variable is created, its memory includes two character arrays and an Account
variable, which in turn consists of a long field and two double fields. Again, hierarchical notation
is used for elements of arrays and for elements of Account.

Customer c;
strcpy(c.name,"Doe, John"); // c.name is of type char[]
strcpy(c.address,"72 Main, Anytown, MA");
c.acct.number = 800123456L; // type long int
c.acct.balance = 532.84; c.acct.overdue = 0; // type double

Again, dot selector operators associate from left to right and are read from right to left, so that, for
example, c.acct.balance is the balance field (of type double) of the field acct (of type
Account) that belongs to the structure variable c (of type Customer).

You see that it can easily become quite verbose and unwieldy. One of the ways to deal with this
problem is to write access functions that simplify the code that handles aggregate variables. We
will see numerous examples of access functions in later chapters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (233 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Operations on Structure Variables

Structure variables can be assigned to each other if they are of the same type. The field values of
the source variable are copied bitwise into the fields of the target variable.

 a2 = a1; c.acct = a1; // same type (Account)

This is equivalent to the following set of assignment operations.

a2.number=a1.number;
a2.balance=a2.balance; a2.overdue=a1.overdue;
c.acct.number=a1.number; c.acct.balance=a1.balance;
c.acct.overdue=a1.overdue;

Here the C++ strong typing properties come shining through. No conversions are allowed between
different structure types. The type name must be the same.

c = a1; a1 = c; // no, they are of different types
a1 = 800123456L; // do not even think about it!

It is the type name rather than the structure composition that is the issue here. Let us say we have a
structure with the same composition as Account.

struct FrozenAcct
{ long number; // same structure as Account
 double balance, overdue; } ;

Still, a FrozenAcct structure cannot be assigned to an Account structure and vice versa.

 FrozenAcct fa; fa = a1; // no, type names are different

There is no structure comparison in C++ because C++ does not know what fields to use for
comparisons and how to do it. You have to write your own code to satisfy the application
requirements if you need to compare structure variables.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (234 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

if (a1.number > a2.number) // swap accounts to order numbers
 { a3=a1; a1=a2; a2=a3; } // a3 holds data temporarily

The next example shows some graphical computations. Since the drawing functions are not
portable, I do not want to draw on the screen in my examples. Instead, I ask the user to enter
coordinates of endpoints of two lines, AB and CD. Then I compute the length of each line and the
angle between each line and the x-axis.

Listing 5.12 shows the source code for this example that uses two data types, Point and Line. The
program requests input data in pixels (integers), uses the data to initialize points, uses these points
to initialize the lines, and then computes the line lengths and angles. Functions sqrt() and
atan2() come from the math.h library header file. They compute the square root and arctangent of
their double parameters. Because their actual arguments are defined as int, they are converted
implicitly to double. Since line length is also expressed in pixels as integers, the result of
computing the square root is cast implicitly. To avoid truncation, 0.5 is added to the length to
achieve proper rounding. Variable coeff converts angles from radians to degrees. Figure 5-12
shows the results of the execution of the program.

Figure 5-12. Execution example for program in Listing 5.12.

Example 5.12. Using #include directive for programmer-defined types.
#include <iostream>
#include <cmath> atan2()
#include "point.h" nt known to compiler
#include "line.h" known to compiler
using namespace std;
int main ()
{
 const double coeff = 180/3.1415926536;
 Point p1, p2; Line line1, line2; rammer-defined types
 int diffX, diffY, length1, length2;
 double angle1, angle2;
 cout << "Enter x and y coordinates of point A: ";
 cin >> p1.x >> p1.y;
 cout << "Enter x and y coordinates of point B: ";
 cin >> p2.x >> p2.y;
 line1.start = p1; line1.end = p2;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (235 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "Enter x and y coordinates of point C: ";
 cin >> p1.x >> p1.y;
 cout << "Enter x and y coordinates of point D: ";
 cin >> p2.x >> p2.y;
 line2.start = p1; line2.end = p2;
 diffX = line1.end.x - line1.start.x; // ugly notation
 diffY = line1.end.y - line1.start.y;
 length1 = sqrt(diffX*diffX + diffY*diffY) + 0.5;
 angle1 = atan2(diffY,diffX) * coeff;
 cout << "Length AB is " << length1 << " at angle "
 << angle1 << " degrees\n";
 diffX = line2.end.x - line2.start.x;
 diffY = line2.end.y - line2.start.y;
 length2 = sqrt(diffX*diffX + diffY*diffY) + 0.5;
 angle2 = atan2(diffY,diffX) * coeff;
 cout << "Length CD is " << length2 << " at angle "
 << angle2 << " degrees\n";
 return 0;
}

Defining Structures in Multifile Programs

For a small example like Listing 5.12, it is perfectly reasonable to include the structure definitions
in the source code. Programmer-defined types must be unique in the program name space;
therefore, a multifile program might present a problem if a programmer-defined type has to be used
in several files. Actually, you do not even like to repeat the type definition in several files. If these
definitions are ever updated during maintenance, they might easily become inconsistent.

The solution is to put each type definition in a separate header file and include these files in all
source files that use this type. This is what I did for types Point and Line in Listing 5.12. Notice
the double quotes in file names instead of angle brackets. It is common to use the same name for
the header file as for the type defined in the file. Since all type names must be unique in a C++
program, this should not lead to name conflicts when the header files are kept in the same directory.
Often, header files are kept in a separate directory that is different from the directory where the
program executable file is. In this case, the #include directives should specify the full path name.

A common practice to avoid repeated compilation of the same programmer-defined data type in a
multifile program with several source files is the use of conditional compilations. Listings 5.13 and
5.14 show the contents of the header files.

Example 5.13. The header file "point.h".
#ifndef _POINT
#define _POINT
struct Point

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (236 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ int x, y; } ;
#endif

Example 5.14. The header file "line.h".
#ifndef _LINE
#define _LINE
#include "point.h"
struct Line
{ Point start, end; } ;
#endif

When we include these files in several source files, the very first definitions processed by the
compiler will define the names _POINT and _LINE. When other files are compiled, the conditional
directives in these files will exclude the type definitions from being compiled. It is customary to
use the same name for the symbolic constant as the type name, capitalize it, and prefix (and/or
append) it with the underscore character to avoid accidental name conflicts.

Notice that the file "line.h" has to include file "point.h". Otherwise, the compiler might not
know what the type name Point in file "line.h" means.

This is all that you need to know about structures to use them intelligently. The main point about
using structures is that we put in each structure only related information. Try to avoid including
structure fields that do not belong together with other fields. Another important thing is that each
structure variable has a full complement of the fields that can be accessed using dot notation and
the names declared in the structure definition. Last, each field (expressed in the dot notation) is for
all intents and purposes a variable of the type specified for that field in the structure definition.

Unions, Enumerations, and Bit Fields

This section is going to be relatively short. It discusses three ideas related to naming program
entities for the programmer's convenience. The first idea is to define a variable that can be used to
store information of more than one type, for example, an integer and a floating point number. This
is the idea of a union. The second idea is to define symbolic names for related constants without
getting into details of assigning numerical values to these symbolic constants. This is the idea of
enumeration. The third idea is naming parts of the word so that they can be manipulated separately
from the rest of the word. This is the idea of bit fields.

C++ implements these ideas in a similar manner to defining a structure. The programmer uses a
keyword (union, enum, or struct) at the beginning of the type definition. Then the programmer
introduces the name chosen for this new type and then describes the type composition (within the
braces terminated by a semicolon). After that, the programmer-defined name can be used as a type
name by the program.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (237 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Unions

Let us consider an array of structures of type Number with some kind of arbitrary numeric
information.

 Number num[6];

Since any numeric value is a valid value, we should use a nonnumeric sentinel, for example, a
string "end" or something else. Strong typing supported by C++ does not allow us to store text
information in a numeric field. One solution to this problem is to define a structure with two fields,
one for the numeric value, and another for the text. The following definition will do.

struct Number
{ double value;
 char text[4]; } ;

Now we can use the elements of this type in an array, keeping numeric information in the field
value and using the field text for a sentinel, like "end" to indicate the end of valid data in the
array. However, for each array element only one field is used; the element is either a valid numeric
entry or a text sentinel. C++ allows us to avoid wasting memory space by defining a union. The
keyword union is used in C++ to provide for two or more different interpretations of the same area
in memory. The keyword union defines a new type using the same syntax as structure definitions.
The fields of the union are defined similarly to the fields of a structure. If there are several fields,
they represent alternative representations of the same area in memory. This is how the union
definition will look in this example.

union Number // yet another C++ keyword
{ double value; // any number of fields can be defined
 char text[4]; } ; // do not forget the semicolon!

This definition introduces type Number. We can define variables of this type, and each variable will
have two fields. Unlike structures, these fields do not exist simultaneously. Rather, they represent
different interpretations of the same area in memory. When a union variable is defined, it is
allocated enough memory to accommodate the longest interpretation. The programmer can choose
which interpretation to use, floating point or a character array. If one makes a mistake and saves
data as one type and then retrieves it as another type, the result is garbage. As usual, the C++
compiler is not going to watch over the programmer's shoulder, checking whether or not the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (238 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programmer is consistent in the use of memory.

In this sample code, I put a numeric value in union variable n1 and a string in union variable n2.
But then I display the contents of n1 as text and the contents of n2 as a numeric value. This is no
good, but the compiler knows that this is a free country, after all. This example also shows that you
can legitimately store text in the place where a numeric value used to be stored and vice versa.

Number n1, n2;
n1.value = 5.0; strcpy(n2.text,"no"); // making a commitment
cout << n1.value << " " << n2.text << endl; // this is OK
cout << n1.text << " " << n2.value << endl; // this is a disaster
strcpy(n1.text,"yes"); n2.value = 25.0; // old contents disappears
cout << n1.text << " " << n2.value << endl; // now this is OK

This example shows that when we use union variables, the notation is similar to the notation we use
for structures. Listing 5.15 shows a short program written to illustrate this point. It looks as if the
text fields of the first three components of array num[] are not initialized and that the value field
of the last used component is not initialized. In reality, the same space is used for both
interpretations. (The compiler allocates the same amount of space for each element¡Xenough to
accommodate the largest interpretation.) The output of the program is shown in Figure 5-13.

Figure 5-13. Output for program in Listing 5.15.

Using union to store vlues of different types in a variable.

Example 5.15.
#include <iostream>
#include "number.h" // to make type Number known to
compiler
#include <cstring>
using namespace std;

int main ()
{
 Number num[6]; int i = 0; //array of union variables
 num[0].value = 11.0; num[1].value = 21.0; //initialization

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (239 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 num[2].value = 31.0; strcpy(num[3].text,"end");
 while(strcmp(num[i].text, "end") != 0) //iteration
 cout << num[i++].value << endl;
 cout << num[i].text << endl; //for illustration purposes
 cout << "Text as double: " << num[i].value << endl;
 return 0;
}

Make sure you are not intimidated by notation like num[0].value; array num[] contains
components of type Number; hence, num[0] is of type Number and has the fields whose names are
value and text. When field text is used, it is a character array, hence you can pass num[i].text
as an argument to the strcmp() function. Incrementing the index while printing a field value (as in
num[i++].value) is both legitimate and expedient. Since index i is used only once here, there is
no danger related to the order of evaluation.

The last two lines of the program show how the same value looks when interpreted differently.
Erroneous use of unions can easily produce garbage. Notice, that once in a while, the value
3.57452e-031 might be a legitimate floating point value in the application; it will be interpreted as
"end" and will terminate the iteration.

To avoid errors of interpretation, some programmers use so-called tag fields for unions whose
values indicate how to use the union value. This tag field cannot be a member of the union, so the
union and the tag field have to be parts of a larger structure. For example, the address might contain
three lines, and the second line might be either the street address or post office box number. Listing
5.16 shows an illustration program that defines the address structure with a union field, second,
and a tag field, kind. When the tag field is 0, the second line is interpreted as street address; when
the tag field is 1, the second line is interpreted as P.O.B. number. This code sticks to this
convention when data are set (by setting the value of kind to 0 or 1) and when data is used (by
testing the value of the kind field). The output of the program is shown on Figure 5-14.

Figure 5-14. Output for program in Listing 5.14.

Example 5.16. Using union with a tag field to enforce access integrity.
#include <iostream>

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (240 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <cstring>
using namespace std;

union StreetOrPOB
 { char street[30]; // alternative interpretations
 long int POB; } ;

struct Address
{ char first[30];
 int kind; // 0: street address; 1: P.O.B.
 StreetOrPOB second; // either one or another meaning
 char third[30]; } ;

int main ()
{
 Address a1, a2;
 strcpy(a1.first,"Doe, John"); // address with street
 strcpy(a1.second.street,"15 Oak Street"); a1.kind = 0;
 strcpy(a1.third,"Anytown, MA 02445");
 strcpy(a2.first,"King, Amy");
 a2.second.POB = 761; a2.kind = 1; // address with POB
strcpy(a2.third,"Anytown, MA 02445");
 cout << a1.first << endl;
 if (a1.kind == 0) // check data interpretation
 cout << a1.second.street << endl;
 else
 cout << "P.O.B. " << a1.second.POB << endl;
 cout << a1.third << endl;
 cout << endl;
 cout << a2.first << endl;
 if (a2.kind == 0) // check data interpretation
 cout << a2.second.street << endl;
 else
 cout << "P.O.B. " << a2.second.POB << endl;
 cout << a2.third << endl;
 return 0;
}

This is nice, but it introduces yet another level into the hierarchical structure of types. As a result,
the programmer has to use names like a1.second.street, and this is no fun. Meanwhile, the only
use of type StreetOrPOB in the program is with type Address. To remedy this, C++ supports
anonymous unions. They have no name, and no variable of this type can be defined; however, their
fields can be used without any qualification. For example, we can define type Address without
using type StreetOrPOB but using an anonymous union instead.

struct Address

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (241 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ char first[30];
 int kind; // 0: street address; 1: P.O.B.
 union
 { char street[30];
 long int POB; } ; // no 'second' field of type StreetOrPOB
 char third[30]; } ;

The union type is gone, but type Address now has two alternative fields, street[] and POB, and
they can be referred to by name as in any other field. Of course, it remains the responsibility of the
programmer to know which one is which. Remember the story about the bagel and cream cheese?
Data must be retrieved consistently with the way they were set. But the extra level of hierarchical
notation is not needed anymore.

if (a1.kind == 0) // check data interpretation
 cout << a1.street << endl; // use one interpretation
else
 cout << "P.O.B. " << a1.POB << endl; // or use another one

This is a powerful programming style. However, the maintenance programmer has to spend extra
time and effort to understand the code. There are extra conditional statements that increase the
complexity of code. Presumably, the use of inheritance with virtual functions is good competition
for this programming technique. We will discuss it later.

Enumerations

Enumeration types allow the programmer to define variables that accept values only from a defined
set of identifiers. Usually, we introduce integer symbolic constants (using either #define or const
definitions) and set up conventions for using them. For example, to emulate the behavior of a traffic
light, we need the values that denote the red, green, and yellow colors of the light. Similar to the
example with the days of the week, we can introduce character arrays "red", "green", and
"yellow" and do assignments and comparisons using string manipulation library functions.

char light[7] = { "green" }; // it is green initially
if (strcmp(light, "green") == 0) // next it is yellow
 strcpy(light, "yellow"); // and so on

This is nice and clear, and the maintenance programmer will have little trouble understanding the
intent of the code designer, but these string operations are unnecessarily slow. You do not want to
move a lot of characters around (searching for the terminator inside the library functions) just to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (242 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

trace the state of the traffic light. Another drawback of this solution is the lack of protection. If
somebody wants to make the light pink or magenta, there is no way to stop the programmer from
doing so.

Another solution is to use integers to denote colors with numbers. I can assign 0 to green, 1 to red,
and 2 to yellow. Notice how I introduced these values¡X0, 1, and 2, not 1, 2, and 3. This is what
dealing with C++ arrays and indices does to the way people think. When a C (or C++) programmer
counts people in the room, he or she says: "Zero, one, two, three, four, five, six, seven, eight, nine;
OK, there are ten people in the room."

With this approach you avoid using the string manipulation functions.

int light = 0; // it is green initially
if (light == 0) // next it is yellow
 light = 2; // and so on

The advantage of this approach is speed. This is the only advantage. This type of coding always
requires comments, especially for complex algorithms with more-complicated systems of states and
transitions between the states. If the comments are too cryptic or somewhat obsolete, the
transmission of the designer's knowledge to the maintainer is not facilitated, to say the least.

One of the ways to make code more readable while keeping it fast is the use of symbolic constants.
We can define symbolic constants whose names are appropriate for the application, for example,
RED, GREEN, and YELLOW, and assign a special integer value to each constant.

 const int RED=0, GREEN=1, YELLOW=2; // color constants

Now you can rewrite the example above using these constants. The code is as fast as in the
previous example and as clear as the original version with character strings.

int light = GREEN; // it is green initially
if (light == GREEN) // next it is yellow
 light = YELLOW; // and so on

This solution does protect your steak from falling on the floor to begin with. But it does not protect
your code from deterioration in the course of maintenance. If maintainers (or the original designer
in the crunch) want to use numbers instead of symbolic constants, it is not a syntax error. If they
assign to variable light a value that is outside of the agreed upon range of color values (e.g.,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (243 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

light=42;), it is not a syntax error either. You can add these values (e.g., RED+GREEN), and do all
kinds of things you do not actually do to colors.

The enumerations are introduced into the language to deal with these kinds of problems. The
programmer can define a programmer-defined type and explicitly enumerate all legal values that a
variable of that type is allowed to assume. The keyword enum is used to introduce the programmer-
defined type name (e.g., Color) similar to the way the keyword struct (or union) introduces
programmer-defined types. The braces (followed by the semicolon) follow the type name, again,
similar to struct or union. In the braces, the designer lists all values allowed for the type being
defined. Often, the programmers use uppercase (similar to constants introduced by #define and by
const), but this is not mandatory. For our example, we can define type Color as the enum type.

 enum Color { RED, GREEN, YELLOW } ; // Color is a type

Now we can use type Color to define variables that can only accept values RED, GREEN, and
YELLOW. These values are enumeration constants¡Xthey can be used as rvalues only and cannot be
changed.

Color light = GREEN; // it is green initially
if (light == GREEN) // next it is yellow
 light = YELLOW; // and so on

This solution removes the thumb from your steak. The only operations that are defined on values of
enumeration type are assignment and relational operators. You cannot add them or do input or
output, but you can compare them for equality or inequality and you can check whether one value
is greater (or less) than another.

 if (light > RED) cout << "True\n"; // this prints 'True'

The reason is that under the hood, enumeration values are implemented as integers. The first value
in the enumeration list is 0 (no surprise, as this is how we count things in C++), the next is 1, and so
on. The program can access these values by casting enumeration values to integers.

 cout << (int) light << endl; // this prints 0, 1, or 2

If the programmer wants to change this value to another value, one can do that explicitly in the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (244 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

enumeration list.

 enum Color { RED, GREEN=8, YELLOW } ; // YELLOW is 9 now

After that, the assignment of values resumes (YELLOW is 9, and so on). If for some reason you want
to set GREEN to 0, this is OK with the compiler, but the program will not be able to distinguish
between RED and GREEN (not a big problem unless it tries to control traffic).

This technique is useful when the enumeration values are going to be used as masks for bitwise
operations and hence have to represent powers of two.

enum Status { CLEAR = 2, FULL = 8, EMPTY = 64 } ;

Many programmers enthusiastically embrace this facility and use it for defining integer compile
time constants.

 enum { SIZE = 80 } ; // use it to define arrays etc.

Notice that this enumeration is anonymous (similar to anonymous union). It does not have a name
and hence you cannot define variables of this type, but this is not a big loss because all we need is
the symbolic constant SIZE. The result is the same as defining the constant explicitly.

 const int SIZE = 80; // same thing

It is a matter of personal taste (yours or your boss's) what method of defining constants to use.

Bit Fields

Similar to our discussion of unions and enumerations, we will start with examples of practical
problems that can be solved using additional C++ user-defined types.

The smallest object that can be allocated and addressed in a C++ program is a character. Sometimes
a program might need a value that is too small, and using a full-size integer to store it looks like a
waste. Often, we do not pay attention to the opportunity to save memory. When memory is scarce,
we would like to pack small values together. Often, external data formats and hardware device
interfaces force us to process word elements.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (245 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For example, a disk controller might manipulate memory addresses and their components: a page
number (from 0 to 15) and the offset of the memory location on the page (from 0 to 4095). The
algorithm might require manipulation of the page number (4 bits), offset (12 bits), and the total
address (unsigned 16 bits), be able to combine the page number and offset into the address, and
extract the page number and offset from the address.

Another example might be an input/output port where specific bits are associated with specific
conditions and operations. Bit 1 of the port might be set if the device is in the clear to send
condition, bit 3 might be set if the receiving buffer is full, and bit 6 might be set if the transmit
buffer is empty. The algorithm might require setting each bit in the status word individually and
retrieving the state of each bit individually. Each of these computational tasks requires bit
manipulation and the use of bitwise logical operations.

Combining the page number and the offset into the memory address requires shifting the memory
address 12 positions to the left and performing the bitwise OR operation on the result of the shift
and the address.

unsigned int address, temp; // they must be unsigned
int page, offset; // sign bit is never set to one
temp = page << 12; // make four bits most senior
address = temp | offset; // assume no extra bits there

Retrieving the page number and offset from the memory address is more complex. To get the page
number, we shift the address right 12 positions to throw away the bits of the offset and move the
page number into the least significant bits of the word. To get the address, we use the bitwise AND
operation with the mask 0x0FFF that has each of 12 least significant bits set to 1.

page = address >> 12; // strip offset bits, get page bits
offset = address & 0x0FFF; // strip page bits from address

To set individual bits to 1, we use three masks: each mask has only 1 bit set to 1 and all other bits
set to 0. By using the bitwise OR operation on the status word, we set the corresponding bit to 1 if
it was 0 or leave all the bits in the same state if it was already set to 1. The constants CLEAR, FULL,
and EMPTY defined in the previous section are the masks that have only 1 bit set to 1 and other bits
set to 0. The constant CLEAR has bit 1 set to 1, FULL has bit 3 set to 1, EMPTY has bit 6 set to 1.

unsigned status=0; // assume it is initialized properly
status |= CLEAR; // set bit 1 to 1 (if it is zero)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (246 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

status |= FULL; // set bit 3 to 1 (if it is zero)
status |= EMPTY; // set bit 6 to 1 (if it is zero)

To reset individual bits to 0, we need masks with all bits set to 1 with the exception of 1 bit. Using
the bitwise AND operation will leave all bits in the status word unchanged and will reset the bit that
is 0 in the mask. To reset bit 1, we need a mask that has bit 1 reset to 0. To reset bit 3, we need a
mask that has bit 3 reset to 0. To reset bit 6, we need a mask that has bit 6 reset to 0 and all other
bits should be set to 1. These masks are difficult to express as decimal or even hexadecimal
constants. Also, on different platforms we might need the masks of different sizes, and that affects
code portability. It is common to invert (negate) the constants' use to set these bits to 1 and use the
result of negation to reset these bits to zero in the AND operation.

status &= ~CLEAR; // reset bit 1 to 0 (if it is 1)
status &= ~FULL; // reset bit 3 to 0 (if it is 1)
status &= ~EMPTY; // reset bit 6 to 0 (if it is 1)

To access the value of individual bits, we use the AND operation with the masks that have all the
bits reset to 0 with the exception of 1 bit that is being accessed. If this bit's status is set, the result of
the operation is not 0 (true). If this bit's status is reset to 0, the result of the operation is 0 (false).
The masks that will work in these operations are exactly the same as those we used to set and reset
status bits.

int clear, full, empty; // to test for True or False
clear = status & CLEAR; // True if bit 1 is set to one
full = status & FULL; // True if bit 3 is set to one
empty = status & EMPTY; // True if bit 6 is set to one

These low-level operations for packing and unpacking sequences of bits (addressing example) or
individual bits (status example) are complex, counterintuitive, and prone to error. C++ allows us to
give names to segment bits of different sizes. This is done using conventional structure definitions.
For each field, the number of bits allocated to it (field width) is specified using a nonnegative
constant after the column.

struct Address {
 int page : 4;
 int offset : 12; } ; // it is not large enough for 12 bits

Field members are packed into machine integers. One has to be careful with signed integers: One

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (247 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bit is usually allocated for the sign. If you want to use all the bits allocated for the field, the field
has to be unsigned, as in this example.

struct Address {
 unsigned int page : 4;
 unsigned int offset : 12; } ; // place for 12 bits

The bit field may not straddle a word boundary. If it does not fit into the machine word, it is
allocated to the next word and the remaining bits are left unused. It is a syntax error if the width of
the field exceeds the size of the basis type on the given platform (which can be different for
different machines).

Fields might save data space: There is no need to allocate a byte or a word for each value; however,
the size of the code, which manipulates these values, increases because of the need to extract the
bits. The end result is not clear.

The variables are defined in the same way as structure variables are. Access to bit fields is the same
as for regular structure fields.

Address a; unsigned address; // make sure that a is initialized
address = (a.page << 12) | a.offset;

If you want to allocate 1 bit for a flag, make sure the field is unsigned rather than signed. Fields do
not have to have names; unnamed fields are used for padding. (We still have to specify the type,
colon, and width.)

struct Status {
 unsigned : 1; // bit 0
 unsigned Clear : 1; // bit 1
 unsigned : 1; // bit 2
 unsigned Full : 1; // bit 3
 unsigned : 2; // bits 4 and 5
 unsigned Empty : 1; } ; // bit 6

The code for manipulating the status variables is very simple. Under the hood, it is implemented
through shifts and bitwise logical operations similar to the examples we discussed at the beginning
of this section.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (248 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Status stat; // make sure it is initialized
int clear, full, empty; // for testing for True or False
stat.Clear = stat.Full = stat.Empty = 1; // set bit to one
stat.Clear = stat.Full = stat.Empty = 0; // reset bits to zero
clear = stat.Clear; // the values can be tested
full = stat.Full;
empty = stat.Empty;

The width of zero is allowed; it is the signal to the compiler to align the next field at the next
integer boundary. It is allowed to mix data of different integral types. Switching from the type of
one size to the type of another size allocates the next field at the word boundary. Careless use of bit
fields might not decrease the allocated space, as the next (contrived) example demonstrates. (This
code is written for a 16-bit machine where integers are allocated two bytes.)

struct Waste {
 long first : 2 ; // this allocates all 4 bytes
 unsigned second : 2; // this adds two more
 char third : 1; // short starts on even address
 short fourth : 1; } ; // and this: 10 bytes total

On some machines, fields are assigned left to right, and on others they are assigned right to left (so-
called little endiens and big endiens).

This is not a problem for internally defined data structures; however, this is significant for mapping
externally defined data, for example, device I/O buffers. When external data come in one format
and the computer uses another, the data in the bit fields might be saved incorrectly.

Before you decide to use bit fields, evaluate the alternatives. Remember that accessing a character
or an integer is always faster than accessing a bit field and takes less code.

Summary

In this chapter, we looked at major program-building tools that the programmer has for creating
large complex programs. Most of these tools deal with aggregation of data into larger units:
homogeneous containers (arrays) and heterogeneous objects (structures). These aggregate data
types do not have operations of their own with the exception of the assignment for structures. All
operations over aggregate objects have to be programmed in terms of operations over individual
elements.

Since structure fields are accessed using individual field names; they are relatively safe. Array

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (249 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

components are accessed using subscripts, and C++ provides neither compile-time nor run-time
protection against illegal values of indices. This can easily lead to incorrect results or to memory
corruption and is a source of concern for a C++ programmer. This is especially true for character
arrays where the end of valid data is specified by the zero terminator.

We also looked at such programmer-defined types as unions, enumerations, and bit fields. Unlike
arrays and structures, they are not really necessary. Any program can be written without using these
structures. Often, however, they simplify the appearance of the source code, convey more
information to the maintainer about the designer's intent, and make the job of the maintainer (and
the designer) easier.

Chapter 6. Memory Management: the Stack and the Heap

Topics in this Chapter

ϒΠ Name Scope as a Tool for Cooperation

ϒΠ Memory Management: Storage Classes

ϒΠ Memory Management: Using Heap

ϒΠ Input and Output with Disk Files

ϒΠ Summary

In the previous chapter, we studied the tools for implementing programmer-defined data structures.
Arrays and structures are the basic programming tools that allow the designers to express complex
ideas about the application in a concise and manageable form¡Xboth for the designers themselves
and also for maintenance programmers. Unions, enumerations and bit fields help the designer to
represent code in the most understandable way.

All variables, of built-in and of programmer-defined types alike, that were used in the previous
coding examples, were named variables. The programmer has to choose the name and the place of
the definition in source code. When the program needs memory for named variables, it is allocated
and deallocated without further programmer participation, according to the language rules, in the
area of memory called stack. We pay for this simplicity with the lack of flexibility: The size of each
data item is defined at compile time.

For flexible sizes of data structures, C++ allows the programmer to build dynamic arrays and
linked data structures. We pay for this flexibility with the complexity of using pointers. When the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (250 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

program needs more space for dynamic unnamed variables, the memory is allocated from the area
called heap. Dynamic variables do not have names, and we refer to them indirectly, through
pointers. We pay for this flexibility with the complexity of dynamic memory management.

In this chapter, we will study C++ techniques for managing the stack and the heap and will learn
the basic techniques of such methods as using name scope, name extent, and dynamic memory
management with pointers. These techniques are the key to the efficient use of system resources. In
inexperienced hands, however, dynamic memory management can lead to system crashes, memory
corruption, and memory leaks (when the system runs out of memory). Some programmers love the
power and the thrill of dynamic memory management. Others prefer to use pointers as little as
possible. Whatever your personal preferences, make sure that you understand the principles of
name management and memory management supported by C++.

Before discussing the issues of dynamic memory management, I'll introduce the concepts of name
scopes and storage classes that are important for the understanding of memory management issues
in C++. After discussing the issues of dynamic memory management, I discuss the techniques of
using external storage¡Xdisk files. Storing data in a disk file enables the program to handle
infinitely large sets of data.

NOTE

Take a deep breath. This is a large chapter. It contains a mixture of important concepts and
practical coding techniques. You cannot become a skillful C++ programmer without mastering
concepts and techniques of memory management and file I/O. However, you can learn the rest of
C++ without becoming an expert in these areas. If you are overloaded with the size and complexity
of this material, move on to the next chapter and come back to this one when you feel you are ready
to learn more.

Name Scope as a Tool for Cooperation

Each programmer-defined name, or identifier, has its lexical scope in the C++ program (often
called just scope).

It is called lexical because it refers to a source code segment where the name is known and can be
used. It is called scope because outside of this code segment the name is either not known or refers
to a different entity. The entities whose names have scopes are the names of programmer-defined
data types, functions, parameters, variables, and labels. The possible uses of the names known
within the scope include definitions, expressions, and function calls.

C++ Lexical Scopes

Lexical scope is a static name characteristic. This means that the scope is defined by the lexical

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (251 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

structure of the program at compile time rather than by program behavior at run time. There are
four scopes in C++:

ϒΠ block scope

ϒΠ function scope

ϒΠ file scope

ϒΠ the scope of the whole program

ϒΠ class scope

ϒΠ namespace scope.

In this chapter, I will discuss the first four scopes. The other two scopes will be discussed in later
chapters, after the concepts of class and namespace are explained in more detail. The opening and
closing curly braces delimit the block scope. The function scope is also delimited by the opening
and closing curly braces. The difference between the block and the function scope is that the
function has parameters (and their names are known within the scope) and the name. The function
scope is entered during execution when the function is called. The block scope is not called. The
block is executed after the statement that precedes it (if any) is executed. For example, during each
iteration through this for loop, the scope of its unnamed block between braces is entered. When
function getBalance() is called (using its name), the scope of its block is entered. (You will see
this function later in Listing 6.1.)

for (i = 0; i < count; i++)
{ total += getBalance(a[i]); } // accumulate total

The file scope is delimited by the physical boundaries of the file. It can contain type definitions,
definitions and declarations of variables, and definitions and declarations of functions. Each
program listing I used in previous chapters was a listing of a source file delimited by file
boundaries.

The program scope has no delimiters. Anything belonging to any source file that is part of the
program is within the program scope.

Name Conflicts Within the Same Scope

Name conflicts within a scope are not allowed in C++. A name should be unique within the scope

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (252 of 1187) [8/17/2002 2:57:49 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

where the name is declared. In C, programmer-defined types used to form a separate space. It
means that if a name was used for a type, it could be used for a variable in the same scope. The
compiler (and the maintainer) would figure out from the context whether the name means the type
or the variable.

C++ takes a more-stringent position. All programmer-defined names form a single name space. If a
name is declared in a scope for any purpose, it should be unique in that scope among all the names
declared in the same scope for any purpose. This means that if, for example, count is a name of a
variable, then no type, function, parameter, or another variable can be named count in the same
scope where the variable count is declared.

Similar to most software engineering ideas in language design, this idea aims to improve
readability rather than the ease of writing the program. When the designer (or the maintainer) finds
the name count in the source code, there is no need to figure out which one of the possible
meanings this one has: It has only one meaning within the scope. When the designer (or the
maintainer) wants to add variable count to a scope, he or she has to find out whether this name is
already used in this scope.

The only exception from this rule is label names. They do not conflict with names of variables,
parameters, or types declared or known in the same scope. Since labels are not used that often in
C++ code, this does not result in deterioration of readability. Still, do not use this special
dispensation too much.

The converse of this principle of uniqueness is that the same name can be used in different scopes
without a conflict. This principle decreases the amount of coordination between designers.
Different programmers can work on different parts of the program (different files) and choose
names independently, without communications among team members. Even for the same file, the
need to coordinate names defined in different scopes in the same file would make the job of the
designer (and the maintainer) harder.

Lexical scopes of different program entities (data types, functions, parameters, variables, and
labels) are somewhat different. Type names can be declared in a block, function, or file. They are
known within that block, function, or file from the place of definition until the end of the scope.
They are not known outside of the scope of that block, function, or file. The same is true about the
names of variables. They can be declared in a block, function, or file. They are known from the
place of the definition until the end of the scope.

Parameters can be defined in a function only. They are known from the opening brace of the
function scope until the closing brace of the function. Labels can be defined either in a block or in a
function, but their names are known in the whole function that uses the label and are not known
outside the function.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (253 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

C++ function names can be defined in a file, but not in a block and not in another function.
Function names have the program scope; that is, the function name should be unique in the project.
This potential for project-wide name conflicts often makes coordination in the development teams a
headache. The same is true of expanding an existing program during maintenance: Adding new
function names might result in conflicts. Another potential source of trouble related to function
names is integration into the project several libraries that come from different vendors (or from past
projects). Often, the problem might not surface until the files developed separately by different
programmers are linked together quite late in the development cycle.

Listing 6.1 shows a simple example that loads account data, displays data, and computes total of
account balances. For simplicity of the example, I do not load the data set from the keyboard, an
external file, or a database. (We will do that later.) Instead, I use two arrays, num[] and
amounts[], which supply the values of account numbers and account balances. The data is loaded
in the infinite while loop until the sentinel value (-1) is found for the account number; then the
second loop prints account numbers, the third loop prints account balances, and the fourth loop
computes the total of account balances. I use two programmer-defined types, structure Account and
integer synonym Index and function getBalance(), not because they are really needed, but to
illustrate the interaction of scopes. For simplicity's sake, keep the size of the data set very small.
The output of the program is shown on Figure 6-1.

Figure 6-1. Output of code in Listing 6.1.

Example 6.1. Demonstration of lexical scope for types, parameters,variables.
#include <iostream>
using namespace std;

struct Account { // global type definition
 long num;
 double bal; } ;

double getBalance(Account a)
{ double total = a.bal; // total in independent scopes
 return total; } // return a.bal; is better

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (254 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main()
{
 typedef int Index; // local type definition
 Index const MAX = 5;
 Index i, count = 0; // integers in disguise
 Account a[MAX]; double total = 0; // data set, its total
 while (true) // break on the sentinel
 { long num[MAX] = { 800123456, 800123123, 800123333, -1 } ;
 double amounts[MAX] = { 1200, 1500, 1800 } ; // data to load
 if (num[count] == -1) break; // sentinel is found
 a[count].num = num[count]; // loading data
 a[count].bal = amounts[count];
 count++; }
 cout << " Data is loaded\n\n";
 for (i = 0; i < count; i++)
 { long temp = a[i].num; // temp in independent scopes
 cout << temp << endl; } // display account numbers
 for (i = 0; i < count; i++)
 { double temp = a[i].bal; // temp in independent scopes
 cout << temp << endl; } // display account balances
 for (i = 0; i < count; i++)
 { total += getBalance(a[i]); } // accumulate total for
balances
 cout << endl << "Total of balances $" << total << endl;
 return 0;
}

NOTE

This program was compiled by the latest version of a 32-bit compiler. This is why there is no need
to indicate that value 800123456 and others are of type long. This program will not compile by an
older 16-bit compiler. In similar code examples in Chapter 5, "Aggregation with Programmer-
Defined Data Types," I used these values with the L suffix (800123456L and so on); these examples
will compile with any compiler. C++ programmers should always think about portability issues.
Failure to do so can cause errors. Finding and correcting these errors is frustrating and costly.

Here, type Account has the file scope and is known from the place of its definition to the end of the
source file. Variables of type Account can be defined anywhere in this scope. The use of name
Account for any other purpose in this scope, for example, as the name of an integer, is incorrect.

int Account = 5; // incorrect use of the name Account

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (255 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Type Index has the function scope and is known from the place of its definition until the closing
brace of the main() function. Variables of type Index can be defined in main() but not in another
scope, for example, in function getBalance().

double getBalance(Account a)
{ Index z; // syntax error: name Index is unknown here
 return a.bal; }

Function getBalance() has the program scope. No other object in the program scope can be called
getBalance.

Lexical scope of variable names is most diverse. C++ variables can be defined as:

ϒΠ Block variables: defined after the opening brace of a block (or in the middle of the
block) and are visible from the place of definition until the end of the block. In Listing 6.1,
block variables are arrays amounts[] and num[] defined in the first loop in main(), variable
temp defined in the second loop in main(), and variable temp defined in the third loop in
main().

ϒΠ Function variables: similar to the block variables but their scope is a named function
rather than an unnamed block. They are defined in the function body (after the opening brace
or if in the middle) and are visible from the place of definition until the closing brace of the
function. In Listing 6.1, function variables are i, count, MAX, a[], and total defined in
main() and variable total defined in getBalance().

ϒΠ Function formal parameters: defined in the function header and are visible everywhere in
the function body. This means that the parameter name would conflict with a variable defined
in this function. There is only one formal parameter, a, in function getBalance() in Listing
6.1.

ϒΠ Global variables: have the file scope¡Xthey are defined in a file outside any function and
are valid from the definition to the end of file. There are no global variables in Listing 6.1; I
will discuss them in the next example.

The names of structure fields are local to the block of the structure definition. This means that they
can be referenced (without further qualifiers) outside of this scope. In Listing 6.1, the field names
num and bal are known only within the definition of structure Account. Hence, bal=10; in main()
is incorrect, because bal is not known in main(). On the other hand, these fields can be referenced

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (256 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

(using the selector operator) anywhere where variables of type Account are in scope (known,
visible). In Listing 6,1, it is the scope of function main() (where the array a[] of type Account is
defined) and the scope of function getBalance() (where the parameter a of type Account is
defined). Since C++ allows the programmer to define variables in any place within a scope, it is
important to make sure that the name is not used in the scope before it is defined. In Listing 6.1, the
constant MAX should lexically precede the definition of the arrays a[], amounts[], and num[] in
function main().

Using Same Names in Independent Scopes

When names are defined in different scopes they do not conflict with each other (well, with some
exceptions).

The term "different" in the previous paragraph actually needs some clarification. How should the
scopes be related to each other so that the same name could be used in each for different purposes?

Two blocks whose scopes do not intersect (do not have common statements) are different.
Moreover, they are independent from each other. For example, two unnamed blocks that follow
each other (directly or indirectly) in the file or in the function scope are independent and can define
and then use the same name for totally different purposes. The names defined in independent
scopes will not conflict with each other.

In Listing 6.1, the name temp is used in two loops in function main(). Actually, there is no need to
use local variables in these loops: The fields of array elements could be displayed directly.
However, using these variables illustrates the concept of scope well. Since each of these loops has
its own set of scope braces, these uses of name temp refer to different variables, do not conflict
with each other, and do not require coordination of their use.

The same is true about function blocks that define variables or parameters using the same name.
For example, variable total is defined both in getBalance() and in main(). Again, function
getBalance() could do its job without using a local variable, but its use illustrates the concept of
scope.

Similarly, the name a is used as a parameter in function getBalance() and as an array in function
main(). Again, when the names are defined in independent scopes, each name is known within its
own scope only; and there is no need to coordinate their use.

Using Same Name in Nested Scopes

The next type of different scopes is related to the concept of nesting. C++ is a block-structured

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (257 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

language. This means that its scopes can be lexically nested within each other, that is, the braces of
one scope can be totally inside braces of another scope. Notice that different scopes can be either
independent (one scope ends before another starts) or nested (one scope is inside another), but they
cannot intersect.

Most C++ programs use nested scopes. An unnamed block can be nested in another unnamed block
or in a function. An unnamed block cannot be nested in the file scope directly because control
would not be able to reach it¡Xit needs the function header. A function can be nested in the file
scope only; it cannot be nested in another function. For example, in the design below I try to hide
function getBalance() inside main() so that its name would not be in the file scope and hence
would cause no conflict if some other use of the name getBalance. No such luck: This function is
totally nested within function main(), and hence this design is illegal in C++.

int main()
{ double getBalance(Account a) // idea is illegal in C++
 { double total = a.bal;
 return total; }

 for (i = 0; i < count; i++)
 { total += getBalance(a[i]); } // accumulate total
 cout << endl << "Total of balances $" << total << endl;
 return 0; }

In Listing 6.1, the loop bodies are implemented as unnamed blocks. They are nested within the
scope of function main(); the scopes of functions main() and getBalance() are nested within the
source file scope. In a sense, the file scope is nested in the program scope.

The introduction of nested scopes does not change the rules of visibility for variables or types
defined in the outer scope. They are visible in nested scopes. For example, variable count is known
from the place of its definition to the end of function main() regardless of whether function main()
has any nested scopes. Hence, when the unnamed nested block in the first loop in main() refers to
variable count, it is the variable defined in the outer block that is referenced. Similarly, the
elements of array a[] are referenced in nested blocks in all three loops. Variable total is defined
in main() and is referenced in the nested block of the third loop.

On the other hand, variables defined in the nested scope cannot be referenced in the outer scope.
For example, arrays num[] and amounts[] are defined in the block of the first loop in main() and
cannot be used by main() outside of that block. It would be incorrect to write the second loop in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (258 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 6.1 in the following way, referring to num[] in the outer scope.

for (i = 0; i < count; i++)
 cout << num[i] << endl; // num[] is not known

C++ allows a nested scope to define a variable whose name is also defined in an encompassing
scope. This results in the interaction of the names defined in nested scopes. In this case, the entity
defined in the encompassing scope becomes unavailable in the nested scope. When the name is
used inside the nested scope, it refers to the entity defined in this nested scope. Outside of the
nested scope this name would still refer to the entity (variable, type, or parameter) defined in the
outer scope.

To demonstrate the effects of nesting, let us consider Listing 6.2 that shows a modified version of
the code presented in Listing 6.1. Useless code, both local variables temp in the loop bodies in
main() and function getBalance(), is gone. Other useless changes are done for the sake of the
example: variables MAX (actually, it is a constant), count, and array of Account a[] became global
in the file scope, the function printAccounts() was added that prints both account number and
account balance for each account (on a separate line) in array a[]. The indices are defined within
the loops in main(), not in main() itself. The total of balances is displayed and then the program
searches for a particular account number and displays its balance if found. The output of this
version is shown in Figure 6-2.

Figure 6-2. Output of code in Listing 6.2.

Example 6.2. Demonstration of nesting scopes and name overriding.
#include <iostream>
using namespace std;

struct Account {
 long num;
 double bal; } ;

const int MAX = 5; // maximum size of the data set

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (259 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int count = 0; // number of elements in data
set
Account a[MAX]; // global data to be processed

void printAccounts()
{ for (int i = 0; i < count; i++) // global count
 { double count = a[i].bal; // local count
 cout << a[i].num << " " << count << endl; } }

int main()
{
 typedef int Index;
 long num[MAX] = { 800123456, 800123123, 800123333, -1 } ;
 long number = 800123123; double total = 0; // outer scope
 while (true) // break it in the sentinel
 { double amounts[MAX] = { 1200, 1500, 1800 } ; // data to load
 if (num[count] == -1) break; // sentinel is found
 double number = amounts[count]; // number hides outer number
 a[count].num = num[count]; // loading data
 a[count].bal = number;
 count++; }
 cout << " Data is loaded\n\n";
 printAccounts();
 for (Index i = 0; i < count; i++) // global count
 { double count = a[i].bal;
 total += count; // local count
 if (i == ::count -1) // global count
 cout << "Total of balances $" << total << endl; }
 for (Index j = 0; j < count; j++)
 if (a[j].num == number) // outer number, global array
 cout <<"Account "<< number <<" has: $" << a[j].bal << endl;
 return 0;
}

The scope of global variables is the file where they are defined. Any function in that file can
reference that name (unless the name is hidden), and all these references will refer to the same
global variable. For example, array a[] and variable count in Listing 6.2 are referenced only in
function printAccounts() and in main(), constant MAX is used only in main(). There is no need
to define these names in printAccounts() and in main() to use them. The global definitions are
enough.

In a sense, the scope of global variables is the program scope rather than the file scope. If you
define the name MAX, count, a, or num as a global name in another file in the same program, the
compiler will compile each file individually because the compiler does not check the contents of
other files during the compilation. However, the linker will report duplicate definitions regardless
whether these names are used for the same or for a totally different purpose. For example, a[] and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (260 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

num[] could be defined as scalar variables in another file rather than arrays¡Xstill, this duplicate
usage is an error. This is true of global definitions only and applies neither to declarations nor to
nonglobal definitions. We will see examples in a moment.

Other C++ scopes (function or block scopes) defined in a particular source file are nested in that
global file scope. Hence, global names are visible in functions within the file as are any outer
names visible in nested scopes. If functions have nested scopes themselves, the names of global
variables are still visible in these nested scopes. In Listing 6.2, global arrays a[] and num[] and
index count are all used in the body of the first loop nested in the scope of main(). Again,
existence of nested scopes (of any depth) does not change the visibility of names defined in
encompassing scopes.)

Nested scopes can define variables using the names defined in enclosing scopes (and hence already
known in the nested scopes). When this name is used in the local nested scope (a function in a file,
or a block in a function or another block), the meaning of this reference is the local name. When
this name is used in the enclosing scope, the meaning of the reference is the meaning defined in the
enclosing scope (because the local name cannot be known outside of its scope).

In Listing 6.2, function printAccounts() uses the name count in the loop continuing condition.
This name refers to the global variable count. Within the loop, however, the name count refers to
the variable defined in the loop body, not in the global scope. The nested name overrides the global
name. In addition to overriding names in nested scopes, other terms are name hiding and name
redefining. Notice that the nested name does not have to define a variable of the same type. It can
be anything.

It is not difficult to write function printAccounts() without using the variable count. I
introduced it only to illustrate the concepts of the name scope on a relatively simple example.
Actually, it is impossible to make up an example where reusing a global name is really a necessity.
You can always come up with a local name different from the name in the encompassing scope.
The beauty of the name scope concept is that you do not have to come up with a different name.
You use the name you like, and this name is known in this scope no matter what names are known
in encompassing scopes.

When the nested scope redefines the name defined in an encompassing scope (global or nested in
another scope), the name defined in the encompassing scope becomes unavailable in the nested
scope. Redefining the name from the outer scope signals to the maintainer the intent of the designer
not to use the global name in the local scope.

In Listing 6.2, the body of the first loop in main() defines variable number using the same name
that is defined in the scope of main() itself. This means that when the loop body says number, it
refers to the local variable of type double rather than to the outer variable of type int because the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (261 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

nested name redefines the outer name. Outside of the nested loop, however, the name number again
refers to the variable defined in main() itself, for example, on the line before last in Listing 6.2.

Similarly, the body of the second loop in main() in Listing 6.2 defines variable count of type
double that redefines the global variable count of type int. References to name count within that
loop are resolved by the compiler as references to the local variable of type double, even though
the loop continuing condition refers to the global variable count of type int.

If the nested scope needs to access the global name too, it can use the C++ global scope operator,
'::', to access the global name. In Listing 6.2, for example, the total of balances is printed inside the
second loop rather than after the loop (which would be simpler and more natural). So, the loop has
to compare its index i with the number of valid elements in the data set. In this context, ::count in
the second loop in main() refers to the global object count rather than to the local object count.

Hidden global objects should not be accessed lightly. If the nested scope needs the global name, the
global name should not be overridden. After all, the nested scope is free to come up with any name
to avoid name conflict. However, the need to use this scope operator might arise in the course of
maintenance when new requirements call for the use of the global name that was overridden
because this need was not anticipated during the original design.

ALERT

The global scope operator :: overrides scope rules. For the maintainer, it is easier to assume that
the scope rules stand than to search for the scope operator. Name your variables to minimize the
need for the scope operator.

Notice that the scope operator accesses the global variables only. C++ provides no mechanism for
the nested scope to access a variable from the enclosing scope that is redefined in the nested scope.

In Listing 6.2, the body of the first loop defines the variable number that hides the variable number
defined in main(). This means that all references to number in that loop are references to the local
variable. The variable number defined in main() can be accessed only outside of the body of this
loop (e.g., in the last loop in Listing 6.2).

NOTE

The scope operator accesses the global name. If a nested scope redefines a name defined by an
outer block, the nested scope forfeits the ability to refer to the name defined by the outer block. If
the nested block needs that outer name, do not redefine it in the nested block.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (262 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Scope of Loop Variables

Defining loop variables in the header of the loop is modeled after a similar facility in Ada, but C++
implements it differently, and different compilers do it differently. When the loop variable name is
the same as the name defined in encompassing scopes, some compilers flag it as an error, whereas
others do not. When the loop variable is used outside of the loop body, some compilers flag it as an
error, and others do not. The new C++ standard limits the scope of loop variables to the body of the
loop. Hence, it should not be used outside the loop. When another loop in the same scope uses the
same name for another loop variable, some compilers flag it as an error, and others do not, even
though the new standard allows that. Listing 6.2 shows examples of prudent and portable use of this
facility: Loop variables do not redefine names defined in encompassing scopes, they are not used
outside of the loop bodies, and they are not redefined in other loops in the same scope.

In general, lexical scope is an important tool: Names can be simply reused (without conflict) in
independent scopes and redefined (with hiding of outer names) in nested scopes; when scopes of
objects with the same name are nested, the most recently defined name hides less recently defined
names.

Scope rules help us avoid name conflicts and excessive communications among programmers.

Memory Management: Storage Classes

The lexical scope discussed in the previous section is a compile-time characteristic of the program.
It defines the segments of the program source code where a particular name is known. However, it
does not define when memory is allocated for a particular variable during execution and when this
memory is taken away and made available for other uses. The rules of memory allocation at run
time depend on another characteristic of programmer-defined names: their storage class (or extent).

Storage class refers to a span of execution time when the association between a name of a variable
and its location in memory is valid, that is, when the storage is allocated for that variable. Unlike
lexical scope, storage class is a run-time feature of program behavior.

Program execution in C++ always starts with main(); the first executable statement in main() is
usually the first statement executed by the program. Function main() calls other program
functions, and these functions call yet other functions. When a server function finishes its execution
(it executes a return statement, or its execution reaches the closing brace of the function body),
control returns to the client function that called it. When the last function called from main()
terminates and execution of main() reaches its closing brace (or a return statement) the program

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (263 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

terminates.

So far we saw two versions of function main(), one with the int return type and another is a void
function. When the return type is not present, the compiler assumes that it is int (which is, of
course, unfortunate). Each form of main() can be used with optional parameters.

void main(int argc, char* argv[]) // command line arguments
{ for (int i = 0; i < argc; i++) // start of program execution
 cout << "Argument " << i << ": " << argv[i] << endl;
 } // end of program execution

The parameters are passed to main() from the operating system when main() is called. They
contain information about command line arguments printed by the user during program invocation
(if any). These parameters are defined as the count of command line arguments (argc) and the
array (vector) of strings (argv[]), where each string contains one of the command line arguments.
(We will talk about the pointer notation for arrays later.)

Often, these strings are file names typed on the command line. In the example above, function
main() uses the count of command line arguments to go over each of the arguments. In this case it
just displays each argument. The name of the program executable file is included in the list of
command line arguments. Its index in the array of strings is of course 0. For example, if the name
of the executable file is copy, then the command line

 c:\>copy account.cpp c:\data

will print the following lines

Argument 0: copy
Argument 1: account.cpp
Argument 2: c:\data

In the process of program execution, program variables (objects) can be allocated in three areas of
memory reserved for the program: fixed memory, stack memory, and heap memory. For the
purposes of this discussion, it is not important to know how the specific computer architecture
manages these areas of memory. Whether it is a scalar variable, an array, a structure or class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (264 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

variable, or a union or enumeration variable, it will wind up in one of these memory areas during
program execution depending on its storage class.

The concept of the storage class further refines the concept of the name scope. Variables defined as
global in the file scope are placed in the fixed area. Variables defined as local to a function or block
are placed on the stack. In addition, C++ supports dynamic variables. They are not defined as
global or local and hence they have no names. Instead, they are allocated explicit program
statements (operator new). Dynamic variables are allocated on the program heap.

In definitions of variables, C++ storage classes can be specified using the following keywords.

ϒΠ auto: default for variables defined as local in a block scope or in a function scope
(automatic variables)

ϒΠ extern: can be applied to variables that are global in file scope

ϒΠ static: can be used for global variables in a file scope or for local variables defined in
a block or in a function scope

ϒΠ register: used for variables kept in high-speed registers rather than in random-access
memory

For objects (variables) of these classes, the language rules define allocation and deallocation:
extern and static variables are allocated in the fixed data memory of the program, auto variables
are allocated on the program stack, and register variables are allocated in registers if possible. If
there are not enough registers available, these variables are allocated either in the fixed area (for
global variables) or on the program stack (for local variables).

Automatic Variables

Automatic variables are local variables defined in functions or in blocks. The auto specifier is
default and is not often used. For example, function printAccounts() in Listing 6.2 could have
been written in the following way.

void printAccounts()
{ for (auto int i = 0; i < count; i++) // global count
 { auto double count = getBalance(a[i]); // local count
 cout << a[i].num << " " << count << endl; } }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (265 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Since C++ programmers dislike making extra keystrokes if there is no good reason for doing so,
they prefer to omit these default specifiers.

Storage for automatic variables is allocated from the stack when execution enters the opening brace
of the function or the block. If the definition includes initialization (as in the previous
printAccounts() example), the storage allocated for the variable is initialized. If no initial value
is specified in the definition, the value of the variable is undefined. Most likely, it is a value left
from the previous use of the memory location allocated for the variable. At any rate, it is not a good
idea to try to figure out what that undefined value is and use it in the program. The word
"undefined" is not a C++ keyword, but you should take it very seriously. If you need a specific
value, initialize the variable and use it, but do not rely on undefined values. They can be anything,
and they can be different from one program execution to another, even if your experiments confirm
that they are always the same. Please do not trust these experiments.

Automatic objects exist in memory only after the scope where they are defined is entered in the
course of program execution. They are allocated on the program stack (and can be referred to by
name) until the closing brace of the scope is reached during execution. At this moment, their
memory is returned to the stack and can be reused for other purposes.

This is a great technique for memory management. It relieves the programmer from the
responsibility of allocating and deallocating memory for individual computational objects. For
some tasks, this technique is not sufficient, and dynamic memory management is used instead. As
you are going to see later in this chapter, dynamic memory management is more complex and error-
prone. This is why automatic variables should be used (and are used) as much as possible.

Memory allocated for an automatic variable in another call to the same function (or for another
iteration of the same loop) might not be at the same stack location with the same contents. Hence,
automatic variables cannot pass data between consecutive calls to the function or between
consecutive iterations of the loop. If the variable is not initialized, it has undefined value at each
allocation. If the definition of the variable includes initialization, this initialization is repeated every
time when the scope is entered. In the example of printAccounts(), storage for local count is
allocated, initialized, and deallocated for each iteration through the loop. Storage for i is allocated,
initialized, and deallocated for each call to printAccounts().

When the program has sufficient memory and execution speed, you should not try to optimize the
memory management for local variables. When resources are scarce, it is important to understand
the consequences of a design decision. For example, in Listing 6.2 I define array num[] as a local
variable in function main() and array amounts[] as a local variable in the body of the first loop.
Both these arrays contain data for loading values into global array a[]. Defining arrays num[] and
amounts[] in different places in the program represents an example of tearing apart what should
belong together.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (266 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This decision also might have performance implications. Array num[] is allocated only once, at the
beginning of the function main() execution. Array amounts[] is allocated, initialized, and
deallocated as many times as the loop body is executed. Array allocation and deallocation does not
take much execution time (it involves manipulating the stack pointer), but copying values into array
elements for initialization takes about as much time as does copying data from array amounts[]
into array a[]. It would be nice to allocate arrays num[] and amounts[] in the same place, and
where it is done only once during program execution.

int main()
{ typedef int Index;
 long num[MAX] = { 800123456, 800123123, 800123333, -1 } ;
 double amounts[MAX] = { 1200, 1500, 1800 } ; // data to load
 long number = 800123123; double total = 0; // outer scope
 while (true)
 { if (num[count] == -1) break;
 } } // end of main()

The names of automatic variables are invisible outside their scope. This is why they can be reused
in other scopes; there is no connection between the memory locations for names in different scopes.
This is great from the point of view of reducing coordination among developers. When a global
variable is used in different scopes, the same location is referred to in each scope. This is why its
use in each function has to be studied to figure out whether the same location can indeed be used
for several purposes or different variables had to be introduced. The use of automatic variables
simplifies the job for the designer and the maintainer alike.

A name can be reused for another object in a nested block according to the scope rules. A new
object with the same name is allocated on the stack at a location that is different from the location
of the variable defined in the outer scope. The name in the nested scope hides the object that has
been allocated on the stack earlier (and is still alive). In Listing 6.2, for example, variable number is
defined in function main() and is redefined in the body of the first loop in main(). The second
variable number is allocated on the stack at the start of each loop iteration and is deallocated at the
end of each iteration. It is a totally different location (actually, it might be different for each loop
iteration) and it has nothing to do with the stack location allocated for number at the beginning of
main(). This is why when the third loop in main() needs the value that was assigned to number at
the beginning of main(), this value is still intact and is used again without any difficulty after the
nested scope of the first loop terminates.

Similarly, when the main() calls printAccounts(), memory for variable count is allocated from

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (267 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the stack for each loop iteration in printAccounts(). These locations can be different for
different iterations, and none of them has anything to do with the location of the global variable
count in the fixed data area.

If the nested scope does not hide the variable that has been defined in the encompassing scope, the
name of that variable is available in the nested scope. In Listing 6.2, variable total is allocated at
the beginning of main() and is not redefined in its nested scopes. When the second loop refers to
total in its body, this reference is to the variable defined in the encompassing scope.

Function formal parameters are treated as automatic variables defined in the function scope; they
are initialized with the values of actual arguments in the function call. For example, in the first
version of the example program (in Listing 6.1) function getBalance() initializes its parameter a
with the value of a[i] in main(). Memory for parameters is allocated on the stack when the
function execution starts and is deallocated when the execution reaches its closing brace.

In general, it is a good idea to define a variable as deep in the nested structure of blocks as possible.
Doing this provides the following advantages.

ϒΠ It minimizes the scope of the program where the name is known and hence minimizes
the potential for name conflicts with other objects.

ϒΠ It ties up memory for this variable during the shortest period of time; outside of this time
period the memory can be reused for other purposes.

The tradeoffs to consider are accessibility of the object in other parts of the program and the
negative impact on performance because of repeated memory allocation, initialization, and
deallocation. Another tradeoff is the danger of running out of stack space: The total memory needs
depend on the sequence of function invocations, and neither the compiler not the programmer is
able to predict it accurately. This is especially important when arrays are defined as local variables
in functions and nested blocks, for example, array amounts[] in Listing 6.2.

External Variables

External or global variables are variables that are defined outside any function. As I mentioned in
the section, "Name Scope as a Tool for Cooperation," their scope is the file they are declared in,
from the place of definition until the end of file. Hence, it cannot be used in another file to refer to
the same variable¡Xthe name is not visible in another file. (Actually, this can be done with some
effort.) However, this name cannot be used in another file to define another external variable. In
that sense, the names of global variables have the program scope, similar to names of C++
functions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (268 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Memory for global variables is allocated differently from automatic variables. The space is
allocated from the fixed data area. It is allocated at the beginning of the program execution, just
before the first statement of the main() function is executed. The memory location is kept
associated with the name of the variable until the program terminates and is released just after the
last statement of main() is executed.

Definitions of global variables may be initialized. If initialization is not present, the variable is
initialized to the zero value of the appropriate type. This is an important difference from automatic
variables, which do not have default initial values and whose initial state is undefined
(programmers often call it junk or garbage).

In Listing 6.2, variables MAX, count, and a[] are defined as global variables.

The total amount of memory needed for all global variables in the program is easy to evaluate. The
compiler compiles each file individually and tallies the space required for global variables by
adding up the sizes of all global objects. (This would not make sense for automatic objects because
not all of them exist in memory at the same time.) Another advantage of using global variables is
speed. Since each global variable is allocated and deallocated only once rather than each time the
scope is entered, this operation cannot slow down the program (of course, for many applications
this is not important).

Yet another advantage of using global variables is less demand on the program stack. The size of
the stack that is required for the program cannot be estimated accurately, and the possibility of
running out of stack memory always exists. This is why it is important not to increase demand for
stack space without a good reason. For example, array amounts[] in Listing 6.2 is defined as local,
while array num[] is defined as global. Not only do I tear apart what logically belongs together, not
only do I allocate and initialize this array on each loop iteration, I also allocate array amounts[] on
the stack. The first two operations require time. The third operation requires additional memory.
Making this array global would eliminate all three drawbacks. In this example, the array is only
three elements long, and it is not going to break the stack. But many programmers allocate large
arrays on the stack without realizing the implications for the stack size.

Yet another advantage, at least for some programmers, of using global variables is the opportunity
to avoid using function parameters. Since the scope of a global variable is the file it is defined in,
the code of any function defined in the same file after the definition of that global variable can
access the variable directly. For example, function printAccounts() in Listing 6.2 directly
accesses global variables count and a[] without the complexity (and time overhead) of parameter
passing. Other programmers view direct access to global variables as a failure to convey to the
maintenance programmer what the function interface is. To recognize which variables the function
uses and which variables the function modifies, it is necessary to inspect each code line of the
function. As we will see later, parameters can document the function interface directly, without the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (269 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

need to inspect each line of code.

The negative side of sp the life span of a global variable over the whole time of program execution
is that reverting its memory to other uses within the program becomes more difficult. For example,
variables count and a[] are used throughout the whole program in Listing 6.2. On the other hand,
arrays num[] and amounts[] are needed only in the body of the first loop in main(). After that,
their space can be reverted to other uses. This is what happens to array amounts[] allocated on the
stack. Array num[], however, is kept around, and reusing it for some other purpose requires careful
planning during development and might become a nightmare during maintenance. This is why we
do not define all program variables as global variables.

The name of a variable defined as global in a source code file is known in any scope nested within
that file. You can access a global variable from any place in the file. In Listing 6.2, for example,
count is used in main() as the loop limit, MAX is used to define arrays a[], num[], and
amounts[]. Global array num[] is referenced in main(), and global array a[] is referenced in
function main() and in function printAccounts().

As I mentioned earlier, a nested scope can redefine (hide, override) the global name. The space for
this redefinition is allocated from the stack, not from the fixed area, and this name in the nested
scope will refer to the local automatic variable, not to the global variable. In Listing 6.2, function
printAccounts() uses the name count for an automatic variable, and so does the second loop in
main(). When the scope operator '::' is used with the redefined name, it refers to the memory
location in the fixed data memory rather than to the memory location on the stack (::count in
Listing 6.2).

If another file in the program in Listing 6.2 defines a local variable count in one of its functions, it
will cause no problem because these scopes are independent. This function will refer to a memory
location on the stack. If, however, another file defines a global variable count (and this should be a
popular name and short and expressive), the program will not link. The use of global variables
requires additional coordination among programmers working on different files in the program.

However, a global variable defined in one file can be referenced from other files in the application.
This is yet another reason for using global variables.

The extern keyword is used to make a global variable defined in one file known in another file.
This is not about reusing the name of the global variable for other purposes. This is about referring
to the same memory location using the same name.

Let us say that the program in Listing 6.2 evolves, and is partitioned into more functions. These
functions should be placed into different files so that more programmers can work on the program.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (270 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Let us say that instead of searching for a particular account at the end of main(), we want to call
function printAverage(), which uses the sum of account balances computed in main() as its
parameter and prints the average balance. Instead of using a literal value in the cout statement, I
want to have a variable caption[], which contains the text "Average balance is $" (a
common technique to facilitate internationalization of the program), and I want function
printAverage() to call function printCaption(), which uses the variable caption[]. Again, I
am using very small examples so that they are relatively easy to understand, but I introduce
additional functions to discuss the issues important for development of large programs.

To implement printAverage() and printCaption() in another source file, you need to make
sure that two things happen:

ϒΠ The source file that calls the function printAverage(), that is, file with main(),
knows that printAverage is the name of a function defined in some other file.

ϒΠ The file where printAverage() and printCaption() are implemented knows about
global variables count and caption[] defined in some other file.

Listing 6.3 shows the modified Listing 6.2 that solves this problem. Function printAccounts() is
simplified, type Index is eliminated, array amounts[] is defined next to array num[] (as I said
earlier, the two should belong together), function printAverage() is called at the end of main().
A global array caption[] is added, which contains the caption to be printed with the average
balance. Listing 6.4 shows the second file where functions printAverage() and printCaption()
are implemented. The output of the program is shown in Figure 6-3.

Figure 6-3. Output of code in Listing 6.3 and Listing 6.4.

We see in Listing 6.3 that the first problem is resolved by adding to the source file the prototype for
printAverage() preceded by the keyword extern.

extern void printAverage(double); // it is defined elsewhere

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (271 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If the keyword extern is omitted in the function declaration, both the compiler and linker will
figure out the function interface anyway. Some C++ programmers prefer to use the keyword to
prevent portability issues.

void printAverage(double); // still, it is defined elsewhere

When used for variables, the keyword extern has two meanings: First, it denotes that the global
variable defined in this file can be seen in another file; second, it denotes a variable defined in
another file and is declared in this file so that it can be seen by functions in this file. In the first
meaning, the use of extern is optional; in the second meaning it is mandatory.

Sounds complex? Do not worry, this is simple: extern is optional in definitions and is mandatory
in declarations. Let's look at the examples of external variables in Listing 6.3. Global variables in
Listing 6.3 are all definitions. Hence, they are external variables implicitly: They can be seen in
another file, and there is no need to use the extern keyword. When used, it does not do any harm if
the variable initialized.

 extern int count = 0; // OK: this is a definition

The presence of initialization tells the compiler that this is a definition, not a declaration. If
initialization is omitted, then the definition without initialization becomes a declaration, and the
linker would complain about the lack of definition for count.

 extern int count; // this is a declaration

Meanwhile, the absence of both initialization and the keyword extern makes it again a definition
(the value, of course, should be initialized elsewhere), and the variable can be accessed from
another file (Listing 6.4, wich defines printAverage[]).

 int count; // OK: this is a definition

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (272 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ALERT

All global variables are external by default. The use of the extern keyword is optional¡Xit
indicates to the maintainer that the variable is used in other file(s). However, if the global variable
is not initialized at definition, the linker confuses it for a declaration if the keyword extern is used.

The array caption[] in Listing 6.3 is initialized. Hence, this is a definition (the memory is
allocated for the array in fixed area), and the array is extern by default and can be used in another
file, Listing 6.4, which defines printCaption[]. Arrays num[] and amounts[] are also global and
can be used in other files. They are not (and should not, because they just contain initialization data
for the program). The fact that caption[] is used in other files but num[] and amounts[] are not is
not immediately evident to the maintainer from this design. I will correct this failure by introducing
the static storage class soon.

Example 6.3. Communicating with another file through external declarations (Part 1).
#include <iostream>
using namespace std;

struct Account { // global type definition
 long num;
 double bal; } ;

extern void printAverage(double total); // defined elsewhere

const int MAX = 5;
Account a[MAX]; // global data to be processed
int count = 0; // number of elements in data set
char caption[] = "Average balance is $"; // caption to print

long num[MAX] = { 800123456, 800123123, 800123333, -1 } ;
double amounts[MAX] = { 1200, 1500, 1800 } ; // data set to load

void printAccounts()
{ for (int i = 0; i < count; i++) // global count
 cout << a[i].num << " " << a[i].bal << endl; }

int main()
{
 double total = 0;
 while (true) // break on sentinel
 { if (num[count] == -1) break;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (273 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 a[count].num = num[count]; // global a[], num[], amounts[]
 a[count].bal = amounts[count++]; } // load data
 cout << " Data is loaded\n\n";
 printAccounts(); // local function
 cout << "\n Data is processed\n\n";
 for (int i = 0; i < count; i++)
 { total += a[i].bal; }
 printAverage(total); // global in another file
 return 0;
}

Listing 6.4 shows function printCaption(). It is called by printAverage() from this file and
uses array caption[] defined in the file in Listing 6.3. To make this possible, array caption[] is
defined as extern in Listing 6.4. Variable count is also defined as extern without initialization.
This makes it a declaration. Omitting the keyword would turn it into a definition, and the linker
would flag the two definitions of count as errors (even if the types were different). The compiler,
however, compiles source files individually and will miss the issue. The use of keyword extern
allows one file to access data and functions defined in other files, but it does not tell the maintainer
which global variables and functions are used in other files, like printAverage(), and which ones
are not, like printCaption(). Again, the use of static keyword will solve this problem.

Example 6.4. Communicating with another file through external declarations (Part 2).
#include <iostream>
using namespace std;
extern count; // defined and initialized
elsewhere
extern char caption[]; // defined and initialized
elsewhere

void printCaption() // called from this file only
{ cout << caption; }

void printAverage(double sum) // called from another file
{ if (count == 0) return;
 printCaption();
 cout << sum/count << endl;
}

Also notice that the declaration of the array (caption[]) does not require the size of the array
because declarations do not allocate memory: They indicate the existence of a definition for this
object elsewhere. Similarly, you should not initialize extern objects; this would turn a declaration
into a definition (and create a name conflict).

Unlike definitions, external declarations can be repeated in different files or even in the same file.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (274 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

With these declarations, the code in that file can use the global names as if the variables were
defined in this file. For example, in Listing 6.4, function printAverage() refers to count, and
function printCaption() refers to caption[], which are defined in another file (Listing 6.3).

External variables provide a good communication tool between functions defined in different files
in large programs. Make sure you use them only when the advantages of spreading these functions
among different files outweigh the advantages of keeping these functions in the same file. Listing
6.3 and Listing 6.4 represent a glaring example of excessive communications between files. Putting
together things that should belong together eliminates the need for communication between files,
eliminates the need for extern declarations, simplifies the tasks of design and maintenance, and
decreases the likelihood of errors.

Static Variables

The keyword static in C++ has five meanings. There are some common features for all static
variables. (They are all allocated in the fixed memory rather than on the stack.) However, the
differences between different meanings are significant, and the use of the same keyword in
different context might become confusing. The following C++ entities can be defined as static.

ϒΠ global variables that should be accessed by the code only in the same file where the
variables are defined but not by the code in other files

ϒΠ local variables defined in a function (or in an unnamed block) so that their values should
survive from one function call to another (or from one scope execution to another)

ϒΠ structure (or class) fields that should refer to the single memory locations for all
variables (or objects) of this type

ϒΠ class member functions that access only parameters, global variables, and class static
variables but do not access nonstatic class fields

ϒΠ global (nonmember) functions that are accessible to the client code only in the same file
they are defined in but not in other files

This is more than we can comfortably discuss now. This is why I will discuss only the first two and
the last meanings here. Two other meanings will be discussed in Chapter 8, "Object-Oriented
Programming with Functions."

The first use of the static keyword, for global variables, represents a powerful tool for making
variables private to a file, so that no other file can access these variables by defining them as
extern. For example, Listing 6.3 defines global variables MAX, a[], count, caption[],

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (275 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

num[], and amounts[] but it does not specify which variables are accessed from other files. To
indicate that only count can be accessed from another file but that all functions accessing other
global variables are in the same file (and to make sure that no other file can access these global
variables), Listing 6.3 should define other global variables as static.

int count = 0; // it can be made extern elsewhere
static const int MAX=5; // it cannot be made extern elsewhere
static Account a[MAX]; // no access from code in other files
static long num[MAX]={ 800123456, 800123123, 800123333, -1 } ;
static double amounts[MAX] = { 1200, 1500, 1800 } ;

By adding the static keyword to a definition of a global variable, we change neither the place in
memory where it is allocated (fixed storage) nor its life span (from the beginning to the end of the
program execution). The only result of this addition is that the variable cannot be defined as
extern in other source files and thus accessed from other files in the program. This programming
technique is highly recommended.

Notice that array caption[] is not among these global variables. Since it is used only by function
printCaption[] (in Listing 6.4), it should not be torn away from this function and put into Listing
6.3 where no function accesses it. It should be moved to Listing 6.4 Since functions defined in
other files do not access this array, it can (and should) be declared in Listing 6.4 as static. This is
how the top of Listing 6.4 should look.

extern count; // defined elsewhere
static char caption[] // no extern, defined and init here
 = "Average balance is $"; // used locally, not in other files

Some programmers believe that this is primarily a security measure. Using static variables of this
kind eliminates errors by preventing accidental or unauthorized changes from other parts of the
program. This is true, but these kinds of errors are very few and far between. What I am after is
more common and more important. The real value of this technique is elimination of
communication between programmers. By defining global variables as static, it becomes
possible for other designers to use such nonspecific and popular names as MAX, a, num,
amounts, and caption in any file in the program without coordinating the choice of names.

In general, the use of global variables should be limited. When they are used for communication
between functions in the same file, they should be made static to decrease interference with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (276 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programmers working on other files. Leave them nonstatic only when there is a pressing need to
access them from other files (but check whether you are tearing apart what should belong together).
Of course, when a global variable is defined as static, it cannot be accessed from another file. If
it is not made static (as count is in Listing 6.3), there is no guarantee that it is indeed accessed
from other files, or the programmer neglected to pass on to the maintainer his or her knowledge that
this variable is accessed from one file only. This is why we have to make an effort to be meticulous
in using this keyword for global static variables.

This technique of defining global variables as static is very important in C. This is how the object-
oriented approach was first used in that language. Data and functions were bound together in the
same file (like array caption[] and function printCaption() after moving the array to Listing
6.4), data were defined as static and hence invisible from outside, and functions in that file would
be called from other files and access data on behalf of the client functions.

In C++, data and functions are bound together in classes. This weakens the pressure to use global
variables. Namespaces further reduce the need for global variables. Hence, the importance of this
technique in C++ is less than in C. Still, when you define variables as global, do not forget to
define them as static to eliminate interference with other designers, and to pass your knowledge
about communication between functions to the maintenance programmer.

The second meaning of keyword static is different. When applied to a local variable defined in a
function or in a block (remember, by default these variables are automatic), this keyword moves the
variable from the stack to the fixed area of memory. The life span of this memory location is now
not from the start to the end of the function or block (as for automatic variables) but from the start
of the program to the end of its execution. This means that the value at this location that was set at
one execution of the scope becomes available when the scope is entered again. As far as the name
of the variable is concerned, it is still governed by the scope rules as discussed in the first section in
this chapter. The name is not known outside of the braces where the variable is defined. Hence,
other independent scopes, even in the same file, can use this name for other purposes. Moreover,
several variables in different scopes can be defined as static using the same name. This will not
cause name conflict, even though all these variables are allocated in the fixed area. Since they are
in different scopes, the names are known at different moments of program execution.

For example, function printAccounts() in Listing 6.3 might be modified to print one account
only. To do this, I could define a global variable, i, and use it as an index within
printAccounts().

const int MAX = 5;
Account a[MAX]; // global data to be processed
int count = 0; // number of elements in data set

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (277 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int i; // global index
. . .
void printAccounts()
{ cout << a[i].num << " " << a[i].bal << endl;
 i++; } // increment index after use

In main(), I would call printAccounts() in a loop.

for (int j = 0; j < count; j++)
 printAccounts();

The language allows me to use index i in the loop too, but the current version of my compiler does
not let me do that. (The last loop in Listing 6.3 defines i.) The drawback of this design is the use
of more global variables (polluting the global space). To avoid that, I can move the definition of the
index i in printAccounts() to avoid potential conflicts with other uses of this name.

void printAccounts()
{ int i = 0;
 cout << a[i].num << " " << a[i].bal << endl;
 i++; } // increment index after use

This does not fly because now the index is an automatic variable, and it gets new space on the stack
each time printAccounts() is called from main(). Hence it cannot remember the index value
from the previous invocation. Also, the index is set to 0 each time the function is called. The
keyword static resolves both problems.

void printAccounts()
{ static int i = 0;
 cout << a[i].num << " " << a[i].bal << endl;
 i++; } // increment index after use

At first glance this does not make sense. How is the index going to be incremented if the value of i
is reset to 0 at every invocation? But it is not what you think it is.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (278 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the previous version of printAccounts(), the initial value was assigned to i at each call. In
this version, since i is static, it is assigned only once, despite the appearance of doing this at each
call. Actually, it is not done at the first invocation of printAccounts(). It is done when all global
variables are allocated, before the first statement of main() is executed. When printAccounts()
is called, the initialization statement is skipped, and the previous value of this local variable is used
in the next statement.

void printAccounts()
{ static int i = 0; // executed only once
 cout << a[i].num << " " << a[i].bal << endl;
 i++; } // executed in each call

In this case, explicit initialization is not even necessary. Static variables are implicitly initialized
to 0, and this version of printAccounts() is perfectly legitimate.

void printAccounts()
{ static int i; // implicit initialization to zero
 cout << a[i].num << " " << a[i].bal << endl;
 i++; } // executed at each function call

However, the maintainer should think several extra seconds to figure out why this function updates
a variable that has never been explicitly initialized. The previous version is less concise but it
conveys the intent of the designer better.

Using local static variables is not a good programming practice. It requires too much
coordination between the client and server functions and too much effort to understand the code.
And it is rarely necessary. In most cases, it is not hard to find a solution that does not require the
use of static local variables. For example, the way the accounts were printed in Listing 6.3 (and
in previous versions of the program) is simple and does not require static local variables.

Static global functions are similar to static global variables in the sense that they cannot be
called outside of the file where they are defined because the name of a static function is invisible
in other files. This means that the name can be used in other files for any other purpose without
name conflicts and related interference. If a function is called only by the functions that are in the
same file where it is defined, it is a good idea to explicitly define the function as static and make
it visible in that file only, not in the whole program. In Listing 6.3, function printAccounts()
should be made static.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (279 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

static void printAccounts()
{ static int i = 0;
 cout << a[i].num << " " << a[i].bal << endl;
 i++; } // increment index after use

Similarly, function printCaption() in Listing 6.4 should be defined as static.

static void printCaption() // called from this file only
{ cout << caption; }

Similar to static global variables, the issue here is name conflicts and communicating with the
maintainer. By putting server functions in the same file with their callers and by defining them as
static global functions, you allow the programmers that work on other files to use these function
names without coordination with you. In addition, it explicitly says to the maintainer that there are
no other functions in other files that depend on this one. Putting server and client functions in the
same file is not always possible or desirable. When it is done, it should be documented by defining
the server functions as static.

There is yet another twist in using the static storage class for functions that are bound to classes.
They can access only static fields of the class. We will see more on static functions and static
fields later.

Memory Management: Using Heap

Scope rules and the variety of storage classes in C++ go a long way toward helping programmers to
manage memory for program objects. However, these tools do not solve the problem of
implementing dynamic data structures adequately.

Array implementations of dynamic data structures with a sentinel or a count of valid entries are
powerful and simple. When the number of elements in the data set grows or shrinks, these
implementations can add or remove components. Yet they need the maximum size of the data set
known at compile time. Any choice of the maximum size might entail either a danger of overflow
or wasted space.

Dynamic memory management resolves this problem by allocating and reallocating memory
dynamically. When the data set fills all available space in the array, we allocate a larger array

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (280 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

dynamically, copy data into the new array, and release the old array. When the data set shrinks so
that too much space becomes wasted, we allocate a smaller array, copy data into the new array, and
release the larger array. This technique eliminates both the danger of overflow and of excessive
wasted space.

Another problem with contiguous arrays is that they are efficient only when new elements are
added at the end of the array. If you need to add a new element at the start or in the middle of the
array, you have to shift remaining array elements toward the end of the array to make room.

Similarly, when an element is deleted from the middle of the array rather than from the end, you
have to shift remaining elements toward the start of the array to close the gap. This requires
additional time. Another approach is not to close the gap but to introduce yet another sentinel value
to denote deleted elements. This eliminates the shift during deletion but requires additional testing
of each element for validity during search. If the array is short, or insertions and deletions in the
middle are not frequent, these drawbacks are not important. For long arrays and frequent insertions
and deletions, these techniques might negatively affect performance.

One of possible solutions to these problems is to eliminate the array as a mechanism for allocating
memory for many elements at once. Instead, we allocate memory for an element only when it has
to be inserted into the data set. We link the elements using pointers that contain addresses of these
dynamically allocated elements. Manipulating pointers, we can insert an element into the data set
without spending time shifting other elements. When the element has to be deleted, its memory is
deallocated for other uses. Here, too, pointer manipulation allows us to close the gap without
shifting other elements and without marking the element as deleted.

Using pointers for dynamic arrays and linked data structures is both useful and popular. However,
it is more complex than using fixed-size arrays, which we discussed earlier. Errors in handling
pointers are run-time errors rather than compile-time errors and often are difficult to discover.
Frequent allocation and deallocation of memory might affect performance.

In many languages, like Lisp, Eiffel, and Java, memory management is considered to be too vital
for program integrity to be trusted to the fallible programmer. These languages use so-called
automatic garbage collection that evaluates the use of memory by the program and reclaims the
locations that the programmer should have returned to the memory pool. Naturally, these
algorithms are relatively slow, complex, and inexact.

In C++, the opposite approach is taken¡Xbut for a similar reason! In C++, memory management is
considered to be too vital for program performance to be trusted to a general (and often inefficient)
algorithm. In C++, the programmer is given full control of memory allocation and deallocation. If
the programmer makes mistakes, they can result in memory corruption or memory leaks and
program crashes. This is bad, but good programmers do not make too many mistakes. The
algorithms for dynamic memory management are simple. Implemented diligently, they are safe.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (281 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Also, standard libraries provide appropriate data structures and functions that help the programmer
to avoid errors.

The segment of program memory for storing dynamic data allocated on explicit demand is called
the heap. The name comes from how this storage gets organized after multiple allocations and
deallocations. The heap structure facilitates the search for a free piece of memory of appropriate
size to satisfy the next memory request.

The size of the fixed data segment for global and static variables is computed during compilation
and linking. The size of the stack and the heap cannot be computed exactly. Usually, the stack and
the heap grow toward each other to avoid premature overflow.

There are two differences between variables allocated on the heap and conventional variables I
have discussed so far.

ϒΠ Conventional variables (allocated on the stack and the fixed data area) are allocated
according to language rules; heap variables are allocated by explicit operations specified by
the programmer.

ϒΠ Conventional variables have names that are aliases (used as mnemonic references) for
their memory locations; variables allocated on the heap do not have names; they are referred
to through pointers.

C++ Pointers as Typed Variables

A pointer is a variable that contains an address of another variable, which can be a conventional
(named) stack variable. However, pointers usually point to variables allocated on the heap
(unnamed variables). Pointers themselves, however, are commonly allocated either in the fixed data
section (as global or static) or on the stack (as auto). It is very unusual to allocate a pointer on the
heap. Pointers are ordinary named variables.

In C++, pointers are usually used for the following:

ϒΠ dynamic allocation of arrays of size specified at run-time size

ϒΠ building dynamic data structures composed of noncontiguous linked nodes

ϒΠ passing parameters to functions

In this chapter, I will discuss the general syntax and semantics of pointers and will give examples
of the first two uses of pointers. Passing parameters to functions will be discussed in the next
chapter.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (282 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

To create a pointer variable, you specify, first, that it is a pointer, and, second, the type of a variable
the pointer can point to. A C++ pointer can point (in other words, provide indirect reference) to a
variable of one type only; the type is specified when the pointer variable is defined. When you
study more advanced aspects of C++ such as inheritance and polymorphism (sorry for using the
buzzwords that are not meaningful yet), you will see that this rule has some interesting exceptions.
But at the moment, it is a very good idea to remember that a pointer defined as a pointer to an
integer should point to an integer value and not to a double. Similarly, a pointer defined as a pointer
to a double should point to a double value and not to an integer.

To indicate that the variable is a pointer variable, you use the asterisk * notation after the type name
or before the name of the variable; spaces (or lack of spaces) surrounding the operator are not
significant.

 int * pi; char* pc; double*pd; // any spacing is OK

Notice that the asterisk here is not even an operator, it is just notation. It denotes that the variable is
a pointer to the type specified to the left of the asterisk. You read pointer declarations from right to
left. For example, pi is a pointer to an int variable, or pc is a pointer to a char variable, and so on.
Or you could say that pi is of type int*, or pc is of type char*, and so on. Later on you will find
it useful to say that *pi is of type int, or *pc is of type char, and so on.

However, in these expressions the asterisk is not just notation, it is an operator that is applied to a
pointer variable (pi, pc, and so on) to get the value of the basic type. This is the value at the
location pointed to by the pointer variable. The name of the asterisk operator that retrieves the
value pointed to by the pointer is the dereference operator (or indirection operator).

If getting the address of the value is called pointing, then getting the value from the address could
be called depointing, not dereferencing. But C++ borrows this terminology from C, and C was
designed as a high-level language for assembly language programmers, and assembly language
programmers call the things the way they like, not the way other mere mortals would call them.

The scope of the asterisk pointer notation is just one pointer variable: It applies to the identifier that
follows the asterisk, not to the type name that precedes it. This is different from the way other
definitions and declarations work. For example, here it is only pc that is a pointer to char, and
pchar is of type char, not char*.

 char* pc, pchar; // pchar is of type char, not char*

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (283 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is quite a common mistake. To indicate that pchar is also a pointer, you could say

 char* pc, *pchar; // both pc and pchar are pointers

Again, pointer variables are regular named variables, automatic or global; they are allocated
sufficient space for holding an address of a specific type. Often, the size of the pointer is the same
as the size of the integer, but you should not count on that. The sizeof operator can tell you
whether this is the case on your machine, but it is definitely not a good idea to write code that relies
on the pointer size. This code will not be portable.

ALERT

Pointer variables (addresses) are often of the size of integers regardless of the type of the values
they point to. Do not use the pointer size in your code because it can render your program
nonportable.

At definition, similar to other variables, pointers have no useful value (zero if global, undefined if
automatic). Pointers may contain addresses of objects of

ϒΠ built-in types (e.g., char* pc)

ϒΠ programmer-defined types (e.g., Account* pa)

ϒΠ arrays of built-in or programmer-defined types (notation is the same as for variables,
e.g., char* pc or Account* pa)

ϒΠ functions (it is too early to describe pointer functions here)

ϒΠ other pointers (e.g., char** pcc can be used as a pointer to a character pointer, such as
pc above; again, I just want to mention that this is possible, but you should not rush to use it in
your code)

To access the value of the object that the pointer points to, you apply the dereferencing operator
(asterisk *) to the pointer as a prefix unary operator (to the left of the pointer name). In other words,
you dereference the pointer. For example, here I move 5.0 to a double variable pointed to by

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (284 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointer pd, move 20 to an int variable pointed to by pointer pi, and move 'a' to a character
variable pointed to by pc if the double value pointed to by pd is positive (and it is positive).

 *pd = 5.0; *pi = 20; if (*pd > 0) *pc = 'a'; // not ok

As I mentioned above, if pi is a pointer to an int, then *pi is of type int; similarly, *pd is a
double. From the point of view of value types, this example is OK. However, I never initialized
these pointers, and dereferencing noninitialized pointers is illegal.

When a global pointer is not initialized, it contains 0. Dereferencing a null pointer immediately
terminates the program.

 pd = NULL; *pd = 5.0; // null pointer exception

When a local pointer (automatic variable) is not initialized, it contains a random bit pattern as any
other automatic variable. This pattern can be interpreted as an address, but this address can be
anywhere in memory. Reading from this location returns garbage; writing to this location corrupts
computer memory. It might crash the operating system, cause run-time memory protection
exception, produce incorrect results, or even produce correct results (if the location pointed to by
the pointer is not used by the program). Using noninitialized pointers is a common error, and it is
hard to diagnose because they can point to any area in memory.

Noninitialized pointers can take you to any location in memory, and this can result in memory
corruption or incorrect results. In C++, these errors of dereferencing noninitialized pointers are run-
time errors, not compile-time ones. This is unfortunate: If you make this error, the friendly
compiler does not stand by telling you to correct it. Instead, you have to surmise the very existence
of the error through run-time testing.

Pointers can be initialized to point to named variables with the use of address-of operator (reference
operator &). Listing 6.5 shows some examples of pointer manipulation. Its main() function defines
two automatic variables, of type int and char. It also defines two pointers, to int and to char,
initializes the character pointer to point to the character variable, and assigns the integer pointer to
point to the integer. After that it assigns a new value to the integer using the dereferenced pointer.
Then it checks the value of the integer using the dereferenced pointer and assigns the character
value using the dereferenced character pointer. At the end, it sets the character pointer to point to
the integer value.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (285 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Most compilers would disallow direct assignment pc=&i; indeed, pc is of type char* and &i is of
type int*. C++ is also strict¡Xit allows implicit conversions between numeric types but not
between pointers of different types. For pointer assignment to be valid, the pointers must be of
exactly the same type. However, explicit conversions between pointers (casts) of different types are
allowed without limitations. The assumption is that you, the programmer, know what you are
doing. Pointer casting is a dangerous practice. By dereferencing the character pointer I can now
access and change parts of the integer bit pattern. Figure 6-4 shows that dereferencing of two
pointers pointing to the same integer variable gives different results depending on the type of the
pointer.

Figure 6-4. Output of code in Listing 6.5 (notice incorrect access to int).

Example 6.5. Using pointers with ordinary named variables.
#include <iostream>
using namespace std;

int main()
{
 int i; int pi; char *pc; // noninitialized pointers
 pi = &i; // this turns pointer to i
 *pi = 502; // this is ok, but so is i = 502;
 if (*pi>0) *pc = 28791; // same as if(i>0) i=28791
 pc = (char*) &i; // some compilers don't need it
 int a1 = *pi; // access to i through pointer
 int a2 = *pc; // access to i through pointer
 cout << " i as decimal: " << i << endl
 << " i as hex: " << hex << i << endl;
 cout << " i through int pointer: " << dec << a1 << endl;
 cout << " i through char pointer: " << a2 << endl;
 cout << " i through char pointer in hex: " << hex << a2 << endl;
 return 0;
}

In Listing 6.5, the terms hex and dec are called manipulators. They indicate to the cout object the
base to be used for computing output values (decimal or hex). Similar to the endl manipulator, they
are inserted in the output stream and change its characteristics. As you see from Figure 6-4, the
value retrieved by the pointer pi is correct (28791). But the value retrieved by the character pointer
pc is incorrect. As output in hex shows in Figure 6-4, the character pointer retrieves only part of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (286 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bit pattern (77 in hex) of the value of i (7077 in hex). In a sense, the integer pointer can see the
whole integer, but the character pointer can see only one byte. Neither of them is capable of
fetching, for example, a double value correctly. This is why it is so important to make sure that
you dereference pointers of correct types.

TIP

When you dereference the pointer, make sure that the pointer type corresponds to the type of the
value the pointer points to. Otherwise, the value retrieved through the pointer will be incorrect.

Operations on pointers are not very intuitive. It is hard to follow pointer manipulation by reading
code. This is why it is important to help your intuition by drawing pictures. There are two kinds of
pictures you could draw: One type indicates whether the variables are allocated on the stack or on
the heap (Figure 6-5a), another type stresses what pointers point to what values (Figure 6-5b).

Figure 6-5. Integer pointer and character pointer pointing to a named integer variable i
allocated on the stack.

Figure 6-5a shows integer i, integer pointer pi, and character pointer pc allocated on the stack.
Even though their real size might be the same, it is common to show pointers as smaller rectangles.
I show the value that integer i contains. Pointers pi and pc contain the address of i, but I do not
know (and do not want to use) this address. Instead of the address, I use arrows to indicate that the
pointers point to the same location. Even though the arrows point to somewhat different places, this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (287 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

is acceptable approximation. I do not know whether the pointer contains the address of the most
significant byte, or the least significant byte, or anything in between. I indicate only that pointers
point to the value, and dereferencing these pointers can retrieve that value (provided that the type of
the pointer is correct).

Figure 6-5b shows the same configuration without specifying whether the variables i, pi, and pc
are allocated on the stack or on the heap. The working assumption might be that if the names of the
variables are specified, they are allocated on the stack; if the names are not specified, the variables
are allocated on the heap. Again, the arrows indicate that the pointers contain the addresses of
variables that the arrows are pointing to; hence, the pointers can be used for access to these
variables.

As you see, using pointers for operations over named variables is not very useful. Using pointers
for this kind of data manipulation is no better than directly using variables (in this example, i)
pointed to by these pointers. Setting pointers to point to values of inappropriate types leads to
complexity and errors. Some programmers use similar techniques in function calls to avoid the use
of address-of operator (we will see that in the next chapter). But this is not what the pointers are
for. They are for allocating space on the heap.

Allocating Memory on the Heap

C++ operators are mostly simple symbols. Since C++ has more operators than there are special
symbols on the standard keyboard, C++ uses two-symbol operators and even one three-symbol
operator. Still this is not enough, and C++ uses some reserved words as operators. Two of these
reserved words used as operators are new and delete. They are both unary operators taking one
operand only. These operators are used for memory management on the heap. Heap here is just
another piece of terminology. The programmer does not have to know where the heap is located.
What is the heap? The heap is the area of memory where operators new and delete allocate and
deallocate memory. All that you should know is that the memory that has been allocated should be
deallocated at the proper time.

The operator new takes the name of a type as its operator; it asks the operating system to allocate
the amount of memory necessary to accommodate the value of the type specified as the operand. If
the allocation is successful, the operator new returns the address of the memory location on the heap
allocated by the operating system. This address value is usually assigned to a pointer of the
appropriate type, and this pointer can be used to manipulate the allocated unnamed memory. If the
system runs out of memory, the new operator returns 0 instead of the address of a heap location, and
the program can test this returned value to decide what to do next (for example, print a message and
terminate).

The operator delete takes the name of a pointer as its operator. It finds the area on the heap

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (288 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointed to by its operand pointer and asks the operating system to mark this location (of the size
defined by the type in the pointer definition) as unused. It is of paramount importance that for any
use of the new operator allocating memory that the program contains a symmetric delete operator
returning that memory to avoid memory leak.

Listing 6.6 shows examples of using these operators. Its main() function defines two pointers, pi
to type int and pc to type char, and initializes them by using the operator new. After that, it tests
whether the space allocation was successful. If not, the program has to terminate because it cannot
do what it is supposed to do. Often, some recovery measures should be taken to let the program
terminate gracefully (save data). Sometimes, the program might try to release some memory to
proceed in a special mode with limited functionality. As Figure 6-6 shows, the memory allocation
is successful, and the pointers set and then retrieve the values (integer 28791 and character 'a')
correctly.

Figure 6-6. Output of code in Listing 6.6.

Example 6.6. Using pointers with unnamed heap variables.
#include <iostream>
using namespace std;

int main()
{
 int *pi; char* pc; // noninitialized pointers
 pi = new int; // get unnamed space, point to it
 if (pi == NULL) // if new fails, it returns zero
 { cout << "Out of memory\n"; return 0; } // or try to recover
 pc = new char; // get unnamed space, point to it
 if (pc == 0) // necessary precaution
 { cout << "Out of memory\n"; return 0; } // or try to recover
 *pi = 28791;
 if (*pi > 0) *pc = 'a'; // manipulate unnamed objects
 cout << " integer on the heap: " << *pi << endl;
 cout << " character on the heap: " << *pc << endl;
 delete pi; delete pc; // part of heap memory life cycle
 cout << " (after delete) int: " <<*pi <<" char: " <<*pc << endl;
 return 0;
}

In this example, NULL is a library constant. Many programmers prefer to use this constant rather
than numeric 0 to indicate that the source code is dealing with pointers. Others use the numeric 0.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (289 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The result is the same. It is important to remember that any use of the operator new should be
followed by the test for success of memory allocation.

Operator delete returns the space allocated by operator new back to the heap. It is intelligent
enough to know the type of its pointer operand and release exactly as much memory as new
allocated. If you forget to use delete, your program will work. With time, it might deplete the
heap memory, and the next use of new will return 0, especially if the application works around the
clock. It is an important part of programming skills to be able to release all the heap memory that
the program requested.

When you read the code that contains the delete operators, you just read it aloud. You say "delete
pi, delete pc." This is fine. Make sure that you do not talk yourself into believing that you
indeed delete pointers. You delete unnamed heap memory (of the appropriate size) pointed to by
pointers pi and pc. Pointers here are named stack variables, and they are allocated according to the
scope rules discussed earlier in this chapter. They are allocated when their definition is executed
(here, at the beginning of the main() function), and they are deallocated when they go out of scope,
that is, when execution reaches the closing brace of the scope they are allocated in (here, at the
main() closing brace).

You delete unnamed heap variables only. It is not a good idea to delete named stack variables, for
example, variable i in Listing 6.5 above (either through pointer pi or though pointer pc or directly
without pointers).

After you delete the heap variable pointed to by a pointer, the pointer becomes noninitialized again
and should not be used for dereferencing. At the end of Listing 6.6, I try to retrieve the values
pointed to by pointers pi and pc. As Figure 6-6 shows, these pointers now point to whatever
locations they want, not where you thought they should be pointing. Just like the Soviet Union
choosing with which countries to have common borders. Notice that the compiler did not tell me
that I was making a mistake. The operating system also did not prevent me from doing so, although
it could have, and probably should have. Just like with the expansion of the Soviet Union.

One final touch about the delete operator. You should not use this operator on a noninitialized
pointer, only on a pointer that points to heap memory allocated to by the operator new. For
example, deleting memory twice is a run-time error (not a compile-time error).

 delete pi; delete pi; // this code is incorrect

This code is incorrect in the sense that its behavior is undefined. It could crash, produce incorrect

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (290 of 1187) [8/17/2002 2:57:50 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

results, or even produce correct results¡Xit could do whatever it wants. Make sure you watch what
you do with memory management, especially in loops. Do not use delete on the same pointer twice.
Deleting on a NULL pointer is allowed and has no effect.

Figure 6-7 shows the memory pictures for Listing 6.6. Figure 6-7a.shows that pointers pc and pi
are allocated on the stack, and the unnamed integer value and character value are allocated on the
heap. Figure 6-7b shows the same relationships. The pointers are named (allocated on the stack),
and the integer and the character are not named (allocated on the heap). I try to represent roughly
that integers and characters are of different sizes, but I do not try to do that for a pointer. Pointers
are drawn smaller than values they point to even when they take more memory.

Figure 6-7. Integer pointer and character pointer pointing to an unnamed integer
variable and unnamed character variables allocated on the heap.

Operators new and delete are available in C++ but not in C. In C, dynamic memory allocation is
done with calls to the library function malloc(). Memory is returned with calls to the library
function free(). Function malloc() is less intelligent than the operator new. It does not know the
sizes of data types, and it needs the number of bytes requested as its argument. Also, it returns a
generic, so-called void pointer that cannot be dereferenced. The pointer returned by malloc() has
to be converted to the appropriate type by using the cast operator. If the allocation fails, malloc()
returns the NULL pointer, and the program can check whether the memory requested is indeed
available. Since C++ is backward compatible with C, malloc() is supported in C++. It is defined
in the cstdlib (or stdlib.h) standard library.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (291 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 pi = (int*) malloc(sizeof(int)); // get unnamed heap space

Function free() takes a pointer as its argument. It is intelligent enough to know how many bytes
to release.

 free(pi); // return heap memory for other uses

Listing 6.7 shows the same operations that were implemented in Listing 6.5 but with the use of
malloc() and free(). Notice the stdlib.h header file. The output of this program is the same as
in Figure 6-5.

Example 6.7. Using malloc() and free() for memory management.
#include <iostream>
#include <cstdlib> // header for malloc() and free()
using namespace std;

int main()
{
 int *pi; char* pc; // noninitialized pointers
 pi = (int*) malloc(sizeof(int)); // get unnamed space
 if (pi == NULL) // if malloc() fails, it returns
zero
 { cout << "Out of memory\n"; return 0; } // or try to recover
 pc = (char*) malloc(sizeof(char)); // get unnamed space
 if (pc == NULL) // necessary precaution
 { cout << "Out of memory\n"; return 0; } // or try to recover
 *pi = 28791;
 if (*pi > 0) *pc = 'a'; // manipulate unnamed objects
 cout << " integer on the heap: " << *pi << endl;
 cout << " character on the heap: " << *pc << endl;
 free(pi); free(pc);
 cout << " (after delete) int: " <<*pi <<" char: " <<*pc << endl;
 return 0;
}

Many C++ compilers actually implement operators new and delete in terms of functions
malloc() and free(). However, in C++ new and delete are used much more often than
malloc() and free(). They are simpler. Also, when they are used to manage memory for class
objects, they can call special functions, constructors and destructors, implicitly. Functions

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (292 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

malloc() and free() do not do that. There is one catch, however. These operators and library
functions have to be used in pairs. If memory is allocated with new, it cannot be returned with
free(). If memory is allocated with malloc(), it cannot be returned with delete. Again, the
compiler cannot catch this type of error. Run-time testing is also useless. To avoid errors, many C+
programmers use operators new and delete only and avoid the use of malloc() and free().

However, there is a significant body of legacy C (and C++ code) that uses malloc() and free().
Judging from the longevity of programs that caused the Y2K problem, you should be ready to deal
with these function calls for many years to come.

As you see, using heap for dynamic memory management of the values of built-in types is
interesting but not very useful. We can achieve all that dynamic memory management provides
using named variables on the stack instead.

Some programmers do allocate individual values on the heap. This is not an error in and of itself.
The program compiles and executes correctly. It is just more complex than it should be. Dynamic
memory management of individual variables forces us to worry about proper time for memory
allocation and release. It adds to the program complexity of pointer definition, initializing, and
dereferencing. And all that for nothing¡Xthere are no advantages. Avoid this practice. Use heap
memory only for dynamic arrays and dynamic data structures.

Arrays and Pointers

The need to specify the array length at compile time is a major C++ feature aimed at efficient use
of memory and run-time performance. As we saw, it also introduces the problems of array overflow
or memory waste because in many applications the sizes of data sets to process become known at
run time rather than at compile time. Meanwhile, C++ syntax rejects anything as the array size that
is not a run-time constant. It is in these situations that the dynamic memory allocation is useful.

To be able to use dynamically allocated arrays, you should learn the relation between C++ arrays
and pointers. This relation is based on yet another unique C++ feature: The name of an array (used
without brackets or other modifiers) means the same thing as does the address of the starting array
element. Hence, the name of the array can be used to initialize a pointer of the appropriate type
(i.e., the same type as the array element). The pointer content becomes the address of the first array
element. Dereferencing the pointer will retrieve (or change) the first element of the array. This
opens a possibility to use a pointer as a synonym for the array name in function calls and with array
indices.

In the next example, I allocate two short character arrays, buf[] and data[], and define two
character pointers, p and q. I initialize the pointers by using the address of the starting array
element. The example shows that it could be done either explicitly, by using the address notation

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (293 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

(p=&buf[0];) or implicitly, by using the array name (q=data;).

char buf[6], data[6], *p, *q; // arrays and pointers
int i;
p = &buf[0]; // explicit syntax for address of first
element
q = data; // implicit syntax for address of first
element
for (i=0; i < 6; i++) // assign array components
 { p[i] = 'A'+i; // uppercase letters "ABCDEF"
 q[i] = 'a'+i; } // lowercase letters

The only difference between a pointer and the array name is that the pointer can be reassigned to
point to another location (using the address-of operator &, or pointer assignment), but the array
name is a constant and hence cannot be reassigned to contain another address. In the next coding
example, the first part of array data[] (lowercase characters) is copied into the second part of array
buf[] so that array buf[] contains letters "ABCabc" rather than "ABCDEF"

p = &buf[3]; // turn it to point to second half of the array
for (i=0; i < 3; i++) // replace last 3 components
 p[i] = q[i]; // same as buf[i+3]=data[i];

In both of these coding segments, pointer names are used as array names. Everywhere where I said
q[i], I could have said data[i]. This is nice but not very practical, because it does not allow you
to do anything new. But this is only part of what you could do to arrays using pointers.

Another unique C++ feature is that the arithmetic operations over pointers take into account the
type and the size of the memory element pointed to by the pointer. If, for example, ptr is a pointer
to a double located at address 2000, then ptr+1 points to the double value that is next to the
location pointed to by ptr, at address 2008, not to the location at address 2001.

This is especially handy when the pointer points to an element of the array. Incrementing the
pointer by 1 is not what you would think. It does not add 1 to the contents of the pointer variable as
arithmetic operators over numeric types do. It turns the pointer to point to the next element of the
array! Dereferencing the pointer retrieves (or changes) the value of the next array element!
Incrementing the pointer by 2 moves the pointer two elements up. In the next coding example, the
first part of array data[] (the same lowercase characters "abc") is copied into the first part of array
buf[] so that its contents becomes "abcabc."

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (294 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

p = buf; // point to start of the array again
for (i=0; i < 3; i++) // replace the first half of array
 *(p+i) = *(q+i); // again, same as buf[i]=data[i];

Notice that the dereference operator is of higher priority than the arithmetic operators. This is why,
*p+i should not be used here. It means p[0]+i and not p[i].

Even more concise code can be written applying increment (or decrement) operators to pointers. In
all the cases adding 1 to a pointer actually means adding the size of the type to the address stored in
the pointer and moving the pointer to point to the next array element. Listing 6.8 summarizes the
preceding examples. In the first loop, it sets and displays the contents of array buf[] (ABCDEF)
using p[i] instead of buf[i]. In the second loop, it modifies the second half of the array; in that
loop, p[i] means not buf[i] but buf[i+3]. The third loop displays the array buf[] (ABCabc)
using conventional notation. Then the pointer p is set back to the start of buf[], and the fourth
loop replaces the first half of the buf[]. The result is displayed using the increment operator over
the pointer. The output of the program is shown in Figure 6-8.

Figure 6-8. Output of code in Listing 6.8.

Example 6.8. Using pointers for array processing.
#include <iostream>
using namespace std;

int main()
 {
 char buf[6], data[6], *p, *q; // arrays and pointers
 int i; // array index
 p = &buf[0]; // explicit syntax for address
 q = data; // implicit syntax for address
 cout << "Initial buffer: ";
 for (i=0; i < 6; i++) // assign array components
 { p[i] = 'A'+i; // upper case letters
 cout << p[i]; // display ABCDEF
 q[i] = 'a'+i; } // q and data are synonyms
 p = &buf[3]; // point to second half
 for (i=0; i < 3; i++) // replace last 3 components
 p[i] = q[i]; // same as buf[i+3]=data[i];

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (295 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << endl << "Replaced second half: ";
 for (i=0; i < 6; i++)
 cout << buf[i]; // display ABCabc
 p = buf; // point to start of array
 for (i=0; i < 3; i++) // replace the first half of array
 *(p+i) = *(q+i); // same as buf[i]=data[i];
 cout << endl << "Replaced first part: ";
 while (p - buf < 6) // incremented pointer
 cout << *p++; // do not overuse this feature
 cout << endl;
 return 0;
}

When the increment and dereferencing operators are used in the same expression, like *p++, their
priority is the same, and they are evaluated from right to left, not from left to right as the majority
of C++ operators are (see Table 3.1 in Chapter 3, "Working with C++ Data and Expressions").
However, the postfix operator passes on the value of the pointer before incrementing it. Hence, the
meaning of *p++ is: save the old pointer, increment the pointer to point to the next element of the
array, and return the value at the address pointed to by the old pointer. In other words, if temp is a
character pointer, *p++ is equivalent to:

 (temp = p, p++, *temp)

Again, pointers and array names are equivalent in all regards with the exception of one: The pointer
can be incremented or reassigned but the array name cannot. For example, at the end of Listing 6.8
it would be a mistake to print the array buf[] once again as

while (p - buf < 6) // displacement in array elements
 cout << *buf++; // syntax error

It would be no problem to use another pointer for that purpose.

q = buf;
while (p - q != 0) // displacement in array elements
 cout << *q++; // do not overuse this feature

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (296 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that pointer p here is used as a sentinel. At the end of Listing 6.8, pointer p was incremented
to point past the last element of the array buf[]. This is why the loop above terminates when
pointer q ends its run over the elements of array buf[] and points past the last element, that is, to
the same location as pointer p.

Of course, it is important to understand the connection between the pointer notation and array
notation. There is a lot of legacy C and C++ code that uses this feature. However, pointer notation
is not intuitive and can easily confuse the inexperienced. This is why it is better to increment
indices rather than pointers. For many, however, incrementing pointers instead of indices is a sign
of programming maturity because arithmetic operations over pointers look so nice.

In the "good old days," the operations over pointers not only looked nice, but also resulted in faster
executable code. With modern compilers, this is not true anymore. Both techniques generate the
same code.

Dynamic Arrays

So far I have discussed several uses of pointers¡Xas pointers to named stack variables, as pointers
to unnamed heap variables, and as pointers to named stack arrays. These techniques make your
code unnecessarily complex without giving any advantages. Even using pointers to point to named
arrays (as in the examples above) is not very useful. Using named arrays is simpler than using
pointers.

Now let us look at the examples where the utilization of pointers is beneficial and appropriate.
Pointers can help you manage memory dynamically and avoid the curse of specifying the size of
the arrays at compile time. You achieve that by using dynamically allocated arrays.

Listing 6.9 shows a simplified version of the program shown in Listing 5.11 in Chapter 5 that
processes transaction amounts entered from the keyboard.

The technique I used back in Chapter 5, Listing 5.11 (a character sentinel value at the end of data
input) is a good solution for interactive input. In Listing 6.9, I use the zero sentinel. I break the
reading loop when the zero amount is entered. I also break the loop if the count of data values
entered by the user exceeds the size of the array data[].

So, the reading loop can be broken for two reasons: the end of input and array overflow. If the
behavior of the program has to be different for different cases of the loop termination, the program
has to check what the reason was. In this example, the program prints the message warning the user
about array overflow. Checking whether count == NUM is not reliable here because the input data
set might contain exactly as many entries as there are elements in the array data. For real programs
that process hundreds and probably thousands of entries, this is not likely to happen often.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (297 of 1187) [8/17/2002 2:57:51 PM]

http://safari.oreilly.com/framude.asp?bookname=0130857297&cnode=48

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

However, it is a common programming blunder to assume that if this is rare then there is no need to
check for that. Sooner or later, the unlikely event happens. Not checking for a rare event is asking
for trouble.

In Listing 6.9, I test whether the sentinel was found (amount was zero) when the loop was
terminated. If it was not, I conclude that the reason for loop termination is array overflow. If the
sentinel was found, I assume that all data have been read.

The output of this program with only three entries in the array is shown on Figure 6-9.

Figure 6-9. Output of code in Listing 6.9 (input is truncated).

Example 6.9. Reading transaction data with protection against array overflow.
#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{
 const int NUM = 3; // for debugging: it should be
larger
 double amount, total = 0, data[NUM];
 int count = 0; // initialize current data
do { // do until EOF or array overflow
 cout << "Enter amount (or 0 to finish): ";
 cin >> amount; // get next double from the file
 if (count==NUM || amount==0) break; // overflow or sentinel
 total += amount; // process current valid data
 data[count++] = amount; // and get next input line
 } while (true);
 if (amount != 0) // was all data read in?
 { cout << "Out of memory: input was terminated\n";
 cout << "The value " << amount << " is not saved" << endl; }
 cout << "\nTotal of " << count << " values is "

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (298 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 << total << endl;
 if (count == 0) return 0; // no results if no input
 cout << "\nTran no. Amount\n\n"; // print the table header
 cout.setf(ios::fixed); // set up fixed format for
double
 cout.precision(2); // total digits if NO
ios::fixed
 for (int i = 0; i < count; i++) // go over the data again
 { cout << setw(4); cout << i+1; // tran number
 cout << setw(11); cout << data[i] << endl; } // tran value
 return 0;
}

Formatted data output here is different from Listing 5.11 in Chapter 5. The setf() function sets
control flags of the cout object. It uses the flag ios::fixed as the argument that tells the display
to use fixed-point notation with the decimal point rather than scientific notation with the mantissa
and exponent. The precision() function takes the number of digits as its argument. If the
ios::fixed flag is not set, this number means the total number of meaningful digits that should be
used to display a value. When the ios::fixed flag is set, this number means the number of digits
displayed after the decimal point. Make sure that you do not confuse these two meanings of the
precision() function.

ALERT

The meaning of the argument to function precision() depends on the ios::fixed flag. When the
flag is set, the argument denotes the number of digits after the decimal point. When the flag is not
set, it is the total number of meaningful digits.

In the example in Listing 5.11, the function width() specifies the minimum number of positions
that the next output value will take on the display. If the value needs more positions to be
displayed, the additional positions are used (thus destroying formatting). Other formatting
functions, setf() and precision(), affect the format until these functions are called again with a
different argument. The width() function has the scope of one output value only. After the next
value is output, the display reverts to the default width (zero), that is, to the absence of any
formatting of output data. This is why the width() function should be called before outputting each
value.

In Listing 6.9, I use the manipulator setw(), which is inserted into the output stream similar to
manipulators endl, dec, and hex that were discussed earlier. Similar to function width(), the
scope of this manipulator is one output value only. This is why the setw() manipulator has to be

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (299 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inserted before each value even if the width of the field should remain the same. Notice that the
code in Listing 6.9 uses the header file iomanip. Earlier examples used manipulators (at least,
endl) but they did not need this header file. Only manipulators that use arguments, as setw() does,
need this header file. If you forget to include it, the code will not compile. It is unfortunate that the
design of manipulators and formatters is inconsistent. It is, of course, unfortunate that you should
worry about header files at all.

ALERT

When you use formatting functions (for example, width()) or manipulators without arguments
(for example, endl), there is no need to include the iomanip header file. When you use
manipulators with arguments (for example, setw()), you should include the iomanip header file.

Listing 6.10 shows the program that implements the same functionality as the program in Listing
6.9 but the program in Listing 6.10 does it by a dynamically allocated array. This is where the use
of pointers comes shining through, combining program integrity with efficiency of execution.

Example 6.10. Reading data into an array allocated on the heap.
#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{
 const int NUM = 3; // for debugging:it should be
more
 double amount, total = 0, *data;
 int count = 0, size = NUM; // initialize current data
 data = new double[size]; // initial array on the heap
do { // do until zero is entered
 cout << " Enter amount (or 0 to finish): ";
cin >> amount; // get next double value
 if (amount == 0) break; // stop when sentinel appears
 if (count == size) // out of space, ask for more
 { size = size * 2; // make it conspicuous
 double *q = new double[size]; // double array size
 if (q == 0)
 { cout <<" Out of heap memory: input was terminated" << endl;
 break; }
 else {
 cout << "More memory allocated: size = " << size << endl;
 for (int i=0; i < count; i++) // copy old data
 q[i] = data[i]; // use subscript notation

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (300 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 delete [] data; // do not forget to free old
data
 data = q; } // hook up main pointer
 total += amount; // process current valid data
 data[count++] = amount; // and get next input value
 } while (true);
 if (amount != 0) // and what is this for?
 { cout << "Out of memory: input was terminated\n";
 cout << "The value " << amount << " is not saved" << endl; }
 cout << "\n Total of " << count << " values is "
 << total << endl;
 if (count == 0) return 0; // no results if no input
 cout << "\n Tran no. Amount\n\n"; // print the table header
 cout.setf(ios::fixed); // set up fixed format for
double
 cout.precision(2); // total digits if NO
ios::fixed
 for (int i = 0; i < count; i++) // go over the data again
 { cout << setw(4); cout << i+1; // tran number
 cout << setw(11); cout << data[i] << endl; } // tran value
 return 0;
}

Instead of allocating the array data[] on the stack using a predefined compile-time constant (in
this example, 3), the program allocates the array of the same size on the heap using the variable
size to specify the size of the array. This variable has a run-time value rather than a compile-time
value. Notice that the dynamic array does not have a name and is accessed through the character
pointer data only. When pointers were used to point to named arrays (see Listing 6.8), I had a
choice between using the pointer name (e.g., p[i]) or the array name (e.g., buf[i]). Here, I do not
have a choice. The heap array does not have a name, and I am forced to use the pointer name to
access the elements the array.

If the next amount read by the program fits into the array, that is, the condition count == size is
still false, the value is saved in the array. Notice the use of the pointer data as the array name. The
statement data[count++] = amount; is the same both in Listing 6.10 and in Listing 6.9, but its
meaning is different. In Listing 6.9, data is the name of a stack array; in Listing 6.10 data is the
name of the pointer pointing to an unnamed heap array.

Things become interesting when all slots in the dynamic array are taken and the condition count
== size becomes true. In Listing 6.9, I issued an error message and truncated further input of data.
In Listing 6.10, I have an opportunity to recover from the array overflow by allocating more
memory on the heap and copying existing data into a new heap array.

The program cannot use the same pointer, data, to allocate more memory. When data receives the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (301 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

address of the new chunk of memory, it loses the address of existing data. This is why I need
another local pointer, q, to allocate another array on the heap, twice the size of the existing heap
array. Doubling the size of memory is a common heap management strategy, but other increments
could be used too.

double q = new double[size*=2]; // get more heap memory

Modifying size in the statement that allocates memory is not a good practice. The maintainer can
easily overlook this action. It is better to do that explicitly before using the operator new.

size = size * 2;
double *q = new double[size]; // double array size
if (q == NULL)
 { cout << "Out of heap memory \n"; return; }
else
 /* copying data into array pointed to by q */

Notice that the same pointer type, double*, is used to point to a single value of the type double
and to an array of values of the type double. This is a general observation. Looking at the type of
the pointer, you cannot tell whether it points to an array or to a single value. You just remember
that. This makes it more difficult to pass to the maintainer the designer's knowledge.

It is a good idea to always check whether the memory allocation is successful. Running out of
memory is rare, and programmers are often complacent and do not check whether the operator new
returns 0. While copying the existing array into the first part of the new array, the pointer names
can be used as array names, thus avoiding computations over pointers.

for (int i=0; i < count; i++)
 q[i] = data[i]; // copy old data into the first half of new data

Some programmers would organize this loop using pointer arithmetic with the index, for example,
the following way

for (int i=0; i < count; i++) // copy old data
 *(q+i) = *(data+i);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (302 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Others would use the following loop incrementing pointers to point to the next location in the heap
array.

for (double *p=q,*r=data; p-q < count; p++, r++) // is it nice?
 *p = *r;

Yet others would use the following form.

double *p = q, *r = data; int i = 0;
while (i++ < count)
 *p++ = *r++; // real nice?

My personal taste is to stay as close as possible to array notation and avoid pointer arithmetic. But
other forms of the loops are legitimate C++ idioms too. You will see them in legacy C/C++ code.

Back to dynamic memory allocation. After the existing data are copied into the new array, the
existing array has to be deleted, and the pointer to the existing array should be turned to the new
array, making it the next version of the existing array. Both the steps and their sequence are
important. If we do not delete the existing array, there will be memory leak in the program. If we
first turn the pointer to the new array, we will not be able to delete the existing array.

The results of the run of this program in Listing 6.10 are shown on Figure 6-10.

Figure 6-10. Output of code in Listing 6.10 (with debugging messages).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (303 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There are a number of little problems in the program in Listing 6.10. Notice that there is only one
way to leave the loop: when the operator >> fails to read next amount. So what is the if statement
doing there after the end of the loop? This is a common programming blunder: to leave in the
source code the statements that are not used anymore. After all, how long does it take for the
maintenance programmer to figure out what this test means? Actually, the maintenance
programmer has to figure out that this test does not mean anything, and it always takes longer to
conclude that there is no meaning than it does to find meaning if one exists.

Another example of programming sloppiness is the place where the variable amount is defined. To
avoid name conflicts, especially during maintenance, and to facilitate the understanding of the code
by the maintainer, it is important to define variables as deep in the nested block structure as
possible. This is why pointer q is defined in the local block of the if statement. We cannot do the
same to variables total, data, count¡Xthey are needed outside of the input loop. But the variable
amount could be defined inside the input loop. It does not look like a major issue because the
program is so small, but finding a proper place for definitions is an important skill and it should be
developed, as any skill, by practicing it.

When the program terminates, I do not return the remaining memory to the heap. In this case it is
probably not dangerous because the operating system will do the cleanup, but it is not a good
programming style. And it is not good to rely on the kindness of operating system designers.

It is not even a good idea to discuss whether it is dangerous to have memory leak. It should be an
automatic habit: You allocated memory on the heap¡Xfind a place to return it to the heap. In this
case, the main() should do it immediately before the return statement.

 delete [] data; // array (but not the pointer) is deleted

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (304 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice brackets in the delete statement when the array is deallocated. The delete operator is not
intelligent enough to figure out whether the pointer points to an array or to an individual value, and
it does need the brackets to indicate that it is an array that is deleted rather than a single variable.
Again, in the tradeoff between the interests of the programmer and the compiler writer, C++ makes
the life of the compiler writer easier.

When I copy the existing array into the new array before releasing the existing array, I use count as
the loop limit rather than size, even though this segment of code started with the test count ==
size. This equality does not hold at the time of copying because I incremented size before I
allocated the new array. It is probably better to do change size after copying is over.

if (count == size) // out of space, ask for more
 { double *q = new double[2*size]; // double array size
 cout << "More memory allocated: size = " << size << endl;
 for (int i=0; i < size; i++) // copy old data
 q[i] = data[i];
 size *= 2; // double the limit for next test
 delete [] data; // do not forget to free old data
 data = q; } // hook up main pointer

Figure 6-11 summarizes the operations for recovery from array overflow. Figure 6-11a shows the
heap array data[] and stack variables amount, size, and count when the overflow has been
detected (when I say data[], I mean the heap array pointed to by pointer data). Figure 6-11b
shows the heap array q[] after copying values from array data[] and array data[] after it was
returned to the heap. Figure 6-11c shows both pointers, data and q, pointing to the new heap array.
Figure 6-11d shows the array when pointer q is deleted according to the scope rules.

Figure 6-11. Sequence of actions to recover from the heap array overflow.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (305 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The next example of a useful dynamic array is related to entering text. When the program expects
the input of character data, for example, customer name or address and the like, it is hard to
imagine that the program needs an array of more than 30¡V50 characters to accommodate the input.
But what do we do if a key is stuck on the keyboard (because of spilled coffee or for any other
good or not so good reason)? The input data will overflow this short array and corrupt memory.
Also, when we read from a file or from a telecommunications line, there is no guarantee that the
size of the input line will be limited by any specific value. The risk of memory corruption is always
there, no matter how large an array of fixed size the program allocates.

Listing 6.11 shows a solution to this problem. The idea is to enter data into a relatively short named
array allocated on the stack (buf[]) and copy data into a heap array (pointed to by pointer data). If
data keep coming, read it into the stack array again (over the data that have been already copied
into the heap array), allocate a larger heap array (pointed to by pointer temp), copy into this array
the data from the previous heap array (pointed to by data), and then append the data from the stack
array buf[].

Example 6.11. Using a dynamic array to accommodate infinite input string.
#include <iostream>

using namespace std;

int main(void)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (306 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 {
 const int LEN = 8; int len=1; // short array for debugging
 char buf[LEN], *data = 0; // init to zero for first pass
 cout << " Type text, press Enter: \n";
 do {
 cin.get(buf,LEN); // data goes into a stack array
 len += strlen(buf); // total length of old data
 char *temp = new char[len]; // request new heap array
 if (temp == 0) // test for allocation success
 { cout << " Out of memory: program terminated\n";
 return 0; } // no luck, give up
 if (data == 0)
 strcpy(temp,buf); } // copy data from input buffer
 else
 {strcpy(temp,data); strcat(temp,buf); } // copy data
 delete [] data; // delete existing array
 data = temp; // point to the new array
 cout << " Total: " << len << " added: " << buf << endl;
 cout << " Dynamic buffer: " << data << endl; // debug

 char ch = cin.peek(); // what is left in the
buffer?
 if (ch == '\n') // quit if it is new line
 { ch = cin.get(); break; }
 } while (true); // or keep going until EOF
 cout << "\n You entered the following line: \n\n";
 cout << data << endl; // same syntax as for
arrays
 delete [] data;
 return 0;
}

In Listing 6.11, the user enters data into a stack array buf[] whose size is made artificially short
(LEN = 8 characters) to demonstrate how the algorithm works. The get() function reads until it
either reads LEN - 1 characters or finds the newline character in the input stream. It does not
remove the newline character from the input stream. (It has to be removed by other means, e.g.,
calling function get() that reads exactly one character.)

In either case, get() adds a terminating zero to the string in buf[]. Next, the code will allocate
len characters from the heap to accommodate characters read into buf[]. The first time around, it
is len = len + strlen(buf), since len is initialized to 1, and strlen() counts the number of
characters without the terminating zero. If the allocation was not successful (pointer temp is set to
0), the program terminates.

If this is the first pass through the loop (pointer data is still initialized to null), this is the end of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (307 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

story: The program copies the input data from buf[] into the array pointed to by temp. Here
equivalency between pointer and array notation comes in very handy: You pass pointer temp to the
function strcpy(), and it copies characters from buf[] into the array pointed to by temp.

If this is not the first pass through the loop (pointer data is not 0; it points to the array previously
allocated from the heap) things are more complex. First, the program copies the previous data into a
newly allocated array using strcpy(), and then it appends the characters from buf[] to the end of
the previous data using strcat().

Now pointer temp points to updated input string, and pointer data points to the previous data.
Next, the program deletes previous data and sets pointer data to point to the updated input string.

The next task is to figure out what happened during the call to get(): Was input terminated
because the newline character was found (and left in the input stream) or because LEN - 1
characters were input and array buf[] became full? To decide which was the case, the program
looks at the next input character by calling the peek() function; if the next character is indeed the
newline character (and it will be the newline character for a short input line), the program removes
it by calling another get() that reads one character only and terminates the loop.

If the input line does not fit into the buffer, the function get() at the top of the do loop will
terminate input after reading LEN - 1 characters and will still append the null terminator to the end
of array buf[]. The peek() function will return the next character that is not the newline
character. Hence, it is not a good idea to remove this character from the input stream: It will be the
first character read by the next call to get().

During the next iteration through the do loop, the get() statement at the top of the loop will read
the next batch of characters into array buf[]; during this iteration, we have to copy the data from
buf[] into a dynamically allocated array.

This time around, the array pointed to by the character pointer data already exists. Its length
(including the zero terminator) is in variable len. The program uses the local pointer temp to
allocate another array on the heap asking for enough memory to accommodate for the existing heap
array (pointed to by data) and newly entered characters in buf[]. This is where the expression
len += strlen(buf) comes from. The program populates the newly allocated array by copying
into it the array pointed to by data and concatenating it with the result of the contents of the array
buf[]. After that the program deletes the existing array pointed to by data and sets data to point
to the newly allocated array (pointed to by temp). The iterations continue until finally the next call
to peek() discovers the newline character or the end of file is found.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (308 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The results of the execution of the program are shown in Figure 6-12.

Figure 6-12. Output of code in Listing 6.11.(with debugging messages).

Here again, the arrays allocated on the heap do not have names. They are referred to through
pointers that are allocated on the stack. (Hence, these pointers have names temp and data.) The
program uses these pointers as if they were arrays allocated on the stack. For example, pointers
temp and data are passed to the functions strcpy(), strcat(), and strlen() in exactly the
same way as the ordinary array buf[]. The same is true for the insertion operator << at the end of
Listing 6.11: The pointer data is used as if it were an array name. The difference is that the
memory for named arrays is returned according to the language rules, at the end of their scope, and
dynamic arrays are returned using the explicit delete operator (notice the brackets in the delete
statements).

Figure 6-13 shows the memory management operations for input data in Figure 6-12. Figure 6-13a
shows that array buf[] is full with "Hello W" and pointer data is 0 (the grounding notation is
used). Figure 6-13b shows that variable len contains 8, temp points to a heap array of 8 characters,
and data points to the same array. (Notice that the delete operator over a null pointer has no
effect.) Figure 6-13c shows array buf[] after entering "orld!." Figure 6-13d shows that len
contains 13, temp points to the array that contains "Hello World!," the array pointed to by data
is deleted, and data points to the same array as temp.

Figure 6-13. The pointer diagram for input data in Figure 6-12.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (309 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

NOTE

It is illegal to apply the delete operator to the same pointer twice without initializing the pointer
after the first delete. It is, however, perfectly legitimate to apply the delete operator to a pointer
that is set to 0. This operation has no effect.

I am not sure how much time you should spend on this topic during the first reading. If you feel
that things are becoming too complex, do not bang your head against the wall; skip this material.
With experience, memory management will seem simpler to you. Experience, however, should
include running simple exercises, drawing diagrams similar to those you saw in this chapter, and
developing your intuition and debugging skills.

If you feel comfortable with this material, go on. The previous example dealt with entering one line
of input data of arbitrary length. This is no small feat for a language like C++ with its fixed-size
stack arrays. Similar techniques could be used in many real-life applications.

The next example will build on the previous one¡Xit accepts any number of lines of arbitrary
length. Of course, it does not make much sense to read data from the keyboard just to drop it on the
floor. You will see the techniques for writing to a disk file in the next section in this chapter.

Listing 6.12 uses the algorithm implemented in Listing 6.11 as an inner loop. The outer loop

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (310 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

continues reading input data until the user presses the Enter key without typing any characters on
the line. This empty line serves as a sentinel value that terminates input.

Example 6.12. Using a dynamic array to read an arbitrary set of lines.
#include <iostream>

using namespace std;

int main(void)
 {
 const int LEN = 8; char buf[LEN];
 int cnt = 0;
 cout << "Enter data (or press Return to end): \n";
do { // start of outer loop for
input lines
 char *data = new char[1]; data[0] = 0; // initially, it is empty
 int len = 0; // initial size is zero
 do { // start of inner loop for line
segments
 cin.get(buf,LEN); // get next line segment
 len += strlen(buf); // update total string length
 char *temp = new char[len+1];
 strcpy(temp,data); strcat(temp,buf);
 delete data;
 data = temp; // expand the long line
 cout <'<"Allocated " << len+1 <<": " << data << endl;
 char ch = cin.peek(); // what is left in the buffer?
 if (ch == '\n' || ch == EOF) // quit if if new line
 { ch = cin.get(); // but first remove it from
input
 break; }
} while (true);
 if (len == 0) break; // end on empty string
 cout << " line " << ++cnt << ": " << data << endl;
 delete [] data;
 } while (true); // continue until break on
empty line
 return 0;
}

There are several interesting differences between programs in Listing 6.11 and Listing 6.12. In
Listing 6.11, variable len denotes the size of the array allocated on the heap. In Listing 6.12,
variable len denotes the number of characters to be copied in the heap array; the size of the array is
one more to accommodate the zero terminator.

These two programs also treat the first read differently. There are two differences between the first

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (311 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

read into buf[] and all other reads. During the first read, the heap array does not yet exist. This is
why the size of the memory to request is one more than the number of characters read into buf[],
not the sum of the characters in the heap array and in buf[]. This means the use of the if
statement.

if (data == 0)
 len = strlen(buf) + 1; // first time copy from but[] only
else // otherwise copy from data[] and buf[]
 sen = strlen(data)+strlen(buf)+1;

Also, during the first read the heap array accepts data from buf[] only; during other iterations, the
newly allocated heap array copies data from the existing heap array and from array buf[]. This is
why Listing 6.11 contains this if statement.

if (data == 0)
 strcpy(temp,buf); // first time copy from buf[] only
else // otherwise copy from data[] and buf[]
 { strcpy(temp,data); strcat(temp,buf); }

However, Listing 6.11 does not contain the first if statements. Programmers often feel that extra
tests make code harder to understand, and they try to avoid these extra tests by clever use of data
that works for different cases. In Listing 6.11, I initialized data to 0 and len to 1. Hence, I was
able to use for both cases the following statement.

 len = len + strlen(buf); // works for first and for next read

I did that, I tested the program, everything works, but I still feel some embarrassment. This
statement needs an explanation (and careful testing). The if statement above is self-explanatory.
What should you prefer: verbose self-explanatory code or concise code that needs explanation? In
the preceding chapters I was telling one thing, but here I'm doing another.

Well, in Listing 6.12, I did yet another thing. The pointer data initially points to a heap array of size
1 whose first (and only) character contains the zero terminator¡Xthis is commonly known as an
empty string. Variable len is initialized to 0¡Xthe length of this empty string.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (312 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int len = 0; // initial length of data
char *data = new char[1]; data[0] = '\0'; // empty string

Now there is no difference between the first iteration and all other iterations: I add the length of
buf[] to the length of data[], copy data[] into the new heap array (the first time around it is an
empty string), and append to it the contents of buf[].

do { // start of inner loop for line
segments
 cin.get(buf,LEN); // get next line segment
 len += strlen(buf); // update total string length
 char *temp = new char[len+1]; // allocate new heap array
 strcpy(temp,data); strcat(temp,buf); // merge data there

I think I like this code, but let me be frank with you¡Xthe version with two if statements is more
self-explanatory.

Another issue is program termination. If the user hits the Return key, the program in Listing 6.12
should terminate. Presumably, that enters the newline character '\n' (ASCII code 10) and the
peek() call retrieves it and terminates the inner loop. The test for len == 0 breaks the outer loop.
Well, not on my machine. When I enter characters and press Return, the newline character is
entered. But when I press Return without entering any character, it is the "end of file" marker that is
entered. This is why Listing 6.12 tests both for the newline and for EOF (the constant whose value is
-1).

if (ch == '\n' || ch == EOF) // quit if it is new line or EOF
 { ch = cin.get(); break; } // but first remove it from input

By the way, the program in Listing 6.11 does not do that. This means that if you hit Return instead
of typing a long string, the program goes into the infinite loop¡Xthere is no newline character to
satisfy that if statement. Such a nice program¡Xand has such an ugly bug in it. What a pity!

But the program in Listing 6.12 is not much better. Well, it is better¡Xit works, and it does not go
into an infinite loop, or so I think. But it defines the type of variable ch as char, and then it
compares this variable with EOF, and EOF is negative. This will work only if char is signed by

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (313 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

default. What gives me the right to think that the type char is signed? On my machine this is so,
but on your machine, this might not be. To see what happens in this case, replace the definition of
ch with

 unsigned char ch = cin.peek(); // on end of file, it is 255

Run the program in Listing 6.12, and you will see that it indeed goes into an infinite loop.

This is a common portability problem. A good solution is to use type int.

 int ch = cin.peek(); // on end of file, it is -1

All right, this is enough for the program in Listing 6.12. The run of the program is demonstrated on
Figure 6-14.

Figure 6-14. Output of code in Listing 6.12 (with debugging messages).

Again, these examples are becoming more and more complex, and I think it is time to talk about
other techniques of memory management. If you feel that it is already too complex, go directly to
Chapter 7, "Programming with C Functions," and have fun with C++ functions. But do not forget to
come back later and learn about dynamic structures.

Dynamic Structures

In the previous section, we looked at using heap memory for allocating arrays at run time rather
than defining their sizes at compile time. This technique of using pointers is much more useful than
are the techniques discussed at the beginning of this chapter: pointing at named variables allocated

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (314 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

on the stack or allocating individual unnamed heap variables.

Using dynamic arrays eliminates the dangers of both memory corruption and wasted space. The
tradeoff to consider is some additional complexity and the danger of memory leak if the
programmer does not manage heap memory correctly. Another effect to consider is on program
performance. Heap management takes time. For most applications, the performance impact of
dynamic array management is not significant, but it is still possible to slow the program down by
making it allocate and deallocate memory too often.

The common limitation of all arrays, fixed size and dynamic arrays alike, is that the additions and
removals of elements are fast and simple only when they are done at the last valid element of the
array. When the elements have to be inserted or deleted in the middle of the array, things become
both complex and slow. Dynamically allocated structures are a good alternative to using arrays
with frequent insertions and removals in the middle.

Programmer-defined structures can be allocated as individual nodes and connected into linked lists
or nets of nodes. To be included in a linked list, the node has to be a structure with at least two
components: an information item and the address of the next node (a pointer to the next node in the
linked list). The information item can be a single value or a structure with as many fields as
necessary to support the needs of the application. To be able to concentrate on programming issues
rather than on application details, we will consider a very simple structure: the information item
should contain only one value, such as the transaction amount.

In defining the node type, we have free choice in naming the field that contains the address of the
next node. Let us say we call it next. There is no free choice in deciding what the type of this field
is.

struct Node {
 double amount; // information item
 Node* next; } ; // link to next Node

Whatever the name of the type we use for the node, the name of the type for the next field is the
same with the addition of the pointer notation, because the next field is a pointer to a structure of
the Node type. It is also nice to be able to use the same node type for different contexts, changing
the type of the information field as appropriate. One way to do that is to introduce yet another type,
Item, and define it using the typedef facility. (Another way to do that is to use C++ templates;
they are more flexible and more complex.)

typedef double Item; // Item is synonym for double

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (315 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

struct Node {
 Item item; // information item
 Node* next; } ; // link to next node

You can allocate nodes on the heap at any time. The idea of using nodes is to allocate a node only
when the program needs to store information for a new item (after reading data from the keyboard,
file, or net). Hence, there is no need to reserve memory for more than one item in advance; that is,
there is no need to use arrays. Hence, there is no danger of array overflow to put up with no wasted
space, shift elements up for insertions, or shift them down for deletion.

Dynamic memory management with linked nodes is more complex than using dynamic arrays. It is
an important programming skill. Pointers that are used for node manipulations are named variables;
they are allocated on the stack as global variables or local to some scope (function or block scope).
Pointers should be a) properly defined, b) properly initialized, and c) properly managed.

Programmers are rarely interested in the value of the address itself. You use the pointer not to
figure out the address that is stored there, but to access the object pointed to by the pointer, using
the name of the pointer and without using the object name (because the object allocated on the heap
does not have any).

This segment of code shows a typical programming error: It defines two pointer variables correctly
but dereferences the pointer that is not initialized.

Node *p,*q; // the scope of the * is one name
q->item = amount; // it damages location pointed to by q

A pointer that is not initialized points to wherever it wants. If your program does not use this area
of memory, the results might be correct. If this area is used by the operating system of another
program, expect trouble unannounced.

Make sure that you are not confused by terminology or notation. This is a new type of intuition for
the programmer. So far, you have dealt only with rvalues that needed initialization. In this coding
segment with integers, it is clear that variable x has to be initialized before it is used in the
assignment (as an rvalue), but variable y does not have to be initialized prior to its use because it is
used as an lvalue.

int x; int y; // definitions of noninitialized variables
y = x; // x needs initialization, but y does not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (316 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the example above, q->item is used as an lvalue and does not have to be initialized in advance.
However, q is used as an rvalue, and it must have a legitimate value before it is used to access the
item field.

When a pointer, for example, q, is properly initialized, its content is the memory address of a
structure of the type Node. We do not know whether pointer q contains the address of field item or
field next, the beginning of the structure, its end, or anything in between. And it is not a good idea
to find out and use the results to optimize your program. The pointer address is and should remain
an abstraction of the address. Whatever the contents of q, *q is the value pointed to by this pointer,
in this case, an unnamed structure of type Node. Accessing that value is called dereferencing the
pointer. Similarly, q->item is the value of the field item in the structure pointed to by pointer q,
and q->next is the value of the field next in the same structure. Accessing the fields of an
unnamed structure through a pointer pointing to this structure (q->item and q->next) is also
called dereferencing the pointer.

Some programmers dislike dealing with two selection operators, the arrow and the dot. It is all right
to use the uniform notation, (*q).item for q->item and (*q).next for q->next. Parentheses
here are necessary because the selection operator is of higher priority than the dereferencing
operator. Hence, *q.item means *(q.next) and this is a syntax error because the dot selector
operator can be applied to a structure variable only (named or unnamed), not to a pointer.

So, the program should not dereference a pointer that is not initialized. If this pointer is global, its
default value is NULL, and dereferencing a NULL pointer is a run-time error; usually, it terminates
the program. If this pointer is local, its value is junk. Being interpreted as an address, this value can
point to any place in memory (heap or no heap). Make sure that you avoid corruption of memory or
retrieval of incorrect values.

There are several ways to set the value of a pointer. One of them is to assign to the pointer the
address of a named variable using the address-of operator, q=&count. This is not very useful. That
leaves us with two other ways to set the value of the pointer:

ϒΠ allocate a new unnamed variable on the heap and set the pointer to the value returned by
the operator new (and yes, we do not know whether it points to the beginning or end of the
allocated memory)

ϒΠ find the pointer that is already pointing to the area of memory we are interested in and
use it as the source in the assignment; this pointer might be either a) a stack variable or b) a
field of a heap variable

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (317 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

That's all to the pointer initialization and assignment. This is the segment of code that uses both
methods of pointer initialization.

Node *p,*q = new Node; // q is initialized, but p is not
q->item = amount; // it saves value of amount in heap memory
q->next = NULL; // popular sentinel for linked lists
p = q; // p now points to the same node as q

In many algorithms, you need to traverse a linked structure, that is, visit each node and perform
some operation (retrieving the item value, checking whether the last node is reached, and so on).
One way to do that is to use the count of nodes similar to array traversal. Another way to do that is
to traverse the nodes until a sentinel value is found in the list. A standard way to use a sentinel is to
set the next field of the last node in the data set to NULL. The advantage of this approach is that
this value cannot be confused with other values possible for a pointer. As I mentioned earlier, a
regular 0 would do, but many programmers prefer the library-defined value NULL to indicate that
the program deals with pointers.

C++ does not allow the address of one type of variable to be assigned to the pointer of another type.
In that sense, C++ is a strongly typed language. In this sample of code, the programmer tries to
print the contents of each byte of the Node variable (pointed to by pointer q) as ASCII characters.
Notice that not all codes found in the binary representation of the Node fields are codes of printable
characters. This is exactly the kind of abuse that strong typing seeks to prevent.

char *c = q; // no, this is a syntax error
for (int i = 0; i < sizeof(Node); i++) // go over each byte
 cout << *c++ << ' '; // print each byte as a character

However, C++ allows the programmer to do that if the programmer feels that this is what should be
done. This is a free country, after all. If you want to print every byte of the structure, do it¡Xjust tell
the compiler (and the maintainer) that you are using the different pointer type and that you know
what you are doing. The C++ mechanism for telling the compiler (and the maintainer) that you
know what you are doing is casting. This is how you do that.

char *c = (char*) q; // now this is NOT a syntax error
for (int i = 0; i < sizeof(Node); i++) // go over each byte
 cout << (int)(*c++) << ' '; // print each byte as an integer

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (318 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that the char type and Node type are incompatible. The value of one type cannot be
converted into a value of another type even with the use of casting. This is an example of C++
support for strong typing. The values of pointers of different types cannot be assigned to each other
directly but they can be converted using the explicit cast. Make sure you see the difference. Also,
make sure that you do not abuse the pointer conversion feature.

When the program is building a linked structure (in a loop), each node is created on the heap, filled
with data (from keyboard of file), and attached to the linked structure. There are several kinds of
linked structures. I will consider a simple linked list where a new node is appended to the end of the
list.

With the linked list structure, the program can access each node in turn by starting with the first
node of the list, going to the next node, and so on until the node that contains the sentinel value in
the next field is found. The problem, however, is how to get to the end of the list when inserting
new nodes. Traversing each node from the beginning in search of the sentinel node is unnecessary
complexity. Also, it might become too expensive in terms of the execution time if the list grows
long.

One solution to this problem is to maintain a pointer to the last node of the list. When a new node is
created, it is attached to the list without visiting each node in the list. What does "attach" mean? It
means that the next field of the last node (the one that contains the NULL address) will be set to
point to the new node. Hence, we need to find the names for the next field of the last node (the
lvalue of the assignment) and the address of the new node (the rvalue of the assignment). But both
nodes are allocated on the heap¡Xthey do not have names! This means we have to find pointers that
point to these two nodes (the last node and the new node). In the following code segment, the name
of the pointer that points to the last node is last. The name of the pointer that points to the new
node is q. Hence the assignment that attaches the new node to the end of the linked list is last-
>next = q; In context, it looks this way.

Node *last; // pointer to the last node
do { // do until EOF causes failure
 . . . // read value of amount from file
 Node* q = new Node; // create new node on the heap
 if (q == 0) // test for success of request
 { cout << "Out of memory: input terminated" << endl;
 break; } // gracefully terminate if not
 q->item = amount; // fill node with program data
 q->next = NULL; // sentinel value for list end
 last->next = q; // attach as last node in list

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (319 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 // whatever else is needed to be done
} while (true);

This is a nice solution. It shows how to attach the new node to the linked list quickly, without
traversing through all existing nodes in the list. It just does not specify two important things: how to
start and how to finish. How to start means how to attach the very first node to an empty list. How
to finish means how to make sure that during the next iteration through the loop the pointer last
does indeed point to the last node in the list and not to the former last node (that now precedes the
newly inserted node).

When the very first node is being inserted into the list, the expression last>next does not make
sense because there are no nodes in the list and hence next cannot belong to any previously
allocated node. This means that when the first node is inserted into the list, you should not do this
assignment and must do something else instead. This "something else" is attaching the first node to
the head of the list.

Usually the head of the list is yet another pointer. Let us call it data. One way to tell that there are
no nodes attached to the list is to keep the count of nodes in the list. When the count is 0, the new
node should be attached to the list pointer data. When the count is not 0, the new node should be
attached to the end of the list, to list->next.

Node *last, *data; int count=0; // last/first pointer, node count
do { // do until until end of data
 . . . // read the value of amount
 Node* q = new Node; // create new node on the heap
 if (q == 0) // test for success of request
 { cout << "Out of memory: input terminated" << endl;
 break; } // gracefully terminate if not
 q->item = amount; // fill node with program data
 q->next = NULL; // sentinel value for list end
 if (count == 0) // for the first node only
 data = q; // attach as the first node in
list
 else
 last->next = q; // attach as last node in list
 // whatever else is needed to be
done
 } while (true);

Remember the conditional operator? This is the situation where this operator comes in handy. This

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (320 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

expression returns either data or last->next depending on the value of count, and then q is
assigned either to data or to last->next.

 (count == 0 ? data : last->next) = q; // nice code

Another way to start the list is to initialize the list pointer data to NULL. In the loop, after a new
node is allocated and initialized, you test whether the list pointer is still NULL. If it is, the new node
is the first node and should be attached to data. If it is not NULL anymore, this means that the new
node is not the first node, and it should be attached to list->next.

if (data == NULL) // this means that there are no nodes yet
 data = q; // point the list pointer to the first node
else
 last->next = q; // attach new node to the last list node

If you like the conditional operator, it can be used here too.

 (data == 0 ? data : last->next) = q; // concise code

Figure 6-15 illustrates this discussion. Figure 6-15a shows the initial state of the list, pointer data
that is initialized to 0 and pointer last that can point (for now) wherever it wants. Figure 6-15b
shows the state of the list after the insertion of the first node (with the amount value of 22): The
new node is initialized, is pointed to by pointer q, and pointers data and last are set to point to
the new node. Notice that the field next is drawn of the same size as pointers data and last
because they all have the same type Node*. Figure 6-15c shows the list with yet another node
allocated for insertion: It is pointed to by pointer q. Figure 6-15d shows the first step of insertion at
end: The next field of the last node (last->next) is set to point to the new node (pointed to by q).
Figure 6-15e shows the second step of insertion: pointer last is turned to point to the new node.

Figure 6-15. The pointer diagrams for inserting a new node at the end of a linked list.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (321 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

You see that after the new node is attached to the end of the list, you should move the pointer last
because now it points to the node preceding the last node, and the assignment to last->next
during next iteration would be incorrect. To move the pointer last means to design an assignment
statement where the pointer last is on the left-hand side. What should be on the right-hand side of
that assignment? To answer this question, you should find a pointer that already points to the node
you want the target of the assignment to point to, that is, a pointer to the new node.

Look at Figure 6-15d. Are there any pointers that point to the newly attached node? Sure. Actually,
there are two pointers pointing to that node. One is pointer q that was used to allocate the new
node. Another is pointer last->next that was used to attach that node to the list. Either would do.

 last = q; // divert the pointer back to the last node

Using the second pointer pointing to the new node, you get the following.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (322 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 last = last->next; // move pointer to next list node

This second form of moving the pointer last is actually a general technique for moving a
traversing pointer to point to the next node in the linked list. This technique is very popular in list
processing algorithms. It is equivalent to the statement, i++ in the array traversal that moves the
index to the next element in the array.

Listing 6.13 shows the program similar to ones shown in Listing 6.9 and Listing 6.10. Transaction
data is read from the keyboard. Instead of allocating a fixed array on the stack (as in Listing 6.9) or
allocating a dynamic array on the heap (as in Listing 6.10), this program allocates an individual
node for each value that is read. The node is then appended to the end of the linked list.

Example 6.13. Using a linked list of heap nodes.
#include <iostream>
#include <iomanip>
using namespace std;
typedef double Item;
struct Node {
 Item item;
 Node* next; } ;

int main ()
{ int count = 0; // count of amounts
 Node *data=0, *last; // pointers to start and end of
list

do { // do until EOF causes failure
 double amount; // local variable for input
 cout << " Enter amount (or 0 to finish): ";
 if (amount == 0) break;
 cin >> amount; // get next double from user
 if (amount==0) break; // stop input on no more data
 Node* q = new Node; // create new node on the heap
 if (q == 0) // test for success of request
 { cout << "Out of heap memory" << endl; break; }
 q->item = amount; // fill node with program data
 q->next = NULL; // sentinel value for list end
 (data == 0 ? data : last->next) = q;
 last = q; // last=last->next; is ok, too
 count++; // increment count
 } while (true);
 cout << "\nTotal of " << count << " values are loaded\n";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (323 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (count == 0) return 0; // no output if no file input
 cout << "\nNumber Amount Subtotal\n\n"; // print header
 cout.setf(ios::fixed); // fixed format for double
 cout.precision(2); // digits after decimal point
 double total = 0; // total for input amounts
 Node *q = data; // start at start of the list
 for (int i = 0; i < count; i++) // go over list data
 { total += q->item; // accumulate total
 cout.width(3); cout << i+1; // transaction number
 cout.width(10); cout << q->item; // transaction value
 cout.width(11); cout << total << endl; // running total
 q = q->next; } // idiom to pointing pointer to
next node
 Node *p = data, *r = data; // initialize traversing
pointers
 while (p != NULL) // go on until it runs off the
list
 { p = p->next; // prevent next node from
hanging
 delete r; r = p; } // delete node, catch up with
next
return 0;
}

After all the data were read in, the program traverses the linked list. For each node, it prints the
amount of each transaction and running subtotal of transactions. The output of the program is
shown in Figure 6-16.

Figure 6-16. Output of code in Listing 6.13.

The code for traversing the linked list initializes the local pointer q to point to the start of list (q =
data;). Then it makes count steps through the list. At each step, it accesses the node pointed to by
q (in this case, it accumulates the total, prints the transaction Number, Amount, and Subtotal).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (324 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Then it traverses to the next node by setting q to q->next. When q becomes NULL, it means that it
was pointing to the last node (whose next field is NULL), and the loop can terminate.

Another form of this loop manipulates the traversing pointer in the header of the for loop.

double total = 0; // total for input amounts
int i = 0; // start at start of the list
for (Node* q=data; q!=NULL; q=q->next) // go over list data
 { total += q->item; // accumulate total
 cout.width(3); cout << i+1; // transaction number
 cout.width(10); cout << q->item; // transaction value
 cout.width(11); cout << total << endl; // running total
 i++; } // increment the count of nodes
processed

Notice that the name q was used earlier in the program code. It was made local in the input loop.
Because of that, it can be reused in the rest of the program without any analysis of its use. Had it
been defined in the scope of the main() function, similar to data, its further use in the program
would require analysis of how this pointer is used and whether it can be used for other purposes or
a different name should be invented instead. This is yet another example of how the correct use of
scope reduces dependencies between parts of the program. This reduces complexity of both design
and maintenance.

The last loop of the program in Listing 6.13 shows yet another form of list traversal. Its goal is to
return the list nodes to the heap to avoid memory leak. For this simple example, where the program
allocates nodes, traverses them once, and terminates, this is not vital. The operating system will
take care about the heap memory. This is vital for programs that allocate and deallocate nodes
many times during execution, sometimes around the clock. For these programs, failure to release
the nodes that are no longer needed is asking for trouble.

I included this loop in the program because I wanted to show you yet another way to traverse the
linked list. The loop should go over each node of the loop and delete it. Again, a pointer should be
initialized to point to the first list node and move to the next node. After the pointer points to the
last node, the move to the next node makes this pointer NULL. A popular solution for the loop
traversal uses the for loop.

for (Node *q = data; q != NULL; q = q->next) // visit each node
 { delete q; } // release its heap memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (325 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is a nice loop; its header is almost standard and can be used in many contexts. The problem
with this loop here is that the increment expression q = q->next is executed after the body of the
loop, before the test for loop termination. Meanwhile, the body of the loop releases memory
pointed to by pointer q. This memory can be used for other purposes and should not be referred to
by this program anymore. The next thing that this loop does after delete q; is that it refers to q-
>next!

By the way, it does not mean that the program executes incorrectly. On one of my machines, it
executed correctly because the memory pointed to by pointer q was only marked as available but
was not actually reused yet for other purposes. So the expression q->next indeed retrieved the
address of the next node correctly. But this should not be taken as license to refer to somebody
else's memory. On my other machine, this program crashed. Correct results of a C++ program do
not necessarily mean that the program is correct.

The program in Listing 6.13 uses a more-complex but more-robust form of the loop. Pointers p and
r point to the same node. Then p moves to point to the next node, and the node pointed to by r is
deleted. After that, p and r point again to the same node.

Node *p = data, *r = data; // initialize traversing pointers
while (p != NULL)
 { p = p->next; // move it to point to the rest of list
 delete r; // delete node, make pointer invalid
 r = p; } // catch up with the rest of list

Notice that I read "delete r " as "the node pointed to by r is deleted" rather than " r is deleted." I
am afraid that some programmers might believe that this statement deletes the pointer. Nothing can
be further from the truth. This pointer has a name, hence it is allocated on the stack, hence it is
deleted according to the language rules at the closing brace of the scope where this variable is
defined. The delete operator deletes only unnamed variables allocated on the heap.

And the last warning. When the program handles linked nodes allocated on the heap, the fact that
the program compiles and executes correctly for all sets of test data does not mean that the program
is correct. Algorithms that do not use heap memory are free of this menace. Make sure that you do
not use a solution that is more complex than the application warrants.

Input and Output with Disk Files

In all previous examples, the code read input data from the keyboard and sent output data to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (326 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

screen. This was nice because it allowed you to concentrate on one thing at a time. For real-life
applications, this would not do. You should be able to read data produced by other applications and
save the results for future use. In this section, we will briefly look at files as yet another technique
for handling large sets of data.

C++, similar to other modern languages, does not have built-in input and output operations. What
you use for I/O belongs to a library rather than to the language itself. C++ programs can use two
libraries, the standard I/O library stdio inherited from C and the newer iostream library designed
specifically for C++.

Both libraries support file input and output. The C library is complex and prone to error. Its
knowledge is important for programmers who maintain legacy C code. The C++ library is less error-
prone but is complex and cumbersome. Often, there are many ways to do the same thing. To
understand how the C++ library works, one has to know how to use C++ classes, inheritance,
multiple inheritance, and other concepts I have not discussed yet. This is why in this section I will
discuss bare-bones facilities that will enable you to write and read data to and from disk files.

Output to File

Let us start with writing to a file because it is somewhat simpler than reading from the file.

Actually, writing data to a disk file is similar to writing data to the monitor screen, but instead of
the predefined object cout you should use a programmer-defined object of the library class
ofstream (output file stream). This class is defined in the library header file fstream that has to be
included in the source code.

As you recall from Chapter 2, "Getting Started Quickly: Brief Overview of C++," an object is an
instance of a class that combines data and behavior, that is, a structure whose members include
functions. The library class ofstream is designed in such a way that all the functions available for
the predefined object cout are available for programmer-defined objects of the ofstream class.

This is very convenient. All you have to do to channel the program output to a disk file rather than
to the screen is to define an object of class ofstream and substitute that object for cout in your
program. The output statements (including formatting statements) do the same job as for the object
cout¡Xthey will convert the bit patterns in program variables into sequences of characters to write,
but writing is done to a file rather than to the screen.

In Listing 6.14, I reimplement the program from Listing 6.12. The program reads an arbitrarily long
set of input lines and saves the data to file data.out. The changes are minimal.

Example 6.14. Using a dynamic array to read an arbitrary set of lines and write it to a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (327 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

disk file.
#include <iostream>
#include <fstream> // for ifstream, ofstream objects
using namespace std;

int main(void)
 {
 const int LEN = 8; char buf[LEN]; // short buffer for input
 int cnt = 0; // line count
 ofstream f("data.out"); // new: output file object
 cout << "Enter data (or press Return to end):\n";
do { // start of outer loop for input lines
 int len = 0; // initial length of data
 char *data = new char[1]; data[0] = '\0';
 do { // start of inner loop for line
segments
 cin.get(buf,LEN); // get next line segment
 len += strlen(buf); // update total string length
 char *temp = new char[len+1];
 strcpy(temp,data); strcat(temp,buf);
 delete [] data; data = temp; // expand the long line
 int ch = cin.peek(); // what is left in the buffer?
 if (ch == '\n' || ch == EOF) // quit if it is new line or EOF
 { ch = cin.get(); break; } // but first remove it from input
 } while (true); // continue until break on new line
 if (len == 0) break; // quit if the input line is empty
 cout << " line " << ++cnt << ": " << data << endl;
 f << data << endl; // save data to the file
 delete [] data; // avoid memory leak
 } while (true); // continue until break on empty line
 cout << " Data is saved in file data.out" << endl;
 return 0;
}

As you see, I define an object that I named f of class ofstream. The name of the physical disk file
to be used as the output file is specified as an argument when the ofstream file object is created.

 ofstream f("data.out"); // open output file

This statement associates object f with the physical file data.out in the same directory as the
executable program file. If you need a file in a different directory, the corresponding path name
should be used (remember to use '\\' to denote the escape character in file paths). If the disk file
with this name does not exist, it is created. If the file with this name exists, it is silently deleted and
a new empty file with the same name is created. (Operating systems that support file versions

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (328 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

create a next version of the file.)

What if the disk is full or write-protected? The creation operation fails silently¡Xthere is no run-
time error generated.

One way to deal with this problem is to call the member function fail() that returns true if the
previous I/O operation fails (for any reason) and false if it is successfully completed.

ofstream f("data.out"); // open output file dat.out
if (f.fail()) // test for success, give up if not
 { cout << "Cannot open file" << endl; return 0; }

Many programmers think that a full or write-protected disk is a rarity and it is safe to disregard this
possibility. I disagree because the program that disregards this is not portable. But you see, I
disregarded this in Listing 6.14, and I feel bad about it.

After the ofstream file object is created successfully, it can handle the values for storing in the
physical file similar to the way that the cout object handles the values for display. This means that
when the insertion operator << is called, the numerical bit pattern in computer memory is converted
into a sequence of characters representing data. For character data, this transformation is trivial.

 f << data << endl; // write array to output file, not to cout

As you see, the syntax of access to data is the same as for object cout. Can an output operation
fail? Many programmers feel that if the file is opened successfully, there is no need to check each
individual operation. This is not right. Remember, we are discussing storing large amounts of data.
Even though modern disks have huge capacities relative to those of the recent past, they can
become full. And it is not difficult at all to overflow a floppy or even a Zip disk. This is why you
need to test for success after each I/O operation.

f << data << endl; // save data to the file
if (f.fail()) // test for success of operation
 { cout << "Disk is full, output terminated" << endl; break; }

NOTE

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (329 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It is reckless to assume that the I/O operation will not fail. Creation of file objects and messages to
file objects should always be followed by a test whether the operation was indeed successful.

Figure 6-17 shows the example of the run of the program in Listing 6.14. For input data in Figure 6-
17, the output file data.out contains the following lines.

Figure 6-17. Example of the execution of code in Listing 6.14.

First line
Second line
This is the last line of text

When the ofstream file object goes out of scope (in Listing 6.14, at the end of main() function), it
is destroyed. This breaks the association between the file object and the physical file, and the
physical file is closed. The disappearance of the ofstream file object does not cause the physical
file to disappear.

Input from File

Now let us look at the examples where the program uses the data generated by another program,
text editor, or communication line. A simple way to do this is to define an object of class ifstream
(input file stream) that represents the input file streams.

Similar to class ofstream, class ifstream is defined in the header file fstream, which should be
included in the source file. Again, similar to class ofstream, the name of the physical disk file is
used as a parameter for the object.

 ifstream f("amounts.dat"); // open file amounts.dat for input

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (330 of 1187) [8/17/2002 2:57:51 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

What if the specified file is not found? Or it cannot be opened because it is being used by another
application? Similar to ofstream, the ifstream object is still created, but it cannot be used for
input. Any attempt to create an ifstream object should be followed by a test for success.

ifstream f("amounts.dat"); // open file amounts.dat for input
if (f.fail()) // test for success
 { cout << "Cannot open file" << endl; return 0; }

When the file object of type ifstream is defined successfully, the name of the object is associated
with the name of the physical disk file. After that, you can use the extraction operator >> to read
data into the program variables. Instead of object cin that represents the keyboard, you will use the
programmer-defined file object f. The syntax of access to data is the same as for the cin object.
All other input functions, get(), getline(), setf(), and precision(), are available along
with manipulators and are used in exactly the same way.

Let me remind you that when the extraction operator is used, the sequence of characters is read and
converted to the bit pattern of the designated type (if this conversion is possible): integer, double,
character, and so on. The extraction operator skips the leading white space (including the newline
character) until it finds the characters to convert, stopping when it finds anything that cannot be
part of the value (e.g., the newline character). It is also possible to read data from the file in the
binary form rather than as a sequence of characters. The binary form is more compact but it cannot
be read by text editors or displayed on the screen in a readable form.

Can an input operation fail? Of course it can. Moreover, when you read data from an input file, you
expect the operation to eventually fail when the program reaches the end of file. To check whether
the end of data is reached, you can use the member function eof(), which returns true if the end
of file is reached and false otherwise.

do { // do until EOF causes failure
 double amount; // local variable for input
 f >> amount; // get next double from file
 if (f.eof()) break; // stop input on no more data

Notice that the previous statement is somewhat vague. What is "the end of file is reached?" There
are two possible interpretations, and you should know the difference. When the program reads from

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (331 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

a file, the end of file condition can be raised immediately after the program reads the last entry in
the file. Another possibility is that it is only when the program tries to read past the last entry in the
file that the end of file condition is raised.

Ada and Pascal use the first interpretation. In these languages, a do loop that reads data from an
external file would look the following way (I am using C++ syntax).

do { // Ada or Pascal loop structure
 if (f.eof()) break; // stop input on no more data
 double amount; // local variable for input
 f >> amount; // get next double from file
 } // process the amount read

COBOL, C++, and Java use the second interpretation: the end of file condition is raised only after
the program tries to read past the end of data in the file. In these languages, the structure of a do
loop that reads data from an external file should be different.

do { // C++ or Java loop structure
 double amount; // local variable for input
 f >> amount; // get next double from file
 if (f.eof()) break; // stop input on no more data
 } // the rest of the loop

What happens if you make a mistake and use the first loop structure instead of the second one in a
C++ program? The last value will be read from the file and processed by the rest of the loop. In the
next iteration, eof() will return false, and the statement f >> amount; will be executed again.
When there are no data, the end of file condition will be raised, but the value of amount in memory
will be left the same (on most systems). Since the program is not notified that there are no more
data, the rest of the loop will process the last value the second time as if it were repeated in the
input file. In the next iteration, the end of file condition will be raised and the loop terminates.

ALERT

In C++, the end of file condition is not raised when the program reads the last item from the file. It
is raised on the next read, when the program tries to read past the last file item. Avoid using the
last file item twice.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (332 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 6.15 shows the version of the program from Listing 6.13 that reads data from a file rather
than from the keyboard. To make the comparison easier, I commented out the statements that read
from the keyboard rather than cut them out. As you see, switching from reading from the keyboard
to reading from a file is not difficult. Figure 6-18 shows the results of the program execution.

Figure 6-18. Example of the execution of code in Listing 6.15.

Example 6.15. Using a linked list of heap nodes for data read from a disk file.
#include <iostream>
#include <iomanip>
#include <fstream> // for ifstream class
using namespace std;

typedef double Item;

struct node {
Item item;
Node* next; } ;

int main ()
{
 int count = 0; // count of amounts
 Node *data=0, *last; // pointers to start and end
 ifstream f("amounts.dat"); // file to read data from
 if (f.fail())
 { cout << "Cannot open file" << endl; return 0; }
do { // do until EOF causes failure
 double amount; // local variable for input
// cout << " Enter amount (or 0 to finish): ";
// cin >> amount; // get next double from user
// if (amount == 0) break;
 f >> amount; // get next double from file
 if (f.eof()) break; // stop input if no more data
 Node* q = new Node; // create new node on the heap
 if (q == 0) // test for success of request
 { cout << "Out of heap memory" << endl; break; }
 q->item = amount; q->next = NULL; // fill node with data
 (data == 0 ? data : last->next) = q;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (333 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 last = q; // last=last->next; is ok, too
 count++; // increment count
 } while (true);
 cout << "\nTotal of " << count << " values are loaded\n";
 if (count == 0) return 0; // no output if no file input
 cout << "\nNumber Amount Subtotal\n\n"; // print table header
 cout.setf(ios::fixed); // fixed format for double
 cout.precision(2); // digits after decimal point
 double total = 0; // total for input amounts
 int i = 0;
 for (Node *q = data; q != NULL; q = q->next) // OK
 { total += q->item; // accumulate total
 cout << setw(3) << ++i; // transaction number
 cout << setw(10) << q->item; // transaction value
 cout << setw(11) << total << endl; // running total
 }
 Node *p = data, *r = data;
 while (p != 0)
 { p = p->next; // return heap memory
 delete r; r = p; }
 return 0;
}

The file amount.dat that I used to produce Figure 6-18 contains the following lines.

330.16
76.33
50
120

Many programmers are satisfied with this use of the eof() function. This, however, leaves your
program vulnerable to the errors in the input file formatting.

Let us say, that while typing 50 on the third line of the input file, I pressed the 'o' key instead of 0.
When the statement f >> amount; reads that line, it finds 5 and then 'o'. The program concludes
that the input value is 5, leaves the 'o' character in the input stream and executes the next statement.
During the next iteration, the statement f >> amount; finds the 'o' in the input stream, concludes
that this is the end of the input value and terminates. The next statement is executed, and the
hapless program gets into an infinite loop.

Of course, input errors of that type are more likely from keyboard input than from file input,
because the file can be proofread before the execution. Still, they are not impossible. Some
programmers avoid using the operator >> because it is too vulnerable to input format

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (334 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

errors¡Xinfinite loops are as unpleasant for keyboard input as they are for file input. Instead, they
use functions get() and getline() described earlier to read data as characters. When the input
line is in memory, the program can analyze the data and generate an intelligent error message if the
data are incorrect.

Another source of vulnerability is the way the file ends. In the example above, the newline
character was typed after each value, including the last value, 120. When the last entry in the file is
followed by the newline character at the end of file, the extraction function >> stops before that
newline character when it reads that entry. In this case, the end of file condition is raised only when
the program reads past the last entry.

What happens if the last newline character is not added? Or all values are typed on a single line
without the terminating newline character? If the newline character does not follow the last file
entry, the extraction function reads the end of file marker and raises the end of file condition. The
eof() function (which is called after the statement f >> amount;) returns true, and the loop
terminates without ever processing the last value.

This is not right. The code should be written in such a way that its behavior does not change,
whether or not the data entry person (or telecommunications software) put the newline character
after the last entry in the input file. To eliminate this problem, some programmers avoid using the
eof() function altogether. Instead, they use your old friend fail().

do { // C++ or Java loop structure
 double amount; // local variable for input
 f >> amount; // get next double from file
 if (f.fail()) break; // stop input on no more data
 } // the rest of the loop

The function fail() returns true when the operation fails for any reason, including reaching the
end of file. When I type 5o instead of 50, 5 is read, and 'o' is found in the input stream during the
next loop iteration. The statement f >> amount; does not read anything, and the fail() function
returns true. The input loop terminates. First, earlier termination is better than an infinite loop.
Second, the program can analyze the situation after the loop terminates and generate a message if
the loop terminates prematurely.

In the second example, when the value 120 is not followed by a newline character, the end of file
condition is raised, but the fail() function returns false because the value 120 was read by the
statement f >> amount; correctly. It is only on the next pass through the loop, when the program
tries to read past the value 120, that this function returns true. Hence, the last value in the file is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (335 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

processed correctly.

Input/Output File Objects

In addition to ifstream and ofstream, the C++ iostream library defines a very large number of
other classes. For 99 percent of your work, you do not need to know about these classes. I will
mention only one stream class, fstream, because it combines the characteristics of ifstream and
ofstream classes.

When you create objects of type ifstream and ofstream, you do not specify in what mode you
want to open them¡Xifstream is created by default for reading, ofstream is created by default for
writing. For objects of class fstream, you can specify the mode of opening by providing the
second argument when creating an object.

fstream of("data.out",ios::out); // output file
fstream inf("amounts.dat",ios::in); // input file

The input mode is default¡Xit might be omitted. Other available modes of opening include
ios::app (file is open for appending data to its end), ios::binary (file is open in binary rather
than text format), and some others. These modes are implemented as binary flags. If necessary,
they can be combined using the bitwise inclusive or operator '|'.

fstream mystream("archive.dat",ios::in|ios::out); // input/output

As is common in C++, there is more than one way to check whether a file operation has succeeded
or failed. In addition to function fail() described above, you can use function good().

fstream inf("amounts.dat",ios::in); // input file
if (!inf.good()) // another way to do things
 { cout << "Cannot open file" << endl; return 0; }

You can even treat the file object as a numeric value. When the operation fails, the value is 0.
When the operation succeeds, the value is nonzero. This is yet another example of testing whether
the file has opened successfully.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (336 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

fstream inf("amounts.dat",ios::in); // input file
if (!inf) // yet another way to do it
 { cout << "Cannot open file" << endl; return 0; }

The same syntax can be used for testing success of reading and writing operations. For example,
you can count the number of characters in the file using the get() function with a one-character
parameter. When the reading operation fails (because the end of file marker was reached or for any
other reason), it returns 0, and this value can be used to terminate a while loop.

int count = 0; char ch;
while (inf.get(ch)) // stop when the object is no good
 count++; // increment count of characters
cout << "Total characters: " << count << endl;

Normally, you do not close the files, because they are closed when the file object that is associated
with the file is destroyed at the end of its scope. Sometimes you need to close the file explicitly
using the function¡Xwhat else¡Xclose().

 inf.close(); // close the file

You need to do that when you want to close the file before its file object goes out of scope, for
example, when you have opened several files, and the next file fails to open. In this situation it is
prudent to explicitly close all open files before the program terminates or tries to recover. You can
also close the file when you do not want to keep several files open, for example, when you read
from one file, process data in memory, and then write the results to another file to be used later.

Listing 6.16 shows the modified program from Listing 6.15. In addition to sending the results to the
screen, it also saves the report in file amounts.rep. Testing for success of I/O operations is done
through comparing the file objects to 0. This is a common C++ idiom. The input file is closed at the
end of input.

Example 6.16. Reading from file and writing to screen and to output file.
#include <iostream>
#include <iomanip>
#include <fstream>

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (337 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

using namespace std;

typedef double Item;
struct Node {
 Item item;
 Node* next; } ;

int main ()
{
 int count = 0; // count of amounts
 Node *data=0, *last; // pointers to start and end of list
 fstream inf("amounts.dat",ios::in); // file to read data from
 if (!inf) { cout << "Cannot open file" << endl; return 0; }
do { // do until end of data
 double amount; // local variable for input
 inf >> amount; // get next double from file
 if (!inf) break; // stop input on no more data
 Node* q = new Node; // create new node on the heap
 if (q == 0) { cout << "Out of heap memory" << endl; break; }
 q->item = amount; q->next = NULL; // fill node with data
 (data == 0 ? data : last->next) = q;
 last = q; count++; // set last, increment count
 } while (true);
 inf.close(); // file is not needed anymore
 fstream of("amounts.rep",ios::out); // file to write data to
 if (!of) { cout << "Cannot open output file" << endl; }
 cout << "\nTotal of " << count << " values are loaded\n";
 of << "\nTotal of " << count << " values are loaded\n";
 if (count == 0) return 0; // no output if no file input
 cout << "\nNumber Amount Subtotal\n\n"; // print table header
 of << "\nNumber Amount Subtotal\n\n"; // print table header
 cout.setf(ios::fixed); cout.precision(2); // precision for screen
 of.setf(ios::fixed); of.precision(2); // precision for file
 double total = 0; int i = 0; // subtotal, line count
 for (Node *q = data; q != NULL; q = q->next) // OK
 { total += q->item; // accumulate total
 cout << setw(3) << i; // transaction number
 cout << setw(10) << q->item; // transaction value
 cout << setw(11) << total << endl; // running total
 of << setw(3) << ++i << setw(10) << q->item; // transaction
 of << setw(11) << total << endl; } // running total
 Node *p = data, *r = data;
 while (p != 0)
 { p = p->next; // return heap memory
 delete r; r = p; }
 return 0;
}

As you can see, the statements for formatting data in the output file are the same as the statements

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (338 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

for formatting data on the screen. For input data in Figure 6-18, the output file created by the code
in Listing 6.16 contains the following data.

Total of 4 values are loaded

Number Amount Subtotal

 1 330.16 330.16
 2 76.33 406.49
 3 50.00 456.49
 4 120.00 576.49

All right, this is all that you should know about working with files using the iostream library. The
library contains much more than I described, but it is not nice to describe it in detail before you
have studied classes and inheritance. Actually, I am not sure that even after you have studied
classes and inheritance you will need to know more than I have told you. The iostream library
provides you with multiple ways to do the same thing, and you do not have to learn all these ways
at once. Instead, pay attention to basic language facilities and make sure that you understand the
concepts behind these basic facilities. This will prepare you for dealing with other library facilities
when you encounter them in somebody else's code.

Summary

This chapter deals with rather complex material. You looked at several uses of pointers in C++.
The first one was to use pointers to point to ordinary variables allocated on the stack and to provide
an alternative technique of accessing these variables through aliasing. With the exception of
passing parameters by pointer (which I will discuss in the next chapter) this technique is useless.
However, some programmers believe that this technique makes their code easier to understand.
Make sure you are ready to deal with this kind of pointer manipulation in legacy code.

The second use of pointers is allocating individual variables on the stack rather than on the heap.
The heap variables do not have names, and the use of pointers provides the only way to access their
contents. However, the use of heap variables instead of ordinary stack variables gives no practical
advantages and should be avoided. Some programmers believe that this technique decreases the
possibility of stack overflow. Again, make sure that you are ready to deal with this kind of pointer
manipulation in legacy code.

Two other uses of pointers are legitimate, useful, and quite common in C++ programs. Unnamed
dynamic arrays represent an excellent alternative to C++ named arrays whose size is defined at
compile time. Dynamic arrays eliminate the danger of array overflow and wasted space. They are

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (339 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

fast and not very complex. When defining dynamic arrays, make sure you do not wind up
allocating and deallocating the array repeatedly. Look for the place to define such an array so that it
does not impair program performance.

The second valuable use of pointers is for linked structures. It is the most flexible technique of
memory allocation, because it does not reserve memory in advance but only on an as-needed basis.
It is also the most complex technique. The operations over pointers for node insertion and removal
are complex and counterintuitive. The same is true for traversal operations. Errors in pointer
manipulation are hard to find. They do not always manifest themselves in incorrect program
behavior. Allocation and deallocation of memory in a piecemeal fashion, individually for each node
rather than for several elements at once, might negatively affect program performance.

When you feel you should use a linked implementation, consider alternatives. One alternative is the
use of dynamic arrays. Another reasonable alternative is the use of the standard template library
that provides implementations of such data structures as lists, stacks, queues, trees, and so on. The
use of libraries allows you to combine the flexibility of dynamic memory management with
simplicity of use. That is, you can have your cake and eat it too.

The last topic of this chapter also deals with sequences of data whose length is not predefined:
physical files. I showed you the ways to define library objects that allow you to use the same
operations that you use for input from the keyboard and output to the screen. Using files expands
the program storage indefinitely and supports data persistence. After saving data to a file, the data
survive normal program termination, crash, or power outage. More important, the data can be used
by another program at a different time (and probably at a different place). This significantly
expands the flexibility of computer information systems.

This chapter ends the discussion of non-object-oriented features of C++. In the following chapters,
you will start the detailed study of C++ functions and classes and will learn how to create object-
oriented programs. This is a very exciting subject! As I mentioned earlier, the object-oriented
approach is probably the only approach that helps the designer create the program from relatively
independent pieces and to transmit his or her knowledge about the program to the maintainer
directly in the code of the program. This skill does not come automatically, just in the process of
learning the language. I hope that studying the rest of this book will help you to master this
important skill.

Part II: Object-oriented programing with C++

This part of the book provides you with basic tools of object-oriented programming with C++.
Object-oriented programming is first and foremost about using functions because each operation on

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (340 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

an object should be implemented as a function call. C++ functions are complex, and Chapter 7,
"Programming with C++ Functions," tells you all you should know about the syntax of C++
functions. Passing parameters in C++ has a reputation for difficulty, and I hope that this chapter
does a good job helping you to master this essential C++ skill.

Chapter 8, "Object-Oriented Programming with Functions," continues the discussion of C++
functions by explaining how to use functions. It introduces the criteria of cohesion, coupling,
encapsulation, and information hiding and discusses the principle of readability and independence
of program functions. It shows that most of the benefits of object-oriented programming can be
achieved without using C++ objects, by designing access functions that the client code calls
(instead of accessing structure fields directly). It also demonstrates the limitations of object-
oriented programming with functions and lists the goals that the use of C++ classes has to achieve.
This chapter is very important for developing the right intuition about object-oriented
programming.

Chapter 9,"C++ Class as a Unit of Modularization," introduces the jewel of C++ programming:
C++ classes. It describes the syntax of C++ class definition and discusses data members, member
functions, control of access to class members, object initialization and destruction, returning objects
from functions,and other technical details of using objects. The chapter contains a lot of complex
details¡Xthere is no way around this: C++ classes are sophisticated. Make sure that these technical
details do not hide from you the main goal of using classes: suppressing minute details when the
maintenance programmer needs to understand the general meaning of processing and data flows
between the functions.

Chapter 10, "Operator Functions: Another Good Idea," describes operator functions, a nice part of
C++ syntax. Operator functions are introduced into the language to support the philosophical
concept that a program should be able to do to class objects everything that it can do to numerical
variables¡Xadd, subtract, and so on. This concept is not very important from the point of view of
software engineering principles, but it gives a nice syntactic touch to C++ sourcecode.

Chapter 11, "Constructors and Destructors: Potential Trouble," discusses the dangers of naïve use
of C++ constructors and destructors and explains howto recognize these dangers. It offers several
techniques for avoiding memory corruption and memory leaks. It is a very important chapter¡Xan
inexperienced C++ programmer can do a lot of damage by handling object initialization
incorrectly.

Chapter 7. Programming With C++ Functions

Topics in this Chapter

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (341 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ C++ Functions as Modularization Tools

ϒΠ Argument Promotions and Conversions

ϒΠ Parameter Passing in C++

ϒΠ Inline Functions

ϒΠ Parameters with Default Values

ϒΠ Function Name Overloading

ϒΠ Summary

In the previous chapters, we looked at the basics of the C++ language that allow us to implement
any complex requirements a computer system might face.

The C++ built-in data types allow the programmer to cater computational objects to the task at
hand. They provide the necessary choices for numeric ranges and precision. The C++ operators
allow the programmer to combine input values into powerful and flexible expressions to compute
required output values. The C++ control structures allow the programmer to organize computations
into proper sequences, change the flow of computation when some conditions become true or false,
and repeat computations iteratively if necessary.

We also looked at the C++ features that support aggregation of components. We discussed
programmer-defined data types. They let the programmer combine individual data values that
logically belong together. Combining individual values into aggregates allows us to handle them as
a unit and helps the designer to pass on to the maintainer the designer's knowledge that these
components belong together. We also discussed arrays. They let the programmer combine related
components that undergo similar processing in the program. Finally, we discussed dynamic
memory management and file management. They expand the power and flexibility of ordinary
arrays and allow us to overcome their limitations.

Next, you are going to look at yet another C++ aggregation and modularization tool: functions.
Combining individual statements into functions allows the programmer to treat them as a single
logical unit. Breaking the program's functionality into separate functions is a powerful tool of labor
division: Different programmers develop different functions in parallel.

In this chapter, you will study the techniques for writing C++ functions. The main emphasis is
going to be on function communications: how functions exchange data. You will learn various
techniques of passing parameters and returning values from functions. These techniques differ

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (342 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

depending on whether the function arguments are modified by the function or keep the value they
had before the function call was made. These techniques also vary depending on whether the
function parameter is of a built-in C++ type, an array, or a programmer-defined structure (or class).

You will also learn other techniques of function design directed toward alleviating the restrictions
on function names, such as default parameter values and function name overloading. These
techniques significantly expand the set of choices that a C++ programmer has to use in his or her
implementation decisions. In addition, you will learn how to eliminate the performance overhead of
function calls using inline functions. You will also see what happens when actual arguments
supplied in the function call are not of exactly the same type as the formal parameters defined in the
function header.

This is an ambitious program. C++ functions are flexible and powerful, and they leave the
programmer with an almost bewildering array of choices of how to go about implementation. We
will try to make some sense out of it.

All the material in this chapter is vitally important for mastering C++ classes. Do not give up, type
in the chapter examples, experiment with them, and you will see that it is not that hard.

C++ Functions as Modularization Tools

In C++, as in other languages, the programmer hides the complexity of computer algorithms in
relatively small units of modularity: functions. Each function is a collection of language statements
directed toward achieving a specific goal. These statements can be simple assignments, complex
control constructs, or calls to other functions. These other functions can be standard library
functions that come with the compiler, specific library functions that come from previous projects,
or programmer-defined functions that are custom-made for this particular project.

From the programmer's point of view, the difference between different kinds of functions is that the
implementation code of custom-made project functions is available for inspection. As far as library
functions are concerned, the programmer who uses these functions as servers for the function he or
she is writing does not know their implementation. What the programmer knows is the description
of the server function interface: what parameters the caller should supply, what values the function
computes, how the output values are computed from the input values, and what restrictions and
exceptions apply.

It is not that the code for library functions is a trade secret. Sometimes it is, but often it is freely
available. It is that limiting the programmer's knowledge to the function interface and excluding the
function code is beneficial; this decreases the code complexity that the programmer faces. Studying
function code is justifiable only if the function might contain errors that have to be corrected. This
is the case with the programmer-defined functions that are custom made for this particular project.
Even for these functions, the task of analysis of function cooperation should be limited to studying

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (343 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function interfaces rather than function implementations.

This is how we are going to evaluate different methods of function communications. Those
methods that allow the maintainer (or another designer) to study the function interface only,
without reading the function code, will be considered superior to those methods that require
inspection of the function code as well.

The callers (client functions) handle the called function (a server function) as a single unit. In the
function call, the caller specifies the function name and the actual arguments (if any). The caller of
the function does not know how the function (the server) does its job. The client knows only what
job the server function does and what the interface specification is. Hence, using function calls
streamlines the client code. It is directed toward its own goal by removing detailed steps and
abstracting them in the form of the function call.

A function is the smallest unit of modularization; using functions allows the designers to organize a
large program into smaller, more-manageable units. Different functions can be assigned to different
programmers to speed up development of a large application.

If an algorithm is needed in several places in the program, implementing it as a function allows the
designers to call it from different places in the program instead of reproducing all the details in the
client code. This makes object code smaller and contributes to code reuse. During maintenance,
smaller functions are easier to understand and manage than is a huge monolithic program.

Functions used as modular units for organizing program code can be put into a library; their use by
other applications also improves the amount of code reuse.

Good functional design is crucial for code readability, for independence of program parts, and
hence for reducing the application complexity. However, function communications add to program
complexity. When using functions, the programmer has to coordinate code in three different places
in the program.

ϒΠ function declaration (function prototype) including the function name, its return type,
and types of its parameters

ϒΠ function definition, including the function header and the implementation of the function
body

ϒΠ the function call, including the function name and the names (or values) of actual
arguments

These three elements have to coordinate. This probably does not sound like much, because it is
only three elements and no more. And indeed most programmers most of the time get it right. The

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (344 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

problem is that the cases when the programmers do not get it right, however rare as a percentage of
the total, are numerous enough to cause serious problems.

Function Declarations

C++ requires that the compiler see either a function declaration or function definition before it
processes a function call. Hence, the source file where a function is called has to declare (or define)
this function before it is called. This is why the issue of supplying necessary function prototypes is
an important component of C++ programming.

In the function declaration, the types of parameters and the function return value (if any) should be
described along with the function name. If the function is called in several files, the function must
be declared in each file.

returnType functionName(type1 param1, type2 param2, ...);

If the function returns no value, the return type is specified as void rather than just omitted. If
return type is omitted, it is still not a syntax error. The compiler assumes that you wanted to make it
int rather than void. Omitting the return type used to be popular in C programming. This is why it
is allowed in C++. However, it is confusing, and the maintenance programmer has to spend extra
effort to figure out what is going on. If the return type is int, the code has to say that the return
type is int. This is why omitting the return type is frowned on in C++ programming, and some
compilers might issue a warning that this style of function definition is obsolete.

add(int x, int y); // int return value: bad style
void PutValues(int val, int cnt); // no return value: void type

A function can return only one value. If the client code needs more than one value from the
function, the function can return a structure variable, although this slows down program execution.
A function can also modify any number of global variables that are defined outside of any function
in the file. As we are going to see, neither of these techniques is a good software engineering
practice: They are prone to error. The function can also modify the values of its arguments. As we
are going to see, these techniques are complex. Do not feel depressed yet. All this is doable.

Function Definitions

In the function definition, the function algorithm is implemented in C++ code. The function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (345 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

definition starts with a header line that specifies the return value type, the function name (a
programmer-defined identifier), and the types and names of parameters in a comma-separated
argument list. The difference between the function header and the function prototype is that the
prototype ends with a semicolon, and the header does not. Another difference is that the parameter
names are optional in prototypes but mandatory in the function headers. Actually, if the parameter
is not used in the function body, its name is optional in the header, too, but I hope you will never
write such a poorly designed function.

The function body is a block with its own scope. As in any C++ code, the statements in the function
body are executed sequentially unless control constructs or function calls are used.

void PutValues(int val, int cnt)
{ cout << "Value " << val << " is found ";
 cout << cnt << " times" << endl;
 return; } // optional; no return value in a void
function
int add (int x, int y)
{ count++; // global variable is modified
 return x+y; } // return statement and return value are mandatory

For a void function, return statements are optional. They can be used any place in the code but
are not allowed to return a value. The execution of any return statement terminates the execution
of the function and returns control to the caller. For a non-void function, at least one return
statement is mandatory; more than one return statement can be used. Each return statement must
return a value of the type specified in the function header (or of the type that can be converted to
the return type).

Function Calls

Pascal, Ada, and other modern languages distinguish between procedures and functions. Procedures
in these languages do not return values but are allowed to have side effects in their arguments and
global variables. In the client code, they can be used as separate statements only, not as part of
another expression. Functions in these languages return values but can have no side effects. In the
client code, they cannot be used as separate statements but must be used as part of an expression (or
as an rvalue in the assignment).

a = add(b,c) * 2; // the use of return value in expression
PutValues(a,5); // function call as a statement
b = PutValues(a,5)*2; // nonsence: there is no value to return

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (346 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

C++ does not distinguish between procedures and functions. C++ functions can both provide return
values and have side effects. A returned type can be of any built-in or programmer-defined type,
but arrays are not allowed as returned values. If the function is void, it works as a procedure and
returns no value to the caller, it cannot be used in an expression. Such a function should be called in
a separate statement in the caller code.

Unlike Pascal or Ada, C++ allows the client to ignore a return value in a function call and use a
function call as a procedure call. This means that a non-void C++ function can be used as a part of
an expression and as a separate statement. When the caller uses such a function as a statement, the
only purpose of the function call is its side effects on global variables.

 add(b,c); // correct syntax even if it makes no sense

This is not a good programming practice. If a function returns a value, it should be used in the
client code. However, there are many C++ library functions that have non-void return values that
are rarely used, e.g., strcpy() and strcat(), among others.

The function body in braces specifies actions performed when the body is evaluated during the
function call. We say that the call operator () is applied to the function name with comma-separated
arguments of the call.

 PutValues(17,14); // the call operator is applied

Most of us do not think of a function call in terms of applying a call operator. It is sufficient to
think about the list of arguments in parentheses. In advanced C++ programming, however, it is
important to remember that in C++ a function call is the use of the call operator. Moreover, we can
use this operator in other contexts, giving it a different meaning.

If a definition of the server function appears lexically before the definition of the client function,
then the compiler has already seen the definition of the server before compiling the function call. In
these cases, the server definition can also serve as its declaration. Most programmers do not rely on
the lexical order of functions in source code and use prototypes as a matter of habit.

A function may be defined only once in a program. Function prototypes can be repeated as many
times as needed (or more). Function prototypes are often placed in header files in a separate project

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (347 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

directory. These files are included in the source files that call these functions. Often, programmers
include header files and functions that are not used in the file; this is simpler than studying who
calls whom and in what file. This is OK for the compiler, because it ignores extra prototypes.
Header files cannot and should not, however, be ignored by maintenance programmers.
Indiscriminate use of prototypes makes the understanding of mutual dependencies between
different parts of the program more difficult.

C++ allows us to omit parameter names in function prototypes. They are really needed in function
definitions only. Many programmers omit the names of parameters because the compiler does not
need them.

 void PutValues(int, int); // what do parameters do?

This is adequate when the types of the parameters are different, the roles of the parameters are well
understood by the designer and maintainer (e.g., in a library function that is used frequently), and
the prototype is hidden away in the header file. For a programmer-defined function, using
parameter names might provide a helpful hint about their roles.

Some programmers declare prototypes in client code not at the start of the file, but immediately
inside the client function that makes the call, as a documentation aid. This clearly tells the
maintainer that it is this function (as opposed to many other functions in the same file) that uses the
server function. Do not be distracted by the simplicity of the examples that I use to illustrate these
points. This is a serious software engineering issue.

void Client(void)
{ void PutValues(int value, int count); // list of dependencies
 int val, cnt;
 cout << "Please enter the value and its count: ";
 cin >> val >> cnt;
 PutValues(val, cnt); }

If a function has no parameters, its prototype and its definition can use either empty parentheses or
the keyword void between parentheses.

int foo(); int f(void); // functions with no parameters

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (348 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In a function call, however, only the empty parentheses are used to indicate the function call
operator.

foo(); f(); // parentheses are allowed and mandatory

Why is the keyword void allowed in the function definition and the function declaration but not in
a function call? This is done to make the life of the compiler writer easier. If the keyword void
were allowed in the function call, this could mislead the compiler into thinking that this is a
prototype of a function in the middle of the client code.

f(void); // this is not a call, it is a prototype

But there is no return type¡Xwhy would the compiler think this is a prototype? Because it thinks
that the programmer just omitted the integer return type: It is not a good programming practice but
is still allowed. By the way, to make sure that you know that I keep my word when I make a
promise, this is the answer to the question I promised to answer in Chapter 2, "Getting Started
Quickly: A Brief Overview of C++."

Argument Promotions and Conversions

Since C++ is a strongly typed language, a C++ function call should use correct types and the
number of actual arguments for each of the function formal parameters. Within the function body,
the values of actual arguments are used as the values of corresponding formal parameters. If the
number or the order of arguments does not match the number or order of formal parameters, it is a
syntax error¡Xno questions asked.

PutValues(25); // one argument is missing: error

If the number and the order of the arguments is correct, but the types are incompatible with
corresponding parameter types, matching between arguments and parameters results in a syntax
error. Types are called incompatible if a conversion between their values does not make sense. For
example, if one of the types is a programmer-defined type (structure or class) and another is either a
simple built-in type, an array, or another programmer-defined type, one value cannot be used
instead of another.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (349 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For example, let us assume that a1 is of a programmer-defined type Account (a structure), and a2
is an array (it does not matter what type). Then this function call represents two syntax errors.

PutValues(a1,a2); // incompatible types: two errors

The reason why C++ takes such a harsh point of view is that inside the PutValues() function code
deals with integer parameters. The operations that are legal for integers are not legal for Account
objects or for arrays. A structure or an array variable cannot do what a number can (being added,
multiplied, compared, etc.). Their individual components can, but this is a different story.

Similarly, let us consider a function that draws a square using a parameter of some programmer-
defined type Square.

void draw(Square);

It does not matter what composition or properties the type Square has. This client code is incorrect.

draw(5); // incompatible types: syntax error

Again, this is understandable. A number cannot do what a structure can (access a component
through the dot selector operator). Here, the stand taken by C++ is firm and uncompromising,
similar to other modern languages.

However, if there is only a mismatch between a declared and an actual type, not incompatibility as
described above, promotions and conversions can be applied. A mismatch means that the types are
different, but they have common operations, and hence the values of one type can be used instead
of values of another type. These types are viewed as compatible types.

Promotions from "smaller" to "larger" numeric types are performed implicitly for some types
before any computations are done. Arguments of enum types are promoted to int, and types char,
unsigned char, and short are promoted to type int. Similarly, the unsigned short type is
promoted to int (or to unsigned int on a machine where an int is not larger than a short).
Arguments of type float are promoted to type double. These argument promotions are
"safe"¡Xthere is no danger of the loss of accuracy or danger of applying an operation that is not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (350 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

defined on a "smaller" type.

If after promotion the argument type does not match the formal parameter type, or the argument is
not eligible for promotion (of type int, long, or double), then implicit conversions are used:
Any numeric type (including unsigned) can be converted to any other numeric type. This is done
even if the conversion results in a potential loss of accuracy (e.g., conversions from double to int).
The actual argument zero can be converted to a formal parameter of any numeric type or to a
pointer type even when a loss of accuracy is possible.

Consider, for example, the function PutValues() again. What happens if you pass arguments of
type double rather then int? They are silently converted to int. Some compilers could issue a
warning, but this is legal C++.

double x = 20, y = 5; // integers are converted to double
PutValues(x,y); // double are converted to integers

How can you tell the compiler that this mismatch is not an oversight and that you know what you
are doing? A common way to say that is to use an explicit cast that converts the value of one type
into a value of another type.

PutValues((int)x,(int)y); // explicit cast for compiler, maintainer

Another way to do that is to use the function-like syntax for the cast.

PutValues(int(x),int(y)); // alternative syntax for explicit cast

Notice that the explicit cast passes the designer's intent not only to the compiler but to the
maintainer as well. There is no need to figure out what is going on.

The same rules of conversions apply if there is a mismatch between the declared return type and the
type of the actual return value. If the actual return type is "smaller" than the declared return type,
the actual value is promoted to the declared type. If the actual return type is not "smaller" or the
promotion cannot be applied (the actual value is of type int, long, or double), then the actual
value is converted to the declared return type.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (351 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

These argument promotions and conversions are the same as promotions and conversions that C++
uses in expression evaluation. The goal is to make them as legal as possible. Here, C++ takes a
softer stand than other modern languages do. Moreover, the use of inheritance, constructors, and
overloaded conversion operators (described later) makes C++ even more lenient about argument
conversions. This is great if these conversions are exactly what the designer had in mind. This is
not so great if the designer made a mistake and the compiler does not stand by, telling the designer
about the error. In all the cases, the use of implicit conversions makes the life of the maintenance
programmer more difficult.

It is a good idea to match arguments and return values exactly or to use explicit casts to help the
maintenance programmer to understand what is going on.

Parameter Passing in C++

There are three parameter-passing modes in C++: by value, by pointer, and by reference.

When a parameter is passed by value, the changes made to the parameter within the function do not
affect the value of the actual argument used in the function call. When a parameter is passed by
pointer or by reference, changes made to the parameter do affect the actual arguments in the client
space. In addition, there is a special mode of passing array parameters.

We will consider different modes of parameter passing, their syntax, and their semantics, and we
will try to formulate guidelines for the use of C++ parameter-passing modes that provide the best
performance and the best transmission of designer ideas to the maintenance programmer.

Calling by Value

When a function is called, argument values can be specified as variables (or symbolic constants),
expressions, or literal values of appropriate types

int n = 22, cnt = 20;
PutValues(n,cnt); // arguments as variables
PutValues(2*n,cnt-11); // arguments as expressions
PutValues(18,14); // arguments as literal values

During execution, function parameters are treated as local variables whose scope is the function
body. The name of a parameter is known to the compiler and refers to a specific memory location
between the opening and the closing braces of the function. Outside of the function scope, this
name is not known. Even if the name itself can be defined outside of the function for some other
purpose, it never refers to the same memory location as the function parameter.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (352 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Parameters are defined (allocated and initialized) when the function is invoked. The space for
parameters is allocated from the program stack and initialized with the values of actual arguments.
The formal parameters are the separate copies of the values of actual arguments. These copies are
destroyed when the function terminates (when it executes a return statement or reaches the closing
brace). Consider, for example, the following primitive function that returns the sum of its
arguments.

int add (int x, int y) // x, y are created/initialized
{ return x+y; } // x, y are destroyed

Since the parameters (the copies of actual arguments) are in the scope of the called function, they
can be modified by the function code.

int add (int x, int y)
{ x = x+y; // awkward but legitimate: x is modified
 return x; // the new value is copied into the client variable
 } // the modified copy of argument is destroyed

The actual arguments are not in the scope of the called function: The values move in one direction
only, from the calling function to the called function. If parameters are modified by the called
function, the changes are not passed back to the caller's space when the parameters are destroyed.
Consider the client code:

int a = 2, b = 3, c;
c = add(a,b); // variable 'a' does not change in client space

"Call by value" is a "native" mode for parameter passing in C++. In this parameter mode, the
values of actual arguments (variables, expressions, literal values) are copied into temporary
variables representing function parameters. After that, the arguments in the client space are not
related to these copies: Copies are manipulated by the function and destroyed upon exit. Changes
that are made to the copies inside the function do not affect client argument values.

This is understandable. When parameters are passed by value, the actual arguments can be any
rvalues, for example, expressions or literals. These rvalues cannot and should not be modified in
the function code. In this call, for example, it should be guaranteed that the first argument does not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (353 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

change in the function call.

c = add(2*5,b); // passing an rvalue 2*5 to a function

For side effects, C++ provides passing parameters by pointer and by reference. These modes of
parameter passing are more complex than passing parameters by value. Using these modes
incorrectly makes program maintenance more difficult. Using them correctly contributes both to
program performance and to program readability.

Calling by Pointer

A pointer variable contains a memory address of another variable; this is why they are called
pointers; they point to some other program entity. You can manipulate program variables using
pointers with addresses of these variables pretty much the same way as you manipulate variables
using their own names. In Chapter 6, "Memory Management: The Stack and the Heap," you
learned how to use pointers for dynamic memory management. In this section, you will study the
concepts related to the use of pointers for parameter passing.

Pointers are a powerful and flexible programming tool; it is a dangerous tool too. This is why C++
tries to limit the power of pointers: A pointer cannot point to variables of arbitrary types. When the
pointer is defined, you make a commitment: You decide whether this pointer is going to point to
variables of type int, double, Account, or Square. This is not different from the commitment
that has to be made when you define non-pointer variables.

In all other regards, pointers are ordinary variables. They have a type, they are given programmer-
defined names, they can be initialized, and operators can be applied to them. Pointer variables are
eventually destroyed according to C++ scope rules. In the definition of a pointer variable, the fact
that it is a pointer is expressed by adding the asterisk * to the left of the pointer name. When the
pointer is created, it does not contain a valid value. As any other variable, the pointer has to be
initialized or assigned a value.

int v1, v2; // two integer variables; they contain junk yet
int *p1, *p2, *p3; // pointers to integers; they point nowhere yet

Operations available for pointers are assignment, comparisons, and dereference operations. Pointers
can be assigned the following values:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (354 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ the value NULL

ϒΠ a value contained in another pointer variable of the same type (It can be incremented or
decremented by an integer.)

ϒΠ an address of a variable of the appropriate type (The C++ address operator & is applied to
the left of the name of the variable whose address is assigned to the pointer.)

v1 = 123; v2 = 456; // variables are assigned integer values
p1 = &v1; // pointer is assigned the address of variable v1
p2 = p1; // pointer is assigned a value from another pointer
p3 = NULL; // pointer is assigned the value NULL

The symbolic constant NULL is defined in the header file stdlib.h and in many other library files,
including iostream.h. It the same thing as 0. Some C++ programmers prefer to use NULL because
it clearly indicates that the code is dealing with pointers. Other programmers use 0, and this is OK
too. Usually, C programmers use NULL and C++ programmers use 0.

Both p1 and p2 now point to variable v1. The syntax for pointer comparison is the same as for any
other numeric comparison.

if (p1 == p2) cout << "The same address, not value\n";
if (p3 == 0) cout << "This is a null pointer\n";
if (p1 != 0) cout << "We can start working\n";

The last operator, the dereferencing operator, is denoted as the asterisk *. When applied to a
pointer, it denotes the value that the pointer points to. This value is of the type that was used for
pointer definition. For example, p1 points to integer v1 that contains 123. Hence, *p1 means 123.
It is an integer. The same asterisk was used for the pointer definition: int *p1; this is no accident:
It says that p1 is a pointer to an integer, but it also says that *p1 is an integer. This is why the scope
of this asterisk is only one name. When you define integers (or variables of other built-in types), the
type name covers any number of variables; for example, I defined variables v1 and v2 above using
only one keyword int. This does not work for pointers. This, for example, defines one pointer and
two integers:

int* pt1, pt2, pt3; // pt1 is a pointer, pt2 and pt3 - integers

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (355 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Let us go back to this business of dereferencing. The dereferenced pointer is the synonym of the
variable it is pointing to.

*p1 = 42; // v1 is not 123 anymore; it is 42
*p2 = 180; // v1 is not 42 anymore; it is 180
*p3 = 42; // do not dereference NULL pointers; this causes crash

In this example, p1 points to v1; hence, *p1 and v1 are synonyms for all intents and purposes.
They are not synonyms forever, but until the pointer gets another assignment.

p1 = &v2; // p1 now points to v2, not to v1; now *p1 means 456
if (*p1 == 456) *p1 = 42; // v2 is not 456 anymore; it is 42

If the dereferenced pointer and the variable it points to are synonyms, why should we worry about
pointers that are not related to dynamic memory management? The answer is that we will use
pointer parameters to change the values of actual arguments in the client space. If a pointer variable
is passed to a function, the function can change the value pointed to (the actual argument), using
the syntax of dereferencing.

Consider, for example, the following modification of the add() function. Similar to the previous
version, it computes the sum of its two arguments; instead of returning the result, it assigns it to the
dereferenced pointer, that is, to the value pointed to by the pointer parameter.

void add (int x, int y, int *z) // z is a pointer to an integer
{ *z = x + y; } // location pointed to by pointer z is
modified

How does the client code call this function add()? Well, the first two arguments should be the
integer values we want to add up. And the third argument? Remember that business with strong
typing? It cannot be a double, a short, or even an int. It must be a pointer to an integer. How do
you get a value that could be assigned to a pointer? It must be either NULL (useless in this case), or
another pointer (probably in some other examples but not here), an address of an integer¡Xthat's it,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (356 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

this is what we need! You pass as the third argument the address of the variable you want to
contain the sum. For the address operator, you use the & sign. This is how a call by a pointer should
be done in client code.

int a = 2, b = 3, c;
add(a, b, &c); // and c does change after the call!

Remember I told you that the call by value is the native mode of parameter passing in C++? This is
true even when parameters are passed by pointer. It is the pointer that is passed by value, not the
value in the client space. It is a local copy of the pointer that is made, initialized, used, and
destroyed in the server space, as with any passing by value.

Since it is the address of the actual argument that is passed to the function, you have to dereference
the pointer within the body of the function when the function accesses the value of the actual
argument. If a new value is assigned to the dereferenced variable within the function, it persists in
the client space.

If this logic seems somewhat convoluted, don't worry. You will get used to it. Just remember this
simple checklist: Passing parameters by pointer, you have to specify:

ϒΠ the address-of operator for the actual argument in the call

ϒΠ the pointer type for the parameter in the function header

ϒΠ the dereference operator for the parameter in the function body

Do not resist this logic¡Xfollow it, and you will be safe. Any deviation from this checklist, and
something will go wrong¡Xit is not worth the trouble.

Let us consider another popular example: swapping parameter values. If the first parameter is
greater than the second parameter, you swap them so that they become ordered in ascending
sequence. To swap parameters a1 and a2, you save the first parameter value in the temporary
variable temp so that you can use location a1 to store a different value. Then you copy the value of
a2 into a1. After that, you move the value stored away in temporary variable temp into a2, and
bingo! What used to be in a2 is now in a1, and what used to be in a1 is now in a2. Listing 7.1
shows the implementation of the function swap() and its client function main(). For debugging
purposes I also included display statements for the values before the swap, after the swap, and after
the call. The results of the executions are shown on Figure 7-1.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (357 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 7.1. Output for program in Listing 7.1.

Example7.1 Passing parameters for side effects (bad version).
#include <iostream>
using namespace std;
void swap (int a1, int a2) // wrong parameter mode
{ int temp;
 if (a1 > a2)
 { cout << "Before swap: a1=" << a1 << " a2=" << a2 << endl;
 temp = a1; a1 = a2; a2 = temp;
 cout << "After swap: a1=" << a1 << " a2=" << a2 << endl; } }
int main ()
{
 int x = 84, y = 42; // values are out of order
 swap(x,y); // bad parameter mode; it should not work
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0;
 }

As you might expect, the parameter values within the function are swapped correctly. But the
change does not stick in the client space: The values of the actual arguments are not swapped.
Passing parameters by pointer should help. This is how the next version of the function swap()
looks.

void swap (int *a1, int *a2) // correct parameter mode
{ int temp;
 if (a1 > a2)
 { cout << "Before swap: a1=" << a1 << " a2=" << a2 << endl;
 temp = a1; a1 = a2; a2 = temp;
 cout << "After swap: a1=" << a1 << " a2=" << a2 << endl; } }

This looks nice, but it does not fly either. The statement temp_=_a1; is incorrect. Variable temp is
of type int. Variable a1 is not (variable a1 is a pointer to int). You can assign one integer to
another. You can assign one integer pointer to another integer pointer. You cannot assign values of
different types. Do not let your experience with numeric types mislead you. Different numeric
types are compatible. They can be converted to one another. Pointer values are incompatible types.
They cannot be converted to values of a non-pointer type.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (358 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When you get that compiler message, do not despair, but figure out what should be on the right-
hand side of that assignment. Variable a1 is not an integer. What related variable is an integer?
Look at the parameter list. What does it say is integer? It says int *a1¡Xhence, it is *a1 that is an
integer. This assignment should say temp_=_*a1; this is actually not very difficult; however,
making changes in the body of the function is quite tedious and prone to error. You have to make
sure that you do dereference a1 and a2 but do not use dereferencing on temp.

void swap (int *a1, int *a2) // correct parameter mode
{ int temp;
 if (a1 > a2) {
 cout << "Before swap: *a1=" << *a1 << " *a2=" << *a2 << endl;
 temp = *a1; *a1 = *a2; *a2 = temp; // correct dereferencing
 cout <<"After swap: *a1=" <<*a1 <<" *a2=" <<*a2 << endl; } }

For the version of the swap() function in Listing 7.1, the compiler shot at me complaining about
the call swap(x,y); indeed, variable x is of type integer, but the function swap() expects a pointer
to integer, that is, an address of an integer variable. Does this make sense? Listing 7.2 shows the
corrected version of the program. The output is shown on Figure 7-2.

Figure 7.2. Output for program in Listing 7.2.

Example 7.2. Passing parameters by pointer (parameter modes are correct).
#include <iostream>
using namespace std;
void swap (int *a1, int *a2) // correct parameter mode
{ int temp;
 if (a1 > a2) {
 cout << "Before swap: *a1=" << *a1 << " *a2=" << *a2 << endl;
 temp = *a1; *a1 = *a2; *a2 = temp; // correct dereferencing
 cout << "After swap: *a1=" <<*a1 <<" *a2=" <<*a2 << endl; } }
int main ()
{
 int x = 82, y = 42; // values are out of order
 swap(&x,&y); // correct parameter mode; it should work
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (359 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

A good mnemonic rule for passing parameters is¡K Wait a minute. Did I do what I had to do to test
this program? It contains a conditional statement, but I ran it only once. This is a simple little
program, and if I waste my time on thorough testing of everything that is as clear as day, I will
never get anything done. Still, with parameter passing you are never sure (you know, step to the
left, step to the right). So I changed the main() function this way, just to make sure that when the
argument values are ordered, the function swap() does not swap them.

int main ()
//{ int x = 82, y = 42; // values are out of order
{ int x = 42, y = 84; // values are ordered
 swap(&x,&y); // no swapping for ordered arguments
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0; }

The result of this run is shown in Figure 7-3. Now, I have two questions to ask. Question number
one: Do you see the problem with the output? Make sure you do. It is all too often that we look at
output and do not see the error because we did not write the answer in advance. Here, the code
seems to swap the arguments unconditionally even though there is the if statement in the function
swap(). This probably means that this statement does not compare the values of parameters but
compares something else instead. Question number two: Do you see the problem with code on
Listing 7.2? This is more difficult because there is no methodology to follow to find this error.

Figure 7.3. Output for program in Listing 7.2 with modified main().

There are 10 asterisk operators in function swap(), but I missed two more. When I compare a1 and
a2, the compiler does not object because these two variables are of the same type. If I want to
compare two addresses, I have the right to do so, and if the first address is larger than the second,
the program swaps the arguments whether or not their values are ordered. This is what it means that
the compiler does not try to second-guess the programmer. Sometimes I prefer that shot without
warning. At least it tells me that I have a problem. The corrected version of the program is shown
in Listing 7.3.

Example 7.3. Passing parameters by pointer (corrected dereferencing).
#include <iostream>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (360 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void swap (int *a1, int *a2) // correct parameter mode
{ int temp;
 if (*a1 > *a2) { // Oh, boy
 cout << "Before swap: *a1=" << *a1 << " *a2=" << *a2 << endl;
 temp = *a1; *a1 = *a2; *a2 = temp; // correct dereferencing
 cout << "After swap: *a1=" <<*a1 <<" *a2=" <<*a2 << endl; } }
int main ()
//{ int x = 82, y = 42; // values are out of order
{ int x = 42, y = 84; // values are ordered
 swap(&x,&y); // correct parameter mode; it should work
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0;
 }

By the way, this is not a contrived example. This is a scaled-down version of what happened to me
in real life. I made the situation easier to review by removing extraneous details.

So, where were we? Oh yes. A good mnemonic rule for passing parameters by pointer is: When
you choose the name for a parameter, you must start this name with the asterisk and remember to
use this asterisk as part of the name on all occasions. The trouble with my first version of swap()
(and alas, with the second version too) was that I thought that the parameter names were a1 and
a2. This was not productive. Had I thought from the very beginning that their names were *a1 and
*a2 throughout, writing this function as in Listing 7.3 would have been a breeze, including the use
of *a1_>_*a2 in the conditional statement.

Still, this is much more complex than passing parameters by value. You have to:

ϒΠ use the pointer notation in the function header (and the prototype)

ϒΠ dereference parameters inside the body of the function

ϒΠ use the address-of operator outside of the function, in the client code. As your reward,
changes made to parameters are reflected in actual arguments in the client code

Everybody makes mistakes in passing parameters by pointer. The only difference between
experienced and inexperienced programmers is that experienced programmers make these errors
less often and correct them faster. As for the anguish and self-criticism¡K Well, I told you that you
should never criticize yourself. After all, it was not you who invented these rules.

Some programmers try to simplify passing parameters by pointer by eliminating the use of the
address-of operator in the function call. Instead, they use a pointer that they have set up to point to
the actual argument. For example, they would write the call to swap() in the following way.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (361 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main ()
{ int x = 82, y = 42; // values are out of order
 int *p1 = &x, *p2 = &y; // set pointers to point to values
 swap(p1,p2); // no address-of operator
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0; }

This works. The values in arguments pointed to by pointers p1 and p2 are swapped correctly.
However, you should introduce additional program elements, pointers, and set them using the same
address-of operator. Additional manipulations mean additional possibility for error and additional
effort in understanding what the code does. I am not sure it is simpler than biting the bullet and
using the address-of operators in the function call directly. But if you like this technique, use it. It
works.

Since the values of actual arguments change in the call by pointer, only lvalues that can be
manipulated through their addresses are allowed as actual arguments. You cannot use
rvalues¡Xexpressions, literal values or constants. For example, this function call to swap() is
incorrect.

swap(&5, &(x+y)); // no good: no address-of operator for rvalues

Another issue related to passing parameters by pointer is type conversions. For all intents and
purposes, they are not allowed. What I described earlier is relevant to conversions of values, not
pointers. Consider the following code that tries to use the swap() function to order double values.

int main ()
{ double x = 82, y = 42; // double values are out of order
 swap(&x,&y); // no conversion from double* to int*
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0; }

You can talk the compiler into accepting these arguments by using an explicit cast to int* like in
this function call.

swap((int*)&x, (int*)&y); // it swaps integers, not double values

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (362 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Here, the function call compiles, but it compares and swaps (if it does) only that part of a double
value that has the size of the integer. The compiler accepted this call because I told it, "I know what
I am doing." But, what I was doing was incorrect. Make sure that when your program compiles,
you check whether what the compiler accepted really makes sense.

Since C++ had an explicit goal to support the C legacy code, passing parameters by pointers is a
valid C++ technique. However, C++ added yet another mode of passing parameters, passing by
reference, that eliminates some of the drawbacks of passing by pointer. We will try to use passing
by pointer as little as possible. Unfortunately, you cannot just forget about it. In addition to legacy
C code, there are C++ library functions that pass parameters by pointer. Dynamic memory
management also requires dealing with pointers. Make sure you are not intimidated by the
complexity of pointers.

Parameter Passing in C++: Calling by Reference

In addition to pointers, C++ provides reference types that are not available for programmers who
use C. Like a pointer variable, a reference refers to another location: It contains the memory
address of another variable. Similar to pointers, when you define a reference, you specify the type
of the value this reference is going to point to. Similar to pointers, you can define a reference to any
type, built-in or programmer-defined. Similar to pointers, reference variables are just ordinary
variables that can be defined, allocated memory, initialized, manipulated, and destroyed.

Unlike a pointer, a reference variable can point to only one location. This location should be of the
same type as the reference itself. The reference variable cannot abandon the location it is pointing
to and start pointing to another location. This is why, unlike pointers, references must be initialized
at definition. If you do not do that, you lose your chance to point the reference variable anywhere,
and it will remain useless. To indicate that a variable is a reference rather than a pointer, you use
the ampersand & to the left of the programmer-defined name rather than the asterisk *. When a
reference is initialized, no operator has to be applied to the variable that the reference is going to
point to. This change in notation is very clever. It is one of the reasons why references were
introduced in C++.

int v1=123,v2=456; // integer variables; optional initialization
int *p1=&v1, *p2=&v2; // pointers to int; initialization is optional
int &r1=v1, &r2=v2; // references: always initialized, no operator

For pointers, it is *p1 and v1 that are synonyms: We need a dereference operator *. For references,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (363 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

it is r1 and v1 that are synonyms; no operator is needed. There is no dereference operator for
references in C++, and this is the second reason why references were introduced in C++.

if (p1 != p2) cout << "Different addresses\n"; // sure, &v1 != &v2
if (*p1 != *p2) cout << "Different values\n"; // sure, 123 != 456
if (r1 != r2) cout << "Different values\n"; // sure, 123 != 456

With pointers, it is all the same whether you access the value using the dereferenced pointer (e.g.,
*p1) or the name of the variable (e.g., v1). With references, it is all the same, whether you access
the value using the name of the reference (e.g., r1) without any operator or the name of the variable
(e.g., v1): They are synonyms.

*p1 = 42; // v1 (and r1) is not 123 anymore; it is 42
r1 = 180; // v1 (and *p1) is not 42 anymore; it is 180
v1 = 42; // r1 (and *p1) is again 42

This might sound somewhat confusing: you "dereference" pointers, not "depointer" them. On the
other hand, you do not dereference references. This is not done to confuse you¡Xthere is no malice
in this design. It happened for purely a historical reason. In pre-ANSI C community, pointers were
often called references because they "referred" to variables. Pass by pointer was often called pass
by reference, and the term "dereferencing" was always used instead of "depointering" (or
"depointing"?). Actually, the latter terms did not exist.

This terminology survived the ANSI standardization effort. When C++ was designed, a new term
was needed to convey the idea of pointing, referring, directing, aiming, accessing, training, signing,
indicating, or denoting. The term "reference" won in the selection process, and now we are
dereferencing pointers but not references. This is OK.

Unlike a pointer, a reference cannot be changed to refer to another variable (memory location) after
it was initialized. There is no way to do that: They are together until death do them part, that is,
until they go out of scope. The assignment to reference changes the data, not the address of the
data, because the reference provides an alias for the variable.

p1 = &v2; // p1 abandons v1, points to v2 instead
p1 = p2; // another way to do the same thing
r1 = v2; // r1 still points to v1 that now contains 456
r1 = r2; // another way to move data from v2 to v1

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (364 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

if (r1==v2) r1 = 42; // comparison holds, and v1 becomes 42

All right, this is all you have to know about references, their terminology, and their notation to use
them for parameter passing. This is how our little function add() looks when you pass the third
parameter by reference rather than by pointer.

void add (int x, int y, int &z) // z is a reference to an integer
{ z = x + y; } // location pointed to by z is modified

Here, variable z is a reference to an integer. When the function is called and this parameter is
allocated memory, it is initialized with the address of the actual argument. (We will see in a
moment how this is done.) The assignment to z modifies the location this reference is pointing to,
that is, the actual argument. We see that the function body looks exactly as if the parameter z were
passed by value; unlike with passing parameters by pointer, no dereferencing is needed. The
function header has the reference operator & as the indicator of the pass by reference. In the
function call, you have to initialize the reference with the address of the location it is going to refer
to. How do we do that? According to the syntax of reference initialization, you use the name of the
variable with no operators. Hence, the function call in the client code should look this way.

int a = 2, b = 3, c;
add(a, b, c); // and c does change after the call!

Hence, in passing parameters by reference we specify:

ϒΠ argument names without address operators in the call

ϒΠ reference type for parameters in the function header (and the prototype)

ϒΠ names of parameters without dereferencing in the function body

You see that a call by reference is quite similar to a call by value. Parameters are not dereferenced
in the server function body, and no address-of operator is used in the function call in the client
code, but side effects are available because of the reference operator in the server function header.

In a sense, this language design is similar to Pascal where the keyword var plays the same role as
the reference operator & in C++: It indicates that the changes made to the formal parameter in the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (365 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function body are visible in the value of the actual argument in the client code. The keyword is
probably easier to learn than the operator.

Now let us implement the swapping function using pass by reference. Listing 7.4 shows the source
code. The changes are straightforward; the code is much simpler than using pass by pointer. There
is less opportunity for error. The results of the run are shown in Figure 7-4.

Figure 7.4. Output for program in Listing 7.4.

Example 7.4. Passing parameters by reference (robust method).
#include <iostream>
using namespace std;
void swap (int &a1, int &a2) // correct parameter mode
{ int temp;
 if (a1 > a2) { // no dereference operator
 cout << "Before swap: a1=" << a1 << " a2=" << a2 << endl;
 temp = a1; a1 = a2; a2 = temp; // no dereferencing
 cout << "After swap: a1=" << a1 << " a2=" << a2 << endl; } }
int main ()
{ int x = 82, y = 42; // values are out of order
//{ int x = 42, y = 84; // values are ordered
 swap(x,y); // this is beautiful!
 cout << "After call: x=" << x << " y=" << y << endl;
 return 0;
 }

I summarized the rules for parameter passing in Table 7.1. Here the term var (with operators where
applicable) denotes the name of the variable used as an argument in the function call, as a
parameter in the function header (and prototype), and in the function body.

The table shows that pass by value is the simplest¡Xno operators are applied to the argument or to
the parameter in the function body. Pass by pointer is the most complex: Operators have to be used
in all three code elements¡Xin the argument, the parameter, and the function body. The pass by
reference is similar to pass by value: The only difference is the reference operator in the function
header.

Pass by reference lacks complexity of pass by pointer but supports side effects to actual arguments
in the client space. If the parameter is not changed within the body of the function, it should be
passed by value. This would indicate to the maintenance programmer that the designer wanted to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (366 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

keep the actual argument the same.

Table 7.1. Summary of Parameter Passing for Simple Variables
Code Element By Value By Pointer By Reference

Function call var &var var
Function header var *var &var
Function body var *var var

When parameters are passed by reference and modified inside the function, the same limitations
apply that apply to pass by pointer. You can use lvalues only as actual arguments, and they should
be of exactly the same type because C++ supports no implicit conversions between references of
different types. Explicit conversions are possible but they are useless¡Xa reference variable can
access only the value of the type used in its definition. The use of expressions, literals, and
constants is not allowed.

TIP

When the function does not change the values of its parameters of C++ built-in types, pass
parameters by value. When the function has to change the values of its parameters of built-in types,
pass parameters by reference. Avoid passing parameters by pointer.

Structures

Structures (and class objects) could be passed by value, by pointer, or by reference. If a structure
variable is used by the function as input for its operation and is not modified by the function, it can
be passed by value. If a structure is used by the function as output (delivering values to the client
function), that is, when the structure fields are modified by the function, it should be passed by
pointer or by reference. Otherwise, the changes are not effective in the client space.

The rules formulated in the previous sections for individual variables stand for structure variables
too. Additional rules for structures as arguments are related to the access to structure components in
the function body.

To keep examples simple, let us consider a simplified type Account.

struct Account {
 long num; // just two fields for simplicity sake
 double bal; } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (367 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Its access function printAccounts() accepts two Account variables as parameters and prints the
values of account number and balance. These Account objects are input variables for
printAccounts(): Their values have to be set by the client code before the call because the
printAccounts() function needs the Account values to be set by the client to do its job properly.

void printAccounts(Account a1, Account a2) //server code
{ cout << "First account: No. " << a1.num
 << " balance " << a1.bal << endl;
 cout << "Second account: No. " << a2.num
 << " balance " << a2.bal << endl; }

The client code creates Account objects, initializes their fields, and calls the server function
printAccounts() to print the state of accounts.

Account x, y; // client code
x.num = 800123456; x.bal = 1200;
y.num = 800123123; y.bal = 1500;
printAccounts(x,y);

Since this discussion concentrates on parameter passing, I ignore such issues as whether it is a good
idea to have access functions to such a trivial structure or it is better to access structure fields from
the client code directly. I need these simple function examples to illustrate the issues related to
communication between functions.

The basic rules of parameter passing stand here, that is, the programmer has to coordinate code in
three different places: the function call, the function header, and the function body. According to
the rules for parameter passing by value, you use the name of the variable without any operators in
the function call, in the function header, and in the function body. When the function code needs to
access the structure fields, it uses the same dot selector operator as the client code uses. This is the
simplest mode of parameter passing. (Compare notation for a1.bal in printAccount() and for
x.bal in the client code.)

Next consider another access function, swapAccounts(), that compares the account numbers of its
two parameters and swaps the parameters if the account numbers are out of order. Since the values
of actual arguments have to change, passing parameters by value would not be appropriate. This

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (368 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function passes its parameters by pointer.

void swapAccounts (Account *a1, Account *a2) // pass by pointer
{ Account temp;
 if (a1->num > a2->num) // operator
 { temp = *a1; *a1 = *a2; *a2 = temp; } }

When the client code calls this function, it passes to the function the addresses of the actual
arguments.

swapAccounts(&x,&y);

You see that the basic rules of pass by pointer hold here. In the function call the client code uses the
address-of operator &. In the function header the server code uses the asterisk *. In the function
body the server code uses the dereferencing operator *. When the server code has to access the
fields of the structure, the two-character arrow selector operator -> is used instead of the dot
selector operator.

This is a general rule and is not limited to parameter passing. The dot selector operator selects a
field when its left operand is the name of a structure variable. The arrow selector operator is used
when its left operand is a pointer to a structure variable. You should not confuse the two. Often,
programmers are oblivious to this distinction. When a pointer is used, it does not matter whether it
points to a named stack variable or to an unnamed heap variable. A pointer needs an arrow selector
operator. If you use one operator in the context where another operator is required, an error
message (sometimes obscure) is generated.

Some programmers try to use naming conventions to give themselves visual cues when a variable
is a pointer rather than a value. These programmers start the names of pointer parameters with p or
ptr. This is how swapAccounts() looks when this naming convention is used.

void swapAccounts (Account *ptrA1, Account *ptrA2)
{ Account temp;
 if (ptrA1->num > ptrA2->num)
 { temp = *ptrA1; *ptrA1 = *ptrA2; *ptrA2 = temp; } }

I feel more comfortable with the previous version because I think that the names of parameters (of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (369 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

type Account) are *a1 and *a2 (for me, the name of the parameter starts with an asterisk), and the
ptr component in the name distracts me. But this is a common technique, and you should use it if
the parameter name reminds you that you are dealing with the pointer.

For some programmers, the need to decide whether to use one or another selector operator
represents an additional burden. You could use the dot selector operator with a pointer if you
dereference the pointer first. Here is the swapAccounts() function that uses this technique.

void swapAccounts (Account *a1, Account *a2) // pass by pointer
{ Account temp;
 if ((*a1).num > (*a2).num) // no arrow selector
 { temp = *a1; *a1 = *a2; *a2 = temp; } }

Parentheses here are important because the selector operator is of higher priority than the
dereference operator. The expression without parentheses, for example, *a1.num, is understood by
the compiler not as (*a1).bal but as *(a1.bal), which makes no sense. First, the expression
a1.bal is not legal because pointer a1 cannot work with the dot selector operator; it needs the
arrow operator. Second, even if a1.bal were legal, the type of field bal is double, and you cannot
dereference a double value; it should be a pointer.

Using dereference and the dot selector is a legitimate technique, but most programmers grow to feel
comfortable switching from one selector operator to another and do not strive for operator
uniformity. If you avoid using the arrow operator all the time, your boss might suspect that you do
not know C++ as well as you say you do.

In swapAccounts(), the structures are passed by pointer and not by value because the actual
arguments have to change as the result of a swap. However, some C++ programmers, especially
with good experience in C, dislike passing structures by value so much that they pass structures by
pointer even when they are input variables and are not changed by the function. This is how
printAccounts() would look if it were written by such a programmer: The parameters are passed
by pointer and not by value, and the structure fields are accessed using the arrow selector operator.

void printAccounts(Account *a1, Account *a2) // misleading
{ cout << "First account: No. " << a1->num
 << " balance " << a1->bal << endl;
 cout << "Second account: No. " << a2->num
 << " balance " << a2->bal << endl; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (370 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The reason that you might want to pass structure parameters by pointer rather than by value is
program performance. Of course, the Account structure in my examples is small, but we often deal
with structure objects that take hundreds or thousands of bytes each. Copying these structures while
passing them by value takes both execution time and stack memory, often significant for program
performance. The drawback of this technique is greater complexity of the pass by pointer and,
some programmers feel, the danger of unauthorized change of actual arguments or accidental
damage to their data. When parameters are passed by value, even if the server function tries to
change them, these changes do not affect actual arguments. When parameters are passed by pointer,
changes made within the server function propagate to the client space.

I do not think that data integrity is a serious issue here. After all, if the server function tries to
change its parameters incorrectly, this has to be discovered and corrected, not swept under the rug
by passing parameters by value.

The real tradeoff here is the transmission of the designer's intent to the maintainer. The designer
does not want to change the arguments of printAccounts(). However, the designer hides this
knowledge from the maintainer because the function header clearly says that the change is
possible¡Xthe parameters are passed by pointer. The same distorted message is transmitted to the
maintainer by the function call that passes arguments by pointer because it uses the address-of
operator in the function call.

printAccounts(&x,&y); // clearly, arguments can change!

In this case, it does not take long to inspect four lines of code to figure out what is taking place. But
there might be many lines of code to inspect, and these lines of code could do something quite
obscure. When parameters are passed by value, there is no need to inspect the body of the function
at all. This is an important issue.

On the other hand, performance is often important. This is where passing parameters by reference
allows you to have your cake and eat it too: You can avoid complexity of pass by pointer, you can
avoid performance penalty of pass by value, and you can convey the intent of the designer to the
maintenance programmer.

How come? Listing 7.5 shows the example program that implements both server functions,
printAccounts() and swapAccounts(), passing parameters by reference. The output of the
program is shown in Figure 7-5.

Figure 7.5. Output for program in Listing 7.5.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (371 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 7.5. Passing structures as reference parameters.
#include <iostream>
using namespace std;
struct Account {
 long num;
 double bal; } ;
void printAccounts(const Account &a1, const Account &a2) // header
{ cout << "First account: No. " << a1.num // body
 << " balance " << a1.bal << endl;
 cout << "Second account: No. " << a2.num
 << " balance " << a2.bal << endl; }
void swapAccounts (Account &a1, Account &a2) // header
{ Account temp; // body
 if (a1.num > a2.num)
 { temp = a1; a1 = a2; a2 = temp; } }
int main()
{
 Account x, y;
 x.num = 800123456; x.bal = 1200;
 y.num = 800123123; y.bal = 1500;
 cout << "Before swap\n";
 printAccounts(x,y); // call
 swapAccounts(x,y); // call
 cout << "After swap\n";
 printAccounts(x,y);
 return 0;
 }

Function swapAccounts() is straightforward. The name of the structure is used in the function call,
the reference notation is used in the function header, and the name of the structure is used in the
function body. The parameter fields in the function body are accessed using the dot selector
operator, which makes the issue of choosing the correct selector operator moot. You see that
passing structure parameters by reference simplifies notation relative to passing parameters by
pointers.

Function printAccounts() is also straightforward. Its function call uses the name of the structure
variable as in pass by value, the function body uses the names of the parameters, and access to their
fields is called exactly as in pass by value. The two differences are in the function header: It uses

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (372 of 1187) [8/17/2002 2:57:52 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the reference notation with the parameter names, and it uses the const keyword before the
parameter types. The first difference eliminates copying of actual arguments: Their addresses rather
than the copies of the fields are passed to the function. The second difference prevents the changes
to the values of parameters within the function and clearly tells the maintenance programmer that
the parameters are not modified. That's a promise. There is no need to inspect the function body to
discover or to confirm that.

The use of the const modifier is similar to its use for defining variables. This modifier can be used
with values, pointers, and references. When it is used with values, it says that the value can be
changed neither through direct assignment nor through pointer or reference.

const int val = 10; // initialization is mandatory
val = 20; // syntax error: assignment is not allowed
int *p = &val; // illegal so as to prevent indirect change *p = 20;
int &r = val; // illegal so as to prevent indirect change r = 20;

When the const modifier is used with pointers and references, it has two meanings, depending on
its position. If it is used before the type name, it means that the value pointed to by the pointer or
reference cannot be modified by dereferencing the pointer or through the reference.

const int val = 10;
const int *constp = &val; // OK, but *constp=20 is a syntax error
const int &constr = val; // OK, but constr=20 is a syntax error

Notice that the direct modification of variable val, for example, val_=_20; is illegal because this
variable is defined as constant. However, indirect modification is illegal here as well, not because
the variable val is constant but because the pointer (and the reference) variable is defined as a
pointer to a const. For a pointer (or reference) to a constant, indirect modification is illegal, even
when it points to a nonconstant value. Make sure you see the difference.

int value = 10; // this variable can be modified
const int *constp = &value; // *constp=20 is still a syntax error
const int &constr = value; // constr=20 is still a syntax error

When the const modifier is between the type name and the name of the pointer, it means that the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (373 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointer is a constant. It can be dereferenced, and the value pointed to by the pointer can be changed,
but the pointer cannot be redirected to point to another variable. Although its initialization is not
mandatory, it is necessary. If the constant pointer is not initialized at definition, it is quite
useless¡Xit cannot be assigned later.

int value = 10; // it is not const in this example
int* const pconst = &value; // they are married for life
*pconst = 20; // this is OK, value is not const
pconst = NULL; // syntax error: pointer is constant

You cannot declare a reference constant because all references are constant in C++ by default.
They are initialized at definition and cannot point to another location. The notation that we use in
parameter passing says that not only the reference cannot be turned to another location, but also the
location the reference points to cannot change its value. This reference is initialized by the value of
the actual argument at the time of the function call.

What happens if the designer becomes tired of analyzing all these subtleties and passes structures
by reference without using the const modifier? What happens? Nothing much. Here is function
printAccounts() simplified.

void printAccounts(Account &a1, Account &a2) // can they change?
{ cout << "First account: No. " << a1.num
 << " balance " << a1.bal << endl;
 cout << "Second account: No. " << a2.num
 << " balance " << a2.bal << endl; }

Is this function correct? Yes, it is. And even if it does not promise to change its parameters, it does
not change them. Still, this is a clear contribution to software crisis. The designer fails to tell the
maintainer what the designer knows at the time of design¡Xthat he or she has no intention of
changing the values of parameters in the body of the function.

Some programmers say that using the const modifier is useful because it protects the arguments
from unauthorized changes by the function. This is not the issue. Errors do not happen every time
you call a function. But every time you inspect the code of a function, you want to know what it
does to its parameters, and using the const modifier is a sure way to tell that the parameter is used
as input. Similarly, the absence of the const modifier should tell you that the function changes the
parameter, not that the programmer became tired of analyzing all these subtleties.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (374 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Please make it your firm rule: If a structure parameter is changed by the function you write, pass it
by reference and do not use const; if a structure parameter is not changed, pass it by reference and
do use const.

Similarly, the absence of the const modifier should clearly tell the maintainer that the parameter
changes within the function, not that the designer was sloppy and absent-minded. Yes, I know, this
sounds somewhat convoluted, but in C++ we do not have a better way to distinguish between input
and output reference parameters.

TIP

To avoid impact on performance, avoid passing structures by value. To avoid unnecessary
complexity, avoid passing structures by pointer. Always pass structures by reference. When the
parameter is not modified by the function, indicate that it is by using const. When the parameter is
modified by the function, indicate it is by not using const.

Passing structure by references has advantages over pass by value and over pass by pointer. It is
both fast (no copying) and simple (no address-of operators in the call and no dereferencing in the
function body). Used correctly, it conveys the intent of the designer to the maintainer. Pass by
reference is very popular in C++. Please use it correctly.

Arrays

Arrays are always passed in the special array mode, similar to passing by pointer. Although the
notation is similar to the pass by pointer, it is not exactly the same. If the server function makes
changes to the components of the array parameter, these changes to components are visible in the
client space in the argument array.

This is the only mode of passing arrays as parameters available in C++. We have to use this mode
both for input parameters and for output parameters. Similar to other cases of parameter passing,
we have to coordinate code written for the function call, the function header, and the function body.

Here is an example of a function that copies the contents of its second array argument into its first
array argument; since the function does not know the size of the arrays, the number of components
to copy is specified by the third parameter.

void Copy(double dest[], double src[], int size)
 { for (int i=0; i < size; i++) // classic array loop
 dest[i] = src[i]; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (375 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It is, of course, the responsibility of the caller to make sure that the arrays have enough components
for this operation. C++ gives the programmer no protection against corruption of memory. This is
an example of the client code.

double x[100], y[100]; int n=0;
do {
 cout << "Enter data value (0 to terminate): ";
 cin >> y[n++]; // fill array y[], assign n
 . . . } while (true);
Copy(x,y,n); // copy n components of y[] into x[]

As this example shows, while passing arrays as parameters we specify:

ϒΠ the array name without brackets in the function call

ϒΠ empty brackets after the array name in the function header

ϒΠ array components (or name without brackets) in the body

Unlike with passing parameters by pointer, there is no address-of operator in the function call in the
client code, and there is no pointer notation in the function header. The programmers who like to
stress the similarity between arrays and pointers would code this function this way.

void Copy(double *dest, double *src, int size)
 { for (int i=0; i < size; i++) // classic array loop
 dest[i] = src[i]; }

You can also dereference the address of array components similar (but not identical) to passing
parameters by pointer.

void Copy(double *dest, double *src, int size)
 { for (int i=0; i < size; i++) // classic array loop
 *(dest+i) = *(src+i); } // or *dest++ = *src++;

This notation is closer to pass by pointer¡Xthe pointer notation is used in the function header. Still,
it is not the parameter that is dereferenced in the function body; it is the sum of the parameter and
the index. The programmers who like to stress the similarity between arrays and pointers would use

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (376 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the address of the first component of the array in the function call.

double x[100], y[100]; int n; // fill array y[], assign n
Copy(&x[0],&y[0],n); // copy n components of y[] into x[]

Still, it is an address of the first component of the array, not the address of the actual argument.

Whatever syntax we use, neither the function call nor the function header can indicate the role of
array parameters as input or output parameters. In this example, array src[] is an input parameter;
the values of its components are used by the function to do its job and do not change as the result of
the call. Array dest[] is an output parameter: Whatever values its components had before the call
are not used within the function, and the content of these components changes as the result of the
call. However, notation for both arrays is the same in all three places (the function call, the function
header, and the function body). This is not right. When the code designer does not intend to change
the array within the function, it is a good idea to use the const modifier to indicate that to the
maintenance programmer.

void Copy(double dest[], const double src[], int size)
 { for (int i=0; i < size; i++)
 dest[i] = src[i]; } // src[i] = dest[i]; is a syntax error

Similar to passing structure parameters, it is of paramount importance to use the const modifiers
when passing array parameters and do that consistently. They prevent the function from modifying
input variables. More important, they indicate the code intent for the maintenance programmer.

If the parameter is labeled const, it can accept the actual argument either labeled as const or even
not labeled as const. This is considered safe: A non-const argument can be changed, but the
function does not change it, and that is all right. It is not OK to pass a const variable as an actual
argument for a parameter that does not have the const modifier.

const double c[] = { 1.1, 1.2, 1.3, 1.3 } ;
Copy(x,c,4); Copy(y,a,4); // ok: c[] and src[] are const arrays
Copy(c,x,4); // syntax error: c[] is a const array, dest[] is not

Sometimes, the use of const modifiers makes the life of the designer more difficult. Do not give
up. Use them. As I told you earlier, modern languages make writing code more difficult to make
reading code easier. Just make sure that the action and its declared intent coincide and that you are

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (377 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

consistent in passing parameters through to server functions.

Here is an example of difficulty. Some time ago I wrote this simple function that computes the sum
of a given number of array components.

double sum (double a[], int n)
{ double total = 0.0; // initialize the tally
 for (int i = 0; i < n; i++) // another classic loop
 total += a[i]; // accumulate total
 return total; }

Later, I had to compute the average of valid array elements. For that, I had to compute the total and
divide it by the number of elements. It would not be difficult to do that from scratch, but since I
already had the sum() function, I decided to use it.

double avg (const double a[], int n)
 { return sum(a,n)/n; } // syntax error

This is an example of passing the parameter through to another server function sum(). Previous
examples demonstrated that for the elements of the parameter arrays we use the name of the array
and the index in subscript brackets. This example shows how to use the name of the array in the
body of the function without brackets.

But the main point of this example is that the compiler did not like it. This is the logic of the
compiler: array a[] is declared const in the header of the function avg(); hence, it will not be
modified within avg(). However, the body of avg()passes a[] as an argument to function sum();
but this latter function makes no commitment to keep its parameter constant and hence it might
change it, violating the promise made by avg().

The compiler will not check whether function sum() in fact changes the array. Remember that
story? If there is no copper wire, it is evidence of the use of cellular phones. Following this
archeological logic, the compiler would flag the function call to sum() as a syntax error.

This sounds rather bureaucratic. It would be better if the compiler checked what function sum()
actually does to its parameter. But do not forget that function sum() might be in a different file, and
the compiler sees only its prototype. And even if this function is in the same file as function avg(),
the compiler does not bother to analyze the flow of values in the program.

To correct the situation, I have to put my money where my mouth is and define all the parameters

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (378 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

that do not change as const. The code intent must be reflected in the server interface.

double sum (const double a[], int n) // array is input
 { double total = 0.0;
 for (int i=0; i<n; i++)
 total += a[i];
 return total; }

The function prototype for a function with array parameters follows the rules for other function
prototypes: It is a function header terminated by the semicolon.

double sum (const double a[], int n); // function prototype

The names of parameters are optional in prototypes. How does it look for arrays? It looks funny,
but the compiler understands this notation. Make sure it does not confuse you.

double sum (const double[], int); // parameter names are optional

If you use the pointer notation for arrays, the prototype will look this way.

double sum (const double*, int); // no change to value pointed to

TIP

There is only one way to pass arrays as parameters in C++. To distinguish between input arrays
and output arrays, use the const modifier for input arrays (that are not modified by the function).

Passing arrays as parameters is efficient in C++. No copying of array date is involved, and that
saves both execution time and stack space. Similar to passing structures as parameters, make sure
that the absence of the const modifier is clear evidence that the components of the array are
changed within the function. This will be your contribution to the fight against the software crisis.

More on Type Conversions

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (379 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

As I mentioned in the section on promotions and conversions, C++ takes a firm stand on parameter
passing: If a scalar value is expected as a parameter, no structure or array can be used as the actual
argument.

This rule is extended to structures: If a structure (or class) instance of a specific type is expected as
a parameter, no scalar value, array, or structure of a different type can be used as the actual
argument. It is a syntax error; no excuses are accepted. Even if that structure of a different type has
exactly the same composition as the type that is expected by the function, it does not help. Even if
the fields in both types have the same order and the same types and the same names¡Xthe compiler
expects the argument of the type whose name is the same as the type name of the formal parameter,
and does not do any additional analysis.

All this is true of passing structures by value. It is somewhat different for passing structures by
pointer and by reference and for passing arrays.

In the section on passing structures as parameters we discussed the type Account and the function
swapAccounts(), which passed its Account parameters by pointer.

struct Account {
 long num; // just two fields for simplicity sake
 double bal; } ;
void swapAccounts (Account *a1, Account *a2) //account is needed
{ Account temp;
 if ((*a1).num > (*a2).num)
 { temp = *a1; *a1 = *a2; *a2 = temp; } }

Now, let us consider another type, Transaction, and try to pass a variable of this type to
swapAccounts(). The compiler rejects this attempt as a syntax error.

struct Transaction {
 long num; // same name and the same type as in
Account
 double amt; } ; // different name but the same type
Transaction tran1, tran2; ¡K // client code
swapAccounts(&tran1,&tran2); // error: wrong argument type

But wait a minute¡Xthese are really the same structures, and I would like to use swapAccounts()
for swapping transactions rather than to write yet another function swapTransactions(). I know

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (380 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

what I am doing, and I would like the compiler to accept this code rather than to flag it as an error.
C++ gives us the means to tell the compiler that we know what we are doing: casting, or explicit
type conversions. All I have to do is to cast the Transaction pointer to the Account pointer, and
the compiler will accept this code.

swapAccounts((Account*)&tran1,(Account*)&tran2); // no syntax error

This is pretty ugly, but it works¡Xit supports my right to tell the compiler that I know what I am
doing. Other programmers would say that it is the right to shoot myself in the foot. Indeed, in the
process of maintenance, either type Account or type Transaction (or both) might change, and
then God help us. It is probably safer to write this little function swapTransactions() after all.

The same is true for passing structures by reference. In Listing 7.5, we discussed the function
printAccounts(), which expects Account arguments passed by reference. If I pass Transaction
variables as actual arguments, the compiler in its rightful indignation will flag this code as a syntax
error.

Transaction tran1, tran2; ¡K // transaction objects
printAccounts(tran1,tran2); // syntax error: wrong argument type

If I insist on my right to do that, I can tell the compiler that I know what I am doing by casting
Transaction references to Account references.

printAccounts((Account&)tran1,(Account&)tran2); // no syntax error

Again, this is not good software engineering, but this is what C++ lets you do. Notice that casts
clearly tell the maintenance programmer what I had in mind at the time of designing this code (that
I reused an existing function for a new purpose instead of writing a new function).

A similar situation exists with arrays because the array name without modifiers is equivalent to the
pointer to the first array element.

If the function has an array of a specific type as its formal parameter, and you use a scalar variable,
a structure variable, or an array of a different type as an actual argument, it is a syntax error. C++
lives up to its reputation as a strongly typed language.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (381 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Consider, for example, function copyAccounts(), which copies one array of type Account into
another array.

void copyAccounts(Account dest[], const Account src[], int size)
 { for (int i=0; i < size; i++)
 dest[i] = src[i]; } // same code as for Copy()

If I try to use this function to copy an array of Transaction objects or an array of integers, the
compiler will pour its rightful wrath on me.

Transaction tran1[5], tran2[5]; ¡K // transaction arrays
int data1[20], data2[20]; ¡K // arrays of integers
copyAccounts(tran1,tran2,5); // syntax error: wrong argument type
copyAccounts(data1,data2,20); // syntax error: wrong argument type

Using casting, I can talk the compiler into accepting these function calls.

copyAccounts((Account*)tran1,(Account*)tran2,5); // no error
copyAccounts((Account*)data1, (Account*)data2,20); // no error?

Since the variables of type Transaction are of the same size as objects of type Account, the first
function call has a chance to do something reasonable. The second function call does not. It will
copy 20 chunks of memory of the Account size rather than int, corrupting computer memory.

The same applies to the case of passing arrays of built-in scalar types. The function Copy() in the
previous section expects double arrays as its arguments. If I pass an array of int instead, the
compiler will generate an error message. If I cast the actual argument to (double*), the compiler
will generate object code that will copy memory in chunks of double, not int.

Fortunately, you cannot get into situations like that by mistake¡Xit takes an explicit cast to force the
compiler to accept this code.

Returning a Value from a Function

In all previous examples, the return types I used were either void or a built-in scalar type such as
int. The values are returned from C++ functions, well, by value. This means that a copy of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (382 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

return value in the function space is made and assigned to the variable in the caller space.

C++ allows you to return a structure from a function if the return type of that function is defined as
the type of the structure. In the examples below I use a modified version of the function
swapAccounts(). As in the previous version, it compares the account numbers of its two Account
arguments and swaps the arguments if the numbers are out of order. (That is, the number of the first
argument is greater than the number of the second argument.) Unlike in the previous version, the
function returns the Account variable that has a greater value in the account number (parameter
a2).

Account swapAccounts (Account &a1, Account &a2) // new return type
{ Account temp = a1;
 if (a1.num > a2.num)
 { a1 = a2; a2 = temp; }
 return a2.num; } // bad return type: no conversion from long

The rules of strong typing apply: If the return type is defined as a structure (in this case, Account),
the same type should be used in two other places, for the returned expression in the function and for
the variable in the caller space. Neither the expression, nor the caller variable can be of a built-in
type, of another structure type, or an array: No conversion between these types is possible.

Account ac1,ac2,ac3; long acc_num; ¡K // value in caller space
acc_num = swapAccounts(ac1,ac2); // error: no conversion

Similar to parameter passing, returning from functions requires that you coordinate the code that
we write in three places: a) return type, b) return expression, and c) variable in the caller space.
Using the same type in all three places is legitimate.

Account swapAccounts (Account &a1, Account &a2)
{ Account temp = a1; // initialize temp to a1
 if (a1.num > a2.num) // check if numbers are out of order
 { a1 = a2; a2 = temp; } // swap arguments if out of order
 return a2; } // correct type of return expression
ac3 = swapAccounts(ac1,ac2); // correct use of return value

This is legitimate but could be slow for large structures (when the function is called often). This is
why most functions are designed as either void or as returning an integer or boolean value that
indicates for the caller success or failure of the function call.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (383 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

C++ does not allow a function to return an array. However, C++ allows a function to return a
pointer or a reference. This can be used to eliminate the problem of copying the return value. In the
following example, the function swapAccounts() compares the num fields of its two Account
arguments, swaps them if they are out of order, and returns the pointer to the Account variable that
has a greater value of the account number.

Account* swapAccounts (Account &a1, Account &a2) // return pointer
{ Account temp = a1;
 if (a1.num > a2.num)
 { a1 = a2; a2 = temp; }
 return &a2; } // return the address of actual argument

Again, the types should be compatible in all three places: a) the declared function return type, b)
the type of the expression returned by the function, and c) the type of the variable in the caller
space.

Account ac1, ac2, ac3, *ac4; ¡K
ac4 = swapAccounts(ac1,ac2); // ac4 is a pointer, not an Account
ac4->num = 0; // it affects ac1 or ac2 that are not
mentioned here
*ac4 = ac3; // copying ac3 into structure with larger
number

As you see, returning a pointer allows us to use rather obscure coding patterns in the client code,
such as ac4->num_=_0; this might refer either to ac1 or to ac2, and the maintainer has to study the
implementation of the server function, for example, swapAccounts(), to find out. The server
function could be quite obscure, and any need to study other segments of code adds to the
complexity of the maintenance task and increases the likelihood of errors. Returning pointers
allows you to use even more fancy syntax in the client space: I could set the larger number to 0
using the following code.

swapAccounts(ac1,ac2)->num = 0; // is not this nice?

If I want to copy variable ac3 into the structure with greater balance, I could use the following
code.

*swapAccounts(ac1,ac2) = ac3; // actually, this is not very nice

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (384 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This code is correct, but it does not convey the intent of the designer well. The maintainer has to
spend extra time trying to grasp the meaning of the code. If this coding pattern is undesirable, the
designer of swapAccounts() can express that by defining the return value as a pointer to a const
object.

const Account* swapAccounts (Account &a1, Account &a2) // new idea
{ Account temp = a1;
 if (a1.num > a2.num)
 { a1 = a2; a2 = temp; }
 return &a2; } // return the address of actual argument

This means that the return address cannot be used to modify the variable it is pointing to. With
swapAccounts() defined this way, this code becomes a syntax error.

*swapAccounts(ac1,ac2)=ac3; // error: no changes to a const object
swapAccounts(ac1,ac2)->num = 0; // error: no change to a const

The use of such a return value becomes quite limited. It cannot be assigned to an arbitrary pointer
of the correct type because the pointer could be used to change the value it is pointing to.

Account *ac5 = swapAccounts(ac1,ac2); // syntax error
ac5->num = 0; // hence this code will never compile

This return value can be used only to access the members of the object or assigned to a pointer to a
const object.

const Account *ac5 = swapAccounts(ac1,ac2); // this is OK now
ac5->num = 0; // this code still does not
compile

One has to be careful to return a pointer to something that continues to exist in the caller space after
the server function terminates. This is why it is not a good idea to return a pointer to a variable that
is defined only in the server function scope. In the previous example, I was careful to return a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (385 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointer to a function parameter that actually was a pointer to an actual argument that continued to
exist in the client space after the call. Hence, the address returned by the function remained valid.
But this is not always the case. Consider, for example, the following implementation of
swapAccounts(), which returns a pointer to the structure that winds up holding the account
number from parameter a1.

Account* swapAccounts (Account &a1, Account &a2) // return pointer
{ Account temp = a1; // temp holds data from a1
 if (a1.num > a2.num)
 { a1=a2; a2=temp; } // a1 might change, but temp holds its data
 return &temp; } // whose address is this, anyway?

When the execution reaches the closing brace of this function scope, variable temp is destroyed.
Hence, pointer ac4 in our client code winds up not with the address of the structure that holds the
data from variable ac1, but with the value that points to the memory location that no longer
belongs to the program. This is called a "dangling pointer": a pointer that points to an object that
has already disappeared.

Not every run-time environment is sophisticated enough to catch this memory access violation, but
some are. Moreover, the location used for temp might not be used for other purposes for some time,
and the client code using its address will produce correct results.

Time and again, we bump into situations where acceptance of the code by the compiler and correct
run-time results of executing all branches of the program cannot be used as sufficient evidence that
the program is correct.

Returning pointers to local variables is not safe. It is safe to return pointers to the heap memory or
to variables in the client space. Here is an example of returning a pointer to variables in the client
space that solves the problem of a dangling pointer.

Account* swapAccounts (Account &a1, Account &a2) // return pointer
{ Account temp = a1; // temp holds data from a1
 if (a1.num > a2.num)
 { a1=a2; a2=temp;
 return &a2; } // data from a1 is now in a2
 return &a1; } // data from a1 remains in a1

When returning pointers to variables in the client space, one should know whether these variables
are constants or not. Consider an example of a function that compares the bal fields of two

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (386 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Account variables and returns a pointer to the object with the larger balance value.

Account* largerBalance (const Account &a1, const Account &a2) //no!
{ return (a1.bal>a2.bal) ? &a1:&a2; } // pointer to actual argument

This is a good example of dealing with constant objects. The function does not change the state of
its parameters; it only accesses them as the input values in its computations. This is why the const
modifier is used in the function header. However, this function does not compile. Why? Because it
returns a pointer that is not defined as a pointer to a constant object. This function promises not to
change the state of its actual arguments, but the pointer it returns points to one of the actual
arguments and hence can modify its fields. By flagging this code as a syntax error, the compiler
prevents me from writing this type of client code, which compiles but modifies the object that is
defined as constant.

const Account acc1 = {325,1000.0}, acc2 = {370,100.0}; // immutable
Account *p = largerBalance(acc1,acc2); // valid syntax but dangerous
p->bal = 0; // valid syntax but modifies a constant object

That seems to be overkill. Even though the function largerBalance() defines its parameters as
const, it might be passed arguments that are not constants.

Account acc1 = {325,1000.0}, acc2 = {370,100.0}; // mutable objects
Account *p = largerBalance(acc1,acc2); // valid syntax but dangerous
p->bal = 0; // OK for non-const but not OK for const objects

However, the compiler is not intelligent enough to distinguish between constant and nonconstant
objects passed to this function. As sometimes happens in other areas of human affairs, the solution
is to forbid all related activities. Here, C++ requires that the const modifier be used in the return
type. (Notice that I do not suggest removing the const modifiers from the function header.)

const Account* largerBalance (const Account &a1, const Account &a2)
{ return (a1.bal>a2.bal) ? &a1 : &a2; } // this code compiles

This code compiles. How does it prevent the client code from modifying a constant object? Very
simple. Now this code does not compile.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (387 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

const Account acc1 = {325,1000.0}, acc2 = {370,100.0}; // immutable
Account *p = largerBalance(acc1,acc2); // now this is a syntax error
p->bal = 0; // no syntax error, but compiler wants to prevent this

The compiler wants to prevent the assignment p->bal = 0: Since it is a syntactically correct
operation, the compiler flags the assignment to pointer p because it did not pledge to refrain from
modifying the object it points to. The compiler pushes me to be consistent, to define pointer p as a
pointer to a constant object.

const Account acc1 = {325,1000.0}, acc2 = {370,100.0}; // immutable
const Account *p = largerBalance(acc1,acc2); // OK: no syntax error
p->bal = 0; // now this is a syntax error!

It is still overkill in the case where the Account objects are not defined as immutable. Even in this
case, pointer p cannot be used to modify them. But this is the price you pay for the safety of the
constant objects (and for the unwillingness of compiler designers to do data flow analysis in the
program).

The safest use of return addresses is for dynamic memory management. The server function
allocates heap memory and returns the pointer to that memory to the client code to use. (Some other
function should delete that heap memory later.) In this example, the function allocateAccounts()
allocates the dynamic array of Account objects; the size of the array is passed as an argument.

Account* allocateAccounts(int size) // pointer to non-const
 { if (size <= 0) return 0; // test argument validity
 Account *p = new Account[size];
 if (p == 0) // simple but too crude
 cout << "Out of memory in allocateAccounts()\n";
 return p; } // NULL if anything went wrong

If anything goes wrong, this function returns the NULL value. It is the responsibility of the client
code to test whether the memory allocation was successful.

Returning a reference is another alternative to returning a structure value that avoids copying the
values at run time. Conceptually, it is similar to returning a pointer to a structure value. Practically,
it is quite different because in C++ references are constant by default. Let us consider a version of
swapAccounts(), which returns a reference to the actual argument with the greatest account

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (388 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

number.

Account& swapAccounts (Account &a1, Account &a2)
{ Account temp = a1;
 if (a1.num > a2.num)
 { a1 = a2; a2 = temp; }
 return a2; } // wrong type if return &a2;

Notice that it is almost the same as the version that returns the structure by value. The only
difference is the reference operator & in the return type. It would be incorrect to return &a2 rather
than a2; a2 is of type Account and can be used to initialize an Account reference; &a2 is an
Account pointer and cannot be used to initialize an Account reference. These two types are
incompatible in C++.

The client code, however, could easily run into problems.

Account ac1,ac2,a3, &ac4; ¡K // this time around, it is reference
ac4 = swapAccounts(ac1,ac2); // this is a pipe dream, not real code

This code is incorrect. It assigns the return value of swapAccounts() to the reference variable ac4,
but this is too late. References have to be initialized at definition, and the segment of code above
fails to do so. The only way to assign this return value is to use it for initialization.

Account ac1,ac2,a3; ¡K
Account &ac4 = swapAccounts(ac1,ac2); // this time it is OK
ac4.num = 0; // it affects ac1 or ac2 that are not mentioned
ac4 = a3; // copying a3 into structure with larger number

Since ac4 is a synonym for either ac1 or ac2, the results of this code are somewhat obscure. Since
the return value of swapAccounts() is a reference, the fancy syntax I showed for returning a
pointer is available¡Xand with gusto.

largerBalance(ac1,ac2).num = 0; // is not this nice?
largerBalance(ac1,ac2) = a3; // actually, this is not nice at all

All languages, including plain C, disallow this kind of syntax: A returned value of the function
cannot be used as an lvalue. C++ allows it. It is probably better to render the algorithm in terms that

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (389 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

do not require these types of computations.

In the preceding example, I was careful to define ac4 as a reference, not as a structure variable. If I
use a structure variable to accept the value that is returned from a function by reference, copying
takes place exactly as it takes place when the value is returned from a function by value.

ac3 = largerBalance(ac1,ac2); // ac3 is an Account, not a reference

Since ac3 is an ordinary structure object, all advantages of returning the value by reference go
down the tubes.

This discussion was quite complex, with many ideas flying around in complex relationships.
Reading and understanding the code that returns structure values, pointers, and references is not
trivial at all. Is the convenience or performance worth the trouble? Are there other, simpler ways to
achieve the same result?

It is probably a good idea to return from C++ functions only logical flags that indicate the success
or failure of the function call. Sometimes, especially when dynamic memory management is
involved, returning a pointer makes sense. Each time you return a pointer or a reference, make sure
that you test whether a) performance benefits are indeed there and b) the integrity of the program is
not violated.

Inline Functions

Another useful technique associated with program modularization with C++ functions is the use of
inline functions. As you saw earlier, argument copying and context switching during the function
call might affect the size of the stack memory that the program needs and its performance. These
are important issues. When a function is small and is called often from functions with a large
number of local variables, it is a pity to waste time and stack memory for saving the caller
environment for the sake of executing a few lines of code.

Consider, for example, the function that computes tax by using a constant coefficient.

double tax(double gross)
{ return gross * 0.05; }

When the client code calls this function, the "context" of the client function (its parameters and
local variables including local arrays) is saved on the stack. When the function terminates, the
context is restored.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (390 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

double sales, state; ¡K
state = tax(sales); // function call

It would be nice to avoid the overhead of the function call for such a small function. C solves this
problem by providing macros for literal code substitution and for simulating a function call.

#define tax(x) x * 0.05

Hence, client code state_=_tax(sales); is expanded to state = sales*0.05;¡Xthe overhead
of the function call is avoided.

C++ supports exactly the same macro capabilities as C. But macros are expanded by the
preprocessor, not translated by the compiler. A macro is not a function. It cannot have local
variables, it provides no parameter type checking, and it is invisible to a debugger.

It is awkward to span macros over several code lines. When the expanded code contains syntax
errors, the compiler provides the line number for the source code where the macro is called, not
where the macro is defined. If the macro contains several lines, it is very hard to figure out what
causes the error message.

Macros do not know about priority of C++ operations. They just do literal text substitution without
regard to the real intent of the code. Consider, for example, this client code.

state = tax(sales+20.0); // expression as the actual argument

For the programmer, this code means

state = (sales + 20.0) * 0.05; // desired interpretation

Instead, the preprocessor will evaluate it using literal substitution of the macro code as

state = sales + 20.0 * 0.05; // preprocessor interpretation

There are, of course, means to deal with this problem (e.g., using parentheses in the macro

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (391 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

definition), but this example shows that macros have pitfalls that are better to avoid. C++ allows
the programmer to declare a function as an inline expanded function. It is a macro-like facility
without the drawbacks of the #define preprocessor statement.

If a function has the inline modifier, any call to this function is replaced with the statements of the
function definition: There is no function call overhead and no use of stack space.

inline double tax(double gross)
{ return gross * 0.05; }

At the same time, an inline function is a function. It can span multiple lines without any
difficulty, define nested blocks, and have local variables. As a C++ function, an inline function
permits parameter type checking and debugging operations.

This facility provides the advantages of modularization without an overhead of context switching
(at the beginning and the end of a function call). The function body is inserted into the client code
at every call. There are as many copies of the inline function in the compiled object code as there
are calls to the function.

Inline functions improve performance, but this improvement might be small if the function call
overhead for functions declared as inline is not a major component of execution time. Inline
functions increase the size of the executable program, and this might cause additional swapping and
actually decrease the speed of execution.

The inline modifier is not a nonconditional command to the compiler; it is only a suggestion. The
compiler can ignore this suggestion if the function is too long or too complex in the opinion of the
compiler designer.

Some compilers do not accept any control constructs in inline functions. Others accept one or two
if statements but ignore functions that contain loops. Use this facility for simple functions only.

For many functions, making them inline does not improve program performance. Make sure that
you use this modifier for those functions whose function calls do affect program performance.
Profile your programs to identify bottlenecks, if any.

In Chapter 2, I mentioned two ways of defining functions that are members of a class (structure).
One is to implement these functions within the boundaries of class specification. Another is to
specify in the class specification function prototypes only and to implement the functions
themselves elsewhere. Member functions that are defined in the class specification are inline by
default, implicitly; no inline modifier is necessary:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (392 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

struct Counter {
private:
 int cnt;
 public:
 void InitCnt(int Value)
 { cnt = Value; } // inline by default
 void UpCnt()
 { cnt++; }
 void DnCnt()
 { cnt¡X; }
 int GetCnt()
 { return cnt; } } ;

It is common to specify in the class specification function prototypes only, not their
implementation.

struct Counter {
private:
 int cnt;
 public:
 void InitCnt(int); // prototypes only
 void UpCnt(); // no indication how it is implemented
 void DnCnt();
 int GetCnt(); } ;

If a member function is implemented outside the class braces, it is not inline by default, but it can
be defined as inline using the inline keyword.

void Counter::InitCnt(int Value)
 { cnt = Value; }
inline void Counter::UpCnt()
 { cnt++; }
inline void Counter::DnCnt()
 { cnt¡X; }
inline int Counter::GetCnt()
 { return cnt; }

We will discuss classes in more detail in the following chapters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (393 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Parameters with Default Values

This is a new language facility (not available in C) whose goal is a further improvement in code
readability and modifiability. When declaring a function, you can specify default values for one or
more parameters in the parameter list.

Here is a declaration for a function sum() that computes the sum of given number of components
of an array of double values. This declaration uses the initialization syntax for the second formal
parameter to specify the default value 25.

double sum (const double a[], int n=25); // a prototype

This initialization syntax directs the compiler to use the default value specified in the prototype
when no actual value is specified in the call in the client code.

double total; double x[100]; int n; ¡K // whatever
total = sum(x); // add up 25 components of array x[]

The client code can, of course, override the default value by providing an explicit actual argument
value.

total = sum(x,n); // add up n components of array

At first glance, this does not look like much. After all, if I want to add up 25 components, why can't
I be explicit about that? Indeed, using default parameter values entails some subtle details that
increase the complexity of the code. In some cases it can simplify client code when a function with
a large number of parameters is called mostly for the same values of arguments and only seldomly
for other argument values. For example, the istream.h function getline() has the following
prototype.

istream& getline(char buf[], int count, char delimiter = '\n');

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (394 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Most of the time it is called with two parameters only: the character array to read data in and the
maximum number of characters to save (including the zero terminator) if the newline delimiter is
not found in the input stream. This function also allows the programmer to use arbitrary delimiters,
such as, a dollar sign, a pound sign, or whatever is appropriate. The use of the default value in this
case relieves the programmer from specifying the standard '\n' delimiter each time the function is
called with the newline as input delimiter.

Notice that the default values for parameters with default values should be specified in the
prototype, not in the function definition. The function definition cannot contain the default value.

double sum(const double a[],int n) // no default value is not used
 { double total = 0.0;
 for (int i=0; i<n; i++)
 total += a[i];
 return total; }

This means that the function designer might not even know that the client code uses default values.
Different functions implemented in different files could declare prototypes with different default
values for the same parameter without coordinating their use.

Only one default value for a given parameter can be used in the same file. If the function is defined
in the same file where it is used, the default value can be specified in the function definition itself if
the prototype of this function is not used in the same file. If both the prototype and the function
definition are placed in the same file where the function is used, only one of them can contain the
default value. If two prototypes of the same function are placed in the same file, only one of them
can specify the default value. Even if both prototypes specify the same default value, it is a syntax
error. The compiler does not compare the default values but accuses you of redefining the default
value instead.

Since parameter names are optional in function prototypes, it is perfectly all right to "initialize" the
type name to the default value instead of the parameter name.

double sum (const double a[], int=25); // assign to int?

Do we really assign 25 to the type int? Of course not! This is not an assignment. It is just a
notation whose purpose is to notify the compiler (and the maintainer) about the existence of the
default value.

This is a typical C++ language design decision. The language expands C significantly. It is big, and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (395 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

it needs many new keywords and operators. But the number of operator symbols is limited, and
even C already uses some two-symbol operators. C++ adds some more two-symbol operators, but
the number of reasonable symbol combinations is not very large. C++ also adds some keywords,
but the need to learn many more keywords would create the impression that the language is large.
Since C++ is a superset of C, it tries to pose as a small language that is easy to learn and use. This
is why C++ adds new keywords very sparingly (good examples are new, delete, class, public,
private, and protected). And this is why, when the need arises, C++ allows the reuse of
operators and keywords for other purposes. We already saw the address-of operator & that was
reused as a reference operator. In our sum() function prototype, C++ reuses the assignment
operator for a new purpose: specifying a default parameter value.

Actually, this design strategy is not that bad. It decreases the number of symbols and keywords you
should learn and master. On the other hand, for each reused operator, you need to learn its different
uses, and that might result in confusion. The reuse of the operator & is one such example. It does
create confusion, especially for the inexperienced.

C++ allows default values for right-most parameters only; it does not allow default values in the
middle of the parameter list.

int foo(int a=0,int b=2,double d1,double d2=1.2); // no

Either the left-most default values (for both int parameters) should be removed, or the first double
parameter should receive a default value.

This is not a severe limitation. After all, the default value can always be overridden explicitly.

The reuse of the assignment operator as the default value operator could create problems if it is
confused with the ordinary assignment operator. Consider, for example, a function that creates a
new node (of type Node) dynamically and initializes its information field (of type Item) and the
link to the next node in the linked structure (of type Node*).

Node* createNode(Item item, Node* next)
{ Node *p = new Node; // allocate heap memory
 p->item = item; p->next = next; // initialize node fields
 return p; } // pointer for client use

In many applications, the new node is appended to the end of the linked list, and its next field is set
to NULL to indicate the last node in the list. Hence, the client code would call createNode() with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (396 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the value of 0 (or NULL) as the second actual argument.

tail->next=createNode(item,0); // append node to list end
tail = tail->next; // point to new last node

Making it the client's responsibility to specify the zero value every time the function createNode()
is used as a server is probably not right. This responsibility should be pushed down to the server so
that the client code can look this way.

tail->next=createNode(item); // append node to list end
tail = tail->next; // point to new last node

Using the default value for the second parameter is one of the possible solutions to this problem.

Node* createNode(Item item, Node* next=0); // prototype

However, omitting parameter names in the prototype unexpectedly creates a new problem.

Node* createNode(Item, Node*=0); // what does this mean?

This is a syntax error: The compiler jumps on you because it thinks that you are using the operator
*= here. You are not, but you get chastised anyway. The only way to placate the compiler is to add
a space between the asterisk and the equal sign.

Node* createNode(Item, Node* =0); // this is better

Remember, I told you that C++, similar to C, is space blind? Yes, C is totally space blind, and C++
lives up to its promise by being space blind¡Xwith some exceptions. These exceptions are caused
by the use of the same operator for different purposes.

Default parameter values are useful in applications where the same function is often called with the
same values of variables describing the context of its use. If specific values of parameters are used
only in special circumstances, the use of default parameter values is justified. This is typical, for
example, in Windows programming.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (397 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Indiscriminate use of default parameter values will make the client code harder to understand and
should be avoided.

In some cases, default parameter values might facilitate program evolution by adding new code
instead of changing existing code.

Let us consider a simple function, registerEvent(), used in a real-time control system.

inline void registerEvent()
{ count++; span = 20; } // increment event count, set time span

Actually, the function did much more than that, but I cleaned it up to eliminate irrelevant detail,
keeping only the count of events and starting its time span using global variables. Let us say, it is a
large and complex system, and you wrote about 400 pages of code that contain calls to this
function.

registerEvent(); // server call in client code

At the time of system evolution and maintenance, the unavoidable happened. The system should
deal with other kind of events, and for these events you have to set up the time span individually.
The 400 pages of code do not require changes, because the main event is processed exactly as
before, but we have to write about 10 pages of code dealing both with the main event and with new
events.

One way to deal with this problem is to write another function that would do the job: regEvent().

inline void regEvent(int duration) // another server function
{ count++; span = duration; } // increment event count

This is a viable solution, but a mixture of function calls to registerEvent() and regEvent()
might be somewhat confusing. Also, you need an extra function name, and that is always an issue
during maintenance. Finally, it would be nice to have the same function name for similar actions. If
you want to draw a shape or set the drawing context, the name of the function for all shapes should
be draw() and setContext(), not draw1() or setContext1() or something like that.

So, it looks like we have to change registerEvent() by giving it an additional parameter and by
changing its body to adapt it to new requirements.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (398 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inline void registerEvent(int duration) // we change the header
{ count++; span = duration; } // we butcher the body, too

Now, we write 10 pages of code with the calls to registerEvent() with different values of the
actual argument.

registerEvent(50); registerEvent(20); // new client code

In addition, the calls to registerEvent() in the existing 400 pages of code have to be changed.

registerEvent(20); // modified server call in client code

This solution requires the following:

1. adding new client code

2. changing the existing server header

3. changing the existing server body

4. changing the existing client code

When the code has to be coordinated in four places, chances are good that things will fall between
the cracks. This is especially true about the last activity. The use of a default parameter value
provides a viable alternative. We do change the existing server function: We modify its header and
butcher its body.

inline void registerEvent(int duration) // we change the header
{ count++; span = duration; } // we butcher the body, too

But the function prototype in the new client code and in the existing client code should look this
way.

inline void registerEvent(int duration=20); // prototype

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (399 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This eliminates the need for the most burdensome activity on our list: changing existing code as the
result of changes elsewhere (in this case, changes to the server function). This is probably the most
unpleasant part of maintenance. The issue here is not the labor involved in making changes. The
issue is making sure that all the places that have to be changed are in fact changed (and no change
is made in the places that do not have to be changed). Also, regression testing needed to establish
that these changes are done correctly is difficult to plan, arduous to implement, and almost
impossible to document.

Granted, not all maintenance can be reduced to the use of default parameter values. Make sure,
however, that you do not miss the opportunity to use it when it can be used. It is a serious
improvement over the traditional technology of maintenance.

In the next section, we will consider yet another C++ programming technique that can be used as
an alternative to default parameter values¡Xfunction name overloading.

Function Name Overloading

Function name overloading is yet another important improvement in the area of program
modularization in C++.

Most languages connect each name with a unique object within a scope (block, function, class, file,
and program). This is true of type names, names of variables, and names of functions.

In C, there are no nested scopes for functions within other functions, and their names must be
unique within the program scope, not just within the file scope. Two function definitions with the
same name in a source file is a syntax error. Two function definitions with the same name in two
different files is a link error. C does not take into account parameter types or return values. It is
only the function name that matters, and it should be unique within the project (including libraries).

In C++, each class has a separate scope; hence, the same name can be used for a member function
and for a global function. Also, the same function name can be used for member functions in
different classes. Notice that the use of the same name in different scopes does not require any
difference in the number of parameters or in their types. They could be the same or they could be
different; it does not matter. As soon as two functions are defined in two different scopes (the
global scope and a class scope or two class scopes), the issue of name conflicts is moot.

This innovation is really a great improvement in the state of software development. The C
requirement that all function names have to be unique is too restrictive, especially for large
projects. A proliferation of names makes project management difficult. For large projects,
coordination between teams working on separate parts of the program becomes too complex.
Introduction of class scope in C++ eliminates most of these problems. Most, but not all.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (400 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The C++ scope rules are the same as in C: The programmer-defined names must be unique within a
scope where these names are defined (class or file scope for type names and names of variables,
project scope for function names). It would be convenient to use the same name for different
functions in the same scope, not just in different scopes.

C++ provides yet another significant improvement in this area; it allows the overloading of
function names. The meaning of a function name in C++ depends on the number of parameters that
the function has and on the types of these parameters. The use of the same function name for
different functions with a different number or type of parameter is called function name
overloading. The compiler will distinguish among overloaded functions.

Here is the example of using the same function name, add(), for two different functions. The
number of parameters is different: One function has two parameters, another function has three
parameters.

int add(int x, int y) // two parameters
{ return x + y; }
int add(int x, int y, int z) // three parameters
{ return x + y + z; }

If the parameter lists for several functions are different, the C++ compiler treats them as different
functions even if they have the same programmer-defined name. When the function is called by the
client code, the parameter list that is passed by the client to the function causes the compiler to
choose the proper function definition.

int a = 2, b = 3, c, d; ¡K // whatever
c = add(a,b); // call to: int add(int x, int y);
d = add(a,b,c); // call to: int add(int x, int y, int z);

If the number of parameters is the same but the types are different, so that the two lists can be
distinguished from each other, name overloading is also possible.

void add(int *x, int y) // also two parameters
{ *x += y; }

This function add() also has two parameters, but the first parameter is of a different type: It is a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (401 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointer to int rather than int. This is sufficient for the compiler to tell one function from another
because the function calls in the client code are different.

int a = 2, b = 3, c, d; ¡K // whatever
c = add(a,b); // call to: int add(int x, int y);
d = add(a,b,c); // call to: int add(int x, int y, int z);
add(&a,b); // call to: void add(int *x, int y);

We see that in C++ the meaning of the function call depends on its context: the types of the actual
arguments supplied by the client code. For resolving ambiguities, the C++ compiler uses the
function signature. Another term for the function signature is the public interface of the function. It
is based on the number and type of function arguments. Different order of parameter types is
sufficient.

Argument names are, of course, irrelevant for distinguishing among overloaded functions.

The return value is not taken into account when distinguishing overloaded function names: The
functions must differ in either the type of parameters or in the number of parameters.

double add(int x, int y) // signature is the same: syntax error
{ double a = (double)x, b = (double)y;
 return a + b; } // return type is different: not enough

The C++ compiler is not able to distinguish this function from the first function add() that returns
int.

int a = 2, b = 3, c, d; double e; ¡K // whatever
c = add(a,b); // call ambiguity: which function?
e = add(a,b); // call ambiguity: which function?

Here, the fact that the first call is used to set the value of an integer variable and the second call sets
the value of a double variable might be sufficient for a human reader to make the choice but not for
the compiler.

If these two functions add() are defined in different files but are called from the same file with
client code, the compiler flags the second prototype as an attempt to redefine the function that has
already been defined.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (402 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int add(int x, int y); // a legitimate prototype
double add(int x, int y); // function redefinition: syntax error

Notice that if the return types match, the compiler accepts the second prototype as a simple
redeclaration of the function.

int add(int x, int y); // a legitimate prototype
int add(int x, int y); // function redeclaration: no problem

The differences in function code do not count either; it is the responsibility of the programmer to
make sure that overloaded functions perform semantically similar operations (as their common
name implies). For example, the programmer could write yet another function add() with four
parameters that returns the maximum value of its actual arguments.

int add(int a, int b, int c, int d) // yet another overloaded add()
{ int x = a>b?a:b, y = c>d?c:d; // bad use of conditional operator
 return x>y ? x : y; } // return maximum value

As far as the C++ compiler is concerned, it is perfectly legal, and it will distinguish between this
function and other add() functions on the basis of their interfaces. As far as your boss is concerned
(or for that matter, the maintainer), well, you know what they will think.

The use of function overloading eliminates the need for devising unique names for different but
related functions.

int addPair (int, int); // instead of int add(int x, int y);
int addThree (int,int,int); // instead of int add(int,int,int);
void addTo (int *, int); // instead of void add(int *, int);

Neither the compiler nor the maintainer will have any difficulty deciding which function is called
by the client code.

If the compiler cannot match actual arguments with any set of formal parameters available for the
given function name, it is a syntax error. If an exact match is not possible, the compiler uses
promotion and conversion. In this example, I assume that type Item is a structure not compatible
with type int.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (403 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int c; Item x; ¡K // whatever
c = add(5,x); // no match: syntax error
c = add(5,'a'); // no error: promotion
c = add(5,20.0); // no error: conversion

Using a character where an integer is expected for computations does not make much sense. It
should have been made illegal, but it was not; try not to use these kinds of promotion/conversions
unless there are some tangible benefits of doing so. (Frankly, I could not think of any, but I did not
want to sound too dogmatic by saying "never.")

NOTE

For class arguments, the C++ compiler applies programmer-defined conversions if conversion
operators and/or conversion constructors are defined for the class. (I will discuss this in more
detail later.)

When two overloaded functions have the same number of parameters but the types of parameters
allow conversion between them, it is better to supply actual arguments of exact type to avoid
ambiguities of conversion. Let us say we have two functions max(), one with integer parameters
and another with double parameters.

long max(long x, long y) // return the maximum value
{ return x>y ? x : y; }
double max(double x, double y) // it is different from long
{ return x>y ? x : y; }

When argument types match the types of formal parameters exactly, the C++ compiler has no
difficulty finding the right function for the call in client code.

long a=2, b=3, c;
double x=2.0, y=3.0, z;
c = max(a,b); // no call ambiguity: long max(long, long);
z = max(x,y); // no call ambiguity: double max(double, double);
z = max(a,y); // ambiguity: which function?

In the last function call here, the first actual argument is of type long, and the second is of type
double. Even though the return value is of type double, the compiler refuses to make the decision

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (404 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

as to what function to call. You can instruct the compiler by explicitly casting the argument to the
appropriate type.

z = max((double)a,y); // no ambiguity: double max(double,double);

In the next example, I will try to pass an argument of type int. Obviously, the conversion from
int to long is more natural than is the conversion from int to double, right? Wrong. It is natural
for a human being, but not for the C++ compiler. There is no such concept as affinity of types in
C++. A conversion is a conversion is a conversion.

int k=2, m=3, n;
n = max(k,m); // ambiguity: which function? long? double?

It is all the same for the compiler whether to convert int to long or int to double. Since it is all
the same, the compiler flags this call as ambiguous.

You see that using such a nice feature as function name overloading entails significant complexity
under the hood of the program. Come to think of it, using two functions, maxLong() and
maxDouble(), might not be such a bad idea. Especially because this is not the end. Let us consider
two other overloaded functions.

int min (int x, int y) // return the minimum value
{ return x>y ? x : y; }
double min(double x, double y) // it is different from int
{ return x>y ? x : y; }

Now let us play the same game of ambiguity. You know the answer¡Xit is all the same for the
compiler whether to convert from long to int or from long to double. Hence, this function call is
a syntax error.

long k=2, m=3, n;
n = min(k,m); // ambiguity: which function? int? double?

Now let us do the same thing for short and float actual arguments. One would expect the same
response from the compiler: ambiguous function calls. Not at all¡Xthe compiler compiles this code
without any objections.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (405 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

short a=2, b=3, c;
float x=2.0f, y=3.0f, z;
c = min(a,b); // no call ambiguity: int max(int, int);
z = min(x,y); // no call ambiguity: double max(double, double);

The reason that the compiler is so tolerant is that there is no conversion here. The values of type
short are promoted to int, not converted. Similarly, the values of type float are promoted to
type double, not converted. After promotion, the compiler is able to match the argument types
with the types of parameters exactly. Hence, there is no ambiguity.

When arguments are passed by value, the const specifier is considered superfluous or trivial.
Hence, it cannot distinguish among overloaded functions. For example, this function cannot be
distinguished from int min(int,int).

int min (const int x, const int y) // return the minimum value
{ return x>y ? x : y; }

Similarly, a conversion from a type to a reference is trivial. It cannot be used to distinguish among
overloaded functions because function calls to these functions look the same. For example, the
compiler cannot distinguish this function from the function int min(int,int).

int min (int &x, int &y) // return the minimum value
{ return x>y ? x : y; }

On the other hand, the compiler has no difficulty distinguishing between pointers and pointed
types, for example, between int* and int. It also distinguishes between constant and nonconstant
pointers and references. As an illustration, let us consider two other little silly functions.

void printChar (char ch) // value parameter
{ cout << ch; }
void printChar (char* ch) // pointer parameter
{ cout << *ch; }

The function calls in the client code look different, and both the compiler and the human maintainer
can distinguish between them when a regular character (nonconstant) is used as an argument in the
first two function calls.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (406 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

char c = 'A'; const char cc = 'A';
printChar(c); // ok: void printChar(char);
printChar(&c); // ok: void printChar(char*);
printChar (cc); // const can be passed to void printChar(char);
printChar(&cc); // const cannot be used in printChar(char*);

The third function call is also acceptable because a const argument can be passed where a
nonconstant value is expected. If the function changes the value of its parameter, this change will
not propagate to the client space and will not change the value of the const argument. The fourth
function call is a syntax error. If the function changes its parameter (passed to it by pointer), this
change will propagate to the client space; since the actual argument is declared const, it cannot be
used in this function call.

Are you tired yet? Let us add yet another overloaded function to this set of functions. In this
function, the header reflects what the function body does; the actual argument is not changed by the
function.

void printChar (const char* ch) // pointer, but value is const
{ cout << *ch; }

Now all four function calls above compile and execute correctly. Notice that if the second function
(void printChar(char*);) disappears, the second function call will still compile; it will call
void printChar(const char*);¡Xit is quite appropriate (and safe) to pass a nonconstant value
where a const value is expected.

Also notice that all string literals in double quotes are of type char* rather than const char*.
This is why you can set regular pointers to point to them and then change them through these
pointers.

char *p = "day"; p[0] = 'p'; // now it says "pay"

Function overloading can be used for functions of the same class in the same way as it is used for
functions in the same file: If the number (or the types) of parameters must be different, then the use
of the same name for different functions is legal. When member function names are overloaded in
the same class, their semantics should be similar. (Of course, no compiler checks if this is the case.)
Class constructors are often overloaded. This overloading provides client code with options for
object initialization in different contexts. (We will see more detail in the next chapter.)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (407 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Even though the examples I used to illustrate function name overloading were quite rudimental,
they demonstrate that the use of overloading might make client code difficult to understand.
Deciding which function to call might be hard, even for the C++ compiler. It can confuse a human
reader too. In C++, too often too much takes place behind the scenes. This feature should be used
sparingly.

Function name overloading could be used for program evolution similarly to function default
parameters. When the program functionality evolves, we change existing functions to
accommodate new requirements. Often, this approach requires changes in both the function
interfaces and in function bodies as well as in the client code that calls these functions. This process
is complex, error-prone, and expensive.

In some cases, function name overloading allows us only to add new server functions rather than to
edit existing server functions and client function calls. Let us go back to that simple function,
registerEvent(), that I used to illustrate default parameter values.

inline void registerEvent()
{ count++; span = 20; } // increment event count, set time span

Again, I assume that it is a large and complex system that contains about 400 pages of code with
calls to this function.

registerEvent(); _// server call in client code

Now I want to add about 10 pages of code where we set the time span individually for each event.
The 400 pages of code do not require changes, because the time span there remains the same.

Of course, writing another function, for example, regEvent(), to serve these 10 pages is always a
viable option.

inline void regEvent(int duration) // another server function
{ count++; span = duration; } // increment event count

Again, this is a small example, and it is not difficult to write this tiny function from scratch. In real
life, functions are long and complex, and the pull to adapt existing functions to new conditions is
always strong. Let's change the existing function registerEvent() by giving it an additional
parameter and by changing its body accordingly.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (408 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inline void registerEvent(int duration) // we change the header
{ count++; span = duration; } // we butcher the body, too

As I indicated in the previous section, this solution requires the following:

1. adding new client code (new 10 pages)

2. changing the existing server header (add a new parameter)

3. changing the existing server body (use the new parameter)

4. changing the existing client code (all 400 pages)

Using default parameter values eliminates the need to change existing client code but still requires
editing existing server code and its interfaces. With function overloading, you do not change the
existing registerEvent() function. You write another registerEvent() function. (It looks
exactly like the last function.)

inline void registerEvent(int duration) // new function header
{ count++; span = duration; } // new function body

The agenda for the change now looks the like this.

1. adding new client code (new 10 pages)

2. adding new server function

Not only changes to the existing client code but also changes to the existing server function are
eliminated. This is great! Again, not every maintenance task is amenable to this technique. But if it
is, make sure that you do not miss this opportunity. It is the most serious improvement in the
traditional technology of maintenance.

Summary

In this chapter we looked at C++ functions as a major program-building tool. C++, as a descendant
of C, is unique among modern programming languages, by requiring the programmer to provide
prototypes of the functions used in each source code file. This rule supports separate compilation
and hence the management of large projects but creates additional problems for the designer and
for the maintainer.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (409 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Parameter passing is a complex skill in C++. The programmer has to coordinate the code that is
written for the function in four places: in the client code (in the function call itself), in the server
function header, in its prototype, and in the body of the server function. Often this is much too
much, and something goes wrong in one of these places, causing all kinds of aggravation.

Passing parameters by value is actually relatively simple, but it does not support modification of
actual arguments. Passing parameters by pointer supports side effects in the client code but is
complex and error-prone. C++ inherited these two parameter modes from C. To reduce the
frequency of errors, C++ tries to make the use of passing by pointer less frequent. This is achieved
by making yet another parameter mode available¡Xpassing by reference. This looks like a good
compromise, even though this parameter mode introduces some terminological and notational
confusion.

For structures, pass by value has yet another drawback: Additional time and space are required for
copying actual arguments into the stack space allocated for the function parameter. Pass by
reference eliminates copying without additional complexity inherent in pass by pointer. However,
pass by reference makes it difficult to convey to the maintenance programmer the intent of the code
designer: what parameters are modified by the function and what parameters are not. Using const
specifiers solves this problem. This is an extremely useful technique.

For arrays, only one parameter mode is available, and the syntax is the same for both input and
output parameters. Again, that makes it difficult for the maintenance programmer to understand the
data flow in the program: what parameters are modified by the function and what parameters retain
their values.

Using const specifiers allows the code designer to pass to the maintainer the information about the
arrays that are not modified as the result of the function call. Making the assumption that the array
that does not have the const specifier is indeed modified by the function is not always safe, and it
is up to the designer to make sure that the maintainer benefits from this technique.

We also looked at argument promotions and conversions. When the argument type and parameter
types are incompatible, none of that is allowed. The types are incompatible when they belong to
different categories defined as scalar value, pointer, structure, and array. There are no conversions
among these categories. There are no conversions among structures of different types. Here, C++
enforces strong typing. However, C++ allows implicit conversions between scalar numeric
types¡Xno questions asked. In addition, C++ allows explicit conversions (casts) between pointers
of different types or among arrays of different types. These conversions provide the programmer
with greater flexibility, but they are prone to error and might be confusing to the maintainer.

We also looked at inline functions, which eliminate the performance overhead of the function call.
Used correctly, inline functions can improve program performance. Used incorrectly, they might

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (410 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

increase the size of the object code and even cause deterioration of performance because of extra
swapping.

In addition, we discussed default parameter values and function name overloading. These are great
language features that decrease the pressure on the namespace in C++ programming projects. They
also open new avenues for program maintenance by eliminating the need to change existing client
code when the functions called from this code require changes. However, these features should be
used sparingly. They are complex, and too much is going on under the hood of a C++ program.
Reckless use of these features can easily confuse not only the compiler but also the human
maintainer.

The techniques of functional programming represent the backbone of C++ programming. Without
fluency in using C++ functions, it is impossible to create high-quality object-oriented programs.
Actually, it is impossible to create any high-quality programs, object-oriented or not. In the next
chapter we will start our study of object-oriented programming¡Xthe most powerful way of
creating high-quality programs.

Chapter 8. Object-Oriented Programming with Functions

Topics in this Chapter

ϒΠ Cohesion

ϒΠ Coupling

ϒΠ Data Encapsulation

ϒΠ Information Hiding

ϒΠ A Larger Example of Encapsulation

ϒΠ Shortcomings of Encapsulation with Functions

ϒΠ Summary

In this chapter, I start a discussion of principles and techniques of object-oriented programming.
Some of them are common programming knowledge, others I formulated and adapted for use with
C++. These principles and techniques are rarely discussed in other C++ books. This is why I
suggest that you do not skip this chapter even if you are an experienced C++ programmer.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (411 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the previous chapters, I concentrated on C++ language rules that define what is syntactically
legal in a C++ program and what is not. Similar to natural languages, illegal constructs should be
ruled out, not because of bad taste or ambiguity, but because the compiler will not be able to
convert them into object code. As for legal constructs, there exists a large variety of ways to "say
the same thing." In the previous chapters, I compared different ways of using legal constructs, often
from the point of view of program correctness, performance, and, yes, bad taste. But my major
concern was with program maintainability, making sure that the maintenance programmer does not
spend extra effort trying to understand what the code designer had in mind when the source code
was written.

In this chapter (and in the chapters that follow), understandability of code will be my major
concern. However, the focus of the discussion will shift from writing control constructs in a
segment of code to a higher level of programming: breaking the program into cooperating pieces
(functions and, later, classes).

I will not get into systems analysis, that is, deciding what functions should be in the program to
support the goals of the application. That would make the scope of this book too broad. So I will
assume that whatever functions are necessary for achieving the goal of the program are already
there. Instead, I will concentrate on the ways in which additional functions should be used to make
the program more maintainable and reusable.

There is always more than one way of dividing the job between client functions that cooperate with
each other to achieve the program goal. There is always more than one way of designing the server
functions that handle data and operations on behalf of their client functions. Assuming that all
versions are equivalent from the point of view of program correctness, how do you decide which
one is better?

In the past, most programmers would use program performance as the major criterion. Hardware
progress made this criterion irrelevant for many applications, especially for interactive applications.
For those applications where performance is still important, it is the choice of algorithms and data
structures that affects performance, not the way work is allocated between client and server
functions.

Another important criterion is the ease of writing code. It is still a relevant criterion for small
programs that are developed by a few people, are used for short periods of time, and then are either
discarded or replaced by totally new code. For large systems that are designed by many cooperating
developers and are maintained for long periods of time, the economics of software development
suggests a different answer. The best version of the program is the one whose parts are easier to
reuse (providing savings during development of the application or its future releases) or easier to
maintain (providing savings during program evolution).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (412 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

These two characteristics¡Xmaintainability and reusability¡Xare the most important characteristics
of software quality. However, these characteristics are too general. Indeed, it is not obvious how to
decide which version of the code is less expensive to maintain and which version of the code is less
expensive to reuse.

Reusability is related to the independence of program parts. Among several versions of C++ code,
the version that has fewer links with other segments of the program is more reusable in other
contexts. Maintainability is also related to independence of program parts. Among several versions
of C++ code, the version that takes less time to understand, preferably without studying other
segments of the program, is easier to change without side effects to other parts of code.

This is why the need to refer to other segments of the program is evidence of poor quality of the
code. This is why the potential to understand the code in isolation, without referring to other code
segments, is evidence of good quality of the code. I will often say that this version of the code is
better than another one if this version can be understood with less effort or with fewer lookups in
other parts of the code.

This is nice but is still not specific enough for the practicing programmer. The concepts of code
understandability and independence should be supported by more-specific technical criteria that are
easier to recognize and to use. In this chapter, I will offer you several technical criteria. Two
criteria, cohesion and coupling, are relatively old. Two other criteria, encapsulation and information
hiding, are relatively new, and the industry has not accumulated enough experience in using them.
In addition to encapsulation and information hiding, I will use several varieties of criteria related to
code understandability and independence:

ϒΠ pushing responsibility down to server function from client functions

ϒΠ limiting knowledge shared by server and client functions

ϒΠ separation of concerns for client and server functions

ϒΠ avoiding tearing apart what should belong together

ϒΠ passing developer's knowledge to the maintainer in code rather than in comments

I did not find one all-embracing term for these principles ("principle of maximum independence"?
"Shtern principle"? "sharing knowledge on the-need-to-know basis"? "principle of self-explanatory
code"?). As you are going to see, these principles somewhat overlap with each other and with the
criteria of cohesion, coupling, information hiding, and encapsulation. I think that practicing
programmers should be familiar with all of these principles. Their major advantage is that they are
operational: They show the programmer the directions to go in search of a better design. Using
them will help you to understand how to improve your coding practices.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (413 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The idea behind these criteria or principles is that the functions in a program cooperate doing parts
of the same job. For any division of responsibilities among them, these functions have to share
some knowledge, have common concerns, partition parts of the same job, and do it in different
functions. After all, these functions are parts of the same program. To make these functions
reusable and understandable, you should assign the responsibilities between functions (design the
system) in such a way that these dependencies among functions are minimized.

As it is often the case with high-quality programming, writing a better program requires more
programming time and results in more source code lines than writing a lower quality program does.
Some programmers (and managers) might be disappointed by this increase in the amount of work
to do. I would like to persuade these programmers (and managers) with an analogy about traffic
rules.

When I sit waiting at a red light, I sometimes think that without restrictive traffic rules we all could
get to our destinations faster. And this is probably true, at least for some destinations and for some
drivers. But not for all destinations and not for all drivers. Driving without rules causes more traffic
accidents and more congestion. Those drivers that avoid accidents will indeed get to their
destinations faster without the rules. But many more drivers will be delayed either by accidents or
by congestion caused by accidents. Traffic rules force us to make the investment of time up front to
save time in the long run.

Similarly, ignoring rules of maintainability and reusability will let you write programs faster, at
least for some applications and for some programmers. But not for all applications and not for all
programmers. The time saved by writing programs that are hard to understand will be more than
offset by the time spent trying to understand what the code designers were striving to achieve when
they were writing code (and where they went wrong).

This is why the software industry pays so much attention to writing comments. Comments are an
investment that we make up front so that it pays off in the long run (when they are clear, complete,
and up-to-date). Often, line comments are obscure, incomplete, or do not reflect changes made after
the code was written. Investing in writing self-explanatory code is better than investing in
comments.

If you are writing a small program, the rules for writing self-explanatory quality code are not very
important. If you are developing a large application, investing up front in writing quality code is
crucial for reaping the benefits in the long run.

Cohesion

Cohesion describes the relatedness of the steps that the designer puts into the same segment of
code, for example, a function.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (414 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When a function has good cohesion (high cohesion), it performs one task over one computational
object or data structure; when cohesion is poor (weak cohesion), the function performs several
tasks over one object or even several tasks over several objects. When the function exhibits poor
cohesion, it contains diverse unrelated computations over unrelated computational objects. This
means that these objects belong elsewhere: The designer tore apart things that should have
belonged with something else and instead put them into the same function.

High-cohesion functions are easy to name. Usually, one uses a verb-plus- noun combination. The
active verb is used for the action that the function performs, and the noun is used for the object (or
the subject) of the action. For example, insertItem(), findAccount(), and so on (if the function
name is honest, which is not always the case).

For low-cohesion functions, one has to use several verbs or nouns, for example,
findOrInsertItem().

Here is an example, however awkward. (All good examples of poor cohesion are awkward because
they describe poorly designed functions.)

void initializeGlobalObjects ()
{ numaccts = 0; // one computational object
 fstream inf("trans.dat",ios::in); // transaction file
 numtrans = 0; // another computational object
 if (inf==NULL) exit(1); } // transaction file again

In this example, numaccts should be initialized where accounts are processed¡Xit belongs with
account processing. Similarly, numtrans should be initialized where transactions are processed¡Xit
belongs with transaction processing, not with account initialization. In this function, I tore apart
what belongs with other steps of processing and put them together into a function of weak
cohesion.

The remedy is to redesign. As I mentioned in Chapter 1, "Object-Oriented Approach: What's So
Good About It?" redesign means changing the list of parts (functions) and their responsibilities. In
the case of poor cohesion, redesign usually means breaking the function with poor cohesion into
several cohesive functions. The tradeoff is that you can wind up with too many small functions.
Besides potential impact on performance, this imposes on the maintenance programmer a larger
number of things to remember (function names and their interfaces). For a small function like
initializeGlobalObjects() above, breaking up does not make sense. Such a function probably
should be eliminated.

Cohesion is not a very strong criterion; the decision to redesign by breaking up functions should not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (415 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

be made lightly. In case of doubt, cohesion needs other criteria to complement it. However,
cohesion is important for evaluating designs. Make sure you use it when you evaluate design
alternatives¡Xthe distribution of work between functions.

Coupling

Coupling is a much stronger and useful criterion than cohesion. It describes the interface, or flow of
data values, between a called function (a server function) and a calling function (a client function).

Coupling can be implicit, with functions communicating through global variables, or explicit, when
the client and server functions communicate through parameters. Implicit coupling is higher¡Xit
results in a higher degree of dependency between the client and server functions. Explicit coupling
is lower: When functions communicate through parameters, it is easier to understand, reuse, and
modify them.

The intensity of coupling is described by the number of values that flow from the client function to
the server function and back. A large number of values means strong coupling: a high degree of
dependency between functions. A small number of values means weak coupling: a low degree of
dependency between the client and server functions.

Implicit Coupling

The client function supplies the server function with input data for computations and depends on
the results computed by the server function (server output). Coupling is implicit when the functions
communicate through global variables that are not listed in the server function interface.

Consider, for example, an interactive program that prompts the user to enter the year and prints
whether it is a leap year.

int year, remainder; bool leap; // program data
cout << "Enter the year: "; // prompt the user
cin >> year; // accept user input
remainder = year % 4;
if (remainder != 0) // it is not divisible
by 4
 leap = false; // hence, it is not a
leap year
else
 { if (year%100 == 0 && year%400 != 0)
 leap = false; // divisible by 100
but not by
400

 else

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (416 of 1187) [8/17/2002 2:57:53 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 leap = true; } // otherwise, it is a
leap year
if (leap)
 cout << year << " is a leap year\n"; // print results
else
 cout << year << " is not a leap year\n";
}

This program is similar to the code I discussed in Chapter 4, "C++ Control Flow," (Listings 4.8 and
4.9). This is a small program and, in truth, it does not need any modularization. On the other hand,
a program that benefits the most from modularization should be fairly large. Studying program
details and comparing different alternatives would become a task in itself and would distract you
from the discussion of the principles of modularization, which I would like you to concentrate on. It
is these principles you will apply in real life, not the details of examples.

This is why I would like you to pretend that this is a very large and complex program and follow
me through several cycles of its redesign by breaking it into cooperating functions.

So, this is a large monolithic program that I would like to break into manageable components.
Again, for simplicity's sake, let us break it into only two functions, main() which is responsible for
the user interface and the general flow of computations, and isLeap(), which uses the values of
year and remainder to compute the value of leap that is used by main() to print the results.

void isLeap()
 { if (remainder != 0) // it is not divisible by 4
 leap = false; // hence, it is not a leap year
 else if (year%100==0 && year%400!=0)
 leap = false; // divisible by 100 but not by 400
 else
 leap = true; } // otherwise, it is a leap year

There is one technical problem here that is related to the concept of scope discussed in Chapter 6,
"Memory Management: The Stack and the Heap." The values of year and remainder that the
function isLeap() uses are set in main(). The value of leap that the function isLeap() computes
is used by main(). However, if I define these variables in main(), they will be visible only in
main(): The C++ scope rules would prevent them from being visible in any other function, and
isLeap() will not be able to manipulate these variables. If I define these variables in isLeap(),
they would be visible only in isLeap().The C++ scope rules would prevent these variables from
being visible in main(). To make these variables visible both in main() and isLeap(), I have to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (417 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

define them as global to both of these functions.

Listing 8.1 demonstrates this solution. A sample run of this program is shown in Figure 8-1.

Figure 8-1. Output for program in Listing 8.1.

Example 8.1. Example of implicit coupling through global variables.
#include <iostream>
using namespace std;

int year, remainder; // global input variables
bool leap; // global output variable

void isLeap() // inputs: year, remainder; output: leap
 { if (remainder != 0) // access three global variables
 leap = false // if not divisible by 4, it is not leap
 else if (year%100==0 && year%400!=0) // access global variables
 leap = false; // divisible by 100 but not by 400: not
leap
 else
 leap = true; } // otherwise, it is a leap year

int main()
{ cout << "Enter the year: ";
 cin >> year; // prompt the user, enter data
 remainder = year % 4; // access global variables
 isLeap(); // define whether it is a leap year
 if (leap)
 cout << year << " is a leap year\n"; // print results
 else
 cout << year << " is not a leap year\n";
 return 0;
 }

In this program, function main() calls function isLeap(). Function main() is a client that gets its
job done by calling other functions. Function isLeap() is a server that does some job for a client
that calls it. This relationship between the two functions is shown in a structure chart in Figure 8-2.
The structure chart also shows the data flow between the functions. Variables year and remainder
are set in main() and are used by isLeap() as its input values to compute its results. The value of
variable leap is produced by function isLeap() as its output and is used by main() after the call to
isLeap().

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (418 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 8-2. A structure chart for the program in Listing 8.1.

Notice that input variables year and remainder must have legitimate values before the function
isLeap() is called by main(). It is the responsibility of the client function to make sure that these
variables are properly initialized: The server isLeap() does not make any checks of validity; it
assumes that the client main() lives up to its obligations.

Similarly, the output variables (in this case the variable leap) do not have to have a legitimate
value before the call to the server function. It is the responsibility of the server isLeap() to set the
output value, and the client main() uses this value after (but not before) the call.

It is important to understand the data flow between the functions. If I know that variables year and
remainder are input variables for isLeap(), I would expect that the server function uses these
values but does not change them. It would be quite odd to expect that function isLeap() does
something like that.

void isLeap()
 { remainder = 4; year = 2000; . . . // unexpected nonsense!

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (419 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Similarly, if I know that variable leap is an output variable for function isLeap(), I would not
expect the client main() to initialize this variable before main() calls isLeap() (or, for that
matter, change its value immediately after the call without first using it for some purpose).

int main()
{ cout << "Enter the year: ";
 cin >> year; // prompt the user, enter data
 remainder = year % 4; // access global variables
 leap = false; // misleading initialization before call
 isLeap(); // define whether it is a leap year
 leap = true; // misleading (and incorrect) if done after call
 . . .

What will the maintainer assume reading the main() function above? After establishing the goal of
the assignment to remainder (it is used in isLeap() for computing the value of variable leap), the
maintainer will study isLeap() again, trying to figure out the purpose of the assignment to leap.
For a small function, it will only take a few seconds to figure out that the value assigned in client
main() to leap is not used in the server isLeap() or even in client main(). But this is true only
for a small function. For a large program, this will require more time, and the maintainer might
become confused and come to a wrong conclusion.

True, some programmers dislike noninitialized variables so much that they initialize variables even
when initialization is not needed. They say that this is helpful when the server function for some
reason fails to assign the value. But isLeap() is not one of those functions! Neither are the
majority of the functions you have written or will ever write. If programmers understood the data
flow between functions, the functions would never fail to assign values to their output variables.

You see that this innocent-looking "defensive" programming technique results in code that requires
more time to understand. From the point of view of quality criteria (readability and independence
of program parts), this technique invariably results in inferior code; that is, it contributes to the
software crisis we all would like to eliminate. Avoid this practice. Instead of initializing everything
in sight, tell the maintainer what values will be used as server input (by initializing them in the
client) and what values are server output variables (by not initializing them in the client).

I hope that you follow this discussion and see the importance of passing to the maintainer the
knowledge the developer has about the data flow between the functions. Let us go back to the
discussion of coupling.

Coupling describes how much one has to study to understand the data flow between the functions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (420 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Often it requires one to study the pattern of data handling by the client and the server functions. In
Listing 8.1, for example, I notice that main() assigns values to variables year and remainder and
that isLeap() uses these values. I also notice that main() does not initialize leap, isLeap()
assigns to leap a value, and main() uses this value after the call to isLeap(). That's that.

However, to establish these simple dependencies, I have to study both the client and server
functions in their entirety. It is easy to do for this trivial example I am discussing, but it takes more
time for any function of realistic size and complexity. Can one improve this labor-intensive and
error-prone technique? Sure. The way to do that is to use explicit coupling instead of implicit
coupling.

Explicit Coupling

Explicit coupling is through function parameters, when all input and output variables used by the
server function are included in the server function parameters, and no global variables are used in
the data flow between the client and the server. Listing 8.2 shows the same example as in Listing
8.1 where explicit parameters replace the use of implicit data flows through global variables. This
program executes in the same way as the program in Listing 8.1.

Example 8.2. Example of explicit coupling through parameters.
#include <iostream>
using namespace std;

void isLeap(int year, int remainder, bool &leap) // parameters
// inputs: year, remainder; output: leap
 { if (remainder != 0)
 leap = false;
 else if (year%100==0 && year%400!=0)
 leap = false;
 else
 leap = true; }
int main()
{ int year, remainder; // local input variables
 bool leap; // local output variable
 cout << "Enter the year: ";
 cin >> year; // input variables are set
 remainder = year % 4;
 isLeap(year,remainder,leap); // output variable is set
 if (leap) // output variable is used
 cout << year << " is a leap year\n";
 else
 cout << year << " is not a leap year\n";
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (421 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In Listing 8.2, the server function isLeap() has three parameters. There are no global variables.
Variables year, remainder, and leap are defined as local in the client function main(). Why is
this possible? Because they do not have to be known in the scope of function isLeap() as they do
in Listing 8.1. Instead, function isLeap() accesses these variables as actual arguments that are
passed from the client function in the call to function isLeap().

This is a general observation: When two functions communicate through data, the components of
the data flow should be either declared as global to both functions, or they can be defined in the
scope of the client function and passed as parameters to the server function.

As in the previous example, variables year and remainder are input variables for isLeap() and
variable leap is an output variable. How do I know? I study the header (or the
prototype¡Xwhatever is available) of the function isLeap() rather than the body of the function.

void isLeap(int year, int remainder, bool &leap) // parameters
{ . . . }

Can you tell without studying the function code what the role of each parameter is? Sure.
Parameters year and remainder are passed by value. Hence, they cannot be output parameters.
You do not expect function isLeap() to set their values.

void isLeap(int year, int remainder, bool &leap) // parameters
{ remainder=4; year=2000; . . . // useless for value
parameters

Hence, you conclude that these two are input parameters. The values of the actual arguments
should be set by the client code before the function call, and these values will be used by the server
function in its computations.

Similarly, parameter leap is passed by reference. This means that it is an output parameter.
Actually, it also can be an input/output parameter; that is, the client function might set its value
initially, and then the server function might update that value. But the main point is that function
isLeap() changes the value of parameter leap.

How much should I study to arrive at these conclusions? Not very much, just the header of the
function. The structure chart for the program in Listing 8.2 is shown in Figure 8-2. It is the same as
for the program in Listing 8.1, but explicit data flows of global variables are replaced by explicit
data flows of parameters. Does the amount of time I spend depend on the size or complexity of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (422 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

client function? No. Does the amount of time depend on the size or complexity of the server
function? No again! The switch from implicit coupling to explicit coupling results in a drastic
decrease in the code complexity for the maintainer and developer alike.

This example illustrates why you should avoid global variables. It has been about 30 years since the
industry was first arguing about the use of global variables, but many programmers still are not sure
what the problem is. I often ask my students in college courses and attendees in training seminars if
they know why global variables are to be avoided. They say that any function in the file (or even in
the program) can accidentally (or even maliciously) change the value of a global variable, and it
would be difficult to find the source of the error. Some add that the core of the problem is that the
list of functions accessing a global variable is not evident. This means that the problem can come
from any place in the program.

All that might be true (I have some doubts about the importance of unauthorized access), but the
main harm from global variables comes in the form of implicit coupling. Using global variables
forces the developer and maintainer to study large segments of code to understand the data flow in
the program¡Xwhat functions set the values of the variables and what functions use these values.
Using explicit coupling through parameters allows you to understand data flow by studying only
server function headers (or prototypes). This makes a big difference.

TIP

Avoid implicit coupling through global variables. Use explicit coupling with parameters, so that
the maintainer (and the client programmer who calls this function) can understand the function
interface by studying only its header, not the whole code of the function and its caller(s).

However, this decrease in complexity does not come automatically just because you use explicit
coupling through parameters instead of global variables. You should choose parameter modes
correctly. Consider, for example, the following version of the server function isLeap().

void isLeap(int &year, int &remainder, bool &leap) // parameters
 { if (remainder != 0)
 leap = false;
 else if (year%100==0 && year%400!=0)
 leap = false;
 else
 leap = true; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (423 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Is this function syntactically correct? Yes, it is. Is this function semantically correct? Yes, it is. If I
use this function instead of the one I use in Listing 8.2 will the results of execution be the same?
Absolutely. The results are the same for both functions for any set of input data.

Is this function any good from the point of view of the software quality? No. All its parameters are
passed by reference, and this misleads the maintainer into thinking that all three parameters are set
by this function and are used in its client. To discover the truth, the maintainer has to study the
entire server function. This is better than studying both the server and client code as was necessary
in the case of using only global variables. Still, it is a far cry from only studying the server
interface, as in Listing 8.2.

By passing all parameters by reference in this version of the function, the developer of this function
failed to express the knowledge he or she had at the time of design. The developer knew that the
parameter leap was the only output variable but did not pass that knowledge in the code itself.

The maintainer should believe that the pass by reference is evidence that the parameter is changed
by the server function (unless there is the const modifier), and the pass by value is evidence that
the parameter is not changed. Otherwise, the maintainer is back to studying both the server and
client in all details instead of studying the parameter list of the server, and the advantages of
explicit coupling go down the tubes.

This is why the rules for parameter passing that I formulated in Chapter 7, "Programming with C++
Functions," are so important. Using them consistently describes the function interface for the
maintenance programmer, eliminates the need to study several functions at once, and decreases the
volume of code to study. Use the joke about the copper wire to choose parameter modes correctly.
The presence of the const modifier is evidence that the parameter is an input parameter. The
absence of the const modifier is evidence that the parameter is changed by the function (similar to
the absence of copper wire being evidence of cellular phones). Make sure you do not forego this
powerful method of improving software quality.

If using parameters is so much better than using global variables, why do programmers still use
global variables? There are three reasons for that.

The first reason is program performance. Functions that use parameters spend time for memory
allocation and deallocation of parameters and copying their values (or the values of their
addresses). Functions that use global variables save that time. When you use global variables for
that purpose, make sure that you establish two things in advance. First, you should know that your
program does have a performance problem. Second, you should know that using global variables
instead of parameters resolves this performance problem. I emphasize that you should know that
you have a problem and that global variables resolve it rather than think that the use of global
variables will speed up your application.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (424 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Using global variables for functions that are called infrequently will not speed up your program.
Using global variables for functions that do external input or output will not speed up your
program. Using global variables for short and simple functions will speed up these functions but
might not speed up the program because these functions do not affect the overall program
performance. I am not telling you that you should never use global variables. I am telling you that
you should know whether their use speeds up your program.

The second reason for using global variables is a developer's performance. It is easier and faster to
write a server function that uses global variables rather than parameters. When you use parameters,
as in Listing 8.2, you might wind up with extra parameters you do not actually need, or you might
need some additional parameters so that you have to go back and rewrite the function. Writing a
function with parameters requires more investment of time in preliminary planning.

In Listing 8.1, you define variables as global and use whatever you need for the function, without
preliminary planning. In the earlier days of computing, this was considered an important advantage.
We believed that speeding up the writing of code was beneficial. Today we do not believe that
making code writing easier saves time and money. It is making code reading easier that saves time
and money, and modern languages, like C++, induce you to spend more time on writing to make
code more readable.

The third reason for the use of global variables for function communication is the lack of awareness
among developers. They do not think much about the complexity of using global variables within
server functions; they just use them. They increase the amount of interaction with other developers,
but again they do not think that these interactions are going to affect the program quality.

The issues that I am explaining here are rarely discussed in programming books. Some of these
topics are covered in software engineering books, but these books usually only present general
principles rather than specific coding patterns in a specific language. I hope that this discussion
along with the presentation in Chapter 7 will persuade you that it is a good idea to:

ϒΠ use parameters rather than global variables

ϒΠ pass simple input parameters by value and output parameters by reference

ϒΠ pass structure and class parameters by reference using the const modifier for input
parameters

ϒΠ pass input arrays using const (and output arrays without const)

ALERT

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (425 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Pass parameters using the guidelines presented in this book. Deviation from these guidelines makes
writing code easier; however, it hides from the maintainer what you knew at the time of writing the
function code, that is, which parameters you used as input to the function and which parameters
you used as output.

How to Reduce the Intensity of Coupling

The number of values in the data flow between the client and the server defines intensity of
coupling. The larger the number of these values, the more the client and server function depend on
each other, and the more difficult it is to study one function without studying another.

How do we go about reducing the data flow between functions? This is not a simple task. The only
way to decrease the number of dependencies among functions is to redesign, that is, to change the
division of responsibilities among functions. All other approaches are futile.

Some programmers, for example, believe that the number of parameters can be decreased by
combining them into a structure. They have a point. This indeed reduces the number of parameters.
However, it does not necessarily reduce coupling. Listing 8.3 shows the version of the isLeap()
function where three parameters are combined.

Example 8.3. Example of merging parameters into a structure.
#include <iostream>
using namespace std;
struct YearData
{ int year, remainder;
 bool leap; } ;

void isLeap(YearData &data) // one parameter only
 { if (data.remainder != 0)
 data.leap = false;
 else if (data.year%100==0 && data.year%400!=0)
 data.leap = false;
 else
 data.leap = true; }
int main()
{ YearData data; // local variable
 cout << "Enter the year: ";
 cin >> data.year; // input fields are set
 data.remainder = data.year % 4;
 isLeap(data); // output field is set
 if (data.leap) // output field is used
 cout << data.year << " is a leap year\n";
 else

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (426 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << data.year << " is not a leap year\n";
 return 0;
 }

Indeed, the number of parameters here is less than in Listing 8.2. Did data flow between functions
decrease? Figure 8-3 shows the data flow for this version of the program. You see that there are
still two input values, data.year and data.remainder, and one output value, data.leap.

Figure 8-3. A structure chart and data flow for the program in Listing 8.3.

One can even argue that this version of the program is more difficult to write. It is definitely more
difficult to understand and more difficult to reuse, because this version of isLeap() cannot be used
without the type YearData. At any rate, the main point of this example is that in the program
version in Listing 8.3, coupling between isLeap() and its client did not decrease. This is natural.
To arrive at this version, I did not do any redesign¡Xthis version of the program uses the same
distribution of responsibilities between main() and isLeap() as does the version in Listing 8.2.
Hence, data flows between the functions are the same.

Some programmers try to decrease coupling by shunning output parameters. They say that the use
of output function parameters is inferior to the use of return values. They also have a point here.
Listing 8.4 shows another version of this program, where function isLeap() returns a value rather
than setting the value of the output parameter leap.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (427 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 8.4. example of using a return value rather than on output parameter.
#include <iostream>
 using namespace std;
bool isLeap(int year, int remainder) // fewer parameters
 { if (remainder != 0)
 return false;
 else if (year%100==0 && year%400!=0)
 return false;
 else
 return true; }

int main()
{ int year, remainder; // local input variables
 bool leap; // local output variable
 cout << "Enter the year: ";
 cin >> year; // input variables are set
 remainder = year % 4;
 leap = isLeap(year,remainder); // output variable is set
 if (leap) // output variable is used
 cout << year << " is a leap year\n";
 else
 cout << year << " is not a leap year\n";
 return 0;
 }

Again, the number of parameters in the data flow here is less than in Listing 8.2. The function
isLeap() here is easier to write; there is no need to struggle with the reference parameter. It is
somewhat easier to use, too. For example, you can eliminate variable leap altogether by directly
using the return value of isLeap() in the if statement in main() rather than setting the value of a
local variable first.

int main()
{ int year, remainder; // no variable leap
 cout << "Enter the year: ";
 cin >> year; // input variables are set
 remainder = year % 4;
 if (isLeap(year,remainder)==true // output value is used
 cout << year << " is a leap year\n";
 else
 cout << year << " is not a leap year\n";
 return 0; }

Did data flow between main() and isLeap() decrease? Not really. Figure 8-4 shows the data flow
for this version of the program. You see that there are still two input values, year and remainder,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (428 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

and one output value represented by the function return value.

Figure 8-4. A structure chart and data flow for the program in Listing 8.4.

Again, coupling did not decrease because I did not do any redesign: This program distributes the
responsibilities between main() and isLeap() in the same way as does the version in Listing 8.2.

To decrease coupling, you should analyze the distribution of computational responsibilities and
apply the principles listed at the beginning of this chapter. One of the ways to accomplish this is by
identifying the components of data flow that are due to tearing apart what should belong together.
Tearing apart computations that should belong together in the same function usually results in the
need for those torn apart computations to communicate with each other. When these computations
are implemented in different functions, communications manifest themselves in the form of
excessive data flow. By bringing together in the same function what has been torn apart, you
eliminate the need for communication among functions.

One giveaway of tearing apart what should belong together is the situation where the meaning of
the parameter is not clear from the study of the server function code without studying the client
code as well. For example, in Listing 8.4, the meaning of parameter remainder cannot be deduced
from studying function isLeap() alone. The maintainer has to study its client main() to figure out
that this variable represents the remainder of dividing the year by 4. This value is used in main()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (429 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

only as a parameter to isLeap(). This is why it makes sense to combine the computation of
remainder and its use in the same function, in this case, isLeap().

Listing 8.5 shows the version of the program where responsibility for the computation of
remainder is moved from function main() to its server isLeap(). Figure 8-5 shows the data flow
between two functions.

Figure 8-5. A structure chart and data flow for the program in Listing 8.5.

Indeed, isLeap() now needs only one value from main(); it computes the remainder itself,
without bothering its client with the demands of doing it before the call.

Example 8.5. Example of pushing responsibility from client to server.
#include <iostream>
using namespace std;

bool isLeap(int year) // even fewer parameters
 { int remainder=year%4; // do not separate what belongs together
 if (remainder != 0)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (430 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return false;
 else if (year%100==0 && year%400!=0)
 return false;
 else
 return true; }

int main()
{ int year; // local data - no remainder
 cout << "Enter the year: ";
 cin >> year; // input variable is set
 if (isLeap(year)) // output variable is used
 cout << year << " is a leap year\n";
 else
 cout << year << " is not a leap year\n";
 return 0;
 }

Moving the computation of the remainder from one function to another is redesign: I change the
distribution of responsibilities among functions. Notice that I merged what had been torn apart by
moving responsibility from the client function to the server function. This is an example of pushing
responsibilities down to servers. It is not always beneficial, but it often is.

This is a very powerful technique. Decreasing communication among functions expedites
maintenance, facilitates reuse, and decreases communication among programmers when the
functions are written by different people (or by the same person at different periods of time). Make
sure that you always check whether you have torn apart the pieces of code that should belong
together.

Also, you should always think about the danger of excessive communications between functions.
The best way to decrease coupling is to eliminate the need for communications by bringing
together what should belong together.

How far should you go? Does it make sense to move the prompt and the definition of variable year
in isLeap()? That would further decrease data flow between the functions. However, it would
require communication among programmers about the user interface¡Xwhat function is responsible
for what part of the user interface. This would manifest itself in reduced cohesion of function
isLeap(): it would combine computations with input/output.

In Listing 8.5, main() is responsible for user interface, and isLeap() is responsible for
computations. Tearing user interface apart is as detrimental as tearing apart computations. Make
sure that the area of responsibility of each function is clearly defined.

Further improvements to this example might include the elimination of variable remainder along
the lines discussed in Chapter 4.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (431 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bool isLeap(int year)
 { if (year % 4 || year%100==0 && year%400!=0)
 return false;
 else
 return true; }

If you like really tight code, you can implement it in the following way.

bool isLeap(int year)
 { return (year % 4 || year%100==0 && year%400) }

As I mentioned in Chapter 4 (see the appropriate Russian joke there), I am not sure whether these
improvements are worth the trouble. At any rate, they do not affect coupling because they do not
change the division of jobs among the functions.

ALERT

Often, coupling is increased when developers put in different functions; the operations that should
be implemented in the same function. This increases communication among developers and
impedes maintenance and reuse. Make sure that you think about this danger all the time.

Data Encapsulation

In C++, as in other languages, the programmers hide the complexity of computer algorithms in
functions. Each function is a collection of statements directed toward achieving a specific goal. The
name of the function usually reflects this goal. It is common to compose the function name using
two components, an active verb that describes the action and the noun that describes the object (or
is it the subject?) of the action, for example, processTransaction(), acceptInput(), and so on.
When the object of the action is clear from the context (e.g., when it is passed to the function as a
parameter), only a verb can be used, for example, add(), delete(), and so on.

The collection of statements in the function can contain simple assignments, complex control
constructs, or calls to other functions. These other functions can be either library functions or
programmer-defined functions that are custom-made for this particular project.

From the programmer's point of view, the difference between these two kinds of functions is that
the implementation source code of programmer-defined functions is available for inspection and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (432 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the source code of library functions is not. Even when the library source code is available, the client
programmer does not want to expand his or her scope of attention by studying it. What the client
programmer wants to know is the description of the server function interface: what parameters the
caller code should supply, what values the function computes, how the output values are related to
the input values, and what restrictions and exceptions apply. This enables the programmer to select
the appropriate library function and use it correctly.

The programmer-defined functions are usually designed, not selected. The source code for these
functions is often modified to better suit the needs of the client functions. These functions are not as
well tested as library functions are. When a problem arises, it can be either in a client function or in
any of the server functions. Hence, the client programmer (and maintainer) has to study the source
code of related functions¡Xclients and servers¡Xtogether. This makes the task of the client
programmer (and maintainer) more complex than when using library functions. It is desirable to
design programmer-defined functions so that this component of program complexity is minimized.
The concept of data encapsulation is one of the concepts that help the programmer to achieve this
task. After the server functions are sufficiently tested, they are treated by the client programmer
(and maintainer) similarly to library functions, as black boxes with a specified interface.

Let us consider a simple example: a part of a graphics package that deals with geometric shapes, for
example, cylinders. For simplicity of the example, let us assume that each cylinder object can be
characterized by two double values only, radius and height of the cylinder.

struct Cylinder {
 double radius, height; } ;

The program prompts the user to enter the dimensions of two cylinders. If the volume of the first
cylinder is less than the volume of the second cylinder, the program scales the first cylinder up by
increasing each of its dimensions by 20% and prints the final dimensions of the first cylinder. In
real life, this code could be part of a program that uses cylinder objects to describe heat exchange in
a chemical reactor, to study the flow of electric current in a microchip, or to analyze a steel building
framework. Listing 8.6 shows the source code, Figure 8-6 gives an example of the program run.

Figure 8-6. Output for program in Listing 8.6.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (433 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 8.6. Example of direct access to underlying data representation.
#include <iostream> // no encapsulation yet
using namespace std;

struct Cylinder { // data structure to access
 double radius, height; } ;

int main()
{
 Cylinder c1, c2; // program data
 cout << "Enter radius and height of the first cylinder: ";
 cin >> c1.radius >> c1.height; // initialize first cylinder
 cout << "Enter radius and height of the second cylinder: ";
 cin >> c2.radius >> c2.height; // initialize second cylinder
 if (c1.height*c1.radius*c1.radius*3.141593 // compare volumes
 < c2.height*c2.radius*c2.radius*3.141593)
 { c1.radius *= 1.2; c1.height *= 1.2; // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print new size
 cout <<"radius: "<<c1.radius<<" height: "<<c1.height<< endl; }
 else // otherwise do nothing
 cout << "\nNo change in first cylinder size" << endl;
 return 0;
 }

Here, the main() function accesses Cylinder data representation directly, without the help of any
server functions. In doing so, it mixes access to data (e.g., c1.radius in the source code) with data
manipulation (e.g., computing volume, scaling size, or printing cylinder data). As the result, the
maintenance programmer has to figure out the meaning of operations in the code rather than
recognize it from the names of server functions.

Of course, the code designer can supply comments that explain the meaning of the code, similar to
what I did in Listing 8.6. However, the comments that somebody else made are often not clear
enough for the reader. Or they are missing. Or, worse yet, the designer did not have time to update
the comments when the source code changed.

A solution to this problem is to find a set of server functions that access the fields of the Cylinder
structure on behalf of the client code. By "pushing the responsibility" for doing computations
"down to server functions," you purge the client code from the low-level details of the
computations. The high-level meaning of computations, however, is preserved in the names of the
server functions that are called by the client code. As a result, the client code becomes self-
explanatory: The reader of the client code understands what is being done by the client function,
even if it is not clear exactly how this is done by the server functions.

int main() // pushing responsibility to servers

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (434 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{
 Cylinder c1, c2; // program data
 enterData(c1,"first"); // initialize first cylinder
 enterData(c2,"second"); // initialize second cylinder
 if (getVolume(c1) < getVolume(c2)) // compare volumes
 { scaleCylinder(c1,1.2); // scale it up and
 printCylinder(c1); } // print new size
 else // otherwise do nothing
 cout << "No change in first cylinder size" << endl;
 return 0;
 }

To understand the meaning of this version of main(), it is not really important to understand how
the server functions enterData(), getVolume(), scaleCylinder(), and printCylinder() do
their job. The line comments in this version of the client code are the same as in Listing 8.6 that did
not use the access functions. Unlike in Listing 8.6, in this version of the client code, these line
comments are not helpful at all. They just repeat what the names of the server functions say when
they are called from the client code. This is one of the important advantages of "pushing
responsibility from client code down to the server functions," an important principle that I
formulated at the beginning of this chapter.

With the traditional approach to programming, line comments are important. If the code does not
have line comments, the programmer should be asked to go back and add them. With data
encapsulation, when details of the computations are pushed into the server functions, the client
code does not need line comments: The meaning of processing is clear from the names of the server
functions used in the function calls. If the client code is still obscure without line comments, that
means that the server functions are not designed well¡Xthe programmer should be asked to go back
and redesign the code (not to add comments).

Another problem with the coding style that mixes access to data with computations over data
values is that data validation is obscure and awkward. Often it is omitted. For example, the first
version of the code (Listing 8.6) did not do any data validation. In this example, the input data
comes from the user, and the program has to be protected from user errors. In real life, the input
data might come from an external file or from a communication line, and these sources of data are
as likely to produce corrupt data as a human user is. But even the crudest form of error recovery,
for example, setting the cylinder fields to default values, obscures the client code.

int main()
{ Cylinder c1, c2; // program data
 cout << "Enter radius and height of the first cylinder: ";
 cin >> c1.radius >> c1.height; // initialize first cylinder

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (435 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (c1.radius < 0) c1.radius = 10; // defaults for corrupted data
 if (c1.height < 0) c1.height = 20;
 cout << "Enter radius and height of the second cylinder: ";
 cin >> c2.radius >> c2.height; // initialize second cylinder
 if (c2.radius < 0) c2.radius = 10; // defaults for corrupted data
 if (c2.height < 0) c2.height = 20;
 if (c1.height*c1.radius*c1.radius*3.141593 // compare volumes
 < c2.height*c2.radius*c2.radius*3.141593)
 { c1.radius *= 1.2; c1.height *= 1.2; // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print new size
 cout <<"radius: "<<c1.radius<<" height: "<<c1.height<< endl; }
 else // otherwise do nothing
 cout << "\nNo change in first cylinder size" << endl;
 return 0;
 }

Using access functions allows you to eliminate this low-level data validation from the client code.
This could be done by using, for example, a function validateCylinder(), which sets the
cylinder fields to default values if the input values are negative. Listing 8.7 shows this version of
the program. The output of this program is the same as the version in Listing 8.6.

Example 8.7. Example of using access functions to insulate client code from the names
of data fields.
#include <iostream> // encapsulation with server functions
using namespace std;

struct Cylinder { // data structure to access
 double radius, height; } ;

void enterData(Cylinder &c, char number[])
{ cout << "Enter radius and height of the ";
 cout << number << " cylinder: ";
 cin >> c.radius >> c.height; } // initialize cylinder

void validateCylinder(Cylinder c)
{ if (c.radius < 0) c.radius = 10; // defaults for corrupted data
 if (c.height < 0) c.height = 20; }

double getVolume(const Cylinder& c) // compute volume
{ return c.height * c.radius * c.radius * 3.141593; }

void scaleCylinder(Cylinder &c, double factor)
{ c.radius *= factor; c.height *= factor; } // scale dimensions

void printCylinder(const Cylinder &c) // print object state

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (436 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ cout << "radius: " <<c.radius << " height: " <<c.height << endl; }

int main() // pushing responsibility to server
functions
{
 Cylinder c1, c2; // program data
 enterData(c1,"first"); // initialize first cylinder
 validateCylinder(c1); // defaults for corrupted data
 enterData(c2,"second"); // initialize second cylinder
 validateCylinder(c2); // defaults for corrupted data
 if (getVolume(c1) < getVolume(c2)) // compare volumes
 { scaleCylinder(c1,1.2); // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print size
 printCylinder(c1); }
 else // otherwise do nothing
 cout << "No change in first cylinder size" << endl;
 return 0;
 }

You see that indeed this new method of programming results in more source code. For real-time
systems, additional function calls can affect performance. Using inline functions eliminates this
problem.

The advantage of this approach is two distinct areas of attention, one related to the design of the
programmer-defined type Cylinder and its access functions and another related to the client code
that uses Cylinder objects and calls Cylinder access functions. With traditional programming (as
in Listing 8.6), distinct areas of attention do not exist. If the names of fields of the programmer-
defined type Cylinder structure change, the whole code has to be inspected, because these names
can be used any place in the program. With new programming (as in Listing 8.7), the change in
Cylinder field names will affect the access functions only¡Xa well-defined set of functions. The
rest of the program, however large the program may be, is not affected. Figure 8-7 illustrates this
relationship between the client and the server code in the form of the structure chart. The client
main() calls its server functions that access the fields of Cylinder objects. These server functions
encapsulate the client function from the Cylinder design.

Figure 8-7. Structure chart for program in Listing 8.7.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (437 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Data encapsulation is a relatively new concept and it is not yet well understood. Many
programmers think that data encapsulation is about using functions to protect data from erroneous
or unauthorized changes. Without data encapsulation, client code can change the data at will and
inconspicuously, accessing data fields directly by name. With data encapsulation, client code calls
the access functions, for example, scaleCylinder(), and it is these access functions that change
the data fields.

This concern for data protection is similar to the concern about the harm from using global
variables: If global names are available to the whole program, someone could set the values of
these variables incorrectly and hurt other parts of the program. Similarly, if the names of data fields
are available to the whole program, the same thing could happen. Passing parameters protects
global variables. Encapsulation protects data fields.

These ideas about data protection are passed from one generation of programmers to another
because they sound simple and reasonable and it is easier to accept them than to go against the
consensus. I would like to voice my objections. While data protection is indeed a part of the story,
it is a minor part. Data encapsulation is more about readability and independence of program
components, that is, about the major theme of this chapter.

Indeed, passing parameters does not protect variables. If somebody erroneously thinks that a
variable has to be set to a new value, it can be set using direct assignment (if it is a global variable)
or as an assignment to a parameter (if it is passed as a reference or a pointer parameter). Similarly,
if somebody erroneously thinks that c1.radius should get a new value, this can be done using
direct assignment (if encapsulation is not used) or calling an access function, for example,
setCylinder(), if encapsulation is used. There is no difference.

The real explanation is in the principle of the separation of concerns that I formulated in the
beginning of this chapter. During maintenance, this separation of concerns for client code and for
access functions is important for both global variables and for data fields. If you need to change the
use or the name of a global variable, you have to search all program files for possible dependencies,
because any file could use or change the global value. There is no clearly defined and relatively
small area of concern¡Xthe span of a maintainer's attention is the whole program. This is labor
intensive and prone to error.

Similarly, if you change the name or the type of a data field in a program that does not encapsulate
its data, you have to search all program files for possible dependencies, because any file could use
or change the field values. Again, there is no clearly defined and relatively small area of
concern¡Xthe span of a maintainer's attention is the whole program.

Notice that I am not complaining that making changes in the code is too much work. After all, how
much time do we spend writing or changing code? It is always the easiest and shortest part of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (438 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

development effort. I am complaining that there are no clearly labeled parts of the program that you
can inspect for changes when the design of the cylinder (or any other data structure) changes. It is
finding all the places that have to be changed, and making sure that unintended side effects are not
introduced, that makes maintenance so error prone and expensive.

When we use encapsulation, it is the set of access functions that has to be changed when we change
the name or the type of a data field. All other parts of the program are not affected. Those parts of
the program that call access functions have to be recompiled, but their source code does not change.
Hence, the scope of attention of the maintainer is relatively narrow¡Xit is limited to code that is
concerned with the names of data fields. This is the real advantage of encapsulation: by not using
the names of data fields directly, the client code avoids developing dependencies on data design.

It is important to learn to think about code design in terms of data encapsulation. When you do that,
you create two separate areas of concern: segments of code that do and do not use the names of
data fields.

But using access functions in and of itself does not necessarily improve readability and
independence of code components. This is why you need yet another criterion to judge the quality
of code¡Xinformation hiding.

Information Hiding

The concept of information hiding is also related to the principle of separation of concerns.
Normally, without information hiding, the programmer who writes the code (or the person who
maintains the code) has to keep in mind two sets of design decisions, or two sets of knowledge,
simultaneously. One set of knowledge and concerns is about the design of data (e.g., type
Cylinder), and another set of knowledge is about the application-related manipulation of data
(setting fields, comparing volumes, scaling sizes, etc.).

With information hiding, the areas of concern are separate. The programmer who writes (or
maintains) the client code is concerned only with application-related manipulations of data, not
with data design. The programmer who writes (or maintains) the data access functions is concerned
only with data design, not with application-related manipulations of data.

If this sounds similar to the concept of data encapsulation, you have it right. I have to admit that
most definitions of information hiding I have read are vague and nonoperational; they do not
explain how to distinguish information hiding from encapsulation, how to recognize the lack of
information hiding, or how to implement information hiding. Most people tacitly assume that
information hiding is the same as encapsulation.

The concept of encapsulation is narrower¡Xwe want the names and types of data fields to be
encapsulated from the client code so that the client code will not explicitly mention the names of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (439 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

underlying data fields. In our example, it will mean that the client code shall not mention
c1.radius, c1.height, and so on explicitly, as I did in the snippet of code above. Encapsulation
through the use of access functions improves the quality of code: its readability and independence
of components.

How is information hiding different from encapsulation? Before I answer this question, let us
consider an example of encapsulation that is not very effective. Try to implement encapsulation by
introducing server functions that perform operations on a Cylinder object, for example, returning
the values of Cylinder fields or setting the Cylinder dimensions. These server functions are also
called access functions because they access cylinder data on behalf of their client code. The term
"access" does not distinguish between different types of access¡Xthese functions can either retrieve
field values or modify them.

void setRadius(Cylinder &c, double r) // modifier function
{ c.radius = r; }

void setHeight(Cylinder &c, double h) // modifier function
{ c.height = h; }

double getRadius(const Cylinder& c) // selector function
{ return c.radius; }

double getHeight(const Cylinder& c) // selector function
{ return c.height; }

The main() function does not have to use the names of cylinder components; if they change, it is
the functions setRadius(), setHeight(), getRadius(), and getHeight() that have to change,
not main() or any other client of Cylinder. Listing 8.8 shows the use of these access functions.
The output of this program is the same as the output of the code in Listing 8.6¡XI changed the
design of the code but not its functionality.

Example 8.8. Example of ineffective encapsulation.
#include <iostream> // awkward encapsulation
using namespace std;

struct Cylinder { // data structure to access
 double radius, height; } ;

void setRadius(Cylinder &c, double r) // modifier
{ c.radius = r; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (440 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void setHeight(Cylinder &c, double h) // modifier
{ c.height = h; }

double getRadius(const Cylinder& c) // accessor
{ return c.radius; }

double getHeight(const Cylinder& c) // accessor
{ return c.height; }

int main()
{
Cylinder c1, c2; double radius, height; // program data
cout << "Enter radius and height of the first cylinder: ";
cin >> radius >> height; // initialize data
setRadius(c1,radius); setHeight(c1,height);
if (getRadius(c1)<0) setRadius(c1,10); // verify data
if (getHeight(c1)<0) setHeight(c1,20);
cout << "Enter radius and height of the second cylinder: ";
cin >> radius >> height; // initialize data
setRadius(c2,radius); setHeight(c2,height);
if (getRadius(c2)<0) setRadius(c2,10); // verify data
if (getHeight(c2)<0) setHeight(c2,20);
if (getHeight(c1)*getRadius(c1)*getRadius(c1)*3.141593
 < getHeight(c2)*getRadius(c2)*getRadius(c2)*3.141593)
{ setRadius(c1,getRadius(c1)*1.2);
 setHeight(c1,getHeight(c1)*1.2); // scale up
 cout << "\nFirst cylinder changed size\n"; // print new size
 cout <<"radius: "<<c1.radius<<" height: "<<c1.height<< endl; }
else // otherwise do nothing
 cout << "No change in first cylinder size" << endl;
return 0;
 }

You see that indeed the main() function is encapsulated from Cylinder data field names. If these
names change in the process of redesign, there is a limited and easily identified set of access
functions that have to be changed. No other place in the program, even if the program is very large,
has to be modified or even inspected. It has to be recompiled, but this is a different story. Figure 8-
8 shows the object diagram for this design. Similar to the object diagram that I introduced in
Chapter 1, "Object-Oriented Approach: What's So Good About It?" (Figure 1-7), this diagram
demonstrates that server functions setRadius(), setHeight(), getRadius(), and getHeight()
conceptually belong together. They access Cylinder fields radius and height on behalf of the
client code. The client code accesses server data only through calls to the server access functions,
not directly.

Figure 8-8. Object diagram for program in Listing 8.8.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (441 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

However, the encapsulation here is awkward. Actually, it is useless. The design principles listed at
the beginning of this chapter are not used. The access functions do little for achieving the goals of
the client code: The responsibility for data manipulation is not pushed to the server functions, it
remains with the client. Despite the use of access functions, the main() client code mixes access to
data, for example, calls to getRadius() with data manipulation, so that the meaning of
computations (computing volume, scaling the size) is not easy to grasp. If the number of fields of
the programmer-defined type Cylinder changes, the number of access functions will change, too,
and the client code has to be modified as well.

To correctly choose the set of access server functions, you have to take into account the
responsibilities of the client code. In this example, the client code is responsible for initializing
cylinder objects, validating object data, computing cylinder volume, scaling cylinder size, and
displaying cylinder attributes. Let us design access functions that do exactly that: setCylinder(),
validateCylinder(), getVolume(), scaleCylinder(), and printCylinder().

With these access functions, you push responsibility down from the client code to the server code.
It is the server functions that set cylinder fields, validate cylinder data, compute volume, change
size, and display cylinder data. The client code only requests these operations. As a result, the
operations in main() are expressed in terms of function calls to servers.

The mix of access to data with data manipulation disappears. The client code specifies what should
be done (set data fields, compute volume, etc.) The server code specifies how this is done. The
Cylinder data representation is encapsulated: If the field names change, the client code is not
affected. If you add more fields to the Cylinder design, the client code is not affected. (Well, for
that to be entirely true, the input operations have to be encapsulated as well.)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (442 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The knowledge shared by client designers and server designers is limited to the names and
interfaces of server functions. The areas of concern for client programmers and server programmers
are separate: one encompasses high-level application-related operations, another is limited to data
field names and low-level computations.

Even for this tiny example, you see the advantages of using access functions. The client code is
expressed in terms of meaningful application-related operations. What does
c1.height*c1.radius*c1.radius*3.141593 mean in Listing 8.6? The maintenance programmer
has to figure that out. The same is true about the statements c1.radius*=1.2; and
c1.height*=1.2¡Xdo all dimensions of the cylinder change? Is the factor the same for all
dimensions? In printing statements, are all cylinder dimensions displayed or only some? When the
access to data and the application-related operations are intermixed, it is more difficult to figure out
the meaning of processing.

Using access functions also makes validation of user input easier¡Xthe main() function is not
cluttered by details of validation. If the data representation (cylinder design or just field names)
changes, it is the server functions that have to change. As I mentioned earlier, this is not just a
matter of labor needed for maintenance. It is a matter of attention span. Without access function,
the potential area of change is the whole program. (Cylinders could be used anywhere.) With
access functions, the potential area of change is well defined¡Xit includes functions that access the
cylinder data representation.

This approach promotes reusability. Without access functions, any algorithm that uses cylinder
objects has to be written and verified from scratch. With access functions, new algorithms can be
written in terms of function calls to them. Each of these operations has to be verified only once.

The drawback of this approach is that you have to write and test more source code. One can argue,
however, that this is actually an additional advantage. In the total balance of time, typing code takes
a small fraction. All other development steps require reading the code¡Xdebugging, testing,
integration, and maintenance. Writing client code in terms of function calls to access functions
(which are already written and tested) makes these steps easier, less error prone, and less expensive.

So, what does the criterion of information hiding add to data encapsulation? Let us look again at the
server functions validateCylinder() and getVolume(). The first function encapsulates the
validation operations, default values, and the like. This is good, because the client code does not
need to know the details of validation; it is enough to know that validation is done. The second
function encapsulates the geometrical computations. This is also good, because the client code need
not be concerned with the rules of geometry; it is enough for it to know that the cylinder volume is
computed.

Both of these functions are no good from the point of view of information hiding. They expand the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (443 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

client designer's knowledge about the design of the server, enlarge the client designer's attention
span, and bring information to the client code for manipulation instead of manipulating it in the
server code.

The first function, validateCylinder(), betrays the need for data validation¡Xit should not be
within the span of attention of the client code designer and maintainer. This can be eliminated by
redesign, that is, by changing the list of functions and their responsibilities. A good solution to this
problem is to merge functions validateCylinder() and enterData().

void enterData(Cylinder &c, char number[])
{ cout << "Enter radius and height of the ";
 cout << number << " cylinder: ";
 cin >> c.radius >> c.height; // initialize cylinder
 if (c.radius < 0) c.radius = 10; // defaults for corrupted data
 if (c.height < 0) c.height = 20; }

As you see again and again, the criteria of cohesion, coupling, encapsulation, and information
hiding are not operational. They signal the existence of a design drawback, but they do not indicate
in what directions you should change the design to eliminate the drawback. The principles listed at
the beginning of this chapter are operational: They indicate how to change the design. In this
example, information hiding is improved by pushing responsibility to server functions. Instead of
forcing the client code to call two server functions, enterData() and validateCylinder(), this
design requires the client code to call only one access function.

The function getVolume() violates the principle of pushing responsibilities to server functions by
giving the client code more information than it needs. The client code needs to know whether one
cylinder is larger than another. Instead of serving this client need, the server code returns the
computed value of the volume of the cylinder and lets the client code do with this value whatever
the client likes. Information about the cylinder volume should be hidden from the client code. To
serve this client need, I should change the design, introducing, for example, function
firstIsSmaller().

bool firstIsSmaller(const Cylinder& c1, const Cylinder& c2)
{ if (c1.height*c1.radius*c1.radius*3.141593 // compare volumes
 < c2.height*c2.radius*c2.radius*3.141593)
 return true;
 else
 return false; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (444 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 8.9 shows the version of the source code that combines proper encapsulation with
information hiding. Notice that the functionality of the code remained the same for all versions of
the program. It is the design that I changed, and it is the design that affects the quality of the code.
The output of the program is the same as the output of the program in Listing 8.6.

Example 8.9. Combining encapsulation and information hiding.
#include <iostream>
using namespace std;

struct Cylinder { // data structure to access
 double radius, height; } ;

void enterData(Cylinder &c, char number[])
{ cout << "Enter radius and height of the ";
 cout << number << " cylinder: ";
 cin >> c.radius >> c.height; // initialize cylinder
 if (c.radius < 0) c.radius = 10; // defaults for corrupted data
 if (c.height < 0) c.height = 20; }

bool firstIsSmaller(const Cylinder& c1, const Cylinder& c2)
{ if (c1.height*c1.radius*c1.radius*3.141593 // compare volumes
 < c2.height*c2.radius*c2.radius*3.141593)
 return true;
 else
 return false; }

void scaleCylinder(Cylinder &c, double factor)
{ c.radius *= factor; c.height *= factor; } // scale dimensions

void printCylinder(const Cylinder &c) // print object state
{ cout << "radius: " <<c.radius << " height: " <<c.height << endl; }

int main() // pushing responsibility to server functions
{
 Cylinder c1, c2; // program data
 enterData(c1,"first"); // initialize first cylinder
 enterData(c2,"second"); // initialize second cylinder
 if (firstIsSmaller(c1,c2))
 { scaleCylinder(c1,1.2); // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print new size
 printCylinder(c1); }
 else // otherwise do nothing
 cout << "\nNo change in first cylinder size" << endl;
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (445 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 8-9 shows the object diagram for this design. Similar to the previous figure, it shows that
functions enterData(), firstIsSmaller(), scaleCylinder(), and printCylinder() belong
together. Here, the server serves the client code better because the access functions do the work for
the client code rather than bring information to the client for further manipulation.

Figure 8-9. Object diagram for program in Listing 8.9.

A Larger Example of Encapsulation

The next example is input expression verification. Again, for simplicity sake, I will limit the
functionality of the example to verifying whether parentheses and brackets in the input expression
properly match each other. Let us consider a function checkParen() that scans the characters of
the expression in a null-terminated array one-by-one until it either finds the terminating null (end of
expression) or it discovers a parenthesis or a bracket that does not have a match. For example, the
expression a = (x[i] + 5)*y should be recognized as a valid expression, and the expression a =
(x[i) + 5]*y should be declared invalid.

The example will use two global arrays, buffer[] and store[]. Index i retrieves a character
from array buffer[], and index idx retrieves a character from array store[]. The flag valid
will be returned by the code. It is initially set to 1 (true). If in the process of verification the
expression will prove invalid, this flag will be set to 0 (false). In a loop, the code will inspect the
next character in array buffer[]. If it is a left symbol (a parenthesis or a bracket), the decision
should be deferred until the matching right symbol is found; so the code will save the character in
array store[] (and will adjust array index idx).

char buffer[81]; char store[81];

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (446 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bool checkParen ()
{ char c, sym; int i, idx; bool valid;
 i = 0; idx = 0; valid = true; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (c=='(' || c=='[') // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
// THE REST OF THE CODE
 return valid; }

If the next character in array buffer[] is a right symbol (a parenthesis or a bracket), the code will
retrieve the last symbol stored in the array store[] (again, adjusting array index idx). At this
moment, the program can check whether the two symbols match. That is, if the symbol in array
buffer[] is a right parenthesis, the symbol in array store[] should be a left parenthesis, not a
left bracket; similarly, if the symbol in array buffer[] is a right bracket, the symbol in array
store[] should be a left bracket, not a left parenthesis. If the two symbols match, there is nothing
to do; the code will go to the next character in array buffer[]. If the two symbols do not match,
the expression is invalid: The code will set the flag valid to false; this will terminate the loop,
and the zero value will be returned to the client code.

char buffer[81]; char store[81];
bool checkParen ()
{ char c, sym; int i, idx; bool valid;
 i = 0; idx = 0; valid = 1; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (c=='(' || c=='[') // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
 else if (c==')' || c==']') // is next symbol right?
 { idx¡X; sym = store[idx]; // get the last symbol
 if (!((sym=='(' && c==')') ||
 (sym=='[' && c==']'))) // if they do not match
 valid = false; } // then it is an error
// THE REST OF THE CODE
 return valid; }

Of course, this approach is too simplistic. How does the code know that there is always a symbol in
array store[] for matching the right symbol found in array buffer[]? If the input expression
has several right parentheses that are not matched by preceding left parentheses, array store[]
will be depleted, its index idx will become negative, and we should declare the expression invalid.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (447 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

char buffer[81]; char store[81];
int checkParen ()
{ char c, sym; int i, idx; bool valid;
 i = 0; idx = 0; valid = 1; // initialize data
 while (buffer[i] != '\0' && valid != 0) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (c=='(' || c=='[') // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
 else if (c==')' || c==']') // is next symbol right?
 if (idx > 0) // does saved symbol exist?
 { idx¡X; sym = store[idx]; // get the last symbol
 if (!((sym=='(' && c==')') ||
 (sym=='[' && c==']'))) // if they do not match
 valid = 0; } // then it is an error
 else
 valid = 0; // if no saved symbol to match, it is an error
// THE REST OF THE CODE
 return valid; } // return the error status

We are almost there. We decided what to do if the next character in the array buffer[] is a left
symbol, and what to do if it is a right symbol; if it is neither a right nor a left symbol, we should
simply go to the next character in array buffer[], that is, just to increment its index i.

char buffer[81]; char store[81];
bool checkParen ()
{ char c, sym; int i, idx; bool valid;
 i = 0; idx = 0; valid = true; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (c=='(' || c=='[') // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
 else if (c==')' || c==']') // is next symbol right?
 if (idx > 0) // does saved symbol exist?
 { idx¡X; sym = store[idx]; // get the last symbol
 if (!((sym=='(' && c==')') ||
 (sym=='[' && c==']'))) // if they do not match
 valid = false; } // then it is an error
 else
 valid = false; // an error if no saved symbol to match
i++; } // go get next symbol
// SOMETHING TO WORRY ABOUT AFTER THE END OF THE LOOP
return valid; } // return the error status

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (448 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There is one more thing to take care of in this code. If at the end of the loop the flag valid is set to
false, this value should be returned to the caller, no questions asked¡Xthe input expression is
invalid. If, however, the flag remains true, the program should not hurry to pass the good news on
to the caller. First, it should check whether there are any extra symbols left in array store[] that
were not matched by right symbols in the expression. If this is the case (idx > 0), the expression is
invalid and the flag valid should be set to false.

The checkParen() function along with its test driver is found in Listing 8.10. The number of if
statements in this example is fairly large. It means that the function should be called more than
once to demonstrate its correctness, and it pays to design a test harness that stands between the test
driver and the function. The test harness checkParenTest() calls the function checkParen(), and
prints the input expression and the result of the function execution. Figure 8-10 shows an example
of program execution.

Figure 8-10. Output for program in Listing 8.10.

Example 8.10. Example of direct access to underlying data representation.
#include <iostream> // No encapsulation yet
#include <cstring>
using namespace std;

char buffer[81]; char store[81]; // global data

bool checkParen ()
{ char c, sym; int i, idx; bool valid;
 i = 0; idx = 0; valid = true; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (c=='(' || c=='[') // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
 else if (c==')' || c==']') // is next symbol right?
 if (idx > 0) // does saved symbol exist?
 { idx¡X; sym = store[idx]; // get the last symbol
 if (!((sym=='(' && c==')') ||
 (sym=='[' && c==']'))) // if they do not match
 valid = false; } // then it is an error
 else
 valid = false; // error if no symbol to match

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (449 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 i++; } // go get next symbol
 if (idx > 0) valid = false; // unmatched left symbols: an
error
 return valid; } // return the error status

void checkParenTest(char expression[]) // test harness
{ strcpy(buffer,expression);
 cout << "Expression " << buffer << endl; // print the expression
 if (checkParen()) // validate it
 cout << "is valid\n"; // print the result
 else
 cout << "is not valid\n";
}

int main() // test driver
{ checkParenTest("a=(x[i]+5)*y;"); // first test run: valid
 checkParenTest("a=(x[i)+5]*y;"); // second test run: invalid
 return 0;
 }

Similar to the earlier examples in this chapter, I will try to encapsulate the code in checkParen()
from the symbol representation. The algorithm for checking symbols does not depend on the
specific symbols. For example, if the code should handle braces, the algorithm should be exactly
the same. However, checkParen() has to be modified (along with other functions in the
application) if the expressions processed by the application are to include braces (or other paired
symbols). It will probably require a different name, since it will check more than parentheses.

The server functions have to encapsulate the client code from the details of how the left and the
right symbols look and what the rules are for matching symbols. Here is an example of three access
functions that do that job. I pass the index in the character array buffer[] to functions isLeft()
and isRight() and they return true or false depending on what symbol is found under that index.
For function symbolsMatch(), I pass two indices, to array buffer[] and to array store[], and
the function returns true or false depending on whether the symbols under these indices match.

bool isLeft (int i)
{ char c = buffer[i]; // get symbol from buffer
 return (c=='(' || c=='['); } // check if it is a left
symbol

bool isRight (int i)
{ char c = buffer[i]; // get symbol from buffer
 return (c==')' || c==']'); } // check if it is a right
symbol

bool symbolsMatch (int idx, int i)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (450 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ char sym = store[idx], c = buffer[i]; // get two symbols to match
 return (sym=='('&&c==')')||(sym=='['&&c==']');} // do they match?

Listing 8.11 shows the version of the code that uses these access functions. If the application has to
handle braces, it is access functions isLeft(), isRight() and symbolsMatch() that will change,
not checkParen() or other client code. The output of this version of the program is the same as the
output of the code in Listing 8.11.

Example 8.11. Example of encapsulation with shared knowledge.
#include <iostream> // Bad distribution of knowledge
#include <cstring>
using namespace std;

char buffer[81]; char store[81];

bool isLeft (int i)
{ char c = buffer[i]; // get symbol from buffer
 return (c=='(' || c=='['); } // check if it is a left symbol

bool isRight (int i)
{ char c = buffer[i]; // get symbol from buffer
 return (c==')' || c==']'); } // check if it is a right symbol

bool symbolsMatch (int idx, int i)
{ char sym = store[idx], c = buffer[i]; // get two symbols to match
 return (sym=='('&&c==')')||(sym=='['&&c==']');} // do they match?

bool checkParen ()
{ char c; int i, idx; bool valid;
 i = 0; idx = 0; valid = true; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (isLeft(i)) // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
 else if (isRight(i)) // is next symbol right?
 if (idx > 0) // does saved symbol exist?
 { idx¡X; // get the last symbol
 if (!symbolsMatch(idx,i)) // if they do not match
 valid = false; } // then it is an error
 else
 valid = false; // error if no saved symbol to match
 i++; } // go get next symbol
 if (idx > 0) valid = false; // unmatched left symbols: an error
 return valid; } // return the error status

void checkParenTest(char expression[]) // test harness

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (451 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ strcpy(buffer,expression);
 cout << "Expression " << buffer << endl; // print the expression
 if (checkParen()) // validate it
 cout << "is valid\n"; // print the result
 else
 cout << "is not valid\n"; }
int main() // test driver
{
 checkParenTest("a=(x[i]+5)*y;"); // first test run: valid
 checkParenTest("a=(x[i)+5]*y;"); // second test run: invalid
 return 0;
 }

Is this good encapsulation? Not too good. Symbol representation is indeed hidden from the client
code, but the server functions know more than the symbol representation and the rules for
matching. They share with the client code the knowledge about array buffer[] and array store[
]. The scopes of attention for client and for servers are not separate. There is no good reason for
sharing this knowledge¡Xit should belong to the client code only. As is commonly the case with
shared knowledge, when the design changes, both groups of functions should be changed too. If I
change the names of these arrays or switch from an array to a linked list representation, it is only
checkParen() that should be affected. With this design, the symbol access functions have to be
changed. If I decide that using a global array is not appropriate, even the interface of the symbol
access functions will change¡XI will have to pass these arrays as parameters.

This is a relatively rare form of violation of information hiding. Usually, it is the client code that is
exposed to excessive knowledge. As this example shows, the server code also can be exposed to
excessive knowledge. The server functions should know about only one data structure, and hide
this knowledge from everybody else.

To assure the quality of the C++ code you write, you should constantly think about shared
knowledge. I know I told you that on another occasion, and I am going to do it again later.

To eliminate this drawback of shared knowledge, I redesign the program again, changing the
distribution of responsibilities. I hide the array indices from server functions by passing to these
functions the symbols themselves, not their indices. In this version, shown in Listing 8.12, the
symbol access functions isLeft(), isRight(), and symbolsMatch() only know about the
symbols, not about the way the client code stores these symbols. It is only the client code that
knows about the arrays.

Example 8.12. A better example of encapsulation.
#include <iostream> // Better distribution of
knowledge
#include <cstring>

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (452 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

using namespace std;

bool isLeft (char c)
{ return (c=='(' || c=='['); } // check if it is a left symbol

bool isRight (char c)
{ return (c==')' || c==']'); } // check if it is a left symbol

bool symbolsMatch (char c, char sym)
{ return (sym=='('&&c==')')||(sym=='['&&c==']');} // do they match?

bool checkParen (char buffer[]) // expression in parameter
{ char store[81]; // local array
 char c,sym; int i, idx; bool valid;
 i = 0; idx = 0; valid = true; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?
 { c = buffer[i]; // get next symbol
 if (isLeft(c)) // is next symbol left?
 { store[idx] = c; idx++; } // then save it away
 else if (isRight(c)) // is next symbol right?
 if (idx > 0) // does saved symbol exist?
 { sym = store[¡Xidx]; // get the last symbol
 if (!symbolsMatch(c,sym)) // if they do not match
 valid = false; } // then it is an error
 else
 valid = false; // error if no saved symbol to
match
 i++; } // go get next symbol
 if (idx > 0) valid = false; // unmatched left symbols: an
error
 return valid; } // return error status

void checkParenTest(char expression[])
{ cout << "Expression " << expression << endl; // print expression
 if (checkParen(expression)) // validate it
 cout << "is valid\n"; // print the result
 else
 cout << "is not valid\n"; }

int main()
{
 checkParenTest("a=(x[i]+5)*y;"); // first test run: valid
 checkParenTest("a=(x[i)+5]*y;"); // second test run: invalid;
 checkParenTest("a=(x(i]+5]*y;"); // third test run: invalid;
 return 0;
 }

In this version of the program, encapsulation is much better, and separation of concerns is more
consistent. The client code knows about arrays and indices, and server functions know about

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (453 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

symbols and rules for matching them.

The knowledge about one of the arrays, buffer[], is natural in the client code: this is the array
that checkParen() processes, and encapsulating this array does not make much sense. If
expression processing is done in stages, then this function checkParen() is one of the expression
access functions that does expression validation and evaluation.

However, checkParen() uses another array, store[], and this array adds complexity to the
client code. The programmer has to decide whether to initialize index idx to zero, one, or some
other value. When a symbol is saved in the array, the programmer has to decide whether to save the
symbol first and then to increment the index, or the other way around. When the symbol is
retrieved from the array, the programmer again has to decide whether to get the symbol first and
then to decrement the index or the other way around. (Notice that the answer to the last two
questions is different.) Also, when checkParen() checks whether any unmatched symbols are left
in array store[], the programmer has to decide whether the index should be compared to zero,
one, or some other value.

These questions are not difficult to answer, because the example is small. Combined with other
similar questions, they accumulate complexity and increase the possibility of an error at the
development phase and, especially, at the maintenance phase. Most important, these issues have
little to do with the algorithm that checkParen() implements¡Xscanning symbols, saving left
symbols and retrieving them back when right symbols are found. Each function should deal with
only one nonencapsulated data structure, and this data structure for checkParen() is the array
buffer[], not store[].

This is why the next step in the design of this example should be encapsulating array store[] and
its index idx in a separate structure and providing access functions that can be used by
checkParen() to access the components of this structure.

struct Store {
 char a[81]; // array for temporary storage
 int idx; } ; // index to first available slot

void initStore (Store &s)
 { s.idx = 0; } // initialize the empty store

bool isEmpty (const Store& s)
 { return (s.idx == 0); } // check whether the store is empty

void saveSymbol (Store &s, char x)
{ s.a[s.idx] = x; // save the symbol in the store
 s.idx++; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (454 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

char getLast(Store &s)
{ s.idx¡X; // get back the last symbol saved
 return s.a[s.idx]; }

Experienced readers probably recognize this structure as a common stack implemented with a fixed-
size array. If you are not familiar with this data structure, do not worry. This is not important. What
is important is that the access functions insulate the client code from all details of data
representation and allow it to express its algorithm in terms of function calls (see Listing 8.13).

Example 8.13. Encapsulating temporary storage store[].
#include <iostream> // Encapsulation with info hiding
#include <cstring>
using namespace std;

struct Store {
 char a[81]; // array for temporary storage
 int idx; } ; // index to first available slot

void initStore (Store &s)
 { s.idx = 0; } // initialize the empty store

bool isEmpty (const Store& s)
 { return (s.idx == 0); } // check whether the store is empty

void saveSymbol (Store &s, char x)
{ s.a[s.idx++] = x; } // save the symbol in the store

char getLast(Store &s)
{ return s.a[¡Xs.idx]; } // get back the last symbol saved

bool isLeft (char c)
{ return (c=='(' || c=='['); } // check if it is a left symbol

bool isRight (char c)
{ return (c==')' || c==']'); } // check if it is a left symbol

bool symbolsMatch (char c, char sym)
{ return (sym=='('&&c==')')||(sym=='['&&c==']');} // do they match?

bool checkParen (char buffer[]) // expression in parameter
{ Store store; // array is encapsulated
 char c,sym; int i; bool valid;
 i = 0; initStore(store); valid = true; // initialize data
 while (buffer[i] != '\0' && valid) // end of data or error?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (455 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { c = buffer[i]; // get next symbol
 if (isLeft(c)) // is next symbol left?
 { saveSymbol(store,c); } // then save it away
 else if (isRight(c)) // is next symbol right?
 if (!isEmpty(store)) // does saved symbol exist?
 { sym = getLast(store); // get the last symbol
 if (!symbolsMatch(c,sym)) // if they do not match
 valid = false; } // then it is an error
 else
 valid = false; // error if no saved symbol to match
 i++; } // go get next symbol
 if (store.idx>0) valid=false; // error: unmatched left symbols
 return valid; } // return the error status

void checkParenTest(char expression[])
{ cout << "Expression " << expression << endl; // print expression
 if (checkParen(expression)) // validate it
 cout << "is valid\n"; // print the result
 else
 cout << "is not valid\n"; }

int main()
{ cout << endl << endl;
 checkParenTest("a=(x[i]+5)*y;"); // first test run: valid
 checkParenTest("a=(x[i)+5]*y;"); // second test run: invalid;
 checkParenTest("a=(x(i]+5]*y;"); // third test run: invalid;
 cout << endl << endl;
 return 0;
 }

When developing this example, I was trying to keep the line comments the same. What I would like
you to do now is to go back to Listing 8.10 (the first version of this example) and compare that
version with Listing 8.13. You will see that in the first, nonencapsulated version, the line comments
are useful. They explain what the meaning of manipulating the data representation is. In the last,
encapsulated version, the comments are useless. They just repeat what the code says. The meaning
of the code is expressed in the names of the server function calls.

In this version of the code, there are no details of data manipulation to interfere with that meaning
and to siphon away the attention of the developers and the maintainer. The scope of attention is
divided into three narrow zones. No knowledge of data structures is shared between the client code
and the server code. Responsibility for access to data is pushed to the server functions.

Shortcomings of Encapsulation with Functions

This is a great way to write software. However, there are a number of shortcomings in
implementing encapsulation and information hiding with functions only. It is these drawbacks that

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (456 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

C++ tries to eliminate with the introduction of classes.

One drawback is that access functions do not indicate to the maintainer what the designer knows,
that these functions belong together and access the same data structure. In the examples in this
chapter, I was putting the server functions together into the same listing for everyone to see. A
better solution is to put functions isLeft(), isRight(), and symbolsMatch() into one file
(functions accessing symbols), and the functions initStore(), isEmpty(), saveSymbol(), and
getLast() into another file (functions accessing temporary storage).

In real life, functions accessing one data structure are often mixed with functions accessing other
data structures, they are placed in alphabetical order by their names, and the relationship between
the data structure and its access functions becomes dim. Even when the related functions are put
together in a separate file without any extraneous functions, this solution is a managerial solution,
not a language-supported solution. In C (and in other earlier languages), there is no language
mechanism for indicating that some functions logically belong together but not with other
functions. C++ offers an excellent solution¡Xbinding together the data and its related access
functions within the boundary (curly braces) of the class. The very boundaries of the class indicate
what functions and data belong together. The functions that belong together cannot be scattered
among other nonrelated functions.

The second drawback of encapsulation with access functions is that encapsulation is voluntary. The
client programmer (or the maintainer) can use the access functions or can disregard access
functions and directly access the structure fields. The language rules do not prevent that. For
example, at the end of checkParen() in Listing 8.13, I check whether any opening symbols were
left on the store that were not matched during the call to checkParen(). The correct way to do that
is to use the access function isEmpty().

if (!isEmpty(store)) valid=false; // error: unmatched left symbols

Instead, I made a shortcut and used the name of the field idx of the structure of the programmer-
defined type Store.

if (store.idx>0) valid=false; // error: unmatched left symbols

All advantages of encapsulation went down the tubes. The meaning of the client code is not self-
explanatory and has to be deduced from the comments and the context. The task of the maintainer
is complicated by the need to deal with the mix of access to data and manipulation of the data. If
the name of the data field idx were to change, for example, to top (a better and more commonly

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (457 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

used name), the client code should be modified too. These dependencies between the client and the
server code make the code more complex. This is why it is not nice to depend on the kindness of
the programmer to provide data encapsulation. C++ resolves this problem by providing the code
designer with the private access qualifier to make breaking encapsulation impossible.

The third drawback is that the access functions are global functions. Their names are part of the
global name space and can conflict with other function names. Hence the programmers working on
different parts of the program have to coordinate their actions to avoid name conflicts, and that
forces the programmers to know more about other parts of the program than is necessary.

C++ resolves this problem by introducing the class scope in addition to the block, function, file,
and program scope. Every name defined as a member of the class, be it a data member or a member
function, is defined within the scope of the class. This eliminates name conflicts. The programmers
do not have to know about the names used in other parts of the program if they do not have to use
these names. This decreases the amount of coordination among programmers.

Yet another drawback is that many data structures have to be initialized explicitly by the client
code. For example, the store variable in Listing 8.13 is initialized by an explicit call to function
initStore(). This expands the scope of attention of the client maintainer and creates a possibility
that data will be used without proper initialization.

C++ resolves this problem by pushing responsibilities from client code to server code with special
functions: constructors. They are called implicitly every time an object of the class is created. In
this function, the designer of the server class specifies how the class object will be initialized. In the
division of responsibilities between a client programmer and a server programmer, this pushes the
work down to the server programmer, making the server programmer responsible for initialization.
This responsibility is thus removed from the designer of the client code. C++ also provides another
type of special function, destructors, which are called implicitly when the class object is destroyed.
These functions return dynamic memory and other resources that the object might acquire and
remove the burden of returning resources from the client programmer.

There are also a number of other ways that C++ classes promote binding together data and
operations, encapsulating the names of the server fields, hiding server design from client code,
pushing responsibility from clients down to servers, and avoiding dependencies between client and
server code.

C++ classes have a great potential for improving software quality, and they will be discussed in
detail in the following chapters.

Summary

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (458 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In this chapter, we looked at the use of C++ functions as a major program-building tool. For a
given functionality of the program, there exist numerous ways of implementing that functionality in
C++ code.

The goal of allocating jobs to functions is to arrive at a program whose functions can be understood
and maintained in isolation from other functions and are easy to reuse in other contexts. Everything
that requires the client designer (or maintainer) to read the code in several places for understanding
and modification, impedes reuse and maintenance.

The criteria of readability and component independence are too general. For a practicing
programmer, these criteria have to be supplemented by more-specific technical criteria. In this
chapter, I discussed traditional criteria of cohesion and coupling and object-oriented criteria of
encapsulation and information hiding. I also discussed new criteria, such as pushing job
responsibilities from client functions to server functions, avoiding breaking apart the parts of
functionality that should belong together in the same piece of code, the separation of concerns and
limiting common knowledge between components, and passing the knowledge of the developer to
the maintainer in code rather than in comments.

Cohesion describes how well the elements of the function belong together. Functions that exhibit
good cohesion do one thing over one object. Functions with weak cohesion do several things. The
remedy for weak cohesion is redesign: putting things that do not belong together into different
functions instead of in the same function. Cohesion is not a sharp criterion and should be used as a
supplement to other criteria.

Coupling describes the interface between a server function and its client functions. Loose coupling
means that the functions are relatively independent. The strongest form of coupling is the use of
global variables. They require coordination among developers who write client and server
functions. The same names of global variables are used when functions are moved for reuse in
other contexts. To analyze data flow between these functions, one has to study the whole code of
both the client and the server functions.

Functions that communicate through parameters are easier to reuse. The developers have to
coordinate the number and type of parameters but not parameter names. Data flow can be
understood from the study of the function interface only, not the whole code. To reap the benefits
of this approach, developers should use the guidelines for parameter passing presented in this and
in previous chapters.

To reduce coupling, you reallocate jobs among functions so that the operations performed in
different functions are moved to the same functions. This eliminates the reasons for additional
communications between functions. Developers have to always keep an eye on checking what
communications are needed and what communications could be avoided. This is a very important
tool in the programmer's tool bag.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (459 of 1187) [8/17/2002 2:57:54 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Encapsulation is a method of programming that insulates client functions from the names of data
fields these client functions need. These fields are accessed by server functions on behalf of client
functions. The code in client functions is expressed in terms of function calls to server functions,
not in terms of data fields. Using this approach enhances maintainability because it creates two
independent areas in the program. When the data design changes, access functions change and
client functions stay the same. When the application functionality changes, the client functions
change and the access functions stay the same. If encapsulation is not provided, every place in the
code should be inspected for possible changes.

Information hiding is a method of programming that further insulates client functions from data
representation. Access functions are chosen so that they do the work on behalf of the client
functions. The client code is expressed in terms of calls to server functions, whose names describe
the client code algorithm. This approach further enhances program maintainability and reusability.

When these techniques are used consistently, the client code becomes object oriented because it is
expressed in terms of operations over data structures. However, object-oriented programming with
functions leaves some issues unresolved. There is no language-level indication that the data and
their access functions belong together; the maintainer has to figure out that relationship through
code inspection. The names of access functions are global to the program scope, and name conflicts
are possible. Encapsulation is voluntary and is based on a developer's discipline. If the developers
of client functions use the names of data fields in client functions, the advantages of encapsulation
disappear.

C++ resolves these issues by adding the class construct to the language. The class boundaries
indicate that the data and functions belong together. Each class has its own separate scope, and
access functions with the same name but in different classes do not conflict with each other. The
class developer can indicate that data (and functions) are private and prevent direct access from the
client functions.

This is very exciting! Using classes opens new horizons for writing high-quality programs. Starting
with the next chapter, we will focus on C++ classes.

Chapter 9. C++ Class as a Unit of Modularization

Topics in this Chapter

ϒΠ Basic Class Syntax

ϒΠ Controlling Access to Class Members

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (460 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ Initialization of Object Instances

ϒΠ Using Returned Objects in Client Code

ϒΠ More on the const Keyword

ϒΠ Static Class Members

ϒΠ Summary

In the previous chapter, I formulated the basic principles of object-oriented programming using
functions as program building blocks. With the object-oriented approach to building programs,
client code calls server access functions instead of accessing and modifying data fields directly.
Server functions provide operations directed toward achieving the client code goals.
Responsibilities are allocated among functions so that client functions do not know about data
representation, and server functions do not know about client code algorithms.

This creates independent areas of concern. When changing access functions, the maintainer does
not have to introduce corresponding changes into client functions (if the server interface does not
change). When changing client functions, the maintainer does not have to consider the details of
data processing in server functions¡Xthey will not require changes. The client code is expressed in
terms of function calls to server functions, not in terms of data manipulation. Putting together what
should belong together (instead of tearing it apart) makes functions independent from each other
and further facilitates maintenance and reuse. The object diagrams I drew for the previous chapter
indicated that server functions logically belong with each other and with the data they access.

I also admitted that using functions for implementing the object-oriented approach relies on the
voluntary efforts of the programmers. Server functions can be placed in unrelated places in the
source code, and the maintainer might fail to notice that they are related to each other and to the
data representation. Client functions can fail to use encapsulation; instead, they can access the data
representation directly and create links and dependencies between different parts of the program.

Under time pressure or because of the narrow span of human attention, programmers can introduce
dependencies among functions. Functions with mutual dependencies are difficult to develop
because different programmers who work on different interdependent functions have to coordinate
their activities, and it is the coordination of human activities that breaks down so often and so
miserably.

Interdependent functions become more difficult to maintain because they require the maintainer to
study these dependencies before making changes. These functions are more difficult to reuse,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (461 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

because they cannot be moved to another application alone; they need data and other functions to
accompany them. This is why a programmer needs all the help from the programming language
that she or he can master to avoid these pitfalls. To help the programmers to create better code,
C++ offers a wonderful language construct, class, which physically binds together data
representation and operations (functions) over that data that are otherwise bound together only
conceptually, in the mind of the designer. This binding data and operations together supports the
concepts of data encapsulation and information hiding.

In this chapter, I will take a close look at C++ classes. You will see class syntax and semantics and
will learn how to define class members, both data members and member functions. I will explain
how to specify access rights to class members; how to implement classes in one-file and multifile
programs; how to define objects (class instances); and how to manipulate the objects, that is, how
to send messages, pass them as parameters, and return them from functions.

I will also discuss special member functions, constructors and destructors, which are often
misunderstood. I will further discuss the use of the const modifier discussed earlier in Chapter 7,
"Programming with C++ Functions," to help the developer to pass on his or her knowledge at the
time of design to the maintainer at the time of modification. Another special kind of data members
and member functions is static data members and functions. Static members and functions help the
designer to describe class characteristics that are common to all objects of the class.

This is an ambitious program. By the end of this chapter, you should feel comfortable using larger
units of modularization (classes), instead of smaller units of modularization (functions). But you
might also feel overwhelmed by the immense amount of technical detail you have to assimilate.
This is natural. C++ is a large and complex language, and it takes time to get used to its concepts,
practical details, and pitfalls. Anybody who promises you an easy way to learn C++ is either lying
or does not realize the complexity of this task. If you feel overwhelmed and confused, do not dig
your heels in¡Xtry the incremental approach to learning. Skip some parts of this chapter, read the
next chapters, come back to this chapter for repeated reading. Modify its coding examples,
experiment with different ways to say the same thing in C++ code, and you will see that there is a
beautiful internal logic connecting different elements of C++ programming, and it is not difficult to
use after all. But this feeling of ease will come only after extended practice.

It is important to come back to master the C++ basics of using classes. Many programmers jump
over this phase and move on to more complex issues such as inheritance and polymorphism too
quickly, without having a good foundation. They become confused even more and wind up writing
programs that are hard to understand, maintain, and reuse. After all, C++ offers you only a set of
tools. These tools might be misused (similar to guns, automobiles, or computers). Using these tools
does not automatically guarantee good results. It is up to you, the programmer, to use this set of
tools effectively. Good luck.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (462 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Basic Class Syntax

The goal of introducing classes in C++ is to render support to the practices of object-oriented
programming and eliminate the drawbacks caused by using smaller units of modularity: functions.

The first primary goal of the class construct is to bind together data and operations into one
syntactical unit, and to indicate that these coding elements belong together. The next primary goal
is to eliminate name conflicts so that data and functions in different classes can use the same names
without clashes. The third important goal of the class construct is to allow the server designer to
control access to class elements from the outside (from the client code). The fourth goal is to
support encapsulation, information hiding, pushing responsibilities from client code down to the
server code, creating separate areas of concern and eliminating overlapping knowledge and
coordination among programmers working on different parts of the program.

These goals are a natural extension of the practice of using functions for object-oriented
programming. If you view C++ classes as yet another syntactic construct, not related to these four
goals I described, the use of classes will not improve the quality of your code. Make sure that you
pay sufficient attention to these four goals and try to achieve them every time you add a class to
your program.

The class is the center of C++ and object-oriented programming. It gives a programmer the tools to
create new data types that more closely match the behavior of real-world objects than functional
programs do. Some experts say that it is the use of inheritance and polymorphism that is central to
object-oriented programming. I disagree. There are many programs that do not benefit from the use
of inheritance and polymorphism. However, every large C++ program benefits from the use of C++
classes if these classes are used correctly and achieve the four goals just outlined. A correctly
designed C++ program is a combination of components (modules) that cooperate in performing
their common task but are independent enough to be separately maintainable.

Binding Together Data and Operations

Structures also support the concept of binding by combining data fields. They allow you to
combine different components into a composite data object. These composite objects can be
manipulated as a whole, for example, sent as a parameter to a function, or they can provide access
to their components individually.

A structure definition, however, models only a set of data but not their behavior. The server
programmer provides the tools to manipulate the data, that is, a set of access functions to access
and manipulate data on behalf of client functions. In "functional" or "procedural" programming,
data and algorithms are syntactically separated. They are related together only in the mind of the
programmer, not in code. In the examples that I discussed in Chapter08, "Object-Oriented

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (463 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Programming with Functions," I used object diagrams to indicate that functions and data logically
belong together.

When programs consist of functions, connections among different functions in the program are not
evident; every function can access every piece of data in the program. That makes development
and, especially, maintenance and reuse more difficult.

The only way to indicate that data are related to the code that works with the data is to put the data
items and the function prototypes into the same header file or in a separately compiled source file.
But a disk file is a hardware (or operating system) concept and not part of the language. This is why
C++ expands the struct facility by binding together data members that contain values and
member functions that operate on these values.

Resulting objects represent larger units of modularity. Client programmers focus on data and on
related functions, not on stand-alone functions whose connections are not evident.

In a well-designed C++ program, class data is accessed by functions that belong only to that class.
Client code is expressed in terms of operations rather than in access to data. This narrows the
horizon of client designers and maintainers.

Formally, when you put together fields in a struct definition, you actually create a C++ class.

struct Cylinder { // programmer-defined type (class)
 double radius, height; } ; // end of class scope

In C++, the keywords struct and class are synonymous (well, almost). For class Cylinder just
defined, you can define objects (or instances or variables) of this class. You can set the values of
object fields. You can either handle an object as a single entity (e.g., pass it as a function argument
or store on a disk file) or use its individual parts in computations.

In the example that follows, the main() function defines two Cylinder objects (variables and
instances), initializes them, and compares their volumes. If the volume of the first Cylinder object
is less than the volume of the second Cylinder object, the first Cylinder is scaled up by 20%, and
the new dimensions of the first Cylinder are printed. This is similar to the example I discussed at
the beginning of Chapter 8.

int main()
{ Cylinder c1, c2; // program data
 c1.radius = 10; c1.height = 30; c2.radius = 20; c2.height = 30;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (464 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "\nInitial size of first cylinder\n";
 cout <<"radius: " <<c1.radius <<" height: " <<c1.height << endl;
 if (c1.height*c1.radius*c1.radius*3.141593 // compare volumes
 < c2.height*c2.radius*c2.radius*3.141593)
 { c1.radius *= 1.2; c1.height *= 1.2; // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print new size
 cout <<"radius: " <<c1.radius <<" height: " <<c1.height << endl; }
 else // otherwise do nothing
 cout << "\nNo change in first cylinder size"<< endl;
 return 0; }

In this code, the names of data fields are used explicitly. The client code accesses the field values
and does whatever is necessary (computing volumes, scaling size, printing). Changes to the
Cylinder design affect not only the Cylinder structure, but the client code as well. The
maintenance programmer has to deduce the meaning of processing (again, computing volumes,
scaling size, printing) from following each step of computations. To check whether all dimensions
of the object are initialized or scaled up or printed, one has to refer to the class Cylinder definition.
The reuse of these operations (computing volumes, scaling size, printing) for the same or for
another project is difficult because they are tied to the client code context.

These drawbacks can be eliminated by using access functions that encapsulate operations over
structure fields: setCylinder(), printCylinder(), getVolume(), and scaleCylinder().
Listing 9.1 shows this version of the client code and server code. The results of the program run are
shown in Figure 9-1.

Figure 9-1. Output for program in Listing 9.1.

Example 9.1. Example of using access function on behalf of the client code.
#include <iostream>
using namespace std;

struct Cylinder { // data structure to
access
 double radius, height; } ;

void setCylinder(Cylinder& c, double r, double h)
{ c.radius = r; c.height = h; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (465 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

double getVolume(const Cylinder& c) // compute volume
{ return c.height * c.radius * c.radius * 3.141593; }

void scaleCylinder(Cylinder &c, double factor)
{ c.radius *= factor; c.height *= factor; } // scale dimensions

void printCylinder(const Cylinder &c) // print object state
{ cout << "radius: " <<c.radius << " height: " <<c.height << endl; }

int main() // pushing responsibility to server
functions
{ Cylinder c1, c2; // program data
 setCylinder(c1,10,30); setCylinder(c2,20,30); // set cylinders
 cout << "\nInitial size of first cylinder\n";
 printCylinder(c1);
 if (getVolume(c1) < getVolume(c2)) // compare volumes
 { scaleCylinder(c1,1.2); // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print new size
 printCylinder(c1); }
 else // otherwise do nothing
 cout << "\nNo change in first cylinder size" << endl;
 return 0;
 }

This example is similar to the one in Listing 8.7, and what I demonstrated so far does not go
beyond the capabilities of an ordinary structure. Let us make the next step: combine data fields and
functions within the same class. In the following example, the syntactic boundaries of the class
Cylinder are denoted by the opening and the closing braces and by the closing semicolon.

This class contains two fields, or data members: radius and height. In addition to data members,
the class contains four member functions. (Another term for member functions is method; it comes
from Smalltalk and artificial intelligence.) Member functions have the same syntax as global non-
member functions: They can have parameters and return values, and each function has its own
scope for its local variables. Unlike global functions, member functions are defined inside class
boundaries (braces). Now everyone can see that these functions, setCylinder(), getVolume(),
scaleCylinder,() and printCylinder(), belong together and with data fields radius and
height.

struct Cylinder { // start of
class scope
 double radius, height; // class data
members
void setCylinder(double r, double h) // class member

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (466 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

functions
{ radius = r; height = h; } // set field
values
double getVolume()
{ return height * radius * radius * 3.141593; } // compute volume
void scaleCylinder(double factor)
{ radius *= factor; height *= factor; } // scale
dimensions
void printCylinder() // print object state
{ cout << "radius: " <<radius << " height: " <<height << endl; }
} ; // end of class
scope

Adding member functions does not change the basic property of a structure; it is a template that is
capable of defining objects of this class.

Cylinder c1, c2; // space for two object instances is allocated

When you discuss object-oriented designs and programs, you naturally use the term "object."
Unfortunately, this term has more than one meaning. Some people use this term to denote an
abstract concept important for the application, such as customer, account, or transaction objects.
Other people use this term to denote individual objects, such as an account that belongs to a
particular customer. Yet other people do not really know what they mean when they use this term
but still somehow expect other people to figure that out. I do not want to press you to make your
choice right away, but please do not get into this third category.

In this book, I use the terms variables, instances, class instances, class objects, and object instances
as synonyms. They all denote a program entity that is allocated memory (on the stack or on the
heap) for some period during program execution; they belong to a specific storage class and are
subject to scope rules. I try to avoid using the term "object" altogether. If push comes to shove and
I do use the term, I use it in the sense of a program variable. In most cases, it will be a variable of a
programmer-defined type, but I have no qualms about using this term "object" for variables of built-
in types as well. This is the programming meaning of the term.

In object-oriented analysis and design, the term "object" is often used to denote a set of potential
instances with the same properties. This usage is closer to the concept of the class (programmer-
defined type) than to the concept of the object instance. I do not want to get into an argument as to
which usage is correct. But because of this ambiguity, it is a good idea not to use the term "object"
without describing the meaning of the term.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (467 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This might sound funny that in a book devoted to object-oriented programming, I argue against
using the term "object," but the indiscriminate use of the term does cloud its meaning. When you
use this term, always make sure to be clear what you mean¡Xa single instance in the computer
memory that exists during program execution or a generalized description of these potential
instances, a C++ class that will be used to create specific instances during program execution.

The presence of member functions expands the size of the structure definition but does not expand
the size of structure instances: It is still the sum of sizes of individual fields (with possible
additional space for alignment). In this case, each Cylinder instance is allocated the space
sufficient for holding two double values.

Elimination of Name Conflicts

Class opening and closing braces (and the closing semicolon) form the class scope pretty much in
the same way as an ordinary structure forms a separate scope for its fields. This class scope, which
is nested within the file scope, is similar to the scope of an ordinary structure. The difference is that
the class scope can nest function scopes.

Nonmember functions (e.g., access functions in Listing 9.1) are global functions, and their names
must be unique in the program (unless they are made static in the file scope, but only a small
minority of functions can be made static in the file scope; more on static functions can be found in
Chapter 6, "Memory Management. The Stack and The Heap," and later in this chapter). Normally,
only those team members that use class Cylinder should learn about these function names because
they are going to call this functions. In practice, every team member should learn about these
names to avoid accidental name conflicts. This information obstructs the channels of
communication among programmers.

When functions are implemented as class member functions (as in Listing 9.2 later), their names
are local to the class scope. As a result, you cannot call member functions (or, for that matter,
access data members) using their names, for example, radius or setCylinder(). You have to
indicate whose Cylinder instance this radius belongs to or for what Cylinder variable to call the
function setCylinder().

c1.radius = 10; // radius of c1
c2.setCylinder(20,30); // setCylinder() for c2

In this example, it is radius of Cylinder variable c1 that is set to 10, and it is Cylinder variable
c2 that is used to call setCylinder().

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (468 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If the application uses another class, for example, Circle, which needs a data member radius, it
does not result in name conflicts.

struct Circle {
 double radius; // it can be integer or anything
. . . } ;

To access the radius field of class Circle, the application has to define Circle object instances
and use their names to access the radius field.

Circle cir1; cir1.radius = 10; // no ambiguity: Circle, not Cylinder

All class members (data members and member functions) are in the same scope within the class
braces. Hence, they can access each other by name, without qualifying references (scope operators)
to the class name or to the object name. For example, function setCylinder() sets the values of
fields (data members) radius and height.

void setCylinder(double r, double h) // set field values
{ radius = r; height = h; }

Whose radius and height are these? They are the fields of some Cylinder object (class instance).
When a member function, for example, setCylinder(), is called in the client code, this is called
sending a message to an object. Client code (which is outside of the class braces) identifies the
target of the message (the object whose fields are used inside the member function) by explicitly
using the object name, the name of the member function, and the dot selector operator between the
two.

Cylinder c1, c2; // potential targets of messages
c1.setCylinder(10,30); c2.setCylinder(20,30); // messages to c1, c2

The message applies to an instance of an object of that class. When the first message executes, it is
radius and height of object c1 that are used inside setCylinder(). When the second message

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (469 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

executes, it is radius and height of object c2 that are used inside setCylinder(). This is true
not only when the values of the fields are changed during message execution, but also when they
are merely used in computations.

if (c1.getVolume() < c2.getVolume()) // compare volumes
 { c1.scaleCylinder(1.2); . . . // scale it up

In the first message, it is the fields of variable c1 that are used in the computation of the volume
(whatever these computations are); in the second message, it is the fields of instance c2 that are
used for computing volume. In all the cases, you use the name of the object, the dot selector
operator, and the name of the message (member function). The message syntax is the same as the
syntax for accessing (or changing) the fields of the structure. For a field, you use the name of the
object, the dot selector operator, and the name of the field.

c1.radius = 40.0; c1.height = 50.0; // variable c1 is used

Listing 9.2 shows the version of the client code and server code that uses class Cylinder where
data fields are bound together with member functions. Since functionality of the program is the
same as in Listing 9.1 and it is the implementation only that has changed, the output of this
program is the same as that in Listing 9.1.

Example 9.2. Example of binding data and functions in a class with its own scope.
#include <iostream>
using namespace std;

struct Cylinder { // start of the class scope
 double radius, height; // data fields to access

void setCylinder(double r, double h) // set cylinder data
{ radius = r; height = h; }

double getVolume() // compute volume
{ return height * radius * radius * 3.141593; }

void scaleCylinder(double factor) // scale dimensions
{ radius *= factor; height *= factor; }

void printCylinder() // print object state
{ cout << "radius: " <<radius << " height: " <<height << endl; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (470 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

} ; // end of class scope

int main() // pushing responsibility to server functions
{ Cylinder c1, c2; // define program data
 c1.setCylinder(10,30); c2.setCylinder(20,30); // set cylinders
 cout << "\nInitial size of first cylinder\n";
 c1.printCylinder();
 if (c1.getVolume() < c2.getVolume()) // compare volumes
 { c1.scaleCylinder(1.2); // scale it up and
 cout << "\nFirst cylinder changed size\n"; // print new size
 c1.printCylinder(); }
 else // otherwise do nothing
 cout << "\nNo change in first cylinder size" << endl;
 return 0;
 }

Compare Listing 9.2 with Listing 9.1 and make sure you see the difference between using stand-
alone global functions, as in Listing 9.1, and functions bound with the data, as in Listing 9.2. With
stand-alone access functions, the object variable whose data is to be used within the function is
passed as a parameter.

void setCylinder(Cylinder& c, double r, double h) // access function
{ c.radius = r; c.height = h; } // Cylinder is a parameter

The appropriate object instance should be used in the function call as the actual argument.

setCylinder(c1,10,30); setCylinder(c2,20,30);

Without using classes, it would be utterly incorrect to implement setCylinder() function without
a Cylinder parameter and call this function without passing the actual object to operate on.

void setCylinder(double r, double h) // nonsense: what Cylinder?
{ c.radius = r; c.height = h; }
setCylinder(10,30); setCylinder(20,30); // nonsense: what Cylinder?

When you design a function as a class member function, there is no need to pass the object to be
used as a parameter.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (471 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void setCylinder(double r, double h) // method: no Cylinder parameter!
{ radius = r; height = h; } // data members, not parameter fields!

Instead, the appropriate object instance is specified as a target of the message during the function
call.

c1.setCylinder(10,30); // object c1 as a message target
c2.setCylinder(20,30); // object c2 as a message target

Many beginning C++ programmers try to have it both ways. When they design class member
functions, they also pass the object to be operated on as a parameter.

void setCylinder(Cylinder& c, double r, double h) // bad method
{ c.radius = r; c.height = h; }
c1.setCylinder(c1,10,30); c2.setCylinder(c2,20,30); // bad messages

I am not sure what attracts programmers to these C++ idioms, but I see them quite often. Is this
code syntactically correct? Sure, otherwise the programmers would not be able to use it. Is this
coding idiom semantically correct? Sure, otherwise the programmers would have done something
about it. Still, it is an ugly design.

Notice that exactly the same results could be achieved using different message targets.

c2.setCylinder(c1,10,30); c1.setCylinder(c2,20,30); // still bad

It seems that I am sending the first message to variable c2 and the second message to variable
c1Example of binding data and functions in a class with its own scope. But it is not
what you think. The first message still sets the fields of variable c1, and the second message sets
the fields of variable c2, as in the previous example. But it takes a few extra seconds to figure out
that the target of the message has nothing to do with the message itself!

This awkward design is just an example of how easy it is in C++ to write code that is not doing
what it seems to be doing and is using program components that have nothing to do with what is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (472 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

going on. This kind of design always increases the complexity of the code and coupling between
the client and server code.

Moving from writing stand-alone functions to writing classes requires a paradigm shift. Make sure
you make this shift and feel comfortable in both paradigms.

Implementing Member Functions Outside of Class

Notice that these member functions are correct only when they are implemented inside the class
scope, that is, within the class braces, as in Listing 9.2. If they are implemented outside the class
scope, different syntax should be used. This syntax is used when the relationship between member
functions and data members of the class is established using function prototypes within the class
declaration (specification) instead of the complete implementations, as in Listing 9.2.

struct Cylinder { // start of class scope
 double radius, height; // data fields to access
void setCylinder(double r, double h); // set Cylinder fields
double getVolume(); // compute volume
void scaleCylinder(double factor); // scale dimensions
void printCylinder(); // print object state
} ; // end of class scope

This means that the function definitions (function bodies) are to be implemented separately.
Usually, the class specification is in a header file with the extension .h, and the function
implementations are in a source file with extensions cpp or .cxx, depending on the compiler.

Function prototypes in the class declaration look exactly like function prototypes of stand-alone
global functions. The only difference is that they are defined within the class scope. Please take the
class scope borders seriously. Programmers rarely forget to specify the starting and ending braces.
But forgetting the ending semicolon is a common programming mistake. Unfortunately, the
compiler rarely tells you that you forgot the semicolon at the end of the class specification. Usually,
the compiler accuses you of doing something bad on the next line of code. Make sure that when the
line in error follows the class specification, you check whether the semicolon is missing.

ALERT

Programmers sometimes forget to place the semicolon after the closing class brace. Often, the
compiler will refer you to the following line, not to the line where the semicolon is missing.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (473 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When the member functions are implemented outside of the class specification, you have to
indicate the name of the class to which these member functions belong. This is natural, because
each class has its own scope, and each class might have a member function, for example,
getVolume(). I first wanted to say that each class might have member functions, for example,
setCylinder() or printCylinder(), but then I realized that the likelihood of using these
function names in classes like Cube, Circle, or Account is not very high. For these classes, the
programmers would use names such as setCube(), setAccount(), printAccount(), and so on.
But the name getVolume() can be used for classes Cylinder, Cube, or even Circle (the result
would be zero).

Names like setCylinder() and setAccount() used to be the only reasonable option before the
advent of C++, because C did not distinguish between functions with different signatures. C++
distinguishes between functions with the same name but with different signatures (see Chapter 7 for
a discussion of function name overloading). Hence, in C++ it is possible to use the name set()
instead of setCylinder() and setAccount() because the first function set() would have a
Cylinder parameter, and the second function set() would have an Account parameter.

With class scope added to C++, name conflicts for member functions cease to be a serious problem.
Hence, I could use the name set() instead of setCylinder(), print() instead of
printCylinder(), and so on.

c1.set(10,30); c2.set(20,30); // Cylinder objects as message targets

When the compiler processes a message, it identifies the name of the target object and searches for
the definition (or declaration) of this object to identify its type. In this case, the compiler will easily
establish that object instances c1 and c2 are of type Cylinder. Then the compiler searches for the
definition (or declaration) of this type and searches whether a member function with the name of
the message is defined there. If the member function set() is found, the compiler checks the
function interface: the number and type of arguments. If the number of arguments matches but
there is a type mismatch for an argument, the compiler is looking for a possibility of a conversion.
If this process results in a match, the compiler generates object code; if not, the compiler generates
an error message.

This is nice, but the compiler has no difficulty in establishing the type of the target object. It just
searches the source code (or rather, the tables that the compiler has created processing the
declarations of variables). Not so for a human maintenance programmer. A human has to search the
code, and this might become difficult, time consuming, and error prone. From this point of view, a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (474 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

longer function name could give the maintainer the cue to avoid the search for the message target
definition.

c1.setCylinder(10,30); // objects are Cylinders, right?
c2.setCylinder(20,30);

All right, back to the discussion of implementing the member functions when the class
specification contains member function prototypes only. The implementation is exactly the same as
when the functions are implemented within the class boundaries. The only difference is in function
names¡Xthey have to be qualified by the class name. To do so, you use the scope operator between
the class name and the function name.

inline void Cylinder::setCylinder(double r, double h)
{ radius = r; height = h; } // set data fields

inline double Cylinder::getVolume()
{ return height * radius * radius * 3.141593; } // compute volume

inline void Cylinder::scaleCylinder(double factor)
{ radius *= factor; height *= factor; } // scale dimensions

inline void Cylinder::printCylinder() // print object state
{ cout << "radius: " <<radius << " height: " <<height << endl; }

In human terms, the real name of the member function setCylinder() is not just setCylinder()
but rather setCylinder() of class Cylinder. In syntactic terms, you denote this as
Cylinder::setCylinder().

This two-part class definition (specification with prototypes and separate implementations) defines
exactly the same class Cylinder as before. Notice that when a member function is implemented
within the class specification, it is inline by default; when it is implemented separately, it is not
inline by default, but it can be made inline explicitly.

As I mentioned, the class specification with prototypes is usually placed in a header file and
function implementations are placed in a separate source file. It is okay, however, to implement all
or some of the member functions in the header file. The header file has to be included in every file
where the name of the class is mentioned, for example, in the client source file, and even in the
source file where the member functions are implemented (because the class name is used in the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (475 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class scope operator).

Since the linker should not see a function definition more than once, class specifications should be
bracketed by preprocessor directives for conditional compilations (see other examples in Chapters
2, "Getting Started Quickly: A Brief Overview of C++," and 5, "Aggregation and Programmer-
Defined Data Types"). For example, the header file for class Cylinder could look the following
way.

#ifndef CYLINDER_H // common convention for symbol name
#define CYLINDER_H
#include <iostream>
using namespace std;

struct Cylinder { // start of the class scope
 double radius, height; // data fields to access
void setCylinder(double r, double h) // set cylinder data
{ radius = r; height = h; }
double getVolume() // compute volume
{ return height * radius * radius * 3.141593; }
void scaleCylinder(double factor) // scale dimensions
{ radius *= factor; height *= factor; }
void printCylinder() // print object state
{ cout << "radius: " <<radius << " height: " <<height << endl; }
} ; // end of class scope
#endif

It is a common convention to put this code in file Cylinder.h and use the symbol name for
conditional compilation CYLINDER_H. Implementation of member functions in a separate file is an
important contribution to program modularity. Logically, member functions, for example,
Cylinder::setCylinder(), are defined within the class braces, whether they are within the class
braces or not. This is why these functions do not need a qualifier (scope operator) to access the
radius and height data members.

In separate implementation, the function name qualifier is mandatory. Without it, function
setCylinder() would refer to global variables radius and height, not to class data members
radius and height.

inline void setCylinder(double r,double h) // class scope operator is missing
{ radius = r; height = h; } // are these data members or what?
inline double Cylinder::getVolume() // compute volume
{ return height * radius * radius * 3.141593; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (476 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inline void Cylinder::scaleCylinder(double factor)
{ radius *= factor; height *= factor; } // scale dimensions
inline void Cylinder::printCylinder() // print object state
{ cout << "radius: " <<radius << " height: " <<height << endl; }

The compiler will accept a global function definition with no problem; it is legal in C++. If no
variables radius and height are declared in this file scope, the compiler will complain about
undefined variables radius and height, not about the missing scope operator. Thus, it will
produce a misleading error message. Your first reaction will probably be that of disbelief. Doesn't
the compiler see that radius and height are defined right here, in the class specification? It must
be yet another bug in this compiler! But the compiler has no way of knowing that you forgot to use
the scope operator to define global variables. By the way, if variables with these names are defined
in this scope for some other purpose, the compiler will silently generate code that refers to these
global variables, not to class data members.

ALERT

Programmers sometimes forget to place the scope operator before the member function name. The
compiler assumes that you want to implement a global function and accuses you of using undefined
variables with the names of class data members used in the function.

Defining Class Objects of Different Storage Classes

Class scope includes all its data and function members. It is nested within the file (or another class,
function, or even a block) where the class is declared, along with other functions and/or classes.
The components of the class can be accessed only when a class object is in scope.

As for variables of any type, class objects (instances, variables) in C++ can be defined as
automatic, global, static, or dynamic variables. (See Chapter 6 for a discussion of storage classes.)

For automatic and global (extern or static) variables, the space is allocated implicitly as a result
of the object definition. All the previous examples of defining class instances were examples of
automatic variables. They are created when program execution reached their definitions. For
example, variables c1 and c2 in Listing 9.2 are created when execution reaches the line in main()
where these variables are defined.

If a class variable is defined as global, the space for this object is allocated before the main()
function starts execution. The same is true when a class variable is defined as static (either as global
in a file or as local in some function scope).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (477 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

What is common to all these object instances is that they can be referred to through their names.
For access to data fields and member functions of these objects (and references to them), the object
name with the dot notation can be used by the client code when the client code needs to access
class members.

Cylinder x;
x.setCylinder(50,80);
double volume = x.getVolume(); x.radius = 100;

For dynamic variables, space is allocated explicitly using the operator new. The object is not
defined by name; it can be accessed using a pointer only. The client function will use the pointer
name (not the object name, because the object instance does not have a name) with the arrow
notation to access data and function members of the object. Here, a named pointer to Cylinder
objects is created, and then an unnamed object of class Cylinder is created and manipulated.

Cylinder* p; // no object is created yet
p = new Cylinder; // no object name exists
p->setCylinder(50,80); // unnamed object is accessed
double volume = p->getVolume(); // same notation
p->radius = 100;

If you want to avoid the arrow selection operator, you can use the dereference operator with the dot
selection operator.

(*p).setCylinder(50,80); // same as p->setCylinder(50,80);

Similarly, when an object is passed to a client function by pointer (rather than by value or by
reference), the arrow notation (rather than the dot notation) is used.

void CopyData(Cylinder *to, const Cylinder &from) // copy Cylinder
{ to->radius=from.radius; to->height=from.height; } // arrow notation
Cylinder x,y; x.radius=3.0; x.height=7.0; // client for CopyData()
CopyData(&y,x); // passing object by pointer

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (478 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Automatic variables are destroyed when they go out of scope where they are defined. The
programmer should not do anything to return their memory to the system for reuse. The same is
true for global and static variables. They are destroyed when they go out of scope, that is,
immediately after main() terminates. No programming action is necessary.

Dynamic variables are different. They have to be deleted explicitly, since the system does not know
when the programmer wants to return dynamic memory.

Cylinder* p = new Cylinder; // unnamed object is created
p->setCylinder(50,80); // unnamed object is accessed
cout << "Volume: " << p->getVolume() << endl; // arrow operator
delete p; // unnamed Cylinder is destroyed, pointer is not

As with variables of any type, client access to class instances and to their members depends on the
scope rules: They can be accessed only when the class instance is in scope. In addition, C++ allows
the class designer to establish additional limitations for other parts of the program.

Controlling Access to Class Members

In the previous section, I designed class Cylinder that binds together its data members and
member functions in a syntactic unit. This syntax repairs two problems with using global functions
for object-oriented programming.

First, using global functions for access to data does not force the indication that data and operations
belong together. Hence, it is possible to tear apart the functions that belong together and spread
them throughout different places in the source code (making the code more difficult for the
maintainer to understand and modify). Second, global function names are global. To avoid potential
name conflicts, programmers have to coordinate their activities even when parts of the program
they are working on are not immediately related. The class syntax clearly indicates that data and
functions belong together. The class scope eliminates the potential for function name conflicts.

At the beginning of this chapter I mentioned two other goals of adding the class facility to C++:
pushing responsibility from client code to the server functions and control of access to class
members.

Pushing responsibilities down from the client code to the server class is accomplished by the right
choice of member functions. (Sometimes, the choice of data members is also important.) In Chapter
8, I discussed the example (see Listing 8.8) where the choice of member functions setRadius(),
getRadius(), setHeight(), and getHeight(), forced the client code to do the work rather than

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (479 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

asking the servers to do the work for it. From that point of view, the choice of member functions in
Listing 9.2 is better¡Xinstead of getting the values of radius and height for scaling, printing, or
computing volume, the client code asks the objects of class Cylinder to scale and print themselves
or compute their volume.

Pushing responsibility down to the servers is an important concept. What is sufficient and what is
not is often subjective. I brushed aside the design in Listing 8.8, but it might be quite useful if the
class is used as a library utility that has to serve the largest number of users. For some users, the
design in Listing 9.2 might be too restrictive¡Xthey might want to compute the surface of the
cylinder, scale it using different factors in different directions, and so on. Yet, for other users, the
design in Listing 9.2 might be too general¡Xthese users might not need the numerical value of
cylinder volume, but they might be interested in finding out whether the first cylinder object is
smaller than the second (see Listing 8.9 for comparison).

Pushing responsibilities down to server classes will pop up often during the further discussions of
class design. In this section, I will discuss the techniques that allow the class designer to control
access to class data members and member functions.

Figure 9-2 describes the class Cylinder and its relationship with its client main(). Here the class
has three components: data, functions, and the border that separates everything inside the class
from everything outside the class. It shows that data are inside the class. Functions are partially
inside the class (their implementation) and outside the class (their interfaces that are known to the
client).

Figure 9-2. Class Cylinder and its relationship with its client main().

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (480 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The picture also shows that when the client code needs the values of cylinder fields (e.g., for
computing cylinder volume, scaling, printing, or setting the field values), the client code uses
member functions getVolume(), scaleCylinder(), and so on rather than accessing the values of
fields radius and height. This is what the dashed line means. It shows that the direct access to
data is ruled out.

There are two motivations for barring access to data members. The first objective is to limit the
extent of changes to the program when data design changes. If the interfaces of member functions
stay the same (and usually it is not difficult to keep them the same when the data design changes),
then it is member function implementations that have to change, not the client code. This is
important for maintenance. The set of functions that have to change is well defined¡Xthey are all
listed in the class definition, and there is no need to inspect the rest of the program for possible
implications.

The second reason for barring direct client access to data members is that the client code expressed
in terms of calls to member functions is easier to understand than is the code expressed in terms of
detailed computations over field values (provided that the responsibility is pushed to the member
functions and they do the work for the client, not just retrieve and set the values of the fields, as is
the case with the getHeight() and setHeight() functions).

To achieve these advantages, everything inside the class should be private to the class, not
accessible from outside the class, leaving only function interfaces public, accessible from the
outside of the class. This would prevent the client code from creating dependencies on server class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (481 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

data. Remember that the word dependency is the dirtiest word in programming. Dependencies
between different parts of program code denote:

ϒΠ the need for cooperation among programmers during program development

ϒΠ the need to study and change more code during program maintenance than is necessary

ϒΠ difficulties in reusing code in the same or similar project

Meanwhile, the class design in Listing 9.2 does not enforce any protection against access to data.
The client code can access the fields of the Cylinder object instances, developing dependencies on
the Cylinder data design, and foregoing essential advantages of using classes.

Cylinder c1, c2; // define program data
c1.setCylinder(10,30); c2.setCylinder(20,30); // use access function
c1.radius = 10; c1.height = 20; . . . // this is still ok!

C++ allows the class designer to use fine control over access rights to class components. You can
indicate access rights to each class component (data or function) by using the keywords public,
private, and protected. Here is another version of class Cylinder.

struct Cylinder { // start of class scope
 private:
 double radius, height; // data is private
 public: // operations are public
 void setCylinder(double r, double h);
 double getVolume(); // compute volume
 void scaleCylinder(double factor);
 void printCylinder(); // print object state
} ; // end of class scope

The keywords divide the class scope into segments. All data members or function members
following the keyword, for example, private, have the same private access mode. In our example,
data members radius and height are private, and all member functions are public.

There might be any number of public, protected, and private segments in any order you want.
In this example, I define the radius data member as private, then two member functions as
public, then the height data member as private, then two more member functions as public.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (482 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

struct Cylinder { // start of class scope
 private:
 double radius; // data is private
 public: // operations are public
 void setCylinder(double r, double h);
 double getVolume();
 private:
 double height; // data is private
 public: // operations are public
 void scaleCylinder(double factor);
 void printCylinder(); // print object state
} ; // end of class scope

This is a nice element of flexibility, but usually programmers group all class components with the
same access rights in the same segment.

In general, class members (either data members or member functions) in public segments are
available to the rest of the program as in the previous examples.

Class members (again, both data and functions) in private segments are available to the class
member functions only (and to functions with access rights of a friend; I will discuss friends
later, in Chapter 10, "Operator Functions: Another Good Idea."). Using the name of a private class
member outside of the class (or friend) scope is a syntax error.

Notice that these rules do not prevent you from making data private and making functions public.
However, in traditional C++ class design, data members are made private, and member functions
are made public.

Class members in protected segments are available to the class member functions and to member
functions of classes that inherit from this one (directly or indirectly). Discussing inheritance now
will take us too far from the topic of class syntax; I will do that later.

Client functions (global functions or member functions of other classes) can access private class
members only through the functions (if any) in the public part.

Cylinder c1, c2; // define program data
 c1.setCylinder(10,30); c2.setCylinder(20,30); // use access function
// c1.radius = 10; c1.height = 20; // this is now a syntax error
 if (c1.getVolume() < c2.getVolume()) // another access function
 c1.scaleCylinder(1.2); // scale it up

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (483 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It is the duty of the class designer to provide necessary access to its data to support class clients and
to avoid excessive access. If the client code uses the class feature it does not have to use, it
develops extra dependencies. Should this feature change, the client code is affected as well. Also,
the more features of the class that are made public, the more knowledge the client programmer and
maintainer have to acquire to use the class instances productively.

With the use of private access to class data members, the implementation details of the class
Cylinder are now hidden; if the names or types of Cylinder fields change, the client code is not
affected as long as the Cylinder class interface remains the same. The client code is prevented
from developing dependencies on class Cylinder data design. The client programmer (and
maintainer) is excused from the need to learn class Cylinder data design.

Usually, it is the data part that is likely to evolve. This is why, in a typical class, data members are
private and member functions are public. This enhances modifiability of the program and
reusability of class design. Notice that class member functions (whether public or private) can
access any data member of the same class, whether public or private.

This is why any group of functions that accesses the same set of data should be bound together as
class member functions, and calls to these functions should be used as messages to class instances
in the client code. This enhances reusability.

The class is isolated from other parts of the program. Its private parts are outside the reach of other
code (similar to local variables in a function or a block).

This property decreases the amount of coordination among design team members and reduces the
likelihood of human miscommunication. This enhances program quality.

In all previous examples, I used the keyword struct to define a C++ class. C++ also allows you to
use the keyword class for that purpose. Here is an example of class Cylinder that uses the
keyword class rather than struct.

class Cylinder { // change from 'struct' to 'class' keyword
 private:
 double radius, height; // data is still private
 public: // operations are public
 void setCylinder(double r, double h);
 double getVolume();
 void scaleCylinder(double factor);
 void printCylinder();
} ; // end of class scope

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (484 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

What is the difference between this class definition and the previous class definition? There is
none. This class specification defines exactly the same class. The objects of these classes are
exactly the same¡Xthere is no difference at all. There are only two differences between the
keywords struct and class in C++. One difference is that the keyword struct has only one
meaning in C++: It is used for one purpose only (to introduce a programmer-defined type into the
program the way I did in the previous examples). Another difference between the keywords struct
and class in C++ is in default access rights. In struct (and in union,) default access is public.
In class, default access is private. That is all.

Using default access rights allows you to structure the sequence of data fields and member
functions differently. In the next version I am responding to the criticism of some programmers
who say that class examples that describe data rather than functions first (as I did in previous
examples) are hypocritical. The purpose of the class construct is to hide data design from the client
code, and it is not a good idea to open the class specification with the description of the so-called
"hidden" data. The client code uses public member functions; hence, it is appropriate if they are
listed first in the class specification.

struct Cylinder { // some prefer to list public members first
 void setCylinder(double r, double h); // operations are public
 double getVolume();
 void scaleCylinder(double factor);
 void printCylinder();
 private:
 double radius, height; // data is private
 } ; // end of class scope

Others feel that understanding data is important for understanding what member functions do.
Hence, there is nothing wrong with describing data first. After all, data "hiding" is not about
military-type classified information or KGB-like secrecy, where information should be prevented
from being known. In programming, information hiding and encapsulation is about preventing the
client code from using the information in the client design, not about knowing this information. In
this case, if you want to use default access rights, the class keyword is better than struct.

class Cylinder { // some prefer to list data first
 double radius, height; // data is still private
 public: // operations are public
 void setCylinder(double r, double h);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (485 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 double getVolume();
 void scaleCylinder(double factor);
 void printCylinder();
} ; // end of class scope

Some programmers say that the keyword struct is inferior to the keyword class, because if you
define the class using the default access rights, data will not be protected against use by the client
code, and that will defeat encapsulation.

struct Cylinder { // default access rights are used
 double radius, height; // data is not protected from client
access
 void setCylinder(double r, double h); // methods are public
 double getVolume();
 void scaleCylinder(double factor);
 void printCylinder();
} ; // end of class scope

Yes, this class design does defeat encapsulation. But hey, this does not prove that the keyword
struct is inferior to the keyword class. If you replace struct with class in this design, the
result will be even worse than with the keyword struct. Do you see why?

class Cylinder { // default access rights are used
 double radius, height; // data is protected from client
access
 void setCylinder(double r, double h); // methods are not accessible
 double getVolume();
 void scaleCylinder(double factor);
 void printCylinder();
} ; // end of class scope

This class is not usable at all. Yes, the data fields are now private (and this is fine), but so are
member functions, and the client code cannot access them. This is not a very good design.

It is probably better not to rely on defaults and instead specify access rights explicitly. Let us call a
spade a spade.

Initialization of Object Instances

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (486 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When the compiler processes a definition of a variable, it uses its type definition to allocate the
required amount of memory, either from the heap (for static and extern variables or for dynamic
variables) or from the stack (for local automatic variables).

This is true for simple variables, arrays, structures, and classes with member functions. If the code
later assigns a value to a variable, the variable does not need initialization at its definition. If the
algorithm uses the variable as an rvalue, it needs initial values for its data members.

Cylinder c1; // data members are not initialized
double vol = c1.getVolume(); // no, this is no good

This coding pattern, however, might be appropriate if some default values could be used in
computations. However, C++ initializes only static and global variables. (Default values are zeros
of a suitable type.) Dynamic variables and automatic variables are left without initial values.

Sometimes you would like to specify default initial values. It would be nice to initialize data
members at their definition, similar to regular variables, but in C++, a data member definition
cannot contain an initializer.

class Cylinder {
 double radius = 100, height = 0; ¡K // no, this is illegal in C++

The class could provide a member function for the client code to call to specify the object's initial
state.

class Cylinder {
 double radius, height;
public:
 void setCylinder(double r, double h); ¡K } ;

Using this function, client code would send the setCylinder() message to Cylinder objects.

Cylinder c1;
c1.SetCylinder(100.0,0.0); // set radius to 100, height to zero

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (487 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is, of course, overkill. This code allows you to specify any initial values rather than specified
default values. This is where constructors become useful.

Constructors as Member Functions

Class objects can be initialized implicitly, using a constructor. A constructor is a class member
function, but its syntax is more rigid than it is for other member functions. It cannot have an
arbitrary name; you should give the constructor function the same name as the class. The
constructor interface cannot specify a return type, not even void. It cannot return values even if it
contains a return statement.

class Cylinder {
 double radius, height;
public:
 Cylinder () // same name as class, no return type
 { radius=1.0; height=0.0; } // no return statement
 ¡K } ;

When client code creates an object, the default constructor is called.

Cylinder c1; // default constructor: no parameters

It is called a default constructor because it has no parameters. I know, this is a strange reason, but
that's the way it is.

A constructor cannot be called explicitly at will, as can any other member function.

c1.Cylinder(); // syntax error: no explicit calls to constructors

The constructor can be called only when an object is created, not later. The compiler generates code
that implicitly calls the constructor immediately after the instance of the object is created. This is
why constructors are usually placed in the public section of the class specification. Otherwise, an
attempt to create a class instance would generate an error as does any access to a private class
member.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (488 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In general, an instance of the object can be created in the following ways:

ϒΠ at the beginning of the program (extern and static objects)

ϒΠ at entry into the scope with the object definition (automatic objects)

ϒΠ when a variable is passed to a function (or returned from a function) by value

ϒΠ when a variable is created dynamically using the operator new (but not malloc)

Now you see why constructors have no return values: Constructors are called implicitly by the code
generated by the compiler, and there is nobody around to use this return value.

As member functions, constructors can have parameters; hence, constructors can be overloaded. If
necessary, constructor parameters can have default values. When a class has more than one
constructor, each one could be called when an object is created. Which constructor is called
depends on the context, that is, on a set of arguments supplied by the client code at the time of
object creation (the number and type of arguments).

Supplying constructors in the class means providing services to class clients: Client programmers
do not have to call initializing functions explicitly anymore. However, they should worry about
supplying the arguments for the constructor. Here is an example of a constructor with two
parameters.

class Cylinder {
 double radius, height; // initialized in constructors
public:
 Cylinder(double r, double h); // member function prototype
 void setCylinder(double r, double h);
 } ;
Cylinder::Cylinder(double r, double h) // scope operator
 { radius = r; height = h; }

Notice the name of the constructor implemented outside the class boundaries. The first Cylinder
denotes the class to which the member function belongs. The second Cylinder denotes the name of
the member function (the same as the name of the class). Constructors that have fewer than two
parameters have special names. (You will see them shortly.) Constructors with two or more
parameters do not have special names¡Xthey are just general constructors.

This constructor with two parameters does the same thing as setCylinder(): It sets the values of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (489 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

data members to the values of the arguments supplied by the client. The difference is that
setCylinder() can be called many times for the same object instance in the client code. The
constructor is called only once¡Xwhen the object is created.

Here are a few examples of constructor invocations in client code. These different syntactic forms
call the same general constructor with two parameters. Notice that an assignment operator in the
second statement does not mean that an assignment operation is performed. Despite the appearance
of using an assignment, this is not what you think (quite a common situation in C++. Remember
that story about the crocodile?): There is no assignment there. It is just a different syntactic form for
a constructor call.

Cylinder c1(3.0,5.0); // a constructor call for a named object
Cylinder c2 = Cylinder(3,5); // it is still a constructor call
Cylinder *r = new Cylinder(3.0,5.0); // unnamed object

Notice the syntax for a variable with arguments. This is a new syntax. One of the implicit ambitions
of C++ language design is the uniform treatment of variables of built-in and programmer-defined
types. For built-in types, we used the assignment operator for initialization. With the advent of
programmer-defined types, you can use the syntax with arguments for variables of built-in types as
well as class objects.

int x1(20); // same as int x1=20

When an object is allocated with a call to malloc(), no constructor is called. Hence, the client
code has to initialize class objects explicitly.

Cylinder *p = (Cylinder*)malloc(sizeof(Cylinder)); // no constructor call
p->setCylinder(3,5); // object fields are assigned values

A call to malloc() is the only way in C++ to create an object without a constructor call. Creation
of all other objects, named objects and dynamic objects, is followed by a call to a constructor.
Without any fanfare, we crossed a point of no return. From now on, there will be no situation where
you just create an object instance and give it a chunk of memory. Any creation of an object will be
accompanied by a function call¡Xa call to a constructor. Again, this requires a change in thinking.
Every time you see an object instance created (remember that story about the brick?), you should

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (490 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

remind yourself: "OK, this means that a constructor is called. Which constructor?"

Default Constructors

Many classes do not need constructors because class objects do not need default initialization.
When the class designer does not add any constructors to the class, the system provides a default
constructor (which does nothing) for the class.

class Cylinder { // OK if no constructors/destructors
 double radius, height; // data is protected from client access
public:
 void setCylinder(double r, double h); // methods are accessible
 double getVolume();
 void scaleCylinder(double factor);
 void printCylinder();
} ; // end of class scope

All of the versions of class Cylinder that I discussed in the previous section were using the system-
supplied default constructor. I did not mention it to avoid unnecessary complication of the
discussion. When the client code creates a Cylinder object, this default constructor is called.

Cylinder c1; // default constructor is called, no initialization

Why should you know about this? After all, this constructor does not do anything. What you should
know, however, is that if a class defines a nondefault constructor (constructor with parameters),
then the system no longer supplies the default constructor.

Why should you know about that? Because syntactic errors occur if the client designer defines class
variables and arrays that need the default constructor.

This last version of class Cylinder did not have programmer-defined constructors. Hence, the
system gave this class Cylinder the default constructor that did nothing. When variable c1 was
created, that constructor was called. How do I know that? Well, some constructor must be called.
(There is no such thing anymore as object creation without a constructor call.) Which constructor?
That depends on the number of arguments supplied. The variable c1 does not have any arguments
supplied. This is evidence that a constructor without arguments is called (remember that joke about
copper wire?). A constructor without arguments is a default constructor. Does the class provide the
default constructor? No. Does the class provide any constructor? No. Hence, the default constructor

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (491 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

is supplied by the system. It does nothing. Everything is fine.

Let us look at a version of class Cylinder that provides a general programmer-defined constructor.
This means that the system takes the default constructor away.

class Cylinder {
 double radius, height;
 public:
 Cylinder(double r, double h) // this is not enough
 { radius = r; height = h; }
 . . . } ;

When the client code tries to create Cylinder objects, trouble follows.

Cylinder c1(3.0,5.0); // this is OK
Cylinder c2, c[1000]; // 1001 syntax errors
Cylinder *p = new Cylinder; // one syntax error

Here, I create 1001 Cylinder object instances without supplying arguments. Recall that there is no
creation of an object without constructor calls? So the compiler tries to generate code for 1001
constructor calls. Which constructor? Since I did not specify any arguments, the compiler is trying
to call a constructor with no arguments, that is, a default constructor Cylinder::Cylinder(). But
this version of class Cylinder does not define a default constructor. Since it defines a general
constructor, the system takes the default constructor away. What happens when the client code calls
a member function 1001 times to initialize 1001 Cylinder objects? Since this function is not found
in the Cylinder class specification, the compiler generates a syntax error. Make sure that you learn
to rush through this logical derivation quickly.

The problem can be resolved by supporting the client code with a programmer-defined default
constructor. This default constructor could do nothing, similar to the system-supplied default
constructor, or it could initialize object data members to some reasonable values.

class Cylinder {
 double radius, height;
 public:
 Cylinder () // programmer-supplied default constructor
 { radius = 100.0; height = 0.0; } // reasonable values
 Cylinder(double r, double h) // general constructor

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (492 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { radius = r; height = h; }
 . . . } ;

Client code:

Cylinder c1(3.0,5.0); // this is OK
Cylinder c2, c[1000]; // now this is OK, too
Cylinder *p = new Cylinder; // no syntax error

Notice that the creation of each object is accompanied by at least one function call; here,
constructors are inline functions; still, this can have performance implications. There is no such
thing in C++ as the creation of an object without a function call.

NOTE

Creation of objects in C++ is always followed by a constructor call. If the class defines no
constructor, creation of objects is followed by a call to a default constructor supplied by the system.
If the class defines any constructor, the system does not supply the default constructor. In this case,
you cannot create arrays of objects or objects without arguments. The system gives, the system
takes away.

Copy Constructors

One of the important ideas underlining C++ philosophy about objects is that classes are types.
Defining classes for your program extends the system of built-in C++ types. C++ wants to treat
built-in types as objects. C++ also wants to treat programmer-defined types as built-in types.

For example, you can define variables of built-in types without specifying their initial values.
Hence, you are able to do that for object variables.

int x; Cylinder c1; // noninitialized variables

The syntax is the same, but the meaning is different. The definition of a variable of a built-in type
just allocates memory for this variable. The definition of a variable of a programmer-defined class
allocates memory for this variable and then calls the default constructor. If class does not define
constructors, this default constructor is supplied by the system and does nothing. If class defines

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (493 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

constructors, the definition of the class variable is a syntax error unless the class also defines a
default constructor. This constructor could do nothing, or it could initialize the fields of the object
to default values.

Similarly, one might want to initialize a nonclass variable of a built-in type with another variable of
the same type. C++ supports a similar syntax that allows the client code to initialize one class
object with the values of another object of the same class.

int x(20); Cylinder c1(50,70); // objects are created, initialized
int y=x; Cylinder c2=c1; // initialization from existing objects

Do not be misled by the assignment operators on the second line. There is no assignment in these
statements. The assignment operator is reused here to denote initialization. Remember, when the
name of the type is present next to the name of the variable, you are dealing with initialization.
When the name of the type is absent and the name of the variable appears alone, you are dealing
with assignment. Why should you care? As you are going to see later, different functions are called
in each case.

What function is called in this case? The answer is simple. Since the object is created and
initialized, it is a constructor that is called here. What constructor? As I said earlier, it depends on
context, that is, on the number and types of actual arguments supplied when the object is created.

In this example, there is one argument that is used to initialize object c2, namely, object c1. The
type of this object is Cylinder. Hence, the constructor that is called has one parameter of type
Cylinder. Is this derivation clear? You should do something like that each time you analyze
object creation statements.

The special name for a constructor with one parameter of the same type as the class is a copy
constructor. The reason for this name is that it copies the values from the fields of the existing
source object into the fields of the target object just created. As you can see, the last version of
class Cylinder does not have a constructor with one parameter of type Cylinder. It has a general
constructor with two double parameters and a default constructor with no parameters. Does it
mean that the statements above are in error, similar to the situation when I introduced the concept
of the default constructor? No, and this is yet another confirmation that life is never dull while you
are learning C++.

If the class defines no constructors, C++ supplies its own copy constructor. This copy constructor
copies data members bitwise from the source object into the target object. Unlike the system-
supplied default constructor, this system-supplied copy constructor is not taken away even if the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (494 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class defines other constructors. Hence, you can always count on its existence.

For a class like Cylinder, it does not make much sense to define its own programmer-defined
copy constructors. All you could do in such a constructor is to copy the radius and height fields of
the parameter. But this is exactly what the system-supplied copy constructor does. The only reason
you would use a programmer-defined copy constructor is for debugging purposes.

class Cylinder {
 double radius, height;
public:
 Cylinder (const Cylinder &c)
 { radius = c.radius; height = c.height;
 cout << "Copy constructor: " << radius << ", "
. . . . } ; << height << endl; }

Notice that the parameter should be a reference to a variable of the given type rather than a value of
the given type. What happens if the parameter to the copy constructor is passed by value?

Cylinder (Cylinder c) // incorrect constructor interface
 { radius = c.radius; height = c.height;
 cout <<"Copy constructor: "<< radius <<", " <<height << endl; }

When this constructor is called, a copy of the actual argument is made¡Xthe space for a Cylinder
variable is allocated and is initialized by the values of the fields of the actual argument. But wait a
minute! There is no such thing as creation of an object in C++ without a constructor call! "The
space for a Cylinder variable is allocated and is initialized by the values of the fields of the actual
argument" means that the copy constructor is called for the parameter of the copy constructor.
When this second version of the copy constructor is called, the copy of its actual argument is made,
and the constructor is called again. This process of recursive invocation continues until either the
user loses patience or the machine runs out of stack space.

If you do not have much experience with recursion and this explanation sounds too obscure, just try
passing a copy constructor parameter by a value, and I am sure you won't want to do it again. Still,
let me post an alert to that effect.

ALERT

The copy constructor has one parameter of the type of the class to which the constructor belongs.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (495 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Make sure that you pass this parameter by const reference and not by value. Passing the copy
constructor parameter by value results in an infinite sequence of copy constructor calls.

One more comment about the copy constructor. Since it is a function call, you can call it using the
standard syntax for a function call to a general constructor.

int x = 20; Cylinder c1(50,70); // objects are created, initialized
int y=x; Cylinder c2(c1); // call to Cylinder copy constructor

But C++ wants to treat objects and variables of built-in types in the same manner. This means that
the initialization syntax of the constructor call is extended backwards to built-in variables, even
though no constructor can be called for variables of these types. This syntax is available in C++
only, not in C.

int x(20); // object is created and initialized
int y(x); // variable y is created and initialized

One more general comment about constructor invocations. For all constructors, with the exception
of the default constructor, the syntax of the function call (with its parentheses) is available. Here are
examples of a general constructor and a copy constructor, for named variables and for dynamic
variables.

Cylinder c1(50,70); // general constructor is called
Cylinder c2=c1; // copy constructor is called
Cylinder *p = new Cylinder(50,70); // general constructor is called
Cylinder *q = new Cylinder(*p); // copy constructor is called

For default constructors, this syntax is not available. It is a syntax error to use parentheses when the
client code calls a default constructor.

Cylinder c1(); // syntax error
Cylinder c2; // default constructor is called
Cylinder *p = new Cylinder(); // syntax error: parentheses

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (496 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Cylinder *q = new Cylinder; // default constructor is called

Why this inconsistency? To make compiler writing easier. Look at the first line of this last code.
How do you know that this is supposed to be a constructor call and not a prototype of a function
whose name is c1() and whose return type is Cylinder? You do not know. Neither does the
compiler writer. One way to avoid this ambiguity is to prohibit the use of prototype everywhere but
at the start of the source code file. This is reasonable because that is where prototypes usually are.
However, C allows the prototypes to be used everywhere, and C++ design values backward
compatibility too much to make it a syntax error. Java did not have the goal of backward
compatibility with C, and its syntax for default constructor invocation in the client code is
consistent with its syntax for calling all other constructors.

Conversion Constructors

A constructor with one parameter of some other type, not the same type as the class, is called a
conversion constructor. Often, it is the type of one of the data members of the class. The conversion
constructor is useful when the client code wants to specify only one individual value for creation of
each object and use the same default values for other fields of each object.

For example, in a modeling program you might want to create Cylinder objects using different
values of their radius. Initially, all objects should have height zero, and then they will grow to
reflect the process being modeled (growth or arteries, connecting electronic components, heat
exchange through the pipe walls, etc.).

Cylinder c1(50.0); // conversion constructor is called
Cylinder c2 = 30.0; // conversion constructor is called

Again, despite different syntax, both statements have the same meaning¡Xa call to a conversion
constructor.

Unlike default and copy constructors, conversion constructors are not supplied by the system.
Unless a conversion constructor with one double parameter is defined in the class, both statements
above are in error. The conversion constructor specifies what to do with the only value provided as
a parameter and what default values to use for other fields of the object. In the next example, class
Cylinder defines four constructors: default constructor, copy constructor, conversion constructor,
and a general constructor with two parameters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (497 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Cylinder {
 double radius, height;
 public:
 Cylinder () // programmer-supplied default constructor
 { radius = 1.0; height = 0.0; }
 Cylinder (const Cylinder &c) // copy constructor
 { radius = c.radius; height = c.height; }
 Cylinder(double r, double h)
 { radius = r; height = h; } // general constructor
 Cylinder (double r)
 { radius = r; height = 0.0; } // conversion constructor
 . . . } ;

The conversion constructor deals the first blow to the system of strong typing in C++. As I
mentioned earlier, all modern languages support strong typing. If a value of one type is expected in
a specific context, it is a syntax error to provide a value of another type. Consider, for example, the
statement:

Cylinder c2 = 30.0; // conversion constructor is called

If Cylinder is a simple C structure, it is a syntax error: You are told that you made a mistake and
you have a chance to think about it and decide what you want to do. If Cylinder is a C++ class
without a conversion constructor, it is a syntax error: Again, you do not have to run the program
and analyze the program output to know about that. If Cylinder is a C++ class with a conversion
constructor, it is not a syntax error. If you did it on purpose, fine. If you made a mistake, the
friendly compiler does not stand by protecting you from your mistake. The system of strong typing
is weakened.

As another example, consider function CopyData() from this chapter (again assuming that the
radius and height data members are public).

void CopyData(Cylinder *to, const Cylinder &from) // copy Cylinder
data
 { to->radius=from.radius; to->height=from.height; } // arrow notation

Again, for a simple C structure or for a C++ class without a conversion constructor, this function
call in the client code is a syntax error:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (498 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

CopyData(&c2,70.0); // the FROM Cylinder is missing here

If the conversion constructor is available, the compiler will generate code that creates a temporary
unnamed Cylinder object, calls the conversion constructor (with actual argument 70.0) for that
temporary object, and passes that temporary unnamed object to CopyData() as the second
argument.

If the client code uses a numeric type value that is different from double, this is not a problem.
The compiler generates code that converts this numeric value to double and then passes that
converted value to the conversion constructor as the actual argument.

Cylinder c2 = 30; // 30 is converted to double
CopyData(&c2,70); // 70 is converted to double

Of course, if this client code is exactly what you want to write, it is a good thing that C++ provides
you with the flexibility to implement your intent. If you wrote this code by mistake, it is a pity that
the compiler does not tell you about the error so that you could correct it before the program has a
chance to run.

Destructors

A C++ object is destroyed either at the end of program execution (for extern and static objects),
at the exit from the closing brace of a scope (for automatic objects), when the operator delete is
executed (for dynamic objects allocated with new), or when the library function free() is called
(for objects allocated with malloc()).

Whenever a class object is destroyed (with the exception of the call to free()), the class destructor
is called immediately before the destruction; if the class defines no destructor, the system-supplied
default destructor is called (similar to default constructor, it does nothing).

A programmer-supplied destructor, similar to a constructor, is a class member function. Destructor
syntax is even more rigid than constructor syntax is. No return type is allowed in the function
interface, and no return statement is allowed in the function body. The destructor has the same
name as the class name preceded by a tilde (~), for example, ~Cylinder(). Unlike constructors,
destructors cannot have parameters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (499 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Both constructors and destructors are good places to put debugging print statements.

class Cylinder {
 double radius, height;
public:
 ~Cylinder () // programmer-defined destructor: no return type
 { cout << "Cylinder (" <<radius << ", " << height
 << ") is destroyed" << endl; } // no return value
 } ;

When a destructor is implemented outside of the class scope, the scope operator is used. Notice that
the tilde is part of the function name, not of the scope operator.

Cylinder::~Cylinder () // class destructor: no return type
 { cout << "Cylinder (" << radius << ", " << height
 << ") is destroyed" << endl; } // no return value

Since destructors cannot have parameters, they cannot be overloaded, because overloaded functions
must be different in their parameter lists. Hence, each class can have, at the most, one destructor.

A programmer-defined destructor is needed if the object uses dynamic memory or other resources
(files, database locks, etc.); the destructor should return these resources to the system to avoid
resource leaks. Destructor functions are complements of constructors for such sequences as
memory allocation and deallocation, file opening and closing, and so on.

Let us consider an example of a class where the destructor could be useful. Class Name
accommodates a string of characters that contains a person's name. The constructor initializes an
array of characters. (It is a conversion constructor since it has one parameter of a type that is
different from Name.) For simplicity's sake, I am making data public and supplying only one
method, show_name(), which displays the object's contents on the screen.

struct Name {
 char contents[30]; // fixed size object, public data
 Name (char* name); // or Name(char name []);
 void show_name();
 } ; // destructor is not needed yet

Name::Name(char* name) // conversion constructor
{ strcpy(contents, name); } // standard action: copy argument data

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (500 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void Name::show_name()
{ cout << contents << "\n"; }

The client code can define objects of this type and display their contents on the screen.

Name n1("Jones"); // conversion constructor is called
Name *p = new Name("Smith"); // conversion constructor is called
n1.show_name(); p->show_name();
delete p; // unnamed object is deleted

This design allocates the same amount of memory no matter how large the name contents is. This is
wasteful when the name is short, and this is prone to memory corruption when the name is too long.

Dynamic memory management is a popular solution to this problem. Instead of a fixed-size array
as a data member, the class defines only a character pointer. The amount of heap memory depends
on the length of the name that the client code supplies. In the constructor, strlen() is called to
compute the amount of memory to allocate on the heap (the extra character is for the terminating
zero), the memory is allocated, and strcpy() is called to initialize the heap memory.

struct Name {
 char *contents; // pointer to dynamic memory: still public
 Name (char* name); // or Name(char name []);
 void show_name();
 } ; // destructor is needed now

Name::Name(char* name) // conversion constructor
{ int len = strlen(name); // number of characters in argument
 contents = new char[len+1]; // allocate heap memory for argument data
 if (contents == NULL) // 'new' was not successful
 { cout << "Out of memory\n"; exit(1); } // then give up
 strcpy(contents, name); } // success: copy argument data

void Name::show_name()
{ cout <<contents << "\n"; }

I put the client code in a global function, Client(), to be able to discuss what happens when the
new version of class Name is used.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (501 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void Client()
{ Name n1("Jones"); // conversion constructor is called
 Name *p = new Name("Smith"); // conversion constructor is called
 n1.show_name(); p->show_name();
 delete p; // destructor for object pointer by p is
called
 } // p is deleted, destructor for object n1 is called

When the delete p; statement is executed in the function Client(), memory pointed to by pointer p
is deleted. This memory consists of pointer contents only. The memory pointed to by pointer
contents is not deleted and becomes inaccessible. It is memory leak. Notice that the statement
delete p; does not delete pointer p, it deletes what p points to. Pointer p is deleted according to the
scope rules, when the scope where it is defined terminates. This happens when the execution of
function Client() reaches its terminating brace.

Similarly, when function Client() terminates, its local object n1 is destroyed, and its pointer
contents is returned to the stack. Memory pointed to by pointer contents is not returned to the
system and represents memory leak.

It is for these types of classes, which manage their resources dynamically, that the use of
destructors is vital. Destructors are needed to maintain the integrity of a C++ program. The
destructor is called every time an object is destroyed by scope rules or by operator delete (but not
by a function call to free()). Hence, the destructor is a good place to release memory (and other
resources) acquired by the object during its lifetime (mostly, in its constructor, but other member
functions can allocate dynamic memory as well).

For class Name, the destructor is very simple. Listing 9.3 shows class Name with the destructor that
returns the heap memory. Figure 9-3 shows the result of the execution of the program with the
output from debugging statements in the constructor and in the destructor.

Figure 9-3. Output of the program from Listing 9.3.

Example 9.3. Example of using the destructor to return heap memory allocated to named

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (502 of 1187) [8/17/2002 2:57:55 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

and unnamed objects.
#include <iostream>
using namespace std;

struct Name {
 char *contents; // public pointer to dynamic memory
 Name (char* name); // or Name (char name []);
 void show_name();
 ~Name(); } ; // destructor eliminates memory leak

Name::Name(char* name) // conversion constructor
{ int len = strlen(name); // number of characters
 contents = new char[len+1]; // allocate dynamic memory
 if (contents == NULL) // 'new' was not successful
 { cout << "Out of memory\n"; exit(1); } // give up
 strcpy(contents, name); // standard set of actions
 cout << "object created: " << contents << endl; } // debugging

void Name::show_name()
{ cout <<contents << "<<\n"; }

Name::~Name() // destructor
{ cout << "object destroyed: " << contents << endl; // debugging
 delete contents; } // delete heap memory, not pointer 'contents'

void Client()
{ Name n1("Jones"); // conversion constructor is called
 Name *p = new Name("Smith"); // conversion constructor is called
 n1.show_name(); p->show_name();
 delete p; // destructor for object pointed to by p is called
 } // p is deleted, destructor for object n1 is called

int main() // pushing responsibility to server functions
{ Client();
 return 0;
 }

When function Client() executes delete p; the class Name destructor is called and executes the
statement delete contents. When function Client() destroys object n1, the destructor is called
and executes statement delete contents. This eliminates memory leak.

Figure 9-4 shows the memory use by function Client(). Figure 9-4(A) shows the state of memory
after the named object n1 and the unnamed object pointed to by pointer p are created. The numbers
show that stack space for n1 is allocated first (by scope rules), heap space for " Jones " is allocated
next (by the constructor), then stack space for pointer p (by scope rules), space for the unnamed
object (pointed to by p) on the heap, and finally heap space for " Smith " is allocated.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (503 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 9-4. Memory management map for the client function Client() in Listing 9.3.

Figure 9-4(B) and (C) demonstrate the destruction of objects. Figure 9-4(B) shows that the heap
space for " Smith " is returned first (by the destructor), and then the unnamed heap object is deleted
(by the delete operator). Pointer p stays because the delete operator does not delete the pointer; it
deletes the heap memory pointed to by the pointer.

Figure 9-4(C) shows that the scope rules deallocate the stack space for pointer p and for the named
object n1. The demise of the pointer does not lead to any events. The destruction of object n1
causes a call to the Name constructor, deletion of heap memory allocated to " Jones " (by the
constructor), and then the destruction of stack space allocated to n1.

Make sure that you spend enough time working with this figure and experimenting with your own
code. Some programmers find heap memory (" Smith " and " Jones " in these examples) easier to
analyze if they view it as part of Name object instances. I find it more convenient to think only about
data members as parts of object instances: Heap memory is an additional resource that is allocated
to each object instance and is later returned. From that point of view, the space allocated to the
object itself is the size defined by its data members, not by arguments to its constructor. But this is
a matter of taste.

Notice that if function Client() fails to execute delete p; then the object pointed to by pointer p
(its pointer contents and memory pointed to by contents) is never returned to the system. It is the
responsibility of the client programmer to preserve the integrity of the program. There is no such

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (504 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

requirement for objects controlled by scope rules. For example, object n1 is deleted automatically
when execution reaches the closing brace of Client(). The client programmer does not lift a
finger to make it happen. All that is required for memory management is that the server
programmer include the destructor in the design of class Name.

Timing of Constructor and Destructor Invocations

The term "constructor" implies that this member function constructs the object. The term
"destructor" implies that this member function destroys the object. Do not fall into this trap. These
terms describe the tasks performed by constructors and destructors incorrectly.

In the previous discussion, I was careful to point out that the constructor is called after the object is
constructed, and the destructor is called before the object is destroyed. Often, C++ books do not
pay attention to this difference and state that constructors and destructors are called when the
objects are constructed and destroyed. This is unfortunate, because it makes programmers think that
constructors construct objects and destructors destroy objects.

This is not the case. It is scope rules (for named objects) and operators new and delete (for
unnamed objects) that construct and destroy objects. Constructors only initialize object fields after
these fields have been constructed and allocate additional resources, for example, heap memory.
Destructors only return resources that objects acquired during their lifetime; for example, heap
memory in constructors and in other functions.

Constructors do not construct, and destructors do not destruct.

Class Scope and the Overriding of Names in Nested Scopes

The actual times of constructor/destructor invocations depend on the scope and storage class of the
object instances.

Scope defines the accessibility of variables and objects for different parts of the program code.
Storage class defines the lifetime of variables and objects from their creation to their destruction.
This section extends the discussion of scope and storage class from Chapter 6. If you feel that it is
too complex, you can skip it during the first reading. (I hope there will be a second reading.) This
material is important, but it can wait until you accumulate more experience with writing and
reading C++ code.

Since a global variable can be defined anywhere in the file, even after some function definitions, it
is not accessible from the functions that are defined earlier in the file than the variable declaration
is.

Cylinder Cglobal; // available everywhere in the file

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (505 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main ()
{ Cylinder c; // scope is limited to main()
 }

int y; // not visible in main(), visible in
foo()

void foo() // cannot be called from main() if no
prototype
{
 y = 0; // access to global variable
 Cylinder Clocal;
 Clocal.setCylinder(10,30); // public members are visible
 Cglobal.setCylinder(5,20); // public members are visible
}
 // Cglobal, y, foo() are visible here

This is legal C++, but it is not a good programming style.

Since a local variable can be defined anywhere in a block (a function block or an unnamed block),
it is not accessible in the code in this block that precedes this variable. If a local name is the same
as a global name, the local name is used in the block where it is defined, and the global name is
used outside the local block.

To these two scopes (described in detail in Chapter 6), C++ adds yet another scope: class scope.
Each name defined in the class scope (a data member or a member function, a public or a private
member) is known within the whole class scope. The rules of one-pass compilation for global and
local scopes do not apply to the class scope. This is why in all of our examples of Cylinder class,
Cylinder data members are accessible in Cylinder member functions for any order of member
definitions.

If a name defined in class scope is the same as a global name, then all references to this name
within the class scope are to the name defined in the class scope; outside the class scope (that is,
outside the class member functions), the references to that name are to the global name.

If a name defined in the class scope is the same as a local name defined in one of its member
functions, then the local name is used within that member function, and the name defined in the
class scope is used in other member functions.

In short, a local scope name can hide both class scope names and global names; a class scope name
can hide a global name. These rules of name hiding can be overridden by the global scope operator
:: (for global names) and by the class scope operator (for the class scope name).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (506 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the next example, the name radius is used for a global variable, for the Cylinder data member,
and as a local name in the Cylinder member function setCylinder().

double radius = 100; // global name

struct Cylinder { // start of the class scope
 double radius, height; // member radius hides global
radius

void setCylinder(double r, double h)
{ double radius;
 radius = r; height = h; // local radius hides data member
radius
 Cylinder::radius = radius; } // class scope operator overrides
the rule

void scaleCylinder(double factor)
{ radius = ::radius; // global scope operator overrides
the rule
 height *= factor; }
 . . . } ; // end of class scope

When parameter r in setCylinder() is assigned to radius, it is a local variable that is assigned,
not the Cylinder data member. To assign a value to the data member radius, the class scope
operator should be used. In member function scaleCylinder(), radius means the class data
member; to get the value of the global variable radius, the global scope operator should be used.

Sometimes programmers use the same name for a method parameter as for a data member. For
example, this version of setCylinder() function is incorrect.

void Cylinder::setCylinder(double radius, double h) // incorrect function
{ radius = radius; height = h; } // parameter is local, hides data member

This function compiles and runs without any problems. However, the designer and the compiler
understand the assignment radius = radius; differently. For the designer, the left-hand side
radius means the data member radius, and the right-hand side radius means the parameter. For
the compiler both sides mean the parameter. Assigning the parameter to itself is not very useful, but
this is one of the examples where the compiler refuses to second-guess the programmer. You want
to assign the parameter to itself? Fine, it is legal C++.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (507 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Storage class refers to the scope of the life cycle of a variable: when they are created and when
destroyed (automatic, external, static).

Local automatic variables are allocated on the stack when the execution reaches their definitions
(different space for different execution of the scope). If the same name is used in different scopes, it
refers to different locations in memory. If there is no initialization, the contents of memory are
undefined. For an object, a constructor is called immediately after the space is allocated.

Automatic variables are destroyed when the execution reaches the end of the block where it is
defined. For an object, the destructor is called immediately before the space is returned to the
system.

For external or static (local or global) variables, space is allocated and initialized in fixed memory
before the program starts to run. If no explicit initial value is specified, memory is initialized to
zero. For an object, constructor code is executed (and all functions that the constructor might call)
after the space is allocated, before the start of main(). The order of invocation of constructors for
different objects is undefined.

External and static (local or global) variables are destroyed when main() terminates (reaches its
closing brace or terminates in other ways); for objects, the destructor is called immediately before
the object is destroyed.

This is a big change relative to our discussion of storage classes in Chapter 6. If the program does
not use global variables of programmer-defined classes, the order of code execution is well defined.
It starts with the first line of main() and ends with the last line of main().

Dynamic variables are allocated and deallocated explicitly. Usually, the calls to operators new and
delete or to functions malloc() and free() do not happen in the same function (scope). Often, a
dynamic variable is allocated in one function, attached to a dynamic structure (stack, queue, linked
list, etc.), and then deallocated in another function. (These functions should probably belong to the
same client class.)

Memory Management with Operators and Function Calls

In this section, I compare the use of operators new and delete with the use of functions malloc()
and free(). Similar to the previous section, you can skip this section if you feel it is too technical.
Make sure you come back to this section for two things: a) the recommendation to use new and
delete over malloc() and free(), and b) the criticism of my example for not abiding by the
principles of object-oriented programming.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (508 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that the constructor is called only after the class object is created by the scope rules or by the
operator new. It is not called after a malloc() call. Similarly, the destructor is called only before
the object is destroyed by the scope rules or by the operator delete. A call to free() does not call
the destructor.

When malloc() and free() are used, it is the responsibility of the client programmer to ensure
that objects have the necessary heap memory and this memory is returned when not needed. The
client code has to allocate dynamic memory from the heap and later deallocate it, returning it to the
heap. Violation of this responsibility results in memory corruption and memory leaks. It is also
important to distinguish dynamic management of class objects from dynamic management of object
memory, where a class data member is a pointer that points to dynamic memory.

Listing 9.4 shows an example similar to Listing 9.3, but instead of new, malloc() is used to
allocate the object space pointed to dynamically by pointer p. Obviously, memory management
here is more complex than in Listing 9.3: The client code allocates the heap memory for an
unnamed object and then for the dynamic memory that contains dynamic memory of the object
(with contents " Smith "). The output of this example is the same as for Listing 9.3. (I turned off
the debugging statements in the constructor and the destructor.)

Example 9.4. Memory management by client code rather than by server object.
#include <iostream>
using namespace std;

struct Name {
 char *contents; // public pointer to dynamic memory
 Name (char* name); // or Name (char name []);
 void show_name();
 ~Name(); } ; // destructor eliminates memory leak

Name::Name(char* name) // conversion constructor
{ int len = strlen(name); // number of characters
 contents = new char[len+1]; // allocate dynamic memory
 if (contents == NULL) // 'new' was not successful
 { cout <<"Out of memory\n"; exit(1); } // give up
 strcpy(contents, name); } // standard set of actions

void Name::show_name()
{ cout <<contents << "\n"; }

Name::~Name() // destructor
{ delete contents; } // it deletes heap memory, not the pointer

void Client()
{ Name n1("Jones"); // conversion constructor is called

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (509 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Name *p=(Name*)malloc(sizeof(Name)); // no constructor is called
 p->contents = new char[strlen("Smith")+1]; // allocate memory
 if (p->contents == NULL) // 'new' was not successful
 { cout << "Out of memory\n"; exit(1); } // give u
 strcpy(p->contents, "Smith"); // 'new' was successful
 n1.show_name(); p->show_name(); // use the objects
 delete p->contents; // avoid memory leak
 free (p); // notice the sequence of actions
 } // p is deleted, destructor for object n1 is called

int main() // pushing responsibility to server functions
{ Client();
 return 0;
 }

In this example, the object n1 is created by scope rules, and its constructor properly allocates and
initializes the heap memory for it. The unnamed object pointed to by pointer p is allocated by
malloc(), and the constructor is not called. The call to malloc() only allocates object memory,
that is, the pointer p->contents. It does not allocate additional heap memory needed to store the
name information. Hence, the client code allocates and initializes heap memory pointed to by p-
>contents.

When the function Client() terminates, no care should be exercised to delete object n1 and return
its heap memory. The scope rules destroy this object, and the destructor returns its heap memory. It
is different for the unnamed object pointed to by pointer p. Not only does the object have to be
destroyed by the client code, but the object's heap memory has to be returned by the client code.

In this little example, I use classes, objects, messages, dynamic memory management, constructors,
and destructors¡Xall of the impressive arsenal of C++ programming. Nevertheless, I managed to
violate all the principles of object-oriented programming. The only redeeming feature is that I did it
on purpose. Often, programmers do it without noticing. Let us run through the list again.

I violated the principle of encapsulation: client code uses the name of object field contents, thus
creating the dependency; if the name of this field of class Name changes, function Client() has to
be changed too.

I violated the principle of information hiding (in the sense discussed in Chapter 8): The client code
knows that class Name uses heap memory rather than a fixed-size character array; if the design of
class Name changes, function Client() will be affected as well.

These dependencies created the need for human coordination: I have to ask the designer of class
Name about details such as field names, dynamic memory management, and who knows what else
instead of just learning the interface of the public member functions, as is possible in the case of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (510 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

using variable n1.

The code of function Client() is not expressed in terms of the function calls to class Name member
functions; instead, it is cluttered with access to data and data manipulation so that the maintainer
has to spend extra time trying to understand what I wanted to achieve.

Worst of all, I did not push the responsibility to the server class, even though all necessary services
are there; I did memory allocation and deallocation in the client code rather then using the server
object.

The result is dismal. The client code is much more complex than it needs to be. Also, it is error
prone. A little change in function Client(), and it falls apart. In this version, I free the object
pointed to by pointer p first, and then I try to delete heap memory. When the program is run, the
operating system accuses the program of memory violation and aborts it. This is reasonable,
because when the object pointed to by p disappears, pointer p->contents disappears as well. Not
every operating system can afford the luxury of checking every memory access at the expense of
the execution speed, and on many platforms this flaw would go unnoticed.

void Client()
{ Name n1("Jones"); // conversion constructor
is called
 Name *p=(Name*)malloc(unsigned(sizeof(Name))); // no constructor is
called
 p->contents = new char[strlen("Smith")+1]; // allocate dynamic memory
 if (p->contents == NULL) // 'new' was not
successful
 { cout << "Out of memory\n"; exit(1); } // give up
 strcpy(p->contents, "Smith"); // 'new' was successful
 n1.show_name(); p->show_name(); // use the objects
 free (p); // wrong sequence of
actions !
 delete p->contents; // there is nothing to
delete here!
 } // p is deleted, destructor for object n1
is called

In addition, if the object is allocated with new, it should be deallocated with delete; it is a
semantic error (!) to use free(). Similarly, it is a semantic error (!) to use delete to return
memory allocated by malloc().

I am using these exclamation points to alert you that a semantic error is different than a syntactic

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (511 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

error, run-time abort, or incorrect result of execution (which can be discovered by observing test
results). The concept of "semantically incorrect program" is an unfortunate contribution of C++ to
software engineering. The results of an incorrect sequence of calls are "undefined," and you are left
to fend for yourself to make sure that the program does not contain that time bomb waiting to
wreak havoc.

These two characteristics of functions malloc() and free() ¡Xno calls to constructors and
destructors and the danger of incorrect program when mixed with the operators new and delete
¡Xare troubling. This is why using malloc() and free() for dynamic memory management is not
popular in C++. However, they are very popular in C (there are no new and delete operators in C),
and legacy systems often use these functions. They are also used when the application that
dynamically handles a lot of memory scrambles to improve its performance. Functions malloc()
and free() can be used for creating customized operators new and delete for selected classes.
This is an advanced use of operators that will be discussed later.

The version presented in Listing 9.3 is better than the version in Listing 9.4: It does not defeat
encapsulation, violate information hiding, or create the need for additional human cooperation. It
expresses its algorithm in terms of messages to the server object. However, it burdens the client
code with the responsibility of allocating and deallocating the Name object pointed to by pointer p.
Programmers often use dynamic memory management where it is not very useful. This is the case
here. This object has to be allocated and deallocated using scope rules rather than by using explicit
memory management.

void Client()
{ Name n1("Jones"); // conversion constructor is called
 Name n2("Smith"); // no dynamic allocation/deallocation
 n1.show_name(); n2.show_name();
 } // destructor for objects n1 and n2 is called

Make sure that you do not make your C++ programs more complex than they have to be.

Using Returned Objects in Client Code

C++ functions can return built-in values, pointers, references, and objects. They cannot return
arrays, but returning pointers allows you to simulate returning arrays. Built-in values can be used as
rvalues only. Other return types (pointers, references, and objects) can be used as lvalues. This
opens the door to quite interesting idioms in the source code. These idioms contribute to the
expressiveness of C++ programs but sometimes make the source code more difficult to understand.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (512 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The material in this section can be easily skipped in the first reading, even though the programming
idioms I am discussing here are quite common.

Returning Pointers and References

I will start with the discussion of simple (noncomposite) built-in return types. The values of these
atomic types are used as rvalues, but the pointers and references can be used as both rvalues and
lvalues.

Consider the following version of class Point. Its setPoint() member function modifies the state
of the target Point object. Its getX() and getY() member functions return integer values;
getPtr() returns a pointer to data member x, and getRef() returns a reference to data member x.
I am not providing functions that return a pointer and a reference to data member y because
functions getPtr() and getRef() are sufficient to illustrate the related issues, including
modification of the object state.

class Point
{ int x, y; // private data
 public:
 void setPoint(int a, int b)
 { x = a; y = b; }
 int getX() // return a value
 { return x; }
 int getY()
 {return y; }
 int* getPtr() // return a pointer to the value
 { return &x; } // the address operator is needed
 int& getRef() // return a reference to a value
 { return x; } } ; // no address operator for reference

In deciding whether the address-of operator should or should not be used, you rely on the same
logic as for assignment or for parameter passing. Function getPtr() returns a pointer; hence, to
return a value of x would be a type mismatch, a syntax error. Function getRef() returns a
reference, and the reference could (and should) be initialized by the value to which it is going to
point for the rest of its life. Hence, using &x would be a type mismatch, a syntax error¡Xit is an
address, not an int value.

When a value is returned from a function, it can be used as rvalue only, on the right-hand side of
assignments or in comparisons (or as input parameters in function calls). In this example, client
code manipulates the value returned by the function. The value changes, but the object whose value

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (513 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

was returned by the function does not change, because return by value makes a copy of the original
value, pretty much like passing parameters by value.

Point pt; pt.setPoint(20,40);
int a = pt.getX(), b = 2* pt.getY() + 4; // ok, use as rvalue
a += 10; // 'a' changes, but pt.x does not

When a pointer or a reference is returned from a function, it can be used both as rvalue and also as
lvalue, on the left-hand side of the assignment, or as an output parameter in a function call. In the
next example, the first line treats the values returned by getPtr() and getRef() as
rvalue¡Xnothing unusual. The second line modifies the values pointed to by pointer ptr and
reference ref. Notice that they both point inside the variable pt to its data member pt.x. This
data member is private, but the client code is able to change it without using access functions. The
third line uses the function call as an lvalue, and it also modifies the state of variable pt. Notice
that there is no need for parentheses in the expression *pt.getPtr(); the selector operator is of
higher priority than the dereference operator, which here dereferences the value returned by the
method, not a pointer pointing to the target object. (pt is not a pointer, it is the name of a Point
object.)

int *ptr = pt.getPtr(); int &ref = pt.getRef(); // ok, use as rvalue
*ptr += 10; ref += 10; // private data is changed through aliasing
*pt.getPtr()=50; pt.getRef()=100; // private data is changed

First, this syntax of using a function call as an lvalue is unusual. Second, this practice, as some say,
"breaks encapsulation and information hiding;" It changes the private data that should not be
accessible to client code. But hey, who says that information hiding is about not changing private
data? A call to setPoint() does change private data, and it does not break information hiding.
Neither does a call to getRef(). Encapsulation and information hiding are about avoiding
dependencies between classes, not about avoiding changes to private data members.

From a software engineering point of view, the major problem with this example is that it uses
aliasing¡Xit refers to data member x but uses other names instead: ptr, ref, getPtr(), and
getRef(). These names, especially getPtr() and getRef(), give no indication that they refer to
data member x. Hence, this coding idiom forces the maintainer to spend additional effort to
understand the meaning of the code. Use this technique with caution, if at all. It is legal C++, but it
is dangerous. It is more harmful than using global variables.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (514 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Returning pointers and references requires that the address passed to the caller remain valid after
the function terminates. In the previous example, getPtr() and getRef() return a pointer to pt.x,
and pt.x remains in scope after the function returns. Sometimes, this is not the case. In the next
example, functions getDistPtr() and getDistRef() compute the distance between the target
Point object and the point of origin. They return the pointer and the reference to the computed
value of the distance. This is a regrettable blunder!

class Point
{ int x, y;
public:
 . . . // setPoint(), getX(), getY(), getPtr(), getRef()
 int* getDistPtr()
 { int dist = (int)sqrt(x*x + y*y);
 return &dist; } // no copying, but dist disappears
 int& getDistRef()
 { int dist = (int)sqrt(x*x + y*y);
 return dist; } } ; // different syntax, same problem

The local variable dist disappears after getDistPtr() and getDistRef() terminate. The use of
its address might produce correct results if its memory location is not used for something else, or it
can silently result in incorrect computations. Some compilers might produce a warning, others
won't. At any rate, this version of Point code above and client code below are both syntactically
correct.

Point pt; pt.setPoint(20,40);
int * ptr = pt.getDistPtr(); // invalid pointer
cout << " Pointer to distance : " << *ptr << endl; // okay
int &ref = pt.getDistRef(); // invalid reference
cout << " Reference to distance : " << ref << endl; // okay
cout << " Pointer to distance : " << *ptr << endl; // bad
cout << " Reference to distance : " << ref << endl; // bad

The results of running this example on my machine are shown on Figure 9-5. I got away with the
first use of invalid pointer and invalid reference: Both output values 44 are correct even if neither
the pointer nor the reference is valid. The attempt to print these values again gave incorrect results.
This means that any other use of these values is incorrect. This is likely to go unnoticed. After all, I
have just tested the values of ref and *ptr, saw the correct results, and have no reason to expect
that they will change! My vigilance will likely be directed toward other issues. What about yours?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (515 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 9-5. Correct and incorrect results of returning a pointer and a reference.

After all, we all take correct results of the execution as evidence of program accuracy. You might
want to test the program on another set of test data to cover additional paths through the program,
but it is counterintuitive (and counterproductive) to repeat the tests for the same input data. The
results should be the same. They are in other programming languages. They are in C++, too, but
only if you know what you are doing.

ALERT

Make sure that when you return a pointer or a reference from a function, it doesn't point to a
location that is invalidated by C++ scope rules. Violation of this guideline is not a syntax error,
but you should not take correct results as evidence that your program is correct.

In general, it is a good idea to limit return values to boolean flags that report back to the client code
on success or failure of a function call. However, the aesthetic allure of functions such as getX()
and getY() is too strong, and programmers will always use them. Make sure you are not too
excited by the power of C++ and do not return pointers and references, especially to values that
soon become invalid. The compiler will not stand by to prevent you from making a mistake.

Returning Objects

In the next example, I am adding to class Point three more member functions:
closestPointVal(), closestPointPtr(), and closestPointRef(). Each function accepts a
reference to a Point object as a parameter and computes the distance to the point of origin for the
parameter and for the target of the message. If the parameter is closer to the point of origin, the
function returns the parameter object. If the target of the message is closer to the point of origin, the
function returns the target object (as a dereferenced pointer this that points to the target object).

The first function returns the closest object itself, the second function returns the pointer to the
closest object, and the third function returns the reference to the closest object. The advantage of
this interface is that it makes possible the chain message notation, where the return value of one
function call is used as the target for another function call. The use of both as an rvalue or even as
an lvalue is possible for all three kinds of return values: objects, pointers, and references.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (516 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Point
{ int x, y;
public:
 . . . // setPoint(), getX(), getY(), getPtr(), getRef()
 . . . // getDistPtr(), getDistRef()
 Point closestPointVal(Point& pt)
 { if (x*x + y*y < pt.x *pt.x + pt.y * pt.y)
 return *this; // object value: copying to temp object
 else
 return pt; } // object value: copying to temp object
 Point* closestPointPtr(Point& p) // returns pointer: no copy
 { return (x*x + y*y < p.x*p.x + p.y*p.y) ? this : &p; }
 Point& closestPointRef(Point& p) // returns reference: no copy
 { return (x*x + y*y < p.x*p.x + p.y*p.y) ? *this : p; } } ;

Here, this is a keyword that denotes a pointer to the target object of the message; in the following
example, it is object p1. The first function uses longhand (two return statements), the last two
functions use shorthand (the conditional operator).

Notice how addressing modes play themselves in returning object values. Function
closestPointVal() returns a Point object (by value). When the target object is returned, the
this pointer (which points to the target) has to be dereferenced, and the fields of the target object
(object p1) are copied into the fields of the receiving object (object pt). When the parameter object
is returned, reference pt is used. This reference is a synonym for the object it is pointing to (object
p2), and the fields of this object are copied into the receiving object (object pt).

Point p1,p2; p1.setPoint(20,40); p2.setPoint(30,50) ; // set Point objects
Point pt = p1.closestPointVal(p2); // fields of the closest point are copied

Function closestPointPtr() returns a pointer to the closest Point object. When the target object
is closer than the parameter object is, the this pointer (which points to the target, e.g., p1) is
returned. In the next example, the pointer value is copied in the receiving pointer (pointer p). When
the parameter object is closer, its reference p is used. Since this reference is a synonym for the
object it is pointing to (and not for the address of this object), the value of &p is copied into the
receiving pointer. This pointer can be used to access the members of the closest object (p1 or p2).

Point *p = p1.closestPointPtr(p2); // pointer is returned: fast

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (517 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

p->setPoint(0,0); // move p1 or p2 to the point of origin

You see that returning the object value is potentially slow, and that returning the object pointer
avoids copying the object fields. When an object reference is returned, the situation is not clear-cut.
Function closestPointRef() returns a reference to the closest Point object. When the target
object is closer, the this pointer should be used. Since you cannot assign a pointer to a reference,
you should use notation for the target value, *this. Keep in mind, however, that this does not
mean that the copy of the target object is created. It is only notation. Similar to passing parameters
by reference, it is only the address (reference) that is copied, not the object fields. When the
parameter object is closer, its reference p is used directly with the same result: only the reference is
copied, not the fields.

Point &r =p1.closestPointRef(p2); // reference is returned: fast
r.setPoint(0,0); // move p1 or p2 to the point of origin

If, however, the receiving variable in the client code is of the object type rather than of the
reference type, copying does take place.

Point pt = p1.closestPointRef(p2); // p1 or p2 is copied into pt

You see that returning an object reference does not necessarily eliminate a potential performance
problem.

The major stimulus for returning an object (whether it is returned by value, pointer, or reference) is
the possibility of the chain notation for messages: sending a message to an object that is returned by
a function.

Point p1, p2; p1.setPoint(20,40); p2.setPoint(30,50);
int a = p1.closestPointVal(p2).getX(); // might be slow
int b = (*p1.closestPointPtr(p2)).getX(); // fast and elegant
int c = p1.closestPointRef(p2).getX(); // fast and elegant

The object returned by closestPointVal() above is a temporary unnamed Point object that is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (518 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

held long enough to be sent the getX() message. After that, the unnamed object disappears. In two
other function calls, both the pointer and the reference are pointing to one of the objects defined in
the client space, and the issue of the target life span is moot¡Xit is there.

In the previous example, the message sent to a returned object did not change the state of that
object. The chain notation might also be used with messages that change the state of the target
object.

p1.closestPointRef(p2).setPoint(15,35); // what is set here? p1? p2?
p1.closestPointPtr(p2)->setPoint(10,30); // and what is set here?

In the example above, client code changes either object p1 or object p2, but the change sticks. In
the next example, it is a temporary unnamed object that is changed and then immediately
destroyed! This operation is not very useful, but it is definitely legal C++.

p1.closestPointVal(p2).setPoint(0,0); // create, set, destroy object

Make sure that you use returned objects with caution; often, the gain in performance and
convenience in notation are not worth integrity risks and confusion about results of the operation.
Also, creation and destruction of unnamed objects takes time, both for memory management of the
heap and for constructor and destructor calls.

More on the const Keyword

This section is very important. It reviews the multiple meanings of the keyword const and shows
how to use this keyword for one of the most important tasks of the software
developer¡Xtransmitting the developer's knowledge about properties of program components to the
maintenance programmer. Failure to do so is one of the simplest (and most common) ways to
contribute to software crisis.

As you saw earlier (Chapters 4, "C++ Control Flow," and 7), the const keyword has several
meanings in C++; the meaning depends on the context. When the keyword precedes the type name
of the variable, it specifies that the value of the variable will remain constant. The variable has to be
initialized at definition, and any attempt to assign to it a different (or even the same) value will be
flagged as a syntax error.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (519 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

const int x = 5; // x will not (and cannot) change
x = 20; // syntax error: it prevents changes to x
int *y = &x; // syntax error: it prevents future changes to x

When a pointer has to point to a constant variable (no pun is intended; it is called a variable, but it
does not change), it has to be labeled as a pointer to constant by using the const keyword before
the type name. Then, any subsequent attempt to use this dereferenced pointer as an lvalue will be
flagged as a syntax error.

const int *p1 = &x; // ok: *p1 will not be used to change x
*p1 = 0; // syntax error: *p1 cannot be an lvalue
int a = 5; // an ordinary variable: it can be changed
p1 = &a; *p1 = 0; // syntax error: 'a' cannot change through *p1

When a reference has to point to a constant variable, it has to be labeled as a reference to constant
by using the const keyword before the type name. Then, any subsequent attempt to use this
reference as an lvalue will be flagged as a syntax error.

int &r1 = x; // syntax error: x should not change through r1
const int &r2 = x; // ok: reference to a constant, x will not change
r2 = 0; // syntax error: r2 is a reference to a constant
const int &r3 = a; // 'a' can change but not through r3
r3 = 0; // syntax error: 'a' cannot change through r3

When the keyword const follows the pointer operator, it means that it is a constant pointer: It has
to point to the same location and cannot be diverted to point to another location, but no promise is
made to keep the value pointed to by this pointer the same.

int* const p2 = &a; // p2 will point to 'a' only, not elsewhere
*p2 = 0; // ok: no promises were made to keep it const
int b = 5; p2 = &b; // syntax error: breach of promise

There is no need to define a special notation to indicate that a reference is constant. All references
are constant by default in C++ and cannot be turned to refer to another location. As with pointers,
no promise is made to keep the value referred to by the reference the same.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (520 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int& r4 = a; // r4 points to 'a' only, no const is needed for pledge
r4 = b; // no syntax error; just r is not diverted

The use of const in function interfaces is similar to its use with values and pointers: It states that
the actual argument (or the pointer) does not change as the result of the call.

void f1(const int& x); // x is not changed by the function
void f2(const int x); // redundant: x is passed by value anyway
void f3(int* const y); // redundant: y is passed by value
void f4(int * const *y); // ok, pointer is passed by pointer
void f4(const int *&y); // ok: pointer is passed by reference

Using const objects in function interfaces can make it more difficult for a function to return a
pointer or a reference to the parameter object. Allowing it to do so would make it possible for the
client code to change that object through aliasing, similar to examples discussed earlier in this
chapter.

In case you skipped that section let me repeat that three functions, closestPointVal(),
closestPointPtr(), and closestPointRef() do the same job. Each function compares the
distance between the target object and the point of origin and between the parameter object and the
point of origin. If the target object is closer to the point of origin, each function returns the target
object. If the parameter object is closer, each function returns the parameter object. The difference
is that closestPointVal() returns the object itself, closestPointPtr() returns the pointer to the
object, and closestPointRef() returns a reference to the object. In the section, Using Returned
Objects in Client Code, I did not use the const keyword for the function parameter. In this next
example, I am adding this keyword.

class Point
{ int x, y; // private data
public: // public operations
 . . . // setPoint(), getX(), getY(), getPtr(),
getRef()
 . . . // getDistPtr(), getDistRef()
 Point closestPointVal(const Point& pt) // irrelevant: data is copied
 { if (x*x + y*y < pt.x *pt.x + pt.y * pt.y)
 return *this; // object value: copying to temp
object
 else

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (521 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return pt; } // object value: copying to temp
object
 Point* closestPointPtr(const Point& p) // parameter is const
 { return (x*x + y*y < p.x*p.x + p.y*p.y) ? this : &p; } // error
 Point& closestPointRef(const Point& p) // parameter is const
 { return (x*x + y*y < p.x*p.x + p.y*p.y) ? *this : p; } } ; // error

Function closestPointVal() returns either the target object or the parameter object, but in either
case it is a copy of the Point object. Hence, the const keyword for the function parameter does not
limit the use of the function. If the client code changes the returned object, this change will be made
to a copy of the actual argument, not to the object that is promised to be kept constant.

Point p1,p2;
p1.setPoint(20,40); p2.setPoint(30,50); // set Point objects
Point pt = p1.closestPointVal(p2);
pt.setPoint(0,0); // no breach of pledge
p1.closestPointVal(p2).setPoint(0,0); // not useful, and not harmful

Function closestPointPtr() can return a pointer to its Point argument. This pointer can then be
used by the client code to change the state of the argument object. Similarly, function
closestPointRef() can return a reference to its Point argument. This reference also can then be
used to change the state of the argument object.

Point *p = p1.closestPointPtr(p2); // p2 should not be changed
p->setPoint(0,0); // p2 could be changed - breach of promise
Point &r =p1.closestPointRef(p2); // p2 should not be changed
r.setPoint(10,10); // p2 could be changed - breach of promise

In this example, the object p2 does not really change because all three functions return the object p1
that is closer to the point of origin than is object p2. Even if it was the object p2 that is modified, it
is modified outside of functions closestPointPtr() and closestPointRef()! Never mind; C++
does not allow such use of constant objects. However, it is too difficult for the compiler to discover
this offense when it analyzes the client code (note that it is not easy for a human being either). So,
the compiler declares both functions to be in error.

The formal reason for doing this is that the parameter object, for example, in function
closestPointPtr(), has the const keyword, but the return type does not.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (522 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Point* closestPointPtr(const Point& p) // inconsistency: damage to const
{ return (x*x + y*y < p.x*p.x + p.y*p.y) ? this : &p; } // syntax error

C++ provides you with three ways of handling the situation. One is to give up and eliminate the
const keyword from the function interface. The second way to avoid the syntax error is to use the
const_cast operator to suppress the constant property inside the member functions. The third way
is to use the const keyword in yet two other ways.

Eliminating the const keyword from the function interface is for the faint-hearted and fearful. The
real programmer never forfeits the opportunity to pass on to the client code programmer and to the
maintenance programmer what the class designer had in mind during design. The function does not
change its parameter object, and hence the const keyword should be there.

The second technique is more complex. The const_cast operator converts its constant argument to
the same type with protection against changes removed. The type is specified in angle brackets
between the const_cast operator and the argument. For example,
const_cast<valueType>(constValue) casts constValue of type valueType to a value of the
same type valueType with protection against changes removed. For class Point, I am converting
the pointer to a constant Point object into a pointer to a nonconstant Point object using
const_cast<Point*>(&p).

Here is the version of the Point class that removes the constant property of the argument when the
value is returned from the member functions.

class Point
{ int x, y;
public:
 . . . // setPoint(), getX(), getY(), getPtr(), getRef()
 . . . // getDistPtr(), getDistRef(),closestPointVal()
 Point* closestPointPtr(const Point& p) // prevents damage to p
 { return (x*x + y*y < p.x*p.x + p.y*p.y) ? this : const_cast<Point*>(&p); }
 Point& closestPointRef(const Point& p) // prevents damage to p
{ return (x*x+y*y < p.x*p.x+p.y*p.y) ? *this : const_cast<Point&>(p);
 } } ;

Now the client code that changes the returned objects becomes valid. This is a brute-force solution.
I do not like it, and I discuss it here only for completeness, not to recommend it. It is somewhat

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (523 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

better than removing the const keyword from the function parameter because removing the const
keyword removes protection from any use of the parameter inside the function. Using the
const_cast keyword removes protection only for this specific operation (in this example,
returning the value), not in general. But it is awkward and not well understood.

The best way to make closestPointPtr() and closestPointRef() compile is to promise not to
change their return object by making it constant. To do that you put the const keyword in front of
the function return value. This is the third meaning of the const keyword (with the fourth meaning
coming shortly). Used with the return value of the function, it prevents the caller from modifying
the return value of the function. This means that the returned value can be used as an rvalue only
but not as an lvalue.

class Point
{ int x, y;
public:
// . . . setPoint(), getX(), getY() and so on
const Point* closestPointPtr(const Point& p)
 { return (x*x + y*y < p.x*p.x + p.y*p.y) ? this : &p; } // okay
const Point& closestPointRef(const Point& p)
 { return (x*x+y*y < p.x*p.x+p.y*p.y) ? *this : p; } } ; // okay

Now the client code is restricted in its use of point objects.

Point p1,p2; p1.setPoint(20,40); p2.setPoint(30,50);
Point *ptr = p1.closestPointPtr(p2); // syntax error: should be const
Point &ref = p1.closestPointRef(p2); // syntax error: should be const
const Point *p = p1.closestPointPtr(p2); // *p is an rvalue
p->setPoint(0,0); // syntax error: no change to object
const Point &r =p1.closestPointRef(p2); // r cannot be an lvalue
r.setPoint(10,10); // syntax error: no change to object

So, what are this pointer p and reference r good for? The answer should be obvious¡Xthey cannot
call functions like setPoint() that modify the target object, but they should be able to call
functions like getX() that do not modify the target object. Something like that.

int x1 = p->getX(); // p points to a constant Point
int x2 = r.getX(); // r refers to a constant Point

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (524 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If you like chain notation, you could dispense with the pointer and the reference and get the
coordinate of the closest point this way.

x1=(p1.closestPointPtr(p2)).getX(); // syntax error
x2=p1.closestPointRef(p2).getX(); // syntax error

I hope that even though you are not yet fluent in the details of syntax, you follow the general sense
of the discussion. C++ provides you with the const keyword that is used by the compiler and the
maintainer to indicate whether an entity changes during execution. We looked at the way to prevent
changes to a value, pointer, function parameter, parameter pointer, and return value of a function
that returns a pointer or a reference.

Naturally, a pointer or a reference to a constant object cannot be used to call such functions as
setPoint() because setPoint() changes the state of the object pointed to by the pointer or the
reference. But what is wrong with calling such an innocent function as getX()? It does not change
the state of the object pointed to by the pointer of the reference¡Xor does it?

This brings us back to the fundamental ideological issue that I discussed in Chapter 7 relative to
function parameters. How do we know whether the function changes its parameter or leaves it the
same? We do not want to study the code of the function. We look at the function header. If the
header says that the parameter is const, we know that it does not change. If the header does not
say that the parameter is const, we say that it does change, no matter what the function actually
does. Remember that story about archeologists who thought that if copper wire is good evidence
that the ancients used phones, then the absence of copper wire is good evidence that the ancients
used cell phones?

The C++ compiler uses the same logic. It is smart enough to look up the const keyword in the
header and flag changes to that parameter as a syntax error. But it is not smart enough to go through
the code of the function and make an independent conclusions about changes to parameters. It
assumes that if the const keyword is absent, then the parameter changes.

Now let us go back to the two functions setPoint() and getX(). So, how do you know that the
first one changes the object and the second one does not? Aha! You just know it¡X you looked up
the code, you trust the title; this is obvious, isn't it? Not for the C++ compiler. It flags a call to
setPoint(), not because it knows that setPoint() changes the object, but because it does not see
evidence that setPoint() does not change the object. For the compiler, getX() is no better than
setPoint(). If there is no evidence that getX() leaves the object the same, the compiler

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (525 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

concludes that getX() changes the state of the object.

This is where C++ uses the const keyword with yet another meaning. The keyword is inserted
between the closing parenthesis of the parameter list and the opening brace of the function body. In
a prototype, it is inserted between the closing parenthesis and the semicolon. Here class Point
explicitly states what its member functions do to (a) function parameters, (b) function return values,
and (c) target object data members.

class Point
{ int x, y;
public:
 void setPoint(int a,int b) // it modifies fields, right?
 { x = a; y = b; }
 int getX() const // it does not modify fields: see the evidence?
 { return x; }
 int getY() const // it does not modify fields: see the evidence?
 { return y; }
const Point& closestPointRef(const Point& p) const // isn't it nice?
 { return (x*x+y*y < p.x*p.x+p.y*p.y) ? *this : p; } } ;

Isn't this really nice? I know, this discussion was convoluted, but what can I do if the keyword
const has so many meanings in C++! There is at least one more meaning to discuss in the next
section. But make sure that you take this keyword seriously. When you write server code, it is your
major tool for passing on your knowledge at the time of design to others. When you read code, it is
your major tool for understanding the intent of the designer. Use the const keyword wherever
possible; it is a serious error not to pass your knowledge about class member functions on to the
client programmer and to the maintenance programmer.

TIP

Use the const keyword to denote that a value (or a pointer) does not change after being initialized;
use it to denote that a function parameter (or a pointer) does not change during function execution;
use it to denote that a return function value (returned by pointer or reference) is not changed by the
client code; use it to denote that a member function does not change the state of the target object
during the message call. When you study C++ code, study the use of the const keyword as well.
Do not be oblivious.

As you can see, I worry about paying attention to the const keyword as much as I worry about

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (526 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

putting it into C++ code to begin with.

Static Class Members

In this section, I will generalize the notion of a class data member. Conceptually, a class is a
blueprint for objects. The class specification describes what each object of that class has: data and
functions.

This is why when you create an instance of a class object, a separate set of data members is created
for that object. This happens no matter how you create the object, either through a definition of an
object as a local or a global named variable, with the new operator as an unnamed dynamic
variable, passing an object by value as a function parameter, or returning an object from a function
by value. Each object instance has its own set of data member values: private, public, or protected.

There is no need to create a separate set of member functions for each object. The object code for
each member function is generated only once. In addition to parameters designed by the
programmer, each member function has an implicit parameter, a pointer to the target object. When
a member function is called with a particular object as a target, the this pointer to the target object
is passed to that function, and the function operates the data members of the target object.

Using Global Variables as Class Characteristics

Sometimes it is more memory efficient and logically appropriate to provide only one common copy
of a data member for all the objects of the class rather than maintain individual copies in each class
object.

For example, the application might need a count of class object instances. Consider, for example,
class Point, which includes the count data member. Logically, this data member belongs to the
class as much as any other data member.

class Point {
 int x, y; // individual for each Point object
 int count; // common for all Point objects
 . . . } ;

Practically, there are a number of problems. You need only one count of points. If the application
instantiates a thousand Point objects, it makes no sense to allocate a thousand count data fields
and maintain the same value in each data field. Also, how do you maintain this count? You
increment it every time a new Point object is created. This means that the Point constructor is a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (527 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

good place for doing that. Similarly, the destructor is a good place for decrementing the count of
objects.

Point::Point (int a, int b) // general constructor
 { x = a; y = b; count++; } // increment the count of objects

But this is not a good solution. It increments only one count, in the new object being created, and
does not increment the data members that belong to other objects. Also, the count data field in the
object being created has not been initialized to the previous value of the count data field in objects
created earlier. Hence, this constructor increments a value that has not been initialized. No, this is
not a good solution.

A global variable would do the job. It can be initialized to zero at the beginning of the program run
and then incremented (in the constructor) when the next object is created and decremented (in the
destructor) when an object is destroyed.

For example, a global variable could count the number of points instantiated: A constructor would
increment the count, and the destructor would decrement the count. Listing 9.5 shows the
implementation of class Point that uses this approach. The Point constructor can be used as a
default constructor (client supplies no arguments), a conversion constructor (client code supplies
one argument), and a general constructor (client code supplies two arguments for point
coordinates). For illustration purposes, I include statements in the constructor and the destructor so
that you can trace the order of function calls. Function quantity() returns the count value so that
the client code will not change if the name of the global variable changes. Variable count is
explicitly initialized to zero. According to C++ language rules, it can be initialized to zero
implicitly, but explicit initialization is better.

Example 9.5. Using a global variable to count object instances.
#include <iostream>
using namespace std;

int count = 0; // does maintainer know it belongs to Point?

class Point {
 int x, y; // private coordinates
 public:
 Point (int a=0, int b=0) // general constructor
 { x = a; y = b; count++;
 cout << " Point created: x=" << x << " y=" << y << endl; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (528 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void get (int& a, int& b) const // selector function
 { a = x; b = y; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 ~Point() // destructor
 { count¡X;
 cout << " Point destroyed: x=" << x << " y=" << y << endl; }
 } ;

int quantity() // access to global variable
 { return count; }

int main()
{ cout << "Number of points: " << quantity() << endl;
 Point *p = new Point(80,90); // dynamically allocated object
 Point p1, p2(30), p3(50,70); // origin, x-axis, general point
 cout << "Number of points: " << quantity() << endl;
 return 0; // dynamic object is not properly deleted
 }

The results of the program run are shown on Figure 9-6. You see that I start with creating an
unnamed Point object. The first named point to be created (p1) is initialized with the default
constructor, the next one (p2) is initialized with the conversion constructor, the third one (p3) is
initialized with the general constructor. These named Point variables are destroyed in the inverse
order. Notice that I failed to delete the unnamed dynamic Point object properly, and you do not see
the output message that documents its destruction.

Figure 9-6. Output for program in Listing 9.5.

This design works, but it has a number of drawbacks when you scale it up to a large program. Any
place in client code could access or modify the variable count; this introduces dependencies
between parts of the program. The name of the global variable might clash with other global names
in the project or in a library. Every team member has to be notified about this name even though
most team members do not have to know about class Point. This extends the scope of the
knowledge the programmers have about other parts of the project and increases complexity of the
project for the developers and for the maintainer.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (529 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The major problem with this solution, however, is that it fails to transmit to the maintenance
programmer the knowledge that the developer had at the time of design. When I was defining the
variable count, I knew that this variable had to count the number of Point objects, not the number
of Rectangle objects or anything else. But there is no syntactic indication that this variable is
associated with a particular class. The maintainer has to figure that out either by reading my
comments (and if they are hard to understand, obsolete, or absent) or by studying large segments of
source code.

The Fourth Meaning of the static Keyword

In C++, you can resolve this problem by reusing the static keyword for yet another purpose. In
Chapter 6, you saw three meanings of this keyword.

In its first meaning, it denotes a global variable that is visible only to functions defined in the same
file¡Xthis variable cannot be made visible to functions in another file by making it extern in
another file.

In its second meaning, the keyword is applied to a variable that is local to a function. It means that
the value of this variable does not disappear when the function terminates (as the values of other
local variables do) but is saved by the system and used to initialize the value of this variable if the
function is called again. In its third meaning, the keyword applies to a function that can only be
called from the same file.

In this section, the keyword static is applied to a class data member. It means exactly what we
need¡Xthat there is only one instance of that data member for all objects of the class. It is common
to all objects of the class type.

Static data members are ordinary data members in other regards. They can be defined as public,
private, or protected as necessary. The syntax of defining and accessing a static data member is the
same as for any other class data member. The only difference is that the keyword static is used.

class Point {
 int x, y; // private coordinates
 static int count; // another meaning of the keyword
 public:
 Point (int a=0, int b=0) // versatile constructor
 { x = a; y = b; count++; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; }
 void move (int a, int b) // modifier function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (530 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { x += a; y += b; }
 ~Point() // destructor
 { count¡X; } } ;

Here a data member count is a single shared value accessible to all instances of class Point
objects. This data member is in scope whenever the class definition is in scope (accessible).

Initialization of Static Data Members

Similar to nonmember global variables, a static data member is initialized outside of the class
specification. Unlike the global variable count, the static data member count is a class data
member and must be initialized explicitly¡Xthere is no implicit initialization for data members,
static or not static. Similar to using any class member name outside of the class braces, the class
scope operator should be used to indicate to what class the data member belongs.

int Point::count = 0; // this is not an assignment (see the type name
here?)

On several occasions, I have referred to the difference between assignment and initialization in
C++. Often, the assignment operator can denote either assignment or initialization. The
initialization is recognized by the presence of the type name next to the name of the variable. The
assignment in recognized by the absence of the type name next to the name of the variable. Here
the difference between initialization and assignment is important. The initialization is legal and has
the same syntax for public and nonpublic static data members. The assignment is illegal for
nonpublic static data members.

Point::count = 0; // assignment (illegal for private 'count')

Only one initialization statement for a static data member is allowed. Hence, this statement should
be placed in the implementation .cpp file together with the definitions of the member functions and
not in the class header file.

Access to a static class member is identical to access to a nonstatic member. Nonmember functions
(e.g., quantity()), cannot access private static data members directly. To avoid this problem, I can
make function quantity() a class member.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (531 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Point {
 int x, y; // private coordinates
 static int count; // another meaning of keyword
 public:
 Point (int a=0, int b=0) // versatile constructor
 { x = a; y = b; count++; }
 int quantity() const // no change to object state
 { return count; }
 . . . } ;

Notice that the previous (global) version of quantity() did not have the const modifier. Only a
member function can promise not to change the data member of its target object; global functions
have no target object.

A static data member cannot be a member of a union. It cannot be a class bit field. Both unions and
bit fields indicate a special use of memory that belongs to a particular object. Static data members
belong not to a particular object but to the class as a whole. You probably are not going to use
union fields and bit fields much or define them as static, so this restriction is not going to hurt you.

Static Member Functions

We are almost done, but before this chapter ends, I would like to introduce the fifth meaning of the
keyword static in C++. This keyword can be applied as a modifier to a class member function
that does not access nonstatic data members. This means that a static member function can access
only its parameters, class static data member, and (oh, horror) global variables.

A good candidate for becoming a static member function is function quantity(). It does not have
any parameters, it accesses the static data member count, and it does not access any nonstatic data
members.

class Point {
 int x, y; // private coordinates
 static int count; // private count of objects
 public:
 Point (int a=0, int b=0) // versatile constructor
 { x = a; y = b; count++; }
 static int quantity() // it cannot be const
 { return count; }
 . . . } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (532 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

A static member function cannot be declared const even if it does not change the values that it
accesses. The values that a static function accesses are parameters, static data members, and global
variables; these values are not part of the object state. The const keyword applied to a member
function claims that it does not change the target object data member that this function accesses.
Since a static function does not access nonstatic data members, there is nothing to promise.

I know, it sounds somewhat similar to, "When did you stop beating your wife?" but there is a more
sound logic behind this. I started this series of examples with function quantity() implemented as
a global nonmember function that accesses a global variable count. Then I made the global count
a static class data member. Function quantity() followed the variable count and became a class
Point member function. As a nonstatic member function, it was defined as const to indicate that it
does not change nonstatic class data members. Finally, I turned this function into a static member
function, and the const modifier became irrelevant.

Similar to static data members, a static member function may be invoked through a target class
object (or a pointer to a class object) in the same way a nonstatic member function is invoked. It
can also be invoked directly, using the class scope operator, even if no class object has been
created.

int main()
{ cout << "\nNumber of points " << Point::quantity(); // it prints 0
 Point p1(20,40);
 cout << "\nNumber of points " << p1.quantity(); // it prints 1
 cout << "\nNumber of points " << Point::quantity(); // it prints 1
¡K }

Listing 9.6 shows class Point with the static data member count. It is initialized outside the class
definition even though it is private. Function quantity() is defined as static and can be accessed
using the class scope operator (the first call) and a target object (the second call).

Example 9.6. Using static data members and member functions.
#include <iostream>
using namespace std;

class Point {
 int x, y; // private coordinates
 static int count;
 public:
 Point (int a=0, int b=0) // general constructor

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (533 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { x = a; y = b; count++;
 cout << " Point created: x=" << x << " y=" << y << endl; }
 static int quantity() // const is not allowed
 { return count; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 ~Point() // destructor
 { count¡X;
 cout << " Point destroyed: x=" << x << " y=" << y << endl; }
 } ;

int Point::count = 0;

int main()
{ cout << " Number of points: " << Point::quantity() << endl;
 Point p1, p2(30), p3(50,70); // point of origin, x-axis, general
point
 cout << " Number of points: " << p1.quantity() << endl;
 return 0;
 }

The results of the program run are shown in Figure 9-7.

Figure 9-7. Output for program in Listing 9.6.

Let us consider yet another version of class Point that has a member function that compares the
coordinates of its two Point parameters and returns true if the coordinates are the same.

class Point {
 int x, y; // private coordinates
 static int count; // private count of objects
 public:
 Point (int a=0, int b=0) // versatile constructor
 { x = a; y = b; count++; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (534 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 static int quantity() // it cannot be const
 { return count; }
 bool samePoints (const Point &p1, const Point &p2)
 { return p1.x == p2.x && p1.y == p2.y; }
 . . . };

Did I pass to the maintainer the knowledge that I had at the time of design? No, I did not. An
obvious rebuke is that I did not reflect on the fact that the function samePoints() does not change
the state of the target object and hence should be defined as const. But this is not the whole story.
What I have to tell the maintainer is that this function operates only on its parameters. It can be a
global function because it does not need the target Point object data members¡Xit operates on data
members of its parameters. But it is made a class Point member function to indicate that it
logically belongs to class Point: it deals with objects of class Point and not with objects of class
Rectangle, Circle, and whatnot. This is why it should be defined as static.

To illustrate the issue, let us see how you can call this function. There are several ways to do that.
Here is an example.

Point p1, p2(30), p3(50,70);
if (p1.samePoints(p2,p3)==true) cout << "Same points\n";

What does object p1 have to do with comparing objects p2 and p3? Remember that story about the
crocodile and the monkey? This is ugly. Another way to do this is to use object p2 twice.

Point p1, p2(30), p3(50,70);
if (p2.samePoints(p2,p3)==true) cout << "Same points\n";

It is still ugly. The object should be used only once. Let us define this function as static.

class Point {
 int x, y; // private coordinates
 static int count; // private count of objects
 public:
 Point (int a=0, int b=0) // versatile constructor
 { x = a; y = b; count++; }
 static int quantity() // it cannot be const

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (535 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { return count; }
 static bool samePoints (const Point &p1, const Point &p2)
 { return p1.x == p2.x && p1.y == p2.y; }
 . . . } ;

Now I can call this function using the class scope operator.

Point p1, p2(30), p3(50,70);
if (Point::samePoints(p2,p3)==true) cout << "Same points\n";

This is beautiful!

So, when do you use static data members and static functions? You define data members as static to
indicate that global data logically belong to the class (for example, count). You define member
functions as static to indicate that global functions logically belong to the class and operate on static
data, global data, or parameters, but not on nonstatic data members (e.g., quantity(),
samePoints()).

Using static data and functions is not your first priority when you are learning C++. Make sure,
however, that you understand the underlying issues and use them to pass your knowledge on at the
time of development to the client code programmers and to the maintainers.

Summary

In this chapter, we looked at the use of C++ classes as a program-building tool. The use of classes
eliminates the drawbacks of using global functions as the tools of object-oriented programming.

The first drawback of using global functions is that it does not necessarily indicate to the maintainer
what the designer knows at the time of coding, that the functions accessing the same data structure
logically belong together.

If, for example, the program uses Point and Rectangle data structures, and the designer puts all
Point access functions together and all Rectangle access functions together, fine. If the access
functions are separate, the compiler is not going to complain, but the maintainer is going to be
confused. Hence, the discipline of the programmer is important.

The second drawback is that encapsulation with global functions is voluntary. The programmer can
disregard access functions and directly access the structure fields. The language rules do not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (536 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

prevent that. Again, this approach is based on the discipline of the programmer.

The third drawback is that all the functions are global, and their names are part of the global name
space and can conflict with other function names. Hence, to avoid conflicts, the programmers have
to know about all function names used in the project, and this increases the complexity of the
system for the programmers.

C++ classes eliminate these drawbacks. By binding together data and operations we eliminate the
first drawback; by controlling access to data fields, we eliminate the second; by using the class
scope, we eliminate the third.

Classes have great potential for improving software quality.

Chapter 10. Operator Functions: Another Good idea

Topics in this Chapter

ϒΠ Overloading of Operators

ϒΠ Limitations on Operator Overloading

ϒΠ Overloaded Operators as Class Members

ϒΠ Case Study: Rational Numbers

ϒΠ Mixed Types as Parameters

ϒΠ Friend Functions

ϒΠ Summary

The previous chapter discussed the syntax and semantics of C++ classes. C++ was not the first
programming language to support the class concept, but it was the first language that did it on a
large industrial scale and that did it successfully.

Initial acceptance of C++ was slow because the industry was apprehensive about C++ efficiency
and robustness. Misgivings about efficiency were mostly without foundation. Most C++ programs
take as much memory as equivalent C programs and no more. Most C++ programs execute as fast
as equivalent C programs and not slower. Granted, there are some exceptions related to the use of
the iostream library, virtual functions, and templates. (They will be discussed in later chapters.) But

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (537 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the tremendous progress in hardware power resulted in a dramatic increase in the size of computer
memory and in the execution speed of most computers. This placated whatever anxiety was
remaining about C++ memory requirements and run-time performance. Experience with C++
clearly demonstrated that programming with classes can be efficient. Any new programming
language that will be developed in the near future is expected to support classes.

Misgivings about robustness were not placated at all. Just the other way around: Industrial
experience confirmed the dangers and pitfalls that programmers should be aware of. Strangely, this
did not prevent C++ from becoming a major programming language for a broad spectrum of
applications. The complexity of the language is the major contributing factor to the failure to
achieve robustness. In the previous chapter, you saw that the idea behind C++ classes is simple.
C++ classes had to help the programmers

ϒΠ to bind together object data and operations

ϒΠ to control access to class elements from the outside of the class

ϒΠ to introduce additional scope for avoiding name conflicts and

ϒΠ to push responsibilities from clients to servers

The previous chapter also showed you that C++ designer Bjarne Stroustroup put into C++ classes
much more than this list of four items requires. Constructors and destructors help class objects
manage their resources, mostly dynamically allocated memory. The availability of these member
functions puts a burden on the class programmer (server designer) to provide a variety of
constructors to support client code in a variety of contexts. They also put some additional burden
on client programmers for supplying data for object initialization, but this is considered a minor
side effect.

Using composite objects results in additional complications. The designer of the container class
should facilitate initialization of component objects. The member initialization list provides a new
syntax for doing that. The idea of composite classes requires incorporation of such additional
details as constant components, reference components, pointer components, and recursive
components. The concept of class attributes leads to other extensions of this idea such as static data
members and static functions that characterize the class as a whole rather than as individual object
instances of the class.

I also mentioned that C++ has yet another design goal: treating the class instances in the same way
as the variables of built-in types. In the previous chapter, this principle manifested itself in the form
of the uniform syntax for initialization for both objects and variables. In this chapter, I will discuss
yet another manifestation of the same idea: extending it to C++ operators so that the same
expression syntax with operators can be applied to class objects in the same way as it is applied to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (538 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

variables of built-in types in conventional C++ expressions.

As usual, C++ supports more than one way to do that. I will discuss different techniques for
implementing overloaded operator functions. These techniques will help you become more
proficient in using C++ and in understanding what is going on under the hood of a C++ program.

Overloading of Operators

In C++, the concept of programmer-defined types (classes) is an extension of the concept of built-
in numeric types. You can define variables of programmer-defined types using the same syntax as
for simple numeric variables. Similar to built-in types, you can use object instances of programmer-
defined types as array elements or as data members of even more-complex types. You can pass
objects of programmer-defined types as parameters and return them from functions. You can set
pointers and references to programmer-defined values using the same syntax as for built-in values.
You can define pointers as constant pointers. You can define pointers and references as pointers
and references to constant values using the same syntax as for built-in types.

These similarities are not accidental. One of the important C++ goals was to treat programmer-
defined types in the same way as it treats built-in types. This goal has nothing to do with object-
oriented programming, improving productivity of development, enhancing efficiency of
maintenance, or any other software engineering consideration. This is a purely aesthetic goal. And
this is legitimate. Computer programming, as any creative human activity, has an essential aesthetic
component. Although programming books rarely discuss this issue, the programs we write should
be as elegant as they should be readable, portable, and maintainable.

Of course, many programs, especially large programs, are not elegant. Neither are they readable,
portable, or maintainable, but the language is designed to help the programmer achieve these goals.

There is, however, a big gap in treating classes and numeric types in the same way. C++
programmer-defined types are not exactly like native numeric types. The biggest difference is that
you cannot apply C++ operators to objects of programmer-defined types¡Xaddition, subtraction,
comparisons for equality, inequality, and so on. You can write your own functions to implement
these operations, and notation might often be somewhat awkward.

Let us consider a simple example: complex numbers that are characterized by values of the real and
imaginary components. Those of you who are not familiar with complex numbers could think of
them as points on the plane where the real component corresponds to the x-coordinate, and the
imaginary component corresponds to the y-coordinate. When you add (or subtract) complex
numbers, the result is yet another complex number; its real component is the result of adding (or
subtracting) the real components of the two operands, and its imaginary component is the result of
adding (or subtracting) the imaginary components of the two operands. Multiplication and division
are more complicated, but they also are carried as operations over components of the operands.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (539 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Let us represent complex numbers as a class with two data members, real and imag. For
simplicity of the discussion, I will leave both data members public (they will become private in the
next version of the class).

struct Complex {
 double real, imag; } ; // public data members

Listing 10.1 shows an example of the code that defines object instances of type Complex,
initializes them, and then performs some arithmetic operations over these objects.

NOTE

This is not a good example of C++ code. Most C++ books avoid showing bad C++ code. As a
result, the reader never learns how to see the difference between bad and good C++ code. This is
pretty much like learning painting by going to great museums rather than taking art lessons.
Similar to painting, C++ programming is always a struggle to find a solution that is better than a
competing solution is. Instead of showing you a reasonable solution, I prefer to show you an
inferior solution, explain what is wrong with it and how it could be improved, and then show you a
better solution and explain why this solution is better.

In Listing 10.1, the client code performs computations over complex numbers by using direct
access to public object components: The client code specifies the names of data members real and
imag instead of using access functions. As a result, the client code represents the mix of access to
data fields and the computations over data field values. The meaning of these computations is not
expressed in the function calls and has to be deduced by the maintainer from the analysis of low-
level details of computations. The responsibility for low-level operations is not pushed down to
server functions, and the developer has to keep in mind several levels of the algorithm
simultaneously: the high-level goal of the computation and its low-level details. There are no
separate areas of concern, and changes to the design of class Complex will affect the client code as
well. The use of the keyword struct instead of class is appropriate here since all data members
are public.

Example 10.1. Example of operations over objects of class Complex.
#include <iostream>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (540 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

struct Complex { // programmer-defined type
 double real, imag; } ;

int main()
{ Complex x, y, z1, z2; // objects of type Complex
 x.real = 20; x.imag = 40; // initialization
 y.real = 30; y.imag = 50;
 cout << " First value: ";
 cout << "(" << x.real << ", " << x.imag << ")" << endl;
 cout << " Second value: ";
 cout << "(" << y.real << ", " << y.imag << ")" << endl;
 z1.real = x.real + y.real; // add real components into z1
 z1.imag = x.imag + y.imag; // add imaginary components
 cout << " Sum of two values: ";
 cout << "(" << z1.real << ", " << z1.imag << ")" << endl;
 z2.real = x.real + y.real; // add real components into z2
 z2.imag = x.imag + y.imag; // add imaginary components
 z1.real = z1.real + x.real; // add to the real component of z1
 z1.imag = z1.imag + x.imag; // add to the imag component of z1
 cout << " Add first value to z1: ";
 cout << "(" << z1.real << ", " << z1.imag << ")" << endl;
 z2.real += 30.0; // add to real component of z2
 cout << " Add 30 to sum: ";
 cout << "(" << z2.real << ", " << z2.imag << ")" << endl;
 return 0;
 }

The output of the run of this program is shown in Figure 10-1.

Figure 10-1. Output for program in Listing 10.1.

Although this is not a good example of object-oriented programming, it is a good starting point for
the discussion of operator function overloading. Also, I'd like to take the opportunity to repeat the
list of drawbacks of poor use of C++. This list is very important: Repeatedly using it for the
evaluation of your code is the best way to learn how to use C++ correctly and how to improve the
quality of your C++ code.

To encapsulate the client code from the details of data design, you have to write access functions
that would manipulate the objects of type Complex to serve the needs of client code. For example,
if you want to add variables of this type, you have to write a function that accepts two parameters

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (541 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

of type Complex, performs necessary computations over components of these two objects, and
returns the result as a value of the same type. This means that the interface of this function named,
for example, addComplex(), will look this way:

Complex addComplex(const Complex &a, const Complex &b);

As I mentioned earlier, adding two complex values requires adding their real components and
adding their imaginary components.

Complex addComplex(const Complex &a, const Complex &b)
{ Complex c; // local object
 c.real = a.real + b.real; // add real components
 c.imag = a.imag + b.imag; // add imaginary components
 return c; }

To use this function, the client code defines and initializes variables of type Complex, passes them
as parameters to this function, and uses its return value as a value of type Complex.

Complex x, y, z1, z2; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
z1 = addComplex(x,y); // use in the function call

This is very nice (and trivial). Most programmers are used to this functional style of programming
and do not feel that using function names like addComplex() makes their programs ugly or
unreadable. A real C++ programmer, however, feels uncomfortable (to say the least) that C++ does
not support (at least, not yet), writing the client code in the following way.

Complex x, y, z1, z2; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
z2 = x + y; // use in expression

If you do this, the compiler will tell you that the operation of addition is not defined, C++

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (542 of 1187) [8/17/2002 2:57:56 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ambitions for equal treatment of types notwithstanding. Since you cannot use built-in operations on
programmer-defined data types, you have to invent new function names like addComplex() and
implement them to perform necessary operations. This disparity between programmer-defined
types and built-in types is painful for every real C++ programmer.

As a remedy, C++ offers you a break or, rather, a contract. You, as a programmer, limit yourself to
special function names that include the keyword operator and the sign for the operation you
would like to use in your code, for example, +. You design and implement that function,
operator+(), in exactly the same way you design and implement any function with the name of
your free choice, for example, addComplex(). C++, as a supporting programming language,
allows you to call this function using the operator notation that corresponds to the sign of the
operator you included in the name of the function. If you called the function operator+(), then
you can call this function using the same notation as that for built-in numeric types.

z = x + y; // under the hood, this is z = operator+(x,y);

Isn't that nice? You associate services provided by the function with a built-in C++ operation. This
is marvelous!

Actually, this is not that unique. In C++, the same function name in the same scope can represent
different algorithms provided their signatures are different (see Chapter 7, "Programming with C++
Functions," for more discussion on function name overloading). When the client code calls the
function, the compiler matches the actual argument types with function declarations available in
that scope and decides which one, if any, to use to implement the function call.

This is true of any C++ function name. As far as arithmetic operators are concerned, operator
overloading is used in every programming language, not only in C++. Operator overloading means
giving multiple interpretations to the same symbol. Consider, for example, the addition operator.

int a,b,c;
float d,e,f;
a = 20; b = 30; d = 40.0; e = 50.0;
c = a + b; f = d + e; // different operations, same operator

In C++ (and in other languages), the + operator is used to add integer or floating point values.
These operations are very different. For integers, each bit of the first operand is added with each bit
of the second operand and with the carry bit from the lower order bit.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (543 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For floating point values, the binary representation consists of the mantissa and the exponent. To
avoid the complexity of binary (or hex) values, I will illustrate this issue using the example in the
decimal system. In the mantissa-exponent representation, for example, 3000.0 is 3*10^3 and 300.0
is 3*10^2. (Here, I use the operator ^ to denote exponentiation, even though C++ does not have an
exponentiation operator.) When adding floating point values, the mantissa of the smaller operator is
shifted to the right so that the exponents of the two operands became the same (when adding 3000
and 300, 300 would be shifted three decimal positions to the right to be represented as 0.3*10^3).
After that the bits of the mantissa (not all bits as for integers) are added up (when adding 3000 and
300, the result would be 3.3*10^3).

Whatever the details of floating point addition are, it is clear that they are different from the details
of integer addition. At the assembly language level, these operations are represented by two
different operation codes. In high-level programming languages, we do not force the programmers
to learn separate notation for integer addition and for floating point addition.

I hope that you recognize in this discussion the concepts of information hiding and pushing
responsibilities down from client code to server code. In this case, the server is the addition
operator, and the client is the high-level code that contains expressions with the addition operator.
The programmer who writes the expression with the addition operator does not want to know the
details of addition¡Xthis programmer concentrates on the higher goals of the expression and on
related issues. It is the programmer who implements the addition operator that is aware of details of
addition for each type and implements each operator accordingly.

C++ takes this idea of having different operators denoted with the same symbol to the next level
and extends this capability to programmer-defined data types. If you write your functions in
agreement with C++ rules, you can apply any operator (well, with few exceptions) to any
programmer-defined type!

Here is the operator+() function implemented for parameters of the type Complex.

Complex operator+(const Complex &a, const Complex &b) // magic name
{ Complex c; // local object
 c.real = a.real + b.real; // add real
components
 c.imag = a.imag + b.imag; // add imag
components
 return c; }

How did I write this function? I copied the addComplex() function presented earlier, kept the body

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (544 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

of the function, return type and the parameter list without changes, cut out the function name
addComplex, and moved in the magic function name operator+. Bingo! I did my part of the deal.
Now C++ will do its part of the deal: it will accept the addition operator with operands of Complex
type and will not print the syntax error message that says that the addition operator is not defined
for the type Complex. This operator is now defined.

Complex x, y, z; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
z = x + y; // use in expression

When I say that the compiler "will accept the addition operator with operands of Complex type,"
what does this actually mean? What code will the compiler generate? The compiler will call the
overloaded function operator+() that I wrote. It will use the left operand of the expression as the
first actual argument of the function, and the right operand as the second argument of the function.
The code that the compiler will generate for the code snippet above will be exactly the same as for
the following client code.

Complex x, y, z; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
z = operator+(x,y); // this is absolutely legitimate

If the function name includes the keyword operator and the symbol of the operator, the compiler
accepts either the function call syntax or the operator syntax and will generate exactly the same
code. If you use the function call syntax z=operator+(x,y); the compiler matches the actual
argument types with parameter types as for any other function call. If you use the operator syntax
z=x+y; the compiler discovers that the operands are of a programmer-defined type and searches for
a function whose name contains the keyword operator and the operator sign used in the client
code. If this function is found, the compiler checks whether its parameters match the number and
the types of operands in the client expression.

As a result, the responsibility is pushed down to the server classes, and the client code is purged
from the details of server design. The client programmer uses the same syntax for adding integers,
floating point values, objects of type Complex or whatever other programmer-defined type you
would like to use with this syntax.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (545 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is a very flexible and powerful mechanism. As with many things in C++, it gives you more
than you bargained for. We started with the goal of using the objects of programmer-defined types
in the same way as the variables of built-in types and wound up with something much more potent.
Now you can do to the objects of your type what you could not even dream of doing to built-in
numeric types because the language does not limit you in what you can do in the privacy of your
own overloaded operator function. You are limited only in the function interface¡Xthe function
name and the number of parameters. These cannot be chosen arbitrarily; they have to emulate the
built-in operator you are overloading.

Listing 10.2 illustrates the use of operator function overloading. In addition to the overloaded
addition operator, it also shows the use of operator+=() that adds one Complex object to another.
It also demonstrates the use of operator+=() that adds a floating-point number to the real part of
the Complex object. Although the names of these two operator functions are the same, their
parameter lists are different. This is a legitimate use of function name overloading (see Chapter 7
for more details on function name overloading in C++).

Example 10.2. Example of operator function overloading.
#include <iostream>
using namespace std;

struct Complex { // programmer-defined type
 double real, imag; } ;

Complex operator+(const Complex &a, const Complex &b) // magic name
{ Complex c; // local object
 c.real = a.real + b.real; // add real components
 c.imag = a.imag + b.imag; // add imaginary components
 return c; }

void operator += (Complex &a, const Complex &b) // another magic name
{ a.real = a.real + b.real; // add to the real component
 a.imag = a.imag + b.imag; } // add to the imag component

void operator += (Complex &a, double b) // different interface
{ a.real += b; } // add to real component only

void showComplex(const Complex &x)
{ cout << "(" << x.real << ", " << x.imag << ")" << endl; }

int main()
{ Complex x, y, z1, z2; // objects of type Complex
 x.real = 20; x.imag = 40; // initialization
 y.real = 30; y.imag = 50;

cout << " First value: "; showComplex(x);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (546 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << " Second value: "; showComplex(y);
 z1 = operator+(x,y); // use in the function call
 cout << " Sum as function call: "; showComplex(z1);
 z2 = x + y; // use as the operator
 cout << " Sum as the operator: "; showComplex(z1);
 z1 += x; // same as operator+=(z1,x);
 cout << " Add first value to sum: "; showComplex(z1);
 z2 += 30.0; // same as
operator+=(z2,30.0);
 cout << " Add 30 to sum: "; showComplex(z2);
 return 0;
 }

Notice the use of the const keyword where appropriate, in showComplex(), in operator+(), and
in the first operator+=(). Notice the absence of the const keyword where appropriate: in the first
operator+=() and in the second operator+=(). Notice some advantages of object-oriented
programming in this example. Client code does not depend on the server design and the names of
the data fields (other than for initialization), and responsibility for low-level computations is pushed
down to the server functions. The meaning of high-level computations is expressed in function calls
to server functions. There are different areas of concern for low-level computations (handling fields
of complex numbers according to complex arithmetic) and high-level computations (handling
complex numbers according to whatever the application wants to achieve). There are separate areas
of change for data representation and for application algorithm: If the design of class Complex
changes, the overloaded operators change but not the client code; if the application algorithm
changes, the client code changes but not the overloaded operators.

Some advantages of object-oriented programming are absent: encapsulation is voluntary, there is
no indication that data and server functions belong together, and names of functions are global.
Does this sound familiar? Good. You are getting there.

The output of the run of this program is shown in Figure 10-2.

Figure 10-2. Output for program in Listing 10.2.

As you can see from Listing 10.2, it is all the same whether you use the spaces between the
keyword operator and the operator sign; operator+() and operator + () mean the same thing.
If the operator sign contains two symbols, they should be placed next to each other without an

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (547 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

intervening space.

NOTE

The mandatory components of the name of an overloaded operator function are the keyword
"operator" and the symbol(s) for the operator. The keyword "operator" and the symbol(s) together
comprise the function name. You can insert white space between the keyword and the symbol(s) if
you feel that this enhances readability¡Xbreaking the function name into these two components is
not a syntax error.

Keep in mind that in all the cases of the use of overloaded operators in the client space, the
operation is implemented as a function call. You cannot use overloaded operators to speed up your
program. It is syntactic sugar that adds to readability of your program. In all the cases of the use of
overloaded operators the operator syntax can be replaced by the function call syntax. The last part
of the client code in Listing 10.2 could be written this way.

operator+=(z1,x); // same as z1 += x;
cout << "Add first value to sum: " ; showComplex(z1);
operator+=(z2,30.0); // same as z2 += 30.0;
cout << "Add 30 to sum: " ; showComplex(z2);

Of course, you do not design overloaded operator functions just to use them with the function call
syntax in the client code. If you wanted to use a function call, you would call the function
addComplex(), not operator+(). You go to the trouble of defining overloaded operator functions
to use this special dispensation from the C++ compiler to treat the operator syntax as if it were a
function call. I keep reminding you about the function call syntax to make sure that you do not
forget that the operator syntax is compiled into a function call, not into arithmetic expression it
pretends to be.

Limitations on Operator Overloading

As you saw in the previous section, the overloaded operators give you a powerful tool to make C++
code more beautiful by treating objects of programmer-defined types similarly to variables of built-
in numeric types. There are, however, some limitations that C++ places on the use of overloaded
operators. Some of these operations will not limit you much, but some are quite essential. In this
section, I will discuss these limitations.

What Operators Cannot Be Overloaded

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (548 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There are some limitations on operator overloading that are not very important for the practicing
programmer, at least not at this stage. You cannot overload operator :: (scope), operator .*
(member object selector), operator . (class object selector), and operator ?: (conditional operator
or arithmetic if). I'm not sure if anybody has a good idea why one needs to overload the scope
operator and the conditional operator. The same is true about member object selector and class
object selector operators. (Actually, the member object selector operator has not been used here
even in its initial meaning.)

The limitation that is important from the practical point of view is that you cannot make up your
own operators that are not supported for C++ numeric types. The operator whose sign you append
to the keyword operator in the overloaded operator function name must be a bona fide C++
operator. It is a syntax error to use a symbol that is not a C++ operator. For example, C++ has no
exponentiation operator. Other languages use the double asterisk to denote exponentiation. For
example, x**y means x to the power of y in FORTRAN. One might be tempted to expand the set of
C++ operators and overload the double asterisk operator for this purpose.

Complex operator**(const Complex &a, const Complex &b); // error

This is an error because C++ does not recognize the double asterisk operator as a built-in operator.

You cannot overload operators for built-in numeric types giving them new meaning. For example,
your application might be interested in limiting the results of integer addition to a specific number,
for example, 60 (modulo arithmetic). You might want to redefine the addition operator for integers
so that the result is wrapped around the value 60.

int operator + (int a, int b) // syntax error
{ return (a+b) % 60; } // addition modulo 60

It is a nice idea, but it does not fly for several reasons. The major reason is that the compiler might
become confused among different additional meanings especially if the application overloads
several operators. For example, in the overloaded operator for integers in the last example the
addition operator is used in the body of the function. I wanted this operator to be used in the
standard sense, but I have no means to tell that to the compiler. How does the compiler know that
this is not a recursive function call to the new overloaded operator operator+() that I am writing?

The same difficulty emerges in the client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (549 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int a,b,c;
float d,e,f;
a = 20; b = 30; d = 40.0; e = 50.0;

// built-in operator or overloaded operator?
c = a + b; f = d + e;

Here, I have no means to tell the compiler whether I want to use the built-in addition operator or the
overloaded operator for integers.

This is why C++ does not allow operator overloading for built-in types. You can overload operators
for programmer-defined types only. Actually, C++ generalizes this limitation by requiring that at
least one parameter of the overloaded operator function is of a programmer-defined type (a class).
The addition operator for integers that I tried to write violates this limitation.

ALERT

You cannot expand the set of C++ operators by overloading operator symbols that are not already
built-in C++ operators; you can only overload existing C+ operators. You cannot change the
meaning of existing operators for built-in types by overloading them for built-in types in a different
way; you can only overload operators for programmer-defined types (classes).

Notice that in all cases of overloaded operator functions you design overloaded functions, not
redefine existing operators. The addition operator for Complex objects does not eliminate the
addition operator for integers and floating point numbers. The overloaded operator is added to the
list of operators known to the C++ compiler. Let us consider that overloaded operator again.

Complex operator+(const Complex &a, const Complex &b) // magic name
{ Complex c; // local object
 c.real = a.real + b.real; // add real components
 c.imag = a.imag + b.imag; // add imaginary
components
 return c; }

The addition operator in the body of this overloaded operator function is the standard built-in
operator for floating point numbers. How does the compiler know that? By looking up the types of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (550 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

data fields of the class Complex. Since these fields are of type double, this addition operator is not
a recursive call to the overloaded operator being defined. Similar analysis applies to the client code.

Complex x, y, z; // objects of type Complex
x.real=20; x.imag=40; // initialization
y.real=30; y.imag=50;
z = x + y; // use in expression
double a, b, c; // variables of type double
a = 20; b = 30; // initialization
c = a + b; // use in expression

For the first addition operator here, the compiler establishes that the operands are of the type
Complex and calls the overloaded operator function. For the second addition operator, the compiler
establishes that both operands are of the type double and calls the built-in addition operator.

Limitations on Return Types

Usually, overloaded operator functions return either void, a boolean value, or the value of the type
the operator is designed to work with. Returning a value of the type of the class is common. It is
especially popular for operators that compute a new value of the same type for the use in other
expressions. For example, operator+() in the example above returns a value of type Complex.
This allows you to use this value with the assignment operator. If the return value were void, that
would be impossible. Moreover, returning the value allows you to support complex expressions
similar to expressions over built-in values.

Complex a, b, c, d; // objects of type Complex
a.real=20; a.imag=40; // initialization
b.real=30; b.imag=50;
c.real = 0; c.imag = 20;
d = a + b + c; // use in expression

It takes some digging up to figure out what this means. C++ arithmetic operations associate from
left to right. If a, b, and c were numbers, the expression a + b + c would mean (a + b) + c.
Overloading operator functions does not change operator associativity. When a, b, and c are
objects of the type Complex, the meaning of this expression is the same.

d = (a + b) + c; // use in expression

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (551 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In terms of function syntax, this expression means the following.

d = operator+((a + b),c); // use in expression

What remains is to represent the meaning of the expression a + b as a function call.

d = operator+(operator+(a,b),c); // use in expression

The meaning of this code is a call to function operator+() with variables a and b as actual
arguments and pass the return value of this function call as the first argument to another call to
function operator+().

The two overloaded operator functions operator+=() that I used in Listing 10.2 have return type
void and hence cannot be used in chain expressions that expect a value for further manipulation.

Complex a, b, c, d; // objects of type Complex
a.real=20; a.imag=40; // initialization
b.real=30; b.imag=50;
c.real = 0; c.imag = 20;
d = a + b + c; // use in expression
a += b; // OK: operator+=(a,b); returns void
d = c + (b += 30.0); // not OK: operator+=(b,30.0); returns void

To make it possible to use this operator in chain expressions, I had to design it this way.

Complex operator += (Complex &a, double b) // class return type
{ a.real += b; // add to real component
 return a; }

This would emulate the behavior of the built-in numeric types better, I guess; I do not particularly
like the behavior of built-in numeric types in C++. This behavior is conducive to writing

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (552 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

convoluted expressions instead of outlining the algorithms in simple sequential steps. Instead of
changing the server code (the overloaded operator function) to accommodate chain operations in
the client code, I would rather keep the void return type and break the client code into smaller steps
that do not need the Complex return value.

Complex a, b, c, d; // objects of type Complex
a.real=20; a.imag=40; // initialization
b.real=30; b.imag=50;
c.real = 0; c.imag = 20;
d = a + b + c; // use in expression
a += b; // OK: operator+=(a,b); returns void
b += 30.0; // OK: operator+=(b,30.0); return value not used
d = c + b; // OK: operator+=(c,b); returns Complex

But this is a matter of taste. My task here is to make sure that you see and understand different
ways of organizing the cooperation between server and client code.

Limitations on the Number of Parameters

When you design overloaded operator functions, you should use as many arguments (usually of the
same class type) as necessary for the operator (binary or unary).

You cannot change the arity of the operator, that is, the number of operands that has to be specified
when the operator is used (two for binary operators, one for unary operators). The arity of the
overloaded operator should be the same as the arity of the original built-in operator. You cannot
define a binary operator that works on two operands and use it to create a unary operator that works
with a single operand.

Here is an example of typical difficulties I had while struggling with this rule. I wanted to overload
the "less than" operator < to implement the output operations over Complex data members I
performed in function showComplex() in Listing 10.2.

All that I had to do was to cut out the name showComplex and move in the name operator<.

void operator < (const Complex &x) // not a good idea: syntax error
{ cout << "(" << x.real << ", " << x.imag << ")" << endl; }

It is easy to see how to use this function in the client code using the function syntax: You call it the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (553 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

same way you call showComplex().

Complex x, y, z1, z2; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
cout << "First value: " ;
operator < (x); // same as showComplex();
cout << "Second value: " ;
operator < (y); // same as showComplex();

However, the operator "less than" is a binary operator, and the use of this function with the operator
syntax requires the second operand that is missing.

Complex x, y, z1, z2; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
cout << "First value: " ;
< x; // nonsense if x is numeric
cout << "Second value: " ;
< y; // nonsense if y is numeric

This is why my attempt fails: The operator function operator<() should be overloaded with two
parameters, but I have only one, the Complex object to be printed. If I do not know what the second
parameter should do, I have to find another operator that takes only one operand.

C++ has several operators that can be used either as binary or as unary operators: plus, minus,
asterisk, at-sign. It is okay to overload each of those operators as either a binary or unary operator
because both are available for built-in types. For example, I overloaded operator + as a binary
operator. Since this operator is available as a unary plus sign, I can overload this operator using a
function with only one parameter. This replacement for showComplex() is legitimate.

void operator + (const Complex &x) // same as showComplex()
{ cout << "(" << x.real << ", " << x.imag << ")" << endl; }

There is no problem using this function with the operator syntax in the client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (554 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Complex x, y, z1, z2; // objects of type Complex
x.real = 20; x.imag = 40; // initialization
y.real = 30; y.imag = 50;
cout << "First value: " ;
+x; // operator+(x); or showComplex(x);
cout << "Second value: " ;
+y; // same as operator+(y); or showComplex(y);

Limitations on Operator Precedence

Yet another limitation on operator overloading is that the precedence of overloaded operators
cannot be changed.

No matter what the type of objects x and y is and the meaning of operators + and /, the division in
the expression x + y/2 will be performed before the addition. If this is not what you want, you can
use parentheses as usual.

ALERT

When overloading operator functions, you cannot change the number of operands that the operator
takes, the precedence of the operator, or its associativity. All you can do is to define the meaning of
the operator for the programmer-defined type. This allows the client code to use the same
expression syntax for programmer-defined classes as for standard C++ built-in numeric types.

Overloaded Operators as Class Members

As I mentioned in the previous chapter, any function related to any programmer-defined data type
can be implemented either as a class member function or as a global stand-alone nonmember
function. This is true of any algorithm, and this is true of overloaded operator functions. Switching
from class member to nonmember implementation and back is an important programming skill. It
is especially important for operator functions.

The operator can be defined as a member function of the class of its parameters. The number of
parameters is one less than the arity of the operator (one for binary, none for unary). This absent
parameter becomes the target of the message when the operator is used.

Replacing a Global Function with a Class Member

The rules for overloading operator functions as class members are the same as the rules for
overloading operator functions as nonmember functions. You replace the name of the member
function with the name that concatenates the keyword operator and the sign for the operator being

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (555 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

defined.

For example, the binary operator+() and the binary operator+=() implemented as class
Complex member functions should have only one parameter, not two like the operators
implemented as global functions in Listing 10.2. The data members of the parameter that
disappeared from the function interface became data members of the target of the message.

class Complex { // programmer-defined type
 double real, imag; // private data
public:
 Complex(double r, double i) // general constructor
 { real =r; imag = i; }
Complex operator+(const Complex &b) // one parameter only
{ Complex c; // does it fly?
 c.real = real + b.real; // add real components
 c.imag = imag + b.imag; // add imag components
 return c; }
void operator += (const Complex &b) // one parameter only
{ real = real + b.real; // add to the real component
 imag = imag + b.imag; } // add to the imag component
 // THE REST OF CLASS Complex
} ;

Make sure that you are comfortable with the switch from a two-parameter nonmember function to a
one-parameter member function. Many programmers prefer the two-parameter implementation
because it is symmetric: You add up the corresponding fields of two parameters.

Complex operator+(const Complex &a, const Complex &b) // global name
{ Complex c; // does it fly?

 // add components: symmetric notation
 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;
 return c; }

void operator += (Complex &a, const Complex &b) // global function
{ a.real = a.real + b.real; // add to the real
component
 a.imag = a.imag + b.imag; } // add to the imag
component

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (556 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There is one problem with the first operator function when it is converted to a member function. I
use a local variable of type Complex and do not initialize it because I do not care what the values of
its data members are¡Xthese values are going to be overwritten by the function before the result is
returned to the client. I used the same design in Listing 10.2 and there it was okay. I did not provide
any constructors for class Complex, and the system supplied this class with the default constructor
that did not do anything. In the design in this section, class Complex has a general constructor and
hence the compiler takes away the general constructor and yells at me for attempting to call a
nonexistent function in the first line of the operator function. You should think about constructors
all the time, right?

There are two remedies. One is to give in and initialize the local object to the values I do not need.

Complex operator+(const Complex &b) // one parameter only
{ Complex c(0,0); // a way to pacify the compiler
 c.real = real + b.real; // add components: no symmetric notation
 c.imag = imag + b.imag;
 return c; }

A better way to do that is to eliminate the local object. Instead, you can create an unnamed Complex
object, initialize it with the results of the computations, and return the value of that unnamed object
from the operator function.

Complex operator+(const Complex &b) // one parameter only
{ return Complex (real + b.real, imag + b.imag); } // nice: fast and neat

NOTE

Make sure that the class design supports not only the client code but also its own methods. The lack
of necessary constructors is a common source of problems in class design.

In the client code for Complex objects, you can use either the function call syntax or the operator
syntax. In the code snippet below, I am giving examples of both. Again, the function call syntax for
the member function is different from the function call syntax for the nonmember function: one of
the parameters becomes the target of the message.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (557 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Complex x(20,40),y(30,60),z1(0,0),z2(0,0); // objects created
z1 = x.operator+(y); // use as the message to x
z2 = x + y; // same as z2=x.operator+(y);
z1.operator+=(y); // use as the message to z1
z2 += x; // same as z2.operator+=(x);

The operator syntax for the member function is exactly the same as the operator syntax for the
nonmember function. The compiler is given a special dispensation to interpret the expressions such
as the function calls to methods whose names include the keyword operator and the sign of the
corresponding built-in operator.

z2 = x + y; // same as z2=x.operator+(y);
z2 += x; // same as z2.operator+=(x);

You can use the function call syntax for class member functions in the same way as for global
functions. Few programmers do that, and I mention it here because this is the real meaning of the
operator syntax in the expressions.

z2=x.operator+(y); // same as z2 = x + y;
z2.operator+=(x); // same as z2 += y;

What happens if you overload both a global function and a member function for the same operator?
This is not a good idea. If you call these functions using the function call syntax, the compiler will
figure out what you mean. If you use the operator syntax, you will confuse the compiler. Each
function could fit the bill. Both functions are of the same precedence, and the compiler will reject
the expression as ambiguous.

Using Class Members for Chain Operations

Similar to nonmember implementation, the return type void for the member function precludes the
use of the operator syntax in chain operations. Returning an object of the class type makes the chain
expressions possible.

Complex a(20,40), b(30,50), c(0,20), d(0,0); // defined and initialized
d = a + b + c; // use in chain expression

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (558 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Again, the built-in operator + associates from the left; the overloaded operator + associates from the
left as well; the meaning of the chain operation is d=(a + b) + c;

The syntax of the binary operator obscures the fact that we are dealing with a message
operator+() sent to an instance of an object of class type Complex. The meaning of a + b for the
member function implementation is a.operator+(b). Hence, client code d=(a + b) + c; is
exactly equivalent to

d = a.operator+(b) + c; // message to return value of a.operator+(b);

Again, the operator + here represents a message sent to the object that is returned by the first
function call. Hence, the meaning of the chain expression is as follows.

d=(a.operator+(b)).operator+(c); //a message to the return value

Make sure that you feel comfortable with the interpretation of chain expressions as sequences of
function calls.

Redefinition of the operator takes place only in the context of the class where the overloaded
operator is defined. It is used only when a message (with a parameter of type Complex) is sent to an
object of type Complex. This is why the standard meaning of the + symbol is used inside the
member function definition in c.real = real + b.real; this is not a recursive call to the
overloaded operator +: It is a built-in operator + applied to double values. The compiler knows
that the left operand is of type double; it is not an object and cannot be a target of the
operator+() message; the built-in operator + for double values is used.

Listing 10.3 shows the new version of class Complex and demonstrates the implementation of other
overloaded operators as member functions. The second operator+=() function loses its Complex
parameter; a Complex target object is used instead. The unary operator+() that implements the
functionality of the showComplex() function now has no parameters at all. This does not contradict
the rule that an overloaded operator function (implemented as a nonmember) should have at least
one class parameter object¡Xthis object is now the target of the message. Most programmers would
overload the operator << rather than the operator + for the output operation. I will show you how to
do that later. The output of the run of this program is shown in Figure 10-3.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (559 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 10-3. Output for program in Listing 10.3.

Example 10.3. Overloaded operator functions as class members.
#include <iostream>
using namespace std;

class Complex { // programmer-defined type
 double real, imag; // private data
public: // public member functions

Complex(double r, double i) // general constructor
 { real =r; imag = i; }

Complex operator+(const Complex &b) // one parameter only
{ return Complex (real + b.real, imag + b.imag); } // fast and neat

void operator += (const Complex &b) // does target object change?
{ real = real + b.real; // add to the real component of the
target
 imag = imag + b.imag; } // add to the imag component of the
target

void operator += (double b) // different parameter list
{ real += b; } // add to real component of the target

void operator + () // it used to be showComplex(const
Complex &x)
{ cout << "(" << real << ", " << imag << ")" << endl; } //

} ; // end of class Complex

int main()
{ Complex x(20,40), y(30,50), z1(0,0), z2(0,0); // objects created
 cout << " Value of x: "; +x; // same as x.operator+();
 cout << " Value of y: "; y.operator+(); // anything goes
 z1 = x.operator+(y); // use in the function call
 cout << " z1 = x + y: ";
 +z1; // display z1
 z2 = x + y; // same as z2=x.operator+(y);
 cout << " z2 = x + y: ";
 +z2; // display z2

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (560 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 z1 += x; // same as z1.operator+=(x);
 cout << " Add x to z1: "; +z1;
 z2 += 30.0; // same as z2.operator+=(30.0);
 cout << " Add 30 to z2: "; +z2;
 return 0;
 }

Using the const Keyword

The use of the const keyword for the function parameters here is the same as in Listing
10.2¡Xthere is no reason for any change. However, some parameters that you saw in Listing 10.2
are not present in Listing 10.3. This is how the global server functions from Listing 10.2 look.

Complex operator+(const Complex &a, const Complex &b) // magic name
{ Complex c; // local object
 c.real = a.real + b.real; // add real components
 c.imag = a.imag + b.imag; // add imaginary components
 return c; }

void operator += (Complex &a, const Complex &b) // another magic name
{ a.real = a.real + b.real; // add to the real component
 a.imag = a.imag + b.imag; } // add to the imaginary component

void operator += (Complex &a, double &b) // different interface
{ a.real += b; } // add to real component

void showComplex(const Complex &x) // it is operator+() in Listing
10.3
{ cout << "(" << x.real << ", " << x.imag << ")" << endl; }

In Listing 10.2, the designer expressed his knowledge about the first parameter of the function
operator+() in the form of the const keyword. Similarly, the first parameters of both functions
operator+=() expressed the designer's knowledge in the form of the absence of the const
keyword. In Listing 10.3, these parameters are gone. How should I reflect the absence (or the
presence) of the const keyword for these objects? The answer that these objects are gone is not
satisfactory because the objects are only gone from the function interface and not from the
application. This is especially clear from the operator syntax in the client code.

Complex x(20,40), y(30,50), z1(0,0), z2(0,0); // defined, initialized
z2 = x + y; // x and y do not change here
z1 += x; // z1 changes as the result of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (561 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

operation
z2 += 30.0; // z2 changes as the result of
operation

Whether these operators are implemented as stand-alone nonmember functions or as member
functions, their right-hand side operands do not change, and their left-hand side operands change as
the result of operation. This is not immediately evident from the inspection of the function call
syntax for these operations. (Remember, this is the real thing; the operator syntax is just an
alternative form that you are allowed to use when you comply with language limitations.)

Complex x(20,40), y(30,50), z1(0,0), z2(0,0); // defined, initialized
z2 = x.operator + (y); // x does not change during call
z1.operator += (x); // z1 changes as the result of
operation
z2.operator += (30.0); // z2 changes as the result of
operation

So, how do you express that the data members of the object (the target of the message) do not
change during the execution of the method? Right, you use the const keyword. In what position do
you put it? You put it between the closing parenthesis of the parameter list and the opening brace of
the function body. In the prototype, you put it between the closing parenthesis of the parameter list
and the semicolon. Did I tell you that you should think about using the const keyword all the time?
Yes, you should.

Listing 10.4 shows the same program as in Listing 10.3. I added the const keyword where
appropriate. Also, I implemented complex member functions outside of the class braces. This
forced me to use the class scope operator for function implementation. The scope operator is used
with overloaded function operators in the same way as for any other member function. The const
keywords are, of course, repeated in both the function prototype and the function implementation.
Any difference will be flagged as a syntax error (possibly with a misleading message). The output
of this program is the same as shown in Figure 10-3.

Example 10.4. Overloaded operator functions implemented outside the class
specification.
#include <iostream>
using namespace std;

class Complex { // programmer-defined data type
 double real, imag; // private data

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (562 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

public: // public member functions
 Complex(double r, double i); // general constructor
 Complex operator+(const Complex &b) const; // no change to target
 void operator += (const Complex &b); // target object changes
 void operator += (double b); // target object changes
 void operator + () const; // no change to target
} ; // end of class Complex

Complex::Complex(double r, double i) // general constructor
 { real =r; imag = i; }

Complex Complex::operator+(const Complex &b) const
{ return Complex (real + b.real, imag + b.imag); }

void Complex::operator += (const Complex &b) // target changes
{ real = real + b.real; // add to real component of the
target
 imag = imag + b.imag; } // add to imag component of the
target

void Complex::operator += (double b) // target object changes
{ real += b; } // add to real component of the
target

void Complex::operator + () const // no change to target
{ cout << "(" << real << ", " << imag << ")" << endl; }

int main()
{ Complex x(20,40), y(30,50), z1(0,0), z2(0,0); // defined, initialized
 cout << " Value of x: "; +x; // same as x.operator+();
 cout << " Value of y: "; y.operator+(); // anything goes
 z1 = x.operator+(y); // use in the function call
 cout << " z1 = x + y: "; +z1;
 z2 = x + y; // same as z2=x.operator+(y);
 cout << " z2 = x + y: "; +z2;
 z1 += x; // same as z1.operator+=(x);
 cout << " Add x to z1: "; +z1;
 z2 += 30.0; // same as z2.operator+=(30.0);
 cout << " Add 30 to z2: "; +z2;
 return 0;
 }

TIP

Use the const keyword for parameters of overloaded operator functions that do not change the
values of their parameters. When implementing overloaded operators as member functions, do not
forget to use the const keyword for the target object. Make sure that the function is marked as
const if the target does not change. Make sure that the absence of the const keyword is the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (563 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

evidence that the function changes the target object.

Case Study: Rational Numbers

In this section, I will discuss another popular example of operator function overloading: a class that
encapsulates the implementation of rational numbers (exact fractions) and implements arithmetic
operations and comparisons that are supported for integers.

Rational numbers can be represented as two components, the numerator and denominator. They
allow the use of operations over fractions without rounding errors, e.g., 1/4 + 3/2 = 14/8 = 7/4.

In the class implementation, the numerator and denominator should be private data members. If the
application might be ported to a 16-bit machine, the data members should be of type long. If it
will run on 32-bit machines only, data members can be either int or long¡Xon 32-bit machines
these data types represent the same range.

class Rational {
 long nmr;
 long dnm; // private data
public:
 Rational() // default constructor: zero values
 { nmr = 0; dnm = 0; } // this is not a good idea
 Rational(long n, long d) // general constructor: fraction as n/d
{ nmr = n; dnm = d; }
 // THE REST OF CLASS Rational
 } ;

The general constructor initializes the fields of the object to the values specified by the client code.
The default constructor can create noninitialized objects for further assignment of values; most
programmers dislike leaving the fields of the object noninitialized, so they use some default values.
If this does not affect program performance, this is all right. In this example, I initialize the object
to the default value zero.

Rational a(1,4), b(3,2), c, d;
c = a + b; // 1/4+3/2 = (1*2+4*3)/(4*2)=14/8=7/4; c.nmr is 7, c.dnm is 4

Can the default constructor initialize both data members to zero? If the object is not used as an
rvalue but only as an lvalue, similar to object c in the code snippet above, there is no harm in that.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (564 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If the client programmer assumes that a noninitialized object is always initialized to null and uses
this object in computations (e.g., to accumulate a total), this might result in problems.

Rational a(1,4), b(3,2), c, d;
c = a + b; // c.nmr is 7, c.dnm is 4
d += b; // 0/0 + 3/2 = (0*2+3*0)/(0*2); d.nmr=0, d.dnm=0

This is why it is better to assign a nonzero value to the denominator, for example, value 1:

Rational::Rational()
{ nmr = 0; dnm = 1; } // zero value in the form 0/1

With this default constructor, Rational objects could be used both as an rvalue and an lvalue.
When it is used as an lvalue (as object c below) the constructor call is wasted.

Rational a(1,4), b(3,2), c, d;
c = a + b; // c.nmr is 7, c.dnm is 4
d += b; // 0/1 + 3/2 = (0*2+3*1)/(1*2); d.nmr=3, d.dnm=2

The arithmetic operators can be implemented as overloaded operator functions that follow the rules
of operations over fractions. Below is the function operator+() that supports addition of two
Rational objects. The comment on the first line of the function code describes the algorithm: The
numerator of the result is the cross product of both operands (fractions), and the denominator of the
result is the product of the denominators of both operands.

Rational Rational::operator + (const Rational &x) const
{ Rational temp; // n1/d1+n2/d2 = ((n1*d2)+(n2*d1))/(d1*d2)
 temp.nmr = (nmr * x.dnm) + (x.nmr * dnm);
 temp.dnm = dnm * x.dnm; // for example, 1/4+ 3/2 = 14/8
 return temp; }

The problem with this implementation is that it does not normalize the result. First, it is not
convenient for the user. Second, the denominators only grow during computations, and overflow

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (565 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

becomes likely. To avoid that, the class Rational should support the normalization algorithm that
is called at the end of every arithmetic operation (including object construction).

class Rational {
 long nmr, dnm; // private data
public:
 Rational() // default constructor: zero value
 { nmr = 0; dnm = 1; }
 Rational(long n, long d) // general constructor: fraction as n/d
{ nmr = n; dnm = d;
 normalize(); }
Rational operator + (const Rational &x) const // important keyword
{ Rational temp; // n1/d1+n2/d2 =
((n1*d2)+(n2*d1))/(d1*d2)
 temp.nmr = (nmr * x.dnm) + (x.nmr * dnm);
 temp.dnm = dnm * x.dnm; // for example, 1/4 + 3/2 = 14/8
 temp.normalize();
return temp; }
void normalize() // find the greatest common divisor
{ if (nmr == 0) { dnm = 1; return; } // it is zero, no work to do
 int sign = 1; // make it -1 if the number is negative
 if (nmr < 0) { sign = -1; nmr = -nmr; } // make both members positive
 if (dnm < 0) { sign = -sign; dnm = -dnm; }
 long gcd = nmr, value = dnm; // search for greatest common divisor
 while (value != gcd) { // stop when the GCD is found
 if (gcd > value)
 gcd = gcd - value; // subtract smaller number from the greater
 else value = value - gcd; }
 nmr = sign * (nmr/gcd); dnm = dnm/gcd; } // denominator is positive
// THE REST OF CLASS Rational
 } ;

Those of you who are mathematically inclined can trace the details of normalization algorithm. For
those of you interested in C++ programming and not in mathematics, let me take a look at the
programming issues.

You see here two calls to the normalize() function. One, in the function operator+(), applies
this operation to the local variable temp. In the example of adding 1/4 and 3/2, the result is
temp.nmr=14, temp.dnm=8. Before the first pass through the while loop, gcd=14, value=8. In
the first pass (14>8) gcd=14-8=6, value=8. In the second pass (6<=8), gcd=6, value=8-6=2.
After the third pass, gcd=4, value=2. After the fourth pass, gcd=2, value=2, and the loop
terminates. Well, I traced the algorithm after all.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (566 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 10-4. Execution trace for member function normalize).

The second call to the normalize() member function is in the general constructor. It is needed in
case the client code instantiates something like this:

Rational x(14,8); // legitimate, but ugly

What is the target of this call to the normalize() member function? In Chapter 9, "C++ Class as a
Unit of Modularization," I spent significant effort trying to persuade you that member functions
look different from conventional global functions, and they are called using different syntax. (What
used to be a parameter of a global function becomes the target of the message.) You see here that
there is no target object, and the function is called pretty much like any global function.

When the object that should be used as the message target is not specified explicitly, it is the object
that calls the function (unless the function is a global function). In this example, the target of the
message is the Rational object x, and it is this object's nmr and dnm fields that will be used by the
normalize() function in its algorithm.

Some C++ programmers feel uncomfortable that the calls to global functions and to member
functions might look syntactically the same¡Xwithout the target message. For calls to global
functions, they use the global scope operator ::; and for calls to member functions of the same
class they use the object pointer this.

Why do these programmers dislike using the same notation for global functions and for member
functions? After all, using the same notation is syntactically correct. The compiler searches the list
of function members defined in the class; if the match is found, the compiler checks the interface
and generates the function call; if no match is found in the class, the compiler repeats the search
among global functions available in this scope.

The answer is that the human maintainer is not the compiler. It is a contribution to the quality of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (567 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

program code (decrease in code complexity) to directly indicate to the maintainer what the class
designer knows about the nature of the functions used by the class, a member function or a global
function.

NOTE

Always look for ways to pass your knowledge about the classes you design to the maintainer. When
a function call does not have a message target, indicate whether this is a call to a class member
function (by using the pointer this as a target) or to a global non-member function (by using the
global scope operator ::).

In the next version of the class Rational, I use these techniques to call normalize() in the
general constructor and to call the global function labs that returns the absolute value of a long in
the function normalize(). I also moved normalize() from the public section of the Rational
class to its private section.

Leaving this member function in the public section of the class would indicate to the client
programmer that it is okay to write algorithms that produce nonnormalized states of Rational
objects and hence should use this member function in the client code. Meanwhile, the motivation
for adding this function to the class is exactly the opposite. Its goal is to relieve the client
programmer from the responsibility for normalization, to push this responsibility down to the server
class to class Rational. Leaving this function in the public section would encourage client
programmers to use it and to create dependencies on the design of this class. This is almost as bad
as making data members public.

This is why it is an important task of a class designer to study the needs of potential clients and
provide as much service as necessary¡Xbut not more. The set of services provided by the class is
called the public interface of the class. This interface should be as narrow as possible without
depriving the client code of the services that make it self-explanatory and independent on the
internal design of the server class.

class Rational {
 long nmr, dnm; // private data
void normalize() // private member function
{ if (nmr == 0) { dnm = 1; return; }
 int sign = 1;
 if (nmr < 0) { sign = -1; nmr = ::labs(nmr); }// to illustrate it
 if (dnm < 0) { sign = -sign; dnm = ::labs(dnm); }
 long gcd = nmr, value = dnm; // search for greatest common divisor
 while (value != gcd) { // stop when the GCD is found

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (568 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (gcd > value)
 gcd = gcd - value; // subtract smaller number from the
greater
 else value = value - gcd; }
 nmr = sign * (nmr/gcd); dnm = dnm/gcd; } // denominator is positive
public:
 Rational() // default constructor: zero values
 { nmr = 0; dnm = 1; }
 Rational(long n, long d) // general constructor: fraction in the
n/d
 { nmr = n; dnm = d;
 this->normalize(); }
Rational operator + (const Rational &x) const
{ return Rational(nmr*x.dnm + x.nmr*dnm, dnm*x.dnm); }
 // THE REST OF CLASS Rational
 } ;

Another important change that I made in the design of the Rational class is related to the
operator+() function: I eliminated the call to normalize() by passing the results of computation
as arguments to the Rational constructor. The operator function that I used in the previous version
of class Rational was fairly expensive. Let me reproduce its code here.

Rational Rational::operator + (const Rational &x) const
{ Rational temp; // n1/d1+n2/d2 = ((n1*d2)+(n2*d1))/(d1*d2)
 temp.nmr = (nmr * x.dnm) + (x.nmr * dnm);
 temp.dnm = dnm * x.dnm; // for example, 1/4 + 3/2 = 14/8
 temp.normalize();
 return temp; }

For this version of the overloaded operator function, how many function calls do you see in the
second line of the code snippet below?

Rational a(1,4), b(3,2), c, d;
c = a + b; // c.nmr is 7, c.dnm is 4

The simple answer, "None. It is just the addition of two fractions" will not do. There is no addition
operation here: we are using an overloaded operator function, and it is a function. Let me rewrite
the client code with the explicit call to this function.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (569 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational a(1,4), b(3,2), c, d;
c = a.operator + (b); // c.nmr is 7, c.dnm is 4

All right, now everybody sees at least one function call. But look at the body of the function. Do
you see a call to the Rational constructor when the object instance temp is created? Do you see a
call to normalize()? That makes three function calls.

Now, when the function returns a value whose type is a programmer-defined class, a new unnamed
object of the class is created, and the copy constructor is called that initializes the fields of this new
object from the fields of the existing object; in this case, temp. Finally, the assignment operator in
the expression c=a.operator+(b); is executed. This is also equivalent to a function call. This
adds two to the count¡Xfive function calls where you see only one.

But this is not all. When the execution of the function reaches the closing brace and the function
terminates, all local variables (in this case, temp) are going to die. What happens when an object
instance is destroyed? Right, the destructor is called. And by the way, after the assignment in the
client space, the unnamed object that was used for returning the value from the function (initialized
with the copy constructor) will die too. That will invoke the destructor again. The total of function
calls is seven.

I wish I could tell you that the new version of the operator function cuts this number to one or two.
But no such luck. It eliminates the calls to the temp constructor and destructor, to normalize(),
and to the copy constructor for the returned value. Instead, it introduces a call to the general
constructor and, inside the constructor, to normalize(). So, the total count of function calls is
five. The improvement does not sound like much, but things like that tend to accumulate.

Learn to see hidden function calls when you write C++ code. Two function calls here, two function
calls there, and your program will be very busy doing very little. It is not for nothing that C++
programmers dislike returning objects from functions even though it is legal in C++.

ALERT

Learn to see constructor and destructor calls in your C++ code. Avoid unnecessary function calls.
Avoid returning objects from functions; do it only when it is needed to support required syntax in
the client code.

What other services should class Rational provide to its clients? In addition to the operator+(),

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (570 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

it should implement overloaded operator functions for the other three arithmetic operations:
operator-(), operator*(), and operator/(). Similar to class Complex that I discussed earlier
in this chapter, each arithmetic operator function should return the value of the class type. This
result value can be either assigned to another variable of this type or used as a message target in
chain notation.

Numeric algorithms often require comparisons between values, and class Rational is no
exception. Overloaded comparison operators should return true (or 1) when the condition being
tested holds or false (or 0) otherwise.

bool Rational::operator == (const Rational &other) const
{ return (nmr * other.dnm == dnm * other.nmr); }

bool Rational::operator < (const Rational &other) const
{ return (nmr * other.dnm < dnm * other.nmr); }

bool Rational::operator > (const Rational &other) const
{ return (nmr * other.dnm > dnm * other.nmr); }

Other conditional operators can be overloaded similarly. Notice that I am careful to indicate that
these functions do not change the values of their parameters and do not change the values of their
targets. Can you distinguish between the two? Or should I remind you of that joke about bagels and
cream cheese? Or should I tell you another joke on a similar subject?

Listing 10.5 shows the implementation of class Rational and the test driver that demonstrates
some of the operations that the class supports. It is a good example of C++ design, where the use of
overloaded operator functions mirrors the way the numeric data types use the same operations.

Example 10.5. Class Rational and its test driver.
#include <iostream>
using namespace std;

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational() // default constructor: zero values
 { nmr = 0; dnm = 1; }
 Rational(long n, long d) // general constructor: fraction as
n/d
 { nmr = n; dnm = d;
 this->normalize(); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (571 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational operator + (const Rational &x) const; // constant target
Rational operator - (const Rational &x) const;
Rational operator * (const Rational &x) const;
Rational operator / (const Rational &x) const;
 void operator += (const Rational &x); // target changes
 void operator -= (const Rational&);
 void operator *= (const Rational&);
 void operator /= (const Rational&);
bool operator == (const Rational &other) const; // constant target
bool operator < (const Rational &other) const;
bool operator > (const Rational &other) const;
void show() const;
 } ; // end of class
specification

Rational Rational::operator + (const Rational &x) const
{ return Rational(nmr*x.dnm + x.nmr*dnm, dnm*x.dnm); }

Rational Rational::operator - (const Rational &x) const
{ return Rational(nmr*x.dnm - x.nmr*dnm, dnm*x.dnm); }

Rational Rational::operator * (const Rational &x) const
{ return Rational(nmr * x.nmr, dnm * x.dnm); }

Rational Rational::operator / (const Rational &x) const
{ return Rational(nmr * x.dnm, dnm * x.nmr); }

void Rational::operator += (const Rational &x)
{ nmr = nmr * x.dnm + x.nmr * dnm; // 3/8+3/2=(6+24)/16=15/8
 dnm = dnm * x.dnm; // n1/d1+n2/d2 =
(n1*d2+n2*d1)/(d1*d2)
 this->normalize(); }

void Rational::operator -= (const Rational &x)
{ nmr = nmr * x.dnm - x.nmr * dnm; // 3/8+3/2=(6+24)/16=15/8
 dnm = dnm * x.dnm; // n1/d1+n2/d2 = (n1*d2-
n2*d1)/(d1*d2)
 this->normalize(); }

void Rational::operator *= (const Rational &x)
{ nmr = nmr * x.nmr; dnm = dnm * x.dnm;
 this->normalize(); }

void Rational::operator /= (const Rational &x)
{ nmr = nmr * x.dnm; dnm = dnm * x.nmr;
 this->normalize(); }

bool Rational::operator == (const Rational &other) const
{ return (nmr * other.dnm == dnm * other.nmr); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (572 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bool Rational::operator < (const Rational &other) const
{ return (nmr * other.dnm < dnm * other.nmr); }

bool Rational::operator > (const Rational &other) const
{ return (nmr * other.dnm > dnm * other.nmr); }

void Rational::normalize() // private member function
{ if (nmr == 0) { dnm = 1; return; }
 int sign = 1;
 if (nmr < 0) { sign = -1; nmr = -nmr; } // just for illustration
 if (dnm < 0) { sign = -sign; dnm = -dnm; }
 long gcd = nmr, value = dnm; // find greatest common divisor
 while (value != gcd) { // stop when the GCD is found
 if (gcd > value)
 gcd = gcd - value; // subtract smaller number from
greater
 else value = value - gcd; }
 nmr = sign * (nmr/gcd); dnm = dnm/gcd; } // denominator is positive

void Rational::show() const
{ cout << " " << nmr << "/" << dnm; }

int main()
{ Rational a(1,4), b(3,2), c, d;
 c = a + b; // c.nmr is 7, c.dnm is 4
 a.show(); cout << " +"; b.show(); cout << " =";
 c.show(); cout << endl;
 d = b - a;
 b.show(); cout << " -"; a.show(); cout << " =";
 d.show(); cout << endl;
 c = a * b; // c.nmr is 3, c.dnm is 8
 a.show(); cout << " *"; b.show(); cout << " =";
 c.show(); cout << endl;
 d = b / a;
 b.show(); cout << " /"; a.show(); cout << " =";
 d.show(); cout << endl;
 c.show();
 c += b;
 cout << " +="; b.show(); cout << " ="; c.show(); cout << endl;
 d.show();
 d *= b;
 cout << " *="; b.show(); cout << " ="; d.show(); cout << endl;
 if (b < c)
 { b.show(); cout << " <"; c.show(); cout << endl; }
 return 0;
 }

Figure 10-5. Output for program in Listing 10.5.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (573 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Many designers feel that a composite class like Rational should provide its clients with
disciplined access to its components and implement corresponding get() and set() functions.

long Rational::getNumer () const // notice const
{ return nmr ; }

long Rational::getDenom () const
{ return dnm ; }

void Rational::setNumer (long n) // no const
{ nmr = n; }

void Rational::setDenom (long d)
{ dnm = d; }

I do not like this addition. I think it breeds busywork for both the class designer and the client
programmer. In general, you should avoid allowing the client access to the details of
implementation (disciplined or otherwise). If client algorithm needs this access, well, let us bite the
bullet and make data members public. After all, the structure of the rational number is not going to
change, it will always contain at least two fields. Neither numerator nor denominator is going to
disappear. Changes in their names are unlikely because no other name can give any additional
benefits. If additional fields are to be added, they will not invalidate existing code that accesses the
numerator and denominator directly.

NOTE

Make your data members private and your member functions public. Do not hesitate to make local
functions private if they are needed only by class member functions. If the client code needs access
to data members and the class design is stable and is not going to change, do not provide set()
and get() access functions¡Xmake the data members public.

I feel that what I am saying runs against the most sacred principles of encapsulation, information

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (574 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

hiding, pushing responsibilities down to servers and the like. Arguing against private data in this
age means risking being laughed at. This reminds me of a Russian joke on laughing that touches
popular themes of relationships between neighbors in "communal apartments" and the lack of
enthusiasm for work in the workforce.

Yes, using public data often is similar to snoring at business meetings. But not always. Make sure
that you know when it is appropriate. (Remember that joke about bagels and cream cheese?)

NOTE

For a class with a few well-established and well-understood data members, it is all right to make
data members public. Examples are such geometrical and algebraic classes as Point,
Rectangle, Line, Complex, Rational.

No matter how you design these geometrical and algebraic classes, their data members are not
going to disappear, and hence the client code is not in danger of being changed. If you want to add
more services by adding more member functions, this can be done easily. Of course, the
indiscriminate use of public data members will make classes more difficult to modify.

Mixed Types as Parameters

Classes Complex and Rational are good examples of programmer-defined types that emulate the
properties of built-in C++ numeric types. The objects of these types can be operated on by using
the same set of operators as that used for an ordinary numeric variable. This supports the C++ goal
of treating programmer-defined types in the same way as C++ built-in types are.

This analogy, however, is not complete. You can apply a number of operators to variables of
numeric types that you cannot apply to Complex or Rational objects. Examples of such operators
are modulo division, bitwise logical operators, and shifts. Of course, you can overload these
operators similar to arithmetic and comparison operators, but the meaning of these operators
(whatever meaning you decide to implement, the compiler will go along) will not be intuitively
clear to the client programmer and to maintainer. An example of such arbitrary assignment of
meaning is Complex::operator+() that I implemented to display the values of the data members
of the Complex object. Intuitively, it is not clear at all what the expression +x should do to the
Complex variable x.

Another problem with treating the objects of built-in types and programmer-defined types equally
is the problem of implicit type conversions. C++ supports type conversions without reservation. For
example, these expressions are syntactically and semantically correct for any numeric types.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (575 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

c += b; // ok for b and c of any built-in numeric types
c += 4; // ok for c of any built-in numeric type

Whatever the numeric type of variable b, it is implicitly converted to the numeric type of variable
c; whatever the numeric type of variable c, integer 4 is implicitly converted to that type. If
variables b and c in the code snippet above are of type Rational, the second line above is in error.
For this line to be syntactically correct, one of these functions should be available in the scope of
the client code.

void Rational::operator+=(int x); // c+=4; is c.operator+=(4);
void operator+=(Rational &r, int x); // c+=4; is operator+=(c,4);

None of these functions is implemented in Listing 10.5, and that results in the syntax error in the
client code. This is an example of the member function that eliminates the error.

void Rational::operator += (int x) // target object changes
{ nmr = nmr + x * dnm; // n1/d1 + n = (n1+n*d1)/d1
 this->normalize(); }

Notice that if both functions are available, a member function and a global function with these
interfaces, the second line in the code snippet above is still in error. This time around it is an
ambiguity of the function call. Since either of these functions can foot the bill (the bill here is the
interpretation of the statement c += 4;) the compiler does not know which function to call.

However, if variables b and c in the code snippet above are of type Complex, both lines in the
snippet are syntactically correct. Why? Because I implemented two versions of operator+=() in
Listing 10.4.

void Complex::operator += (const Complex &b);
void Complex::operator += (int b);

In the client code, the first function is called for the first line of code, and the second function is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (576 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

called for the second line of code.

c += b; // c.Complex::operator+=(b); Complex argument
c += 4; // c.Complex::operator+=(4); integer argument

This resolves the problem of using operands of mixed types in expressions. The second overloaded
operator function works not only for integer arguments, but also for characters, short integers, long
integers, floating point, and double floating point arguments. According to the rules of argument
conversion, a value of each of these built-in types can be converted to an integer. There is no need
to overload the function operator +=() for each of these built-in types. One function would
suffice.

But do not sigh with relief yet. What about other operators such as -=, *=, /=? Each of these
operators requires yet another overloaded operator function with a numeric parameter. And what
about other arithmetic operator functions such as operator+(), operator-(), operator*(),
and operator/()? Consider the following snippet for object instances of class Rational.

c = a + b; // c = a.operator+(b);
c = a + 5; // ?? incompatible types ??

Again, the second line results in a syntax error because the overloaded operator expects an object of
the type Rational as the actual argument, not a value of a built-in numeric type. Meanwhile, all of
these expressions are not a product of inflamed imagination. Numeric values are mixed with
complex numbers and rational numbers in algorithms. And what about comparisons? You should
be able to compare Rational objects with integers, and this poses yet additional problems.

The solution that I used so far is legitimate but boring. For each operator function with a Rational
(or any other class) object as an argument, I have to write yet another operator function with a long
integer value as an argument. (An integer might not be sufficient on 16-bit machines.)

Can anything be done about that? And here C++ offers you a beautiful tool that allows you to get
away with only one set of operator functions (with class parameter) and force these operator
functions to accept actual arguments of built-in numeric types.

What is this tool? It is a tool that allows you to cast a numeric value to a value of the class. Let us
start with a very simple example.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (577 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational c = 5; // incompatible types ??

It goes without saying that this line is in error. In Chapter 3, "Working with C++ Data and
Expressions," I discussed the concept of the cast that converts the value of one built-in numeric
type to the value of another built-in numeric type. Of course, these casts are available only between
built-in types, not between built-in types and the programmer-defined type Rational. But if a cast
between built-in types and type Rational existed, how would it look? Its syntax would be the same
as for numeric types: the type name in parentheses. And the type name would be the name of the
type to which the value is converted.

Rational c = (Rational)5; // this is how the cast should look like

If you remember, in Chapter 3 you saw two syntactic forms for the cast, one that comes from C (the
form I used in the line above) and another is the C++ function-like cast.

Rational c = Rational(5); // this is how the cast could look like

Doesn't this line look like a constructor call? Now, what do you call the function that produces the
value of the class type? Don't you call it a constructor? So this function looks like a constructor and
behaves like a constructor. The conclusion is that it is a constructor.

Next question¡Xwhat constructor? This is simple. In Chapter 9, we called a constructor with one
parameter of nonclass type a conversion constructor. Now you should understand why this name is
used. This constructor converts a value of its parameter type into the value of the class type. To
make the line above syntactically correct, you have to write a constructor with one parameter.

What should this constructor do with its single parameter? If the value of the parameter is, say, 5,
the value of the Rational object should be set to 5 or to 5/1. If the value of the parameter is 7, the
value of the object should be set to 7/1. Hence, the value of the parameter should be used to
initialize the numerator, and the denominator should be set to 1 for any value of the actual
argument. This results in the following constructor.

Rational::Rational(long n) // conversion constructor
{ nmr = n; dnm = 1; } // initialize to a whole number

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (578 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This constructor is called every time that a function that expects a Rational parameter is called
with a numeric actual argument. The class Rational now should look this way.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational() // default constructor: zero value 0/1
 { nmr = 0; dnm = 1; }
 Rational(long n) // conversion constructor: whole value n/1
 { nmr = n; dnm = 1; }
 Rational(long n, long d) // general constructor: fraction as n/d
 { nmr = n; dnm = d;
 this->normalize(); }
Rational operator + (const Rational &x) const
{ return Rational(nmr*x.dnm + x.nmr*dnm, dnm*x.dnm); }
 // THE REST OF CLASS Rational
 } ;

Some programmers dislike writing several constructors if one constructor with default parameters
can do the job. A popular constructor that can be used as general constructor, conversion
constructor, and default constructor will look this way.

Rational(long n=0, long d=1) // general, conversion, default constructor
 { nmr = n; dnm = d;
 this->normalize(); }

Make sure that you see that this constructor is called when the client code supplies two arguments
for object initialization: one argument and no arguments; default values are used instead of missing
arguments when defining Rational objects.

Rational a(1,4); // Rational a = Rational(1,4); - two arguments
Rational b(2); // Rational b = Rational(2,1); - one argument
Rational c; // Rational c = Rational(0,1); - no arguments

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (579 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that the actual arguments supplied in this example are of type int but the constructor
expects arguments of type long. This is not a problem¡Ximplicit built-in conversion from int to
long is available by default as it is available between all built-in numeric types. In function calls,
the compiler allows not more than one built-in conversion and not more than on class-defined
conversion (a conversion constructor call).

In compiling expressions with Rational operands, the compiler converts the int arguments first to
long and then to Rational; after this conversion, the compiler generates the call to the appropriate
operator.

c = a.operator+(Rational((long)5)); // real meaning of c = a + 5;

Now the client code above compiles without the operator Rational::operator+(long). A
temporary Rational object is created, the conversion constructor is then called, then the
operator+(), and then the Rational destructor.

Now you can write client code with numeric values as the second operand, while the first operand
is of type Rational.

int main()
{
 Rational a(1,4), b(3,2), c, d;
 c = a + 5; // c = a.operator+(Rational((long)5));
 d = b - 1; // d = b.operator-(Rational((long)1));
 c = a * 7; // c = a.operator*(Rational((long)7));
 d = b / 2; // d = b.operator/(Rational((long)2));
 c += 3; // c.operator+=(Rational((long)3));
 d *= 2; // d.operator*=(Rational((long)2));
 if (b < 2) // if (b.operator<(Rational((long)2))
 cout << "Everything works\n";
 return 0;
}

Listing 10.6 shows a new version of class Rational that supports mixed types in binary
expressions. The output of the program run is shown in Figure 10-6.

Figure 10-6. Output for program in Listing 10.6.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (580 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 10.6. Class Rational that supports mixed types in expressions.
#include <iostream>
using namespace std;

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational(long n=0, long d=1) // general, conversion, default
 { nmr = n; dnm = d;
 this->normalize(); }
Rational operator + (const Rational &x) const; // const target
Rational operator - (const Rational &x) const;
Rational operator * (const Rational &x) const;
Rational operator / (const Rational &x) const;
void operator += (const Rational &x); // target changes
void operator -= (const Rational &x);
void operator *= (const Rational &x);
void operator /= (const Rational &x);

bool operator == (const Rational &other) const; // const target
bool operator < (const Rational &other) const;
bool operator > (const Rational &other) const;
void show() const;
 } ; // end of class specification

Rational Rational::operator + (const Rational &x) const
{ return Rational(nmr*x.dnm + x.nmr*dnm, dnm*x.dnm); }
Rational Rational::operator - (const Rational &x) const
{ return Rational(nmr*x.dnm - x.nmr*dnm, dnm*x.dnm); }

Rational Rational::operator * (const Rational &x) const
{ return Rational(nmr * x.nmr, dnm * x.dnm); }

Rational Rational::operator / (const Rational &x) const
{ return Rational(nmr * x.dnm, dnm * x.nmr); }

void Rational::operator += (const Rational &x)
{ nmr = nmr * x.dnm + x.nmr * dnm; // 3/8+3/2=(6+24)/16=15/8
 dnm = dnm * x.dnm; // n1/d1+n2/d2 =
(n1*d2+n2*d1)/(d1*d2)
 this->normalize(); }

void Rational::operator -= (const Rational &x)
{ nmr = nmr * x.dnm - x.nmr * dnm; // 3/8+3/2=(6+24)/16=15/8
 dnm = dnm * x.dnm; // n1/d1+n2/d2 = (n1*d2-
n2*d1)/(d1*d2)
 this->normalize(); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (581 of 1187) [8/17/2002 2:57:57 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void Rational::operator *= (const Rational &x)
{ nmr = nmr * x.nmr; dnm = dnm * x.dnm;
 this->normalize(); }

void Rational::operator /= (const Rational &x)
{ nmr = nmr * x.dnm; dnm = dnm * x.nmr;
 this->normalize(); }

bool Rational::operator == (const Rational &other) const
{ return (nmr * other.dnm == dnm * other.nmr); }

bool Rational::operator < (const Rational &other) const
{ return (nmr * other.dnm < dnm * other.nmr); }

bool Rational::operator > (const Rational &other) const
{ return (nmr * other.dnm > dnm * other.nmr); }

void Rational::show() const
{ cout << " " << nmr << "/" << dnm; }

void Rational::normalize() // private member function
{ if (nmr == 0) { dnm = 1; return; }
 int sign = 1;
 if (nmr < 0) { sign = -1; nmr = -nmr; }
 if (dnm < 0) { sign = -sign; dnm = -dnm; }
 long gcd = nmr, value = dnm; // greatest common divisor
 while (value != gcd) { // stop when the GCD is found
 if (gcd > value)
 gcd = gcd - value; // subtract smaller number from greater
 else value = value - gcd; }
 nmr = sign * (nmr/gcd); dnm = dnm/gcd; } // denominator is positive

int main()
{ cout << endl << endl;
 Rational a(1,4), b(3,2), c, d;
 c = a + 5; // I'll discuss c = 5 + a; later
 a.show(); cout << " + " << 5 << " ="; c.show(); cout << endl;
 d = b - 1;
 b.show(); cout << " - " << 1 << " ="; d.show(); cout << endl;
 c = a * 7;
 a.show(); cout << " * " << 7 << " ="; c.show(); cout << endl;
 d = b / 2;
 b.show(); cout << " / " << 2 << " ="; d.show(); cout << endl;
 c.show();
 c += 3;
 cout << " += " << 3 << " ="; c.show(); cout << endl;
 d.show();
 d *= 2;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (582 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << " *= " << 2 << " ="; d.show(); cout << endl;
 if (b < 2)
 { b.show(); cout << " < " << 2 << endl; }
 return 0;
 }

Remember that the conversions to type Rational, however implicit (silent), are function calls to
the conversion constructor. When the function terminates, the temporary object created for this
conversion is destroyed with the call to the destructor. (For this class, it is a default destructor
supplied by the compiler.) Remember that story about two functions here and two functions there?
(Actually, the story was about two dollars here and two dollars there.) Hence, this version of class
Rational is somewhat slower than the version that does not rely on argument conversions and
provides a separate overloaded operator for each type of the argument.

This implicit use of conversion constructors is supported not only for overloaded operators, but also
for any function, member function, and global function that has object parameters. As I mentioned
in Chapter 9, conversion constructors deal a blow to the C++ system of strong typing. If
intentionally you use a numeric value instead of an object, fine. If you use it by mistake, the
compiler does not tell you that you are making a mistake.

C++ offers a wonderful technique for preventing errors and for forcing the designer of client code
to tell the maintainer what is going on. This technique consists of using the keyword explicit
with the constructor.

explicit Rational(long n=0, long d=1) // cannot be called implicitly
 { nmr = n; dnm = d;
 this->normalize(); }

By declaring a constructor explicit, you make any implicit call to this constructor a syntax error.

Rational a(1,4), b(3,2), c, d;
c = a + 5; // syntax error: implicit call
c = a + Rational(5); // ok: explicit call
d = b - 1; // syntax error: implicit call
d = b - (Rational)1; // ok: explicit call
if (b < 1) // syntax error: implicit call
if (b < Rational(2)) // ok: explicit call
 cout << "Everything is fine\n";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (583 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is a very good idea because it gives the class designer a better control over the way the class
objects are used by the client programmer.

Programmer-defined classes like Complex and Rational do indeed have to emulate the behavior of
built-in numeric types as much as possible. Using numeric variables instead of objects in
expressions is not an error but a legitimate technique to implement computational algorithms. In the
code snippet above, I marked some lines as ok and other lines as syntax error. Given a choice,
every programmer would prefer to write code like in the lines marked as syntax errors. The need to
spell out the casts every time a numeric operand is used is an imposition on the client programmer
and results in code that is less aesthetically pleasing.

From that point of view, the use of the keyword explicit for the constructors of classes like
Complex and Rational is probably overkill.

NOTE

Do not use the keyword explicit for constructors of numeric classes that implement overloaded
operator functions. Utilize it for classes where using a built-in argument instead of the class object
in a function call is an error, not a legitimate way of using the class.

Friend Functions

Let us look back at the story of overloaded operator functions and see what they accomplished for
us in treating programmer-defined types similar to numeric types and what remains to be done.

I started with the statement that it is highly desirable to be able to treat variables of built-in types
and of programmer-defined types in exactly the same way. C++ supports this approach by entering
into a deal with the programmer. You as a programmer are required to give up your freedom of
choice for function names. You start your function name with the keyword operator and you
append to this keyword the symbol (or symbols) of the C++ built-in operator that you would like to
use with the objects of your class.

There are some minor limitations on what you are allowed or not allowed to do, such as using only
existing C++ operators (you cannot make up your own operator that the language does not
recognize); and you cannot change the relative priority of operators, their associativity, or the
number of operands they take. But these are minor. If you stick to your end of the bargain, C++
sticks to its end of the bargain: It recognizes the expressions that use that operator as function calls
to the function that you designed according to the rules outlined above.

C++ still allows you to call the overloaded operator functions in the same way you call other C++
functions¡Xby using the function name (keyword operator plus the operator symbol), but few

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (584 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

programmers ever do that. If you go to the trouble to call this function as a function, why bother to
use the keyword operator? It is better to use your naming freedom and give the function a more-
descriptive name, like addComplex() or addToComplex() or whatever. In the examples in this
chapter, I wrote function calls using the full names of overloaded operator functions with one
purpose only: to make sure you do not forget what is going on under the hood of a C++ program.
Every use of the overloaded operator in an expression is in reality a function call. At least one
function call. If local objects or returned objects are used, the use of operators also entails calls to
constructors and destructors for these objects.

As with some bargains in real life, here you got more than you bargained for. The sky is the limit to
what you can do inside the function whose header abides by the rules of overloaded operator
functions. A good example is the operator+() function overloaded for class Complex in Listing
10.4. What is the meaning of this client code?

Complex x(20,40), y(30,50); // defined, initialized
+x; +y; // same as x.operator+(); and y.operator+();

If x and y were integers, the meaning of the second line would be clear: keep the sign of the value.
Not a very interesting operation, but there can be no two opinions about it. With Complex objects, it
does not mean: keep the sign of the value. It could mean anything. In this case, it means: print the
contents of data members. For many classes, the operators that could be used on numbers cannot be
applied to objects. Treating objects as numbers opens the way to producing code whose meaning is
not intuitively clear, like using the plus sign for an output operation. (I will discuss better ways to
overload operators for input and output of objects later.) This is a serious danger.

As with many bargains in real life, you also get less than you would like to. The overloaded
operator functions are straightforward when they are applied to two object instances. If one operand
is an object instance (the target of the message) and the second operand is of numeric type, there is
a problem¡Xthe use of the operator syntax becomes a function call to the overloaded operator
function with incompatible argument type.

In the previous section, I discussed two possible solutions to this problem. One is to double the
number of overloaded operator functions: For each function with the parameter of the class type
you write an overloaded function with the same name and the parameter of the numeric type. This
is a good solution but it bloats the class design and makes it more difficult to understand.

Another solution is to overload only one function for each operator (with the parameter of the class
type) and to make sure that the class has a conversion constructor. This constructor converts the
value of the numeric type into the value of the class type. When the operator is used with two

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (585 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

operands of the class type, the constructor is not called before the overloaded operator function is
called. When the second operand (the function parameter) is of a numeric type, the constructor is
called implicitly (or explicitly, if it is defined with the keyword explicit) before the call to the
overloaded operator function. This solution keeps the class size manageable, but it entails the
creation and destruction of a temporary class object each time a numeric value is used as the actual
argument. This might affect program performance. For example, the first line in the next code
snippet does not call any conversion constructor, but the second line does.

Rational a(1,4), b(3,2), c;
c = a + b; // c = a.operator+(b); - match, no constructor call
c = a + 5; // c = a.operator+(5); - conversion constructor is called

But this is not the end of the story about mixed types in expressions. What about this sequence of
statements in client code? The adding of two Rational objects is supported directly. Adding a
Rational object and a number is supported through an additional call to the conversion
constructor. But adding a number and a Rational object is not supported.

Rational a(1,4), b(3,2), c;
c = a + b; // c = a.operator+(b); - match, no constructor call
c = a + 5; // c = a.operator+(5); - conversion constructor is called
c = 5 + a; // syntax error: c = 5.operator+(a); is impossible

The expression that uses an overloaded operator member function is always a message to its left
operand. Hence, this left operator must be an object instance. In the last line of the code snippet
above, the left operand is a number. You cannot send a message to a number. It takes an object of a
programmer-defined type to accept a message. Meanwhile, the last line in this code snippet is as
legitimate as the previous line from the point of view of equal treatments of objects and numbers.
Hence, it should be supported if you want to follow through with treating built-in types and
programmer-defined types equally.

When you want to use the function whose interface is different from what the client code needs,
one way to deal with the problem is to create a wrapper function. A wrapper function is a function
with the same name you want to use and whose interface satisfies the client code and whose only
purpose is to call the function you wanted to use in the client code to begin with. In the case of the
operator+() for class Rational, the wrapper function should have the same name but it should
be able to accept a numeric value as its first parameter.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (586 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational Rational::operator + (int i, const Rational &x) const
{ Rational temp1(i); // conversion constructor
 Rational temp2 = temp1.operator+(x); // overloaded operator
 return temp2; }

Or better yet:

Rational Rational::operator + (long i, const Rational &x) const
{ Rational temp(i); // call to the conversion constructor
 return temp + x; } // call to operator+(const Rational&);

However, this function is impossible to use. There are three players here, the target of the message,
the numeric parameter, and the object parameter. How do you put them together in a function call?

Rational a(1,4), b(3,2), c;
c.operator+(5, b); // c + ???

The overloaded function operator is called as a message to its left operand. That means that the
meaning of the last line of code is the object c plus something else. But I want to add 5 and
something else, and put the result in c. Hence, this line is a syntax error. Let us try again.

Rational a(1,4), b(3,2), c;
c = b.operator+(5, b); // c = b + ???

If the function name did not include the keyword operator, this would do. The value 5 would be
converted to Rational, added with object b, and the result would be copied into object c. The use
of the object b as the target of the message seems out of place¡Xthis object has nothing to do with
the operation. But the function name does include the keyword operator, and this syntax is no
good either. There should be only two players, not three.

Actually, it would be nice to get rid of the target object altogether and call the function with two
parameters only.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (587 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational a(1,4), b(3,2), c;
 c = operator+(5, b); // c = 5 + b; ???

Remember the first overloaded operator functions that I used for class Complex in Listing 10.2?
These functions were not class members. They were global functions. All I have to do to make the
code snippet above work is to define the wrapper function as a global function.

Rational operator + (long i, const Rational &x) // not a class member
function
{ Rational temp(i); // call to the conversion constructor
 return temp + x; } // call to Rational::operator+(const Rational&);

Actually, I did more than just erase the class scope operator. I also eliminated the const modifier
that specified that the function body does not change the fields of the target object. There is no
target object here, and there is no need to testify that its fields do not change.

This is a good solution but it is too limited. It would be nice to use this function for other ways of
writing the expression, not only for the case when the first operand is numeric. A good way to
generalize this function is to eliminate the local Rational object and use the conversion
constructor with the first parameter rather than in the body of the function.

When we use member functions to redefine a binary operator, the left argument is implicit, in the
form of the pointer.

Rational operator + (const Rational &x, const Rational &y)
{ return x.operator+(y); } // call to Rational::operator+(const Rational&);

Notice that the expression syntax in the body of this function is not appropriate. It will be
interpreted as a recursive call to the global function operator+() I am defining here.

Rational operator + (const Rational &x, const Rational &y)
{ return x + y; } // recursive call to operator+(): infinite loop

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (588 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is one of the few examples where an explicit call to the class member function using the
function call syntax rather than the operator syntax is necessary. It allows the global function
operator+() with two parameters to call the class member function (with one parameter).

I went through the steps of designing the interface for this global function because I felt you should
trace these steps in detail. Many C++ programmers are not comfortable with writing the same
algorithm as either a member function or a global function. I formulated the rules of transition in
Chapter 9: The global function has one extra class parameter. The member function does not have
this parameter but uses the argument object as the target of the message. Make sure you are
comfortable with this transition.

Now I have to admit that this design has a flaw. I did not want to discuss it simultaneously with
other issues and spread your scope of attention too thin, but now it is time to get to the problem.
When the operator syntax is used in the client code, the compiler has two options for interpreting
the expression: either to call the class member function with one parameter or to call the global
function with two parameters. Each function provides a legitimate interpretation of the expression,
be it the expression with two object instances or the one with one class instance and one operand of
a built-in type (with the appropriate call to the conversion constructor). Of course, if both operands
are of built-in types, there is no ambiguity¡Xthe compiler interprets the expression as a built-in
operator rather than as a call to an overloaded operator function.

Rational a(1,4), b(3,2), c;
c = a + b; // ambiguity: c = a.operator+(b); or c = operator+(a,b); ??
c = a + 5; // c=a.operator+(Rational(5)); or c=operator+(a,Rational(5));
c = 5 + a; // no ambiguity: c=operator+(Rational(5),a); no 5.operator+(a);
c = 5 + 5; // no ambiguity: the built-in binary addition operator

This is a pity because it contradicts the general algorithm of parsing the meaning of a name by the
compiler as described in Chapter 9. For nonoperator functions, the compiler first looks at class
member functions, and only if no match for the name is found in the class scope does it look up the
name among the global functions known in this file. No such luck for operator functions.

To eliminate ambiguity for the expression where both operands are objects, I can eliminate the
member operator function and implement the algorithm of the operator in the global function
directly. Then the compiler will find only one way to interpret the expression.

Rational operator + (const Rational &x, const Rational &y) // no Rational::
{ return Rational(y.nmr*x.dnm+x.nmr*y.dnm,y.dnm*x.dnm); } // private data??

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (589 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is a nice solution, but it is too "direct"¡Xit directly accesses the fields of its parameters, but the
function itself is outside the scope of class Rational and hence has no right to do so. This means
that this function will not compile.

C++ offers you an interesting workaround: the use of friend functions. A friend function is a
nonmember function that has the same access rights to class members as does any member
function. Notice that I am careful to say "access rights to class members" rather than just "access
rights to class data" because a friend function can access private (or protected) member functions as
easily as it can access private (or protected) data members.

A friend function can be either a global function or a member function of another class. Actually,
there are situations where you want to allow access to class members by all member functions of
another class. In this case, you will define another class as being a friend of this class. (We will
discuss this situation in more detail in Chapter 12, "Composite Classes: Pitfalls and Advantages.").
However, most friend functions are global functions: If you feel that you want to define a single
function of another class as a friend of this class, think again; you are probably making things more
complex than is necessary.

To define a function as a friend of the class, you insert the prototype of this function into the class
specification (as if it were a class member), and you precede the prototype with the keyword
friend. This does the trick; for all intents and purposes this function is like a member of the class.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational(long n=0, long d=1) // general, conversion, default
 { nmr = n; dnm = d;
 this->normalize(); }
 friend Rational operator + (const Rational &x, const Rational &y);
 // THE REST OF CLASS Rational:
 // no need for operator+() functions
 } ;

Well, I got excited about this trick and my last statement goes too far. There is a difference between
a friend function and a member function. To call a friend function, you do not have to specify the
target object as you do when you call a class member function. But this function can access the
Rational class members as if it were a class member function, and hence this version of the
function is now perfectly legitimate.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (590 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational operator + (const Rational &x, const Rational &y) // no Rational::
{ return Rational(y.nmr*x.dnm+x.nmr*y.dnm,y.dnm*x.dnm); } // yes, private
data

Replacing the class member function with the friend function removes ambiguity from the client
code.

Rational a(1,4), b(3,2), c;
c = a + b; // no ambiguity: c = operator+(a,b);
c = a + 5; // no ambiguity: c = operator+(a,Rational(5));
c = 5 + a; // no ambiguity: c=operator+(Rational(5),a);
c = 5 + 5; // no ambiguity: the built-in binary addition operator

All three forms of the expression with Rational objects are supported. If you are concerned with
calls to the Rational conversion constructor, you can avoid them by overloading the operator
function three times and defining all three functions as friends to class Rational.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational(long n=0, long d=1) // general, conversion, default
 { nmr = n; dnm = d;
 this->normalize(); }
 friend Rational operator + (const Rational &x, const Rational &y);
 friend Rational operator + (const Rational &x, long y);
 friend Rational operator + (long x, const Rational &y);
 // THE REST OF CLASS Rational
 } ;

As I mentioned earlier, you can use the similar technique of multiple overloading with member
functions. Friend functions have an advantage over member functions because member functions
can support only those forms where a Rational object is the left operand and not the form where
the left operand is a numeric variable. Since a call to an overloaded operator member function is
interpreted as a message to the left operand, supporting this form would require the compiler to
assign meaning to expressions like this:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (591 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 c = 5.operator+(a); // an integer cannot respond to Rational messages

Friend functions are more flexible for mixing numeric and object operands because they do not
necessarily need the left operand as an object.

A similar approach can be applied to relational operators. A class member function with an object
parameter supports only expressions that have object instances as its operands. If you want to
support expressions with a numeric value as the right operand, you should add either a conversion
operator or another overloaded operator function with the numeric parameter. Still, this does not
support the expressions where the left operand is a numeric value and the right operand is an object.

Rational a(1,4), b(3,2);
if (a < b) cout << "a < b\n"; // a.operator<(b);
if (a < 5) cout << "a < 5\n"; // a.operator<(5);
if (1 < b) cout << "1 < b\n"; // 1.operator<(b); is nonsense
if (1 < 5) cout << "1 < 5\n"; // built-in inequality operator

Adding to the program a global overloaded operator function can be used to support the fourth line
of this client code.

bool operator < (const Rational &x, const Rational &y)
{ return x.operator<(y); }

Similar to the case of the arithmetic operator, using both global and member operator functions
creates ambiguity for the second and the third lines of code.

Rational a(1,4), b(3,2);
if (a < b) cout << "a < b\n"; // a.operator<(b); or operator<(a,b);
if (a < 5) cout << "a < 5\n"; // a.operator<(5); or operator<(a,5);
if (1 < b) cout << "1 < b\n"; // no ambiguity: operator<(1,b);
if (1 < 5) cout << "1 < 5\n"; // built-in inequality operator

To support all forms of relational expressions, you can replace each member operator function with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (592 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the global operator function that accesses the data members of its parameters directly. To make this
access legitimate, you should define this global operator function as a friend of the class.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational(long n=0, long d=1) // general, conversion, default
 { nmr = n; dnm = d;
 this->normalize(); }
 friend Rational operator + (const Rational &x, const Rational &y);
 friend Rational operator - (const Rational &x, const Rational &y);
 friend Rational operator * (const Rational &x, const Rational &y);
 friend Rational operator / (const Rational &x, const Rational &y);
 friend bool operator < (const Rational &x, const Rational &y);
 friend bool operator > (const Rational &x, const Rational &y);
 friend bool operator == (const Rational &x, const Rational &y);
 // THE REST OF CLASS Rational
 } ;

This design eliminates ambiguities and supports all forms of relational expressions with objects as
both operands, only the right operand, and only the left operand (the most difficult case).

Rational a(1,4), b(3,2);
if (a < b) cout << "a < b\n"; // operator<(a,b);
if (a < 5) cout << "a < 5\n"; // operator<(a,Rational(5));
if (1 < b) cout << "1 < b\n"; // operator<(Rational(1),b);
if (1 < 5) cout << "1 < 5\n"; // built-in inequality operator

As you see, friend operator functions can do the same job as member operator functions do and
more. The only operators that cannot be overloaded as friends are the assignment operator
(operator=()), the subscript operator (operator[]()), the arrow selector operator (operator-
>()), and the function call or parentheses operator (operator()()). This limitation is necessary to
make sure that the first operand is an lvalue (a target of the message). In all previous examples in
this section, both the first operand and the second operand are rvalues.

Next, let us look at arithmetic assignment operators. The situation here is somewhat different
because these operators do not return a value (return type is void). Instead, they modify the state of
the target object. Since they do not return a new value of class Rational, they do not call the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (593 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rational constructor that normalizes the state of the object. Hence, the arithmetic operators have
to call the Rational::normalize() function before returning.

void Rational::operator += (const Rational &x) // no const
{ nmr = nmr * x.dnm + x.nmr * dnm; dnm = dnm * x.dnm;
 this->normalize(); } // no constructor call

This operator supports the expressions where both the left and the right operands are objects (e.g.,
c+=b;).With the conversion constructor, this operator supports the expressions where the left
operand is an object and the right one is a numeric value (e.g., c+=5;).

Rational a(1,4), b(3,2), c;
c = a + b; // c = operator+(a,b);
c += b; // c.operator+=(b);
c += 5; // c.operator+=(Rational(5));
5 += c; // 5.operator+=(c); is nonsense, is it not?

Replacing the overloaded operator member function with a global overloaded operator function
does not buy you much, at least at first glance.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational(long n=0, long d=1) // general, conversion, default constructor
 { nmr = n; dnm = d;
 this->normalize(); }
 friend void operator += (Rational &x, const Rational &y); // no const!
 // THE REST OF CLASS Rational
 } ;

This operator changes the value of its first parameter. This is why this parameter does not have the
const modifier.

void operator += (Rational &x, const Rational &y) // no const!
{ x.nmr = x.nmr*y.dnm + y.nmr*x.dnm; x.dnm *= y.dnm;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (594 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 x.normalize(); } // here, normalize() has the message target

Remember I told you that a friend function has access to all class members, not just to data
members? This consistent treatment of class members pays off here: this operator function accessed
private data members of its parameters and the private member function normalize().

This function supports the same forms of expression as the member operator function supports.

Rational a(1,4), b(3,2), c; long x = 5;
c = a + b; // c = operator+(a,b);
c += b; // operator+=(c,b);
c += 5; // operator+=(c,Rational(5));
5 += c; // a constant cannot be used as an lvalue
x += c; // operator+=(Rational(x),c); what is this?

Adding anything to a numeric literal (a constant value) is a syntax error, no questions asked.
Adding to a numeric variable is more complex. This variable can be changed, especially when
passed to a function whose reference parameter does not have the const modifier.

However, this argument is not a Rational object, and the type conversions are required. The
compiler creates a temporary object, calls the Rational conversion constructor to initialize it, and
passes the value of x to the constructor as an argument. Now what? Modifying this temporary
object within the operator function (as parameter x) is useless because this object is going to die
when the function terminates, and the change will not be passed back to the variable x. A decent
compiler should declare this a syntax error.

Even though in this case we cannot treat numerical types and programmer-defined types equally,
this example shows that we can go a very long way toward that goal. Actually, many programmers
prefer to use global friend operator functions rather than member functions, because the global
operator functions are easier to write¡Xthey treat their operators symmetrically.

Listing 10.7 shows the implementation of class Rational with overloaded operator functions
implemented as friends rather than as member functions. Figure 10-7 shows the output of the
program.

Figure 10-7. Output for program in Listing 10.7.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (595 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 10.7. Class Rational that uses friend functions to support mixed type
expressions.
#include <iostream.h>

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
Rational(long n=0, long d=1) // general, conversion, default
 { nmr = n; dnm = d;
 this->normalize(); }
friend Rational operator + (const Rational &x, const Rational &y);
friend Rational operator - (const Rational &x, const Rational &y);
friend Rational operator * (const Rational &x, const Rational &y);
friend Rational operator / (const Rational &x, const Rational &y);
friend void operator += (Rational &x, const Rational &y);
friend void operator -= (Rational &x, const Rational &y);
friend void operator *= (Rational &x, const Rational &y);
friend void operator /= (Rational &x, const Rational &y);
friend bool operator == (const Rational &x, const Rational &y);
friend bool operator < (const Rational &x, const Rational &y);
friend bool operator > (const Rational &x, const Rational &y);
void show() const;
 } ; // end of class specification
void Rational::show() const
{ cout << " " << nmr << "/" << dnm; }
void Rational::normalize() // private member function
{ if (nmr == 0) { dnm = 1; return; }
 int sign = 1;
 if (nmr < 0) { sign = -1; nmr = -nmr; }
 if (dnm < 0) { sign = -sign; dnm = -dnm; }
 long gcd = nmr, value = dnm; // search for greatest common divisor
 while (value != gcd) { // stop when the GCD is found
 if (gcd > value)
 gcd = gcd - value; // subtract smaller number from the
greater
 else value = value - gcd; }
 nmr = sign * (nmr/gcd); dnm = dnm/gcd; } // denominator is always

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (596 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

positive
Rational operator + (const Rational &x, const Rational &y)
{ return Rational(y.nmr*x.dnm + x.nmr*y.dnm, y.dnm*x.dnm); }
Rational operator - (const Rational &x, const Rational &y)
{ return Rational(x.nmr*y.dnm - y.nmr*x.dnm, x.dnm*y.dnm); }
Rational operator * (const Rational &x, const Rational &y)
{ return Rational(x.nmr * y.nmr, x.dnm * y.dnm); }
Rational operator / (const Rational &x, const Rational &y)
{ return Rational(x.nmr * y.dnm, x.dnm * y.nmr); }
void operator += (Rational &x, const Rational &y)
{ x.nmr = x.nmr * y.dnm + y.nmr * x.dnm; x.dnm *= y.dnm;
 x.normalize(); }
void operator -= (Rational &x, const Rational &y)
{ x.nmr = x.nmr*y.dnm + y.nmr*x.dnm; x.dnm *= y.dnm;
 x.normalize(); }
void operator *= (Rational &x, const Rational &y)
{ x.nmr *= y.nmr; x.dnm *= y.dnm;
 x.normalize(); }
void operator /= (Rational &x, const Rational &y)
{ x.nmr = x.nmr * y.dnm; x.dnm = x.dnm * y.nmr;
 x.normalize(); }
bool operator == (const Rational &x, const Rational &y)
{ return (x.nmr * y.dnm == x.dnm * y.nmr); }
bool operator < (const Rational &x, const Rational &y)
{ return (x.nmr * y.dnm < x.dnm * y.nmr); }
bool operator > (const Rational &x, const Rational &y)
{ return (x.nmr * y.dnm > x.dnm * y.nmr); }
int main()
{ Rational a(1,4), b(3,2), c, d;
 c = 5 + a;
 cout << " " << 5 << " +"; a.show(); cout << " =";
 c.show(); cout << endl;
 d = 1 - b; // operator-
(Rational(1),b);
 cout << " 1 -"; b.show(); cout << " ="; d.show(); cout << endl;
 c = 7 * a; //
operator*(Rational(7),a);
 cout << " 7 *"; a.show(); cout << " ="; c.show(); cout << endl;
 d = 2 / b; //
operator/(Rational(2),b);
 cout << " 2 /"; b.show(); cout << " ="; d.show(); cout << endl;
 c.show();
 c += 3; //
operator+=(c,Rational(3));
 cout << " += " << 3 << " ="; c.show(); cout << endl;
 d.show();
 d *= 2; //
operator*=(d,Rational(2))
 cout << " *= " << 2 << " ="; d.show(); cout << endl;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (597 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (a < 5) cout << " a < 5\n"; // operator<(a,Rational(5));
 if (1 < b) cout << " 1 < b\n"; // operator<(Rational(1),b);
 if (1 < 5) cout << " 1 < 5\n"; // built-in inequality operator
 if (d * b - a == c - 1) cout << " d*b-a == c-1 ==";
 (c - 1).show(); cout << endl;
 return 0;
 }

Many programmers struggle with implementing operators as member functions instead of using
friend functions. The main reason for not using friends is the conviction that friends break
encapsulation, information hiding, and all other good things that object-oriented programming
promises us.

True, excessive use of friend functions makes code confusing and more difficult to maintain. There
is no question about that. But what about reasonable use of friend functions? And what is
reasonable and what is excessive when it comes to friends?

The best way to answer this question is to recall the major goal of using classes in C++. Remember
that? We need classes because when we use stand-alone global functions that access data
structures, the connection between the functions and the data is only in the mind of the designer,
not necessarily in the mind of the maintainer or the client programmer. Also, the encapsulation is
voluntary and any function can access data directly, without using access functions. Right? Also,
we wanted to have the local class scope so that the names of function and data that we use for one
part of the program would not conflict with the names that we use for other parts of the program.
Remember that list? I want to make sure that you hear this list of goals often enough so that you
will be able to apply it to evaluation of the quality of C++ code.

With these criteria in mind, let us take a look at the design with overloaded operators implemented
as member functions in Listing 10.6.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
 Rational(long n=0, long d=1) // general, conversion,
default
 { nmr = n; dnm = d;
 this->normalize(); }
Rational operator + (const Rational &x) const; // const target
Rational operator - (const Rational &x) const;
Rational operator * (const Rational &x) const;
Rational operator / (const Rational &x) const;
void operator += (const Rational &x); // target changes
void operator -= (const Rational &x);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (598 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void operator *= (const Rational &x);
void operator /= (const Rational &x);
bool operator == (const Rational &other) const; // const target
bool operator < (const Rational &other) const;
bool operator > (const Rational &other) const;
void show() const;
 } ; // end of class
specification

Is the connection between data and function clear? Yes, the opening and closing braces of the class
scope denote this connection. Is data protected from accessing from the functions other than
member functions? Yes, data members are defined as private and cannot be accessed from the
outside of the class. Is there a danger of name conflicts between members of class Rational and
members of other classes? No any other class can define functions with names like operator+()
and so on, and there will be no conflict.

It looks like a good design. Now let us compare it with the design that uses friend functions in
Listing 10.7.

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
Rational(long n=0, long d=1) // general, conversion, default
 { nmr = n; dnm = d;
 this->normalize(); }
friend Rational operator + (const Rational &x, const Rational &y);
friend Rational operator - (const Rational &x, const Rational &y);
friend Rational operator * (const Rational &x, const Rational &y);
friend Rational operator / (const Rational &x, const Rational &y);
friend void operator += (Rational &x, const Rational &y);
friend void operator -= (Rational &x, const Rational &y);
friend void operator *= (Rational &x, const Rational &y);
friend void operator /= (Rational &x, const Rational &y);
friend bool operator == (const Rational &x, const Rational &y);
friend bool operator < (const Rational &x, const Rational &y);
friend bool operator > (const Rational &x, const Rational &y);
void show() const;
 } ; // end of class specification

Do you see what I am driving at? The list of functions connected with data is right here, between
the opening and closing braces of the class scope. This list is clear not only to the class designer but

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (599 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

also to the client programmer and the maintainer. Is data protected from access from the functions
other than the functions declared between the class braces? Yes, data are declared private, and any
function that needs access to data members have to be declared within class braces either as a
member function or as a friend. What about name conflicts? Let us say we want to implement the
overloaded operator function operator+() as a friend of class Complex. Will this function name
conflict with the operator+() that is a friend of class Rational? No, the operator+() that deals
with Complex objects will have a different signature.

 Complex operator + (const Complex &x, const Complex &y);

So, what about friend functions that break encapsulation, information hiding, and other good things
promised by object-oriented programming? This design with friend functions is every bit as good
as the design with member functions. Mostly, it is a matter of taste. To my taste, friend operators
are easier to code and to verify. Another important difference is that global operators support all
forms of expressions, and member functions support only those forms where the left operand is an
object, not a numeric value.

TIP

Do not hesitate to use friend functions when implementing overloaded operator functions. They are
easier to design than member functions and they support all three forms of expression in the client
code (both operands are objects, only the left operand is an object, only the right operand is an
object). Do not use friend functions when they make code confusing.

Summary

In this chapter, we looked at the bells and whistles of C++: overloaded operator functions. Unlike
the C++ features that were discussed in the previous chapters, overloaded operator functions are not
absolutely necessary for writing high-quality C++ code.

One can even argue that, with the exception of a few classes such as Rational, Complex, and the
like, the use of overloaded operators results in more confusion rather than making code easier to
understand. The reason for this is that most classes are not like numeric types, and applying
numeric operators is not straightforward.

For example, what do operator functions operator+() and operator<() mean for class
Employee? Or for the class Transaction? Of course you can attach some meaning to these
operators but this meaning is not intuitive and common. Your program might be better off if you
call these functions giveRaise() and hasSeniority() or whatever is appropriate for your

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (600 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

application.

However, the use of overloaded operators is not uncommon. They are especially popular in C++
libraries, including the Standard Template Library (STL), and you have to understand what they do
and how they are implemented.

The comparison that I make between member functions and friend functions is very important. All
too often we make design decisions on the basis of hearsay or arbitrary biases rather than from the
point of view of goals of object-oriented programming.

Make sure that you do not treat friend functions as X-rated material. Use them if they provide more
flexibility for better implementation. But do not overuse them.

Chapter 11. Constructors and Destructors: Potential Trouble

Topics in this Chapter

ϒΠ More on Passing Objects by Value

ϒΠ Operator Overloading for Nonnumeric Classes

ϒΠ More on the Copy Construction

ϒΠ Overloading the Assignment Operator

ϒΠ Practical Considerations: What to Implement

ϒΠ Summary

Overloaded operator functions give a new twist to object-oriented programming. Instead of
concentrating on binding together data and operations and related ideas, we find ourselves busy
with aesthetic considerations and the issues of equally treating built-in types and programmer-
defined types by a C++ program.

This chapter is a direct continuation of the previous chapter. In Chapter 10,"Operator Functions:
Another Good Idea," I discussed the issues that are related to the design of numeric classes, such as
classes Complex and Rational. Objects of these classes are object instances in their own right. All
of the issues related to dealing with objects apply to them: class declaration, control of access to
class members, design of member functions, object definition, object initialization, and messages

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (601 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

sent to objects.

The programmer-defined types discussed earlier are inherently numeric. Even though they have a
more complex internal structure than integers and floating point numbers do, they can be handled
by the client code similar to integers and floating point numbers: They can be added, multiplied,
compared, and so on by the client code.

Notice the sloppiness of the previous statement. The first "they" at the beginning of the statement
denotes programmer-defined types. What do "integers and floating point numbers" denote? Since I
am comparing them to programmer-defined types, I am talking about integer and floating point
types, not integer and floating point variables. It would be better to say "built-in types" instead.
And what does the second "they" in the middle of the sentence mean? Probably the same thing as
the first "they" in the sentence, that is, programmer-defined types. But this is not the case, because
here I am talking about handling them by the client code! The client code does not handle
programmer-defined types; it handles objects of programmer-defined types. It is object instances,
or variables, that are multiplied, compared, and so on. I make this point because I think that you
have learned enough about classes and objects to be sensitive to the loose language in object-
oriented discussions and to avoid it if possible.

In other words, objects of programmer-defined numeric classes can be handled by the client code
similar to variables of built-in types. This is why it makes perfect sense to support operator
overloading for them. The C++ principle of treating the instances of built-in types and programmer-
defined classes equally works well for these classes. In this chapter, I am going to discuss
overloaded operators for classes whose objects cannot be added, multiplied, subtracted, or divided.
For example, class String can be designed to manage text in memory. Because of the nonnumeric
nature of such classes, overloaded operator functions for these classes look artificial. For example,
you can implement String concatenation using the overloaded addition operator or String
comparison using the overloaded equality operator. But you would be hard-pressed to come up
with a reasonable interpretation of multiplication or division for String objects. Nevertheless,
overloaded operator functions for nonnumeric classes are popular, and you should know how to
deal with them.

The important distinction of these nonnumeric classes is the variable amount of data that objects of
the same class can use. The objects of numeric classes always use the same amount of memory. In
class Rational, for example, there are always two data members, one for the numerator, another
for the denominator.

In class String, however, the amount of text that is stored in one object might be different from
the amount of text stored with another object. If the class reserves for each object the same (large
enough) amount of memory, the program has to deal with two unpleasant extremes¡Xthe waste of
memory (when the actual amount of text is less than the reserved amount of memory) and memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (602 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

overflow (when the object has to store too much text). These two dangers always haunt the
designers of classes that allocate the same amount of memory to each object.

C++ resolves this problem by allocating a fixed amount of memory to each object (either to the
heap or to the stack) according to the class description and then allocating additional memory to the
heap as required. This additional amount of heap memory changes from one object to another. It
might even change for an object during its lifetime. For example, a String object might receive
additional heap memory to accommodate text that is concatenated to the text currently in the object.

Dynamic management of heap memory entails the use of constructors and destructors. Their
unskilled use might negatively affect program performance. What is worse is that their use might
result in corruption of memory and loss of program integrity that is not known in any other
language but C++. Every C++ programmer should be aware of these dangers. This is why I
included these issues in the title of the chapter even though this chapter continues the discussion of
overloaded operator functions.

For simplicity of discussion, I will introduce necessary concepts for the fixed-sized class Rational
that you saw in Chapter 10. In this chapter I will apply these concepts to class String with
dynamic management of heap memory. As a result, you will hone your programming intuition
about relationships between object instances in the client code. You will see that the relationships
between objects are different from relationships between variables of built-in types, despite the
effort to treat them equally. In other words, you are in for a big surprise.

Make sure you do not skip the material in this chapter. The dangers related to the roles of
constructors and destructors in C++ are real, and you should know how to protect yourself, your
boss, and the users of your code.

More on Passing Objects by Value

Earlier, in Chapter 7, "Programming with C++ Functions," I argued against passing objects to
functions as value parameters or as pointer parameters and promoted passing parameters by
reference instead.

I explained that pass by reference is almost as simple as pass by value, but it is faster¡Xfor input
parameters that are not modified by the function. Pass by reference is as fast as pass by pointer, but
its syntax is much simpler¡Xfor output parameters that are modified by the function in the course of
its execution.

I also noticed that the syntax for pass by reference is exactly the same for both input and output
function parameters. This is why I suggested that you use the const modifier for input parameters,
indicating that the parameter does not change as the result of function execution. When you use no

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (603 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

modifiers, this should indicate that the parameter changes during function execution.

I also argued against returning object values from functions unless it is necessary for sending other
messages to the returned object (chain syntax in expressions).

With this approach, the pass by value should be limited to passing built-in types as input
parameters to functions and returning values of built-in types from functions. Why is this
acceptable for input values of built-in types? Passing them by pointer will add complexity and
could mislead the reader into believing that the parameter changes within the function. Passing
them by reference (with the const modifier) is not very difficult, but it adds a little bit of
complexity. Since they are small, passing them by reference has no performance advantages. This
is why the simplest way of passing parameters is appropriate for built-in types.

In the last chapter, you learned enough programming techniques to be able not only to discuss
advantages and disadvantages of different modes of passing parameters but also to see the actual
sequence of invocations.

Also on several occasions, I told you that initialization and assignment, even though they both use
the equal sign, are treated differently. In this section, I will use debugging code to demonstrate the
differences.

I will demonstrate both issues using the program in Listing 11.1, which contains a simplified (and
modified) class Rational from the last chapter with its test driver.

Of all Rational functions, I left only normalize(), show(), and operator+(). Notice that the
overloaded operator function operator+() is not a member function of class Rational; it is a
friend. This is why I was careful to say at the beginning of this paragraph, "of all Rational
functions," not "of all Rational member functions." I do this because I want to stress that a friend
function is, for all intents and purposes, a class member function. It is implemented in the same file
as are other member functions, it has the same access rights to class private members as do other
member functions, and it is useless for working with objects of any class other than class
Rational. It is only the invocation syntax that makes it different from member functions, but for
overloaded operators, the operator syntax is the same for member functions and friend functions.

Example 11.1. Example of passing object parameters by value.
#include <iostream.h>

class Rational {
 long nmr, dnm; // private data
 void normalize(); // private member function
public:
Rational(long n=0, long d=1) // general, conversion, default

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (604 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { nmr = n; dnm = d;
 this->normalize();
 cout << " created: " << nmr << " " << dnm << endl; }
Rational(const Rational &r) // copy constructor
 { nmr = r.nmr; dnm = r.dnm;
 cout << " copied: " << nmr << " " << dnm << endl; }
void operator = (const Rational &r) // assignment operator
 { nmr = r.nmr; dnm = r.dnm;
 cout << " assigned: " << nmr << " " << dnm << endl; }
~Rational() // destructor
 { cout << " destroyed: " << nmr << " " << dnm << endl; }
friend Rational operator + (const Rational x, const Rational y);
void show() const;
 } ; // end of class specification

void Rational::show() const
{ cout << " " << nmr << "/" << dnm; }

void Rational::normalize() // private member function
{ if (nmr == 0) { dnm = 1; return; }
 int sign = 1;
 if (nmr < 0) { sign = -1; nmr = -nmr; } // make both positive
 if (dnm < 0) { sign = -sign; dnm = -dnm; }
 long gcd = nmr, value = dnm; // greatest common divisor
 while (value != gcd) { // stop when the GCD is found
 if (gcd > value)
 gcd = gcd - value; // subtract smaller from greater
 else value = value - gcd; }
 nmr = sign * (nmr/gcd); dnm = dnm/gcd; } // make dnm positive

Rational operator + (const Rational x, const Rational y)
{ return Rational(y.nmr*x.dnm + x.nmr*y.dnm, y.dnm*x.dnm); }

int main()
{ Rational a(1,4), b(3,2), c;
 cout << endl;
 c = a + b;
 a.show(); cout << " +"; b.show(); cout << " ="; c.show();
 cout << endl << endl;
 return 0;
 }

In the general Rational constructor, I added the debugging printing statement. This statement
should fire each time a Rational object is created and initialized¡Xat the beginning of the main()
and within the operator+() function.

Rational::Rational(long n=0, long d=1) // default values

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (605 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { nmr = n; dnm = d; // initialize data
 this->normalize();
 cout << " created: " << nmr << " " << dnm << endl; }

I also added a copy constructor with the debugging printing statement. This statement fires when an
object of class Rational is initialized from the data members of another Rational object, for
example, when passing parameters by value to the operator+() function or when returning a
Rational object from this function.

Rational::Rational(const Rational &r) // copy constructor
 { nmr = r.nmr; dnm = r.dnm; // copy data members
 cout << " copied: " << nmr << " " << dnm << endl; }

This constructor is called when Rational arguments are passed by value to the friend operator
function operator+(). Despite appearances, the copy constructor is not called when operator+()
returns the object value, since the general constructor with two arguments is called prior to
returning from the operator+() function.

The destructor does not have a meaningful job in the Rational class, and I added it only for the
sake of the debugging statement that fires when a Rational object is destroyed.

The most interesting function here is an overloaded assignment operator function. Its job is to copy
the data members of one Rational object into the data members of another Rational object. How
is its duty different from that of the copy constructor? The answer is that there is no difference, at
least at this stage. The return type is different¡Xthe copy constructor must not have the return type,
and the assignment operator, as most member functions, must have a return type. For simplicity, I
return void.

void Rational::operator = (const Rational &r) // assignment
 { nmr = r.nmr; dnm = r.dnm; // copy data
 cout << " assigned: " << nmr << " " << dnm << endl; }

The overloaded assignment operator is a binary operator. How do I know this? First, it has one
parameter of the class type, and it is a member function, not a friend; as any member function with
one parameter, it operates on two objects: One is the message target and the other is the parameter.
The second explanation is from the syntax of the use of the assignment as an operator. The binary

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (606 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

operator is always written between the first and the second operand. When adding two operands,
write the first operand, the operator, and the second operand (e.g., a + b). When using the
assignment, write the first operand, the operator, and the second operand (e.g., a = b). In the
function call syntax, object a is the target of the message: In the assignment operator function
above, nmr and dnm belong to the target object a. The object b is the argument of this function call:
In the assignment operator function above, r.nmr and r.dnm belong to the actual argument b.
Hence the function call syntax for the assignment operator is a.operator= (b).

Because this operator returns void, it cannot support chain assignments in the client code, for
example, a = b = c. This expression is interpreted by the compiler as a= (b = c). This means
that the return value of the assignment b = c (or b.operator=(c)) is used as a parameter in the
assignment a.operator=(b.operator=(c)). For this expression to be valid, the assignment
operator should return the value of the class type (here, Rational), Since the assignment operator
was designed so that it returns void, the chain expression will be labeled by the compiler as a
syntax error. For our first look at the assignment operator, this is not important. The chain
assignment will be used later in the chapter.

The output of the program in Listing 11.1 is shown in Figure 11-1. The first three messages
"created" come from creation and initialization of three Rational objects in main(). The two
"copied" messages come from the data flow to the overloaded operator function operator+().
The next message "created" comes from the call to the Rational constructor in the body of the
function operator+().

Figure 11-1. Output for program in Listing 11.1.

All these calls to constructors take place at the beginning of the function execution. Next comes a
series of events that takes place when the execution reaches the closing brace of the function body
and local and temporary objects are destroyed. The first two "destroyed" messages occur when two
local copies of actual arguments (3/2 and 1/4) are destroyed, and the destructor is called for these

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (607 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

two objects. The object that contains the sum of parameters cannot be destroyed before it is used in
the assignment operator. The next message "assigned" comes from the call to the overloaded
assignment operator, and the message "destroyed" comes from the destructor for the object that was
created in the body of the function operator+(). The last three "destroyed" messages come from
the destructors that are called when the execution reaches the closing brace of main(), and objects
a, b, and c are destroyed. Since the copy constructor is not called, the message "copied" does not
appear in the output.

This sequence of events plays differently if two ampersand signs are added in the interface of the
operator+() function.

Rational operator + (const Rational &x, const Rational &y) // references
{ return Rational(y.nmr*x.dnm + x.nmr*y.dnm, y.dnm*x.dnm); }

The requirement of consistency between different parts of code stands tall in C++ programming.
Here, I am changing the interface of a function prototype and updating the function declaration in
the class specification. (Again, it does not matter whether it is a member function or a friend
function.) In this case, failure to keep related parts of code consistent is not deadly¡Xthe compiler
would alert you that the code has syntax errors.

The results of the execution of program in Listing 11.1 with the operator+() above are shown in
Figure 11-2. You see that four function calls are missing: Two parameter objects are not created
and two parameter objects are not destroyed.

Figure 11-2. Output for program in Listing 11.1 and passing parameters by reference.

TIP

Avoid passing object instances as value parameters. This causes unnecessary function calls. Pass
parameters by reference, and label them as constant objects in the function interface (if

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (608 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

applicable).

Next, let me demonstrate the difference between initialization and assignment. In Listing 11.1,
variable c is assigned in the expression c = a + .b How do I know that it is assigned and not
initialized? Because there is no type name to the left of c. Its type is defined earlier at the
beginning of main(). In contrast, this version of main() creates and immediately initializes the
object c to the sum of a and b rather than creating and assigning to c in separate statements.

int main()
{ Rational a(1,4), b(3,2), c = a + b;
 a.show(); cout << " +"; b.show(); cout << " ="; c.show();
 cout << endl << endl;
 return 0; }

Figure 11-3 shows the results of the execution of the program in Listing 11.1 with passing
parameters by reference and this main() function. You see that the assignment operator is not
called here. Neither is the copy constructor¡Xthe natural result of the switch from pass by value to
pass by reference.

Figure 11-3. Output for program in Listing 11.1, passing parameters by reference and
using object initialization rather than assignment.

Later, I will use a similar technique to demonstrate the difference between initialization and
assignment for the String class.

TIP

Distinguish between object initialization and object assignment. At initialization, a constructor is
called, and the assignment operator call is bypassed. At assignment, the assignment operator is
called, and the constructor call is bypassed.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (609 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

These ideas about avoiding passing object parameters by value and distinguishing between
initialization and assignment are very important. Make sure that you are able to read the client code
and say, "Here a constructor is called, and here the assignment operator is called." Develop your
intuition to enable you to perform this type of analysis.

Operator Overloading for Nonnumeric Classes

As I noted in the introduction to this chapter, the extension of built-in operators to numeric classes
is natural. Overloaded operator functions for these classes are very similar to built-in operators.
Misinterpretation of their meaning by the client programmer or by the maintainer is not likely. The
idea of treating values of built-in types and programmer-defined types equally is a sound one that
lends itself to straightforward implementation.

Operators can be applied to the objects of nonmathematical classes as well, but the meaning of
addition, subtraction, and other operators might be stretched. This is similar to the story of icons for
command input in the graphical user interface.

In the beginning, there was the command line interface, and users had to type long commands with
parameters, keys, switches, and so on. Then there were menu bars with text entries. By selecting
the entry, the user was able to enter the command to be executed without having to type the whole
command. Then there were hot keys: By pressing the hot key combination, the user was able to
activate commands directly, without removing the hand from the keyboard and going through
several menus and submenus. Then there was the toolbar with command buttons: By clicking the
toolbar button, the user was able to activate a command without needing to know the hot key
combinations. The icons on the face of these command buttons were unambiguous and intuitively
clear: Open, Close, Cut, Print. When more and more icons were added, they became less and less
intuitive: New, Paste, Output, Execute, Go.

To help the user learn the icons, tool tip messages were added. The user interface has become more
complex; applications require more disk space, memory, and programming efforts; and users are
probably no better off now than they used to be with menus and hot keys. Similarly, we started with
operator overloading for numeric classes, and now we are going to use operator functions for
nonnumerical classes. This will require you to learn more rules, to write more code, and deal with
more complexity. And the client code might be better off using old-fashioned function calls rather
than modern overloaded operators.

The String Class

I will discuss a popular example of using overloaded operator functions for nonnumeric classes:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (610 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

using the addition operator for text concatenation.

Let us consider a String class with two data members: a pointer to a dynamically allocated
character array and the integer with the maximum number of valid characters that can be inserted
into the dynamically allocated heap memory. Actually, the C++ Standard Library contains class
String (with the first letter in lowercase) that is designed to satisfy most requirements for text
manipulation. This is a great class to use. It is much more powerful than the class that I am going to
discuss here, but I cannot use class String for these examples because it is too complex, and
details would take away from the discussion of dynamic memory management and its
consequences.

The client code can create objects of the class in two ways, by specifying the maximum number of
valid characters and by specifying the text contents of the string. Specifying the number of
characters requires one integer parameter. Specifying the text contents also requires one parameter,
a character array. The types of these parameters are different, so they have to be used in different
constructors. Since each of these constructors has exactly one parameter of a nonclass type, which
they convert to a class value, they are called conversion constructors.

The first conversion constructor, with the parameter for the length of the string to allocate, has the
default argument value zero. If a String object is created using this default value (no parameters
are specified), then the length of the text allocated for the object is zero. In this case, the first
conversion constructor is used as a default constructor (e.g., String s;).

The second conversion constructor, with the character array as the parameter, does not have the
default argument value. It would not be difficult to give it the default value of, say, an empty string,
but then the compiler would have difficulty interpreting the function call String s¡Xdo I want to
call the first constructor with the default value of zero length, or do I want to call the second
constructor with the default value of an empty string?

The current contents of the string can be modified by the client code by calling the member
function modify() that specifies the new text contents of the target object. To access the contents
of the String object, the member function show() can be used. This function returns the pointer to
the heap memory allocated to the object. This pointer can be used by the client code to print the
contents of the string, compare it with other text, and so on. Listing 11.2 shows a program that
implements class String.

Example 11.2. Class String with dynamically allocated heap memory.
#include <iostream>
using namespace std;

class String {

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (611 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 char *str; // dynamically allocated char array
 int len;
public:
 String (int length=0); // conversion/default constructor
 String(const char*); // conversion constructor
 ~String (); // deallocate dynamic memory
 void modify(const char*); // change the array contents
 char* show() const; // return a pointer to the array
} ;

String::String(int length)
{ len = length;
 str = new char[len+1]; // default size is 1
 if (str==NULL) exit(1); // test for success
 str[0] = 0; } // empty String of 0 length is ok

String::String(const char* s)
{ len = strlen(s); // measure length of incoming text
 str = new char[len+1]; // allocate enough heap space
 if (str==NULL) exit(1); // test for success
 strcpy(str,s); } // copy text into new heap memory

String::~String()
{ delete str; } // return heap memory (not the
pointer!)

void String::modify(const char a[]) // no memory management here
{ strncpy(str,a,len-1); // protect from overflow
 str[len-1] = 0; } // terminate String properly

char* String::show() const // not a good practice, but ok
{ return str; }

int main()
{
 String u("This is a test.");
 String v("Nothing can go wrong.");
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // result is ok
 v.modify("Let us hope for the best."); // input is truncated
 cout << " v = " << v.show() << endl;
 strcpy(v.show(),"Hi there"); // bad practice
 cout << " v = " << v.show() << endl;
 return 0;
 }

Dynamic Management of Heap Memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (612 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The first code line of the first conversion constructor sets the value of data member len; the
second code line sets the value of data member str by allocating the required amount of heap
memory. Then it tests for success of memory allocation, and puts zero (character '\0') into the
beginning of the allocated memory. For any C++ library function, this text content appears to be
empty, although it has space for the number of characters specified by the client code.

If the client code defines a String object and does not provide arguments, this constructor is used
as a default constructor that allocates one character on the heap and sets it to '\0' to indicate the
empty string.

Figure 11-4 shows the memory diagram for the execution of each statement of the constructor for
the following statement.

Figure 11-4. The memory diagram for the first conversion constructor in Listing 11.2.

String t(20); // 21 characters on the heap

Figure 11-4(a) shows the first phase of construction, and Figure 11-4(b) shows the second phase of
construction. The rectangle represents the String object t with two data members, pointer str and
integer len. These data members might take the same amount of memory, but I am showing the
pointer as a smaller rectangle to underscore the fact that it does not contain computational data. The
name of the object t and the names of data members str and len are drawn outside of the object
rectangle.

Part A shows that after executing the statement len = length, the data member len is initialized

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (613 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

to 20 (it contains a value) and the pointer str remains noninitialized (it points anywhere it wants).
Part B shows that after the executing of the rest of the constructor body, the heap space (21
characters) is allocated, is pointed to by the pointer str, and its first character is set to 0. Drawing
a diagram for a simple object might seem to be overkill, but I recommend drawing these diagrams
for all code that manipulates pointers and heap memory. This is the best way to develop your
programming intuition for dynamic memory management.

The first line of code of the second conversion constructor measures the length of the string
specified by the client code and sets the data member len. The second line sets the data member
str by allocating the required amount of heap memory to be pointed to by str and copies the
characters specified by the client code into the allocated memory. The library function strcpy()
copies the characters from the argument array and appends the terminating zero.

Figure 11-5 shows the steps of the object initialization for the following statement.

Figure 11-5. The memory diagram for the second conversion constructor in Listing 11.2.

String u("This is a test."); // 15 symbols, 16 characters on the heap

There are three methods of dealing with the data member that keeps the size of heap memory. The
first keeps the total size of heap memory allocated in the data member (the number of symbols to
accommodate plus one). The second keeps the number of useful symbols as a data member and
adds one to this value when characters are allocated on the heap. I use the second approach, but I
would be hard-pressed to explain why it is better than the first approach. However, I do not switch
because I would be equally hard-pressed to explain why the first approach is better.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (614 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The third method is not to keep the string length as a data member at all but compute the length on
the fly by calling the strlen() function. This is an example of the time-space tradeoff. The third
approach is better if you

do not need the length often and are loathe to allocate an extra integer for each string object.

Since heap memory is allocated for each String object individually, many programmers feel that
this memory should be viewed as part of the object. With this approach, String objects appear to
the client code as objects of variable length, depending on the size of the allocated heap memory.
This view is valid, but it results in more confusing explanations of the workings of constructors and
destructors and somewhat blurs the concept of the class itself.

I prefer the approach illustrated by the diagrams shown in Figures 11-4 and 11-5. It reflects the
C++ principle that the class is a blueprint for object instances. This blueprint is the same for all
String objects. According to the blueprint, each String object has two data members; the size of
each String object is the same. When this statement in the client code is executed,

String t(20); // two data members are allocated on the stack

the object t is allocated two data members on the stack; the heap memory is allocated by String
member functions that execute for a particular object. Different String objects can have different
amounts of heap memory or they can free memory; or acquire more memory without changing
their identity.

This approach does not change as String objects themselves are allocated on the heap. Consider
this example of the client code.

String *p; // no String object, pointer is created on the
heap
p = new String ("Hi!"); // two data members plus 4 characters on the heap

Here, an unnamed String object (pointed to by pointer p) gets an integer and a character pointer on
the heap. After the object is created, the constructor allocates four more characters on the heap and
sets the pointer str to point to that memory.

This approach gives me the convenience of thinking that all objects of the same class are the same
size. When an object is created, there are two separate processes: creation of the object (always of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (615 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the same size) and a constructor call. It initializes the object data members, including pointers that
point to the heap memory.

The destructor deletes the memory allocated dynamically on the heap. It is called just before the
object is going to be destroyed. When the object is destroyed, the memory allocated to its data
members str and len is also destroyed and returned for further use. If the object was allocated on
the stack, as object u and v in main() in Listing 11.2 are, this memory goes back to the stack. If the
object was allocated on the heap (as the unnamed object pointed to by pointer p), the memory
allocated for len and str goes back to the heap. But in all cases, the memory that the destructor
deletes (pointed to by pointer str) goes back to the heap before the data members len and str
disappear. Otherwise the destructor statement delete str; would be illegal.

Function modify() changes the contents of the dynamically allocated heap memory. It uses the
library function strncpy() to make sure the memory is not corrupted, even if the client code
erroneously supplies a string that is longer than the size of the dynamic memory allocated for the
object. In case of overflow, strncpy() does not terminate the string with the null terminator. This
is why I do that at the end of the function. This seems superfluous in the case when the new string
is shorter than the available memory. Keep in mind that in this case, strncpy() fills the rest of the
string with zeros anyway and doing it once more will not slow down the program.

Function modify() cannot expand the string over the initial length. Most String designs do not
allow the programmer to change the contents of the String object. In this case, create and use
another object for the different contents you need. I am implementing the compromise. Full-fledged
modification facilities would require much more code and would require the discussion of many
extraneous issues. This little function modify() is sufficient for the purposes of this discussion.

Function show() returns the pointer to the dynamically allocated memory. Listing 11.2
demonstrates two uses of this function by the client code in main(). The first use is to print the
contents of the String object that is the target of the show() message. The second use is to modify
the object contents by using the return value of the show() function as the output parameter in a
call to strcpy() in the client code. The first use is legitimate; the second use is arrogant and
written to intimidate the maintainer rather than to help the maintainer understand the intent of the
code developer.

One of the first high-level computer languages, APL (A Programming Language) was very
complex. It is still used, mostly for financial applications. The character set of this language is so
large that it needs a special keyboard. Among other things, it includes powerful operations for array
and matrix processing. APL programmers love this language. It is considered good taste to write a
few lines of APL code, show it to a friend, and ask, "Guess what it means?"

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (616 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

I am far from suggesting that programmers with such a mindset be fired from their jobs. But they
should not participate in group projects where other people have to maintain their code. Today,
there is nothing to boast about if a programmer writes code that needs extra effort to understand.

strcpy(v.show(),"Hi there"); // bad practice

Notice that my indignation is directed mostly at the fact that the maintainer has to spend extra effort
to understand the code. That this code does not evaluate the size of the heap memory available
within the object and hence can corrupt memory is important, but it only adds insult to injury. It can
be corrected by using a different division of responsibilities between the client code and the server
String.

int length = strlen(v.show()); // get available space
strncpy(v.show(),"Hi there",length); // pushes responsibility up

For String objects created with the second conversion constructor, the value of length is the total
available space. For objects created with the first conversion constructor, the value of length gets
the length of the last string stored, which could be less than the total available space. Most
important, this method violates the principle of pushing responsibility from clients to servers and
hiding details of data manipulation from the client code.

Here, it is the client code that does low-level data manipulation, even if the names of String data
members are not used in the code. If you want to protect heap data from corruption, it is the server
code that should include statements that evaluate the available size of dynamic storage. A good
solution should use the name of the server function rather than manipulating server data directly
and should push the responsibility for protecting heap memory to the server. Is it clear what I
mean? Here is a solution that does the job well, is safe, and needs no explanation. You already saw
this solution.

v.modify("Hi there"); // it tests for available space

Figure 11-6 shows the output of the program from Listing 11.2. It demonstrates that the call to
function modify() protects the dynamic memory from overflow by truncating the client code data.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (617 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 11-6. Output for program in Listing 11.2.

The use of the pointer returned by the function show() is not protected. Here is an example of
memory corruption that function String::show() makes possible.

char *ptr = v.show(); // reckless practice
ptr[200] = 'A'; // memory corruption

Or, if you like the chain notation for using objects, you can do that in only one statement.

v.show()[200] = 'A'; // reckless practice, memory corruption

This is not a good practice.

Protecting Object Heap Data from Client Code

C++ provides you with a way to protect the internals of the object from the client code that uses the
pointer returned by a member function. Defining the pointer as a pointer to a constant prevents this
abuse. For example, define the returned value of function show() as a pointer to a constant
character rather than as a pointer to a nonconstant character, as I did in Listing 11.2.

const char* String::show() const // good practice: return const
{ return str; }

Now, if the client code makes an attempt to change the contents of dynamic memory through the
returned value of member function show(), it will be flagged as a syntax error.

strcpy(v.show(),"Hi there"); // error, not just bad practice

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (618 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

With this design of the server class String, the client code is forced to use modify() to change the
state of the object. As a result, the client code is expressed in terms of the server function call,
pushes protection operations down to the server class, and does not force the client to deal with the
details of server design (limited heap space).

Overloaded Concatenation Operator

My next step is to design the overloaded operator function that concatenates two String objects:
appending the contents of the second object to the contents of the first object. This means that client
code can use this overloaded operator function in the following way.

String u("This is a test. "); // left operand
String v("Nothing can go wrong."); // right operand
u += v; // expression: operand, operator, operand

After this segment of code, the contents of the object v should be the same, and the object u will
have its contents changed to "This is a test. Nothing can go wrong."

If I implement this operator function as a member function, then the object u has to be the target of
the message, and the object v has to be the parameter in the function call. The real meaning of the
last line in this code snippet is as follows.

u.operator+=(v); // meaning of u += v; -> u is the target, v is the
parameter

Hence the interface of this function should include the const modifier for the parameter and must
not include the const modifier for the member function itself. Return type could be void. This
will limit the use of the operator in chain expressions, but it is not a serious limitation for the client
programmers.

void operator += (const String s); // concatenate parameter to target object

I know that it is not nice to pass objects by value, but I assume that there is no performance
problem here. After all, the object of type String has only two small data members, a character

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (619 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointer and an integer. Copying these data members should not take too long.

The algorithm for String concatenation should include the following steps.

1. Add the length of both character arrays to define the total number of characters.

2. Allocate heap memory to accommodate the characters and the terminating zero.

3. Test for success of memory allocation; give up if the system is out of memory.

4. Copy characters from the target object into the newly allocated heap space.

5. Concatenate characters from the parameter object into the newly allocated space.

6. Set the str pointer of the target object to point to the newly allocated space.

Figure 11-7 shows these steps (with the exception of giving up if the system is out of heap
memory) and the C++ statements that implement them. I use somewhat shorter strings in the client
code to make the tracing of events simpler.

Figure 11-7. The memory diagram for the String concatenation operator function.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (620 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The top part of the figure shows two String objects, u (with contents "Hi") and v (with contents
"there!"). Part A shows both objects after the field len of the first object was modified, heap
memory was allocated, and the existing contents of object u was copied into this heap memory
(steps 1¡V4 of the algorithm). Part B shows the state of the heap memory after step 5. Part C shows
the state of the objects after the pointer str of the target object u was set to point to the newly
allocated heap memory (step 6).

Putting it all together, you get the following server code.

void String::operator += (const String s) // object parameter
{ char* p; // local pointer
 len = strlen(str) + strlen(s.str); // total length
 p = new char[len + 1]; // allocate heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // concatenate the second part
 str = p; } // set str to point to new

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (621 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

memory

It might look like overkill to spell out the steps of this simple algorithm in such minute detail and to
draw a separate picture for each small step of memory manipulation. If you feel this way, great. But
you belong to a lucky minority. For most people, pointer operations are obscure and
counterintuitive.

Only experienced programmers are able to notice that the heap space owned by the target object is
not returned properly. The figure shows this clearly.

I think that drawing pictures is the only way to develop intuition about memory management and to
discover errors. It is better to spend a few extra minutes drawing and planning than to waste hours
with the debugger and other complex tools finding your way in a mire of obscure statements whose
meaning is not absolutely clear to you.

The drawings are, of course, only tools. It is you who have to use the tools to make sure that you
understand each statement.

Preventing Memory Leaks

As I mentioned, Figure 11-7 shows that the heap character array pointed to by the target pointer
str at the beginning of the function call is not returned properly. It becomes inaccessible when
pointer str is turned to point to the newly allocated segment of memory (where the local pointer p
is pointing). This is memory leak¡Xa common error in pointer manipulation and memory
management. To prevent memory leak, this character array has to be returned to the heap before the
pointer str is turned to point to the newly allocated array.

void String::operator += (const String s) // object parameter
{ char* p; // local pointer
 len = strlen(str) + strlen(s.str); // total length
 p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // concatenate the second part
 delete str; // return existing dynamic memory
 str = p; } // set str to point to new memory

Figure 11-8 is similar to Figure 11-7. It shows that the heap character array pointed to by the target
data member str disappears as a result of the delete operation. Only after that is the pointer str

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (622 of 1187) [8/17/2002 2:57:58 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

turned to point to the new heap array.

Figure 11-8. The memory diagram for the corrected String concatenation operator
function.

With memory leak taken care of, let me admit that in the discussion of this overloaded operator
function I told you the truth and only the truth; but I did not tell you the whole truth. The reason is
that I wanted to make sure that I took care of smaller and less difficult issues before we faced more
complex and more dangerous problems. I would like to have your undivided attention.

This discussion should show you the pattern of dangerous features you have to recognize when you

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (623 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

write your own C++ programs. The core of the problem is my favorite enemy: passing objects as
value parameters.

Protecting Program Integrity

When the actual argument, object or no object, is passed by value, its value is copied into a local
automatic variable on the stack. This copying is done memberwise.

This presents no problem for arguments of built-in types but does present a minor performance
nuisance for a simple class like Rational or Complex. It presents a real performance problem for
larger classes whose objects require larger amounts of memory.

Most important, this presents a huge integrity problem if the class has data members that are
pointers pointing to dynamically allocated heap memory. Let us look at the execution of the
function with the value parameter at the crucial moments of function execution¡Xat the beginning
of the function call and at the function termination. I like to attach these moments to the opening
and closing braces of the function body.

When a copy of the actual argument object is created during the pass by value, the system-supplied
copy constructor is called. This constructor copies the data members of the actual argument into the
corresponding data members of its local copy, the formal parameter object. When the pointer data
member str is copied, the pointer in the formal object receives the value stored in the pointer in the
actual argument object, that is, the address of heap memory allocated for the actual argument
object.

As a result, pointers in both the actual argument and in its local copy point to the same section of
the heap memory, and each object thinks that it has the exclusive use of this memory.

I tried to represent this situation in Figure 11-9. Actually, what I told you does not change the
workings of the overloaded operator function (so far). This is why I noticed that all that I told you
earlier was the truth and only the truth.

Figure 11-9. The memory diagram for passing the String object by value.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (624 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 11-9, which shows the whole truth, includes a local object s whose data members are
initialized to the values of the actual argument v. Figure 11-9(a) shows that this local object v and
the actual argument u share the same section of the heap memory. Figure 11-9(b) shows that after
the new heap memory has been allocated and initialized and replaced the existing heap memory in
the target object, the local object s and the argument u continue to share the same section of the
heap memory.

The whole truth should also include the termination of the function. When the function execution
reaches the closing brace of its scope and the function terminates, the local copy object (String s)
is destroyed. From the point of view of conventional programming intuition, this means that the
object memory (the pointer and the integer in this case) disappear. However, there is no such thing
in C++ as a destruction of the object. Each object destruction is preceded by a function call: a
destructor call.

When the destructor is called, it does what the destructor code says it should do: It returns the
segment of memory pointed to by the object pointer.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (625 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

String::~String()
{ delete [] str; } // return heap memory pointed to by pointer

Figure 11-9(c) shows the state of the local object s and the actual argument v after the destructor
call but before the local object is destroyed. It shows that the local object loses its heap memory
and so does the actual argument. (The memory pointed to by pointer str is deleted.) This action, of
course, does not affect the state of the target object because it is not destroyed. When the
overloaded operator function terminates, the target object is in exactly the same state as during the
previous discussion reflected in Figure 11-8. This client code produces the correct results.

String u("Hi "); String v("there!");
u += v;
cout << " u = " << u.show() << endl; // it displays "Hi there!"

But the memory returned by the destructor when the formal parameter s is destroyed did not belong
to that object. It belonged (and still should belong) to the actual argument, that is, to object v
defined in the client space. After the function call, the client object that is used as the actual
argument for the pass by value is robbed of its dynamically allocated memory. It is an error for the
client code to use it after the call.

String u("Hi "); String v("there!");
cout << " u = " << u.show() << endl; // it displays "Hi "
cout << " v = " << v.show() << endl; // it displays "there!"
u += v;
cout << " u = " << u.show() << endl; // it displays "Hi there!"
cout << " v = " << v.show() << endl; // displays what it wants

It does not look particularly smart to recheck the value of the object v that was just printed and used
as an rvalue in the function call to operator+=(). I am doing this only because I know there is a
problem with this implementation. Clearly, the object has to have the same value that it had when it
participated as an operand in the expression u+=v. This is the conventional programming intuition,
and it works in C++ most of the time¡Xbut not all the time, and you should develop an alternative
intuition as soon as possible. I am telling you all that because in this innocent-looking client code,
the value of the text for the object v can be anything, and any use of this object that assumes it is in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (626 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the same state as before is reckless.

How do you like this? Sure, C++ programming is not boring. But a C++ programmer must
understand what is going on under the hood of a simple program like the snippet code in the last
example.

This is not the end of the story: that takes place at yet another closing scope brace. Always pay
attention to scope braces¡Xthey do a lot of work. When the client code reaches the closing brace of
its scope and terminates, the class destructors are called for all local objects, including that hapless
object v, which was used as the actual argument in the function call and robbed of its dynamic
memory when the call terminated. The destructor tries to deallocate the area pointed to by the
object data member str. This memory, however, has already returned to the system. If you were
designing the language, you would have made it a "no op." No such luck. In C++, repeated use of
the delete operator on the same pointer is prohibited. It is an error.

Unfortunately, "an error" does not mean that the compiler produces a syntax error for you to
correct. The compiler writer is not responsible for tracing the flow of execution and telling you that
you made an error: The code is syntactically correct. It also does not mean that the program
compiles, runs, and produces repeatable incorrect results. It simply means that the results of such an
attempt are "not defined." Actually, they are platform dependent. How the application acts depends
on the operating system. The system might crash, the program might run incorrectly (quietly), or it
might run correctly until some time in the future.

Listing 11.3 shows the complete program that implements this bad design. The output of the
program as it appeared on my machine is shown in Figure 11-10.

Figure 11-10. Output of the program in Listing 11.3

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (627 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 11.3. Overloaded concatenation function with a value parameter.
#include <iostream>
using namespace std;

class String {
 char *str; // dynamically allocated char array
 int len;
public:
 String (int length=0); // conversion/default constructor
 String(const char*); // conversion constructor
 ~String (); // deallocate dynamic memory
 void operator += (const String); // concatenate another object
 void modify(const char*); // change the array contents
 const char* show() const; // return a pointer to array
 } ;

String::String(int length)
{ len = length;
 str = new char[len+1];
 if (str==NULL) exit(1);
 str[0] = 0; } // empty String of zero length is ok

String::String(const char* s)
{ len = strlen(s); // measure length of incoming text
 str = new char[len+1]; // allocate enough heap space

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (628 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (str==NULL) exit(1); // test for success
 strcpy(str,s); } // copy incoming text into heap
memory

String::~String()
{ delete str; } // return heap memory (not the
pointer!)

void String::operator += (const String s) // pass by value
{ len = strlen(str) + strlen(s.str); // total length
 char *p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now p can disappear

const char* String::show() const // protect data from changes
{ return str; }

void String::modify(const char a[]) // no memory management here
{ strncpy(str,a,len-1); // protect from overflow
 str[len-1] = 0; } // terminate String properly

int main()
{ String u("This is a test. ");
 String v("Nothing can go wrong.");
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // result is ok
 u += v; // u.operator+=(v);
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // result is not ok
 v.modify("Let us hope for the best."); // memory corruption
 cout << " v = " << v.show() << endl; // ????
 return 0;
 }

Notice that all these bad things happen at the function termination. The first bad thing happened
when the server-overloaded function operator+=() was terminating, and the destructor for the
formal parameter was called¡Xthe actual argument v was robbed of its heap memory. The second
bad thing happened when the client function main() was terminating, and the object v was going
out of scope¡Xits heap memory was repeatedly deleted.

Actually, in C++, it is the repeated deleting of heap memory that is "an error." Deleting a NULL
pointer is not an error. This is "no operation." Some programmers tried to fix this problem by
setting the pointer to heap memory in the destructor to NULL.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (629 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

String::~String()
{ delete str; // return heap memory
 str = 0; } // set to null to avoid double deletion

This is a nice idea, but it does not work as intended. The pointer that is set to zero belongs to the
object that will be destroyed in several microseconds. It is the second pointer that is pointing to the
same memory that could be set to zero, but it is not available from the destructor executing on
another object. Even if it worked, it would only prevent "an error." It would not restore the memory
that was incorrectly deleted.

How to Get There from Here

Did I scare you? If I did, this was my intent. If I did not, regardless, make sure that you always
worry about dynamic memory management in your programs. Even if the programs run on your
machine correctly, this is not evidence that the program is correct (add this to the list of your testing
principles).

The program might run without a hitch for months and years, and then, after you install some other
unrelated application or upgrade to the next version of Windows™ the use of memory changes and
your program crashes. Or it produces incorrect results that may not be noticed because it has run
correctly for months and even years. What do you do? Curse Microsoft because you just upgraded
your operating system? But it is not Microsoft's fault! It is a fault of a C++ programmer who
neglected to put one symbol, an ampersand, in the interface of the overloaded operator function
operator+=().

This is how this function should look. It does not pass its object parameter by value; it passes it by
reference.

void String::operator += (const String &s) // reference parameter
{ len = strlen(str) + strlen(s.str); // total length
 char *p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now p can disappear

Figure 11-11 shows the output of the program in Listing 11.3 with the concatenation function that

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (630 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

passes its parameter by reference.

Figure 11-11. Output of the program in Listing 11.3 with the concatenation operator that
passes its parameter by reference.

Make sure that you run this program, experiment with it, and understand the issues that may cause
problems. Resist the urge to pass objects by value, unless, of course, you absolutely have to.

It is quite disheartening that adding or removing just one single character in the source code (the
ampersand) can change the behavior of the program so dramatically. Notice that both versions of
the code are syntactically correct¡Xthe compiler does not tell you there is any problem to worry
about.

Passing object parameters by value is like driving a tank. You will get where you want to go, but
you will cause a lot of indirect damage. As I said earlier, resist passing objects by value; unless, of
course, you absolutely have to.

ALERT

Do not pass objects to functions by value. If the objects have internal pointers and handle heap
memory dynamically, do not even think about passing objects to functions by value. Pass them by
reference. And do not forget to use the const modifier if the function does not change the state of
the parameter object and the state of the target object.

More on the Copy Constructor

Let us look back at the situation. The core of the problems discussed in the previous section is
copying an object whose data members are pointers to heap memory.

Each object instance is supposed to point to the area of memory that is allocated specifically for it.
For example, class String has a pointer that points to the area of heap memory that contains
characters associated with the individual String object.

When data members of one object are copied into data members of another object, the
corresponding pointers in both objects will have the same contents. Hence, they will point to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (631 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

same area of heap memory. These objects can die at different moments in time; for example, the
formal value parameter of a function in Listing 11.3 disappears when the function terminates, and
the actual argument continues to exist in the client space, function main(). When one object dies,
its destructor deletes the memory pointed to by the object pointer(s), and the second object, still
alive, silently loses its heap data. Any use of this object that relies on heap data is incorrect. It is "an
error."

If this memory returned to the heap is not immediately reused for other purposes, this "phantom"
object might behave as if the deleted memory still exists. Your testing might persuade you that the
program is correct.

When the second object dies, its destructor is called. Notice that I am not saying that the destructor
"is called again." The destructor was called earlier for a different object (the formal parameter), the
one that was already destroyed. Now the destructor is called for the second object (the actual
argument), and it tries to delete the same segment of heap memory. In C++, this results in an error.
The program's behavior is undefined. This is a polite way of saying that the program can do
whatever it wants.

Remedies for the Integrity Problem

There are a number of remedies one can use to avoid trouble when objects with dynamically
allocated memory are passed as value parameters.

One remedy is to eliminate the destructor that returns the heap memory to the system. This is
neither a good solution nor is it a good permanent solution. You might want to use it as a temporary
solution when your program crashes and you need it to run so that you can debug it. Turning off the
destructor will let your program run to completion.

Another remedy is to use fixed-size arrays inside objects rather than dynamically allocated
memory. This is not an elegant solution, but it might do if the size of the array is allocated
generously. This is especially true for programs that handle a relatively small number of objects,
and the occasional truncation of data that do not fit into a fixed size is acceptable from the point of
view of the integrity of the application.

For parameter passing, the best remedy is passing object parameters by reference rather than by
value. It eliminates the problems created by copying objects. It also speeds up program execution
by eliminating the need to create and destroy temporary objects and to call constructors and
destructors.

Unfortunately, this solution is not universal. There are cases of copying one object into another
object that are not related to parameter passing, where this solution cannot be applied. These are

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (632 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

cases where one class object is initialized by another object of the same class. Consider the
following segment of code, which passes the parameter to operator+=() by reference.

String u("This is a test. "), v("Nothing can go wrong.");
cout << " u = " << u.show() << endl; // result is ok
cout << " v = " << v.show() << endl; // result is ok
u += v; // u.operator+=(v); by reference
cout << " u = " << u.show() << endl; // result is ok
cout << " v = " << v.show() << endl; // ok: pass by reference
v.modify("Let us hope for the best."); // no memory corruption
String t = v; // object initialization
cout << " t = " << t.show() << endl; // ok: correct result
t.modify("Nothing can go wrong."); // change both t and v
cout << " t = " << t.show() << endl; // ok: correct result
cout << " v = " << v.show() << endl; // v also changed

This code creates two String objects, u and v, initializes them with a conversion constructor, and
concatenates them. Since the object argument v is passed to operator+=() by reference, there is
no memory corruption, and the object v keeps its heap memory. When I modify object v, it is only
object v that changes, not object u. Next, I create yet another String object t, which I set to the
current state of v. When I modify the contents of object t, I expect the object of type v to remain
the same. Figure 11-12 shows the expected results of the execution of this code snippet.

Figure 11-12. Expected (not real) output of the snippet of client code above.

Things in real life, however, are not always as we expect them to be. Listing 11.4 shows the code
for class String (with the parameter to the overloaded operator function operator+=() passed by
reference) and the client code that implements the previous snippet of code. I modified the snippet
so that object t is created in a nested scope. When this nested code terminates and object t
disappears, I can check the state of object v and verify its integrity. Figure 11-13 shows the real
results of the execution of the program in Listing 11.4.

Figure 11-13. Output of the program in Listing 11.4.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (633 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 11.4. Initializing one object with data from another object.
#include <iostream>
using namespace std;

class String {
 char *str; // dynamically allocated char array
 int len;
public:
 String (int length=0); // conversion/default constructor
 String(const char*); // conversion constructor
 ~String (); // deallocate dynamic memory
 void operator += (const String&); // concatenate another object
 void modify(const char*); // change the array contents
 const char* show() const; // return a pointer to the array
 } ;

String::String(int length)
{ len = length;
 str = new char[len+1];
 if (str==NULL) exit(1);
 str[0] = 0; } // empty String of zero length is ok,
too

String::String(const char* s)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (634 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ len = strlen(s); // measure the length of incoming
text
 str = new char[len+1]; // allocate enough heap space
 if (str==NULL) exit(1); // test for success
 strcpy(str,s); } // copy incoming text into heap
memory

String::~String()
{ delete str; } // return heap memory (not the
pointer!)

void String::operator += (const String& s) // reference parameter
{ len = strlen(str) + strlen(s.str); // total length
 char* p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now temp can disappear

const char* String::show() const // protect data from changes
{ return str; }

void String::modify(const char a[]) // no memory management here
{ strncpy(str,a,len-1); // protect from overflow
 str[len-1] = 0; } // terminate String properly

int main()
{ cout << endl << endl;
 String u("This is a test. ");
 String v("Nothing can go wrong.");
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // result is ok
 u += v; // u.operator+=(s);
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // ok: pass by reference
 v.modify("Let us hope for the best."); // no memory corruption
 { String t = v; // initialization
 cout << " t = " << t.show() << endl; // ok: correct result
 t.modify("Nothing can go wrong."); // change both t and v
 cout << " t = " << t.show() << endl; // ok: correct result
 cout << " v = " << v.show() << endl; } // v also changed
 cout << " v = " << v.show() << endl; // t died, v is robbed
 return 0;
 }

When the String object t is created (it is created on the stack because t is a local automatic
variable), it is allocated memory enough to contain the character pointer and the integer. Next, the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (635 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

constructor is called. You see the assignment sign in the client code, but this is not an
assignment¡Xit is an initialization. As I said earlier, it is not a question whether a constructor is
called after the object is created. It is a question of which constructor is called. The answer is that it
depends on the data that the client code supplies when the object is created. In Listing 11.4, the
client main() supplies one actual argument, existing object v. Hence, it is a constructor with one
parameter that is an object of the same type to which the constructor belongs, in this case, class
String.

What is the name of the constructor with one parameter of the class type? As you might recall from
Chapter 9, "C++ Class as a Unit of Modularization," it's a copy constructor because it copies data
from one object into another object. However, class String does not have a copy constructor. Does
that mean that an attempt to call this missing copy constructor generates a syntax error? No, the
compiler generates a call to the system-provided copy constructor. The compiler provides the
constructor, and the compiler generates the call. This constructor copies the fields of the argument
object into the fields of the object being created. For class String, this system-provided copy
constructor looks this way:

String::String(const String& s) // system-provided constructor
{ len = s.len; // copy the length of the object text
 str = s.str; } // copy the pointer to the object text

Figure 11-14 shows how this constructor works. When the String object t is created, its field len
is set to 9, and its field str is set to point to the same area of heap memory that the pointer str of
object v is pointing to.

Figure 11-14. The memory diagram for initializing one String object with data from
another object

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (636 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Similar to the earlier story about parameter passing, the two objects, t and v, have only one
segment of heap memory between them, not two. This segment was allocated earlier for object v,
but now it is shared by object t. And each object thinks that this heap area belongs to it alone. This
situation is even worse than pass by value. In pass by value, the actual argument exists in the client
scope, and the formal parameter exists in the server scope. At each moment of execution, only one
object is available. Here, both objects exist in the same client scope, and they both can be modified
and accessed in the same scope.

Since these two objects share the same area of heap memory, they are synonyms from the point of
view of client code. This is why when object t is modified by client code, object v is modified, too.
Is this clear from Figure 11-14? Do you see this on the program output in Figure 11-13? From the
point of view of common programming intuition, there is no reason why object v should change in
the client code. But it does change.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (637 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Come to think of it, this is strange only from the point of view of common programming intuition.
In introductory programming classes, I often meet students who have trouble with simple code
dealing with integers.

int v = 10; int t = v; t = 20; // what is v now?

For most programmers, it is obvious that v doesn't change after t has changed because t and v
occupy different locations in memory. But others say, "All right, we made a commitment that these
two variables, v and t, be the same. Now you are changing t. Small wonder that v also changes."

In a sense, they have a point. If the variables are synonyms, changing to one is visible through
another. As you may recall, this is quite common if one variable is a regular variable, and another
variable is a reference.

int v = 10; int& t = v; t = 20; // what is v now?

In this example, common programming intuition does not work. It is the novice's logic that applies.
We make a commitment for these two variables, v and t, to be the same. Small wonder that v
changes after a change in t. Now v is 20. This is the logic that all C++ programmers, novices and
experts alike, should become comfortable with.

Copy Semantics and Value Semantics

Actually, there are two kinds of common programming intuition that correspond to two different
computer science concepts, value semantics and reference semantics. (Semantics here means the
meaning of copying data.)

The more common programming intuition uses value semantics. Each computational object (e.g., a
variable of a built-in type or an object of programmer-defined type) has its own separate area in
memory. Equating two computational objects means repeating the bit pattern in another object's
memory. In C++ (as in most other programming languages), value semantics is used for both built-
in variables and objects of programmer-defined classes.

int v = 10; int t = v; t = 20; // value semantics, v is 10

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (638 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is why this intuition is more common: From its point of view, when two objects have the same
value, they have two separate bit patterns, and changing the value of one object should not affect
the bit pattern already existing in the other object.

Another, less common programming intuition, uses reference semantics. When a computational
object is assigned a value, it receives a reference (or a pointer) to that value. Equating
computational objects means setting their references (or pointers) to point to the same location in
memory. When the character array pointed to in one object changes, the second object sees the
change because both pointers point to the same location. In C++, the reference semantics is used
for pointers and references, in passing parameters by reference or by pointer, for arrays, and for
linked data structures with pointers.

int v = 10; int& t = v; t = 20; // reference semantics, v is 20

Small wonder that reference semantics is less common. It is used mostly for performance reasons
(e.g., it eliminates copying of objects in parameter passing). Sometimes, it comes without an
invitation, as in this example, and you should be ready to recognize it and to deal with it
appropriately. A C++ programmer should always think about the difference between value and
reference semantics.

This is not the end of trouble with the program in Listing 11.4. When the execution reaches the
closing brace of the nested scope (my favorite topic of discussion during analysis of code
behavior), the object t is going to disappear because it is defined in this nested scope. The object v
is defined in the enclosing scope of the function main(), and it should be available for further use.
In Listing 11.4, I am trying to print the value of v at the end of main(). Notice that this statement
is separated from the preceding printing statement only by the closing brace of the nested scope. On
the surface, no event is taking place between these two statements in the client code, and hence
these two printing statements should produce the same output¡Xbut they do not. Again, traditional
programming intuition is not sufficient for understanding a C++ program, and you have to develop
your own intuition to help you read code segments like this.

As you see in Figure 11-14, the first statement produces a legible output. It is not what you would
normally expect, but at least it is there. The second statement produces garbage. What happened
between these two statements? When the closing brace of the nested scope was reached, the String
destructor was called for the local object t in the nested scope. As you see from Listing 11.4 and
from Figure 11-14, this destructor deleted the heap memory pointed to by the pointer str of object
t. This dynamic memory actually belongs to object v, but the system does not remember that. It
only remembers that the memory pointed to by pointer str should be deleted in accordance with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (639 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the code of the String destructor. The object v is robbed of its dynamic memory, but nobody
knows about it. The object is formally in scope and appears to be in good health. But it is only
appearance: It cannot be utilized for anything useful by the client code.

This is similar to parameter passing by value, and like passing objects by value, this is not the end
of the story. When the execution reaches the closing brace, the object v should disappear according
to the scope rules. Before that, the destructor is called and it tries to delete the heap memory that
was already deleted. The program is incorrect. It does what it wants (the program crashes).

Programmer-Defined Copy Constructor

Short of giving up dynamic memory management, this problem has only one solution¡Xa
programmer-defined copy constructor. The constructor should allocate heap space for the target
object similar to the concatenation operator that was discussed in the previous section. Here is its
algorithm:

1. Copy the length of the parameter's character arrays into the target's len.

2. Allocate heap memory; set target's pointer str to point to it.

3. Test for success of memory allocation; give up if the system is out of memory.

4. Copy characters from the target object into the newly allocated space.

Here is a programmer-defined copy constructor that is a solution to the problem.

String::String(const String& s) // programmer-defined copy constructor
{ len = s.len; // length of the source text
 str = new char[len+1]; // request separate heap memory
 if (str == NULL) exit(1); // test for success
 strcpy(str,s.str); } // copy the source text

Notice that the parameter s is passed by reference. It is a reference to the actual argument object.
No copy of argument data members is made in parameter passing. Instead, dynamic memory is
allocated for the target object inside the constructor. Dynamic memory of the actual argument
object is copied into the target's heap memory.

This is less efficient than memberwise copying in Listing 11.4. Value semantics is slower than
reference semantics because it operates on values, not on references or pointers. However, value
semantics is safe. Recall the client code that caused all the problems.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (640 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

String t = v; // no problem if copy constructor is used

After this code executes, the pointers str in two objects, t and v, are pointing to different areas in
the heap memory. The integrity problem is resolved.

NOTE

If there are pointers among class data members, and the objects of this class handle heap memory
dynamically, the class designer should decide whether the class needs value semantics or reference
semantics. If you need value semantics and you initialize one object with the value of another
object, make sure that the class has a programmer-defined copy constructor.

Listing 11.5 shows the program from Listing 11.4, where class String defines its own constructor
that supports the value semantics for object initialization. The output of the program is shown in
Figure 11-15. As you can see, the integrity problem disappears. The String objects t and v are not
synonyms anymore. When object t is changed, object v remains the same. When the nested scope
terminates and object t disappears, object v is alive and well and can be used by the client code
without any difficulty. Trace the code and its output to make sure that you see the connection
between the two.

Figure 11-15. Output of the program in Listing 11.5.

Example 11.5. Use of copy constructor to initialize one object with data from another.
#include <iostream>
using namespace std;

class String {
 char *str; // dynamically allocated char array
 int len;
 char* allocate(const char* s) // private function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (641 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { char *p = new char[len+1]; // allocate heap memory for object
 if (p==NULL) exit(1); // test for success, quit if no
luck
 strcpy(p,s); // copy text into heap memory
 return p; } // return pointer to heap memory
public:
 String (int length=0); // conversion/default constructor
 String(const char*); // conversion constructor
 String(const String& s); // copy constructor
 ~String (); // deallocate dynamic memory
 void operator += (const String&) // concatenate another object
 void modify(const char*); // change the array contents
 const char* show() const; // return a pointer to the array
 } ;

String::String(int length)
{ len = length;
 str = allocate(""); } // copy empty String into heap
memory

String::String(const char* s)
{ len = strlen(s); // measure the length of incoming
text
 str = allocate(s); } // allocate space, copy incoming
text

String::String(const String& s) // copy constructor
{ len = s.len; // measure length of the source
text
 str = allocate(s.str); } // allocate space, copy incoming
text

String::~String()
{ delete str; } // return heap memory (not the
pointer!)

void String::operator += (const String& s) // reference parameter
{ len = strlen(str) + strlen(s.str); // total length
 char* p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now pointer p can disappear

const char* String::show() const // protect data from changes
{ return str; }

void String::modify(const char a[]) // no memory management here

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (642 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ strncpy(str,a,len-1); // protect from overflow
 str[len-1] = 0; } // terminate String properly

int main()
{ cout << endl << endl;
 String u("This is a test. ");
 String v("Nothing can go wrong.");
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // result is ok
 u += v; // u.operator+=(v);
 cout << " u = " << u.show() << endl; // result is ok
 cout << " v = " << v.show() << endl; // ok: pass by reference
 v.modify("Let us hope for the best."); // no memory corruption
 { String t = v; // call copy constructor
 cout << " t = " << t.show() << endl; // ok: correct result
 t.modify("Nothing can go wrong."); // change only t
 cout << " t = " << t.show() << endl; // ok: correct result
 cout << " v = " << v.show() << endl; } // v did not changed
 cout << " v = " << v.show() << endl; // t died, v is intact
 return 0;
 }

In Listing 11.5, class String has three constructors that do approximately the same thing: They
allocate heap memory and initialize its contents. In the first conversion constructor, the initializing
data is an empty string (the terminating zero). In the second conversion constructor, the initializing
data is the character array supplied by the client code as the actual argument. In the copy
constructor, the initializing data is a character array inside the object supplied by the client code.
Since this character array is allocated on the heap, it does not have a name and is referred to
through the pointer str pointing to this array. Since the parameter object s belongs to the same
class String as the target object being initialized, the copy constructor has the right to access this
private pointer str using its qualified name s.str.

It is only natural that different constructors use similar algorithms, because the resulting object
should look much the same regardless of what constructor was called when the object is
constructed. When the class has one or two constructors, it makes sense just to repeat the code
verbatim. When the number of uses of this common algorithm grows (and rest assured, we have not
finished yet), programmers often encapsulate it in a private function and call it from different
member functions. The function should be private, because the client code is not interested in
handling object memory; it is a low-level detail that should not confuse the client code algorithm
and the client programmer. You can see this private function in Listing 11.5. When it copies its
parameter in the heap memory it allocated, it uses the name of the pointer p that points to the heap
memory because this array does not have a name.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (643 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

char* allocate(const char* s) // private function
{ char *p = new char[len+1]; // allocate heap memory for object
 if (p==NULL) exit(1); // test for success, quit if no luck
 strcpy(p,s); // copy text into heap memory
 return p; } // return pointer to heap memory

Listing 11.5 shows that the first conversion constructor passes an empty string to function
allocate(), the second conversion constructor passes to it its own parameter, character array; and
the copy constructor passes to allocate() its parameter's character array s.str.

When one object initializes another object, a copy constructor is called. This is unavoidable. The
issue is which copy constructor is called. If the class does not provide its customized copy
constructor, the compiler will generate a call to the system-provided copy constructor that copies
the data members of the object. If the objects of this class do not allocate heap memory, this is fine.
If objects use individual segments of heap memory (value semantics), the use of the system-
provided copy constructor undermines the integrity of the application. To preserve the program
integrity, the class should implement its own copy constructor that will provide the target object
with its own heap memory.

In the previous sentence, "the class should implement" stresses the client-server relationship
between different segments of C++ code and between different areas of human concern. The client
code expresses its needs by handling objects to achieve the goal of the application (e.g., initializing
one object from another). The server code supports the needs of the client code by implementing
member functions that the client code calls. Constructors are called implicitly, but that does not
change the client-server relationship.

When the application needs copy semantics, classes with dynamic memory management might be
forced to provide copy constructors for other contexts in which one object initializes another object.
One such context is passing object parameters by value. With the appropriate copy constructor in
place, my first version of the overloaded concatenation operator+=() from Listing 11.3 is
perfectly fine.

void String::operator += (const String s) // pass by value
{ len = strlen(str) + strlen(s.str); // total length
 char *p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now p can disappear

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (644 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When this function is called and a copy of the actual argument is created, the programmer-defined
copy constructor is called. It allocates heap memory for the formal parameter s. When this
function terminates and the destructor is called for the formal parameter, its own heap memory is
deleted, not the heap memory that belongs to the actual argument. The integrity problem
disappears. The performance problem does not. When the parameter is passed by value, the call to
the concatenation operator involves creation of the object, a call to the copy constructors, allocation
of heap memory, copying characters from one object to another, a call to the destructor, and
deallocation of heap memory. Call by reference does not require any of these. Reference semantics
eliminates the performance overhead on unnecessary copying.

ALERT

Do not pass objects to functions by value. If the objects have internal pointers and handle heap
memory dynamically, do not pass these objects by value. But if you must pass these objects by
value, define the copy contructor that eliminates the integrity problem. Make sure that copying
does not impair program performance.

Return by Value

Another context that requires value semantics is the returning of an object from a function by value.
I already discussed this issue in Chapter 10 for classes that do not handle dynamic memory.
Because the story for returning an object from a function is exactly the same as the story for
initializing the object from another object, I will be brief.

Listing 11.6 shows another version of class String. I placed debugging statements in each
constructor and added an overloaded comparison operator that was implemented as a member
function. Also, I added a client function enterData() and cleaned up the main() function. The
program requests the user to enter the name of the city and searches for the name in the database.
For simplicity, I hard-coded the database in the main() function as an array of character arrays and
used a simple sequential search to find a user's input in the database. The results of the execution
are shown in Figure 11-16.

Figure 11-16. Output of the program in Listing 11.6.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (645 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 11.6. Use of copy constructor to return an object from a function.
#include <iostream>
using namespace std;

class String {
 char *str; // dynamically allocated char array
 int len;
 char* allocate(const char* s) // private function
 { char *p = new char[len+1]; // allocate heap memory for object
 if (p==NULL) exit(1); // test for success, quit if no luck
 strcpy(p,s); // copy text into heap memory
 return p; } // return pointer to heap memory
public:
 String (int length=0); // conversion/default constructor
 String(const char*); // conversion constructor
 String(const String& s); // copy constructor
 ~String (); // deallocate dynamic memory
 void operator += (const String&); // concatenate another object
 void modify(const char*); // change the array contents
 bool operator == (const String&) const; // compare contents
 const char* show() const; // return a pointer to the array
 } ;

String::String(int length)
{ len = length;
 str = allocate(""); // copy empty String into heap memory
 cout << " Originate: '" << str <<"'\n"; }

String::String(const char* s)
{ len = strlen(s); // measure length of incoming text
 str = allocate(s); // allocate space, copy text
 cout << " Created: '" << str <<"'\n"; }

String::String(const String& s) // copy constructor
{ len = s.len; // measure length of the source text
 str = allocate(s.str); // allocate space, copy text
 cout << " Copied: '" << str <<"'\n"; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (646 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

String::~String()
{ delete str; } // return heap memory (not the
pointer!)

void String::operator += (const String& s) // reference parameter
{ len = strlen(str) + strlen(s.str); // total length
 char* p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now pointer p can disappear

bool String::operator==(const String& s) const // compare contents
{ return strcmp(str,s.str)==0; } // strcmp returns 0 if the same

const char* String::show() const // protect data from changes
{ return str; }

void String::modify(const char a[]) // no memory management here
{ strncpy(str,a,len-1); // protect from overflow
 str[len-1] = 0; } // terminate String properly

String enterData()
{ cout << " Enter city to find: "; // prompt the user
 char data[200]; // crude solution
 cin >> data; // accept user input
 return String(data); } // call the constructor

int main()
{ enum { MAX = 4} ;
 String data[4]; // database of objects
 char *c[4] = { "Atlanta", "Boston", "Chicago", "Denver" };
 for (int j=0; j<MAX; j++)
 { data[j] += c[j]; } // data[j].operator+=(c[j]);
 String u = enterData(); // crashes without copy constructor
 int i;
 for (i=0; i < MAX; i++) // i is defined outside of
the loop
 { if (data[i] == u) break; } // break if String found
 if (i == MAX) // how did we get here?
 cout << " City " << u.show() << " is not found\n";
 else
 cout << " City " << u.show() << " is found\n";
 return 0;
 }

When the array of objects is created in main(), the default String constructor (e.g., the first

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (647 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

conversion constructor with the default value) is called for each component of the array. The
constructor allocates an empty string of length zero and prints the message Originate. When the
operator+=() is called to append the names of the cities to the contents of each object, the
character array is passed to the comparison operator as a parameter. The overloaded operator
expects a String parameter, so the second conversion constructor is called and prints the message
Created for each array component.

After that, the function enterData() is called. It prompts the user, accepts the name of the city,
and passes it as an argument to the String conversion constructor¡Xyou see the message Created
printed by the constructor. Because the object u in main() is only created when enterData() is
called, the constructor call in enterData() is used as a constructor call for object u in main(). The
copy constructor is not called. Even though the

String objects handle memory dynamically, the integrity of the program is preserved. The copy
constructor here has nothing to do with implementing the value semantics; the conversion
constructor does the job of giving the object u in main() its separate heap memory. Just like the
Russian joke in Chapter 9: the crocodile plays piano, and the crocodile sings. The monkey has
nothing to do with it.

To make you more comfortable with handling objects that manage memory dynamically, let us
make a little change in enterData()¡Xnot much, just adding an extra local object to keep user
data.

String enterData()
{ cout << " Enter city to find: "; // prompt the user
 char data[200]; // crude solution
 cin >> data; // accept user input
 String x = data; // conversion constructor
 return x; } // copy constructor

The change is small. If x were a variable of a built-in type, it would amount to nothing. For objects
with dynamic memory management, this is a totally different story. The conversion constructor is
called when the local object x is created. However, when the function terminates, the object u in
function main() is initialized with the copy constructor. If the programmer-defined copy
constructor is not implemented, the system-supplied copy constructor is used. It copies the data
members of object x into data members of object u and does not allocate heap memory. The
pointers str in objects u and x point to the same area of heap memory. When enterData()
terminates and the object x disappears, the String destructor is called, which deletes heap memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (648 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointed to by pointer str in object x. This means that object u is born defective¡Xits dynamic
memory was deleted when it was born.

What are the consequences? The same as before¡Xmy machine crashes, your machine might
continue execution, but it is all in vain. The program is incorrect. It needs the programmer-defined
copy constructor.

When the programmer-defined copy constructor is supplied, everything is fine. The sample results
of the program execution are shown in Figure 11-17

Figure 11-17. Output of the program in Listing 11.6 with modified enterData() and the
copy constructor.

The debugging output shows that after the user enters the input line, the conversion constructor is
called for the local object x in enterData(), and then the copy constructor is called for the local
object u in main(). The crocodile plays piano, and the monkey sings. This version is a bit slower
than the previous one. But this is not important. What is important is that this version behaves
differently than the previous one. What is even more important is that if x and u were variables of
built-in type, this change would not affect the behavior of the program. And it is the experience
with built-in types that forms our programming intuition. After all the effort, built-in and
programmer-defined types are treated differently by C++. Working with objects requires changes to
the programming intuition. This is why I took the trouble to recount this sequence of events: I
wanted to help you to develop this new intuition. Make sure you are comfortable connecting the
structure of the client code with the class functions that are called implicitly.

Limits for Copy Constructor Effectiveness

We are almost there. I would like to make yet another little change to the program, this time to the
client code. Instead of defining the object u in main() and initializing it immediately, I will define
this object (using the default constructor) and then assign it to what the user entered during the call
to function enterData().

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (649 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main()
{ enum { MAX = 4} ;
 // setting up the database of city names
 // String u = enterData(); // crashes without copy constructor
 String u; // default constructor
 u = enterData(); // It crashes! Copy constructor does not help
 // search for the city, printing the results
 return 0; }

After I made this change, my system crashed. I will spare you from viewing yet another dialog box
with useless information about the cause of the problem. After all, this is an example of the
execution on a particular machine under a particular operating system. The important point is that
the program is incorrect. Even though it compiles correctly, its behavior is undefined, and it should
not be run. Since the compiler does not tell you that the program is incorrect, it is your
programming intuition that should help you to understand what is going on under the hood of the
program.

Overloading the Assignment Operator

On several occasions, I told you that the object initialization and object assignment are different
things in C++. When you are dealing with built-in data types, this distinction is often academic.
Consider, for example, the following segment of the client code.

int v = 5; int u = v; // variable u is initialized

Compare this with the following segment of code.

int v = 5; int u; u = v; // variable u is assigned

In the first example, variable u is initialized at definition. In the second example, variable u is
assigned after definition. For built-in variables, the end result is the same. When these
computational objects are objects of programmer-defined types that handle their own memory, the
difference is important.

String v = "Hello"; String u = v; // object u is initialized

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (650 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

String v = "Hello"; String u; u = v; // object u is assigned

The first line of code gets you in hot water if the class lacks the copy constructor. The second line
of code gets you in trouble if the class lacks the overloaded assignment operator. The copy
constructor is not called for the second line.

Problems with System-Supplied Assignment Operator

If the class has the overloaded assignment operator, it is called for the second line of this client
code example. If class does not supply the assignment operator, the compiler supplies its own
assignment operator. This operator is very similar to the copy constructor: it copies the data fields
of the object on the right-hand side of the assignment into the data members on the left-hand side of
the assignment operator.

Similar to a system-provided copy constructor, this system-provided assignment operator is always
available. For classes that do not do dynamic memory management (e.g., class Complex,
Rational, Rectangle), this system-provided assignment operator is adequate. For classes that
manage their memory dynamically, the system-provided assignment operator causes problems.

When the assignment is executed over String objects, the data members are copied memberwise.
The str pointer of the object on the left-hand side of the assignment points to the same place in the
heap memory as the str pointer of the object on the right-hand side of the assignment. The objects
become synonyms. If you modify one object, for example, u, the change is seen in another object,
in this case, v.

When one object is destroyed by scope rules or by the delete operator, for example, u, the
destructor is called for that object, and the memory pointed to by the object pointer str is deleted.
As a result, another object, in this case, v, is robbed of its heap memory even though it appears
totally healthy in the program. Any use of this object becomes incorrect. When that object is also
destroyed, the destructor is called for that object and tries to delete the heap memory pointed to by
pointer str. But this memory is already deleted! As I explained earlier, the attempt to delete the
heap memory that already has been deleted results in unpredictable behavior of the program. It is
incorrect semantically, even though it is correct syntactically.

Tracing the cause of the problem is difficult because it is not immediately related to the results of
program execution. And the copy constructor cannot remedy this problem because no constructor is
invoked when the assignment statement is executed. In C++, assignment and initialization are not
the same.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (651 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Overloaded Assignment: The First Version (Memory Leak)

The solution to this trouble is to overload the assignment operator for the class. The overloaded
assignment operator has to make sure that the left-hand side and the right-hand side objects do not
wind up pointing to the same area in heap memory.

The built-in C++ assignment operator is a binary operator with two operands, the left-hand side
operand and the right-hand side operand. The same is true for the overloaded programmer-supplied
assignment operator. Hence, the interface of the assignment operator is similar to the interface of
the copy constructor: the left-hand side object is the target of the message, the right-hand side
object is the parameter.

u = v; // u.operator=(v);

This means that the overloaded assignment operator you need for the class String should have the
following interface.

void String::operator = (const String& s); // assignment operator

The assignment operator should copy nonpointer data members from the parameter object into the
target object, allocate enough space and copy the contents of the parameter's heap memory into the
target's heap memory. These actions are similar to the actions of the copy constructor.

1. Copy the length of the parameter's character arrays into target's len.

2. Allocate heap memory; set target's pointer str to point to it.

3. Test for success of memory allocation; give up if the system is out of memory.

4. Copy characters from the parameter object into the newly allocated space.

NOTE

If you need to assign one object to another object, and the objects manage heap memory
dynamically, make sure that the class has an overloaded assignment operator. The copy
constructor is not enough.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (652 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Here is the version of the assignment operator that implements this algorithm. Although it is slower
than the system-provided assignment operator, it preserves value semantics and makes the two
objects independent of each other.

void String::operator = (const String& s)
{ len = s.len; // copy non-pointer data
 str = new char[len + 1]; // allocate own heap space
 if (str == NULL) exit(1); // test for success
 strcpy(str,s.str); } // copy heap data

It is a nice assignment operator, but it treats the target object exactly as the copy constructor does,
as if the object were just freshly minted and did not have any previous history. This is indeed the
case with the copy constructor, but this is not the case with the assignment operator. The target
object u has been created earlier. This means that a constructor was called when that object was
created, and during the constructor call the pointer str was set to point to a location in heap
memory. The assignment operator disregards this heap memory. It sets the str pointer to point to
another location in heap memory, and the memory allocated earlier to this object is lost. This
assignment operator causes memory leak, the second danger to a C++ program in addition to
deleting the same memory twice.

What is the remedy? Unlike the copy constructor, the assignment operator has to free the resources
(memory) that the target of the assignment was using prior to the operation. It is not difficult to fix
it; you just have to know that you have to fix it. This is a better version of the overloaded
assignment operator:

void String::operator = (const String& s)
{ delete str; // you do not do it in the copy constructor
 len = s.len; // copy non-pointer data
 str = new char[len + 1]; // allocate own heap space
 if (str == NULL) exit(1); // test for success
 strcpy(str,s.str); } // copy heap data

Overloaded Assignment: The Next Version (Self-Assignment)

This assignment operator is adequate. It will serve you well in most cases. It has a problem you are
not likely to encounter often: It does not support client code for assignments like this:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (653 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

u = u; // u.operator = (u); you do not do that often, do you?

This is useless, but it is legal C++ for variables of built-in types. There is no good reason why it
should not be legal for variables of programmer-defined types. Actually, it is legal, and the
compiler does not flag this statement as a syntax error. It is just that the first statement of the
operator=() function deletes the heap memory of the argument object. When the strcpy()
library function executes, it copies the characters from the newly allocated string into itself. The
result of copying between overlapping regions of memory is undefined (yet another headache), but
even if it were defined, the contents of the object's heap memory are lost forever.

However strange, the self-assignment is not that uncommon. It often arises in sorting algorithms
and in pointer manipulations. To prevent the return of the object heap memory, the operator can test
whether the parameter reference points to the same address where the target object is located. The
this pointer is a good way to access the location of the target object.

void String::operator = (const String& s)
{ if (&s == this) return; // avoid memory loss on self-assignment
 delete str; // you do not do it in the copy constructor
 len = s.len; // copy non-pointer data
 str = new char[len + 1]; // allocate own heap space
 if (str == NULL) exit(1); // test for success
 strcpy(str,s.str); } // copy heap data

Of course, this test could be done in the client code before the call to the assignment operator, but
this would result in pulling responsibilities up to the client code rather than pushing them down to
the server code.

Another solution is to test whether the pointers str in the target object and in the parameter object
point to the same area of heap memory. The test in the operator would look this way:

if (str == s.str) return; // same heap memory?

The two remedies are equivalent, but for some reason the first one is used more often. The reason
might be that the pointer this has some additional aesthetic value for C++ programmers.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (654 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Overloaded Assignment: Another Version (Chain Expression)

This overloaded assignment operator works well and should be used for all classes that handle their
memory dynamically and need to support assignment. This assignment, however, does not support
chain expressions that use the return value of the assignments in expressions.

 t = u = v; // returning void type does not support this

It is not clear how vital the support for chain assignment is. After all, you can always write client
code using a sequence of assignments as binary operators.

 u = v; // binary operator: u.operator=(v);
 t = u; // binary operator: t.operator=(u);

But the issue here again is one of treating the built-in types and programmer-defined types equally.
For variables of built-in types, the chain assignment is valid C++ code. Hence, it should be valid
C++ code for variables of programmer-defined types.

The assignment operator is right associative, and the meaning of the assignment chain is as follows.

 t = (u = v); // t.operator = (u.operator = (v));

This means that the assignment operator must return a value that is suitable for being used as an
actual argument for another assignment operator (or another message). This means that it should
return the value of the type to which the assignment operator belongs.

String String::operator = (const String& s) // return an object
{ if (&s == this) return *this; // protection against self-assignment
 delete str; // you do not do it in the copy
constructor
 len = s.len; // copy non-pointer data
 str = new char[len + 1]; // allocate own heap space
 if (str == NULL) exit(1); // test for success
 strcpy(str,s.str); // copy heap data
 return *this; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (655 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 11.7 shows a modified program from Listing 11.6. I added the overloaded assignment
operator. It calls the private function allocate() to request heap space and to check for success of
memory allocation. To cut down the volume of debugging output, I cut out the Originate message
from the default constructor. Instead, I added the message Assigned to be displayed each time the
assignment operator is invoked. Also, I eliminated the call to the concatenation operator
operator+=() in the client loop that loads the database of names and replaced it with the call to the
assignment operator. The output for this program is shown in Figure 11-18.

Figure 11-18. Output of the program in Listing 11.7.

Example 11.7. Class String with the overloaded assignment operator.
#include <iostream>
using namespace std;

class String {
 char *str; // dynamically allocated char array
 int len;
 char* allocate(const char* s) // private function
 { char *p = new char[len+1]; // allocate heap memory for object
 if (p==NULL) exit(1); // test for success, quit if no luck
 strcpy(p,s); // copy text into heap memory
 return p; } // return pointer to heap memory
public:
 String (int length=0); // conversion/default constructor
 String(const char*); // conversion constructor
 String(const String& s); // copy constructor
 ~String (); // deallocate dynamic memory
 void operator += (const String&); // concatenate another object
 String operator = (const String&); // assignment operator

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (656 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void modify(const char*); // change the array contents
 bool operator == (const String&) const; // compare contents
 const char* show() const; // return a pointer to array
 } ;

String::String(int length)
{ len = length;
 str = allocate(""); } // copy empty String into heap
memory

String::String(const char* s)
{ len = strlen(s); // measure the length of incoming
text
 str = allocate(s); // allocate space, copy incoming
text
 cout << " Created: '" << str <<"'\n"; }

String::String(const String& s) // copy constructor
{ len = s.len; // measure length of the source text
 str = allocate(s.str); // allocate space, copy incoming
text
 cout << " Copied: '" << str <<"'\n"; }

String::~String()
{ delete str; } // return heap memory (not the
pointer!)

void String::operator += (const String& s) // reference parameter
{ len = strlen(str) + strlen(s.str); // total length
 char* p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1); // test for success
 strcpy(p,str); // copy the first part of result
 strcat(p,s.str); // add the second part of result
 delete str; // important step
 str = p; } // now p can disappear

String String::operator = (const String& s)
{ if (&s == this) return *this; // test for self-assignment
 delete str; // you do not do it in copy
constructor
 len = s.len; // copy non-pointer data
 str = allocate(s.str); // allocate space, copy incoming
text
 cout << " Assigned: '" << str <<"'\n"; // for debugging only
 return *this; } // return the target object to
client

bool String::operator==(const String& s) const // compare contents
{ return strcmp(str,s.str)==0; } // strcmp returns 0 if the same

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (657 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

const char* String::show() const // protect data from changes
{ return str; }

void String::modify(const char a[]) // no memory management here
{ strncpy(str,a,len-1); // protect from overflow
 str[len-1] = 0; } // terminate String properly

String enterData()
{ cout << " Enter city to find: "; // prompt the user
 char data[200]; // crude solution
 cin >> data; // accept user input
 return String(data); } // conversion constructor

int main()
{ cout << endl << endl;
 enum { MAX = 4} ;
 String data[4]; // database of objects
 char *c[4] = { "Atlanta", "Boston", "Chicago", "Denver" };
 for (int j=0; j<MAX; j++)
 { data[j] = c[j]; } // assignment:
data[j].operator=(c[j]);
 String u; int i;
 u = enterData(); // it needs assignment,
 no copy constructor
 for (i=0; i<MAX; i++)
 { if (data[i] == u) break; } // if
 (data[i].operator==(u))
 if (i == MAX)
 cout << " City " << u.show() << " is not found\n";
 else
 cout << " City " << u.show() << " is found\n";
 return 0;
 }

You see that the integrity problem went away. You can deal with String objects in exactly the
same way you deal with objects of built-in numeric types. You can create them without
initialization, you can initialize them from a character array, and you can initialize them from
another, previously created, String object. You can assign one String object to another String
object as if they were numbers. Notice that C++ does not allow you to do that for arrays: C++
arrays implement reference semantics, not value semantics.

You can add to the class as many arithmetic operators as you see fit (adding String objects to each
other, subtracting, multiplying, etc.). However, keep in mind the maintenance programmer: You
should not make the task of understanding your code more difficult than it has to be.

The C++ facility for overloading operators represents a significant contribution to the aesthetics of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (658 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

computer programming.

Performance Considerations

But this flexibility comes at a price. If you want to initialize one object from another object (at
definition, passing parameters by value, or returning a value from the function), you ought to
provide a copy constructor. If you want to assign one object to another object, you ought to provide
an overloaded assignment operator.

The integrity problems that can arise from dynamic memory management loom so dangerous that
many programmers implement the copy constructor and the assignment operator for each class that
manages memory dynamically. Often, they do that even for classes that do not manage memory
dynamically. After all, these functions do not require much effort to implement¡Xlet them be there,
just in case.

I think that this is problem avoidance. Instead of adding numerous useless functions to the program,
the developers need to study the requirements of the client code and understand the consequences
of different design decisions.

There are several problems with supplying a class with more member functions than the class
needs. One is bloated design. It is not a minor consequence. When the maintainer (or client
programmer) browses through useless functions, attention is taken away from other, important
details.

Another problem is performance. As you see from Figure 11-18, the performance problem might
become quite real. For each assignment of an input string in the loop, there are two function calls
plus the call to the assignment operator:

1. a call to the conversion constructor for the operator=() parameter

2. a call to the operator=() function itself

3. a call to the copy constructor for the return by value from the assignment operator

Despite all the effort, there remains a big difference between class objects and built-in values. In
this loop, there is only one statement if the arrays data[] and c[] had components of built-in
types. For the design of the String class, this is quite different: the loop body represents three
function calls.

for (int j=0; j<MAX; j++)
{ data[j]=c[j]; } // assign: data[j].operator=(String(c[j]));

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (659 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that each of these operations is fairly expensive. In addition to the function call itself, each
entails the allocation of space on the heap, copying the parameter string into the heap space, and
then, in the destructor call, returning the heap space to the system. It is unavoidable to do it once for
the assignment operator that supports value semantics to keep the heap memory for its two
operands separate. But to do it two more times, for the parameter of the assignment operator and
for its return value, seems to be too much. To add insult to injury, the object generated by the copy
constructor is not used by the client code (recall that returning the object was introduced only to
support chain assignments) and is quietly dropped and eliminated after the destructor call.

First Remedy: More Overloading

There are two ways in which you can improve the performance of the overloaded assignment
operator. Changing the parameter of the assignment operator from the String type to the character
array type can eliminate the call to the conversion constructor.

String String::operator=(const char s[]) // array as parameter
{ delete str; // you do not do it in the copy
constructor
 len = strlen(s);
 str = allocate(s); // allocate space, copy incoming
text
 cout << " Assigned: '" << str <<"'\n"; // for debugging
 return *this; }

If you want to support the assignment both from character arrays and String objects, you have to
overload the assignment operator twice: for the String object and for the character array as its
parameter type. The output of the program from Listing 11.7 with the second assignment operator
added is shown in Figure 11-19. In the debugging message of the second assignment operator, I
added several spaces so that you can distinguish messages printed by the first assignment operator
(with the String parameter), and the second assignment operator (with the character array
parameter).

Figure 11-19. Output of the program in Listing 11.7 with the second assignment
operator added.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (660 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Second Remedy: Return by Reference

The second way to improve performance is to eliminate the redundant calls to the copy constructor.
To achieve that, you should replace the return by value with a return by reference. Here is an
example of doing this for the assignment operator with the character array parameter.

String& String::operator = (const char s[]) // return reference
{ delete str; // you do not do it in the copy
constructor
 len = strlen(s);
 str = allocate(s); // allocate space, copy incoming text
 cout << " Assigned: '" << str <<"'\n"; // for debugging
 return *this; }

The same should be done to the first assignment operator with the String parameter. When you
return references from functions (more on that is discussed in Chapter 9), you should be careful to
make sure that the reference still points to a valid object after the function terminates. In this case,
this is safe. The reference that is returned is the reference to the object on the left-hand side of the
assignment operator in the client space, for example, data[i] in the loop example above. It exists
after the assignment operator terminates because it is defined in the client scope. Be careful with
returning references to objects defined in the server scope that disappear after the call. Many
compilers only give you a warning or let you do it with impunity.

The output of the program in Listing 11.7 with two assignment operators that return object
references is shown in Figure 11-20.

Figure 11-20. Output of the program in Listing 11.7 with the second assignment operator
added and returning String objects from operators by reference.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (661 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It looks like we beat this poor assignment operator to death, but this is not the end of it. Some
purists insist that this is not enough because this design does not prevent the client programmer
from doing unnecessary things such as changing the contents of the returned string object before it
is destroyed. For example, this next code snippet is legal C++ for the assignment operators from
Listing 11.7.

for (int j=0; j<MAX; j++)
 { (data[j] = c[j]).modify("A city nobody heard of"); } // legal

This code assigns one object to another, returns the reference to the target object, and immediately
sends a message to modify it. The assigned value is never used. This does not make much sense,
and hence should be flagged as a syntax error. In order to generate a syntax error, you should make
the returned reference a reference to a constant.

const String& String::operator = (const char s[]) // too much?
{ delete str; // you do not do it in the copy
constructor
 len = strlen(s);
 str = allocate(s); // allocate space, copy incoming text
 cout << " Assigned: '" << str <<"'\n"; // for debugging
 return *this; }

I am not sure I want to insist that you do that, but the purists do have a point. If something does not
make sense, it should not be allowed to become a legitimate part of code.

Practical Considerations: What to Implement

Dynamic memory management has to be handled with knowledge and understanding. Step to either
side and you risk either performance degradation or integrity loss.

Many programmers believe that each time you design a class that manages memory dynamically,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (662 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

you must provide this class with the full complement of auxiliary member functions:

ϒΠ default constructor

ϒΠ conversion constructor(s)

ϒΠ copy constructor

ϒΠ overloaded assignment operator(s)

ϒΠ destructor

I am not sure you have to automatically follow this recommendation. Depending on client code
requirements, you might need only part of these functions. If you supply operators with the wrong
interfaces, you will eliminate the integrity problem, but you also will impair program performance
for no good reason. What I am sure of is that you have to understand the issues discussed in this
chapter. This understanding will let you choose member functions according to the task at hand
(client requirements) and to design a class that is both efficient and correct. When you
automatically supply all this machinery, the client code executes fine, but you lose your edge and
forget about the distinction between the initialization and assignment. This is dangerous.

Make sure that you use the right tools for your classes. When in trouble, analyze the situation, use
debugging statements, draw the pictures, but do not bloat the class with unnecessary components.
Make sure that you match the tools to the job and not walk around with the nails in your hand
(constructors, assignment operators, and other goodies) in search of an opposite wall. Make sure
you remember that the copy constructor and the assignment operator solve different problems and
cannot be used interchangeably¡Xthey hang pictures on opposite walls.

Often client code does not need to initialize one object from another object or assign one object to
another object. Let us assume that the class you have to implement represents a window. For
simplicity, let us consider only one data member that represents the text displayed in the window.
This class Window is similar to class String. It contains the dynamically allocated character array,
the destructor, and the concatenation operator that accepts a character array to be displayed in the
window and adds it to the contents of the window.

class Window {
 char *str; // dynamically allocated char array
 int len;
public:
Window()
{ len = 0; str = new char; str[0]= 0 ; } // empty String
~Window()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (663 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ delete str; } // return heap memory
void operator += (const char s[]) // array parameter
{ len = strlen(str) + strlen(s);
 char* p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1);
 strcpy(p,str); strcat(p,s); // form data from components
 delete str; str = p; } // hook up str to new data
const char* show() const
{ return str; } } ; // pointer to contents

For a full-fledged window, you would need more data members and member functions, but this
design is sufficient to demonstrate the issues.

Of course, there are fewer objects of class Window in the application than there are objects of class
String. Also, when a Window object is created, it is initialized to an empty contents, and the data
are added during execution.

As I showed you at the beginning of this chapter, this is exactly that type of class whose objects
you should not pass by value. And what if the client programmer passes the Window parameter by
value or just missed the & operator and created the pass by value unintentionally?

void display(const Window window) // do not do that!
{ cout << window.show(); }

It does not make sense to initialize one window from another or to assign one window object to
another.

Window w1; w1 += "Welcome, Dear Customer!"; // reasonable usage
Window w2 = w1; // unreasonable usage
w2 = w1; // even less reasonable usage
display(w2); // pass by value: slow

No, the second and the third lines in this code snippet do not make sense. Most people would not
write this. Also, the function display() passes its parameter by value. Most people (especially if
they read this book) would not write this. Since most people would not program this way, does it
mean that one can design class Window without the copy constructor or the assignment operator? If
someone (who did not read this book) were to write code like this snippet, it would create both an

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (664 of 1187) [8/17/2002 2:57:59 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

integrity problem and a performance problem¡Xbut this code is legal in C++.

Should you write a lengthy comment to your class Window? "Dear client programmer, please do not
initialize Window objects from another Window object. Please do not assign one Window object to
another Window object. And please, please, do not pass a Window object by value to a function or
return it from a function. Your program will be in trouble." Nice pitch. It would be nice to do
something more to protect client code.

One way is to add the copy constructor and the assignment operator to the class. If the client
programmer writes bad code, at least the code does not cause an integrity problem.

Another way is to make bad code syntactically incorrect. This is a very interesting idea. You design
your class in such a way that incorrect usage of its objects by client code becomes a syntax error. It
is up to the class designer to decide what usage is incorrect. Then you do not even need this
comment: "Dear client programmer."

But this is not very simple. You can take away the programmer-defined copy constructor and
overloaded assignment operator. But the system will give your class its own copy constructor and
assignment operator, and it is these system-provided member functions that cause the integrity
problem for classes with dynamic memory management. To prevent this add to the class a
programmer-defined copy constructor and an overloaded assignment operator, but do it in such a
way that the client code cannot use them and that an attempt to call them would cause a syntax
error.

Do you see what I am driving at? I invite you to write a function that the client code cannot call.
How do you write a function that the client cannot call? One possible way is to define this function
as nonpublic, to make it a private (or protected) function.

Listing 11.8 shows you this solution. The copy constructor and the assignment operators are
defined as private. They do not even need to be implemented. If only a prototype of the function is
given and the function is called by the client code, it is a linker error. Here, the linker does not get
to see the code. The compiler complains that the last three lines in main() are in error. Comment
out the declarations for the assignment operator and the copy constructor, and the compiler will
accept the client code giving this really unreasonable code its seal of approval.

Example 11.8. Example of private prototypes to outlaw incorrect handling of objects.
#include <iostream>
using namespace std;

class Window {
 char *str; // dynamically allocated char array
 int len;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (665 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Window(const Window& w); // private copy constructor
Window& operator = (const Window &w); // private assignment
public:
Window()
{ len = 0; str = new char; str[0]= 0 ; } // empty String
~Window()
{ delete str; } // return heap memory
void operator += (const char s[]) // array parameter
{ len = strlen(str) + strlen(s);
 char* p = new char[len + 1]; // allocate enough heap memory
 if (p==NULL) exit(1);
 strcpy(p,str); strcat(p,s); // form data from components
 delete str; str = p; } // hook up str to new data
const char* show() const
{ return str; } } ; // pointer to data
void display(const Window window) // do not pass objects by value
{ cout << window.show(); }

int main()
{ Window w1; w1 += "Welcome, Dear Customer!\n"; // reasonable
 Window w2 = w1; // unreasonable usage: syntax error
 w2 = w1; // even less reasonable usage: syntax
error
 display(w2); // pass by value: syntax error
 return 0;
 }

This is a great way to prevent the abuse of your classes by the client programmer. Of course, if the
code labeled as unreasonable in main() in Listing 11.8 has to be supported (for whatever reason),
and you care about performance, the class has to provide the copy constructor and the assignment
operator or several assignment operators if different types of right-hand side expressions are
possible. As far as the conversion operator(s) is concerned, you should provide it if the class objects
have to be initialized from simple data objects, not from objects of the same type. Another good
reason for adding to the class conversion operators is to avoid multiple overloaded operator
functions. You decrease the number of functions in your class, but you wind up with extra
constructor calls and extra memory allocation operations.

Summary

In this chapter, we looked at the dark side of C++ power. I did not want to frighten you, rather to
convey to you the grave responsibility that a C++ programmer has¡Xboth for program performance
and for program integrity.

I drove several more nails in the coffin of passing parameters by value, and I hope you will not
compromise on that in your programs. Pass parameters by reference, and use the const modifier to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (666 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

indicate that the parameter does not change in the function.

I also argued against returning objects from functions by value. If you have to return an object,
return the reference to the object, but make sure that this reference is to an object that does not
disappear immediately after the function call.

If you feel strongly that the client code should not pass objects of your class by value, make the
copy constructor private; that is, put the copy constructor prototype in the private section of your
class. There is no need to implement the function itself.

If your class manages memory dynamically, make sure you provide the class with the destructor
that returns heap memory.

If the objects of your class have to be used in the client code to initialize other objects of the class,
provide the copy constructor that implements value semantics for your class and supplies each
object with its own segment of heap memory.

If the objects of your class have to be assigned to each other in the client code, provide the
overloaded assignment operator that implements value semantics and supplies each object with its
own segment of heap memory. In the assignment operator, make sure that you prevent memory
leak by returning heap memory that the object already had before being assigned a new value from
the parameter object. Make sure that the memory is not deleted before you check for self-
assignment. Decide whether you want to support chain assignment. Often, your clients do not need
it.

The use of conversion constructors allows you to significantly relax the rules of strong typing in
C++. You can pass as an actual argument data of a type different from the class required and still
wind up with valid code. This is beautiful, but use this technique with caution. Extra calls to the
conversion constructor are expensive, especially if you have to support value semantics.

And yes, make sure that you distinguish where the client code calls the copy constructor and where
the client code calls the assignment operator. They use the same equals sign to denote the
operation, but they invoke different functions in the server code. You should know which one is
which.

Return to the material of this chapter often. Draw memory diagrams, experiment with its code.
Always remember that dynamic memory management in C++ can easily degenerate into a joy ride
around the neighborhood in a tank. It is too bad that C++ added to the traditional categories of
errors, syntax errors and semantic (run-time) errors, yet another category of errors: The program is
syntactically correct and is semantically correct, but still it is incorrect. No other language burdens
the programmer with that much responsibility. Make sure you carry out this responsibility with
respect.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (667 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Good luck to you.

Part III: Object-Oriented Programming with Aggregation and Inheritance

This part of the book continues the discussion of techniques of object-oriented programming. C++
adds to the programmer's toolbox such powerful techniques as class composition and class
inheritance, and some programmers feel at a loss deciding which technique to use and how to avoid
any unpleasant increase in program complexity.

Chapter 12, "Composite Classes: Pitfalls and Advantages," describes the syntax of using objects as
members of another class, specifies the rules of access to these objects and to their data members,
and explains how to initialize components of the composite object. It introduces the techniques of
sharing object components through reference members and as static members and describes the use
of nested classes and friend classes.

Chapter 13, "Similar Classes: How to Treat Them," introduces the techniques of using inheritance.
It describes the syntax of C++ inheritance, discusses different modes of inheritance and their effect
on access rights to base members in the derived object. It defines the scope rules under C++
inheritance and explains the rules of name resolution when a derived method hides the base method
of the same name. It also covers the rules of construction and destruction of derived objects and the
sequence of invocation of constructors and destructors.

Chapter 14, "Choosing Between Inheritance and Composition," introduces you to the Unified
Modeling Language (UML), which is becoming more and more popular for describing object-
oriented designs. This chapter helps you to choose between using inheritance and class composition
and introduces criteria of class visibility and division of responsibilities between classes as the tools
for making these design decisions. This chapter is important not only because it introduces the
UML, but also because it warns you against excessive use of inheritance and the increase of
program complexity that excessive use of inheritance usually leads to.

Chapter 12. Composite Classes: Pitfalls and Advantages

Topics in this Chapter

ϒΠ Using Class Objects as Data Members

ϒΠ Initialization of Composite Objects

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (668 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ Data Members with Special Properties

ϒΠ Container Classes

ϒΠ Summary

In the first two parts of this book, I mostly concentrated on the rules of the C++ language. I
discussed what you can and cannot do and what dangers you should be aware of to avoid loss of
performance or loss of program integrity. In these parts of the book, C++ emerges as a powerful
language that expects from the programmer a thorough understanding of what is happening on the
surface and under the hood of the program.

The second part of the book presented basic principles of object-oriented programming related to
building C++ code and to analyzing the interactions between program classes. Ideas were
introduced such as:

ϒΠ binding data and functions in the class to indicate that they logically belong together

ϒΠ making private those class components (data and functions) whose access from outside
the class would make class clients dependent on low-level details of class design

ϒΠ using class scope as an additional tool to eliminate name conflicts between elements of
different classes and conferring among class developers

ϒΠ providing member functions to make direct access to server data field names from client
code unnecessary

ϒΠ pushing responsibility from client code down to server classes and member functions

ϒΠ writing client code in terms of calls to server methods so that the code would not
develop dependencies on server design

ϒΠ providing constructors and destructors for proper object initialization, resource
management, and for further pushing responsibility to server classes

ϒΠ passing the server designer's knowledge about server behavior to the maintainer and to
client programmers, for example, with const modifiers for data members, parameters, return
values, and methods.

These ideas form the basis for programming techniques that result in self-documented object-
oriented code. This code is easier to understand and to maintain. Only with the use of these ideas

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (669 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

can you realize the full potential of C++. Without them, your code will contain highly intertwined
parts that depend on each other with a large number of dependencies. Such code is difficult to
understand and to modify whether it is written in C++, Java, COBOL, or FORTRAN.

In this part of the book, we will switch from considering a stand-alone C++ class to the design of
programs that have several cooperating classes. You will study class composition, where objects of
one class are used as data members, local variables, or parameters for methods of another class.
This is a powerful technique of organizing cooperation among program classes. The design
decisions that you implement using class composition are supported by C++ rules for constructor
invocation and by C++ syntax for passing data from client code to the components of programmer-
defined classes.

Another method of class cooperation is using inheritance, the method for designing classes that are
similar to each other, so that one class adds to data members and methods of another class. This is a
major vehicle for code reuse in C++. In addition to the design issues of deciding when inheritance
is appropriate, we will discuss all the relevant sets of C++ language features that support
inheritance: inheritance syntax, instantiation of objects, passing data for initialization of inherited
data members, name ambiguity, and rules for resolving ambiguity.

C++ programmers love to use inheritance. Many experts say that the use of inheritance is the
backbone of object-oriented programming. This is not really true. It is using C++ classes that is the
backbone of object-oriented programming¡Xbinding together data and operations, controlling
access to class components, and so on.

Inheritance is not the backbone of object-oriented programming. It is a technique for code and
design reuse. As such, it is very important for C++ programming. Let us make sure that this
important technique is used correctly.

Using Class Objects as Data Members

As was explained in Chapter 9, "C++ Class as a Unit of Modularization," the main purpose of the
class construct in C++ is to let the programmer bind together those data and operations that
logically belong together in the eyes of the class designer.

Almost all examples of C++ classes that appeared earlier in the book had data members of built-in
types¡Xintegers, and floating point numbers. Some more complex examples had a character array
as a data member. Actually, it was a pointer to a character array allocated on the heap. From the
point of view of class composition, a pointer is similar to integers and floating point numbers. It has
no internal structure of its own that is accessible from the outside.

However, you should not view this as an inherent limitation on class design. Class members can be
more complex than values of built-in types. Rather, it is an indication of a methodical approach to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (670 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the study of the language: starting from simpler features and progressing to more complex ones.

In Chapter 10,"Operator Functions: Another Good Idea," and Chapter 11, "Constructors and
Destructors: Potential Trouble," you saw how much attention C++ pays to treating built-in types
and programmer-defined types equally. If data members of built-in types can be used as class
components, there is no good reason why a data member of a class cannot be an object of some
other class that has components of its own.

C++ allows you to use class objects as components of objects of other classes. If one class has
many data members, you can merge a group of related data members into a larger object, and
declare this object to be a member of the class. Instead of a small number of large classes with
many components, you wind up with a larger number of classes with fewer components. This
facilitates the division of labor between programmers during development. Using a larger number
of smaller classes also improves modularization of code and facilitates hiding unnecessary details
from client code. The downside of overmodularization is that your clients can wind up with a large
number of small classes, which will make learning these classes more difficult.

Classes that have objects of other classes as their data members are called composite classes.
Almost all classes have components (data members) and hence are composite, but the term is used
mostly for classes whose components have their own components. In the theory of object-oriented
design, using objects of one class as components for objects of another class is called class
aggregation or class composition.

As an example, consider a class Rectangle that contains the x and y coordinates of its top-left and
bottom-right corners, respectively. This is a common convention in graphical programming.

class Rectangle {
 int x1, y1; // coordinates of the top-left
point
 int x2, y2; // coordinates of the bottom-right
point
 int thickness; // thickness of the rectangle
border
public:
 Rectangle (int inX1, int inY1, int inX2, int inY2, int width=1);
 void move(int a, int b); // move rectangle
 void setThickness(int width = 1); // change thickness
 bool pointIn(int x, int y) const; // point in rectangle?
 } ; // the rest of class Rectangle

Rectangle::Rectangle (int inX1, int inY1, int inX2, int inY2, int width)
{ x1 = inX1; y1 = inY1;
 x2 = inX2; y2 = inY2;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (671 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 thickness = width; } // set data members

void Rectangle::move(int a, int b)
{ x1 += a; y1 += b;
 x2 += a; y2 += b; } // move each corner

void Rectangle::setThickness(int width)
{ thickness = width; } // do the job

bool Rectangle::pointIn(int x, int y) const // is point in?
{ bool xIsBetweenBorders = (x1<x && x<x2) || (x2<x && x<x1);
 bool yIsBetweenBorders = (y>y1 && y<y2) || (y<y1 && y>y2);
 return (xIsBetweenBorders && yIsBetweenBorders); }

This class provides its clients with such services as moving the rectangle object around the screen,
changing the thickness of the lines used to draw the rectangle on the screen, and checking whether
a given point is inside the rectangle (hit test). The client code can define objects of class Rectangle
by specifying the coordinates of their corners. It moves a point and the rectangle around the screen,
trying to catch the point with the rectangle.

int x1=20,y1=40; int x2=70,y2=90; // top-left/bottom-right corners
int x=100, y=120; // point to catch by the rectangle
Rectangle rec(x1,y1,x2,y2,4); // create a Rectangle object
rec.setThickness(); // line width is 1 pixel (default)
x -= 25; y -= 15; // move the point around the screen
rec.move(10,20); // 10 pixels to right, 20 pixels down
if (rec.pointIn(x,y)) cout << "Point is in\n"; // in point in
rectangle?

Even for this small example, I felt that the internal structure of the Rectangle class was too
complex. When I was writing this code, I made errors, confusing x1 and y1, x1 and y2, and so on.
As a client programmer, I felt it was too much work to specify the Rectangle object (five values in
the constructor call). The reason for this unnecessary complexity of class Rectangle and its client
is the lack of implementation for a component: class Point. Actually, the concept of point is
natural here, and it is even present in comments to both class Rectangle and its client, but this
concept is not supported by a programmer-defined type.

C++ Syntax for Class Composition

Let us consider the same example, this time using a class Point that provides the clients with a few

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (672 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

services. Similar to previous examples, I will ask you to imagine that this code is part of a huge
program with many people working on different parts. In this section, I will concentrate on the
syntax of class compositions and on issues related to communications among classes and among
people designing these classes.

class Point {
private:
 int x, y; // private coordinates
public:
 Point (int a, int b) // general constructor
 { x = a; y = b; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; }
 bool isOrigin () const // predicate function
 { return x == 0 && y == 0; } } ;

I am using here common terminology for member functions. A modifier is a member function that
changes the state of the target object. (See that it has no const keyword?) A selector is a member
function that does not change the state of the target object. (See that it has the const keyword?) A
predicate is a selector that returns a boolean value that tells something about the state of the target
object (in this case, whether it is at the point of origin).

In this example, I use generic names for member functions to illustrate the fact that class scope
effectively limits name conflicts in the program. When I choose the name set()for a Point
member function, I do not have to notify all team members who design other classes for the
application of my decision. They can use the name set() for their classes too. I will have to notify
only those few team members who design classes that use my class Point as a server to do their
job. One such client class is class Rectangle that I introduced at the beginning of this chapter. This
version of class Rectangle has two data members of class Point to denote the top-left and the
bottom-right corners of the rectangle. The data member thickness has the same meaning as
before¡Xit denotes the width of the line used to draw the rectangle on the screen.

class Rectangle {
 Point pt1, pt2; // top-left, bottom-right corner
points
 int thickness; // thickness of the rectangle

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (673 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

border
public:
 Rectangle (int inX1, int inY1, int inX2, int inY2, int wid=1);
 void move(int a, int b); // move both points
 void setThickness(int width = 1); // change thickness
 bool pointIn(int x, int y) const; // point in rectangle
 } ; // the rest of class Rectangle

Rectangle::Rectangle (int inX1, int inY1, int inX2, int inY2, int width)
 { pt1.set(inX1,inY1); pt2.set(inX2,inY2); // push job down
 thickness = width; } // set data members

void Rectangle::move(int a, int b)
 { pt1.move(a,b); pt2.move(a,b); } // pass buck to members

void Rectangle::setThickness(int width)
 { thickness = width; } // do the job

bool Rectangle::pointIn(int x, int y) const // is point in?
 { int x1,y1,x2,y2; // coordinates of corners
 pt1.get(x1,y1); pt2.get(x2,y2); // get point data
 bool xIsBetweenBorders = (x1<x && x<x2) || (x2<x && x<x1);
 bool yIsBetweenBorders = (y>y1 && y<y2) || (y<y1 && y>y2);
 return (xIsBetweenBorders && yIsBetweenBorders); }

You see important changes in the design of class Rectangle. I wanted to say " significant
changes" but felt that it is not appropriate for such a small class. Whatever the term, these changes
represent common programming idioms for class composition.

In the Rectangle constructor, instead of a set of low-level assignments to numerous data members
of built-in types, there are two messages to component objects.

pt1.set(inX1,inY1); pt2.set(inX2,inY2); // push job down

This is an example of insulating the client code (Rectangle class) from details of the design of the
server code (Point class). The client code here is written in terms of messages to server objects; the
client does not use low-level details of server design: The client code says what is being done
instead of spelling out the details of how it is being done. The responsibility for the details of the
operation is pushed from the Rectangle code to the Point code. This style of writing client code
makes it easier to understand.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (674 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The move() method represents an even more interesting C++ idiom for the relationship between
the composite and the component classes. When a Rectangle object is asked to move, the object
turns back and asks its components to do the work of calling the method with the same name,
move(). But this is not a recursive call to the same function; this second method move() belongs to
the component class Point, not to the composite class Rectangle. This is yet another example of
the tendency to treat objects of different natures equally in C++ code. In this case, the same
treatment means the methods with the same name that belong to classes with similar behavior.
Moving a rectangle means moving each of its points. The opportunity to write methods that pass
the buck to its data members is one of the reasons why both methods are called move() and not
movePoint() and moveRectangle().

Access to Data Members of Class Data Members

Another important difference between this design of class Rectangle and the previous version is
access to component's components. In the previous version, class Rectangle could do whatever it
wanted with coordinates x and y. They were directly accessible. In the last version of class
Rectangle, they are components of class Point. If the component object (in this example, of
class Point) had public components, the composite class (class Rectangle) could access the data
members of its object data member (in this example, x and y) using the dot selector operator. That
is, if Point components were public, the Rectangle member function Rectangle::pointIn()
could use the qualified names of Point components. This is how class Rectangle could decide
whether the x parameter is between the x coordinates of Rectangle data members pt1 and pt2.

bool xIsBetweenBorders = (pt1.x<x && x<pt2.x)
 || (pt2.x<x && x<pt1.x);

However, Point data members are private. And the client class (in this example, Rectangle) has
no special privileges accessing the server (Point) components. Class Rectangle has Point objects
as its own components. This is why its methods can access its Point data members (pt1 and pt2).
But methods of class Rectangle cannot access the Point components data members x and y. The
line above is illegal. Rectangle methods should use Point public member functions, for example,
Point::get(), to access Point components.

It is important not to confuse two different contexts. (How many times have I emphasized this?).
The Rectangle class can access its own private Point members pt1 and pt2 without limitations;
the Rectangle class cannot access private components pt1.x, pt1.y, pt2.x, pt2.y of its data
members. This is why Rectangle::pointIn() has to use this code to retrieve data members of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (675 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rectangle data members pt1 and pt2.

bool Rectangle::pointIn(int x, int y) const
{ int x1,y1,x2,y2; // coordinates of corners
 pt1.get(x1,y1); pt2.get(x2,y2); // get point data
 bool xIsBetweenBorders = (x1<x && x<x2) || (x2<x && x<x1);
 ¡K } // and so on

The need to use server access functions to access components of class data members is often
annoying. Because of this need, the design of the composite class methods might become quite
cumbersome.

ALERT

If a class has data members that belong to other classes, then the class member functions cannot
access private components of these data members. This is often frustrating, but the composite class
must use data member's methods to get access to components of its own components.

If you look at the design of the client code of class Rectangle, you will see that it does not require
any changes. The client code has to supply five arguments to the Rectangle constructor and two
arguments to the method Rectangle::pointIn(). This means that introduction of the component
class Point benefited the design of composite class Rectangle but did not benefit the design of
client code.

int x1=20, y1=40; int x2=70, y2=90; // rectangle corners
int x=100, y=120; // point to catch with the rectangle
Rectangle rec(x1,y1,x2,y2,4); // create a Rectangle object
rec.setThickness(); // line width is 1 pixel (default)
x -= 25; y -= 15; // move the point around the screen
rec.move(10,20); // 10 pixels to right, 20 pixels
down
if (rec.pointIn(x,y)) cout << "Point is in\n"; // in point in rectangle?

Again, for this tiny example, the difference is not tremendous, but it is clearly here. Similar to the
first version of class Rectangle, this client code does its processing in terms of separate entities x
and y. The code does not aggregate these separate entities into a class and thus does not pass to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (676 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

maintainer what the code designer knew at the time of design, that these separate entities are related
and represent the coordinates of the same point. Whatever the client code needs to do with points,
like moving, comparing and so on, these actions should be done over individual coordinates in the
client code. The low-level individual actions clutter the client code and make it harder to grasp its
meaning. Consider, for example, the client code statement rec.move(10,20); it says clearly that
the rectangle moves. The fact that the point at coordinates (100,120) is moved has to be deduced
from the series of assignments x -= 25; y -= 15; This responsibility for low-level details is not
pushed to the server code.

Expressing client code in terms of class Point objects and operations over them alleviates these
problems and makes this code more object-oriented.

Point p1(20,40), p2(70,90); // rectangle corners
Point point(100,120); // point to catch with the
rectangle
Rectangle rec(p1,p2,4); // see below about problems
with this
rec.setThickness(); // line width is 1 pixel
(default)
point.move(-25,-15); // move the point around the
screen
rec.move(10,20); // 10 pixels to right, 20
pixels down
if (rec.pointIn(point)) cout << "Point is in\n"; // is point in?

This code now has two servers, class Point and class Rectangle. The fact that the Point object
point moves is as clear here as the fact that the Rectangle object rec moves. The responsibility
for low-level details is pushed to servers, and the client code is expressed in terms of self-
explanatory function calls, not in terms of individual computations.

The problem with this code is that it expects the interfaces from the class Rectangle that are not
available. Class Rectangle provides the constructor with five parameters, the client code supplies
only three. Class Rectangle expects two arguments for the function pointIn(), but the client
code supplies only one. This problem could be resolved by changing either the function calls in the
client code or by changing the function interfaces in server Rectangle. The smaller the program,
the less difference it makes what you change.

If class Rectangle were a library class that you cannot change, then there is no choice. It is the
client code that has to work around the limitations of the library. If class Rectangle is one of the
cooperating classes being developed for the application, this class can change, and the decision

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (677 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

becomes an ideological decision. From the point of view of object-oriented ideology, it is the server
class (in this case, class Rectangle) that has to accommodate the expectations and requirements of
the client code. According to this ideology, class Rectangle should be designed in the following
way.

class Rectangle {
 Point pt1, pt2; // rectangle corners points
 int thickness; // thickness of the rectangle
border
public:
 Rectangle (const Point& p1, const Point& p2, int width=1);
 void move(int a, int b); // move both points
 void setThickness(int width = 1); // change thickness
 bool pointIn(const Point& pt) const; // point in rectangle?
 } ; // the rest of class Rectangle

 Rectangle::Rectangle (const Point& p1, const Point& p2, int width)
 { pt1 = p1; pt2 = p2;
 thickness = width; } // set data members

 void Rectangle::move(int a, int b)
 { pt1.move(a,b); pt2.move(a,b); } // pass buck to Point

 void Rectangle::setThickness(int width)
 { thickness = width; } // do the job

bool Rectangle::pointIn(const Point& pt) const // is point in?
{ int x,y,x1,y1,x2,y2; // coordinates of pt and corners
 pt.get(x,y); // get parameter's coordinates
 pt1.get(x1,y1); pt2.get(x2,y2); // get both corners
 bool xIsBetweenBorders = (x1<x && x<x2) || (x2<x && x<x1);
 bool yIsBetweenBorders = (y>y1 && y<y2) || (y<y1 && y>y2);
 return (xIsBetweenBorders && yIsBetweenBorders); }

Notice the use of the const keyword (and its absence) in the design of classes Point and
Rectangle. They reflect the changes (and absence of changes) to the target object and to function
call parameters. Since member functions in this design do not return pointers or references or
objects, there is no need to use the const keyword for return values.

The general constructor of class Rectangle can be called with either two or three parameters.
When it is called with two parameters, the thickness data member is set to its default value 1.

Access to Data Members of Method Parameters

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (678 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that the method parameters in C++ are treated similarly to data members of the composite
class.

Member function parameters can be of any type, including class objects. There are no limitations
on parameter modes for class objects: They can be passed by value, by pointer, and by reference;
they can even have the const modifier if necessary.

Access to parameter objects in member functions follows the same rules as for any other object: It
is allowed to public parts only. The parameter is available to the method, but its private components
are not. If the client of the parameter (in this case, the member function) needs access to private
parts of the server (its parameter), the server class member functions should be used.

This is why the Rectangle member function pointIn() uses Point access function get() to
access its parameter's components pt.x and pt.y.

An important exception is made in C++ when another object being accessed is the same class type.
This exception applies when an object is passed as a parameter to a member function of the class to
which the object belongs. If the client class and the server class are both of the same type, the client
object has full access rights to the parameter object components. This version of class Point is too
simple to demonstrate this issue. Let us assume that you wish to add a member function
isSamePoint() to class Point. The function should compare the coordinates of its target object
and its parameter object and return true if they have the same values, false otherwise.

bool Point::isSamePoint(const Point& p) const // compare data
{ return x==p.x && y==p.y; }

In a sense, access to another instance (in this example, p in isSamePoint()) is taking place within
the class scope of the target object (of type Point). This is why it is allowed.

TIP

When a parameter of a class method is of a class component type, the method cannot access the
parameter's private components and should use the parameter's member functions instead. When a
parameter of a class method is of the same type as the class, the method can access the parameter's
private components directly, without access functions. Using access functions would be
syntactically correct but ugly.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (679 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

To be consistent with the rule that private members are not accessible outside of the object, another
object of the same class would have to use access functions. Then this function would have to be
written in the following way.

bool Point::isSamePoint(const Point& pt) const // compare data
 { int x1, y1;
 pt.get(x1,y1); // overkill: access through a member function
 bool answer = (x==x1 && y==y1);
 return answer; }

C++ allows a small inconsistency in access rights to avoid this unnecessary, awkward code. This
version of isSamePoint() is syntactically correct. A programmer whose productivity is measured
in lines of code could write miles and miles of code like this. Whether this mileage contributes to
the quality of the application is a totally different question.

Initialization of Composite Objects

The issues related to initialization play an important role in programming. Failure to initialize a
computational object properly is a common source of programming errors. C++ offers the
programmer a rich set of techniques for initialization of program components.

When I was describing the syntax of defining scalar variables in Chapter 3, "Working with C++
Data and Expressions," the next discussion topic was the syntax of giving initial values to these
variables. When I was describing the syntax of C++ aggregates in Chapter 5, "Aggregation with
Programmer-Defined Data Types," ¡Xarrays, structures, enumerations, unions, and bit fields¡Xthe
next topic for discussion was the initialization of these program components. When I described the
syntax of the C++ class construct in Chapter 9, the next topic was again object initialization.

This was no accident. Initialization of C++ objects is one of the major concerns for the C++
programmer. It is an important part of the effort to push responsibility to the server class and to
relieve the client code from low-level details of server design. Now that I have described the syntax
of a composite class, we will discuss the initialization of composite objects. The same will happen
when you study inheritance: After I discuss the syntax of inheritance, I will show you how to
initialize derived objects.

As I mentioned in Chapter 9, the C++ syntax for defining program variables and the C++ syntax for
defining class data members is the same. This line of code can be treated as a legitimate C++
snippet both in a function or block scope and in a class scope.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (680 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int x,y; // can be in a function or block; can be in a class

However, the definition with initialization can be found only in executable code in a function or in
a block.

int x=100, y=100; // can be in a function or block, not in a class

Hence, you cannot initialize data members in class specifications using syntax appropriate for
initialization of C++ variables. Java programmers can do that but not C++ programmers.

class Point {
 int x=100, y=100; // illegal syntax for initialization
public:
 Point (int a, int b) // appropriate means of initialization
 { x = a; y = b; }
 . . . } ; // the rest of class Point

The syntax for defining object instances in functions and data members in composite classes is also
the same. This line of code could be found both in a body of a function and in a class definition.

Point pt1, pt2; // can be in a function or block or a class

However, supplying arguments for initialization is allowed only when defining object instances in
functions or in a block scope.

Point pt1(20,40),pt2(70,90); // OK in function/block, not in a class

Hence, data members in composite classes cannot be initialized in class specifications using the
syntax appropriate for initialization of objects of the component class. In the next example, I am
trying to initialize Point components of class Rectangle using the syntax appropriate for a Point
variable. The compiler rejects this syntax.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (681 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Rectangle { // incorrect class specification
 Point pt1(20,40); // legal in client code, illegal here
 Point pt2(70,90); // same problem
 int thickness = 1; // same problem
public:
 Rectangle (const Point& p1, const Point& p2, int width = 1);
 void move(int a, int b);
 . . . } ; // the rest of class Rectangle

Instead, C++ offers you two ways to initialize components of a composite class. One way to do this
is to assign the values in the body of a constructor of the composite class. The constructor can
assign data to appropriate data members whether they are aggregates or simple components of built-
in types.

Rectangle::Rectangle (const Point& p1,const Point& p2,int width)
 { pt1 = p1; pt2 = p2; // give values to aggregate components
 thickness = width; } // give values to built-in components

Another way to do it is to use a member initialization list that calls the constructor of the class
components. In this example, the member initialization list calls a Point constructor to initialize
Point components of class Rectangle.

Rectangle::Rectangle (const Point& p1, const Point& p2, int width)
 : pt1(p1), pt2(p2) // call constructors for components
 { thickness = width; } // give values to built-in components

ALERT

The syntax for defining C++ variables and objects and 1 for defining class members is the same.
However, you cannot use the syntax for initializing C++ variables and objects when defining class
members. You should either use a default constructor or a member initialization list.

I will discuss the details of the use of the constructor body first, and then I will explain the use of
the member initialization list.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (682 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Using the Components' Default Constructors

In Chapter 9, I told you that when a C++ object is created, the memory is allocated to its data
members. Disregarding system-specific additional space for value alignment, you can assume that
the memory allocated for an object is a sum of the sizes of its data members.

I also told you that when a C++ object is created, its data members are initialized in a constructor
call. I stressed that even though it might be convenient to believe that the constructor is called while
the object is constructed, it is more correct to say that the constructor is called after all of the
object's data members are constructed.

However, I am ready to admit that for the classes that have only noncomposite fields of built-in
types, the distinction between while and after is not very important. It is similar to the distinction
between initialization and assignment. For noncomposite variables of built-in types, this distinction
is relatively minor. As you saw in Chapter 11, this distinction becomes very important for classes
that handle heap memory dynamically. Failure to distinguish between the two might result in
performance and integrity problems.

Similarly, the distinction between while and after becomes important for objects whose
components are objects of programmer-defined classes. In this section, we will look at the process
of building a composite object in detail.

In brief, when a C++ object is created, the memory is allocated to its data members, and then the
body of a constructor is executed. It means that the constructor for an object is called only after all
data members are created.

The important characteristic of this process is that data members are created in the order of their
appearance in the class specification. When the process is over, the object of the composite type
looks in memory like the total of its components.

By the way, it means that by changing the order of data members in the class, you can affect the
properties of the class, but this is possible only if data members depend on each other. For example,
one data member can represent the number of components in another data member. (You will see
examples of dependencies later.)

When the data members are created one after another, fields of built-in types (if any) are either left
noninitialized (if the object is created on the stack or on the heap) or are set to null (for objects that
are created as global or static objects). If the object needs a specific value stored in a field of a built-
in type, this will be taken care of later, during the constructor call. For example, the value of the
field thickness for objects of the class Rectangle is set to the value specified as the constructor

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (683 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

parameter width.

And what happens if the object is a composite object and some of its data members are objects of
some other classes? The phrase "data members are created in the order of their appearance" three
paragraphs ago should tip you off. The procedure of object creation is recursive. After a data
member is created, its class constructor is called.

Recall that no C++ object can be created without a constructor call that follows the memory
allocation. If a field of a composite object is of a programmer-defined type (structure or class), its
constructor is called immediately after the field is allocated and before the next field is created. It is
only after all the fields of the composite object are successfully created (and initialized), that the
body of the composite class constructor is executed.

So, when an object of class Rectangle is created, events take place in the following order:

1. The data member pt1 of class Point is created.

2. The data member pt2 of class Point is created.

3. The data member thickness of type int is created.

4. The body of the Rectangle class constructor is executed.

When each of the data members of class Point is created in the process of the construction of the
Rectangle object, it is done in the following order.

1. The data member x of type int is created.

2. The data member y of type int is created.

3. The body of a Point class constructor is executed.

You see that before the body of the Rectangle class constructor is executed, a class Point
constructor is called twice: the first time to initialize fields of the data member pt1 and the second
time to initialize the fields of the data member pt2.

Notice that when a composite object is destroyed, the process of memory management and function
calls is reversed. The composite class destructor is called first, before any memory is deallocated.
When the destructor terminates, the data members are destroyed in the order opposite to the order
of their creation. When each data member is destroyed, it is done recursively. First, the component
destructor is called before any component memory is destroyed. After the component destructor

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (684 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

terminates, the component data members are destroyed (from the last in the component class
specification to the first).

Hence, the sequence of events for destroying the Rectangle object is a mirror image of events that
took place when the object was created.

1. The Rectangle destructor is executed.

2. The thickness data member is destroyed.

3. The Point destructor is executed for data member pt2.

4. The data member pt2 is destroyed (first its field y, then its field x).

5. The Point destructor is executed for data member pt1.

6. The data member pt1 is destroyed (first its field y, then its field x).

When I was describing the process of the Rectangle object creation, I was rather confident when
describing the call to the Rectangle constructor because the class Rectangle has only one
constructor. But I was not exactly sure when I said that a Point class constructor was executed.
What constructor is called when the Point data field object is created?

As with any C++ function, the answer depends on the number of arguments supplied in the
constructor call by its client. A conceptual stumbling block for some programmers is that when
there are no arguments supplied they do not see the constructor call take place. No, if no arguments
are supplied, a constructor with no arguments is called. This means that the default constructor is
called. When one argument is supplied, the constructor with the argument of that type is called, and
so on. What happens if the constructor with the required signature is not available? Similar to
calling any C++ function with an incorrect signature, it means that the function call (an attempt to
create an object) generates a syntax error.

In this next segment of client code, we see that the code passes parameters for a call to a
Rectangle constructor. However, there are no parameters that would pass data to the Point
constructors.

Point p1(20,40), p2(70,90); // top-left and bottom-right corners
Rectangle rec(p1,p2,4); // this is a syntax error

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (685 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This means that it is the default constructor of the component class that is called when the data
member of the component type is created in the process of creation of the composite object.

In our example, class Point does not have a default constructor. This is bad news. Recall, however,
that when a class does not have a default constructor, the compiler gives it one. This constructor
does nothing, but it makes it possible for the client code to create objects with no arguments passed
to the constructor. This is good news. Recall, however, that if the class has nondefault constructors
(class Point has one), the compiler takes its default constructor away. This is bad news again¡Xthe
definition of the composite class object generates a syntax error. This is why the last line in the
code snippet above is in error.

This is an example of a link between classes (in this case, Point and Rectangle) that is often
obscure to programmers. For some, the error is in the definition of the Rectangle class because it
tries to call a constructor in the Point class that does not exist. However, compiling class Point
and even compiling class Rectangle do not generate syntax errors.

The logical source of an error is in the design of the component class, Point. It is this class that
does not have the default constructor. However, the logical error manifests itself as a syntax error
not in the design of the component class, Point, and not even in the design of the composite class,
Rectangle, but in the client code of the Rectangle class, during an attempt to instantiate the
composite class object¡Xin place of code far from the origin of the error. Unless the client code
tries to define a Rectangle object, there is no syntax error in this code.

To remedy the situation, you can add a default constructor to the Point class. This will eliminate
the syntax error in the last code snippet.

class Point {
 int x, y; // private coordinates
 public:
 Point ()
 { x=0; y=0; } // default constructor
 Point (int a, int b) // general constructor
 { x = a; y = b; }
 . . . } ; // the rest of Point class

Another solution is to add default argument values to the general constructor so that the constructor
can serve as a default constructor and a conversion constructor.

class Point {

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (686 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 int x, y; // private coordinates
public:
 Point (int a=0, int b=0)
 { x = a; y = b; } // default, conversion, general constructor
 . . . } ; // the rest of Point class

To summarize, let us go through the steps of creation of the Rectangle object again. Figure 12-1
shows the actions of executing the following segment of client code.

Figure 12-1. Steps of creating a Rectangle object with calls to the Point default
constructor.

Point p1(20,40), p2(70,90); // top-left and bottom-right corners
Rectangle rec(p1,p2,4); // OK if Point has default constructor

First, the memory for object pt1 is allocated, and the default Point constructor is called, which sets
pt1.x and pt1.y to zero. Next, the memory for object pt2 is allocated, and the default Point
constructor is called, which sets pt2.x and pt2.y to zero. After that the memory for data member
thickness is allocated and left noninitialized. Then the Rectangle constructor is called. When its
body is executing, first it copies the contents of argument p1 into data member pt1, then it copies
p2 into pt2, and then it sets thickness to 4.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (687 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

As a result of this sequence of events, the Rectangle object is created so that pt1.x is set to 20,
pt1.y is set to 40, pt2.x is set to 70, and pt2.y is set to 90.

Do you see what happened? The values that were put into pt1 and pt2 by the Point default
constructor calls were not long lived. They were written over by data from p1 and p2 during the
Rectangle constructor call. The two default constructor calls for two Point data members were
wasted! Do you feel this is outrageous? Are you filled with indignation about the milliseconds
wasted during the creation of the Rectangle object? Yes? Good, this means that you have what it
takes to know right from wrong in C++ programming.

NOTE

Instantiation of a C++ object always involves a function call: a call to a class constructor.
Instantiation of C++ composite objects always involves more than one function call. A constructor
is called immediately after each data member is created. Learn to see these function calls in any
C++ code.

On many occasions I have stressed that when there is a choice between readability and
performance, I favor readability. But when it comes to wasting execution time for no good reason,
there is no way to have two different opinions. A C++ programmer should develop the ability to
see these wasted calls when looking at C++ code. A C++ programmer should know how to avoid
this waste whenever possible.

Listing 12.1 shows the implementation of the composite class Rectangle and the component class
Point with the test driver. To facilitate analysis of the results, I added to class Point a copy
constructor and the overloaded assignment operator with debugging messages to trace the process
of the creation of the Rectangle composite object. The results of the execution of this program are
shown in Figure 12-2.

Figure 12-2. Output for program in Listing 12.1.

Example 12.1. Example of creation of a composite object with wasted constructor calls.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (688 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <iostream>
using namespace std;

class Point {
 private:
 int x, y; // private coordinates
 public:
 Point (int a=0, int b=0) // general constructor
 { x = a; y = b;
 cout << " Created: x= " << x << " y=" << y << endl; }
 Point (const Point& pt) // copy constructor
 { x = pt.x; y = pt.y;
 cout << " Copied: x= " << x << " y=" << y << endl; }
 void operator = (const Point& pt) // assignment operator
 { x = pt.x; y = pt.y;
 cout << " Assigned: x= " << x << " y=" << y << endl; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; } } ;

 class Rectangle {
 Point pt1, pt2; // top-left, bottom-right corner
points
 int thickness; // thickness of the rectangle border

 public:
 Rectangle (const Point& p1, const Point& p2, int width=1);
 void move(int a, int b); // move both points
 bool pointIn(const Point& pt) const; // point in rectangle?
 } ;

 Rectangle::Rectangle(const Point& p1,const Point& p2,int width)
 { pt1 = p1; pt2 = p2; thickness = width; } // set data members

 void Rectangle::move(int a, int b)
 { pt1.move(a,b); pt2.move(a,b); } // pass buck to Point

 bool Rectangle::pointIn(const Point& pt) const // is point in?
 { int x,y,x1,y1,x2,y2; // coordinates of pt and corners
 pt.get(x,y); // get parameter's coordinates
 pt1.get(x1,y1); pt2.get(x2,y2); // get data from corners
 bool xIsBetweenBorders = (x1<x && x<x2) || (x2<x && x<x1);
 bool yIsBetweenBorders = (y>y1 && y<y2) || (y<y1 && y>y2);
 return (xIsBetweenBorders && yIsBetweenBorders); }

int main()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (689 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{
 Point p1(20,40), p2(70,90); // top-left, bottom-right corners
 Point point(100,120); // point to catch with the
rectangle
 Rectangle rec(p1,p2,4); // wasted constructor calls
 point.move(-25,-15); // move the point around the
screen
 rec.move(10,20); // 10 pixels to right, 20 pixels
down
 if (rec.pointIn(point)) cout << " Point is in\n"; // point in?
 return 0;
 }

The first three Created messages in Figure 12-2 reflect the creation of Point objects p1, p2, and
Point. The next two Created messages describe the creation of the Rectangle object: The first
message describes the creation of data member pt1 and a call to the Point default constructor, the
second message describes the creation of data member pt2 and a call to Point default constrictor.
The two Assigned messages describe the execution of the Rectangle constructor after the creation
of the object is finished. The first message corresponds to the first assignment in the body of the
constructor, and the second message corresponds to the second assignment in the body of the
constructor.

This is a typical picture of the creation of a composite object in C++. For large composite objects,
the process of creation can become quite involved and wasteful. Of course, you cannot eliminate
the calls for the constructors immediately after each data member is created. This is a strict law in
C++¡Xthere is no creation of an object without a constructor call following immediately. But you
can (and should) try to call such a constructor whose work would endure after the composite object
constructor executes.

Using the Member Initialization List

C++ allows you to avoid this waste by using the member initialization list, or initializer list, in the
composite class constructor. It has an unusual syntax based on the use of the space between the
constructor's header and its body. This is what the member initialization list looks like.

 class Rectangle {
 Point pt1, pt2; // Top-Left, Bottom-Right;
 int thickness;
 public:
 Rectangle (const Point& p1, const Point& p2, int w = 1);
 } ; // the rest of class Rectangle
Rectangle::Rectangle(const Point& p1,
 const Point& p2,int w) : pt1(p1),pt2(p2)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (690 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { thickness = w; } // this is much better!

The initializer list is placed between the closing parentheses of the constructor parameter list and
the opening brace of the constructor body. The list opens with a colon and enumerates the names
(not types) of data members. After each data member name, in parentheses, are listed the
corresponding argument value(s) used to initialize that object data member. The list of data
member names is comma separated. The list does not have a terminator; it ends when the opening
brace of the constructor body is found. Each entry in the list is similar in appearance to a
constructor call in a definition of a variable, for example, pt1(p1).

Notice that the initializer list syntax applies to the constructor implementation only. It does not
affect the way constructor prototypes are written. Do not confuse this with default values of
parameters. Default value syntax applies to prototypes only. It does not affect the way you write
implementation.

The initializer list syntax forces the compiler to generate a call to the data member constructor with
the appropriate number of parameters. The constructor is called after the memory for this data
member is allocated and before the body of the composite class constructor is executed. Hence,
component data members are already initialized by the time the composite class constructor is
called. They can be used in the composite class constructor body if necessary.

Actually, any data member (including built-in types) can be initialized in the list. Here is the
Rectangle constructor, where all data members are initialized in the initializer list.

Rectangle::Rectangle(const Point& p1, const Point& p2, int w)
 : thickness(w), pt1(p1), pt2(p2) // on the line by itself
 { } // empty body: a popular C++ idiom

As you can see, the initializer list can be on a line by itself. This is a common use of this syntax.
The use of this extended initializer list results in a strange situation. By the time the constructor
body is executed, there is no work left to do. This is why the constructor body is empty. It still has
to be here because the function body cannot be omitted. There are no real advantages in initializing
atomic data members in the initializer list. For some reason, however, the empty constructor body
is popular among C++ programmers.

By the way, the initializer list above might give you the impression that the thickness data
member is initialized before data members pt1 and pt2 are. This is incorrect. Despite appearances,
it does not matter in what order you specify components of the initializer list. They are executed in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (691 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the order in which data members appear in the class specification. Appearances lie.

Figure 12-3 shows the sequence of events for creation of the Rectangle object when the initializer
list is used to execute this snippet of code.

Figure 12-3. Steps of creating a Rectangle object with the member initialization list.

Point p1(20,40), p2(70,90); // top-left and bottom-right corners
Rectangle rec(p1,p2,4); // no need for Point default constructor

After points p1 and p2 are allocated, the Rectangle object rec is constructed. First, the Point data
member pt1 is created; then the Point copy constructor is called for this data member with object
p1 as the argument. As a result, the data member pt1 is initialized: x is 20, y is 40. Next, the point
data member pt2 is created, and the Point copy constructor is then called for this data member
with the Point object p2 as the argument. As a result, the data member pt2 is initialized: x is 70, y
is 90. After that, the data member thickness is created and initialized to 4. Congratulations! The
wasteful calls to the Point default constructor have disappeared.

Listing 12.2 shows the same program as in Listing 12.1 with a different design of the composite
class Rectangle. Instead of the conventional general constructor implemented in Listing 12.1, the
program in Listing 12.2 implements the Rectangle constructor with the member initialization list.
The results of the execution of this program are shown in Figure 12-4.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (692 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 12-4. Output for program in Listing 12.2.

Example 12.2. Creating a composite object without wasted constructor calls.
#include <iostream>
using namespace std;

class Point {
 private:
 int x, y; // private coordinates
 public:
 Point (int a=0, int b=0) // general constructor
 { x = a; y = b;
 cout << " Created: x= " << x << " y=" << y << endl; }
 Point (const Point& pt) // copy constructor
 { x = pt.x; y = pt.y;
 cout << " Copied: x= " << x << " y=" << y << endl; }
 void operator = (const Point& pt) // assignment operator
 { x = pt.x; y = pt.y;
 cout << " Assigned: x= " << x << " y=" << y << endl; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; } } ;

 class Rectangle {
 Point pt1, pt2; // top-left, bottom-right corner points
 int thickness; // thickness of the rectangle border
 public:
 Rectangle (const Point& p1, const Point& p2, int width=1);
 void move(int a, int b); // move both points
 bool pointIn(const Point& pt) const; // point in rectangle?
 } ;

 Rectangle::Rectangle(const Point& p1, const Point& p2,int w)
 : thickness(w), pt1(p1), pt2(p2) // initialization list
 { } // empty member body

 void Rectangle::move(int a, int b)
 { pt1.move(a,b); pt2.move(a,b); } // pass buck to Point

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (693 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 bool Rectangle::pointIn(const Point& pt) const // is point in?
 { int x,y,x1,y1,x2,y2; // coordinates of pt and corners
 pt.get(x,y); // get parameter's coordinates
 pt1.get(x1,y1); pt2.get(x2,y2); // get data from corners
 bool xIsBetweenBorders = (x1<x && x<x2) || (x2<x && x<x1);
 bool yIsBetweenBorders = (y>y1 && y<y2) || (y<y1 && y>y2);
 return (xIsBetweenBorders && yIsBetweenBorders); }

int main()
{ Point p1(20,40), p2(70,90); // top-left, bottom-right corners
 Point point(100,120); // point to catch with the rectangle
 Rectangle rec(p1,p2,4); // NO wasted constructor calls
 point.move(-25,-15); // move the point around the screen
 rec.move(10,20); // 10 pixels to right, 20 pixels down
 if (rec.pointIn(point)) cout << " Point is in\n"; // is point?
 return 0;
 }

The first three Created messages in Figure 12-4 are the same as the first three messages in Figure
12-2: They reflect the process of creation of three Point objects in main(). The next two Copied
messages reflect the process of creation of the Rectangle object. The first message appears when
the Point copy constructor is called after the data member pt1 is created. The second message
appears when the Point copy constructor is called after the data member pt2 is created. As you can
see, it is the Point copy constructor that is called here and not the default constructor. And its
results endure¡Xthe Point assignment operator is not called during the Rectangle constructor
invocation; the Rectangle constructor body is empty. This is very good!

In these examples, the composite class had only one constructor. If it had several constructors, the
same logic would apply to each constructor. When a composite object is created, its data members
are created first. What composite class constructor will be called at the end depends on the number
and types of arguments that the client code supplied for the composite object. If the composite class
has such a constructor, fine; if not, the object instantiation will create a syntax error. If the
constructor that will be called eventually does not have the member initialization list, then the
creation of each data member will be followed by a call to the default constructor for the
component class. If the composite class constructor has the member initialization list, the
corresponding component class constructor is called for each element on the list.

The initializer lists implemented by different constructors can be quite different. Here is another
version of class Rectangle that overloads three constructors: the general constructor I used in
previous examples, a general constructor with four parameters for coordinates of two points, and a
default constructor. Each constructor has its own initialization list. They do not have to be the
same.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (694 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Rectangle {
 Point pt1, pt2; // Top-Left, Bottom-Right;
 int thickness;
public:
 Rectangle (const Point& p1, const Point& p2, int w = 1);
 Rectangle (int x1, int y1, int x2, int y2);
 Rectangle ();
 } ; // the rest of class Rectangle

Rectangle::Rectangle(const Point& p1, const Point& p2,int w)
 thickness(w), pt1(p1), pt2(p2) { }

Rectangle::Rectangle (int x1, int y1, int x2, int y2)
 : pt1(x1,y1), pt2(x2,y2), thickness (1) { }

Rectangle::Rectangle () : pt1(0,0), pt2(100,100), thickness(1)
 { }

The first constructor demonstrates how parameters passed to the composite class constructor can be
used as parameters of the component class constructors. In this example, the Point parameter p1 is
channeled as an argument to the copy constructor to initialize the data member pt1, and the Point
parameter p2 is channeled as an argument to the copy constructor to initialize the data member
pt2. The last constructor parameter is used to initialize the integer data member.

The second constructor demonstrates that the member initialization list is not limited to the use of
parameters supplied by the client code. Here, the client code supplies only the data used to call the
Point general constructor. The value that initializes the data member thickness is defined as a
constant literal. This is perfectly okay.

Notice that similar to default values, using literal values in the member initialization list represents
a form of pushing responsibility down from client to server class. In this version of the design, it is
the programmer of class Rectangle that specifies the thickness of the line to be one. I could
replace the literal value with an additional parameter, such as in this version of this constructor.

Rectangle::Rectangle (int x1, int y1, int x2, int y2, int width)
 : pt1(x1,y1), pt2(x2,y2), thickness (width) { }

In this case, it would become the responsibility of the client code to specify that the thickness of the
line should be one.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (695 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Rectangle r(20,40,70,90,1); // responsibility is pushed up client

The third constructor in the class Rectangle, the default constructor, also demonstrates the use of
constant literals as list arguments. When this constructor is used, each Rectangle object is
initialized so that its top-left corner is at the point of origin of coordinates, and the bottom-right
corner is at the point with coordinates (100,100). The default constructor does not receive any data
from the client code. So, it is only natural that all objects initialized with the default constructor are
initialized to the same state.

Since class Point provides a default constructor (with zero values of coordinates), the Rectangle
initialization list for this constructor could be written this way.

Rectangle::Rectangle () : pt1(), pt2(100,100), thickness(1) { }

What would happen if you were to skip the initialization list entry for data member pt1? You
should recall that the purpose of the member initialization list is to avoid a call to the default
constructor of the component class before the call to the composite class constructor. The member
initialization list replaces the call to the default constructor of the component class with the call to
the constructor specified in the initialization list.

So, in this example of the Rectangle constructor, I am trying to avoid a call to the Point default
constructor for member pt1 and replace it with¡Xa call to default constructor for member pt1! It
follows that the calls to default constructors in the member initialization list could be omitted. This
does not change the sequence of events when the composite class object is constructed. This last
version of the Rectangle constructor could be written this way.

Rectangle::Rectangle () : pt2(100,100), thickness(1) { } // same

The initializer list syntax here is strange. It is like nothing you have seen before. Many
programmers have trouble learning and using this syntax. However, it is an important part of
programming with C++ classes.

TIP

Learn the initializer list syntax. It is extremely useful. It allows you to initialize components of a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (696 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

composite object without wasting constructor calls. It is extremely popular in C++ code. Later you
will see its use for inheritance. You cannot write meaningful C++ programs without using this
syntax. The sooner you learn it, the better off you will be.

You have the option of learning this syntax gradually. The use of initialization lists is optional.
Their first goal is to avoid syntax errors when a component default constructor is not present. Their
next goal is to avoid the negative impact on performance when the component state is reset in the
composite class constructor; that is, their goal is to prevent syntax errors and improve performance.
Syntax errors can be avoided by supplying the component class with the default constructor.
Performance might not be so important after all.

However, use of the initialization list is mandatory for constant and reference data members.

Data Members with Special Properties

You probably never thought about using constant and reference data members before. The issue did
not come up in our previous discussions of software engineering issues. When at the end of the
Chapter 8, "Object-Oriented Programming with Functions," I was enumerating the issues that the
introduction of C++ classes resolved, I talked about binding data and operations together,
introducing class scope for data members and member function names, controlling access to class
members, and pushing responsibilities from clients to servers.

All these are legitimate and internally consistent goals related to the support of object-oriented
programming principles. In Chapter 9-11 I talked about other (read: unexpected) goals of using
classes that also became part of the deal such as automatic initialization of objects, managing heap
memory, and treating objects and built-in variables in the same way. But even then I did not
mention that, in addition to other actions that C++ classes would allow you to do, you would learn
about defining data members as constants or references. It comes as an unexpected bonus for
accepting the whole package.

If you feel that you have had enough bonuses and interesting ideas, you can skip the rest of this
section and the next one and come back when you feel you are ready for more.

Constant Data Members

The idea behind constant data members is simple. A C++ class bundles together related data
members and functions. Functions provide access to data members on behalf of the client code.
Often, the client code needs to change the state of the object (e.g., account balance, employee
address, total number of movie rentals). Some object characteristics, however, are not intended for

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (697 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

change (e.g., account number, employee date of hire, price paid to the vendor for the movie).

The class designer knows that the member functions of the class would not change a specific data
member such as account number and so on. The maintainer has to figure that out from studying
class member functions and friend functions. It would be a good idea to spare that effort and to
indicate explicitly in class code what the designer knows at the time of design: The value of this
data member will not be changed by any member function or friend function. This is yet another
job for the const keyword.

How do you initialize such a constant data member? If you do it in the class constructor, it is
somewhat too late. Recall the story that Figure 12-1 describes. The class constructor is only called
after the object is already constructed. What takes place in the body of the class constructor is an
assignment, not an initialization. For a constant data member, the assignment should not be
allowed. A constant data member has to be initialized immediately after this data member is
created. This is why C++ requires you to include the name of the constant data member in the
initializer list and flags as a syntax error any assignment to this data member, even in a constructor.

A constant data member can be either a programmer-defined type or a built-in type. This does not
really matter for the property I am discussing: initialization immediately after creation of the data
member, before the constructor is called, not later on.

As an example of using a constant data member, let us add to the class Rectangle an additional
data member that describes the weight of the unit of the rectangle area. Since the material the
rectangle is made of remains the same during the rectangle's lifetime, this data member will not be
changed after the Rectangle object is created. To avoid forcing the maintainer to search all class
member functions and friend functions to confirm that, the weight data member should be defined
as constant. Hence, it should be initialized in the member initialization list of Rectangle
constructor(s).

class Rectangle {
 Point pt1;
 Point pt2;
 int thickness;
 const double weight; // weight of one unit of area
public:
 Rectangle (const Point& p1, const Point& p2, double wt, int width = 1);
 void move(int a, int b);
 void setThickness(int w=1);
 int pointIn(const Point& pt) const;
 } ; // the rest of class Rectangle

Rectangle::Rectangle(const Point& p1, const Point& p2, double wt, int width)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (698 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 : pt1(p1), pt2(p2), weight(wt) // weight is not optional here
{ thickness = width; }

Notice that I added the extra parameter not at the end of the parameter list but in the middle of the
constructor parameter list. Remember that rule that default parameter values are allowed for
rightmost parameters only? Had I added the fourth parameter at the end of the parameter list (as in
the following line), I would have violated that rule.

Rectangle(const Point& p1, const Point& p2, int width=1, double wt); //
wrong

The Rectangle client code does not change much.

Point p1(20,40), p2(70,90); // top-left, bottom-right corners
Point point(100,120); // point to catch with the rectangle
Rectangle rec(p1,p2,0.01,4); // supported by the initializer list
rec.setThickness(); // line width is 1 pixel (default)
point.move(-25,-15); // move the point around the screen
rec.move(10,20); // 10 pixels to right, 20 pixels down
if (rec.pointIn(point)) cout << "Point is in\n"; // is point in?
p1.move(30,35); // does the rectangle object change?

Similar to other uses of the const keyword, the use of constant data members is directed toward
making the code self-explanatory. Ideally, you should expect that if a data member does not have
the const keyword, this should mean that this data member is modified during the object's lifetime
by one of the functions associated with the class. It seems to me that few C++ programmers use
constant data members with rigor. Hence, the absence of the const keyword in the data member
definition cannot be taken as evidence that the data member changes. It might just be evidence that
the programmer was busy with other aspects of class design and did not pay attention to passing as
much knowledge to the maintainer as possible.

Reference Data Members

Now let us look at an example of object references used as data members of other objects. This is a
good programming implementation of an association among objects where the several client
objects are associated with the same server object.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (699 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the previous examples in this chapter, each Rectangle object has its own copy of its corner
points. If p1 moves, as on the last line of the previous example, the Rectangle object rec does not
change. For many applications, this is exactly how objects should behave. In Chapter 11, you saw
that this approach is supported by value semantics.

For other applications, it might be desirable to share points among rectangles. So, if the client code
moves the corner point of a rectangle, the rectangle should change. In Chapter 11, you saw that this
approach is supported by reference semantics. Many programs designed with the use of object-
oriented methodology use reference semantics to implement associations among objects. For
example, the account owner data (name, address, social security number, and so on) might be part
of the account class. If the owner class is useful for the application, that data can be combined into
a class, and an owner object can be used as a data member of the account class. If one owner can
have several accounts, the application might want to use only one owner object for these accounts.
Then a change to the owner data will automatically propagate to all accounts.

It is to support this kind of client code functionality that you could use reference data members.
(Notice how persistently I try to promote the idea that the design of server classes is driven by the
needs of the client code, not by the ideas of aesthetics, generality, or performance.) These
references can point to the objects outside of the composite object. These external objects can be
modified by the client code without the knowledge (or consent) of the composite object.

As I mentioned earlier, all references in C++ are constants. They cannot change after they are
initialized. Hence, reference data members (similar to constant data members) must be initialized
only in a member initialization list: No initialization in the body of the constructor is allowed. It is
too late because the constructor is called after all data members have been constructed and their
constructors were called. The new design of class Rectangle is very similar to the previous
version. The only difference is two ampersand signs after the Point type in the data member
definitions.

class Rectangle {
 Point& pt1; // points can be shared with other shapes
 Point& pt2;
 int thickness;
 const int weight; // weight of one unit of area
 public:
 Rectangle (const Point& p1, const Point& p2,
 int wid = 1, int wt = 1);
 void move(int a, int b);
 void setThickness(int w=1);
 int pointIn(const Point &pt) const;
 } ; // the rest of Rectangle class

Rectangle::Rectangle(const Point& p1, const Point& p2, int width, int wt)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (700 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 : pt1(p1), pt2(p2), weight(wt) // this is not optional here
{ thickness = width; } // same constructor as above

Since all references are const, there is no special notation for this property. In class Rectangle,
pt1 and pt2 are constant references. They cannot abandon the objects they are pointing to and
point to other objects instead. But the objects themselves are not constant. Their contents can
change.

Similar to objects pointed to by pointers, the objects pointed to by references can be defined as
constant as well. This means that not only do pt1 and pt2 point to the same Point objects and
cannot be switched to other Point objects, but the state of these objects cannot be changed either.

class Rectangle {
 const Point& pt1; // points can be shared with other shapes
 const Point& pt2; // points cannot change their coordinates
 } ; // the rest of Rectangle class

From a syntactic point of view, the requirements are the same¡Xthese data members have to be
initialized in the member initialization list. From a semantic point of view, this design does not
make much sense. If the corner points are constant, there are no advantages in sharing them with
other Rectangle objects. They can be made constant members.

class Rectangle {
 const Point pt1; // points are not shared with other shapes
 const Point pt2; // points cannot change their coordinates
 } ; // the rest of Rectangle class

A reference to a constant object can be used as an optimization technique. If a large number of
composite objects should have the same component object, it might make sense to create only one
component object and set up references to this object from all composite objects.

The process of building the object of class Rectangle is presented in Figure 12-5. The objects of
the type Point are created first [Figure 12-5(a)]. Next, the object of class Rectangle is created
[Figure 12-5(b)]: The references pt1 and pt2 are created. They are of different types here than in
previous examples, and I am using different sizes of shapes to reflect the differences in types. The
initialization list is executed and sets the references to point to Point objects, the constant field

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (701 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

weight is created and initialized, and then the thickness file is created. Finally, the Rectangle
constructor is executed [Figure 12-5(c)] and the value of the thickness field is assigned.

Figure 12-5. Steps for creating a Rectangle object with references to external Point
objects.

In this design, the references within class Rectangle are constants, but the Point objects these
references are pointing to are not constants. This is why these Point objects can change their state,
and all Rectangle objects associated with these Point objects will change their position on the
screen. Using references, however, does not allow a Rectangle object to abandon one Point
object associated with it and use another Point object instead. This can be accomplished if the
Rectangle class uses Point pointers instead of references.

 class Rectangle {
 Point *pt1, *pt2; // points can be shared with other shapes
 int thickness;
 const int weight; // weight of one unit of area
 public:
 Rectangle (const Point*, const Point*, int = 1, int = 1);
 void move(int a, int b);
 void setThickness(int w=1);
 int pointIn(const Point &pt) const;
 } ; // the rest of Rectangle class

Rectangle::Rectangle(const Point *p1, const Point *p2,
 int width, int wt) : pt1(p1), pt2(p2), weight(wt) // optional again
 { thickness = width; } // same constructor as above

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (702 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Since pointers can be changed at any point in their lifetime, using the member initialization list here
is not mandatory. Still, it is a good practice.

If the objects pointed to by the pointers should remain constant throughout the Rectangle object's
lifetime, the pointers can be declared as pointers to constant objects.

class Rectangle {
 const Point *pt1; // points can be shared with other shapes
 const Point *pt2; // point coordinates cannot change
 } ; // the rest of Rectangle class

This design can provide useful optimization if a large number of Rectangle objects is associated
with the same Point objects.

Do not use constant and reference data members too much. However, they are legitimate design
tools wherever they reflect the properties of server objects and the needs of client code.

Using Objects as Data Members of Their Own Class

In the previous sections, I discussed the situation where an object of one class (e.g., Point) was
used as a data member of another class (e.g., Rectangle). Can an object of a class be a member of
its own class? For example, the application might need point coordinates that are relative to several
focal points on the screen. For each point, the application might want to specify the anchor point as
a characteristic of the Point object.

class Point {
 int x, y; // private coordinates
 Point anchor; // this is not allowed
 public:
 Point (int a=0, int b=0) // versatile constructor
 { x = a; y = b; }
. . . } ; // the rest of class Point

This is not allowed, however. Remember that story I told you at the beginning of this chapter about
the sequence of events when object memory is allocated? Data members are allocated in the order
of their definitions in the class specification. (Static members are allocated at the beginning of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (703 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

program execution.) So, when a Point object is created, memory for x and y is allocated first, and
then memory for anchor is allocated. But anchor is of type Point, so memory for x and y of the
anchor data member is allocated first, memory is allocated for its anchor next, and so on. This
recursive process cannot end and hence is disallowed.

References to objects of the object's own class are allowed; so are pointers to objects of the same
class. Both pointers and references represent an object address and do not require memory to be
allocated for the whole object. Hence, memory for them can be allocated among other data
members without additional difficulties.

class Point {
 int x, y; // private coordinates
 Point &anchor; // this is reasonable
public:
 Point (int a=0, int b=0, Point &focus)
 : anchor (focus) // cannot be set in constructor
 { x = a; y = b; }
. . . } ; // the rest of class Point

As I indicated in the previous section, a reference data member cannot be initialized in the body of
the class constructor. This is why I initialize it in the initializer list using a Point object that is
passed to the constructor as the argument. The constructor parameter should not have the const
modifier because the anchor data member is not defined as constant. Using the anchor reference,
the Point object can modify the object passed to it as an argument. This is why defining the
parameter as constant would be a syntax error.

Notice that here again I am making a popular error by adding a new parameter to the constructor as
the rightmost parameter. This parameter does not have a default value and hence should be moved
to the left of those parameters with default values.

class Point {
 int x, y; // private coordinates
 Point &anchor; // this is reasonable
 public:
 Point (Point &focus, int a=0, int b=0) // better order
 : anchor (focus) // cannot be set in constructor
 { x = a; y = b; }
. . . } ; // the rest of class Point

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (704 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The client code creates the anchor point first and then passes it as an argument to the constructor of
new points. The first point has to be its own anchor.

Point p1(p1); // syntax error: p1 is not defined as an argument

This is a syntax error. When I use p1 as an argument to the constructor, this object is still in the
process of construction, and therefore the reference to it is not yet defined. This is why I allocate
the anchor point dynamically.

Point *p = new Point(*p,80,90); // p has no value yet
Point p1(*p); // *p is used as the anchor

Here I have the same problem¡Xwhen I use p as an argument to the constructor, it does not have the
value yet. However, this is not an error, just a warning. I can easily avoid this warning by
initializing the pointer to null before using it.

Point *p = 0; // to avoid warning that pointer p has no value
p = new Point(*p,80,90); // dynamically allocated Point object
Point p1(*p); // it is used as the anchor

As you see, using a reference data member to an object of the same class sounds like a neat idea,
but it creates a number of difficulties because this data structure is inherently recursive. Do not use
it unless you absolutely have to.

Using a Static Data Member as a Member of Its Own Class

Using a static data member as a data member of its own class is allowed and is much simpler than
using a reference data member. For example, class Point objects can have a point of origin
common to all points on the plane. Because this point of origin is common to all points in the
picture, it can be represented as a static data member.

Because this point of origin is common to all points in the picture, it can be represented as a static
data member.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (705 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Point {
 int x, y; // private coordinates
 static int count;
 static Point origin; // static object is ok
 public:
 Point (int a, int b)
 { x = a; y = b; count++; } . . . } ;

Syntax for static object initialization is the same as that for static members of built-in types. (See
Chapter 9 for more discussion of static data members.) The following line of code gives an
example of the static object definition and initialization. The first Point in this definition represents
the type of data member being defined (in this case, origin). The second Point in this definition
indicates that the data member being defined belongs to class Point. When the object is created, a
constructor is called to initialize its fields. The arguments specified in this definition are passed on
as constructor arguments. The number and type of arguments defined what constructor is called. In
this case, it is the general Point constructor with two parameters.

Point Point::origin(640,0); // initialization using constructor

This is similar to the definition of a static data member of a built-in type, for example, count. The
type of this static field is integer, and the class scope operator indicates that it belongs to class
Point. The initial value of this field is set to zero.

int Point::count = 0;

Similar to all other static objects, it is not exactly clear when the object is created and the
constructor is called. If there are several static variables in the program, the order of their
construction is undefined. Putting them in order in the source code file does not guarantee that they
will be created and initialized in this order. What is guaranteed is only that all of them will be
constructed before the first statement in main() is executed.

In the case of the Point class, this guarantee is not sufficient. The Point constructor is called not
only for nonstatic Point objects but also for the static object origin that is created first. The Point
constructor increments the value of count. This requires that the static data member count be
created before the object origin is created.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (706 of 1187) [8/17/2002 2:58:00 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The static nature of a static data member allows it to be used as default argument to a member
function of its class, for example, a constructor. A nonstatic data member cannot be used as a
default argument to a member function of its own class.

class Point {
 int x,y;
 static int count;
 static Point origin; // static object is ok
 Point &anchor; // reference or pointer is ok
public:
 Point (Point &focus = origin, int a=0, int b=0) : anchor(focus)
 { x = a; y = b; count++; }
 void set (int a=x, int b) // error: non-static data member
 { x = a; y = b; }
 } ; // the rest of class Point

Static data members are created before the program starts execution, and access to the static
members is possible even if no class objects have been created.

After Point objects are created, the count and origin data members can be accessed using any
object¡Xthe result is the same because these data members are static. Unlike nonstatic data
members, they can be accessed using the class name instead of the target object name.

int main()
{ Point p1, p2(70,90);
 cout << "Number of points: " << p1.count << endl; // prints 2
 cout << "Number of points: " << p2.count << endl; // prints 2
 . . . }

Unlike nonstatic data members, they can be accessed using the class name with the scope operator
instead of the target object name with the selector operator.

int main()
{ Point p1, p2(70,90);
 cout << "Number of points: " << Point::count << endl; // it also
prints 2!
 . . . }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (707 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Moreover, this syntax is available when no class objects have been created.

int main()
{ cout << "Number of points " << Point::count << endl; // it prints zero
 . . . }

Listing 12.3 shows class Point with two static data members, count and origin. They are
initialized outside the class definition even though they are private. Function quantity() is
defined as static and can be accessed using the class scope operator (the first call) and a target
object (the second call).

Example 12.3. Using static data members and a static member function.
#include <iostream>
using namespace std;

class Point {
 int x, y; // private coordinates
 static int count;
 static Point origin;
 public:
 Point (int a=0, int b=0) // general constructor
 { x = a; y = b; count++;
 cout << " Created: x=" << x << " y=" << y
 << " count=" << count << endl; }
 static int quantity() // const is not allowed
 { return count; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 ~Point() // destructor
 { count-;
 cout <<" Point destroyed: x=" <<x <<" y=" <<y << endl; }
 } ;

int Point::count = 0; // initialization
Point Point::origin(640,0); // initialization

int main()
{ cout << " Number of points: " << Point::quantity() << endl;
 Point p1, p2(30), p3(50,70); // point of origin, point objects
 cout << " Number of points: " << p1.quantity() << endl;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (708 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return 0;
 }

The results of the program run are shown on Figure 12-6. You see that the variable count is not
zero even though no Point object instances have been created explicitly. It is the static object
origin that gets counted. This object is created before the first statement in main() is executed.
When its constructor is called, the debugging message about its creation is printed on the top of the
output. This static data member is destroyed after the program terminates. This is why you do not
see the debugging message that reports its destruction.

Figure 12-6. Output for program in Listing 12.3.

When I swapped the definitions of variables count and origin, the output of the program did not
change.

Point Point::origin(640,0);
int Point::count = 0;

This means that the compiler was able to trace dependency between these variables and made sure
that the variable count was available by the time the Point constructor was executing for the static
object origin.

This section talked about rather complex programming techniques. Make sure that you do not use
them just because you like a challenge. Have mercy on the maintenance programmer who has to
work with your code for years to come.

Container Classes

The previous section discussed a number of special cases for composite class data members that
you are not likely to use every day. This section discusses a number of special cases for composite
class data members that you are going to use very often. Even if you will not be writing similar
classes yourself, you are going to use container classes written by others. Container classes are a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (709 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

special case of composite classes, which are useful when the application needs a data type that
contains a dynamic collection of values. Almost any application needs one (or more).

Even the first examples of class composition that I discussed in this chapter (e.g., class Rectangle)
contained a collection of components, in this case, objects of type Point. However, this collection
was not dynamic. The number of Point objects associated with the Rectangle object was always
the same: two. Actually, if two Point objects were not available in the client code, it was
impossible to create a Rectangle object.

Often the application needs a container or a collection class that can contain a variable number of
objects. Usually, a container object is initially empty and has no components. While the application
is executing, the component objects become available and are added to the container for temporary
storage or for processing.

For example, the container might be the customer charge account, and the components might be
customer credit card transactions that should be processed. The processing might include
computing totals, taxes, printing reports, and other tasks that include accessing every component in
the container in turn. Other popular tasks are testing whether a component with given data is
already in the container, removing a component from the container, and making the container
available for reuse.

Most of these tasks can be accomplished using a C++ array for data representation. This is a very
simple and efficient data type, but it provides too few safeguards for the client code. It does not
check the validity of index values. It lacks high-level operations such as appending a component,
searching for a component and others. These operations have to be coded by the client code using
low-level elementary operations such as assigning a value to the array component, setting the index
to the next component, and checking whether the next component is a valid component.

Container classes are designed to perform these operations on behalf of the client code. The client
code requests the container to add a component, find a component, and access each component in
the collection; and the container object performs these operations, insulating the client code from
the low-level details. As a result, responsibility is pushed down from the client code to the server
code (container class).

In this section, I will give several examples of simple containers and show how they can be used by
the client code.

For simplicity in the examples, I will use components of class Sample with only one data member,
value of type double. The Sample objects are produced by some external process: stock exchange
ticker tape, patient monitoring device, temperature or pressure observations, and so on. In the
examples that follow, I will be pulling the values out of the array with pre-wired values.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (710 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Sample { // component class
 double value; // no pointers among data members
public:
 Sample (double x = 0) // default/conversion constructors
 { value = x; }
 void set (double x) // modifier
 { value = x; }
 double show () const // selector
 { return value; } } ;

When a class is used as a component in a container, it has to satisfy design requirements that will
support the needs of the container object. The most common requirements are the ability to support

ϒΠ default instantiation

ϒΠ assignability

The requirement of default instantiation refers to the ability of an object of the component type to
be created without any input data from client code. The container class might use a fixed-size array
for data representation of the components.

Sample data[100]; // container's data member

Another popular design for a container class is the use of a dynamically allocated array of
components.

Sample *data; // container's data member
data = new Sample[100]; // code in container constructor

In either case, the component objects are allocated first and filled with data later. To support this
requirement, the component class should implement the default constructor. Otherwise, defining an
array of component objects results in a syntax error (or a hundred syntax errors).

Consequently, an attempt to create a composite object when the component class does not provide
the default constructor results in a syntax error. The syntax error can be eliminated if the member
initialization list is used in the container constructor. However, this technique works only when the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (711 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

number of components in the container is known in advance and is not very large. The inherent
limitation of the member initialization list is that each component member of the composite class
has to be listed in the initialization list, and the component name has to be explicitly mentioned.

Similar to previous examples, the Sample class can satisfy this requirement by providing the
conversion constructor with the default value of its single parameter.

The requirement of assignability refers to the ability of an object of the component type to be
assigned a new state by the client code. Since the components of the container are allocated first
and filled with data later, they should support the change in the state of the component. One
popular way to support this requirement is to support the assignment operator for the component
class.

data[i] = s; // code in a container method

This works for simple classes like Sample because it does not have dynamic memory, but might
require an overloaded assignment operator if the component class contains pointers and manages
heap memory dynamically.

Another technique for supporting assignability is to provide the component class with a modifier
function, which would change the state of the component object.

data[i].set(s); // code in a container method

Class Sample supports this requirement by providing the method set() and by allowing direct
assignment without an overloaded assignment operator.

Often, the component class is expected to satisfy two more requirements, that of supporting

ϒΠ copy instantiation

ϒΠ total order semantics

Copy instantiation refers to the ability of the component object to be instantiated from another
component object. This is supported by providing the component class with the copy constructor.
This becomes necessary if the container class has to return a copy of one of its component objects
to the client's code. Often, the client's needs might be satisfied with a reference to the component

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (712 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

objects rather than with the full-fledged copy. This is why I think that the need for use of the copy
constructor in containers is often exaggerated. Copy instantiation rarely occurs in container
algorithms. Supporting it will invariably encourage passing object parameters by value or returning
the object values from functions with all their negative consequences. I am not advocating just not
providing the copy constructor and hoping for the best. This is asking for trouble, especially if the
class handles heap memory dynamically. If passing objects by value or returning object values
should not be allowed, I recommend the techniques of using private constructors that I described at
the end of Chapter 11.

TIP

Do not be in a rush to provide each class with a copy constructor. Copy constructors make your
programs slower and more complex. They encourage your clients to use passing parameters by
value and returning objects by value. Instead, consider making the copy constructor private. This
might eliminate a lot of trouble in the future.

Total order semantics refers to the ability of the client code to compare the component objects
between themselves and also with values of built-in types. This is supported by providing the
component class with overloaded comparison operators. This is a very useful capability, especially
when the client code needs to implement sorting or searching algorithms. I will not implement it in
the examples only because I want to limit the size of these examples to keep them understandable
and manageable.

In the examples that follow, I will keep the objects of class Sample in the container object of class
History. Class History keeps the Sample object in a short array (just eight components for
simplicity of the example). It allows the client code to set the Sample value at a given location in
the array, to print out the set of measurements, and to compute the average of measurement values.

Listing 12.4 shows the first version of the container class. The output of the program is shown in
Figure 12-7.

Figure 12-7. Output for program in Listing 12.4.

Example 12.4. A container class with fixed size component array (and array overflow).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (713 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <iostream>
using namespace std;

class Sample { // component class
 double value; // sample value
public:
 Sample (double x = 0) // default and conversion
constructor

 { value = x; }
 void set (double x) // modifier method
 { value = x; }
 double get () const // selector method
 { return value; } } ;

 class History { // container class
 enum { size = 8 };
 Sample data[size]; // fixed-size array of
samples
public:
 void set(double, int); // modify a sample
 void print () const; // print history
 void average () const; // print average
 } ;

void History::set(double s, int i)
{ data[i].set(s); } // or just: data[i] = s;

void History::print () const // print history
{ cout << "\n Measurement history:" << endl << endl;

 for (int i = 0; i < size; i++) // local index
 cout << " " << data[i].get(); }

void History::average () const
{ cout << "\n Average value: "; // print average
 double sum = 0; // local value
 for (int i = 0; i < size; i++) // local index
 sum += data[i].get();
 cout << sum/size << endl; }

int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // input data
 History h; // default constructor
 for (int i=0; i < 9; i++) // 8 slots are available
 h.set(a[i],i); // set history
 h.print(); // print history
 h.average(); // compute average
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (714 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice how the design of the container class History implements the algorithms that require access
to memory. This means that the code saves some values in memory for future use by another
segment of code. Depending on how far these cooperating segments of code are located from each
other, the designer winds up with different degrees of coupling between these segments of code
(see Chapter 8 for the discussion of coupling and other related software engineering concepts).

In general, the class designer has the following choices for making a value or a variable available to
a class method for storing or for retrieving the value:

ϒΠ global variable or public data member

ϒΠ method parameter

ϒΠ class data member

ϒΠ local variable in the method

A global variable could be used when several classes have to share the information but the designer
has difficulties deciding to which class this information really belongs. This method of
communication between classes represents the highest degree of coupling and should be used as
little as possible. A public data member could be used when the designer selects a particular class
to house the information, but several other classes also need this information and it is made
available to them in the form of a public data member. This degree of coupling is as high as
coupling through a global variable is and should be used as infrequently.

When several program classes communicate through global variables or public data members, it
should always be viewed as a reason for a design review. The designers should check the
distribution of responsibilities among classes. Communications through global variables or public
data members should raise suspicions that the design tears apart processing steps that could be put
back together so that the need for such "long-distance" communications disappears.

In further discussion, I will concentrate on three other techniques of communications because it is
the choice between these three forms of coupling that C++ programmers deal with every day.

Communications through method parameters should be used if the value or the variable must be
shared between the class and its client. For example, parameters of the method History::set()
are shared between the client code main() and the History class member function set().

This is the highest form of coupling over data when two different classes share the same value.
Consistent treatment of this value in two different classes requires the cooperation of the people
who design these classes. If both classes are designed by the same person, they may be designed at

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (715 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

different times, and this requires the designer to remember a larger number of concerns and
limitations.

Wherever possible, this form of coupling should be reduced by merging the uses of the value and
the variable within only one class thus eliminating the need to communicate between classes. This
is not always possible because the object-oriented program is built as a set of cooperating classes,
not totally independent classes. Hence, some communications among program classes are
legitimate and helpful. However, the C++ programmer should always think about the extent of
communications among classes and be on the lookout for an opportunity to eliminate excessive
coupling.

Communications through class data members should be used when the variable must be shared
between different methods that belong to the same class. For example, class Sample provides each
object of the class with memory storage for the data member value. At this point of learning C++,
this design decision might already look trivial to you, but keep in mind that this design supports
communications between two Sample methods, set() and get(). Whatever value the sample
function set() sets (e.g., in the call from set() in class History) is preserved over time. When
the client code of class Sample calls the function get() later (e.g., in the methods print() or
average() in class History), the function get() gets exactly the same value that was stored in
this particular Sample object by its method set().

Similarly, the data member data[] in class History is used for communications among History
member functions. Whatever value the History function set() sets, the functions print() and
average() retrieve from the same location. This would be possible to achieve by other means. For
example, array data[] could be made a local variable in main() or a global variable in the file and
passed to History methods as a parameter.

Look, for example, at this version of class History: It does everything that the version in Listing
12.4 does, but it does not keep the array of Sample objects as its data member. Instead, class
History receives the data it operates on from its client main().

class History {
 enum { size = 8 }; // size of the data set
public:
 void set(Sample[], double, int) const; // modify a sample
 void print (const Sample[]) const; // print history
 void average (const Sample[]) const; // print average
 } ;

void History::set(Sample data[], double s, int i) const
{ data[i].set(s); } // or just: data[i]=s;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (716 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void History::print (const Sample data[]) const // print history
{ cout << "\n Measurement history:" << endl << endl;
 for (int i = 0; i < size; i++) // local index
 cout << " " << data[i].get(); } // parameter data

void History::average (const Sample data[]) const
{ cout << "\n Average value: "; // print average
 double sum = 0; // local value
 for (int i = 0; i < size; i++) // local index
 sum += data[i].get(); // data from parameter
 cout << sum/size << endl; }

However bad, this design is syntactically correct and semantically sound. Its drawback is extensive
communications between the class History and its client. The client has to maintain information
that in Listing 12.4 was maintained by the class History.

int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // 9 values
 Sample data[9]; // whom should this data belong to?
 History h; // default constructor
 for (int i=0; i < 9; i++) // 8 slots are used
 h.set(data,a[i],i); // set history
 h.print(data); // print history
 h.average(data); // compute average
 return 0; }

It is small errors of this type that tend to accumulate and ruin the quality of C++ programs, turning
them into a maze of dependencies between different program components. Make sure you always
think about communications among classes when you look at your design.

The last mode of communication in your C++ program, through local variables in a class method,
is most benign. It should be used when the member function needs to save a value for future use
during the same function call. For example, function average() in Listing 12.4 uses the local
variables sum and i to keep track of the array components processed so far and the tally of values
accumulated at the particular moment of execution, used as the starting point for further
accumulation of the tally for the array components.

Similar to the previous example, this design could have been implemented differently. Consider,
for example, the following version of class History that provides specialized data members to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (717 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

keep track of the array components and the tally.

class History { // container class
 enum { size = 8 };
 Sample data[size]; // fixed-size array of samples
 int i; // index for method average()
 double sum; // tally for method average()
public:
 void set(double, int); // modify a sample
 void print () const; // print history
 void average () const; // print average
 } ;

void History::set(double s, int i)
{ data[i].set(s); } // or just: data[i] = s;

void History::print () // it modifies i
{ cout << "\n Measurement history:" << endl << endl;
 for (i = 0; i < size; i++) // global, not local index
 cout << " " << data[i].get(); }

void History::average () // it modifies sum
{ cout << "\n Average value: "; // print average
 sum = 0; // global value
 for (i = 0; i < size; i++) // global index
 sum += data[i].get();
 cout << sum/size << endl; }

In this version of design, the method average() accesses global variables (data members) sum and
i instead of dealing with automatic variables allocated for the duration of the method execution.
This, of course, has some performance implications. Since the space does not have to be allocated
each time the function average() is called, this version is somewhat faster. On the other hand, this
space is allocated to each History object for the duration of its lifetime and not only for the
duration of the function call to average(). This version of average() is easier to write¡Xgrab
available variables without going to the trouble of defining them. They can also be reused in other
functions; for example, the index can be used in the function print().

The major implication is for the quality of design. This is not as bad as using global variables for
communicating with other functions. The function average() uses the global variables (data
members) sum and i to communicate with itself (with the next iteration through the loop), not with
other functions. Still, this design is a symptom of lower quality and is to be avoided. An example of
complications that might arise is the desire to reuse the global data members for other purposes

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (718 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

(similar to the way I reused the index in function print() to avoid extra declarations), and this
reuse might lead to conflicts. The software engineering mentality that C++ supports is, "Let each
function define its separate local variables and use these variables how it sees fit without risk of
conflict."

Make sure that you always use the lowest degree of coupling possible. If the job can be done using
local variables within one member function, do not elevate these local variables to the level of class
data members. If several member functions of the same class need access to the same data,
implement this data as class data members, and do not pass them as parameters from the class
clients. If the member function needs data defined in another class, pass it as a parameter and not as
a global variable or another class public data member.

TIP

For communications between different segments of C++ code, use the lowest degree of coupling:
through local variables in a method. If this is not sufficient to support data flow, use class data
members. Only if this is insufficient, pass information as method parameters. In all cases, avoid the
use of global variables.

Let us apply these software engineering principles to the class design in Listing 12.4. Class
History is a very simple-minded container class. It does not offer any protection to the client code
from overflowing the container or from referring to a nonexistent entry in the array. In this version
of the container, there are only eight slots for the Sample objects to be stored in. Despite this
limitation, the client code in main() puts nine values into the container. The compiler, of course,
could not care less. The operating system ran the code with no visible damage even though the
program was incorrect (see Figure 12-7). This is a common problem for applications that use
containers. The distribution of responsibilities between the client code and the container class code
might vary, but protection from container overflow must be implemented, and this should be the
responsibility of the container class, not of the client code.

When a new Sample value is inserted into the container, the client code in Listing 12.4 specifies
both the value to insert and the index value to be used for insertion. However, this approach goes
against the software engineering principle of pushing responsibilities to the server class, in this
case, the History container. For this simple algorithm this probably does not matter (all input
values arrive at once, with no interfering operations over the container object), but the client code
has other important responsibilities and should not have to watch how much free space the
container has. Monitoring the container state should be the responsibility of the container object
itself.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (719 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

From the point of view of the class communication guidelines discussed earlier, this means that the
coupling of the interface between the client code and History::set() is too high. The client code
is forced to pass information about the index as an extra parameter. The next lower degree of
coupling, according to the class communications guidelines, is through class data members. To
improve the design, I have to keep the information about the index of the next affected Sample
object in class History, not in its client. Tearing apart what must belong together results in extra
communications among programmers and in extra coupling among functions.

Listing 12.5 shows a better container design. The method History::set() with two parameters is
replaced with the method History::add() with only one parameter¡Xthe value to be inserted at
the end of the container. The container has one extra data member, index idx, which monitors the
memory usage by the container. The client code does not know whether the container is full; it just
passes the value to be added to the method add().

Since the client code now does not control the use of container memory, it is the container class
which is responsible for keeping track of used and available memory and for control of overflow.
Accordingly, the container knows about its memory structure and limitations. In the version of
Listing 12.4, where the client code decided where the next value should go, there was no need to
initialize the container object. In this version, where the container decides where the next value
should go, the container has to be initialized to the empty space to ensure that the first value to
arrive will go into the first slot. Accordingly, the class History here has a default constructor. In
this constructor, the History class sets the index idx to zero. In method add(), the container class
checks whether the array is full; if there is free space, add() uses yet another free slot and
increments the index idx to point to the next free slot. If there is no free slot available for the
coming data, the method add() does nothing and ignores the client request.

Of course, it would be nice to tell the client code whether the attempt to add a Sample to History
succeeded. This would allow the client code to initiate some recovery measures or notify the user
of the program. But doing so would be a waste of programmer energy. I avoid that, not because I
think that the feedback to the caller is not important, but because I think that memory overflow
should not be tolerated at all. All fixed-size arrays should be used for rapid prototyping only. After
the algorithm is debugged, these arrays should be replaced by dynamic arrays similar to the way it
was done in Chapter 6, "Memory Management: The Stack and the Heap," (unless, of course, it is a
real-time system, but that is a different story).

The output of the program in Listing 12.5 is the same as the output of the program in Listing 12.4.

Example 12.5. A container class with fixed size of component array and overflow control.
#include <iostream>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (720 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Sample { // component class
 double value; // sample value
public:
 Sample (double x = 0) // default and conversion constructor
 { value = x; }
 void set (double x) // modifier method
 { value = x; }
 double get () const // selector method
 { return value; } } ;

class History { // container class: set value
 enum { size = 8 };
 Sample data[size]; // fixed-size array of samples
 int idx; // index of current sample
public:
 History() : idx(0) { } // make array empty initially
 void add(double); // add a sample at the end
 void print () const; // print history
 void average () const; // print average
 } ;

void History::add(double s)
{ if (idx < size)
 data[idx++].set(s); } // or just: data[idx++] = s;

void History::print () const
{ cout << "\n Measurement history:" << endl << endl;
 for (int i = 0; i < size; i++) // local index
 cout << " " << data[i].get(); }

void History::average () const
{ cout << "\n Average value: ";
 double sum = 0; // local tally
 for (int i = 0; i < size; i++) // local index
 sum += data[i].get();
 cout << sum/size << endl; }
int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // input data
 History h; // default constructor
 for (int i=0; i < 9; i++) // it is protected from overflow
 h.add(a[i]); // add history
 h.print(); // print history
 h.average(); // print average
 return 0;
 }

Notice the principle of minimum visibility: The container class History exhibits as little of its

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (721 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

internal structure and memory limitations to its client code as possible.

One important limitation of container classes in Listing 12.4 and 12.5 is that they have to be filled
to capacity before the client is allowed meaningful access to components in the container.
Container methods print() and average() iterate over the container array until the end of the
array. Another important limitation is that from the point of view of the client code, all operations
over components are performed as a single operation. Often, the client code needs to access
components individually, performing or skipping operations as appropriate for each component.

The first drawback can be eliminated by adding yet another data member, count, to the container
class.

class History { // container class: set value
 enum { size = 8 };
 Sample data[size]; // fixed-size array of samples
 int count; // number of valid elements
 int idx; // index of the current sample
public:
 History() : count(0), idx(0) { } // make array empty
 void add(double); // add a sample at the end
 . . . } ; // rest of History class

This data member count is set to zero in the constructor (in the member initialization list). It should
be updated each time a new component is added to the container.

void History::add(double s)
{ if (count < size // check for available space
 data[count++].set(s); } // use next space, update count

Even if the container is not full, the container member functions can use count to process the
correct number of components. Here, function average() uses it to limit the number of
components used in the computation.

void History::average () const
{ cout << "\n Average value: ";
 double sum = 0;
 for (int i = 0; i < count; i++)
 sum += data[i].get();

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (722 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << sum/count << endl; }

The second drawback can be eliminated by providing the iterator methods, methods that allow the
client code to visit each component in the container doing whatever job has to be done. Iterator
methods come in a large variety of forms.

For iterations over components, I will use the existing data member idx, setting it to zero at the
beginning of the iteration and incrementing it by one at each step of iteration. For the client code to
start the iteration, I will add to the container class the method getFirst():

void getFirst()
 { idx = 0; } // set to start of data set

For the client code to go to the next step of the iteration, I will add to the container class the method
getNext():

void getNext()
 { ++idx; } // move to next element in set

For the client code to access the current component in the container, I will add the method
getComponent():

Sample& getComponent()
 { return data[idx]; } // get the reference, not value

Notice that here I do not return the current object; I return the reference to the current object. This
is why I need not worry whether the component class has a copy constructor, and if the component
class has the copy constructor, I need not worry whether the copying of the component will take too
much time. I just circumvent the whole issue.

To stop the iterations, I have to provide a method that returns true while the iterations can be
continued and false when there are no more elements in the container to iterate.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (723 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

bool atEnd()
 { return idx < count; } // true if there are more elements

Then the iteration loop in the client code would look this way.

for (h.getFirst(); h.atEnd(); h.getNext()) // go until end
 cout << " " << h.getComponent().get(); // print components

Often, container designers merge functions getNext() and atEnd() into one function that
increments the index and returns true if there are more elements to iterate.

 bool getNext()
 { return ++idx < count; } // move to next element in set

Listing 12.6 shows the version of the container class with iterator methods. I eliminated the
container method print() and made the client code responsible for driving the iteration and
accessing the state of the component elements. As a result, some of responsibilities were pulled
from the container class to the client code. This is not nice, but it is a natural consequence of adding
iterator capabilities to the container class.

The output of the program in Listing 12.6 is the same as the output of the program in Listing 12.4
and 12.5.

Example 12.6. A container class with fixed size of component array and an iterator.
#include <iostream>
using namespace std;

class Sample { // component class
 double value; // sample value
public:
 Sample (double x = 0) // default and conversion
constructor
 { value = x; }
 void set (double x) // modifier method
 { value = x; }
 double get () const // selector method
 { return value; } } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (724 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 class History { // container class: set
value
 enum { size = 8 };
 Sample data[size]; // fixed-size array of
samples
 int count; // number of valid elements
 int idx; // index of the current
sample
public:
 History() : count(0), idx(0) { } // make array empty
 void add(double); // add a sample at the end
 Sample& getComponent() // return reference to
Sample
 { return data[idx]; } // can be a message target
 void getFirst()
 { idx = 0; } // set to start of data set
 bool getNext()
 { return ++idx < count; } // move to next element in
set
 void average () const; // print average
} ;

void History::add(double s)
{ if (count < size)
 data[count++].set(s); } // or just: data[i++] = s;

void History::average () const
{ cout << "\n Average value: ";
 double sum = 0;
 for (int i = 0; i < count; i++)
 sum += data[i].get();
 cout << sum/count << endl; }

int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // input data
 History h; // default constructor
 for (int i=0; i < 9; i++)
 h.add(a[i]); // add history
 cout << "\n Measurement history:" << endl << endl;
 h.getFirst(); // work is pushed up
 do {
 cout << " " << h.getComponent().get(); // print components
 } while (h.getNext());
 h.average();
 return 0;
 }

Some C++ programmers prefer to bind the iterator methods into a separate iterator class and link

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (725 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

this iterator class with the container class. I will spare you this increase in design complexity.
Instead, I will eliminate the most important limitation of this container design: the limitation on the
number of components that the container can contain. In the previous versions of the container, its
capacity was fixed at the time the container was created. If the client tried to put into the container
more elements than the container could contain, too bad; there was not much that the container
class could do.

Actually, this is not too difficult. All that the container class should do is to allocate new space,
copy existing data into the new space, get rid of the existing space, and use the new space until it is
exhausted. A good strategy for allocating new space would be to double the size of the array.

void History::add(double s)
{ if (count == size)
 { size = size * 2; // double size if out of
space
 Sample *p = new Sample[size];
 if (p == NULL)
 { cout << " Out of memory\n"; exit(1); } // test for success
 for (int i=0; i < count; i++)
 p[i] = data[i]; // copy existing elements
 delete [] data; // delete existing array
 data = p; // replace it with new
array
 cout << " new size: " << size << endl; } // debugging
 data[count++].set(s); } // use next space
available

For this algorithm to work, the data member data should be a pointer to the dynamically allocated
array of Sample objects. This requires changes to the constructor.

class History { // container class: set value
 int size, count, idx;
 Sample *data; // dynamic memory
 public:
 History() : size(3), count(0), idx(0) // make array empty
 { data = new Sample[size]; // allocate new space
 if (data == NULL)
 { cout << " Out of memory\n"; exit(1); } }
 . . .} ; // the rest of class History

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (726 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 12.7 shows this version of the container. For simplicity of the example, I set the initial size
of the container to a very small value (three components only) to demonstrate how the algorithm
works. The output of the program run is shown in Figure 12-8. At the top of the screen shot, you
see the debugging messages that report the increase of the size from 3 to 6 (when the fourth value is
inserted in the container) and then from 6 to 12 (when the seventh value is inserted in the container.

Figure 12-8. Output for program in Listing 12.7.

Example 12.7. A container class with dynamically allocated memory.
#include <iostream>
using namespace std;

#include <iostream> // dynamic container of
variable size
using namespace std;

class Sample { // component class
 double value; // sample value
public:
 Sample (double x = 0) // default and conversion
constructor
 { value = x; }
 void set (double x) // modifier method
 { value = x; }
 double get () const // selector method
 { return value; } } ;

 class History { // container class: set value
 int size, count, idx;
 Sample *data;
 public:
 History() : size(3), count(0), idx(0) // make array empty
 { data = new Sample[size]; // allocate new space
 if (data == NULL)
 { cout << " Out of memory\n"; exit(1); } }
 void add(double); // add a sample at the end
 Sample& getComponent() // return reference to Sample
 { return data[idx]; } // can be a message target
 void getFirst()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (727 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { idx = 0; }
 bool getNext()
 { return ++idx < count; }
 void average () const; // print average
 ~History() { delete [] data; } // return dynamic memory
} ;

void History::add(double s)
{ if (count == size)
 { size = size * 2; // double size if out of space
 Sample *p = new Sample[size];
 if (p == NULL)
 { cout << " Out of memory\n"; exit(1); } // test for success
 for (int i=0; i < count; i++)
 p[i] = data[i]; // copy existing elements
 delete [] data; // delete existing array
 data = p; // replace it with new array
 cout << " new size: " << size << endl; } // debugging print
 data[count++].set(s); } // use next space available

void History::average () const
{ cout << "\n Average value: ";
 double sum = 0;
 for (int i = 0; i < count; i++)
 sum += data[i].get();
 cout << sum/count << endl; }

int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // input data
 History h;
 for (int i=0; i < 9; i++)
 h.add(a[i]); // add history
 cout << "\n Measurement history:" << endl << endl;
 h.getFirst(); // work is pushed up
 do {
 cout << " " << h.getComponent().get(); // print each component
 } while (h.getNext());
 h.average();
 return 0;
 }

Notice that dynamic memory management requires the use of the destructor to return dynamic
memory to the heap when the container object is destroyed.

More complex designs are also used: The components can be sorted, searched for, deleted, inserted,
updated, and compared. Designing container classes is great fun. Using them might be fun too. A
significant number of container classes are available from the Standard Template Library. This
discussion will serve as a good introduction to the concepts used by the Library.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (728 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Nested Classes

Let us go back to the program in Listing 12.5. Notice that instead of adding the iterator functions,
the client code in this version of the program does not use Sample objects.

int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // input data
 History h; // default constructor
 for (int i=0; i < 9; i++) // it is protected from overflow
 h.add(a[i]); // add history
 h.print(); // print history
 h.average(); // print average
 return 0; }

Indeed, it is the History object that has access to class Sample. C++ allows the programmer to
define a server class inside a client class so that the nested class name is not visible outside of the
aggregate class.

class History {
 class Sample { // not visible outside of the client scope
 double value; // private data: it could be public here
 public:
 Sample (double x = 0)
 { value = x; }
 void set (double x) { value = x; }
 double show () const { return value; }
 } ; // end of the nested class definition
 int size, count, idx;
 Sample *data;
public:
 History() : size(3), count(0), idx(0) // make array empty
 { data = new Sample[size]; // allocate new space
 if (data == NULL)
 { cout << " Out of memory\n"; exit(1); } }
 . . .} ; // the rest of class History

The nested class definitions can appear in either the private or public part of a client class. In either
case, the nested class is hidden from the rest of the program; the class name is known only within
the scope (braces) of the composite class where the nested class is defined.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (729 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The nested classes cannot be used to declare variables of their type in other scopes outside of the
composite class. We hide class definitions the same way we hide data members. Hence, if the name
has to be used outside of the class where it is defined, the scope operator should be used.

int main()
{ double a[] = {3, 5, 7, 11, 13, 17, 19, 23, 29 } ; // input data
 History h; // default constructor
 for (int i=0; i < 9; i++) // it is protected from overflow
 h.add(a[i]); // add history
 h.print(); // print history
 h.average(); // print average
 Sample s = 5; // not ok for a nested class
 History::Sample s = 5; // scope operator resolves the problem
 return 0; }

To make the last statement legal, class Sample has to be defined in the public section of its client
class History. Then the client code of class History would be able to use the name Sample
qualified with the name of the aggregate class.

C++ allows you to combine class definition with definitions of class instances in the same
statement. However, this is not a good practice because these instances are often global.

class Sample { // global in a file
 double value;
 public:
 Sample (double x = 0)
 { value = x; }
 void set (double x)
 { value = x; }
 double show () const { return value; }
 } s1,s2; // global objects of class Sample

This is quite appropriate, though, to nested classes because data members are normally global
within the class scope.

class History {
 class Sample { // not visible outside of the client scope
 double value;
 public:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (730 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Sample (double x = 0)
 { value = x; }
 void set (double x)
 { value = x; }
 double show () const
 { return value; }
 } *data; // defining data members at the end
 int size, count, idx;
public:
 History() : size(3), count(0), idx(0) // make array empty
 { data = new Sample[size]; // allocate new space
 if (data == NULL)
 { cout << " Out of memory\n"; exit(1); } }
 . . .} ; // the rest of class History

Do not overuse this feature¡Xit might result in obscure code.

If other classes need to use the component class as their server class, the component class should
not be defined as nested. If other classes do not need the component class, nested classes do not
provide any additional benefits. However, the use of nested classes allows us to avoid name
conflicts where several parts of the program would like to use the same class name for totally
different purposes. Then the name of the nested class does not pollute the program name space.

For example, some other class might use the name Sample to define other measurement results,
with a different sensor, different type of value, and even different number of values. The class
Sample above might not fit the requirements, and that part of the program might need its own class
Sample. To resolve the conflict, have two different class names, for example, Sample1 and
Sample2. It might be more convenient to use only one name and make it a nested class.

Class names like class Node are also popular for a component for a linked list. If the same class
Node is useful for another linked structure (e.g., a stack or a binary tree), then class Node should be
declared in the global name space. Often, different linked structures contain different items of
information, and the same Node class cannot serve them all.

In this situation, it might be advantageous to define a Node class as a local class in each of container
classes. This would eliminate potential name conflicts. Elimination of global names decreases the
intensity of coordination among programming teams developing different container classes.

struct Node { // a good candidate to be a nested class
 char* value; // pointer to information contents (e.g., a word)
 Node* next; } ; // pointer to next node

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (731 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Friend Classes

The designer of the class should provide enough access to the class to satisfy the needs of its clients
without opening it up to creating unnecessary dependencies.

Putting data members in the public section of a class is relatively rare; it provides too much access
without explicitly specifying who utilizes the access. If a debugging problem arises, it is not clear
which clients should be inspected; if data representation changes, the list of clients affected is not
obvious.

This is why most nonmember functions (global or members of other classes) can only access the
public section of a class. The use of private data and functions is possible only through public
member functions.

Accessing nonpublic class members through the class member functions might make client code
more cumbersome. As you saw in Chapter 11, C++ provides a mechanism to expand access to the
private part of the class. When you declare a nonmember function as a friend to the class, it has the
same access privileges as a member function of the class.

It does break encapsulation and should be used sparingly. On the other hand, the list of friends is an
explicit part of the class definition; it is available for inspection and can be used to identify affected
clients, if necessary. Since a friend function accesses private data of class objects, it is quite
worthless if used outside the context of the class.

Friends are not restricted to stand-alone global functions. Friend functions can be members of
another class. A member function of one class can become the friend of another.

You can declare all of the functions of one class to be friends of another class. Then the member
functions of that class will be able to access private members of another class without using access
functions.

It is all right to designate only some of the client's member functions as friends of the server class.
(A forward declaration is needed.)

When a class is used as a server by only one client class, the design of both the client class and the
server class can be simplified if the client class is made a friend of the server class, then each
member function of the client class (e.g., History) can access nonpublic members of the server
class (e.g., Sample). The syntax includes the use of the keyword friend that precedes the class
name (in any section of the server class).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (732 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Sample {
 friend History; // friend declaration
 double value;
 public:
 Sample (double x = 0)
 { value = x; }
 void set (double x)
 { value = x; }
 double show () const
 { return value; }
 } ;

This is a syntax error unless class History is already defined. However, class History cannot be
defined before class Sample because class History uses the name Sample.

class History {
 int size, count, idx;
 Sample *data; // circular dependency
 public:
 History() : size(3), count(0), idx(0) // make array empty
 { data = new Sample[size]; // allocate new space
 if (data == NULL)
 { cout << " Out of memory\n"; exit(1); } }
 . . .} ; // the rest of class History

This is a typical example of circular dependency in code¡Xclass History uses the name Sample
and hence needs Sample defined before the definition of class History. On the other hand, class
Sample uses the name History and hence needs History defined before the definition of the class
Sample.

There are two ways to tell the compiler what History in the definition of Sample means. One is to
use a forward declaration, in which you specify that a name is a class name. Here, the name
History is defined as a class name without further detail.

class History; // class is declared elsewhere

class Sample {
 friend History; // friend declaration

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (733 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 double value;
 public:
 Sample (double x = 0)
 { value = x; }
 void set (double x)
 { value = x; }
 double show () const
 { return value; }
 } ;

Another way to resolve this problem is to specify directly in the friend declaration itself that
History is a class.

class Sample {
 friend class History; // friend declaration
 double value;
 public:
 Sample (double x = 0)
 { value = x; }
 void set (double x)
 { value = x; }
 double show () const
 { return value; }
 } ;

It would be nice to have only one way to do things. It would be even nicer if the linker were able to
resolve these cross-references.

Now the History member functions can access the Sample nonpublic data directly.

void History::print () const
{ for (int i = 0; i < count; i++) // print valid elements only
// cout << " " << data[i].show();
 cout << " " << data[i].value; // no need to use methods
 cout << endl; }

Moreover, class Sample no longer needs to provide access member functions. Its friend History
does not need them.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (734 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Sample {
 friend class History; // friend declaration
 double value;
 public:
 Sample (double x = 0)
 { value = x; } // no need for other member functions
 } ;

Software engineering and programming methodologies look with suspicion at friends because
friends presumably break information hiding. They do make design more complex and harder to
study.

Instead of using friends, class Sample can be made a nested class in History with public fields.
Since no other class but History can access these fields, information hiding is preserved.

class History {
 intsize, count, idx;
struct Sample { // not visible outside of the client
scope
 double value; // data member IS public here
 Sample (double x = 0)
 { value = x; } } *data; // dynamic History data
public:
 History() : size(3), count(0), idx(0) // make array empty
 { data = new Sample[size]; // allocate new space
 if (data == NULL)
 { cout << " Out of memory\n"; exit(1); } }
 . . .} ; // the rest of class History

The implementation of History member functions here is as in the previous version¡Xthey have
full access to Sample nonpublic members.

Use friends with caution; investigate other alternatives.

Summary

In this chapter, we looked at the use of C++ classes as components of a relationship: class
composition. This is the way we should think of classes¡Xnot as stand-alone segments of code but
as cooperating components related to each other.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (735 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The relationship of aggregation is one of the most popular relationships among classes. Using class
objects as data members of other classes poses a number of technical and conceptual issues: how to
define class components and how to initialize them to the appropriate state so that they can be used
by their client, the component class.

We also looked at other ways to link class objects using pointers and references. This is even a
more powerful technique of setting up relationships among objects, and it is very popular in
practice. A detailed discussion of these programming techniques would take us too far from
studying C++ syntax. But rest assured that wherever your professional programming career takes
you, you will be putting objects inside other objects and you will be connecting objects with
pointers and references.

We also looked at a special case of class aggregation, a container class that contains a set of
component objects. This is also a very rich relationship among classes that can be implemented in a
variety of ways. Again, wherever you go, you are going to build container classes or use library
containers or both.

Enjoy using them.

Chapter 13. Similar Classes: How to Treat Them

Topics in this Chapter

ϒΠ Treating Similar Classes

ϒΠ Syntax of C++ Inheritance

ϒΠ Accessing Base and Derived Class Services

ϒΠ Accessing Base Components of a Derived Class Object

ϒΠ Scope Rules and Name Resolution Under Inheritance

ϒΠ Constructors and Destructors for Derived Classes

ϒΠ Summary

In this chapter, as in the previous ones, you are going to see more C++ syntax¡Xkeywords, colons,
initialization lists, and the like. Make sure that this flood of syntactic details does not hide from you
an important shift in the focus of your attention.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (736 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the first part of this book, you learned computational aspects of C++. You learned about such
traditional programming topics as data types, identifiers, keywords, expressions, statements,
conditional statements, loops, and other control constructs. The skills of using these tools are
necessary prerequisites to anything else you would like to do in any programming language, not
only in C++. These skills allow you to create code that accomplishes the program goal and
produces necessary results in terms of computational requirements.

Also in the first part of the book, you studied the methods of aggregation¡Xputting data
components together into arrays, structures, and other programmer-defined types, and putting
statements and control constructs together into functions. Doing this in C++ is more complex than
in other languages, especially when it comes to handling name scopes, passing parameters,
returning values, pointers, and references. You also became familiar with the joys and perils of
C++ dynamic memory management. These are the tools that are directed towards breaking the
program into cooperating parts; however, the tools are directed more toward the programmers'
convenience than toward achieving the computational goals of the program. The computational
goals could be achieved by a variety of design alternatives, but the quality of the program (from the
point of view of its maintainability) might be quite different.

The skill of combining C++ coding elements correctly and separating coding elements that should
not belong together is a necessary prerequisite for writing maintainable and modifiable C++
programs.

In the second part of the book, you studied how to apply what you learned in the first part of the
book to writing C++ classes. You studied class syntax, class scope, data members, member
functions, access to data and functions, messages with their syntax and meaning, object
initialization, different kinds of constructors and destructors, static data, and functions. You learned
about operator functions, which make C++ code so much nicer but which make the design of
classes so much more complex. You learned about friends. You also learned how to recognize
dangerous elements of class design and how to avoid their negative consequences for your
programs. Writing programs with classes makes C++ much, much more complex than other
languages, but it is worth the trouble.

The skill of putting together (into the same class) related data and functions is a necessary
prerequisite for writing object-oriented programs. The major difference between traditional and
object-oriented programs is that traditional C++ programs are built from cooperating global
functions that bind together the steps of each operation. In contrast, object-oriented programs are
built from cooperating classes that bind together data and operations over that data.

However, the first two parts of the book were only a prelude to object-oriented programming. In all
examples, you dealt with only one class because you were concentrating on the details of class
design rather than on relationships among classes. In the third part of the book, you began studying

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (737 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the building of C++ programs as sets of cooperating classes. This requires implementing
relationships among classes in a C++ program. In Chapter 12, "Composite Classes: Pitfalls and
Advantages," you saw how one object (server object) could be used as a component of another
object (its client object). The member functions of the component object provide services to the
member functions of the composite class. This is the most common simple relationship among
objects.

One object can also be pointed to by a pointer, which is a data member of the another object. The
client object gains access to the member functions of the server object by sending messages to its
pointer data member. One object can also be used as a reference data member of the client object.
Syntactically, this is similar to simple class composition, but actually this is a very different
relationship between the objects.

With simple class composition, the server object (a component) is a data member of the client
object (a composite object). In this relationship, the client object has an exclusive use of its
component object. When the server object is a reference (or a pointer) data member of the client
object, the server object might be shared between several client objects; several objects can point to
the same server object. The changes to the server object affect the state of the client object (or
several client objects). It does not make sense to discuss which relationship is "better" in general,
exclusive composition or sharing of components. For many practical situations, however, one
relationship is "better" than another in the sense that it better represents the relationship between
real-life entities modeled by the C++ program. It is important to choose the relationship that best
models the real-life objects.

We also looked at a very popular relationship between objects, when one object is implemented as
a container, and a set of objects of another class (rather than a single object) serves as a component
of this container. This relationship between objects is often found in C++ programs, and you should
feel comfortable arranging the objects in your application in their appropriate relationships.

In this chapter, we will continue the study of cooperation between the parts of C++ code. You will
be introduced to C++ inheritance as a mechanism to represent the relationship among classes of the
application. At this stage, the difference between the relationship between objects and the
relationship between classes might look vague to you. By the end of this chapter you will see the
difference.

Inheritance is used very often in C++ programs¡Xand rightly so. This is a powerful mechanism for
reusing C++ designs, for labor division among programmers, and for introducing modularity into
C++ programs. To use inheritance correctly, you should learn its syntax, methods of instantiation of
derived objects, techniques of access to components, rules for function call resolution, and much
more. It is also important to learn how to decide whether to use inheritance at all or whether class
composition will do the job better. For all the power and utility of inheritance, C++ programmers

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (738 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

may sometimes overuse inheritance in situations where the use of inheritance results in creating
additional relationships and dependencies that make the program harder to understand.

See for yourself.

Treating Similar Classes

Our programs model a variety of real-life objects through their data (object state) and operations
(object behavior). This is a mantra of object-oriented design, but it is up to each designer to decide
what to include in each class. The modeling of real-life entities should ideally reflect "common
features" among real objects, for example, among inventory items, event counters, or bank
accounts.

These "common features" are of course in the eye of the beholder, and C++ has different
mechanisms for representing different degrees of similarity among entities.

The first mechanism that C++ offers for capturing the common features among real-life objects is
the class construct itself. We use the class construct to capture commonality of objects when we
believe that these objects can be characterized by the same sets of attributes and the same patterns
of behavior. These objects are different in values of state attributes: The corner points of the
different rectangles have different coordinates, different inventory items have different titles, and
each account has its own balance and its own account owner. The common elements are that each
rectangle has corner points, each item has a title, and each account has a balance and an account
owner. If one account needs the interest rate to be specified and another account does not, these two
accounts normally should not be viewed as objects of the same class.

Often, the situation is not clear cut. For example, each bolt in an inventory might have its own
individual characteristics that make it different from all other bolts in the application. You need to
design a separate class for each bolt object, give each class an individual set of data members and
member functions that describe each bolt, and create a set of unique names for each class. These
names might reflect the unique nature of each bolt in the application, for example, RustyBolt,
UglyBolt, and BoltFoundInPothole. This may be complicated and make sense only if different
bolts do not have common features and each bolt behaves differently.

However, if the bolts in the inventory have enough in common that you can represent each bolt
using the same names for data members as for data members of other bolts in the application, this
removes the need to represent each bolt as an object of a different class. You might get away with
using only one class, for example, Bolt, and represent each bolt in your application as an object of
that class, with such attributes as the date of purchase, the name of the vendor, and pitch. Similarly,
you can represent all nuts in the inventory as objects of the same class, Nut, if the same set of
attributes (color, material, size, etc.) sufficiently describes each nut object.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (739 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If it turns out that class Bolt, class Nut, and other inventory items use the same names for their
data members, you might abandon the idea of distinguishing between nuts and bolts and use only
one class, InventoryItem, to represent these diverse objects. If all the bolts are the same from the
point of view of the application, you can represent them as a single object and specify the quantity
of bolts among the attributes of the class. Since all the bolts are the same, the differences in pitch
are not important. If pitch is important, this design cannot be used.

If all that is of interest to the application is the total cost of nuts and bolts and other inventory items,
we can represent inventory as an object of type Asset, with attributes appropriate for the goals of
the application.

Often, however, commonalities might exist among classes: The groups of objects might have
basically similar but still somewhat different sets of attributes and operations.

For example, small bolts might have their weight specified per 100 bolts, and large bolts might
have their weight specified per each bolt, and they might have an attribute for the maximum force
allowed to be applied to a large bolt.

Similar, hourly employees might have their pay rate hourly and the number of hours worked during
the week specified as data members. Salaried employees might have all the same attributes (name,
address, date of hire, etc.), but instead of pay per hour and number of hours worked, they might
have salary per year specified.

Some object groups might have somewhat different sets of operations or provide additional
operations. For example, savings accounts might pay interest, and checking accounts might charge
transaction fees. Simply merging all these characteristics into one class will satisfy the client code
requirements but is inherently unsafe. The client code might use the object incorrectly, assuming
the presence of the features that are there for other objects but that are not there for this particular
object. For example, the client code might try to pay interest on the checking account and charge
transaction fees on the savings account.

Still, merging all attributes and operations into one class to provide for all possible alternatives is a
viable method of abstraction. It is up to the client code to make sure that each object is used
according to its inherent characteristics.

Merging Subclass Features into One Class

As an example, let us consider something everyone is familiar with (or so I hope) either from first-
hand experience or heard from others.

I will discuss a simplified class Account with a data member balance and member functions

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (740 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

withdraw() and deposit(). For a checking account, the withdrawal operation should impose a
charge (i.e., 20 cents). For a savings account, the daily interest is added (i.e., at the yearly rate of
6%). The values for charge and interest rate are represented as data members in the Account class.
For simplicity of the example, I am not discussing the techniques for specifying and changing the
numerical literals and other countless practical details such as the owner name, address, age, social
security number, overdraft fee, and other grim (and cheerful) details of the banking business.

Listing 13.1 shows a program that implements the properties of both savings and checking accounts
in the combined class Account. The client code defines Account objects and performs appropriate
operations. This kind of client code is typical of pre-object-oriented standards of programming,
which reflected our belief (often groundless) that humans always use variables correctly.

Example 13.1. Example of combining diverse features in the same class Account.
#include <iostream>
using namespace std;

class Account {

 double balance; // for all kinds of accounts
 double rate; // for savings account only
 double fee; // for checking accounts only

public:

 Account(double initBalance = 0) // for checking accounts only
 { balance = initBalance; fee = 0.2; } // use fee but not rate

 Account (double initBalance, double initRate) // for savings
 { balance = initBalance; rate = initRate; } // no fee here

 double getBal()
 { return balance; } // common for both accounts

 void withdraw(double amount) // common for both accounts
 { if (balance > amount)
 balance -= amount; }

 void deposit(double amount) // common for both accounts
 { balance += amount; }

 void payInterest() // for savings accounts only
 { balance += balance * rate / 365 / 100; }
 void applyFee()
 { balance -= fee; } // for checking accounts only
 } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (741 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main()
{
 Account a1(1000), a2(1000,6.0); // a1: checking, a2: savings
 cout << "Initial balances: " << a1.getBal()
 << " " << a2.getBal() << endl;
 a1.withdraw(100); a2.deposit(100); // no problem
 a2.payInterest(); a1.applyFee(); // no errors
 cout << "Ending balances: " << a1.getBal()
 << " " << a2.getBal() << endl;
 return 0;
 }

Today, we no longer believe in human infallibility. If something can be typed in, somebody,
someplace, sometime will type it in. For example, the fifth line of the client code above could have
been written this way:

a1.payInterest(); a2.applyFee(); // miss takes a maid (joke)

You cannot, of course, prevent all coding mistakes (this is why testing is needed), but you should
prevent as many as possible. Or at least make sure that you are notified of errors without the need
to compute the actual output. This design needs to be improved.

Notice that the client code makes an explicit comment about the nature of each account when the
account is created, but nothing in this design would allow the client programmer to express this
idea in code rather than comments. For this to become possible, the server class (in this case,
Account) should support the needs of the client by assuming the responsibility to explicitly
distinguish between different kinds of Account objects.

Pushing Responsibility for Program Integrity to the Server

To avoid the danger of incorrect use of a server object by the client code, you can add to the server
class an additional attribute, a tag field, which describes what kind of account this particular object
is. This means that you are introducing subclasses to the class.

When an object is created, this tag field could be set to indicate the object subclass during the
object initialization. When the object is used (e.g., payInterest() or applyFee()), this field is
checked to make sure that the operation is legal for this kind of object.

For example, when an Account object is created, I could set the tag field to zero if the object were
going to be used as a checking account. If the object were going to be used as a savings account, I
would set the tag field to one. This means that the constructor should somehow know what kind of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (742 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Account object is being created.

In this example, I can make clever use of the fact that the constructors for two different kinds of
accounts have a different number of parameters. Also, using numeric values for the tag field is not
good software engineering practice. The designer of the code knows that zero means checking and
one means savings. All others run the risk of being confused. How can the designer pass the
knowledge (in this case, which tag value means checking and which tag value means savings) to
the maintainer? This is what enumeration types are used for in C++. I make a field of the
enumeration type Kind local to class Account. Because the type Kind is not going to be used
outside of class Account, I nest the enumeration type Kind within class Account. This name does
not pollute the global name space and does not prevent someone else on the project from using this
name elsewhere.

class Account {
 enum Kind { CHECKING, SAVINGS } ; // constants for account kind
 double balance;
 double rate, fee;
 Kind tag; // tag field for object kind
public:
 Account(double initBalance = 0) // checking account
 { balance = initBalance; fee = 0.2;
 tag = CHECKING; }
 Account (double initBalance, double initRate) // savings account
 { balance = initBalance; rate = initRate;
 tag = SAVINGS; }
 . . . } ; // the rest of Account class

If it were not for this stroke of luck, the type Kind would be made available to the client code as
well, and the client code would explicitly specify what kind of account is being created. This means
that the constructor code would include a parameter for the account kind.

Let me make the example more difficult (and realistic) by assuming that the initial interest rate is
the same for all savings accounts (of this kind) and hence does not have to be specified by the client
code. Because of this, class Account needs only one constructor. Because of this, the client code
has to specify the kind of account object. Because of this, the type Kind should be made global (and
pollute the global name space, thus increasing the need for cooperation among team members).
Here is how this new class Account looks:

enum Kind { CHECKING, SAVINGS } ; // constants for account kind

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (743 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Account {
 double balance;
 double rate, fee;
 Kind tag; // tag field for object kind
public:
 Account(double initBalance, Kind kind) // one constructor only
 { balance = initBalance; tag = kind; // set the tag field
 if (tag == CHECKING)
 fee = 0.2; // it is checking account
 else if (tag == SAVINGS)
 rate = 6.0; } // it is savings account
 . . . } ; // the rest of Account class

Notice that I resist the temptation to use the same memory location for the interest rate if this is a
savings account object and for the check cashing fee if this is a checking account object. If the
application had to handle a large number of Account objects in memory and memory were at a
premium, this could be considered too. Otherwise, it would just introduce additional dependencies
to the code. Avoid alternative uses of memory.

Now the client code explicitly uses the enumeration values to specify what kind of Account object
is being constructed. Notice that comments became redundant¡Xthey would only repeat what the
code designer has now expressed in code so that the designer's knowledge is transmitted to the
maintainer.

 Account a1(1000,CHECKING); // a1 is checking account
 Account a2(1000,SAVINGS); // a2 is savings account

Polluting of the name space by the enumeration type Kind can be avoided even when the client
code needs to use the values of this type as in the example above. One way to achieve this is to
make the type local in class Account again.

class Account {
 double balance;
 double rate, fee;
 Kind tag; // tag field for object kind
public:
 enum Kind { CHECKING, SAVINGS }; // constants for account kind
 Account(double initBalance, Kind kind) // one constructor only
 { balance = initBalance; tag = kind; // set the tag field
 if (tag == CHECKING)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (744 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 fee = 0.2; // it is checking account
 else if (tag == SAVINGS)
 rate = 6.0; } // it is savings account
 . . . } ; // the rest of Account class

The client code now has to use the class scope operator when using the enumeration literal values
as constructor arguments.

Account a1(1000,Account::Kind::CHECKING); // a1 is checking account
Account a2(1000,Account::Kind::SAVINGS); // a2 is savings account

For this design to fly, the type Kind cannot be defined in the private part of class Account as I did
in the first example of the Account class with two constructors. The type has to be public for its
literals to be accessible in the client code. Notice that the use of this type inside the class Account
(for data member tag) does not have to follow the definition of the type. Although C++ compilers
are one-pass compilers, they give you a break by making two passes inside the class definition.

This is true, however, only for newer compilers. Some older compilers might give you a hard time
by complaining that type Kind in the definition of the field tag is not defined. For these compilers,
the definition of the type Kind should precede the definition of the field tag. To make this
definition visible in the client code, it has to be placed in the public part of the class definition. To
reconcile these contradicting requirements, you can have additional public and private sections in
the class definition.

class Account {
 double balance;
 double rate, fee;
public:
 enum Kind { CHECKING, SAVINGS }; // constants for account kind
private:
 Kind tag; // tag field for object kind
public:
 Account(double initBalance, Kind kind) // one constructor only
 { balance = initBalance; tag = kind; // set the tag field
 if (tag == CHECKING)
 fee = 0.2; // it is checking account
 else if (tag == SAVINGS)
 rate = 6.0; } // it is savings account
 . . . } ; // the rest of Account class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (745 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

With the object tag field properly initialized in the constructor, the designer of class Account can
now protect the client code from its own inconsistencies. To make sure the client programmer does
not erroneously charge the fee after a call to withdraw() for a savings account object, the server
class (class Account) checks the nature of the object and applies the fee to a checking account only.

 void withdraw(double amount) // common for both accounts
 { if (balance > amount)
 { balance -= amount;
 if (tag == CHECKING) // for checking accounts
only
 balance -= fee; } }

As you can see, the functionality of applyFee() is now provided by the member function
withdraw() so that the client programmer does not have to remember for what kind of object it has
to be called. I hope that you recognize the concepts of information hiding and pushing
responsibility down to the server at work here.

Similarly, the method payInterest() checks whether the object that is the target of the message is
a savings account. If it is, the interest for the day is paid. If the account is a checking account, a run-
time error message is printed notifying the tester that the client programmer made a mistake calling
this function on a wrong object, and the operation is aborted.

Notice the terminology. It is the designer of the Account class who does the work on behalf of the
client code. In pre-object-oriented programming days, the client code had to protect itself (or make
sure there were no errors). In object-oriented programming days, we push responsibility from the
client code to the server class. This is a very common design approach. Make sure you feel
comfortable using it.

Listing 13.2 shows the implementation of class Account that applies this technique to the
validation of client actions. Notice that the Kind type is defined outside of class Account. The
output of the program run is shown in Figure 13-1.

Figure 13-1. Output for program in Listing 13.2.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (746 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 13.2. Example of run-time test of correctness of client code.
#include <iostream>
using namespace std;

enum Kind { CHECKING, SAVINGS } ; // constants for account kind

class Account {
 double balance;
 double rate, fee;
 Kind tag; // tag field for object kind

public:
 Account(double initBalance, Kind kind)
 { balance = initBalance; tag = kind; // set the tag field
 if (tag == CHECKING)
 fee = 0.2; // for checking account
 else if (tag == SAVINGS)
 rate = 6.0; } // for savings account

 double getBal()
 { return balance; } // common for both accounts

void withdraw(double amount) // common for both accounts
{ if (balance > amount)
 { balance -= amount;
 if (tag == CHECKING) // for checking accounts only
 balance -= fee; } }

 void deposit(double amount)
 { balance += amount; }

 void payInterest() // for savings account only
 { if (tag == SAVINGS)
 balance += balance * rate / 365 / 100;
 else if (tag == CHECKING)
 cout << " Checking account: illegal operation\n"; }
 } ;

int main()
{
 Account a1(1000,CHECKING); // a1 is checking account
 Account a2(1000,SAVINGS); // a2 is savings account

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (747 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << " Initial balances: " << a1.getBal()
 << " " << a2.getBal() << endl;
 a1.withdraw(100); a2.deposit(100); // no problem
 a1.payInterest(); a2.payInterest(); // is this any good?
 cout << " Ending balances: " << a1.getBal()
 << " " << a2.getBal() << endl;
 return 0;
 }

Because the type Kind is now global, the client code can specify the kind of the account using the
identifiers CHECKING and SAVINGS only in the constructor calls.

 Account a1(1000,CHECKING); // a1 is checking account
 Account a2(1000,SAVINGS); // a2 is savings account

This, of course, is simpler than what I had to use earlier, when the type Kind was local
(Account::Kind::CHECKING and Account::Kind::SAVINGS).

It is simpler to write. But the previous version clearly communicates to the maintainer that these
enumeration literals belong to class Account and not to any other server class. This version is
simpler to write, but the designer has to coordinate the use of global name Kind with other
designers who might want to use this name for other purposes. As I said in Chapter 1, "Object-
Oriented Approach: What's So Good About It?," the modern approach to programming favors
verboseness over conciseness if conciseness were to lead to an increase in coordination and to more
effort in understanding code. I am not saying that you should always prefer verbose code. I am
saying that you should always weigh conciseness against increase in coordination and decrease in
understandability.

With merging data and operations of different subtypes in one class, each server method enforces
its legal operations; the system does not crash, and there is an opportunity for graceful degradation
(or, at least, a reasonable run-time error message). However, the server class needs additional code
for type analysis; each method enforces legal operations independently of others, according to the
tag value for a given object. For a large system with a large number of object kinds, with a large
number of methods that depend on the kind of the object, the server code becomes unwieldy.

Class Account knows too many unrelated things about how to treat objects of different subtypes
(checking and savings accounts). The amount of information for the designer and the maintainer to
maintain is too broad. If you need to add yet another kind (subtype) of the object, you have to
expand each method of the existing class. When unrelated parts of code are affected, a great deal of
regression testing becomes necessary.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (748 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The major problem with this approach is that client coding errors are still run-time errors, not
compile-time errors. Someone has to be there to read these error messages. Someone has to see to it
that the client code is changed. It would be nice to design the server class so that incorrect use of
different kinds of objects would result in syntax errors, not run-time errors.

Separate Classes for Each Kind of Server Object

A good solution to this problem is to design a set of separate classes, so that each class implements
a specialized class rather than all properties of all subclasses of objects. For this example, this
means designing classes, for example, CheckingAccount and SavingsAccount.

Each of these classes is designed from scratch. CheckingAccount contains everything related to
running a checking account with no attempt to include facilities related to running a savings
account.

class CheckingAccount {
 double balance;
 double fee; // no interest rate
public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; } // a checking account
 double getBal()
 { return balance; } // common for both accounts
 void withdraw(double amount)
 { if (balance > amount)
 balance = balance - amount - fee; } // unconditional fee
 void deposit(double amount)
 { balance += amount; }
} ;

Similarly, class SavingsAccount contains everything necessary for supporting the savings account
functionality and pays no attention to the needs of clients having checking accounts.

class SavingsAccount {
 double balance;
 double rate; // no checking fee
public:
 SavingsAccount(double initBalance)
 { balance = initBalance; rate = 6.0; } // a savings account
 double getBal()
 { return balance; } // common for both accounts

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (749 of 1187) [8/17/2002 2:58:01 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void withdraw(double amount)
 { if (balance > amount) // same interface, different code
 balance -= amount; }
 void deposit(double amount) // common for both accounts
 { balance += amount; }
 void payInterest() // for savings account only
 { balance += balance * rate / 365 / 100; }
} ;

Listing 13.3 shows the source code for the program that implements this approach. Notice that the
enumeration type Kind is gone¡Xit is no longer needed nor is the argument whether it should be
local or global. Even though each kind of account takes the same number of parameters for
initialization, the client code still does not need this enumeration type to indicate the kind of
account being created. Why? Because the client code explicitly defines account objects a1 and a2
as objects of either class CheckingAccount or class SavingsAccount. Hence, each object
definition calls the appropriate CheckingAccount or SavingsAccount constructor. The output of
the program is shown in Figure 13-2.

Figure 13-2. Output for program in Listing 13.3.

Example 13.3. Example of separate classes for different subtypes of objects.
#include <iostream>
using namespace std;

class CheckingAccount {
 double balance;
 double fee; // no interest rate

public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; } // a checking account

 double getBal()
 { return balance; } // common for both accounts

 void withdraw(double amount)
 { if (balance > amount)
 balance = balance - amount - fee; } // unconditional fee

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (750 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void deposit(double amount)
 { balance += amount; }
} ;

class SavingsAccount {
 double balance;
 double rate; // no checking fee

public:
 SavingsAccount(double initBalance)
 { balance = initBalance; rate = 6.0; } // a savings account

 double getBal()
 { return balance; } // common for both accounts

 void withdraw(double amount) // common for both accounts
 { if (balance > amount)
 balance -= amount; }

 void deposit(double amount)
 { balance += amount; }

 void payInterest() // for savings account only
 { balance += balance * rate / 365 / 100; }
} ;

int main()
{
 CheckingAccount a1(1000); // a1: checking
 SavingsAccount a2(1000); // a2: savings
 cout << " Initial balances: " << a1.getBal()
 << " " << a2.getBal() << endl;
 a1.withdraw(100); a2.deposit(100); // no problem
 //a1.payInterest(); // this is a syntax error
now!!
 a2.payInterest(); // this is ok
 cout << " Ending balances: " << a1.getBal()
 << " " << a2.getBal() << endl;
 return 0;
 }

This design resolves the problem of erroneous client use beautifully. Instead of a run-time error, a
compile-time error is generated.

a1.payInterest(); // syntax error: method not found

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (751 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The only problem with this design is that it does not convey the designer's knowledge to the
maintainer well. Here you see two classes that have much in common¡Xbalance data member,
withdrawal and deposit operations, and access to data¡Xbut the design itself does not indicate that
these two classes have anything in common. The designer of these classes knows that they have
these features in common, but this knowledge is not conveyed to the maintenance programmer.

Of course, these classes have similar names, but this is not enough in a large program. In Listing
13.3, both classes are placed together on the same page (and in the same source file), but in real life
they might be separated, and their similarity might elude the maintainer. When one of these classes
is modified, there is no guarantee that the other class will be modified too. When the set of kinds of
objects grows, the common features of these classes are not identified. In general, the knowledge of
the designer is not expressed in the source code.

Using C++ Inheritance to Link Related Classes

Inheritance is another solution to this problem. You create a class, which contains the common
denominator of features common to all subtypes. In terms of object-oriented analysis and design,
this class represents the generalization of state and behavior of these subclasses. Then you reuse
these common features for other specialized classes. Each specialized class adds specialized
features to the generalized class.

For example, the concept of an account is a generalization for the specialized concepts of savings
account and checking account. Instead of merging all the features of savings and checking accounts
into class Account, class Account can merge only the features that are common to both kinds of
accounts, CheckingAccount and SavingsAccount. These features include data member balance,
and methods getBal(), withdraw(), deposit().

class Account { // base class: common features
protected:
 double balance;
public:
 Account(double initBalance = 0)
 { balance = initBalance; }
 double getBal()
 { return balance; } // common for all accounts
 void withdraw(double amount) // common for all accounts
 { if (balance > amount)
 balance -= amount; }
 void deposit(double amount)
 { balance += amount; }
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (752 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The only difference between C++ classes you have seen before and this class is that I have replaced
the keyword private with the keyword protected. This keyword prevents access to class
components from the outside of the class similar to the keyword private. There is one important
difference: The keyword protected allows access by classes that inherit from this one.

In C++ terminology, the class that generalizes the features of other classes and combines their
common characteristics is called the base class. It is used as a base class for further inheritance.
The specialized classes that add to the common features specified in the base class are called
derived classes. Derivation is the C++ term for inheritance. Java uses the term extension instead of
derivation.

Other popular terms for the base class are superclass and parent class. Symmetric terms for the
derived class are subclass and child class. In the contexts where the base class is discussed as a data
type, it is appropriate to refer to the derived type as a subtype.

Derived classes add and sometimes replace features of a more-general base class. Additional data
and methods in derived classes reflect the relationship of specialization among classes.

For example, classes CheckingAccount and SavingsAccount can be designed as separate
specializations of the generalized class Account that implements their common features. They add
capabilities related to charging fees and paying interest that the general class Account does not
have.

The derived class SavingsAccount adds the data member rate and the member function
payInterest()to the base class Account. It uses the base class data member balance and
member functions getBal(), withdraw(), and deposit(), and it does not replace any of the
base features. The following segment of code shows what is needed to define a derived class. You
do not repeat features that the derived class inherits from the base class. The only features that need
to be described in the derived class are those that the derived class adds to the base class or those
that the derived class replaces with its own version. (I will discuss the syntax of inheritance in the
next section.)

class SavingsAccount : public Account { // derived class
 double rate;
public:
 SavingsAccount(double initBalance)
 { balance = initBalance; rate = 6.0; } // savings account
 void payInterest() // not for checking
 { balance += balance * rate / 365 / 100; } } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (753 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The derived class CheckingAccount adds the data member fee to class Account. It uses the base
class data member balance and member functions getBal() and deposit(). It replaces the base
class member function withdraw() with its own withdraw() function, which charges fees (unlike
the member function withdraw() in the base class).

class CheckingAccount : public Account { // derived class
 double fee;
public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; } // checking account
 void withdraw(double amount)
 { if (balance > amount)
 balance = balance - amount - fee; } // not for savings
} ;

Thus, the use of inheritance becomes a tool for code and design reuse during the development
phase. Instead of repeating common features of class Account in each specialized class, you define
these features in the base class only once. It makes design more compact (common features do not
have to be repeated) and improves developers' productivity.

In these examples, the concepts of accounts, employees, and inventory items represent an
abstraction rather than real world objects, which have to be modeled by the application. After all,
there are no accounts, inventory items, or employees per se. There are checking accounts, savings
accounts, nuts and bolts, and salaried and hourly employees.

Often, however, there exist "natural" superclass/subclass relationships among real world entities,
which could be reflected in relationships among classes that represent these entities. For example,
every car is a vehicle, and every subcompact is a car. This relationship can be expressed by the use
of inheritance.

Inheritance can be either direct or indirect. Vehicle is a direct superclass or a direct base class of
car. Car is a direct superclass or a direct base class of subcompact. Vehicle is an indirect superclass
or indirect base class of subcompact.

It is okay if a class (e.g., car) is a derived class of one class (e.g., vehicle) yet a base class of
another class (e.g., subcompact).

Inheritance can also be used for further program development. As more specialized operations need

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (754 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

to be implemented, a derived class is defined that only provides new operations; all others are
provided by the base class as before.

As with any division of responsibilities among classes, inheritance can be used as a tool for
division of labor in software development. One monolithic class can be developed by only one
developer. The base and derived classes can be developed by different programmers or by one
programmer at different times.

In addition to being a good way to enhance abstraction, the use of commonality in classes results in
less code to write and in better modularization for labor division. I am not sure whether the use of
inheritance actually always results in less code to write. If the base class is small, and there are only
a few subtypes, the size of the source code does not decrease much, if at all. If the base class is
large, and there are many varieties of subtypes, and each subtype adds only a few capabilities, then
indeed the source code shrinks in size because you do not repeat the code of the base class for each
subclass.

At the time of writing the code for derived classes, CheckingAccount and SavingsAccount, code
for the base class Account is frozen. This is a powerful paradigm for project management. If class
Account changes in the future, propagation of the change to all derived classes is automatic (which
might be either good or bad, but that is a different issue).

Another popular use of inheritance is for run-time binding of methods; other terms for run-time
binding are dynamic binding and polymorphism with virtual functions. Many people think that
object-oriented programming is about using inheritance and polymorphism. This is not so.

Polymorphism is a special case of object-oriented programming where the program processes a set
of related objects performing similar but not identical operations over different kinds of objects.
The kinds of objects are so similar that they can be derived from a common base class (e.g., oval,
rectangle, triangle are derived from shape). The operations are so similar that the same name can be
used in each class (e.g., draw()).

Polymorphism allows you to process a list of objects, sending the same message to each object
regardless of which particular class this object belongs to. The function that is actually called in
each case depends on the class to which each object belongs even though formally the call looks
like a call to the base class function (virtual function). Sounds confusing? Do not worry, I will not
leave you out in the cold. Soon you will become an expert on polymorphism.

Syntax of C++ Inheritance

The core of using C++ inheritance is the colon that follows the name of the derived class. It denotes
the place for the name of the base class and for the description of the mode of inheritance¡Xpublic,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (755 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

private, or protected.

Listing 13.4 shows the same program as in Listing 13.3 but is implemented with the use of
inheritance. The client code is the extension of the client code in Listing 13.3. This is why the
output of this program (shown in Figure 13-3) is the extension of the output of the program in
Listing 13.3.

Figure 13-3. Output for program in Listing 13.4.

Example 13.4. Example of inheritance hierarchy for Account classes.
#include <iostream>
using namespace std;

class Account { // base class of hierarchy
protected:
 double balance;

public:
 Account(double initBalance = 0)
 { balance = initBalance; }

 double getBal()
 { return balance; } // common for both accounts

 void withdraw(double amount) // common for both accounts
 { if (balance > amount)
 balance -= amount; }

 void deposit(double amount)
 { balance += amount; }
} ;

class CheckingAccount : public Account { // first derived class
 double fee;

public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; } // for checking account

 void withdraw(double amount)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (756 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { if (balance > amount)
 balance = balance - amount - fee; } // unconditional fee
} ;

class SavingsAccount : public Account { // second derived class
 double rate;

public:
 SavingsAccount(double initBalance)
 { balance = initBalance; rate = 6.0; } // savings account

 void payInterest() // not for checking
 { balance += balance * rate / 365 / 100; }
} ;

int main()
{
 Account a(1000); // base class object
 CheckingAccount a1(1000); // derived class object
 SavingsAccount a2(1000); // derived class object
 a1.withdraw(100); // derived class method
 a2.deposit(100); // base class method
 a1.deposit(200); // base class method
 a2.withdraw(200); // base class method
 a2.payInterest(); // derived class method
 a.deposit(300); // base class method
 a.withdraw(100); // base class method
 //a.payInterest(); // syntax error
 //a1.payInterest(); // syntax error
 cout << " Ending balances\n account object: "
 << a.getBal()<< endl;
 cout << " checking account object: " << a1.getBal() << endl;
 cout << " savings account object: " << a2.getBal() << endl;
 return 0;
 }

Different Modes of Derivation from the Base Class

The keywords that can be used to denote the mode of inheritance are exactly the same three
keywords that denote access rights to class members: public, protected, and private. It is the
use of these keywords (with the preceding colon) that indicates the presence of inheritance
relationships among classes.

Since the keywords are the same, many C++ programmers think that each keyword means the same
thing as in controlling access to class components. For example, in this snippet of code, the
keyword public is used twice.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (757 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class CheckingAccount : public Account { // Account is the base
 double fee; // data member added in derived class
public: // start of public segment of the
class
 . . . } ; // the rest of derived class
CheckingAccount

Don't think that these two cases of the keyword public mean the same thing! They are absolutely
different. The only thing that they have in common is the keyword public itself and the colon, and
this is not much. In the access rights keyword, the colon is to the right of the keyword. It means that
the class members that follow can be accessed from anywhere in the program. In the mode of
inheritance keyword, the colon is to the left of the keyword, and the meaning of the keyword is that
the access rights to inherited class members are exactly the same as in the base class¡Xwhat is
private in the base remains private in the derived class and so on (more on this in a moment).

Yes, you use the same keyword public to specify access rights to class data members and the
mode of derivation. The keyword is the same. All the rest is different.

The use of the colon and the keyword for the mode of inheritance syntactically links the base class
and the derived class. No matter where in the source code the class definitions are placed, the
maintainer who is inspecting the definition of the derived class has an unambiguous visual clue.
This clue establishes two things:

ϒΠ the existence of another class that is used as the base for this one.

ϒΠ the name of the base class

Using a Unified Modeling Language (UML) diagram, the relationship between classes is denoted
by the relationship link between class icons with the hollow triangle that point to the base class. If
the base class has more than one derived class, each derived class can have either an individual link
to the base class with an individual triangle or a common link with only one triangle. Figure 13-4
shows two alternative ways to describe the relationship between class Account and its two derived
classes.

Figure 13-4. Relationship between classes in the Account hierarchy.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (758 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is an example of the use of inheritance as a way to organize thinking about related application
concepts. A checking account "is a kind of" an account: Every checking account is an account, but
not every account is a checking account. This is a general observation about inheritance
relationships. A car "is a" vehicle; every car is a vehicle, but not every vehicle is a car. A rectangle
"is a kind of" a polygon: Every rectangle is a polygon, but not every polygon is a rectangle.

It is the existence of this "is a" relationship that conceptually connects classes and makes the use of
inheritance appropriate. This is different from aggregation that links objects with the "has"
relationship. For example, a rectangle "has" points, a history object "has" sample objects. It would
be incorrect to say that the history object "is a" sample object: These two kinds of objects have
entirely different data and entirely different behavior. With inheritance, data and behavior are also
different for two classes, but they have a common subset that defines the base class. Class Account
has a data member balance and a method deposit(). By virtue of inheritance, class
CheckingAccount also has a data member balance and a method deposit() even though these
components are not listed in the class definition.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (759 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is the main thrust of inheritance. Inheritance is a relationship among classes. Class Account
defines the data member balance, and class CheckingAccount does not need to do so. Since class
CheckingAccount inherits from class Account, CheckingAccount objects have the data member
balance in computer memory similar to Account objects. A CheckingAccount object is an
Account object and has all Account properties and more: the properties defined in the
CheckingAccount class definition.

Hence, inheritance does not save storage. All Account data is present in every CheckingAccount
object. Inheritance helps you create smaller classes if classes become too large and indicate logical
connections between these smaller classes. For example, Listing 13.4 shows that classes
CheckingAccount and SavingsAccount are related¡Xthey both inherit from the class Account.
Listing 13.3 is not capable of indicating this logical connection. Its class definitions are placed in
source code together, but they do not stress the existence of common data members and common
member functions¡Xthe reader has to figure that out.

Every C++ class could be used as a base class in derivation. Inheritance hierarchy is transitive. For
example, class TradingAccount can be defined as a class derived from class CheckingAccount. A
TradingAccount object would have all the capabilities of a CheckingAccount object. Since a
CheckingAccount object has all the capabilities of an Account object, a TradingAccount object
has all the capabilities of an Account object.

From this point of view, the terms superclass and subclass, often used to denote the base class and
the derived class in the inheritance relationship, are not very accurate. They indicate that the base
class, the superclass, is in some respect superior to the derived class, the subclass. This is not the
case.

Capabilities of base classes are not lost at the bottom of the hierarchy of derived classes.
CheckingAccount objects can do more things than can Account objects, and TradingAccount
objects can do everything that CheckingAccount objects can do and more. It is the limitations on
membership that grow toward the bottom of the hierarchy. A CheckingAccount class is a restricted
Account class: There are fewer CheckingAccount objects in the world than there are Account
objects, because every CheckingAccount object is an Account object. Similarly, there are fewer
TradingAccount objects in the world because each TradingAccount object is a CheckingAccount
object.

Toward the bottom of the hierarchy, you see fewer object instances in each subclass but more
features available in objects of this subclass. From a mathematical point of view, the number of
instances in a set might be important. From a programming point of view, it is the services that an
object offers that count. Superclass offers fewer services than does subclass. This is why I am
unhappy with these terms. The terms base class and derived class are better.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (760 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Inheritance enhances modularization and code reuse. A group of well-designed general-purpose
classes can be organized into a library. The interface to library classes should be published, but the
implementation can be encapsulated. The library classes can be customized by creating new
derived classes. These classes add new data members and new member functions to the base library
class. This is a common technique for creating graphical user interfaces. The application classes
inherit from library classes¡Xwindows, dialogs, command buttons. Application programmers use
the capabilities implemented in library classes and only add specific capabilities¡Xhow this
particular window, dialog, or command button should look and behave in the application.

The base classes in the library do not need changes in the process of customization. Hence, base
classes need neither editing nor recompilation.

As Listing 13.4 indicates, each derived class must explicitly specify its base class; it also may
specify additional data members or member functions, but this is optional.

class SavingsAccount : public Account { // syntax of derivation
 double rate; // additional feature
public:
 . . . } ; // the rest of SavingsAccount

The client code, however, does not have to know about derivation. If the client code is
implemented in a separate file, it is only a derived class and not the base class that has to be known
in this file. The base class has to be known in the files where the derived class is specified and
implemented. This again confirms that inheritance is not the mechanism for serving the client
better. Inheritance is the mechanism for designing the server classes (in this example,
SavingsAccount and CheckingAccount). How these classes are designed, with inheritance or
from scratch, makes no difference for the client code.

Defining and Using Objects of Base and Derived Classes

When the client code needs an object, it can define and use objects of the base class and the derived
classes. If the client code is in a separate file, then the header files used for each class should be
included (in Listing 13.4, for the base class Account and for derived classes SavingsAccount and
CheckingAccount).

Which method is invoked in response to a message? The method is defined according to the
declared type of the target object. The compiler finds the definition of the target object and searches
the definition of the class to which the target object belongs. Listing 13.4 shows all typical

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (761 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

situations in the client code, situations you have to be able to recognize.

Account a(1000); // base class object
CheckingAccount a1(1000); // derived class object
SavingsAccount a2(1000); // derived class object
a1.withdraw(100); // derived class method
a2.deposit(100); // base class method
a1.deposit(200); // base class method
a2.withdraw(200); // base class method
a2.payInterest(); // derived class method
a.deposit(300); // base class method
a.withdraw(100); // base class method
//a.payInterest(); // syntax error
//a1.payInterest(); // syntax error
cout << " Ending balances\n account object: "
 << a.getBal() << endl;
cout << " checking account object: " << a1.getBal() << endl;
cout << " savings account object: " << a2.getBal() << endl;

If the target object is of the base class, the compiler generates a function call to the member
function that belongs to the base class.

 a.deposit(300); // base class method

This rule holds even if the method is also defined in a derived class and is performed differently for
objects of derived classes. For example, method withdraw() is defined differently for the derived
class CheckingAccount. Still, when the target of the message is an object of the base class, it is the
base class method withdraw() that is called.

 a.withdraw(100); // base class method

In general, objects of the base class behave in the client code as if derived classes do not exist. The
base class objects cannot respond to messages that derived classes define in addition to the
capabilities inherited from the base class. For example, an attempt to ask an Account object to
perform the job assigned to the derived class SavingsAccount is rejected by the compiler.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (762 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 a.payInterest(); // syntax error

Even though the classes Account and SavingsAccount are related to each other through the
relationship of inheritance, this is not enough for the Account object to rise up to respond to the
derived class messages. The method payInterest() is not in the definition of class Account, and
this is the end of the story¡Xthe function call generates a syntax error.

The situation is somewhat different when the target of the message is an object of a derived class.
Here, you should distinguish among three cases:

1. The method is inherited from the base class as is and is not redefined in the derived class.

2. The method is absent in the base class and is added to the derived class.

3. The method is present in the base class and is redefined by the derived class.

When the client code calls an inherited method, the compiler has a problem. Similar to processing
other messages, the compiler finds the type of the target of the message (recall, that this is a
message sent to an object of the derived class) and searches the specification of the derived class
for the name of the member function.

 a1.deposit(200); // base class method

Obviously, the member function is not there, because the inherited methods (in this case,
deposit()) are described in the base class only, not in the derived class. It would be syntactically
acceptable to describe the inherited method in the derived class too, but then it would be a
redefined method, not the inherited method.

When the method is not found in the class of the target object, the compiler should alert the client
programmer that a method was called that does not exist. Before doing so, the compiler checks
whether the name of the class in the class specification is followed by a colon. If it is, the compiler
makes the correct conclusion that this is a derived class, finds the name of the base class, and
searches the definition of the base class. If the method is found, fine. If it is not there, the compiler
checks whether this class has a base class and repeats the procedure until one of the two things
happens. A class without a base class would be found in the inheritance chain, or the name of the
member function would be found in the class specification. If the latter is the case, the compiler
checks the number and the types of arguments against the function signature and generates the
object code for the function call.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (763 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that the use of inheritance breaks the first principle of object-oriented programming: binding
data and operations together in the class definition within the boundaries of the class scope. Of
course, the use of inheritance as a programming technique is very important for object-oriented
programming. Hence, programmers should not be limited in their practice because of some abstract
principles. C++ makes two adjustments to accommodate both the programmers and the principle,
one conceptual and the other technical.

On the conceptual level, C++ claims that an object of the derived class is an object of the base class
(plus more) and hence has all data and methods defined in the base class. On the technical level,
C++ makes the scope of the derived class nested within the scope of the base class. According to
the scope rules as we know them (for file, function, block, and class scopes), this makes the base
class methods accessible from the derived class.

Sounds confusing? Yes, it is confusing. But you should not worry about these conceptual and
technical problems. Just rest assured that when the compiler does not find the method in the
specification of the derived class, it finds the method in the specification of the base class. Later in
this chapter, I will devote a separate section to the discussion of scope rules and name resolution
under inheritance.

In case 2, when an object of the derived class is the target of the method that is absent in the base
class but is present in the derived class, the situation is simple. You can apply the standard rules for
interpretation of a function call. The compiler finds the method in the specification of the derived
class and stops. If the arguments do not match the function signature, it is a syntax error. If the
arguments do match, the appropriate function call is generated.

 a2.payInterest(); // derived class method

The similar rule applies to case 3, to the methods that are redefined by the derived class. The
compiler ignores the existence of the inheritance relationship. As you saw earlier, when the target
of the message is an object of the base class, the compiler searches the base class for the
appropriate method and ignores derived classes. When the target of the message is an object of a
derived class, the compiler searches the specification of the derived class and stops when the
method is found. Obviously, the method is found because it is redefined in the derived class.

 a1.withdraw(100); // derived class method

If the number and types of the actual arguments match the method signature, the compiler generates

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (764 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the appropriate function call. If there is no match, it is a syntax error. The compiler does not go to
the base class in search of a better match. As you will soon see, this might be a source of trouble.

Accessing Base and Derived Class Services

Normally, a derived class "is a" base class; each object of the derived class has all base class data
and function members plus added and redefined data and methods.

In a sense, the derived class is a client of the base class, very much as any C++ code is a client of
its server classes. The client code uses the server services: data members and member functions.
The server class does not know about its client classes. It does not know even the name of its
clients. This is natural because the server class or function might be from a library, written perhaps
years before the client code was. The client class must know the name of its server classes and the
names of its public services to be able to use them.

For example, the client code in Listing 13.4 defines an object of class Account using the class
name explicitly. After that, the client code gets access to Account services using their names.

 Account a(1000); // base class object
 a.deposit(300); // base class method
 cout << " Ending balances\n account object: "
 << a.getBal() << endl;

In this example, class Account has no idea what client code uses it. As I said, class Account might
be designed several months (or years) earlier than its clients and by different programmers.

Similarly, the derived class uses the base class services (data and functions). The base class does
not know about derived classes because the server in programming never knows the identity of its
clients. The derived class must know the name of its base class, and it must know the names of its
non-private services to be able to use them.

For example, the derived classes in Listing 13.4 established the inheritance relationship with the
base class Account by specifying the name of the base class after the colon operator.

class SavingsAccount : public Account { // syntax of derivation
 double rate;
public:
 . . . } ; // the rest of SavingsAccount

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (765 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

There is a difference between the client-server relationships of composition (aggregation) and the
derived-base relationship of inheritance. In composition, the client code must instantiate a server
object to get access to services. In inheritance, the derived class does not have to instantiate a
separate base object; the name of the base class in the definition of the derived class suffices.

In class composition (which I discussed in detail in the previous chapter), the container class does
not provide its component's services to its own clients; it provides only its own services explicitly
listed in its own interface. For example, class Point, which I used as a component of class
Rectangle, has public methods set(), get(), and move().

class Point {
 x, y; // private coordinates
 public:
 Point (int a, int b) // general constructor
 { x = a; y = b; }
 void set (int a, int b) // modifier function
 { x = a; y = b; }
 void move (int a, int b) // modifier function
 { x += a; y += b; }
 void get (int& a, int& b) const // selector function
 { a = x; b = y; } } ;

This does not mean that class Rectangle, which has Point data members as its components, is
able to provide its clients with the same services. Here is an example of the client code.

Point p1(20,40), p2(70,90); // top-left, bottom-right corners
Rectangle rec(p1,p2,4); // composite object: client of Point
rec.set(30,40); // this does not make sense
rec.move(10,20); // this is ok: why the difference?

The difference between methods set() and move() here is that the class Rectangle did not bother
to implement the member function set() but did define what the method move() means in the
context of class Rectangle.

class Rectangle {
 Point pt1, pt2; // top-left, bottom-right corner points
 int thickness; // thickness of the rectangle border

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (766 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

public:
 Rectangle (const Point& p1, const Point& p2, int width=1);
 void move(int a, int b); // move both points
 void setThickness(int width = 1); // change thickness
 bool pointIn(const Point& pt) const; // point in rectangle?
 } ; // the rest of class Rectangle

A derived class, however, provides its clients with the services of its base class; the designer of the
derived class should not lift a finger to make this possible. Consider, for example, the
SavingsAccount class from Listing 13.4.

class SavingsAccount : public Account { // another derived class
 double rate; // added components
public:
 SavingsAccount(double initBalance)
 { balance = initBalance; rate = 6.0; } // for savings account
 void payInterest() // for savings account
 { balance += balance * rate / 365 / 100; } } ;

According to this class definition, the client code of this class can define objects of type
SavingsAccount and send the payInterest() messages to these objects. That is it. If, however,
you check the client code in Listing 13.4, you will see much more than sending this message.

SavingsAccount a2(1000); // derived class object
a2.deposit(100); // base class method
a2.withdraw(200); // base class method
a2.payInterest(); // derived class method
cout << " savings account object: " << a2.getBal() << endl;

These services that the client code uses, deposit(), withdraw(), and getBal(), are not listed in
the derived class SavingsAccount; they are listed in the base class Account only. This is not a
problem for the compiler. It easily follows the chain of inheritance in class definition and finds
these member functions in the base class (or in the base of the base or whatever). But what is the
client programmer to do? How does the client programmer know that these services are available
for the objects defined in the client code? The client programmer (and the maintainer) has to do
what the compiler does: follow the chain of inheritance in class definitions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (767 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The client programmer (and the maintainer) who uses SavingsAccount services has to look up the
Account features to know that these features are available for SavingsAccount objects. In Listing
13.4, I conveniently put these class definitions together. For large systems and for tall inheritance
hierarchies (where a derived class is used as the base for another class, and that other class is used
as the base for yet another class, etc.), this is not possible. Finding the list of all capabilities that the
derived class provides becomes a chore for the client programmer (and the maintainer). The
description of the derived class alone is not sufficient¡Xyou should look it up elsewhere.

This increases design complexity; errors are hard to discover and even harder to correct. Again, the
use of inheritance flies in the face of the principles of object-oriented programming. Inheritance is a
convenience for the programmer who designs the classes in the inheritance hierarchy. It is a
technique for reuse of design and for reducing the amount of code to be written.

As far as the client designer is concerned, two separate classes (SavingsAccount and
CheckingAccount) represent a perfectly good engineering solution. They bind together related data
and services. An attempt to send a message to a wrong class is flagged as an error by the compiler.
What does inheritance add to this? Data and methods that are common to both classes have to be
implemented only once, and changes to the base class propagate to all derived classes
automatically. This is a convenience for the implementers of the server classes.

Inheritance makes the study of server capabilities harder for everybody else. Some C++ libraries
provide their classes with a huge number of services (more than 100) and spread these services over
five or more levels of inheritance. To figure out what a library window class could do for you, you
have to study all these levels of inheritance, a job made more difficult because the hierarchy itself
and the services available change from one release of the library to another. Hence, you have to
upgrade your skills to stay current. C++ programming is never dull, especially when inheritance is
used with abandon.

Unlike inherited features, redefined features are directly available in the derived class list of
services. You do not have to look them up elsewhere. They usually do the same thing as the
services defined in the base class do but do it either more efficiently or use somewhat different data
or algorithms.

In the example of inheritance in Listing 13.4, the derived class CheckingAccount redefines the
member function withdraw(), which is defined in the base class Account.

The redefined function does its job differently than the base function does by using the data (data
member fee) that is available only in the derived class but not in the base class. This usually
happens because other derived classes (in this example, SavingsAccount) have no use for this
data. If they did (e.g., in our example, all derived classes use the base data member balance), that
data member should be placed in the base class (as in the program in Listing 13.4).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (768 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The use of additional data in member functions redefined in derived classes is a popular design
technique and is common but not mandatory.

Derived class objects can be viewed as a sum of the derived class parts (its private, protected, and
public components) and the base class parts (its private, protected, and public components). The
memory allocated for the derived class object is a sum of the memory allocated for the base part
and the memory allocated for the derived part.

For example, on my machine, the size of an Account object is 8 bytes, and a CheckingAccount
object and a SavingsAccount object are each 16 bytes. If the data types used as data members need
to be aligned in memory, additional space might be added to the object to keep these object data
members properly aligned.

The client of the derived object calls the public services of the base class using the derived object as
if these services were a public part of the derived class itself. For example, a CheckingAccount
object responds to messages deposit() and getBal() as if they were defined in class
CheckingAccount; the client code does not know (and should not know) the difference.

Members of the base class have no access to features that are added or redefined in the derived
classes. Base class objects do not have data members and member functions described in derived
classes. For example, class Account does not have access to the private data member rate and the
public member function payInterest() defined in class SavingsAccount. The following is
nonsense:

 Account a(1000); a.payInterest(); // syntax error

I think that these syntactic rules make intuitive sense. They extend the notion that the derived class
object is a base class object plus something else.

As far as the base class objects are concerned, they cannot know anything about another class
service even if it derived from this object class. It is another class, period. The objects of the base
class cannot respond to messages not described in the class specification.

Similarly, making a function or a class a friend of class Account does not provide this function or
class with direct access to non-public elements of its derived classes CheckingAccount and
SavingsAccount.

Accessing Base Components of a Derived Class Object

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (769 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Now things become less intuitive and more convoluted. Members and friends of a derived class do
receive access to all data members and member functions of this derived class. They also receive
some access to data members and member functions of the base class. They have access to public
and protected members only, not to private data members and member functions of the base class.
They also do not receive access to members of other classes derived from the same base class.

One of the ways to look at this rule is that the base class has three kinds of clients (or three areas of
access). In the inner area, with the greatest right to access data members and member functions, are
class member functions and class friends. They can access public, protected, and private data
members and member functions. They get this access by virtue of being declared within the class
braces, either as a member or as a friend. In the middle area are member functions of derived
classes and their friends. They can access public and protected class members but not private
members. They have access by virtue of declaring this class as the base class (directly or indirectly)
in the class definition.

In the outer area of access is what has been called client code throughout this book. The clients, as
you know, can only access public data members and member functions of the class. The client code
receives access to class services by virtue of using an object of the class as the target of a message.
The object can be made available to the client code in three different ways. It can be created though
the object definition, it can be created dynamically on the heap, or the object (or its reference or its
pointer) can be received as a function parameter. These relationships between the class and three
areas of access are shown in Figure 13-5.

Figure 13-5. Areas of access from a class' own members and friends, from derived
classes, and from client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (770 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that it is only in the outer area of access that the client code accesses data members and
member functions through a separate server object. In the two other areas, the code accesses data
members and member functions of the same object: In the inner area, it is the object of the base
class; in the middle area, it is the object of the derived class.

What happens in the middle area can be changed depending on the mode of derivation. Base class
members can change their access status in the derived class objects. What is public in the base class
might become protected or even private in the derived class object. What is protected in the base
class might become private in the derived class object.

Public Inheritance

Each base class can be inherited through private, protected, or public mode of inheritance. The
mode defines the access status of base class elements in the derived class. With public inheritance,
access status remains the same. Public, protected, and private base members remain public,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (771 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

protected, and private in an object of the derived class. This is the least restrictive case¡Xnothing
changes.

Hence, derived class methods can access protected and public base members of a derived object.
This relationship is shown in Figure 13-6. It shows a derived class object, which consists of the
base and derived parts. Each part has private, protected, and public components. It also shows the
client code that uses the derived class object as its server. You see that the client code can access
public base services (data and functions) along with public derived services. For the client code, the
derived class object looms as the sum of public capabilities defined in the base class and in the
derived class.

Figure 13-6. Access to services of the base and derived classes from a derived class object
and from client code when the derivation mode is public.

You also see that the derived class object can access only public and protected members inherited
from the base class. To access its own private members inherited from the base class, the derived
class methods should use base access functions. At the first glance, this sounds unreasonable. It is
its own components that the derived class object is denied access to! We did not see anything like
that before!

On the other hand, the derived class is a client of the base class. The base class might have
elements, especially data, whose design might change with time. Making these elements accessible
to derived classes might also require changes to the derived classes. With access through non-
private member functions, derived classes are protected from the repercussions of the changes to
the base class. This is the same logic that suggests that we make data members private and member
functions public.

Listing 13.5 shows a small abstract example that illustrates this relationship between the derived
class object and its own members. Here, class Derived is derived from class Base in the public
mode. The Base class has private, protected, and public members as does the Derived class. The

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (772 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Derived class, in its method publD(), can access its own members privD and protD (this is a no-
brainer). It can also access the inherited protected and public members of the Base class, protB and
publB(). It is a syntax error, however, for the Derived class to access the private member privB
inherited from the Base class, even though the memory for this member is allocated within the
Derived object. Class Client creates a Derived object d in its constructor and accesses the public
services defined in the Derived class, publD(), and in the Base class, publD(). It cannot access
non-public members of the Base and the Derived classes. Since I am trying to show access rights
to the Base and Derived capabilities, the program need not produce any output. It only produces
compiler error messages.

Example 13.5. Access to Base and Derived members in a derived object for the Derived
class and for client code under public inheritance.
#include <iostream>
using namespace std;

class Base {
 private: int privB; // accessed from Base only
 protected: int protB; // accessed from Base and Derived
 public: void publB() // access from Base, Derived, Client
 { privB = 0; protB = 0; } } ; // OK to access its own data

class Derived : public Base { // public mode of inheritance
 private: int privD;
 protected: int protD;
 public: void publD()
 { privD = 0; protD = 0; // OK to access its own data
 protB = 0; // OK to access inherited members
// privB = 0; // no access to inherited members
 } } ;

class Client {
public: Client() // Client class constructor
{ Derived d; // object of the derived class
 d.publD(); // OK to access public services
 d.publB(); // OK to access public Base services
 // d.privD = d.protD = 0; // no access to non-public services
 // d.privB=d.protB=0; } // no access non-public Base services
 } ;

int main()
{ Client c; // create the object, run the program
 return 0;
 }

Public derivation is the most natural mode of inheritance because it preserves the "is a" relationship

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (773 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

among classes. Under public derivation, the derived class object offers all public capabilities
present in a base object and adds more public services for the client. The ability for further
inheritance is not limited.

NOTE

For public mode of derivation, inherited members of the base class retain their access status
(private, protected, and public) in the objects of the derived class; all public services, those defined
in the derived class and those inherited from the base class, are available for the client code. This
is the most natural mode of inheritance.

Listing 13.6 shows a larger example of using inheritance. The base class Point offers two public
services, set() and get(), to access its data members x and y. The derived class VisiblePoint
adds to these features the data member visible and member functions show(), hide(), and
retrieve(). The method show() sets the data member visible to 1 so that the point will be
displayed by the graphic package. The method hide() sets visible to 0 so that the point will not
be displayed. The inheritance is public. It would be better to use an enumeration type instead of
numeric values for visible and hidden points, but I am watching the size of the example listing.

Example 13.6. Access to base members in a derived object under public inheritance.
#include <iostream>
using namespace std;

class Point { // base class
 int x, y; // private base data
public:
 void set (int xi, int yi)
 { x = xi; y = yi; }
 void get (int &xp, int &yp) const // public base methods
 { xp = x; yp = y; } } ;

class VisiblePoint : public Point { // colon: before public
 int visible;

public: // colon: after public
 void show()
 { visible = 1; }
 void hide()
 { visible = 0; }

 void retrieve(int &xp, int &yp, int &vp) const
 { xp = x; yp = y; // syntax error: comment it out!

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (774 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 get(xp,yp); // base public method is accessed
 vp = visible; } } ; // derived private data: OK

int main ()
{
 VisiblePoint a,b; int x,y,z; // define two derived objects
 a.set(0,0); b.set(20,40); // call base public function
 a.hide(); b.show(); // call derived public methods
 a.get(x,y); // call base public function
 b.retrieve(x,y,z); // call derived public method
 cout << " Point coordinates: x=" << x << " y=" << y << endl;
 cout << " Point visibility: visible=" << z << endl;
 return 0;
 }

Public base member functions Point::set() and Point::get() are accessible in the client code
as are the VisiblePoint public methods. Any VisiblePoint object can provide these services to
its clients.

Private data members Point::x and Point::y are not accessible in class VisiblePoint; an
attempt to run the program as is results in a syntax error on the first line of the retrieve()
member function. There are two remedies. One remedy is to make Point data members protected.
Had they been protected in the Point class, they would be accessible in retrieve() in class
VisiblePoint. Still, they would not be accessible in the client code. The second remedy is to use
Point access functions in the VisiblePoint member functions to access private base data. I
demonstrate the second remedy on the second line of retrieve(). When the first line of
retrieve() (with the syntax error) is commented out, the program runs and produces the results
shown in Figure 13-7

Figure 13-7. Output for program in Listing 13.6 with the syntax error removed.

I like the first remedy (making base data protected rather than private) more because it requires
fewer access functions in the base class and simplifies the code in the derived classes. Those who
favor the use of access functions argue that direct access to protected base data from derived classes
results in the same breach of encapsulation as does direct access to public data members in the
client-server relationship. As I noted earlier, they definitely have a point. But the scale of the
problem is much, much smaller. When you see that the scale of the problem becomes essential,
make the base data private and use access functions in derived classes. Otherwise, make base data
private and do not worry about encapsulation more than is necessary.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (775 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

NOTE

The derived class object cannot access its inherited members that are private in the base class even
though they "belong" to that derived class object. To access these members in the derived class, use
base access functions or better yet, make these members protected in the base class. For the
derived class, protected base members are as good (that is, accessible) as are public members. For
the client code, protected is as good (that is, not accessible) as private is.

Protected Inheritance

Protected inheritance is the mechanism that limits client access to the services of the base class.
Public and protected members inherited from the base class become protected in a derived class
object.

These base services are available for further derivation and can be used in the derived class
methods, but the client code has no access to public base services through the derived class
object¡Xthey are now protected. Figure 13-8 shows the changes relative to the protected mode of
inheritance. What is public in the base class became protected. The dashed line shows that access to
this part of the derived class object is denied.

Figure 13-8. Access to members of the base class and the derived class from a derived
class object and from client code when the derivation mode is protected.

Listing 13.7 shows the small abstract example from Listing 13.5, where the public mode of
inheritance is replaced by the protected mode. This example illustrates the relationship between the
derived class object and its own members and also the relationship between the derived class object
and its client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (776 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 13.7. Access to Base and Derived members of the Derived object for the Derived
class and the client code when the mode of derivation is protected.
#include <iostream>
using namespace std;

class Base {
 private: int privB; // accessed from Base only
 protected: int protB; // accessed from Base and Derived
 public: void publB() // no access from Derived client
 { privB = 0; protB = 0; } } ; // OK to access its own data

class Derived : protected Base { // protected inheritance
 private: int privD;
 protected: int protD;
 public: void publD()
 { privD = 0; protD = 0; // OK to access its own data
 protB = 0; // access to inherited members
// privB = 0; // no access its inherited members
 } } ;

class Client { // Client code
public:
 Client()
{ Derived d; Base b; // objects of Derived, Base classes
 d.publD(); // public part of Derived class: OK
// d.publB(); // no access to public Base part
// d.privD = d.protD = 0; // non-public Derived parts: not OK
// d.privB=d.protB=0; // non-public Base parts: no access
 b.publB(); } // Base object: public part is OK
 }

int main()
{ Client c; // create the object, run the program
 return 0;
 }

Recall that the call to the public Base member function publB() with the derived object as the
target, d.publB(), worked in the previous version (Listing 13.5). In Listing 13.7, however, it is a
syntax error. Notice that access to public Base members is denied only when it is made through the
Derived class object. At the end of the Client() default constructor I call the publB() member
function using the Base object b as the target. No problem¡Xa public member of a class is
accessible to clients of this class. It is to the clients of the Derived class that this service is not
accessible.

Listing 13.8 shows the example from Listing 13.6, where the public mode of inheritance is replaced

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (777 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

by the protected mode. The base class Point offers the same public services, set() and get(), but
the client of the derived class VisiblePoint is not able to use these services¡Xthey are protected in
VisiblePoint objects. An attempt to do so in the Client() constructor results in syntax errors. To
resolve this problem, I add to class VisiblePoint a new service, initialize(), that accesses
inherited data members x and y instead of set() and get(). Notice that the derived class now has
no problem accessing the base data because I made the base data protected. In derived member
function retrieve() I commented out the call to base function get() as unnecessary complexity.

Example 13.8. Access to base members in a derived object under protected inheritance.
#include <iostream>
using namespace std;

class Point { // base class
protected:
 int x, y; // protected base data
public:
 void set (int xi, int yi)
 { x = xi; y = yi; }
 void get (int &xp, int &yp) const // public base functions
 { xp = x; yp = y; } } ;

class VisiblePoint : protected Point { // protected inheritance
 int visible;

public:
 void show()
 { visible = 1; }

 void hide()
 { visible = 0; }

 void retrieve(int &xp, int &yp, int &vp) const
 { xp = x; yp = y; // access to protected data is OK
// get(xp,yp); // no need for extra complexity
 vp = visible; }

 void initialize(int xp, int yp, int vp) // new public service
 { x = xp; y = yp; // access to protected base data
 visible = vp; } } ; // access to derived private data

int main ()
{
 VisiblePoint a,b; int x, y, z; // define two derived objects
 b.initialize(20,40,1); // initialize derived object
// a.set(0,0); b.set(20,40); // now this is a syntax error
 a.hide(); b.show(); // derived public methods: OK

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (778 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

// a.get(x,y); // and this is a syntax error
 b.retrieve(x,y,z); // derived public method: OK
 cout << " Point coordinates: x=" << x << " y=" << y << endl;
 cout << " Point visibility: visible=" << z << endl;
 return 0;
 }

If you comment out the two lines with syntax errors, the program runs and produces the same
output as the program in Listing 13.6 (see Figure 13-7) does.

I hope you like public inheritance more than protected inheritance. Public inheritance is a technique
for adding to the services provided by the base class or for replacing some of the services (without
changing their name) with something more useful for the client code of the derived class. In all
examples of public inheritance, the "is a" relationship holds between the derived and base objects.
For the client code, a savings account object "is an" account object, with the capability to pay
added interest. A visible point object "is a" point object, with the capability to show and hide
added.

With protected inheritance, this is all different. It is a technique for quickly producing a class that
uses non-public services of the base class (data members x and y in Listing 13.8) but does not
provide to its client the public services of the base class (methods set() and get()in Listing 13.8).
Instead, it provides a different set of services (method initialize()in Listing 13.8) that for some
reason is more appropriate for the client code.

In Listing 13.8, a VisiblePoint object is not a Point object. Point objects provide their clients
with methods set() and get() and VisiblePoint objects do not.

Another popular example of using protected inheritance is to design a stack class (providing clients
with access at one end only), deriving it from an array class (that provides clients with access to
any component). Using protected inheritance, the designer denies the clients the use of array
methods. Instead, the stack provides methods push() and pop() that the client uses to access the
top of the stack.

In the beginning of this chapter, I noted the important difference between inheritance and
composition. The derived class provides its clients with all the public services of its base class. The
composite class does not provide its clients with the services of its components unless these
services are supported by a method of the composite class. (In my example, class Rectangle
provided the move() service.)

If you wanted to take away some existing services from the client, do not use inheritance. Use class
composition instead.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (779 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 13.9 shows the same example as Listing 13.8, but the class VisiblePoint now has a data
member of class Point rather than inheriting from Point in protected mode. The output of this
example is the same as the output shown in Figure 13-7.

Example 13.9. Using class composition instead of inheritance.
#include <iostream>
using namespace std;

class Point { // component class
private:
 int x, y; // private data
public:
 void set (int xi, int yi)
 { x = xi; y = yi; }
 void get (int &xp, int &yp) const // public method
 { xp = x; yp = y; } } ;

class VisiblePoint { // no inheritance, composition
 Point pt; // private component
 int visible;

public:
 void show() // new service to client
 { visible = 1; }

 void hide() // new service to client
 { visible = 0; }

 void retrieve(int &xp, int &yp, int &vp) const // replace
 { pt.get(xp,yp); // services are hidden from
client
 vp = visible; }
 void initialize(int xp, int yp, int vp) // replace
 { pt.set(xp,yp); // services are hidden from
client
 visible = vp; } } ; // just like private data are
hidden
int main ()
{
 VisiblePoint b; int x, y, z; // define an aggregate object
 b.initialize(20,40,1); // aggregate service
 b.show(); // aggregate service
 b.retrieve(x,y,z); // aggregate service
 cout << " Point coordinates: x=" << x << " y=" << y << endl;
 cout << " Point visibility: visible=" << z << endl;
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (780 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The services of the base class Point, set(), and get() are taken away from the client code by
virtue of class composition. The Point data member is hidden inside the VisiblePoint object and
is not available to the client code. As a result, the client code cannot do to a VisiblePoint object
what it can do to a Point object: move the point around the screen without regard to its visibility.
Instead, class VisiblePoint provides the client code with its own interface, member functions
initialize() and retrieve(), which require that the client code deal with the visibility of the
point.

The moral of this story applies to each situation when you are designing a new class to serve your
clients, and you have an existing class that you want to reuse in your design. If the client needs all
the services of the existing class plus more, inherit from this class publicly. The client code will use
derived class objects for both inherited and added services. If it is your new class that will be using
the services of the existing class and not your client, do not use inheritance and do not make it
protected; use class composition instead (see Chapter 12 for more on composition).

The situation in which protected inheritance might be useful is when you are designing a class (or a
family of classes) to serve your clients, and you want to build this class gradually in modular
chunks using inheritance.

For example, the client code needs class D1, and you want to derive class D1 from class D, which is
derived from class B. Using protected inheritance to derive class D from class B and class D1 from
class D, you can build class D1 using all public and protected services of class D. These services
include all public and protected services of the base class B. The client code of D1 will not use
public services of classes D and B¡Xthese services are taken away from the client code because
protected inheritance is being used.

In other words, protected inheritance is the way to limit client access to public services of the base
class without limiting access to these services from the derived class and without limiting further
inheritance.

NOTE

Protected inheritance takes inherited base public services away from the client code that uses the
derived class object. This distorts the "is a" relationship. If this relationship is not important
anyway, use class composition instead of protected inheritance. If you feel you want to use
inheritance, it should be public. (This is a biased opinion, however.)

Private Inheritance

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (781 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Private inheritance is a technique for limiting access to base services, not only by the clients of the
derived classes but by classes derived from the derived classes as well.

When the base class is used as a private base, all public and protected base members become
private members in a derived class object. They are not accessible by derived class clients. They are
not accessible by methods of classes derived from the derived class. They are only accessible to the
methods of the derived class if necessary.

This is an important difference between using the base class as private or as other modes of
derivation. With protected and public inheritance, the access rules are transitive. If the derived class
is used as a base for further derivation (protected or public), the derived class down the hierarchy
has the same access rights to the base members as does the class immediately derived from the
base. If, however, the derivation is private and the derived class is used for further derivation, its
descendants cannot access any members of the base class. The protected and public members of the
base class can be accessed only by the class immediately derived from the base. This prevents the
designer of the derived class from using any of the base services for further derivation.

As with protected inheritance, the base class public interface (data and methods) is not part of the
derived interface anymore¡Xit is private for the client.

These relationships are shown in Figure 13-9. The object of a class derived from the one derived
from the base (this is not a tall inheritance hierarchy) has no access to its own components inherited
from the base if the base is inherited from private mode.

Figure 13-9. Access to base components of a derived class object for private derivation.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (782 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 13.10 shows the small abstract example again; this time I am using private inheritance. As
far as access rights of the derived object to its base part are concerned, they are the same as in the
previous example (with protected inheritance). In this example, I introduced yet another class,
Derived1, which inherits from Derived. I made this derivation public, but it does not matter.
What you are going to see are the effects of the private inheritance from the Base class.

I commented out the offending lines so the code could be compiled. You see that the derived class
can access all non-private base members. This does not depend on the mode of inheritance.
Similarly, the class Derived1 can access all non-private members of its own "base" class
(Derived). This again does not depend on the mode of inheritance. However, the class Derived1
cannot access any members of the Base class, because its "base" class (Derived) inherits from the
Base class in private mode. As far as the client code is concerned, private inheritance is similar to
protected inheritance: It puts all base components of the derived object, even public components,
out of reach of the client.

Example 13.10. Access to Base members in the inheritance hierarchy where the Derived
class inherits from its Base in private mode.
#include <iostream>
using namespace std;

class Base {
 private: int privB; // accessed from Base only
 protected: int protB; // accessed from Base and Derived
 public: void publB() // accessed from Base and Derived
 { privB = 0; protB = 0; } } ; // OK to access its own data

class Derived : private Base { // private inheritance
 private: int privD;
 protected: int protD;
 public: void publD()
 { privD = 0; protD = 0; // OK to access its own data
 protB = 0; // OK to access inherited members
 // privB = 0; // not OK to access its inherited members
 } } ;

class Derived1 : public Derived { // class derived from derived
public: void publDD()
{ // privD = 0; // no access to private "base" data
 protD = 0; // OK to access protected "base" data
 publD(); // OK to access public "base" data
// protB = 0; // no access to any part of "private
base"
// publB(); // no access to any part of "private
base"
} } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (783 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Client {
public:
 Client()
{ Derived d; Base b; // objects of derived and base classes
 d.publD(); // public part of Derived class: OK
// d.publB(); // public Base part of Derived: not OK
// d.privD = d.protD = 0; // non-public part of Derived: no
// d.privB=d.protB=0; // non-public Base part of Derived: no
 b.publB(); } // public Base part of Base object: OK
 }

int main()
{ Client c; // create the object, run the program
 return 0;
 }

Private inheritance allows you to write new servers by reusing implementation. But there is no
subtype relation: If you derive a class Stack from class Array privately, a Stack object is not an
Array object, it does not provide Array services to the Stack clients or to classes further derived
from Stack. A Stack might have an Array as one of its elements. The use of private or protected
inheritance is not good design. It is better to use class composition.

Some experts, however, feel that this mode of derivation is useful because it forces the derived
class to use base access methods to access private data, similar to all other clients of all other
classes. As I said earlier, this is debatable.

Since polymorphism (to be discussed in the next chapter) is only available for public inheritance,
this is probably another reason to stay only with public inheritance. Avoid protected and private
inheritance.

Adjusting Access to Base Members in the Derived Class

C++ allows the programmer of the derived class to avoid these "devastating" access limitations
imposed by the rules of protected and private inheritance. How does one do that? By explicitly
returning to the base members in a derived object the access rights they had in a base object.

Listing 13.11 shows our skeleton example again with private inheritance from Base to Derived. In
the definition of the Derived class, I restored the protected status of the data member
Base::protB. I also restored the public status of the member function Base::publB()¡Xnotice
that the syntax is the same, whether it is a data member or a member function. This does not change
access rights of the Derived class; for any mode of inheritance, it can access all non-private
members of its base class. It does change the access rights of the Derived1 class; similar to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (784 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Derived, it can access all non-private members of its base class. The client code also receives a
break: it now has access to Base::publB() as if Derived inherited from Base publicly and not
privately.

Example 13.11. Example of adjusting the access rights to Base members in the Derived
class (private inheritance).
#include <iostream>
using namespace std;

class Base {
 private: int privB; // accessed from Base only
 protected: int protB; // accessed from Base and Derived
 public: void publB() // accessed from Base and Derived
 { privB = 0; protB = 0; } } ; // OK to access its own data

class Derived : private Base { // private inheritance
 private: int privD;
 protected: int protD;
 protected:
 Base::protB; // available for further derivation
 public:
 Base::publB; // available for client access
 public: void publD()
 { privD = 0; protD = 0; // OK to access its own data
 protB = 0; // OK to access its inherited members
 // privB = 0; // private inherited member: no access
 } } ;

class Derived1 : public Derived { // class derived from derived
public: void publDD()
{ // privD = 0; // no access to private "base" data
 protD = 0; // OK to access protected "base" data
 publD(); // OK to access public "base" data
 publB(); // OK if it is made public in Derived
 protB = 0; // OK if it is made protected in Derived
 } } ;

class Client {
public: Client()
{ Derived d; Base b; // objects of derived and base classes
 d.publD(); // public part of Derived class: OK
 d.publB(); // OK if it is made public in Derived
// d.privD = d.protD = 0; // non-public part of Derived: no
// d.privB=d.protB=0; // non-public Base part of Derived: no
 b.publB(); // public Base part of Base object: OK
 } } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (785 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main()
{ Client c; // create the object, run the program
 return 0;
 }

You see that by using private inheritance you can make the design quite convoluted by closing
access to some components, opening access to others, making your design into a puzzle that you
can proudly present to your colleagues and ask, "Guess what this does."

Actually, C++ allows you not only to adjust the access rights but also to change them to something
different from what is set in the base class. The only thing that you cannot do is to make private
base components non-private in the derived class by setting them to protected or public.

Default Inheritance Mode

When you define the mode of inheritance, it is nice to be explicit and say exactly what you mean.
However, C++ allows you to use the default inheritance mode. In this case, you assume that the
client programmer and the maintenance programmer have enough knowledge to understand what
you mean, even if you do not actually say what you mean.

The default mode of inheritance for a derived C++ class is private. If you just forget to be explicit
and say exactly what you mean, the compiler assumes you want the private mode of inheritance.
Listing 13.12 shows the example of the skeleton program where I forgot to say what I meant. As a
result, the client code cannot access the public method publB() inherited from Base through the
Derived class target.

Example 13.12. Example of using the default mode of inheritance for classes.
class Base {
 private: int privB; // accessed from Base only
 protected: int protB; // accessed from Base and Derived
 public: void publB() // accessed from Base and Derived
 { privB = 0; protB = 0; } } ; // OK to access its own data

class Derived : Base { // it is private by default
 private: int privD;
 protected: int protD;
 public: void publD()
 { privD = 0; protD = 0; protB = 0; } } ; // OK to access

int main()
{ Derived d; // object of the derived class
 d.publD(); // OK to access public part of Derived class
// d.publB(); // not OK to access public part of Base class
 return 0;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (786 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 }

However, this is not as simple as it looks. The default mode of inheritance is private for deriving a
class defined with only the keyword class. The default mode of inheritance for a C++ structure is
public. Recall that the keywords class and struct denote the same thing with the exception of
default access rights to data members and member functions. For class, it is private; for struct,
it is public. Otherwise, they are the same. You can have member functions in a structure, you can
overload these member functions and set up default arguments for them, and you can have
constructors and destructors, data members of other classes (and structures), member initialization
lists, and all other things that distinguish object-oriented programming from procedural
programming. And yes, you can inherit from a structure; and yes, you can inherit a structure from a
class or a structure. All that is perfectly legal in C++. And for a derived class defined with the
keyword struct, the default mode of derivation is public, not private.

Here is an example of the Derived class, which is defined using the keyword struct. Since it is
derived from its base class using the default mode of inheritance, the mode of derivation is public.

Example 13.13. Example of using the default mode of inheritance for structures.
class Base {
 private: int privB; // accessed from Base only
 protected: int protB; // accessed from Base and Derived
 public: void publB() // accessed from Base and Derived
 { privB = 0; protB = 0; } } ; // OK to access its own data

struct Derived : Base { // it is public by default
 private: int privD;
 protected: int protD;
 public: void publD()
 { privD = 0; protD = 0; protB = 0; } } ; // OK to access

int main()
{ Derived d; // object of the derived class
 d.publD(); // OK to access public part of Derived class
 d.publB(); // Hey, this is perfectly legitimate now!
 return 0;
 }

Please don't think that C++ made it this way just to confuse you. This is consistent with the default
C++ rules for access to class members. Recall that when a class is defined using the keyword
class, the default access rights to class members are private. When a class is defined using the
keyword struct, the default access rights to class members are public.

Similarly, when a class is derived from another class using the keyword class, the inheritance
mode is private. When a class is derived from another class by using the keyword struct, the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (787 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inheritance mode is public. The difference, however, is entirely in how the derived class is defined.
The base class could be defined using either keyword class or keyword struct¡Xthis does not
affect the inheritance mode for the derived class.

It is not a good idea to rely on defaults. Period.

Scope Rules and Name Resolution Under Inheritance

In C++, class scope can be viewed as nested under derivation. From this point of view, the scope of
a derived class is enclosed by the scope of its base class.

According to the general theory of nested scopes, whatever is defined in the inner scope is invisible
in the outer, more global scope. Conversely, whatever is defined in the outer scope is visible in the
inner, more local scope. In the next example, variable x is defined in the outer function scope, and
variable y is defined in the inner block scope. It is appropriate to access the variable x in the inner
scope. It is futile to access the variable y from the outer scope.

void foo()
{ int x; // outer scope: equivalent to base class
 { int y; // inner scope: equivalent to derived class
 x = 0; } // ok to access the name from outer scope
 y = 0; } // syntax error: inner scope is invisible outside

In this example, the outer scope plays the role of the base class and its members. The inner scope
plays the role of the derived class and its members. From the derived class, you can access the
members of the base class, but the members of the derived class cannot be accessed from the base
class.

This means that the derived class members are invisible in the scope of the base class. This should
agree with your intuition because the base class should be designed, implemented, and compiled
before the derived class is written. So it is only natural that the base class member functions cannot
access the derived class data members or member functions.

Conversely, base class members are in the outer scope and hence are visible in the derived class
methods. Again, this concurs with your intuition because the derived class object "is a" base class
object and has all member functions and data members that the base class has. From this point of
view, the scope model of the relationship between the base and derived classes is not particularly
helpful because it does not add much to your intuition. However, this model is very useful if the
derived and base classes use the same names. Different languages use different rules to resolve
these name conflicts, and the nested scope model, which is employed by C++, might be helpful in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (788 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

developing your intuition for writing C++ code.

The derived class scope is nested within the base class scope, which means that the derived class
names hide base class names within the derived class. Similarly, the derived class names hide base
class names in the derived class client code. This is a very important rule that should become part
of your programming intuition: If the derived and base classes use the same name, the base class
name does not have a chance, as the meaning of the derived class name will be used.

Let us clarify this rule. If a name without a scope operator is found in a derived class member
function, the compiler tries to resolve the name as a name local to that member function. In the next
code example, there are four variables that use the name x. All these variables are of the same type,
but this is not important. They could be of different types, or some of these names could denote a
function; the general rule I am discussing will stand anyway.

int x; // outer scope: can be hidden by class or
function
class Base {
 protected: int x; // base name hides global names
} ;

class Derived : public Base {
 int x; // derived name hides base names
public:
 void foo()
 { int x;
 x = 0; } } ; // local variable hides all other names

class Client {
public:
 Client()
 { Derived d;
 d.foo(); } } ; // using object d as a target message

int main()
{ Client c; // define the object, run the program
 return 0; }

In this code, you see a local variable in the member function foo() in the class Derived, a data
member in the class Derived, a data member in the class Base, and a global variable in the file
scope. The statement x = 0; in Derived::foo() sets the local variable x to zero. The derived data
member Derived::x, the base data member Base::x, and the global name x are all hidden by this
local name because the local name is defined in the most nested scope.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (789 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Comment out the definition of the variable x in the method foo(). The statement x = 0; now
cannot be resolved to the local variable because this name will not be found. If the name is not
found in the scope of the statement (in this case, the derived class member function), the compiler
looks up the derived class scope among class data members or member functions, depending on the
syntax of the reference to the name. In the above code example, if the local variable x in
Derived::foo() were absent, it would be the derived data member Derived::x that would be set
to zero by the statement x = 0; in the derived member function Derived::foo().

If the name mentioned in the member function is not found in the class scope either, the compiler
searches the base class (and ancestor classes of the base class if they exist and if the name is not
found in the base). The first name found in this search would be used to generate object code. In the
code example, if both variables x in the Derived class were absent (the local variable and the data
member), it would be the data member Base::x that would be set to zero by the statement x = 0;.

Finally, if the name is not found in any of the base classes, the compiler searches for the name
declared in the file scope (as a global object defined in the file scope or an extern global object
declared in this scope but defined elsewhere). If the name is found in this process, it is used; if not,
it is a syntax error. In the code example, if neither class Derived nor class Base used the name x,
the global variable x would be set to zero by the statement in Derived::foo().

Similarly, if a client of a derived class sends a message to a derived class object, the compiler
searches the derived class first, and only after that does it look up the base class definition (or the
base ancestor definition). If the derived class and one of its base classes use the same name, the
derived class interpretation is used. The base names are not even looked up by the compiler if the
name is found in the derived class. The derived class name hides the base class name, and the base
name does not have a chance.

A modified example with two classes, Base and Derived, is shown next. There are two functions
foo() in this example: One is a public member function of class Base, and the other is a public
member function of class Derived. Similar to the previous example, the client code defines an
object of the Derived class and sends the foo() message to that object. Since the Derived class
defines the member function foo(), the derived member function is called. If the Derived class
did not define function foo(), then the compiler would generate a call to the Base class function
foo(). The Base class function has a chance only if the same name is not used by the Derived
class.

class Base {
 protected: int x;
public:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (790 of 1187) [8/17/2002 2:58:02 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void foo() // Base name is hidden by the Derived name
 { x = 0; } } ;

class Derived : public Base {
public:
 void foo() // Derived name hides the Base name
 { x = 0; } } ;

class Client {
public:
 Client()
 { Derived d;
 d.foo(); } } ; // call to the Derived member function

int main()
{ Client c; // create an object, call its constructor
 return 0; }

Notice that in this example I do not introduce the global scope. If neither Derived nor Base class
(nor any of its ancestors) has a member function foo(), then the function call to d.foo() is a
syntax error. If a function foo() were defined in the global scope, the function call d.foo() would
not call this global function anyway.

void foo()
{ int x = 0; }

This global function is not hidden by the foo() member function in the Derived (or the Base)
class because it has a different interface. The member functions are called with the use of a target
object, and the global function is called using the function name only:

foo(); // call to a global function

The function calls we are discussing have a different syntactic form:

d.foo(); // call to a member function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (791 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This syntactic form cannot be satisfied by a call to a global function¡Xit includes a target object and
hence can be satisfied only by a class member function.

Name Overloading and Name Hiding

Notice that in the previous discussion, the function signature was not mentioned as a factor to
consider. This is not an omission. The function signature is not a factor. The signature does not
matter.

Of course I am being facetious. The function signature does matter when the compiler decides
whether the actual argument matches the function's formal parameters. However, it does not matter
for the resolution of nested inheritance scopes. If the name is found in the derived class, the
compiler stops its search of the inheritance chain. What happens if the function found in the derived
class is no good from the point of view of argument matching? Too bad¡Xyou have a syntax error.
What if the base class has a better match, a function with the same name, and with the signature
that matches the function call exactly? Too bad; it is too late: The base function does not stand a
chance.

Unfortunately, this is quite counterintuitive for many programmers. Please try to work with these
nesting rules and on the examples to make sure you hone your intuition accordingly. Next is an
example from my experience. I have pruned everything not related to the issue of hiding in nested
scopes and left only a small part of the code.

Listing 13.14 shows the simplified part of the hierarchy of accounting classes. I use class Account
and class CheckingAccount only. The derived class overwrites the base member function
withdraw(), but this is not going to play any role in the discussion. The client code defines
CheckingAccount objects, sends them messages that belong to either the base class (getBal() and
deposit()) or the derived class itself (withdraw()), and everything is fine. The output of the
program run is presented in Figure 13-10.

Figure 13-10. Output for the program code in Listing 13.14.

Example 13.14. Example of inheritance hierarchy for Account classes.
#include <iostream>
using namespace std;

class Account { // base class
protected:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (792 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 double balance;

public:
 Account(double initBalance = 0)
 { balance = initBalance; }

 double getBal() // inherited without change
 { return balance; }

 void withdraw(double amount) // overwritten in derived class
 { if (balance > amount)
 balance -= amount; }

 void deposit(double amount) // inherited without change
 { balance += amount; }
} ;

class CheckingAccount : public Account { // derived class
 double fee;

public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; }

 void withdraw(double amount) // it hides base class method
 { if (balance > amount)
 balance = balance - amount - fee; }
} ;

int main()
{
 CheckingAccount a1(1000); // derived class object
 a1.withdraw(100); // derived class method
 a1.deposit(200); // base class method
 cout << " Ending balances\n";
 cout << " checking account object: " << a1.getBal() << endl;
 return 0;
 }

Although the client code here is only a few lines long, in real life, it was about 200 pages long. The
program evolved to reflect the changes in business conditions. One of the changes required was to
add to class CheckingAccount yet another function deposit(), which could be used for
international wire transfers. In these transfers, a transaction fee would be imposed depending on the
amount and source of the transfer. This fee could be computed by the client code and sent to the
CheckingAccount class as an argument. Hence, a simple way to support this change was to write
another function deposit() with two parameters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (793 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void CheckingAccount::deposit(double amount, double fee)
 { balance = balance + amount - fee; }

The client code for processing international transfers and for computing the fee required only a few
pages to be added to the program. Here is an example of the new client code that calls this new
deposit() function.

a1.deposit(200,5); // derived class method

So far, so good. The change went well, the new code ran fine. There was, however, a problem
during system integration. These 200 pages of code that used to work so well before the change
now did not work as well. Actually, the code did not work at all and would not even compile.

Now, let me assure you that I used many languages before using C++, and I had never seen
anything like this. I also suspect that whatever languages you used before C++, you never saw
anything like this either. This is yet another contribution of C++ to software engineering that you
should be aware of.

Of course, we all have been in situations where adding some new code breaks the existing code,
which no longer works correctly. Usually this happens because the new code interferes with the
data that the existing code relies upon. But the existing code always compiles. In traditional
languages, when you add new code, you do not get syntax errors in existing code.

In C++, a program consists of classes that are linked to each other, not only through data but also
through inheritance. Of course, the new code can make the existing code semantically incorrect by
handling data incorrectly. This is possible in any language. But the new code can also make the
existing code syntactically incorrect through the inheritance links! This is only possible in C++.
This is why I press this point about programming intuition, needing to know the rules and
developing a feel for correct and incorrect C++ code.

Let us take a look at the reason for this "innovative" kind of programming trouble. This is how my
new class CheckingAccount looks.

class CheckingAccount : public Account {
 double fee;
public:
 CheckingAccount(double initBalance)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (794 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { balance = initBalance; fee = 0.2; }
 void withdraw(double amount) // it hides base class method
 { if (balance > amount)
 balance = balance - amount - fee; }
 void deposit(double amount, double fee) // new method
 { balance = balance + amount - fee; } // hides base method
} ;

When the compiler was processing the existing 200 pages of client code, the calls to the member
function deposit() were aiming at the base class member function Account::deposit() with
one parameter.

a1.deposit(200); // base class method?

According to the rules for the name resolution you just saw, the compiler analyzes the type of the
message target, finds that the object a1 belongs to class CheckingAccount, and searches the class
CheckingAccount for a member function whose name is deposit(). The compiler finds this
function and stops the search through the inheritance chain. The next phase is, of course, signature
matching. The compiler discovers that the method CheckingAccount::deposit() found in the
derived class has two parameters. Meanwhile, the client code (which wanted to call the base class
method) supplies only one parameter. The compiler tells me in no uncertain terms that I have a
syntax error.

I probably should have saved the joke about driving the tank for this discussion. It was clear to me
that my code was correct and yet I found another bug in my compiler. (It does not matter what
compiler it was. When learning a new language, you always find quite a few bugs in your compiler
until you know the language better.)

I would have liked very much if my compiler had treated this situation as function name
overloading. I had the existing deposit() function with one parameter in the base class. I had the
new deposit() function with two parameters in the derived class. But the object of the derived
class was also an object of the base class! It had the inherited deposit() function with one
parameter as well. My intuition was that the derived class had two deposit() functions, one with
one parameter and the other with two parameters. And I would have liked very much if the
compiler had used the rules for function name overloading and had picked up the right function, the
one with only one parameter. However, as I said before, when a base method is hidden by a derived
class method, the base method does not stand a chance. The overloading applies to several
functions in the same scope. Hiding takes place between functions in nested scopes. Finally, I gave

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (795 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

up and changed my thinking. It takes time, but I am sure you will be able to do the same.

ALERT

C++ supports function name overloading in the same scope only. In independent scopes, function
names do not conflict, and you can use the same name with the same or different signatures. In
nested scopes, the name in the nested scope hides the name in the outer scope, whether or not these
names have the same signatures. If classes are related through inheritance, the function name in
the derived class hides the function name in the base class. Again, the signature is not important.

Figure 13-11 shows an object of the derived class with these two functions, one coming from the
base class and the other coming from the derived class. The vertical arrow from the client code
shows you that the compiler starts the search in the derived class. The compiler stops as soon as the
name match is found (with any signature), and no attempt is made to get to the base class using the
rules for name overloading. If the concepts of nested scopes for inheritance sound too abstract to
you, use this picture to remind yourself that the search stops at the first match.

Figure 13-11. How a derived class method hides a base class method in a derived class
object.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (796 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Calling a Base Method Hidden by the Derived Class

There are several remedies for this situation. One remedy is to indicate in the client code what
function should be called. The scope operator does the job well.

int main()
{ CheckingAccount a1(1000); // derived class object
 a1.withdraw(100); // derived class method
// a1.deposit(200); // syntax error
 a1.Account::deposit(200); // solution to the problem
 cout << " Ending balances\n";
 cout << " checking account object: " << a1.getBal() << endl;
 return 0; }

Please make sure you do not get excited about this solution. The obvious drawback of this solution
is that it requires making changes to the existing code. The advantage of the object-oriented
approach is that it favors adding to the existing code rather than modifying it. This solution,
however, is labor extensive and error prone. To use this solution is to ask for trouble.

From the software engineering point of view, this solution contradicts the principles of writing C++
code I discussed earlier. Which principles? Well, who bears the burden of the work in this solution?
The client code. Who should carry the burden of the solution according to the principles of writing
code? The server code. This solution fails to push responsibility down to the server classes. Instead,
it brings responsibility up to the client code: you need to make sure that the base function is
called¡Xindicate explicitly that the base function should be called. This is a brute force solution.

Make sure that you use the criterion of pushing responsibility to the server classes in your work. It
indicates in what direction you should search for a good solution. Let us look at the Account
inheritance hierarchy. Our goal should be to add to these classes a method (or methods) that would
make the problem go away. Why would I want to add a method? Because I do not want to change
existing methods. Why would I want to add methods to the inheritance hierarchy? Because these
classes serve the client code, and I want to push responsibility to the server classes.

One remedy is to overload the deposit() method in the base class rather than in the derived class.
Since both functions belong to the same class and hence to the same scope, you have a case of
legitimate C++ function name overloading. Both functions are inherited by the derived class and
can be called through the derived class object as the message target. Here is the example of this
solution.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (797 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Account { // base class
protected:
 double balance;
public:
 Account(double initBalance = 0)
 { balance = initBalance; }
 double getBal() // inherited without change
 { return balance; }
 void withdraw(double amount) // overwritten in derived class
 { if (balance > amount)
 balance -= amount; }
 void deposit(double amount) // inherited without change
 { balance += amount; }
 void deposit(double amount,double fee) // overloads deposit()
 { balance = balance + amount - fee; } } ;

class CheckingAccount : public Account { // derived class
 double fee;
public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; }
 void withdraw(double amount) // hides the base class method
 { if (balance > amount)
 balance = balance - amount - fee; } } ;

int main()
{ CheckingAccount a1(1000); // derived class object
 a1.withdraw(100); // derived class method
 a1.deposit(200); // existing client code
 a1.deposit(200,5); // new client code
 cout << " Ending balances\n";
 cout << " checking account object: " << a1.getBal() << endl;
 return 0; }

This is a good workaround. Notice that the solution is found in the form of adding code to the
server class, not in the form of modifying the client code. This solution pushes the work to the
Account class, and this is good. However, this solution requires opening and changing the base
class and not the derived class. This is not desirable for configuration control reasons. The higher a
class is in the inheritance hierarchy, the more we want to guard this class against change because
the change can affect other derived classes. The lower a class is in the inheritance hierarchy, the
safer it is to open and to change.

Another problem with this solution is that the scope rules allow a base class member function to
access base class data members only, not the derived class data. In my example, this is not a
problem; both deposit() methods need only the base class data. Often, however, this is not so.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (798 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The new method might need data that is defined in the derived class and is not available in the base
class. For example, the standard withdrawal fee might be imposed on the deposit transaction as
well. Then the new method deposit() could be implemented in the derived class only.

void CheckingAccount::deposit(double amount, double fee)
 { balance = balance + amount - fee - CheckingAccount::fee; }

However, putting the new method deposit() into the derived class takes us back to square one
with the problem of the nested name scopes¡Xthis function hides the base class deposit() function
and renders the existing code, with the calls to deposit() with one argument, syntactically
incorrect.

A better remedy to this problem is to bite the bullet and place the new deposit() method where it
belongs: in the derived class. To make the existing calls to the deposit() function with one
legitimate parameter, you can overload the deposit() function in the derived class rather than in
the base class. Again, the derived class is a server class for the client code, and this solution pushes
responsibility to the server class.

TIP

Always look for ways to write C++ code such that the responsibility is pushed from the client code
to the server code; thus the client code expresses the meaning of computations, not details of
computations. This is a very general principle. It will serve you well.

Listing 13.15 shows this solution. The derived class has two member functions deposit() with
two different signatures. Since they both belong to the same class, the rules for name overloading
stand. Both new code and existing code now call the member functions of the derived class using
different signatures. All that the member functions with one argument should do is call the base
class member function with the same name (push the work to the server). The output of the
program run is presented in Figure 13-12.

Figure 13-12. Output for program in Listing 13.15.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (799 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 13.15. Example of inheritance hierarchy for Account classes.
#include <iostream>
using namespace std;

class Account { // base class
protected:
 double balance;
public:
 Account(double initBalance = 0)
 { balance = initBalance; }
 double getBal() // inherited without change
 { return balance; }
 void withdraw(double amount) // overwritten in derived class
 { if (balance > amount)
 balance -= amount; }
 void deposit(double amount) // inherited without change
 { balance += amount; }
} ;

class CheckingAccount : public Account { // derived class
 double fee;

public:
 CheckingAccount(double initBalance)
 { balance = initBalance; fee = 0.2; }

 void withdraw(double amount)
 { if (balance > amount)
 balance = balance - amount - fee; }

 void deposit(double amount) // hides the base class method
 { Account::deposit(amount); } // call to a base function

 void deposit(double amount, double fee) // hides base method
 { balance = balance + amount - fee - CheckingAccount::fee; }
} ;

int main()
{
 CheckingAccount a1(1000); // derived class object
 a1.withdraw(100); // derived class method
 a1.deposit(200); // existing client code
 a1.deposit(200,5); // new client code
 cout << " Ending balances\n";
 cout << " checking account object: " << a1.getBal() << endl;
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (800 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Make sure that you are not intimidated by the use of scope operators in this example. The function
deposit() with one parameter in class CheckingAccount could have been written this way:

void CheckingAccount::deposit(double amount) // hides base method
 { deposit(amount); } // infinite recursive call

When the compiler processes the body of this function, it first looks for a match between the name
deposit() and a name local to the function. There are no names local to the function, so the
compiler looks for a match among class members. It finds the name
CheckingAccount::deposit() and generates a call to it. As a result, the call is interpreted as an
infinite recursive call.

The scope operator in Listing 13.15 directs the compiler to generate a call to the base function
Account::deposit() and to avoid the trap of recursion. Notice that the responsibility to deal with
the class hierarchy and decide to which class the deposit() function belongs is pushed down to
the server class and not up to the client code as in my first remedy.

The function deposit() with two parameters in class CheckingAccount could have been written
this way.

void CheckingAccount::deposit(double amount, double fee)
 { balance = balance + amount - fee - fee; }

When the compiler processes the body of this function, it looks for a match between the name fee
and a name local to the function. This name is the name of the function's second parameter. Even
though the class CheckingAccount has a data member fee, this data member is hidden by the
name of the function parameter. To access the class data member fee, the code in Listing 13.15
has to use the scope operator that overrides the scope rules.

Using Inheritance for Program Evolution

Often a good way to handle this kind of program evolution is to avoid the problem and its remedies
altogether. The source of my difficulties with international wire transfers in Listings 13.14 and
13.15 was that I was trying to change existing code (classes Account and CheckingAccount) to
accommodate new conditions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (801 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is a natural way of thinking¡Xfrom the traditional programming point of view. Object-oriented
programming supported by C++ offers you an opportunity to think differently. Instead of looking
for ways to change existing code, you could look for the ways to inherit from existing classes to
support new requirements.

Make no mistake¡XI am talking about a new way of thinking about writing code. Using inheritance
means that you are writing new code instead of changing existing code. Everyone who has ever
tried to change existing code knows there is a world of difference between these two approaches.
C++ offers a new approach to this little international wire transfer problem: leave the existing 200
pages alone, leave classes Account and CheckingAccount frozen, and introduce yet another
derived class to support the new client code:

class InternationalAccount : public CheckingAccount { // great!
public:
 InternationalAccount(double initBalance)
 { balance = initBalance; }
 void deposit(double amount, double fee) // hides base method
 { balance = balance + amount - fee - CheckingAccount::fee; }
} ;

Listing 13.16 shows this solution. The classes Account and CheckingAccount are the same as in
Listing 13.14. Yet another derived class, InternationalAccount, introduces no additional data
members and only one member function, the function deposit(), which satisfies new client
requirements. Since the objects, which are the targets of the deposit() messages with different
numbers of parameters, belong to different classes, the issue of hiding or overloading does not
arise. The object a1 is a target of the message with one parameter, and the compiler calls the
function of the base class. The object a2 is a target of the message with two parameters, and the
compiler calls the function of the class InternationalAccount derived from the class
CheckingAccount. The output of the program run is presented in Figure 13-13.

Figure 13-13. Output for the program in Listing 13.16.

Example 13.16. Example of enhanced inheritance hierarchy for Account classes.
#include <iostream>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (802 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Account { // base class
protected:
 double balance;
public:
 Account(double initBalance = 0)
 { balance = initBalance; }
 double getBal() // inherited without change
 { return balance; }
 void withdraw(double amount) // overwritten in derived class
 { if (balance > amount)
 balance -= amount; }
 void deposit(double amount) // inherited without change
 { balance += amount; }
} ; // no changes to existing class

class CheckingAccount : public Account { // derived class
protected:
 double fee;

public:
 CheckingAccount(double initBalance = 0)
 { balance = initBalance; fee = 0.2; }

 void withdraw(double amount) // hides the base class method
 { if (balance > amount)
 balance = balance - amount - fee; }
} ; // no changes to existing class

class InternationalAccount : public CheckingAccount { // great!
public:
 InternationalAccount(double initBalance)
 { balance = initBalance; }

 void deposit(double amount, double fee) // hides base method
 { balance = balance + amount - fee - CheckingAccount::fee; }
} ; // work is pushed to a new class

int main()
{
 CheckingAccount a1(1000); // derived class object
 a1.withdraw(100); // derived class method
 a1.deposit(200); // base class method
 InternationalAccount a2(1000); // new server object
 a2.deposit(200,5); // derived class method
 cout << " Ending balances\n";
 cout << " First checking account object: "
 << a1.getBal() << endl;
 cout << " Second checking account object: "

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (803 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 << a2.getBal() << endl;
 return 0;
 }

This is a very useful technique of program evolution. Instead of butchering existing classes and
dealing with the dangers of invalidating existing client code, you derive another class from existing
classes, which is responsible only for new program functionality. The use of C++ inheritance is the
cornerstone of this new approach to software maintenance: writing new code instead of modifying
existing code.

Actually, class CheckingAccount does need some modifications. The first modification is making
the private data member fee protected to make sure that the new derived class,
InternationalAccount, is able to access this data member. Another approach would be to add to
class CheckingAccount a member function that retrieves the value of this data member; the client
code (in this case, InternationalAccount) would call this function to access the base class data.
As I mentioned earlier, I prefer to make a few data members accessible to one or two derived
classes than to create a set of access functions that will be used only by these new derived classes
(in this example, just one derived class).

Another way to avoid this modification to the existing class CheckingAccount is to exercise more
foresight at the time of the class design. Why do you make class data members private? According
to the principles of object-oriented programming, you do it for several reasons:

ϒΠ You do not want the client code to create dependencies on server class data names.

ϒΠ You do not want to complicate the client code with direct operations over data.

ϒΠ You do not want the client code to know more about server design than is necessary.

ϒΠ You want the client code to call server methods whose names explain the actions.

ϒΠ You want the client code to push responsibility for lower level details to servers.

Notice that all these goals can be achieved by making server class data members protected rather
than private. As I mentioned earlier, the protected keyword works like other access right
modifiers, private and public, relative to different categories of class users. For derived classes,
which are linked to the class by inheritance, the keyword protected works exactly as public
works. It allows the derived classes direct access to the base class members. For client classes,
which are not linked to the class by inheritance, the keyword protected works exactly as private
does. There is no difference. If you think that program evolution through inheritance is possible,
use protected access rights rather than private.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (804 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

TIP

Always look for ways to use C++ inheritance for program evolution. Push responsibility from the
client code to new derived classes. Weigh this approach against the drawbacks of creating too
many small classes.

I am careful to say that the issue here is program evolution rather than initial program design.
During program design, some key base classes might wind up at the top of a tall inheritance
hierarchy of classes that includes many derived classes. With a large number of potential class
users, the issues of data encapsulation, information hiding, pushing responsibilities to servers
become important. For these key classes, you might want to use the private modifiers to force
even derived classes to use access functions. For program evolution, the classes you will be using
for further derivations are themselves at the bottom of the inheritance hierarchies (class
CheckingAccount is a good example). They will not have a large number of derived classes
dependent on them, and the issues of data encapsulation, information hiding, and pushing
responsibilities to servers lose their importance with the decrease in the number of dependent
classes.

The second modification is in the class CheckingAccount constructor. I added the default
parameter value to avoid a syntax error in the client code when the object of the class
CheckingAccount was created. This is similar to the issues I discussed for composite classes in
Chapter 12. In the next section, I will discuss these issues as applied to the creation of C++ derived
objects.

Constructors and Destructors for Derived Classes

When an object of a derived class is created, both its base and derived parts might need
initialization. The base part of the derived class object and its derived part are created in a rigid
sequence. It is important to understand this sequence to avoid potential syntactical and performance
problems.

The issues of object construction under inheritance are very similar to the issues of object
construction under class composition. For composition, the object data members are created (and
their constructors are called) before the composite class constructor is executed. If the appropriate
constructors do not exist, an attempt to create a composite object might result in a syntax error. If
the appropriate constructors do exist, the creation of a composite object might result in performance
penalty.

For class inheritance, the base part of the object is always created (and its constructor is called)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (805 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

before the derived part of the object is created and before the derived class constructor is executed.
If the appropriate base constructor does not exist, an attempt to create a derived class object might
result in a syntax error. If the appropriate base constructor does exist, the creation of a derived class
object might result in performance penalty.

Let us consider class Point from the programs in Listings 13.6-13.9 and improve it by adding a
general constructor with two parameters to this class:

class Point { // base class
 int x, y;
public:
 Point(int xi, int yi) // general constructor
 { x = xi; y = yi; }
 void set (int xi, int yi)
 { x = xi; y = yi; }
 void get (int &xp, int &yp) const
 { xp = x; yp = y; } } ;

The goal of this improvement is obvious: It provides for greater flexibility for the client code in
creating class Point objects. The client code now has an opportunity to specify point coordinates at
the time of object creation. This is better than creating an noninitialized object and later initializing
it through a call to the set() member function.

As far as the class VisiblePoint from Listing 13.6 is concerned, this change in its base class does
not require any adjustment: The derived class is not affected.

class VisiblePoint : public Point { // public inheritance
 int visible;
public:
 void show()
 { visible = 1; }
 void hide()
 { visible = 0; }
 void retrieve(int &xp, int &yp, int &vp) const
 { get(xp,yp); // base public method is accessible
 vp = visible; } } ; // derived private data is available

What is affected, however, is the client code of the derived class VisiblePoint. This code now
contains syntax errors.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (806 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main ()
{ VisiblePoint b; int x, y, z; // define a derived object: error
 b.set(20,40); b.show(); // base, derived public functions
 b.retrieve(x,y,z); // call derived public function
 cout << " Point coordinates: x=" << x << " y=" << y << endl;
 cout << " Point visibility: visible=" << z << endl;
 return 0; }

As for any object, data members for the derived class object (in this case, data member visible)
are allocated before the body of the derived class constructor is executed. However, even before the
data described in the derived class is allocated, the base part of the derived object is created.
"Created" here means that the base data members (in this case, x and y of the Point class) are
allocated and a base constructor called.

Since there are no parameters passed on to the base class constructor, it is the default base
constructor that is called. Since the base class Point provides a non-default constructor, the system-
provided default constructor is taken away.

Hence, an attempt to create a derived class object results in a syntax error¡Xa call to a function that
does not exist. Notice that the client code that is in error now was perfectly all right in the programs
in Listings 13.6-13.9:

VisiblePoint b; // no syntax error in previous versions

It is adding a general constructor to class Point that renders this line syntactically incorrect. Again,
in traditional languages, adding new code might disrupt the operations of existing code but cannot
make it syntactically incorrect. This is a new kind of link between different parts of the program
that C++ adds to programming.

The remedy is of course to make sure that the base class still has a default constructor (either
system-supplied or programmer-defined). This constructor is called after the base part of the
derived class object is allocated.

class Point { // base class
 int x, y;
public:
 Point()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (807 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { x = 0; y = 0; } // now the client code is OK
 Point(int xi, int yi) // general constructor
 { x = xi; y = yi; }
 void set (int xi, int yi)
 { x = xi; y = yi; }
 void get (int &xp, int &yp) const
 { xp = x; yp = y; } } ;

Now the client code is supported; the syntax error is gone. However, the work done by the Point
default constructor is wasted because the client code sets the VisiblePoint object to the required
place on the plane and either shows or hides it.

VisiblePoint b; // no syntax error
b.set(20,40); // write over the base part of object
b.show(); // set the derived part of object

The sequence of events related to the creation of a derived class object is shown in Figure 13-14.
First, the base part is created, then the base default constructor is called, the derived class is created,
the derived constructor is called, and the next statements in the client code are executed.

Figure 13-14. Steps of allocation and initialization for an object of the derived class.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (808 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The point of this example is that the base default constructor initializes the base data fields
immediately after the base part is constructed; only after this is the derived part constructed and the
derived class constructor executed. If the client code needs to set the base part to a specific state
(rather than a default state), the calls to the base default constructor are wasted.

This design can be improved by pushing the responsibility from the derived class client to the
derived class constructor. What responsibility? For initializing the derived object, including its base
part. In the last code snippet this responsibility is performed by the client code by sending messages
set() and show() to the derived class object. The client should be relieved from this
responsibility.

The derived class might receive data for initializing its own data members and its base data in the
form of parameters to the derived class constructor. These parameters can be used to explicitly set
the state of the base part in the body of the derived class constructor.

class VisiblePoint : public Point {
 int visible;
public:
 VisiblePoint(int xi, int yi, int view) // parameters for data
 { set(xi,yi); visible = view; } // set base, derived fields
 } ; // the rest of the VisiblePoint
class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (809 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Now the client code does not have to explicitly call the base member function set() and its own
function show() or hide(). Instead, the client code specifies additional parameters when defining
derived class objects.

VisiblePoint b(20,40,1); // no need to call set() or show()

One way to look at the call to the function set() in the VisiblePoint constructor is that the
compiler first tries to find a local match within the scope of the constructor, then tries to find the
match within the scope of the class VisiblePoint, and then tries to find the match within the
scope of the base class Point. Another way to look at this call is that the function set() belongs
to the base class. Since an object of a derived class "is an" object of the base class, the function
set() belongs to the derived class as well. Hence, the call to the function set() does not need a
target object because the derived class object (or, if you prefer, its base part) is the target of the
message.

The third way to look at this call is to have pity on the reader of the code and admit that the writer
of the code was interested in writing faster, not in making reading easier. When this code was
written, the code writer knew to what class the function set() belonged. Nevertheless, it was left
to the reader of the code to choose "one way to look at the call" or "another way to look at this call"
and so on. This means that this code was not written according to the principles of the object-
oriented approach. According to these principles, the client code (in this case, the VisiblePoint
constructor) should be written so that the names of the function calls explain the actions. C++
supports this approach by allowing the use of the class scope operator to pass on to the reader of the
code your knowledge at the time of writing the code.

class VisiblePoint : public Point {
 int visible;
public:
 VisiblePoint(int xi, int yi, int view) // parameters for data
 { Point::set(xi,yi); // pass knowledge to maintainer
 visible = view; }
 } ; // the rest of the VisiblePoint class

Do you hear my message? I am again addressing the issue of programming intuition. Of course,
traditional languages give you some means to pass the designer's knowledge on to the reader of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (810 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

code. However, C++ is significantly more complex than traditional languages are. At the least,
there are many more different ways to write C++ code than there are ways to write code using
traditional languages. Hence, there are more ways to express the designer's knowledge in code.
There is also much more need to express the designer's knowledge in code in C++ than in
traditional languages. Make sure that you develop your intuition to see the opportunities to do so.

TIP

Always look for ways to pass on your knowledge at the time of code design to the client
programmer and maintainer. C++ allows you to pass your knowledge in code, not in comments.
Too many C++ programmers use C++ as if it were a traditional language and do not use this
great opportunity to contribute to the quality of their code.

Using Initialization Lists in Derived Class Constructors

Adding a constructor to the class VisiblePoint pushes responsibility from the VisiblePoint
client code to the VisiblePoint code. However, it does not resolve the problem of the wasted call
to the constructor of the base class.

The base class default constructor is called for the base part of the derived class object anyway.
This call takes place immediately after the base part of the object is allocated. Since the fields of
the base part are reset in the derived class constructor when the constructor body is executed, the
call to the base class default constructor is wasted.

If the base class has nondefault constructor(s), the derived class constructor can call a nondefault
base constructor instead of the default base constructor. This eliminates the wasted function call.

Notice that a base class constructor is always called between the allocation of the base part and the
call to the derived class constructor. The issue is only what constructor is to be called¡Xa default
constructor or a nondefault constructor.

To call a nondefault base constructor with parameters, C++ supports the initialization list syntax
similar to the member initialization list syntax you used for coordination of constructor invocations
in class composition.

class VisiblePoint : public Point {
 int visible;
public:
 VisiblePoint(int xi, int yi, int view) : Point(xi,yi) // list
 { visible = view; } // no call to set()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (811 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 } ; // the rest of class VisiblePoint

The difference between these two forms of the initialization list is important. In class composition,
the initialization list contains the names of object components in the form of the names of class data
members. With inheritance, the initialization list contains the name of the derived object
component in the form of the base class name, not the name of a data member.

The major similarity between the two forms of the initialization list is the timing of the component
constructor call. In class composition, it is called immediately after the component data member is
allocated. In class inheritance, it is called immediately after the base part of the derived object is
allocated. In all cases, it is called before the body of the class constructor (container class or
derived class) is executed. If the base part of the derived object contains components of other
classes, or if the components of the composite object have base classes, this procedure is
implemented recursively.

To summarize, C++ creates the base part of the derived object first, the base class constructor is
then called, the derived class part is created, and the derived class constructor body is executed.

The parameters in the constructor call that follows the colon are passed to the base class
constructor. They can either be parameters passed from the client code to the derived class
constructor (as in the last example), literal values, or even function calls. There are no limitations.

If the base class component needs a default constructor (without parameters) for initialization of the
derived class object, then it can be called either explicitly or implicitly. Say, for example, that the
class VisiblePoint objects need their base part initialized to the origin of coordinates on the
screen. Then the VisiblePoint constructor can be written this way:

class VisiblePoint : public Point {
 int visible;
public:
 VisiblePoint(int view) : Point() // call to default constructor
 { visible = view; } // no call to set()
 } ; // the rest of class VisiblePoint

On the other hand, there is no need to call the base constructor explicitly. Even without the
initialization list, the compiler invokes the default base class constructor automatically.

class VisiblePoint : public Point {

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (812 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 int visible;
public:
 VisiblePoint(int view) // implicit call to default constructor
 { visible = view; } // no call to set()
 } ; // the rest of class VisiblePoint

These two versions of the derived class constructor result in the same sequence of events when the
derived class object is created: the base part of the object is allocated, the default base class
constructor is called, the derived part of the object is allocated, and the derived conversion
constructor is called.

You can mix both lists so that the data members of the derived class are also initialized using the
member initialization syntax.

class VisiblePoint : public Point {
 int visible;
public:
 VisiblePoint(int xi, int yi, int view)
 : visible(view), Point(xi,yi) // what is called first?
 { } // a popular C++ idiom
 } ; // the rest of class VisiblePoint

Recall that data members are always created in the order of their appearance in the class
specification. For a derived class, the base part specification is implicitly the first part of the class
specification¡Xit precedes the specification of the derived class members. Despite what it looks like
in the initialization list above, the base constructor is invoked first and only then are the derived
data members initialized. The derived class constructor body (if any) is always executed last.

It is quite rare that one can design a Derived class that does not have a constructor. It is rare that
the initialization list is not used.

In this example, the body of the derived class constructor is empty. There are no advantages in
initializing all data members of the derived class in the constructor initialization list, but it is very
common. For some reason, many C++ programmers feel the satisfaction of good design if the body
of the derived class constructor is empty. I do not know why.

In summary, there is no need to use an initialization list in the design of the derived class
constructor(s) if:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (813 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

1. the base class has no constructors (and its system-provided default constructor is called
when a base part of the derived object is constructed) and

2. the base class has a programmer-defined default constructor (called when a base part of the
derived object is constructed) and derived constructors (if any) that do not change the state of
the base part of the derived object relative to what this default constructor does.

If the base class has a nondefault constructor, one has to distinguish between two cases:

1. The base class does not have a default constructor: Then the derived class constructor(s)
must use the initialization list syntax to invoke nondefault base constructors to avoid syntax
errors at a derived object definition.

2. The base class also has a programmer-defined default constructor: The derived class
constructors do not have to use initialization lists; the default Base constructor is called first,
then the derived constructor overwrites its actions in its body. It is better to call the appropriate
nondefault base constructor using the initialization list syntax.

Is it possible to have a derived class without a programmer-derived constructor? Sure. This means
that neither the base part of the object nor its derived part needs any initialization. Things like that
happen. However, if it happens to you, check your design again¡Xsomething probably is amiss.

Destructors Under Inheritance

Next is a poor example of inheritance, but it illustrates the issues related to the use of destructors
for derived classes.

I want to design a class Address to store people's names and e-mail addresses. Since inheritance is
such a powerful mechanism for organizing classes in my program, I want to derive class Address
from another, simpler class Name, which contains the name of the person to whom the e-mail
address belongs. The base class Name has a data member, data, which points to a dynamically
allocated character array. The class constructor dynamically allocates the object memory and
copies the parameter string into the heap memory. The destructor returns the string memory to the
heap before the object is destroyed. The get() member function returns the pointer to the name.

Listing 13.17 shows the program that implements this design. Since the goal of the example is to
demonstrate the issues of dynamic memory management for base and derived classes, I have tried
to keep it simple. This is why I am not implementing copy constructors and assignment operators
for these classes. I do not think that potential clients should create Name objects: The Name class is
needed only as the base for the Address class. To prevent accidental disasters, I prevent potential
clients from creating Name objects by making the Name constructor protected. I cannot make it

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (814 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

private: If I did, the Address objects would not be able to initialize their base part. But this is not a
problem: For potential clients, protected works as well as private does. For the Address class, I
prevent disasters by keeping both the copy constructor and the assignment operator private.

The output of the program is shown in Figure 13-15.

Figure 13-15. Output for the program in Listing 13.17.

Example 13.17. Using inheritance for classes with dynamic memory management.
#include <iostream>
using namespace std;

class Name { // Base class
 char *name; // dynamic memory management
protected:
 Name(char nm[]); // prevent using the objects
public:
 ~Name(); // return dynamic memory
 const char* get() const; } ; // access the contents

Name::Name(char nm[])
{ name = new char[strlen(nm)+1]; // allocate heap space
 if (name == NULL) { cout << "Out of memory\n"; exit(1); }
 strcpy(name,nm); } // initialize heap memory

const char* Name::get () const
{ return name; } // access private data

Name::~Name()
 { delete [] name; } // return object data

class Address : public Name { // Derived class
 char *email;
 Address(const Address&); // no value semantics
 void operator = (const Address&);
public:
 Address(char name[], char address[]); // allocate heap space
 ~Address();
 void show() const; } ; // display object data

Address::Address(char nm[], char addr[]) : Name(nm)
{ email = new char[strlen(addr)+1];

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (815 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (email == NULL) { cout << "Out of memory\n"; exit(1); }
 strcpy(email,addr); }

Address::~Address() // return object memory
{ delete [] email; }

void Address::show() const // display object data
{ cout << " Name: " << Name::get() << endl;
 cout << " Email: " << email << endl << endl; }

int main ()
{
 Address x("Shtern", "shtern@bu.edu"); // client code
 x.show();
 return 0;
 }

The class Name constructor (the base class constructor) allocates and copies memory for the base
class; the class Address constructor (the derived class constructor) allocates and copies values for
the derived class.

The Address constructor also passes the values to the Name constructor before the Address
constructor code is executed. The instantiation of an object of class Address entails the following
sequence of actions:

1. The memory for the base part of the object is allocated (pointer name).

2. The base constructor is called, and the heap memory pointed to by name is allocated and
initialized.

3. The memory for the derived part of the object is allocated (pointer email).

4. The derived constructor is called, and the heap memory pointed to by email is allocated
and initialized.

The order of destructor invocation is opposite to that of the order of constructor invocation. When a
derived class object is being destroyed, the derived destructor is executed first; after that, the
derived part data members are destroyed. Then the base class destructor is called, and after that the
base part of the object is destroyed. Here is the list of the actions that take place.

1. The derived class destructor is called, and the heap memory pointed to by the email
pointer is returned to the system.

2. The derived part of the object is destroyed, and its memory (pointer email) is returned to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (816 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the system.

3. The base class destructor is called, and the heap memory pointed to by the name pointer is
returned to the system.

4. The base part of the object is destroyed, and its memory (pointer name) is returned to the
system.

Because a class destructor can take no parameters, the programmer does not have to coordinate
destructor invocations. Just make sure that the destructors are there. Failure to implement any
destructor will result in memory leak.

The base part of the object should not disappear first because it is a server of the derived part of the
object. Base class data members might be necessary to preserve the integrity of the data members
of the derived part of the object.

It is possible to lump dynamic memory management for both classes in the Address constructor
and in the Address destructor. However, managing memory for only one class is good
modularization.

Since this is a small example, the relationship between classes does not matter much. However,
deriving the Address class from class Name stretches the notion of relationship. An address is not a
name, but the use of inheritance suggests that. You would rather say that an address has a name.
This suggests the use of the composition relationship. In the next chapter, we will look into this
tradeoff in more detail.

Summary

In this chapter, we continued studying the relationships between C++ classes. The relationship of
inheritance allows the use of one class as a base for another class. By virtue of doing so, the derived
class inherits all data members and member functions of the base class. Usually, the derived class
adds more data members and member functions to members inherited from the base class.
Sometimes, the derived class redefines the capabilities inherited from the base class.

Using inheritance provides a great way to modularize the design. Instead of designing a server class
in one leap, you can create and debug a base class and then add more functionality in the form of
derived classes.

The use of inheritance facilitates program evolution. Instead of changing existing code, you can add
new code to the client code and then support this new code, not by changing existing server classes,
but by creating new derived classes that serve the needs of the new client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (817 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Similar to class composition, using C++ inheritance requires that you learn a host of new
syntactical details. C++ implementation of inheritance is very rich and often gives you more than
one way to implement your design. This means that a reckless use of inheritance can make your
program much more complex than it needs to be.

Using inheritance as a design tool, you can expand your opportunities for practicing modern forms
of software engineering¡Xpushing responsibility from client code down to server classes, passing
the knowledge of the code designer on to client programmers and maintainers. This is a new way to
write code, and it requires a shift in intuition. Make sure that you are constantly developing your
C++ programming intuition¡Xit is a very important component of your programming skills.

In this chapter, we studied only a fraction of what there is to know about C++ inheritance. In the
next chapter, we will learn other techniques for using inheritance.

Have fun.

Chapter 14. Choosing between Inheritance and Composition

Topics in this Chapter

ϒΠ Choosing a Technique for Code Reuse

ϒΠ Unified Modeling Language

ϒΠ Case Study: A Rental Store

ϒΠ On Class Visibility and Division of Responsibilities

ϒΠ Summary

In this chapter, you will see more examples of inheritance and composition. I will start with a
smaller example and compare the use of inheritance with other programming techniques.

I am going to compare different design alternatives for implementing the same program. "Design"
here means the same as it has in the rest of the book: deciding what parts (classes) the program
should consist of and what responsibilities (data members and member functions) should be
assigned to each part. In comparing different design alternatives, I will evaluate the effectiveness of
the same general techniques that I formulated in Chapter 1, "Object-Oriented Approach: What's So
Good About It?" : pushing responsibilities from client classes to server classes, self-documented
client code expressed in terms of calls to server methods, and elimination of links between classes.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (818 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

I will also use lower level specific criteria such as encapsulation, information hiding, coupling, and
cohesion.

All of these techniques are directed toward making code easier to read. In this chapter, one of the
criteria to judge the quality of design will be ease of writing. This is a major deviation from the
principles proclaimed in the Chapter 1, where I stressed the ease of reading and argued that the ease
of writing is usually achieved at the expense of the ease of reading and hence should be avoided.
After all, we write code only once, when we type it in, and the actual typing takes only a miniscule
fraction of the time that we spend reading the code when we try to debug it, test it, integrate it,
reuse it, or modify it.

This shift in emphasis is unavoidable when you use inheritance because inheritance is a design
technique directed toward ease of writing. The designer of the server class derives the server class
from the base class, not to serve the client code better, but for the convenience of the server class
implementation. Ideally, the designer of the client code should not care whether the server class is
designed from scratch or is derived from some base class (as long as the server class supports the
services that the client code needs).

This is the ideal but real life is different from the ideal in C++ programming, much as in other
human activities. The use of inheritance (for the sake of the ease of writing the server classes) is at
odds with the ease of reading, both for the client code and for the maintainer. In the next chapter, I
will show you how to use inheritance to make the client code simpler as well.

For the discussion of links among classes, I will use the Unified Modeling Language (UML)
notation to describe the relationships between classes in the application. Today, the use of UML is
considered critical for the success of object-oriented design and implementation. Many
organizations embrace it for their object-oriented projects. Anecdotal evidence of UML utility is
plentiful, but there is yet no hard evidence that the use of UML makes object-oriented projects
successful. UML is a product of a political and technical compromise rather than the result of a
breakthrough in development. It was designed by a committee with the goal of unifying several
earlier versions of object-oriented design notation and they added more features for describing
object relationships in more detail. However, each member of the committee was trying to add to
UML the features of their favorite notation system. As a result, the language is overblown with
features and is very difficult to learn.

This is a pity. The language should be unobtrusive. It should allow the developers to communicate
their ideas and understand the ideas of others with ease. If someone is a novice in the language, so
that his or her statements are ambiguous or confusing, there should be a compiler that warns the
designer about that. Nothing of that sort is available for UML. It tends to produce diagrams that are
more complex than necessary. My experience with UML (and its predecessors) shows that it is a
waste of time to learn it before you know an object-oriented language well. Also, this modeling

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (819 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

language is so huge, and possible design variations are so broad, that one should not try to study it
while learning an object-oriented language¡Xit will not speed up the process of learning. However,
the basic UML (or any of its predecessors) could and should be used to describe the object-oriented
designs implemented in C++.

This is what I will try to do in this chapter: I will introduce the basic UML notation as a descriptive
tool for comparing the uses of inheritance and composition. I will also use UML notation for
illustrating general relationships among objects in a program. The examples I discuss in this
chapter are large enough to warrant several approaches to their design and implementation, and the
use of the UML will be helpful for understanding the high-level issues of program design.

Choosing a Technique for Code Reuse

In this section, I will discuss the relative advantages and disadvantages of using inheritance and
composition. Both relationships are client-server relationships. A derived class is a client of the
base class, and the base class is a server of the derived class. A composite class is a client of its
component class, and the component class is a server of the composite class. This means that you
are going to see significant similarities between C++ programs built with alternative design
techniques.

The common feature of different design solutions is the division of work between the client and the
server classes, be it with the use of composition or any other design techniques. This means that the
server class has to be implemented before the client class can be designed. Hence, the techniques,
which are discussed in this section, can be used both for program development and for program
evolution.

Example of a Client-Server Relationship Between Classes

As a simple example of the client-server relationship, I will discuss an application that uses class
Circle, with a data member for the circle radius, so that the client code can send messages to
access the internal data representation in Circle objects.

Circle c1(2.5), c2(5.0); // set the value of radius
double len = c1.getLength(); // compute circumference
double area = c2.getArea(); // access internal data
c1.set(3.0);
double diam = 2 * c1.getRadius();

To support this kind of client code, the class Circle should implement at least five public member
functions:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (820 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ a constructor with one integer parameter

ϒΠ a method getLength() that returns the circle circumference

ϒΠ a method getRadius() that returns the circle radius

ϒΠ a method set() that changes the circle radius

ϒΠ a method getArea() that returns the circle area

Notice again, that it is the needs of the specific client code that define how the server class is going
to look. This is not the only possible mode of C++ programming. When a high premium is put on
the reuse of software components, server classes are often designed as library classes so that they
can satisfy the needs of the maximum number of clients. To achieve this, the server classes offer
the services that the class designer thinks will satisfy the maximum number of clients. As a result,
some clients have to work harder to use these generic classes.

In this book, I do not pay much attention to the design of library classes. To design these classes
well, one has to provide access to internal data representation and let the client programmers
manipulate the data as they see fit.

The second mode of C++ programming, the mode of supporting the client-server relationship, is
much more challenging. It requires the server programmer to recognize the client needs and
implement methods that satisfy these needs rather than just bring information to the client code for
manipulation.

Notice also that I send messages to the server objects to access the internal data representation.
Whatever a class method does (e.g., multiplies the circle radius by two and by PI to compute the
circumference), it accesses the internal data representation (in this case, radius) on behalf of the
client code that does not have such access. To support the client needs in this case, class Circle
should look this way.

class Circle // original code for reuse
{ protected: // inheritance is one of the options
 double radius; // internal data
 public:
 Circle (double r) // support for initialization
 { radius = r; }
 double getLength () const // compute circumference
 { return 2 * PI * radius; }
 double getArea () const // compute area

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (821 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { return PI * radius * radius; }
 double getRadius() const
 { return radius; }
 void set(double r)
 { radius = r; } }; // change size

Those of you who would like to avoid errors related to writing floating point numbers (and would
like to have more practice in using initialization lists) could use a different version of class Circle.

class Circle // original code for reuse
{ protected: // inheritance is one of the
options
 const double PI; // it must be initialized in
the list
 double radius; // internal data
 public:
 Circle (double r) : PI (3.1415926536) // initializer list
 { radius = r; }
 double getLength () // compute circumference
 { return 2 * PI * radius; }
 double getArea () // compute area
 { return PI * radius * radius; }
 double getRadius() const
 { return radius; }
 void set(double r)
 { radius = r; } }; // change size

Notice that I quoted only one common rationale for using a constant instead of a numeric literal:
the likelihood of typing errors when the same literal is typed in different places in the code. I did
not use another popular rationale: convenience of changing the value at the time of maintenance.
Unless there is an unexpected scientific breakthrough, the value of PI is not going to change soon.
Also notice that now I multiply PI by 2 each time the method getLength() is called. These are not
serious drawbacks, but they indicate that the real goal of defining PI as a constant in this example is
to show you once again that the initializer list can contain not only constructor parameters, but also
literal arguments.

Finally, notice that PI is defined as local to class Circle. If other classes in the application need
this value, they have to either define it themselves or get it from class Circle. To facilitate this,
this constant data member could be made public.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (822 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Circle // original code for reuse
{ protected: // inheritance is one of the
options
 double radius; // internal data
 public:
 const double PI; // it must be initialized in the
list
 public:
 Circle (double r) : PI (3.1415926536) // initializer list
 { radius = r; }
 ¡K } ; // the rest of class Circle

You see here a popular technique for defining public data in a separate public section to make it
more conspicuous. Had I defined PI in the same public section as the class member function, it
might have been lost there.

All right, now class Circle is in place¡Xbut wait a minute, is it in place? In this design of class
Circle, each Circle object is allocated memory for the value of PI individually. Meanwhile, this
value is the same for each object. Allocating this memory for each Circle object is a waste.
Programmers who work with non-object-oriented languages do not have to deal with these issues.
C++ programmers deal with these issues all the time. It is important to develop the appropriate
intuition to spot the potential waste. Until this intuition is developed, it is a good idea to be vigilant
and scrutinize the use patterns for each data member. When a data member has the same value for
each object of the class, this is a situation where the use of static data fits the bill beautifully. Here
is class Circle that allocates only one value of PI for all of its objects:

class Circle // original code for reuse
{ protected: // inheritance is one of the options
 double radius; // internal data
 public:
 static const double PI; // it must be initialized
 public:
 Circle (double r) // initializer list
 { radius = r; }
 double getLength () const // compute circumference
 { return 2 * PI * radius; }
 double getArea () const // compute area
 { return PI * radius * radius; }
 double getRadius() const
 { return radius; }
 void set(double r)
 { radius = r; } }; // change size

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (823 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 const double Circle::PI = 3.1415926536;

As you see, the initialization of a static data member does not require the member initialization list.
It is initialized in the definition, which is implemented in the same file as class member functions.
Similar to member functions, the class scope operator specifies to which class this data member
belongs. If you want to define a data member PI in another class, these names will not conflict with
each other because they belong to different classes.

This example shows again that the C++ programmer should always think about different aspects of
the program design. Concentrating on part of the picture only results in wrong conclusions that
might lead to waste or even to errors.

Make sure that the diversity of issues you should always think about while writing C++ code does
not make your vision too narrow.

All right, now that the class Circle is in place, let us consider the client code requirements of the
class Cylinder that has data members describing the cylinder radius and height.

Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
double length =cyl1.getLength(); // similar to Circle
cyl1.set(3.0);
double diam = 2 * cyl1.getRadius(); // no call to getArea()
double vol = cyl2.Volume(); // not in Circle

Even though classes Circle and Cylinder are different, they have similar internal structures (the
radius data member) and provide services that have the same name and same interface, for
example, getLength(). This is why the issue of reusing the class Circle in the design of class
Cylinder is a valid one.

Although I tried to keep this example small to let you concentrate on the design issues rather than
on the design details, the example shows that some of the existing Circle services should not be
made available in the Cylinder objects, for example, the method getArea(). On the other hand,
Cylinder clients might need services that are not available to the Circle clients, for example, the
method Volume(). This is typical for most reuse contexts¡Xsome of the existing services are
reused, some are suppressed or ignored, and some new services are added.

Now let us assume that the Circle code is available, but the class Cylinder is not designed yet.
The similarities between classes suggest that we should try to build class Cylinder using class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (824 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Circle code so that the reuse of available code is maximized and facilitated.

For many people, this similarity is a decisive argument in favor of using inheritance. This is too
simplistic. Inheritance is used too much in industry. It should not be your first choice in reuse, or at
least it should be chosen as the result of comparisons with other techniques of code reuse. How do
you choose one technique over another?

The amount and convenience of code reuse should be your first criterion. The next two criteria
should be the amount of new code that should be written and the extent of testing. This example is
very small, so the differences are not going to be essential, but they will show you what to pay
attention to while deciding which way to go.

In general, there are four approaches to code reuse: reuse of human intelligence (i.e., writing code
from scratch); writing a new class so that its methods are using (buying) methods (services) of the
existing class; writing a new class so that it inherits from the existing class, and its objects provide
their clients with the base services; and using inheritance with redefinition of some methods. For
this example, the agenda for each approach should include:

1. Human intelligence: Write new code for Cylinder from scratch, using the editor to copy
the Circle code for radius, getLength(), and other member functions into class Cylinder
and adding new Cylinder code to do the job that class Circle does not provide.

2. Buy services: Using the assumption that each cylinder "has a" circle object inside it, you
design the Cylinder class as a composite class. An object of the Circle type is used as a data
member in class Cylinder, and the Cylinder methods (e.g., getLength()), send messages
with the same name to the Circle component.

3. Inherit from the existing class as a base class: Using the assumption that each cylinder
object "is a" circle (plus some more and probably minus some), you design the Cylinder class
as a class derived from Circle; there is no need to implement code for inherited methods, for
example, getLength() because each Cylinder object can respond to these messages
inherited from its Circle base.

4. Inherit but redefine some methods: This approach supports a new way to do existing
operations; for example, the area of a cylinder should be computed differently from the area of
a circle.

In the following sections, I will implement the class Cylinder using each of these techniques and
will discuss relative advantages and disadvantages of each approach.

Reuse Through Human Intelligence: Just Do It Again

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (825 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Reuse through human intelligence is very common in non-object-oriented programming. It seems
that in object-oriented languages, the programmers are so excited about using inheritance and
composition that they look down on such a low-tech method of code reuse.

In this approach, you draw on your past. If you have experience in similar tasks, you reproduce the
code you wrote earlier and edit as is appropriate to satisfy the new requirements. In this case,
assume that you wrote and tested class Circle recently, and now your task is to write class
Cylinder. I call this approach reuse through human intelligence because you reuse the knowledge
that you accumulated by working on similar code.

Listing 14.1 shows the design of class Cylinder, which uses the design of class Circle. You
reproduce the data part of the class Circle (in this case, the radius data member) and add
whatever the class Cylinder requires (the height data member). You reproduce the constructor
and add the parameter and code to initialize the height data member. You copy the methods that
can be reused verbatim (in this case, the method getLength() and others). You bite the bullet and
implement the Cylinder methods that the class Circle lacks (in this case, the Volume() method).
And you do not pay attention to the Circle methods that are not needed in the class Cylinder (in
this case, the getArea() method). The results of program execution are shown in Figure 14-1.

Figure 14-1. Output for program in Listing 14.1.

Example 14.1. Example of code reuse through human intelligence.
#include <iostream>
using namespace std;

class Cylinder // new class Cylinder
{ protected:
 static const double PI; // from class Circle
 double radius; // from class Circle
 double height; // new code

 public:
 Cylinder (double r, double h) // from Circle plus new
code
 { radius = r;
 height = h; } // new code

 double getLength () const

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (826 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { return 2 * PI * radius; } // from class Circle

 double getRadius() const // from class Circle
 { return radius; }

 void set(double r) // from class Circle
 { radius = r; }

 double getVolume() const // no getArea()
 { return PI * radius * radius * height // new code
 } ;

const double Cylinder::PI = 3.1415926536;

int main()
{
 Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
 double length = cyl1.getLength(); // similar to Circle
 cyl1.set(3.0);
 double diam = 2 * cyl1.getRadius(); // no call to getArea()
 double vol = cyl2.getVolume(); // not in Circle
 cout << " Circumference of first cylinder: " << length << endl;
 cout << " Volume of the second cylinder: " << vol << endl;
 cout << " Diameter of the first cylinder: " << diam << endl;
 return 0;
 }

Most of the existing Circle code (its data and its methods) are copied verbatim. Unnecessary
methods are omitted. New code has to be developed for data and methods missing in Circle but
that are present in class Cylinder. This new code has to be tested. If the existing code is copied
using a text editor rather than typed in, testing the Circle code should be minimal. Since the
interfaces of the Circle functions do not change, existing testing sequences for class Circle could
be reused for class Cylinder as well.

Productivity of this method of code reuse is very high. Everybody, including your boss, is stunned
by the lightning speed of your code development. If they knew that you were relying on your
previous experience, they would be less awed. On the other hand, you were hired to do the job
because you had experience in the development of similar systems. This experience is the most
valuable asset for the development team.

From the software engineering point of view, there is a serious drawback to this approach. Do you
see what it is? These two classes, Circle and Cylinder, are related to each other. They have
common data members and common member functions. This connection between classes Circle
and Cylinder exists only in the mind of the Cylinder designer. The maintainer might easily
overlook this connection. This could result in errors during maintenance.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (827 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Reuse Through Buying Services

It is considered good practice to write C++ programs in such a way that objects that send messages
to other objects in the program are related to each other in real life. Sending a message to another
object is sometimes called buying the services of that object.

Notice that I was careful to say that the objects send messages to other objects in the program, not
that objects send messages to each other. Syntactically, it is quite possible that an object of class A
sends a message to an object of class B, and an object of class B sends a message to an object of
class A in the same program. C++ does not make such convoluted cooperation illegal. Moreover, in
some real-time programs, this architecture might even be useful. Mostly, however, this results in
unnecessary complexity of design, that is, in unnecessary complexity of partitioning the job among
cooperating classes and in complexity of links among the classes. This is why in most cases of class
cooperation, it is one class that plays the role of the client class, and it is another class that plays the
role of the server class. When a method of a client class sends a message to an object of the server
class, we say that one class "buys the services" of another class.

There are three contexts in which a client method can access a server object and send a message to
that object:

ϒΠ Define a server object as a local variable in the client method.

ϒΠ Define a server object as a data member in the client class.

ϒΠ Receive a server object as a parameter to the client method.

The first context is the most beneficial from the point of view of class communications: Only one
client function (where the server object is defined) has access to the server object. Given a choice,
you should always choose this type of client-server relationship. Often, this is not possible, because
the server object has to be accessed by other client class methods or by other classes (or by both).

The second context is the next beneficial: The server object is accessible to all member functions of
the client class. Given a choice, you should always prefer to use this type of client-server
relationship rather than using the server object as a parameter to the client class method.

The third context is the most complex from the point of view of communications between
cooperating classes: The argument object is used as a server both by the function to which it is
passed as a parameter and by the functions that call this server function. Given a choice, you should
always avoid this type of client-server relationship, reducing it to either the first context (access by
one client method only) or to the second context (access by methods of one client class only).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (828 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

From the point of view of code reuse, it is the second type of the client-server relationship that
allows one to create server classes that serve their clients by providing them the services of existing
classes.

For an example of the relationship between classes Circle and Cylinder, this means setting up a
client-server relationship between them so that a Circle object is a member of class Cylinder.
Since we try to design data members as private (or protected), the Circle services are not available
to the Cylinder clients directly. To provide such services to its clients (in this case, the
getLength() method), the Cylinder class should ask its Circle data member to do the job.

Listing 14.2 shows this design (the output of the program is the same as in Listing 14.1). Class
Circle is defined explicitly. Class Cylinder defines a data member of class Circle along with
additional data (in this case, data member height). If this data member were made public, it would
be accessible to the Cylinder client code.

class Cylinder // new class Cylinder
{ protected:
 double height; // new code
 public:
 Circle c; // no PI, no radius
 public:
 Cylinder (double r, double h) // from Circle plus new code
 : c(r) // initializer list (no PI)
 { height = h; } // new code
 double getVolume() const // no getArea()
 { double radius = c.getRadius(); // new code
 return Circle::PI * radius * radius * height; }
 } ; // no getLength(), getRadius(), set()

This class Cylinder has very few member functions. It does not have to implement methods
getLength(), getRadius(), and set() on behalf of its client code because the client code can
send these messages to the Cylinder public data member c.

Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
double length = cyl1.c.getLength(); // use Circle data member
cyl1.c.set(3.0);
double diam = 2 * cyl1.c.getRadius(); // no call to getArea()
double vol = cyl2.getVolume(); // not in Circle

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (829 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

What are the drawbacks of this design? Its data is public. The client uses the name of the class
Cylinder data member, c, and develops dependencies on the Cylinder class design. The
appropriate way to verbalize your concern about the quality of this design is to notice the division
of responsibilities between the class Cylinder and its client code. Here, the designer of class
Cylinder has an easy life. All that class Cylinder does is to supply the getVolume() method and
duck all other responsibilities. Who knows to what class the methods getLength(),
getRadius(), and set() belong? The client code knows about these methods but not its server
class Cylinder. How do I know about this distribution of knowledge? Because it is the client code
that sends these messages, not class Cylinder.

Notice that I am not complaining about the awkward chain syntax of function calls in the client
code. It is awkward, true, but my complaint is about expanding responsibilities of the client code
designer. This designer (and the maintainer of this code) is required to learn the services of two
classes, class Circle and class Cylinder, instead of learning the services of only one class,
Cylinder. In this example, the class definitions are conveniently placed together. In real life, they
can be separated. In real life, there might be more than two classes related to each other. In real life,
nothing may indicate that these classes (here, Circle and Cylinder) are related to each other.

This is why I think that the design in Listing 14.2 is a better example of buying services. The
Circle data member is not public in class Cylinder. (It is protected, but for the client code, this is
as much out of reach as private.) As a result, it is class Cylinder, not its client, that knows to what
class the methods getLength(), getRadius(), and set() belong. Class Cylinder defines a set
of one-liners¡Xthe only task of these member functions is to turn around and send the message with
the same name to the Cylinder data member c.

Example 14.2. Example of code reuse through buying data member services (class
composition).
#include <iostream>
using namespace std;

class Circle // original code for reuse
{ protected: // inheritance is one of the
options
 double radius; // internal data
 public:
 static const double PI; // it must be initialized

 public:
 Circle (double r) // conversion constructor
 { radius = r; }

 double getLength () const // compute circumference

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (830 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { return 2 * PI * radius; }

 double getArea () const // compute area
 { return PI * radius * radius; }

 double getRadius() const
 { return radius; }

 void set(double r)
 { radius = r; } }; // change size
 const double Circle::PI = 3.1415926536;

class Cylinder // new class Cylinder
{ protected:
 Circle c; // no PI, no radius
 double height; // new code
 public:

 Cylinder (double r, double h) // from Circle plus new code
 : c(r) // initializer list (no PI)
 { height = h; } // new code

 double getLength () const
 { return c.getLength(); } // from class Circle

 double getRadius() const // from class Circle
 { return c.getRadius(); }

 void set(double r) // from class Circle
 { c.set(r); }

 double getVolume() const // no getArea()
 { double radius = c.getRadius(); // new code
 return Circle::PI * radius * radius * height; }
 } ;

int main()
{
 Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
 double length = cyl1.getLength(); // similar to Circle
 cyl1.set(3.0);
 double diam = 2 * cyl1.getRadius(); // no call to getArea()
 double vol = cyl2.getVolume(); // not in Circle
 cout << " Circumference of first cylinder: " << length << endl;
 cout << " Volume of the second cylinder: " << vol << endl;
 cout << " Diameter of the first cylinder: " << diam << endl;
 return 0;
 }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (831 of 1187) [8/17/2002 2:58:03 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In this design, both data encapsulation and separation of concerns are well supported. The designer
of the client code only has to know its server Cylinder. There is no need to know the design of
class Circle (a server of the server class). The connection between the classes is clear during
maintenance.

This method of code reuse might be even faster than rewriting from scratch. Tests are less
demanding¡Xthe one-liners are easy to test. There is no need for inheritance and its coupling
between the base and derived classes.

A potential problem might arise of class Cylinder needing access to Circle data members. It is
important that class Circle provide the access methods needed by class Cylinder. Some C++
programmers dislike the proliferation of one-liners. They are simple, but they are too boring. As
you are going to see in the next section, the use of inheritance eliminates this problem.

Code Reuse Through Inheritance

Code reuse through inheritance is the most popular method used today. Usually, most base services
could be inherited "as is," and additions or changes are relatively few. In such situations, this
method works well and eliminates a lot of one-line methods that are typical for the class
composition.

Listing 14.3 shows an example of reusing the code for class Circle by making it the base class for
the derived class Cylinder. Since the client code is the same as in Listing 14.1 and 14.2, it is small
wonder that the program output is the same as the output shown in Figure 14.1.

In the previous version, in Listing 14.2, I assumed that a cylinder "has a" circle. Hence, class
Cylinder implemented the method common to both classes sending messages to its data member
of class Circle. In this version of the program, I assume that a cylinder "is a" circle.

The client of the derived class Cylinder has easy access to base class services. The client code
calls them (e.g., getLength()) as if these services were defined in the class Cylinder. The design
of class Cylinder is easy too. It defines only the features that are absent in the base class Circle.
It is as easy as using composition with public data members of class Circle. It is definitely easier
than using composition with non-public data members of class Circle as in Listing 14.2. For class
composition, class Cylinder has to implement a one-liner method for each Circle method that has
to be made available to the Cylinder client code. For inheritance, these one-liners are gone.

The initializer list for the derived class constructor is similar to the initializer list for class
composition¡Xthe name of the data member in Listing 14.2 is replaced with the name of the base
class in Listing 14.3. Do you remember what the initializer lists are for? Since class Circle has no

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (832 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

default constructor, it would be a syntax error to create an object of class Cylinder (not class
Cylinder itself, but an object of class Cylinder) without the use of the initializer list, whether you
design with composition or with inheritance.

So, the design with inheritance is either just as complex as design with class composition (e.g., for
initializer lists) or is simpler than class composition. (The one-line data members are gone.) Does it
mean that we are getting something for nothing, that designing with inheritance is so much better
than designing with composition? Of course not.

Example 14.3. Example of code reuse through inheritance.
#include <iostream>
using namespace std;
class Circle // original code for reuse
{ protected: // inheritance is one of the options
 double radius; // internal data
 public:
 static const double PI; // it must be initialized

 public:
 Circle (double r) // conversion constructor
 { radius = r; }

 double getLength () const // compute circumference
 { return 2 * PI * radius; }

 double getArea () const // compute area
 { return PI * radius * radius; }

 double getRadius() const
 { return radius; }

 void set(double r)
 { radius = r; } }; // change size

 const double Circle::PI = 3.1415926536;

class Cylinder : public Circle // new class Cylinder
{ protected:
 double height; // other data is in Circle

 public:
 Cylinder (double r, double h) // from Circle plus new code
 : Circle(r) // initializer list (no PI)
 { height = h; } // new code

 double getVolume() const // no getArea()
 { return height * getArea(); } // additional capability

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (833 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 } ;

int main()
{
 Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
 double length = cyl1.getLength(); // similar to Circle
 cyl1.set(3.0);
 double diam = 2 * cyl1.getRadius(); // no call to getArea()
 double vol = cyl2.getVolume(); // not in Circle
 cout << " Circumference of first cylinder: " << length << endl;
 cout << " Volume of the second cylinder: " << vol << endl;
 cout << " Diameter of the first cylinder: " << diam << endl;
 return 0;
 }

The major problem with the use of inheritance is that the client code designer does not have one
segment of code that describes the services provided by the server class. In Listing 14.2, where
composition was used, this segment of code was the specification of class Cylinder itself. In
Listing 14.3, where inheritance is used, the specification of class Cylinder describes only what
class Cylinder adds to the capabilities of the base class Circle. The rest of the services available
to the client code of class Cylinder are described elsewhere, in the specification of class Circle.
It is the responsibility of the programmer of the Cylinder client code to learn the services supplied
by the base class. The situation becomes even worse if the inheritance hierarchy is tall.

This is not a problem for the C++ compiler. The compiler searches the inheritance tree to verify the
legitimacy of the messages in the client code; so does the human designer (and maintainer). But for
a human being this is more difficult than for the compiler.

The second problem with the use of inheritance is that the client code designer might do the job of
learning the capabilities of the base class too well and come to use the base services that the derived
class should not support. For example, the client code might compute the cylinder surface area this
way:

 double area = cyl1.getArea(); // nonsense - this is not the area!

On the surface, this function call looks exactly the same as calls to methods getLength(),
getRadius(), and set(). Why are these methods the same for classes Circle and Cylinder, but
the method getArea() should be different? These calls look the same to the compiler, they look
the same to the Cylinder client code designer, and, yes, they might look the same to the maintainer
who might not be very competent in the intricacies of geometry.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (834 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It falls to the designer of class Cylinder to make sure that the Cylinder client code can use
methods getLength(), getRadius(), and set()¡Xbut not the method getArea(). How does
one do that? One of the ways to achieve this is to use the private or protected mode of inheritance.

class Cylinder : protected Circle // new class Cylinder
{ protected:
 double height; // other data is in Circle
 public:
 Cylinder (double r, double h) // from Circle plus new code
 : Circle(r) // initializer list
 { height = h; } // new code
 double getVolume() const // no getArea()
 { return height * getArea(); } // additional capability
 } ;

But this is too much. True, the Cylinder client code cannot call getArea() because it became
protected in class Cylinder, but the methods getLength(), getRadius(), and set() also
became protected. There are two remedies. One is to explicitly define the methods getLength(),
getRadius(), and set() as public in the derived class Cylinder but not to do that for the method
getArea() or whatever other base services should be barred from the derived class clients.

class Cylinder : protected Circle // new class Cylinder
{ protected:
 double height; // other data is in Circle
public:
 Circle::getLength; // no getArea() here
 Circle::getRadius;
 Circle::set;
 public:
 Cylinder (double r, double h) // from Circle plus new code
 : Circle(r) // initializer list (no PI)
 { height = h; } // new code
 double getVolume() const // no getArea()
 { return height * getArea(); } // additional capability
 } ;

This is not as bad as it looks. Yes, making public base methods protected in the derived class and
then making them public again is awkward. From the software engineering point of view, this is
excellent. Why? Because we wound up with the explicit list of public services that the class
Cylinder provides to its clients! It is a good example of self-documented code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (835 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Another remedy is illustrated in Listing 14.4. The derived class Cylinder makes the inherited
methods explicitly available to the Cylinder client code, with the exception of those methods (e.g.,
getArea()), that should be out of reach of the client code. This is very similar to the version with
class composition in Listing 14.2. Notice the use of the class scope operator inside these one-liner
functions. With class composition, there is a data member to send a message to. With inheritance,
there is no explicit data member; instead, there is the base part of the derived class object. Omitting
the scope operator will result in an infinite recursive call.

void Cylinder::set(double r)
 { set(r); } // implicit recursive call

The call to function set() takes place in the scope of the class Cylinder. According to the rule of
the function call resolution, the compiler looks first for a name that belongs to the local scope.
Since this name is found in class Cylinder, the compiler calls the Cylinder::set() again and
never goes up the inheritance chain to call the Circle::set() method. This implementation is
equivalent to the following function.

void Cylinder::set(double r)
 { Cylinder::set(r); } // explicit recursive call

To avoid infinite recursion, the use of the Circle scope operation is necessary.

Example 14.4. Example of code reuse through protected inheritance.
#include <iostream>
using namespace std;

class Circle // original code for reuse
{ protected: // inheritance is one of the
options
 double radius; // internal data
 public:
 static const double PI; // it must be initialized

 public:
 Circle (double r) // conversion constructor
 { radius = r; }

 double getLength () const // compute circumference
 { return 2 * PI * radius; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (836 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 double getArea () const // compute area
 { return PI * radius * radius; }

 double getRadius() const
 { return radius; }

 void set(double r)
 { radius = r; } }; // change size

 const double Circle::PI = 3.1415926536;
class Cylinder : protected Circle // new class Cylinder
{ protected:

 double height; // other data is in Circle
 public:

 Cylinder (double r, double h) // from Circle plus new code
 : Circle(r) // initializer list (no PI)
 { height = h; } // new code

 double getLength () const
 { return Circle::getLength(); } // from class Circle

 double getRadius() const // from class Circle
 { return Circle::getRadius(); }

 void set(double r) // from class Circle
 { Circle::set(r); }

 double getVolume() const // no getArea()
 { return height * getArea(); } // additional capability
 } ;

int main()
{
 Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
 double length = cyl1.getLength(); // similar to Circle
 cyl1.set(3.0);
 double diam = 2 * cyl1.getRadius(); // no call to getArea()
 double vol = cyl2.getVolume(); // not in Circle
 cout << " Circumference of first cylinder: " << length << endl;
 cout << " Volume of the second cylinder: " << vol << endl;
 cout << " Diameter of the first cylinder: " << diam << endl;
 return 0;
 }

This solution eliminates both drawbacks of using inheritance. There is an explicit list of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (837 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

services that the class Cylinder provides to its client code, and there is no danger that the client
code will call the base methods whose use is not appropriate for the derived class. On the other
hand, the solution with the use of composition presented in Listing 14.2 does not have these two
drawbacks either. Given a choice, I would use composition rather than protected inheritance
because composition is conceptually simpler, and the links between classes are not as strong as
with protected inheritance, although these two solutions are quite similar.

Inheritance with Redefined Functions

The need to suppress some base methods in the derived class objects arises only when inheritance
is used inappropriately. The need to do so indicates that an object of the derived class is not an
object of the base class. Rather, it has that base object as a data member. This is why I favor the use
of composition over the use of protected inheritance.

Often, the relationship between classes is close enough to the inheritance relationship, and there are
no methods in the base class that have to be suppressed. There might be, however, methods that
should be treated differently in the derived class. The method getArea() is a good example. For an
object of the base class Circle, this method should return the area of the circle.

double Circle::getArea () const // compute circle area
{ return PI * radius * radius; }

For an object of the derived class Cylinder, this method should return the area of the two circles
that the cylinder has (oops! Forgive the slip of the tongue that indicates that the cylinder "has a"
circle rather than "is a" circle) plus the side area of the cylinder.

double Cylinder::getArea () const // compute Cylinder area
{ return 2 * Circle::PI * radius * (radius + height); }

Often, when the derived class method hides the base class method, the derived class method does
the same work as the base class method plus some more. C++ programmers like to "document" this
fact by explicitly calling the base class method from the derived class method (using the base class
scope operator explicitly).

double Cylinder::getArea () const // compute Cylinder area
{ double area = Circle::getArea();
 return 2 * (area + Circle::PI * radius * height); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (838 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Overriding the base methods in the derived class is a very common programming practice. It is
rooted in the high premium that C++ programmers put on the use of uniform names. When I was
programming in COBOL, my boss would tell me to use different names for each function (or
paragraph), for example, COMPUTE-CIRCLE-AREA and COMPUTE-CYLINDER-AREA. In
addition, I would be asked to use an elaborate system of numeric prefixes that indicated to what
unit in the program each name belonged.

In C++, this practice is frowned on. I am not sure whether the use of uniform names (e.g.,
getArea()) is driven by a esthetic preferences only. Its technical rationale is the feasibility of using
the rules of name resolution for specifying which method (base or derived) should be called. As
you saw in the previous chapter, these rules might initially be confusing, but they soon become a
part of your programming intuition.

Inheritance with redefinition is usually public. It requires more work than does public inheritance
without redefinition: Some design is reused (e.g., radius, and getLength()), some new members
are added (e.g., height, and getVolume()), and some methods are redefined e.g., getArea()).
This version of the program is shown in Listing 14.5. I changed the Cylinder client code slightly
to demonstrate the use of the getArea() method by the client code. The output of the program is
shown in Figure 14-2.

Figure 14-2. Output for program in Listing 14.5.

Example 14.5. Example of code reuse through public inheritance with method
redefinition.
#include <iostream>
using namespace std;

class Circle // original code for reuse
{ protected: // inheritance is one of the
options
 double radius; // internal data
 public:
 static const double PI; // it must be initialized

 public:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (839 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Circle (double r) // conversion constructor
 { radius = r; }

 double getLength () const // compute circumference
 { return 2 * PI * radius; }

 double getArea () const // compute area
 { return PI * radius * radius; }

 double getRadius() const
 { return radius; }

 void set(double r)
 { radius = r; } }; // change size

 const double Circle::PI = 3.1415926536;
class Cylinder : public Circle // is Cylinder really a
Circle?
 { protected:
 double height; // other data is in Circle

 public:
 Cylinder (double r, double h) // from Circle plus new code
 : Circle(r) // initializer list (no PI)
 { height = h; } // new code

 double getArea () const // compute Cylinder area
 { return 2 * Circle::PI * radius * (radius + height); }

 double getVolume() const { return height * getArea(); }
 // additional capability
 } ;

int main()
{
 Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
 double length = cyl1.getLength(); // similar to Circle
 cyl1.set(3.0);
 double diam = 2 * cyl1.getRadius();double vol = cyl2.getVolume();
 // not in Circle
 cout << " Circumference of first cylinder: " << length << endl;
 cout << " Volume of the second cylinder: " << vol << endl;
 cout << " Diameter of the first cylinder: " << diam << endl;
 cout << " Area of first cylinder: " << cyl1.getArea() << endl;
 return 0;
 }

When the derived class redefines a base class method, it uses the same method name. In this
example, both base and derived methods also had the same interface. This happens often because

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (840 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

both functions perform similar operations. The objects of the operation are somewhat different, but
their general semantics (meaning) is the same. It is only natural that their interfaces be the same.

C++ rules are silent on that. It is okay to overwrite a base function with the same interface but this
is not mandatory. For whatever reason, many C++ programmers believe that the interface must be
the same. This is not the case. Whether the designer of the derived class changes the method
interface or keeps it the same as in the base class, the base method name is hidden from the derived
class client code. It is the derived class method that is called from the client code. The client code
can use the base method if desired, but this requires the base class scope operator to give a
command to the compiler and a visual cue to the human reader.

Cylinder cyl1(2.5,6.0), cyl2(5.0,7.5); // initialize data
 double length = cyl1.getLength(); // similar to Circle
 cyl1.set(3.0);
 double diam = 2 * cyl1.getRadius();double vol = cyl2.getVolume();
 // not in Circle
 cout << " Circumference of first cylinder: " << length << endl;
 cout << " Volume of the second cylinder: " << vol << endl;
 cout << " Diameter of the first cylinder: " << diam << endl;
 cout << " Side area of first cylinder: "
 << cyl1.Circle::getArea() << endl; // visual cue

Pluses and Minuses of Inheritance and Composition

Inheritance is a good abstraction tool. It explicitly stresses conceptual connections among classes
when these connections exist. For example, the commonality between classes Circle and
Cylinder is best reflected in the program design by deriving class Cylinder from class Circle.
This inheritance relationship is conspicuous in the Cylinder code. For the client programmer and
for the maintainer, there is no need to study the classes separately, comparing the code of one class
against that of another class, trying to figure out whether these classes are similar.

The use of inheritance helps us to save development effort. It does not always make the source code
for class implementation shorter. Often, it is the other way around. Still, many programmers believe
that it is easier to develop a complex class in simple stages rather than as a monolithic unit. For
example, developing the class Circle first allows the designer to concentrate on relatively simple
things (like computing circumference) and tackle more complex tasks (like computing the cylinder
volume or area) later, when class Circle is firmly in place.

However, the use of inheritance introduces extra implicit dependencies between classes, which
might not be obvious to the designer (or maintainer) of the client code. Studying the derived class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (841 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

description does not provide the reader with the list of services available to the client. The reader
has to study the base class as well.

The use of class composition is good competition for inheritance. The aggregate class provides the
reader with the complete list of services that the class supports. Composition also introduces
dependencies between classes, but these dependencies are explicit, in the form of one-liner
methods, which push the work from the container class to the methods of the component class.

The choice between inheritance and composition depends on the degree of similarity between the
related classes. If the number of common methods is relatively small and the number of additional
services to be supported is relatively large, composition is the way to go. The aggregate class will
have only a few one-liner functions, and the expense of writing them will be offset by the
availability of the explicit list of supported services.

If the number of common methods is relatively large and the number of additional services is
relatively small, inheritance might be the way to go. Many programmers are annoyed at the need to
write "dumb" one-liner methods. The use of inheritance will eliminate these one-liner
methods¡Xthe base class methods will be inherited by the derived class directly. Redefining base
methods in the derived class is aesthetically pleasing and opens the way to the use of polymorphism
(to be discussed in the next chapter).

If you use inheritance, use it in the simplest way possible, as public derivation. Avoid protected and
private inheritance.

Often, inheritance is used just to speed up work, without a clear conceptual "is a" connection
among classes. If you have doubts that a natural "is a" relation exists among classes, do not use
inheritance; use composition.

Unified Modeling Language

Traditional programs are written as systems of cooperating functions. Object-oriented programs are
written as systems of cooperating classes that include both data and functions. In the first part of
this book, I concentrated mainly on techniques of writing functions. The skills of writing
processing code and implementing communications between functions are crucial for creating high-
quality C++ programs.

In the second part of the book, I concentrated on writing classes. The skills of binding together data
and operations and implementing classes as servers and as clients are crucial for creating high-
quality C++ programs.

In this part of the book, I concentrate on writing classes that are related to each other. And guess
what? I am going to tell you that the skills of implementing relationships among classes, such as

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (842 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inheritance and composition are¡Xwhat else?¡Xcrucial for creating high-quality C++ programs.

When a C++ program becomes sufficiently complex, it becomes difficult to visualize the
relationships between classes implemented by the program. Moreover, when a C++ program
becomes sufficiently complex, it becomes difficult to visualize the relationships between classes
you are going to implement.

The Goals of Using UML

A common approach to this problem is to use graphical notation to describe the relationships
among real-life entities whose behavior the application should emulate¡Xcircles and cylinders,
customers and accounts, inventory items and their suppliers. This is the task of object-oriented
analysis, which describes the system activities in the form of cooperation among classes rather than
in the form of cooperation among operations (functions).

The next step is to decide which real-life entities should be represented as classes in the C++
program and which relationships between real-life entities should be implemented as relationships
among classes in the C++ program. This is the task of object-oriented design, which also uses
graphical notation to describe the classes and their relationships within the program.

Unlike object-oriented systems analysis, which concentrates on describing program external
interfaces (with users and other systems), object-oriented design concentrates on describing the
structural elements of the system: system architecture, allocation of its subsystems to different
hardware components, and links between different classes. Most of these links are the same as the
links between entities established at the object-oriented analysis phase, but some analysis links
might not be implemented in the program, and some additional links between classes (and some
additional classes) might be added to improve system performance or user interface.

In the first two parts of the book, I discussed methods of making system components less
dependent on each other. This is a very sound approach because dependencies between system
components require cooperation between developers, and cooperation between developers is prone
to error. But it is not realistic to expect that system components are totally independent from each
other. Since they are part of the same system, they have to cooperate with other components. It is
important to keep this cooperation to a minimum, but it is also important to describe this
cooperation with the appropriate degree of precision.

Enter the UML notation. In the traditional system development process, the analysis, design, and
implementation phases all use different techniques of graphical notation to support the diverse
interests of the analyst, the designer, and the programmer. In the object-oriented development
process, the analyst, the designer, and the programmer use the same notation. This has two
important advantages over the traditional approach. First, the cooperating developers¡Xanalysts,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (843 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

designers, and programmers¡Xuse the same graphical notation and hence there is less opportunity
for misunderstanding or for different interpretations of implicit assumption. Second, there is no
drastic change of representation between the phases of the development process and hence there is
less opportunity for errors creeping in during the course of transformation.

UML is a powerful modeling language that allows the developer to use graphical notation for
representing relationships between cooperating system components. "Cooperating" means that the
system components know about each other, use each other, and depend on each other. This
graphical notation is based on the concept of an object as a system component, with its data
members, member functions, and relationships among objects. These object diagrams can be
discussed with system users and system implementers to verify that the relationships are reflected
correctly. Later, these diagrams are converted to object-oriented implementations.

This is a significant conceptual leap from the object-oriented programming approach I was
describing earlier. The essence of object-oriented programming is binding together data and
operations. It is the combination of specific data members and the operations over them that
characterizes a C++ class. This definition says nothing about relationships. This is unfortunate
because it creates a false impression that the combination of data and behavior describes the object
sufficiently well.

Object-oriented analysis and object-oriented design take a different approach. They describe
objects as a combination of data, behavior, and relationships with other program components. As
you will see, the description of data and behavior plays a rather basic role in UML. It is the
relationships between classes and objects that most UML notation concentrates on.

The object-oriented programming approach underplays the significance of relationships, or
associations, because programmers try to make the program components as independent from each
other as possible. As a result of this concentration on component independence, all object-oriented
languages give the programmer the specific means for describing data members and for describing
member functions. They do not give the programmer the native means for describing associations
among program components.

Real life being what it is, program components are always somehow related to each other. Hence,
programmers face the task of describing these relationships using ad hoc techniques: data members
of programmer-defined types or data members that are pointers or references to other objects.

The major role of every design notation, including UML, is to help developers describe the
relationships among objects. When a C++ program is being implemented, it is up to programmers
to decide which objects should be related to which objects. It is nice to be able to implement the
program so that it can do whatever it is supposed to do without becoming excessively complex.
Using the UML notation, the developers can compare different design decisions and choose those
relationships that (1) are sufficient for doing the job and (2) minimize the complexity of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (844 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

relationships among program objects.

UML merges three different systems of notation for building graphical models of computer
systems. These models help the developers to analyze the requirements for the system. The
requirements usually describe system functionality, user interface, interfaces with other systems,
performance, and reliability. The graphical methods try to represent these requirements in the form
of relationships among system components. This is, of course, an ambitious undertaking.

One system of notation was developed by Grady Booch and his company, Rational Software
Corporation. His notation included several views of the system with a separate diagram for each
view. The symbols for objects on Booch diagrams were of irregular "cloud" form (very different
from the client-server diagrams I used in previous chapters) and were hard to draw by hand. Booch
was one of the first to realize that graphical modeling needs the support of computer-based tools.
The tool that his company developed, Rational Rose, is one of the most successful tools for object-
oriented modeling and is largely responsible for the popularity of the Booch approach. With the
introduction of UML, Rational Rose was modified to support the UML notation as well.

Another system of notation was developed by James Rumbaugh and his associates at General
Electric. It was called the Object Modeling Technique (OMT). In addition to the object model,
which described the relationships among the objects in the system, the OMT notation also included
two other models, the dynamic model and the functional model. Even though these two models
were not particularly object oriented, they represented the adaptation of two well-known design and
analysis notational techniques: state transition diagrams and data flow diagrams. This synthesis
smoothed the transition to the object-oriented approach for those developers who had experience in
these two graphical notations. This is probably the major reason that OMT was gaining popularity
in industry as an emerging standard approach.

The third system was developed in Sweden by Ivar Jacobson and his company, Objective Systems.
He marketed his notation under the names Object-Oriented Software Engineering (OOSE) and
Objectory. This notation included so-called "use cases" that describe the interactions between the
system and external actors such as the system operator or an interface with other systems.

Each system of notation was described with recommendations on how to use the notation for first,
object-oriented analysis, then for object-oriented design, and finally, for object-oriented
implementation. Each book tried to explain why the object-oriented approach was better than the
traditional approach. I have to be frank: these explanations were not particularly clear. They
worked well for people who already wanted to believe in the advantages of the object-oriented
approach. Those who did not know where the savings and improvements in quality would come
from remained unimpressed.

However, the drawbacks of the traditional approach to system development were so serious that the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (845 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

industry was willing to accept anything that would promise an improvement over the existing state
of affairs. But what approach to accept? In addition to the systems of notation developed by Booch,
Rumbaugh, and Jacobson, there were similar systems of notation described by Shlaer and Mellor,
Yourdon and Coad, Coleman, and others¡Xactually, it is quite a long list. All of these systems of
notation are similar, and all are a variation or expansion of the work on entity-relationship diagrams
for data base design performed by P. Chen in 1976.

For a number of years, the authors of the different systems of notation devoted significant energy to
public argument: which system of notation was better and why. The idea behind this argument was
that the choice of method was a very important decision that had to be approached with proper care.
Some experts believed that one approach might be better than the others for one kind of software
system (e.g., real-time systems), while another approach might be better for another kind of
software system (e.g., business systems). Other experts were saying that one method was better
than all the others¡Xperiod. These arguments were called "the method war," although the
differences between competing approaches were in notation rather than in methodology; and the
differences in notation were not really significant.

Around 1995, Booch, Rumbaugh, and Jacobson, the "three amigos," as they were called, decided to
create a unified system of notation that would become the dominant modeling language (another
way to describe this is to say that Booch hired both Rumbaugh and Jacobson to work for Rational).
The UML is the result of their collaboration. They wrote books that describe the UML and the
ways to use it. The Rational Rose tool provides full support to the UML notation.

The bad news is that the UML notation combines diverse ideas and hence is complex. The books
that describe it are unwieldy. The learning curve for mastering the modeling language is
steep¡Xthere is so much to learn. However, when a designer makes a bad modeling decision, there
is no compiler to flag the error (unlike the C+ compiler that helps you learn when you make an
error). This is why the process of mastering the UML is much slower than, for example, the process
of learning C++.

The good news is that you do not have to be an expert in UML to be able to communicate your
ideas about the structure of object relationships in your program. In this book, I am describing only
the basics of the UML that are sufficient for discussing object relationships in C++ programs.

Basic UML: Notation for Classes

Objects in UML are considered to be instances of classes, and classes are descriptions of object
types. The class describes the attributes and behavior of one type of object. The major source of
classes that you want to include in your UML model is the analysis of the concepts and entities of
the problem domain: the area of the application. For a business system, for example, the classes in
the model would be Customer, Item, Shipment, Requisition, Invoice, and so on. For real-time

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (846 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

application, the classes would include Sensor, Display, CustomerCard, Button, Motor, and Lock.

Classes included in the model are placed in a class diagram. A class is represented as a rectangle
divided into three sections or compartments. The top section contains the class name, the middle
section contains class attributes, and the bottom section lists operations. When you implement the
class in C++, the attributes become data members, or fields, and the operations become member
functions, or methods. Figure 14-3(a) shows a general picture of a class in UML. Figure 14-3(b)
shows a specific example of the class Point with attributes x and y, operations set(), get(),
and move(), and the assignment operator. Figure 14-3(c) shows an example of class Rectangle
with the attributes thickness, pt1, and pt2, and operations move() and pointIn().

Figure 14-3. UML examples of a generic class template and two specific classes.

You see that UML allows you to indicate the type of attributes as either primitive (built-in) types or
as a library class (e.g., String) or as one of the classes defined in the application (e.g., Point).
UML allows you to specify much more than just the name and the type of the attribute. You can
indicate whether an attribute is static (class scope attribute), the set of allowed values (if the
attribute is the enumeration type), the attribute initial value (if it has any), or even the attribute
visibility (public, private, or protected). This is optional, because often, especially at the beginning
of the analysis and design process, the developers are not sure what the types and other properties
of the attributes are. These properties might be clarified later, during the iterative process of
refining the design or even during programming.

For operations, UML allows you to specify the operation signature: its name, return type, and the
names and types of the parameters. You can also specify the default parameter values (if they are
needed), whether the operation is a static operation (class scope operation), and the operation
visibility (public, private, or protected).

As you can see, the UML class description can have as many details as does the class specification
written in C++. I will spare you the specific details of the UML notation for attributes and
operations because it is not necessary for our discussion of relationships among classes. Moreover,
to make the class diagram more manageable, the developers often omit the operation section from
the class notation and discuss relationships using class diagrams, where classes have only two

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (847 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

sections, for the name of the class and for the attributes. For even more complex diagrams (and
most class diagrams are complex), you can omit the attribute section as well and represent the class
as a rectangle with the class name only. This is the most convenient way of discussing the class
relationships.

Basic UML: Notation for Relationships

Real-life entities in the application domain might be related to each other. These relationships are
represented on the class diagram using connections between classes. The technical term for a
connection between classes is the association. The existence of an association between classes
means that objects of these two classes have a link between them. This link might mean that one
object knows about another object, or is connected to another, or uses another object to achieve its
purposes, or even that for each object of one class there is an object of another class. This is very
general and very important: The associations, when implemented, are used to access one object
through another object in the C++ program.

Figure 14-4 shows examples of associations. Figure 14-4(a) indicates that each Circle object is
associated with a Cylinder object but does not specify the nature of the association. Notice that it
is only the name of the class that is represented in the class rectangle; the attributes and operations
are not there. They can be put there, too, but that would only clutter the class diagram; which is
worth doing only if the list of attributes and operations somehow clarifies the nature of the
relationship between objects.

Figure 14-4. UML examples of associations among classes.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (848 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The association between objects is usually bidirectional¡Xif a Circle object is associated with a
Cylinder object, then the Cylinder object is related to the Circle object. In the case of these two
objects, there is little that can be said about the relationship between the objects. The UML notation
allows us to express additional information about the relationship by inventing names for the
associations and by assigning roles to the objects associated with each other.

Figure 14-4(b) shows that a Person object can be related to a Car object, and a Car object can be
related to a Person object and a Registration object. Each association has two labels, one for
traversing the association in one direction and another for traversing the association in the opposite
direction. To avoid confusion as to the direction in which the name connects the objects, you can
put small arrows next to the name.

In Figure 14-4(a), I was not able to come up with a good name for the association between Circle
and Cylinder objects. They are related, and that is it. In Figure 14-4(b), I am saying that a Person
object owns a Car object, and a Car object is owned by a Person object. In addition, I am saying
that a Car object is registered by a Registration object, and a Registration object registers a
Car object. I also specify the role of each object in the relationship. A Person object plays the role

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (849 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

of an owner, a Car object plays the role of a vehicle, and a Registration object plays the role of a
document.

This probably does not strike you as a very profound method for describing relationships among
objects. Rest assured that you are not alone. Indeed, just knowing the names of links between
objects and the roles that the objects play does not help much toward understanding how objects
cooperate in real life and how program objects cooperate during program execution. If, however,
the developer knows very little about the application domain, the names of associations and the
roles of objects might be helpful in channeling the analysis in the proper direction.

Often, comparing different names for relationships in a class model feels like describing the theory
of relativity in simple terms. The major problem with describing associations is that any solution is
indeed relative. Figure 14-4(c) describes the associations between classes Person, Car, and
Registration using different relationships. The third alternative is to associate each class with two
other classes. Which alternative is better and why? There is no good answer to this question.

Association can be implemented in C++ with pointers (or references) that point from one object to
another (associated) object. Another popular technique of implementing association in C++ is the
use of an object identifier as an attribute of another class. For example, class Person might have an
attribute that identifies a Car object associated with the Person instance. If necessary, class Car
might include a Person identifier as an attribute that associates the Car instance and the Person
instance.

Basic UML: Notation for Aggregation and Generalization

Aggregation is a special case of association. It indicates that two classes are connected through an
association, but the association is special. This association indicates that the relationship has the
"whole-part" meaning¡Xone object is part of another object, or another object contains the first
object (has it) or consists of some objects.

The UML notation for aggregation is the same as for association: a link between classes. To
indicate the aggregate object, a hollow diamond is attached to the end of the line between the link
and the aggregate object. Obviously, the diamond can be attached to only one end, not to both.

Figure 14-5(a) demonstrates that a Circle object is part of a Cylinder object. Actually, a hollow
diamond indicates that the aggregation is shared, and the part may be in more than one aggregate at
the same time. In composition aggregation, sharing is not allowed. The UML notation for the
composition aggregation is the same as for the shared aggregation, but the diamond attached to the
aggregate is solid rather than hollow. Figure 14-5(b) demonstrates the notation for composition
aggregation, where a Circle object is part of a Cylinder object but it cannot be part of any other
object.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (850 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 14-5. UML examples of shared aggregation, composition aggregation, and
inheritance.

Since aggregation is a special case of association, it is always possible to represent the relationship
between objects as association rather than as aggregation (shared or composition). See, for
example, Figure 14-4(a), where association is used to model the relationship among Circle and
Cylinder objects. However, this model is less precise. It is the task of the designer to represent
aggregation as aggregation rather than as just association. This will result in a simpler
implementation. Of course, if aggregation does not represent the relationship among objects well,
association should be used. The struggle between arguments in favor of general association and
specific aggregation is often the source of anguish for the designer.

The shared aggregation can be implemented in C++ similar to an association, with pointers (or
references) to the component objects. The composition aggregation can be implemented using the
part objects as data members of aggregate objects.

Generalization is the relationship between a more general class and a more specific class. The more
specific class contains the same attributes and operations as the more general class and might
contain additional information: attributes or operations. Generalization is implemented as
inheritance in object-oriented programming languages. A generalization is an "is a" relationship
between classes. Notice that this is a relationship between classes, not between object instances. A
class can inherit from another class, but an object instance cannot inherit from another object.

The specific class of the generalization relationship (the subclass) inherits all attributes, operations,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (851 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

and associations from the general class of the relationship (the superclass). The UML notation for
this relationship uses a solid line as a link between classes on the class diagram. To distinguish
between the subclass and the superclass in the relationship, a small hollow triangle is inserted
between the link and the superclass in the diagram pointing to the superclass.

Figure 14-5(c) shows the two classes, Circle and Cylinder, linked with the generalization
relationship. In this design, Circle is treated as the generalization (superclass), and Cylinder is
treated as the specialization (subclass).

If a class is used as a superclass for several specializations, each class is represented on the class
diagram separately, and each specialization class is linked to the superclass with a separate link
with a separate triangle pointing to the superclass. It is common to use only one triangle pointing to
the superclass and the link each subclass with this triangle. Figure 14-5 (d) shows class Account,
which is used as a generalization, and two other classes, SavingsAccount and CheckingAccount,
which represent different specializations of the class Account.

If a subclass is used as a generalization for another class, this other class becomes its specialization,
and the same notation is used. A class can inherit from one class and be used as a base class for
another class. This gives rise to tree-like inheritance hierarchies in UML class diagrams.

Basic UML: Notation for Multiplicity

Most relationships are binary relationships¡Xthey link two classes. Well, actually this is not so.
Recall the previous discussion between the classes Person, Car, and Registration. It is a
ternary relationship: it involves objects of three classes. And the difficulty that I had during the
discussion of this relationship stemmed from the fact that I was trying to represent a ternary
relationship as a set of binary relationships.

Even though the UML supports notation for the ternary relationship, it does not support notation for
relationships between the objects of more than three classes. Even if it did, when it comes to
implementation of relationships, the C++ language supports only binary relationships; the link
between two objects is established using a physical or a conceptual pointer. So, the relationships we
model in the UML class diagram are binary relationships¡Xthey link objects of two classes.

There is one exception to this observation. Sometimes, the relationship connects objects that are
instances of the same class. For example, an object of class Person that plays the role of the
supervisor might be associated with an object of class Person that plays the role of a team worker.
In this case, both objects are of the same class. This is a nice theoretical oddity, and most books on
UML have examples of this reflexive (or recursive) relationship. In practice, it is more convenient
to model the supervisor with the class Supervisor and to model the team member with the class
TeamMember. It is useful to have two different classes in the model because they implement

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (852 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

different responsibilities. And if they have too many features in common, well, you can always
introduce class Person as their common base.

So, most relationships in UML class diagrams are binary relationships. Each link connects two
objects of two different classes¡Xone object at one end of the link and another object at the other
end of the link. Each link links two objects, not three or four.

Sometimes, an object of one class might be related to more than one object of another class. For
example, an object of the class Supervisor might be associated with several objects of the class
TeamMember. On the UML class diagram, you will still have one link between the classes
Supervisor and TeamMember, but you will use additional UML notation to indicate multiplicity.

Figure 14-6 shows examples of indicating multiplicity on class diagrams. Figure 14-6(a)
demonstrates two classes, Point and Rectangle, in an application where each Rectangle object
is associated with exactly two Point objects, no more, no less. UML notation that can be applied to
associations can be applied to aggregations as well. Figure 14-6(b) demonstrates the relationship
between the same two classes, Point and Rectangle, which is treated as an aggregation rather
than as a general association.

Figure 14-6. UML examples indicating multiplicity for relationships.

Notice that Figure 14-3(c) indicates that class Rectangle has two attributes of class Point, pt1
and pt2. This means that any object of class Rectangle is associated with exactly two objects of
class Point. Hence, the link between classes in Figure 14-6(a) or (b) conveys exactly the same
analysis and design information as does the class diagram. Some experts are upset by this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (853 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

redundancy and recommend that you use only one way of expressing this information.

The preferred way to do this is to indicate the association and omit the attributes in the class design.
The rationale for this approach is that the associations represent the analysis and design point of
view and the attributes represent the implementation point of view. So at the stage of analysis you
indicate relationships, and during implementation you implement these relation-ships with
appropriate pointers, data members, and so on. I am not sure whether this discussion is important
from the practical point of view. To me, it looks like splitting hairs. Since you don't need to worry
about the UML compiler, you probably should do whatever your intuition tells you.

If the end of the association or aggregation link is unadorned, this means that exactly one object of
this class is required for the relationship to be operational. Figures 14-6(a) and (b) show that the
presence of exactly one object of the class Rectangle is mandatory.

Sometimes, the relationship between objects is not fixed, and its multiplicity changes during
program execution. For example, class History in Chapter 12, "Composite Classes: Pitfalls and
Advantages," is associated with class Sample. Actually, the relationship is the relationship of
composition: The object of class History contains an array of objects of class Sample. As you can
see from Listing 12.4, at the beginning of the program execution, there are no valid Sample objects
in the array. During execution, the measurement samples arrive, and information is stored in the
array until either the program terminates or the number of Sample objects reaches its
maximum¡Xeight objects.

UML allows you to represent this kind of variable multiplicity by indicating the range of the
associated objects. Figure 14-6(c) shows an example in which the number of associated objects can
change from zero to eight. If the number of objects cannot become less than one, the range starts
with 1 rather than with 0, for example, 1¡K8.

Often, the ranges of objects in relationships are artificial and reflect implementation considerations
rather than the nature of the application domain. Why, for example, is the number of Sample
objects in the measurement history limited to eight? Because C++ does not allow me to define an
object without specifying its length, and I had to specify a number. The number 8 looked as good as
any other, but there is nothing in the application domain that says that 8 is better than 10, 20, 100,
or any other number.

From the conceptual point of view, the number of samples in the history should not be limited. For
the same reason, the implementation should not force the designer to commit to a specific number.
Listing 12.7 shows the container class with dynamically allocated memory, which implements this
conceptual model. Figure 14-6(d) shows the notation for unbounded multiplicity.

Case Study: A Rental Store

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (854 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Let us consider an application that keeps track of customers borrowing and returning movies at a
video rental store.

For simplicity's sake (assuming that the rental store is relatively small and the computer memory is
relatively large), the application loads the database of customers and rental items into computer
memory at the beginning of the execution. The rental item data includes the item title, quantity on
hand, and the item id. The customer data includes the customer name and phone number (with the
phone number used as the customer id), the number of movies the customer has borrowed, and their
ids.

Even though this example is very simple, it has sufficient details for illustrating the basic issues of
designing classes, setting up their relationships, and optimizing the design from the point of view of
keeping dependencies between classes to a minimum.

To make it more interesting from the point of view of using inheritance, I will add the following
detail: The movie data is stored in a file with a letter indicating the movie category ("f" for feature,
"c" for comedy, "h" for horror). When the data is read into memory, the information about the
category is stored in numeric form (1 for feature, 2 for comedy, 3 for horror). When the movie
information is displayed on the screen, the category is displayed as a word ("feature" for feature,
"comedy" for comedy, "horror" for horror). When the data is stored back to the file, the movie
category is stored as a letter again.

When a customer brings a movie to the register to check it out, the store clerk enters the customer's
phone number for the search of the database. If the customer is not found, a message is displayed.
If the customer is found, the customer name and phone number are displayed along with the data
about the movies that the customer has on loan. After verifying the customer name, the clerk enters
the movie id. The quantity on hand for this movie is decremented by one, and the movie id is added
to the list of ids of the movies borrowed by this customer.

If a barcode reader is used to enter the movie id, then the movie will definitely be found in the
database. In this prototype, when the movie id is entered manually, an error message is displayed if
the movie is not found.

When the customer brings a movie to the register to return it, the store clerk again enters the
customer phone number. When the customer record is displayed, the clerk enters the movie id. If
the id is found in the list of movies borrowed by the customer, it is deleted from the list, and the
quantity on hand for that movie is incremented by one. If the movie id is entered incorrectly, an
error message is displayed.

For simplicity of the example, I omitted the monetary aspect of the program (charging rental fees
and late fees), the performance part of the program (accumulating the indicators of demand for each

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (855 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

movie), and the management part of the program (adding, deleting, and editing customer and movie
data).

Classes and Their Associations

The list of classes for an application is often compiled by analysis of the functional specification or
another document that describes system user interface and behavior.

Some experts recommend listing all of the nouns from the system description as a good starting
point. Other experts ridicule this approach because most of the nouns describe entities that do not
rise to the level of a class (phone number, quantity on hand, and so on), and they will later wind up
as attributes (data members) rather than classes.

One of the caveats of using the system description for building the model is that the description
concentrates on the entities that interface with the system (e.g., customer, store clerk, database).
The goal of modeling is to eventually produce the system implementation, which consists of classes
that contain data and operate on that data (e.g., Customer, StoreClerk, and Database). The
entities from the system description and classes from the system implementation might have the
same names, but they are not identical.

Skipping details, let us assume that the class model should include the following classes: Item
(information about a movie item), Customer (information about a customer), Inventory
(managing the set of items and the set of customers), File (managing the database of inventory
items and customers), and Store (managing the user interface and requesting services from other
classes). Figure 14-7 shows each of these classes together with their attributes and operations.

Figure 14-7. UML notation for classes with their attributes and operations.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (856 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The meaning of most attributes and operations in Figure 14-7 is self-evident. What is not self-
evident now will become clearer during further discussion.

What classes are associated with what classes here? I have to admit that my system description is
not very helpful in figuring that out. On the other hand, I am in no hurry to admit my fault. After
all, the description is usually written to help one build and test the program, not to facilitate
drawing an UML model of the system.

I think the best way to learn how to create class models is to try to create several alternatives for a
simple application, then implement each alternative and evaluate each implementation from the
point of view of its complexity. The application of the size of this example is a good tool for this
type of learning.

It looks, however, like I am in the minority on this point. Most books on object-oriented analysis
and design find it appropriate to give you examples of class diagrams using the system description
as the starting point, without further implementation and, most important, without evaluation of
how the model affects the complexity of the solution. Meanwhile, the decisions on how to allocate
attributes and operations among classes and how to link the classes with relationships affect the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (857 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

complexity of the program and therefore its reusability and maintainability.

Obviously, the classes Item and Customer should play the role of servers for other classes: They
provide such services as saving and retrieving the values of data members.

In multifile projects, each class specification is placed in a separate header file. The header files are
included in the source files that implement the clients of the class, that is, the source files that use
the name of the class to define their variables or parameters. Listing 14.6 shows the header file for
the Item class with its data members and member functions. The class provides the data members
for the movie title, id, quantity on hand, and category. The methods allow the client code to set the
data member values of an Item object and retrieve the object's id, quantity, and all four data
members. They also allow the client code to print the item data in the required format (without
quantity on hand) and increment (or decrement) the quantity on hand.

Notice the use of conditional compilation directives. According to the rules inherited from C, a
header file can be included only once in the source files of your program. If you include the header
file in more than one source file, the class type definition will be compiled with each source file.
Since each source file can be compiled separately and into a separate object file, the program winds
up with several definitions of the same type, and the linker is going to complain about that. Of
course, it would be much easier to change the rule and let the linker discard extra definitions when
they have the same structure. This is why every C++ programmer should put these conditional
compilation directives into every header file. What a pity.

Example 14.6. Class specification for the Item class (file item.h).
// file item.h

#ifndef ITEM_H
#define ITEM_H

class Item
{
 protected:
 char title[26];
 int id, quant, category;
 public:
 void set (const char *s, int num, int qty, int type);
 int getQuant() const;
 int getId() const;
 void getItem(char* name, int &num, int& qty, int &type) const;
 void printItem() const;
 void incrQty(int qty);
 } ;

#endif

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (858 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 14.7 shows the header file for class Customer. You see the same set of conditional
compilation directives to the preprocessor as in Listing 14.6. The Customer class provides data
members for storing the customer name, phone number, the count of movies on loan to the
customer, and the id for each borrowed movie. Its member functions allow the client code to set the
values of customer name and phone number, add a movie id to the list of movies, remove a movie
id from the list of movies, and retrieve the customer name, phone number, and list of movies
borrowed by the customer.

Example 14.7. Class specification for the Customer class (file customer.h).
// file customer.h

#ifndef CUSTOMER_H
#define CUSTOMER_H

class Customer
{
 char name[20], phone[15];
 int count;
 int movies[10];
public:
 Customer ();
 void set(const char *nm, const char *ph);
 void addMovie(int id);
 int removeMovie(int id);
 void getCustomer(char *nm, char *ph, int &cnt, int m[]) const;
 } ;

#endif

Similar to header files, the source C++ code for each class in a multifile project is implemented in a
separate source file. Listing 14.8 shows the class implementation for class Item. The header file "
item.h " has to be included in this file to make sure that the compiler knows what the scope
operator Item:: means.

The implementation indicates that class Item does not need any other classes to support its code. It
does need library facilities, and some designers include the library components in their UML
diagrams as servers of their classes. I think that this is excessive. You are interested in relationships
between components of your program, not in the extent to which your program uses library classes
and functions.

To make tracing the links between classes easier for you, I have used line comments to indicate
where each Item method is called from. This is a good practice that should make the life of the
maintainer easier. The comments say that class Item is a server to classes Inventory and File.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (859 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 14.8. Implementation of class Item (file item.cpp).
// file item.cpp

#include <iostream>
using namespace std;
#include "item.h" // this is a necessity

void Item::set (const char *s, int num, int qty, int type)
{ strcpy(title,s); id=num; quant=qty; category=type; }

int Item::getQuant() const // used by Inventory::checkOut()
{ return quant; }

int Item::getId() const
{ return id; } // in printRental(), checkOut(),
checkIn()

void Item::getItem(char* name, int &num, int& qty,
 int &type) const // used by File::saveItem()
{ strcpy(name,title); num = id;
 qty = quant; type = category; }

void Item::printItem() const // used by printRental()
{ cout.setf(ios::left,ios::adjustfield);
 cout.width(5); cout << id; // it knows its print formats
 cout.width(27); cout << title;
 switch (category) { // different item subtypes
 case 1: cout << " feature"; break;
 case 2: cout << " comedy"; break;
 case 3: cout << " horror"; break; }
 cout << endl; }

 void Item::incrQty(int qty) // used in checkOut(), checkIn()
 { quant += qty; }

Similarly, Listing 14.9 shows the implementation file for class Customer. The header file "
customer.h " is included in this file; for any implementation file, the header for this file should be
included in addition to the header files for all server classes that this class is using.

You see that the source code file " customer.cpp " does not include any other header files. This
means that class Customer does not have server classes¡Xit serves other classes itself. The line
comments in each function indicate where the function is used as a server to provide the client code
with access to customer data and services.

Example 14.9. Implementation of class Customer (file customer.cpp).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (860 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

// file customer.cpp

#include <iostream>
using namespace std;
#include "customer.h" // this is a necessity

Customer::Customer ()
{ count = 0; }

void Customer::set(const char *nm, const char *ph)
{ strcpy(name,nm); strcpy(phone,ph); } // in appendCust()

void Customer::addMovie(int id)
{ movies[count++] = id; } // in appendCust(), checkOut()

int Customer::removeMovie(int id) // used in checkIn()
{ int idx;
 for (idx=0; idx < count; idx++) // find the movie
 if (movies[idx] == id) break;
 if (idx == count) return 0; // give up if not found
 while (idx < count - 1)
 { movies[idx] = movies[idx+1]; // shift tail to the left
 idx++; }
 count-; // decrement movie count
 return 1; } // report success

void Customer::getCustomer(char *nm, char *ph, // saveData()
 int &cnt, int m[]) const // Inventory::getCustomer()
{ strcpy(nm,name); strcpy(ph,phone); cnt = count;
 for (int i=0; i < count; i++)
 m[i] = movies[i]; }

The Customer constructor initializes the count of borrowed movies to zero. Method set() assigns
new values to the customer name and phone number, and method addMovie() appends the new id
number to the end of the list of movies on loan.

Method removeMovie() first checks whether the movie id is found in the list of customer movies.
(This is not necessary if a reliable method of data entry is available.) If the id is not found in the
list, the function returns zero to indicate its failure. If the id is found in the list, the method shifts
remaining id numbers one position to the left, decrements the count of valid movie ids, and returns
1 to indicate success.

Notice that it is the count of ids that is decremented, not the number of values in the array. The
number of values in the array does not decrease¡Xthe two last array components have the same
value of the id after the shift. This is why I say "the count of valid movie ids" rather than "the count
of movie ids."

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (861 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If you feel uncomfortable with the index limits used in the shifting algorithm, you are not alone.
Shifting algorithms often contain errors that are hard to find. One way to make this algorithm easier
to understand is to decrement the count of movie ids before the shift to the left rather than after the
shift.

int Customer::removeMovie(int id) // used in checkIn()
{ int idx;
 for (idx=0; idx < count; idx++) // find the movie
 if (movies[idx] == id) break;
 if (idx == count) return 0;
 count-; // decrement movie count
 while (idx < count) // more conventional form
 { movies[idx] = movies[idx+1]; // shift tail to the left
 idx++; }
 return 1; }

Many programmers would write the shifting loop in a more concise form by using the increment
operator in the shifting statement rather than placing it on a separate line.

while (idx < count)
 movies[idx] = movies[idx++]; // concise but risky

Recall that assignment in C++ is an expression, and C++ guarantees the order of evaluation of
operators in the expressions but not the order of evaluation of operands. This is correct: the order of
evaluation of components in an expression is not guaranteed. If the expression is evaluated from
left to right, the loop above works fine. If the expression is evaluated from right to left, the loop is
in error. It is always better to produce more verbose code that is easy to follow than concise code
that confuses the maintainer.

Similar to the file " item.cpp " in Listing 14.7, I have used line comments to indicate clients of
Customer methods. These comments show that class Customer is used as a server by class
Inventory.

The next class to be discussed is class Inventory. Listing 14.10 shows the header file for class
Inventory. Its data members include a list of items and one of customers, the counts of valid
components in each list, and the indexes for accessing components in each list. Its member
functions allow the client code to append a movie to the item list and append a customer to a
customer list, retrieve the current item from the list (pointed to by index itemIdx,) retrieve the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (862 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

current customer from the list (pointed to by index custIdx,) print out the information describing
the movie borrowed by the customer, check the movie out, and check the movie in.

Example 14.10. Class specification for the Inventory class (file inventory.h).
// file inventory.h

#ifndef INVENTORY_H
#define INVENTORY_H
#include "item.h"
#include "customer.h"

class Inventory {
protected:
 enum { MAXM = 5, MAXC = 4 } ; // just for the prototype
 Item itemList[MAXM];
 Customer custList[MAXC];
 int itemCount, custCount;
 int itemIdx, custIdx;
public:
 Inventory ();
 void appendItem (const char* ttl, int id, int qty, int cat);
 void appendCust (const char* nm, const char* ph,
 int cnt, const int *m);
 int getItem(Item& item);
 int getCustomer(char* nm, char* ph, int &cnt, int *m);
 void printRental(int id);
 int checkOut(int id);
 void checkIn(int id);
 } ;

#endif

Since class Inventory is the client of classes Item and Customer, the Inventory header file
should include the header files for classes Item and Customer.

Some programmers feel insecure about these dependencies, and they include all project header files
in every implementation file "just in case." As they say, it is better to be safe than sorry.

This is incorrect. There is no risk of including less than is necessary, but there is harm in including
more than is necessary. If you include less than is necessary, the compiler will flag the lines, which
use undefined names, as errors. If you include more than is necessary, you will eliminate the risk of
reading an error message, but you will make reading more difficult for the maintainer and the client
programmer.

The compiler will just ignore redundant type definitions. Human readers will also ignore them but

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (863 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

only after inspecting class code and finding out that these type names are not used in the class.
This is a wasted effort and an extra load on human thinking. And this is prone to errors in
understanding.

Here, I agree with the risk-takers (especially because there is no risk in excluding unnecessary
header files). It is not a good idea to include extra header files "just in case." Instead of avoiding
syntax errors, you will confuse the human readers.

Implementation of class Inventory is shown in Listing 14.11. You see that it is only the header file
" inventory.h " that is included. The objects of the type Item and Customer are used in this file,
but the compiler will not complain that these type names are not known. By virtue of the fact that
Item and Customer header files are included in file " inventory.h ", they are included in the
Inventory class implementation as well.

Similar to Listing 14.6 and 14.8, I have included line comments that indicate from what part of the
server code each method is called. Unlike classes Item and Customer, class Inventory has only
one client class¡Xclass Store.

Example 14.11. Implementation of class Inventory (file inventory.cpp).
// file inventory.cpp

#include <iostream>
using namespace std;
#include "inventory.h" // this is a necessity

Inventory::Inventory()
 { itemCount = itemIdx = 0; custCount = custIdx = 0; }

void Inventory::appendItem (const char* ttl, int id,
 int qty, int cat)

{ if (itemCount == MAXM) // used in loadData()
 { cout << "\nNo space to insert item"; }
 else
 { itemList[itemCount++].set(ttl,id,qty,cat); } }
void Inventory::appendCust (const char* nm, const char* ph,
 int cnt, const int *movie)
{ if (custCount == MAXC) // used in loadData()
 { cout << "\nNo space to insert customer"; return; }
 custList[custCount++].set(nm,ph);
 for (int j=0; j < cnt; j++)
 custList[custCount-1].addMovie(movie[j]); }
int Inventory::getItem(Item &item) // used in saveData()
{ if (itemIdx == itemCount)
 { itemIdx = 0; return 0; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (864 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 item = itemList[itemIdx++];
 return 1; }

int Inventory::getCustomer(char* nm, char* ph, int &cnt, int *m)
{ if (custIdx == custCount) // in findCustomer(), saveData()
 { custIdx = 0; return 0; }
 custList[custIdx++].getCustomer(nm,ph,cnt,m);
 return 1; }

void Inventory::printRental(int id) // used in findCustomer()
{ for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 { if (itemList[itemIdx].getId() == id)
 { itemList[itemIdx].printItem(); break; } }
 itemIdx = 0;}

int Inventory::checkOut(int id) // used in processItem()
{ for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 if (itemList[itemIdx].getId() == id) break;
 if (itemIdx == itemCount)
 { itemIdx = custIdx = 0; return 0; }
 if (itemList[itemIdx].getQuant() == 0)
 { itemIdx = custIdx = 0; return 1; }
 itemList[itemIdx].incrQty(-1);
 custList[custIdx - 1].addMovie(id);
 itemIdx = custIdx = 0;
 return 2; }

void Inventory::checkIn(int id) // used in processItem()
{ if (custList[custIdx - 1].removeMovie(id)==0)
 { cout << " Movie is not found\n";
 itemIdx = custIdx = 0; return; }
 for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 { if (itemList[itemIdx].getId() == id)
 { itemList[itemIdx].incrQty(1); break; } }
 itemIdx = custIdx = 0;
 cout << " Movie is returned\n"; }

The Inventory constructor initializes the indexes and counters of items and customers¡Xinitially,
both lists are empty. Method appendItem() and appendCust() are simple: They test for available
space (this test is appropriate for the prototype but is redundant when memory is managed
dynamically), add the component at the end of the array, and increment the count of valid
components.

Methods getItem() and getCustomer() retrieve the object data from the array at the given index
(itemIdx for an Item object, custIdx for a Customer object). In one case, I retrieve the whole
object; in another case, I retrieve the values of the object data members. Therefore, in one case, it is
the client code that cranks out the values of data members, and in another case it is class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (865 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Inventory that does that on behalf of the client code. This is inconsistent¡Xand harmful. It results
in different behavior in the client code and makes the client code more difficult to read.

Method printRental() uses the movie id to find the movie in the array itemList[]. If the movie
is found, the printItem() message is sent to the object.

Method checkOut() with the movie id as the parameter searches for the item in the array
itemList[]. If the item is not found, it quits and returns 0; if the item is found but the quantity on
hand is zero, it quits and returns 1. If the item is available, it decrements the quantity on hand for
that item, adds the movie id to the list of movies borrowed by the customer, and returns 2.

Method checkIn() also uses the movie id as the parameter. It searches for the item in the list of
movies borrowed by the customer by calling the removeMovie() method. If the movie is not found,
checkIn() prints a message and quits. If the movie is found in the customer list (and then removed
from the list), checkIn() searches for the item in the array of items itemList[], increments
quantity on hand, and prints the confirmation message.

The interfaces of methods checkIn() and checkOut() are inconsistent. The method checkOut()
is not involved in the user interface dialog. Instead, it returns a value that the client has to analyze
and prints the message depending on the return value. The work is pushed to the client. The method
checkIn() is responsible for the analysis of the error conditions and the corresponding user
interface. It hides the error conditions from the client and returns a void value.

The next class to be discussed is class File. It is designed to access physical files that contain item
and customer data before and after the program run. Figure 14-8 shows a sample input file with
movie data. Each line in the file corresponds to one item: movie title (left-aligned), id number,
quantity on hand, and category (as a letter).

Figure 14-8. Sample input file with movie data.

Figure 14-9 shows a sample input file with customer data. Each customer is allocated two lines.
The first line contains the customer name and the customer phone number. The second line
contains the number of movies the customer has on loan and the list of movie access numbers.

Figure 14-9. Sample input file with customer data.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (866 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The format of the output file is the same as that of the input file. Figure 14-10 shows the contents of
the output item file after a program run. It shows that one copy of "Splash" was checked in and one
copy of "Gone with the Wind" was checked out.

Figure 14-10. Sample output file with movie data.

Figure 14-11 shows the contents of the customer file after the program run. It indicates that
customer Shtern returned the movie with the id number 101 and checked out the movie with the id
number 103.

Figure 14-11. Sample output file with customer data.

Listing 14.12 shows the class specification for class File. This class encapsulates the fstream file
object that is capable of both reading and writing data. The class implements public methods
getItem() and saveItem() that perform input/output operations on Item data. It also implements
public methods getCustomer() and saveCustomer(), which perform input/output operations on
Customer data.

Example 14.12. Class specification for the File class (file file.h).
// file file.h

#ifndef FILE_H
#define FILE_H
#include "item.h"
#include <fstream>

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (867 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class File
{ fstream f;
 static void trim(char buffer[]);
 enum { TWIDTH = 27, IWIDTH = 5, QWIDTH = 6,
 NWIDTH = 18, PWIDTH = 16 } ;
public:
 File(const char name[], int mode);
 int getItem(char *ttl, int &id, int &qty, char &type);
 void saveItem(const Item &item);
 int getCustomer(char *name, char *phone, int &count, int *m);
 void saveCustomer(const char *nm, const char *ph,
 int cnt, int *m);
} ;

#endif

Listing 14.13 shows the implementation of class File. Its constructor opens the physical file either
for reading or for writing and tests the success of the operation by calling the function fail().
Another way to test the success or failure is to call the function is_open(), which returns true if
the file is opened successfully.

The method getItem() reads one line of data from the input file into a local array buffer[], trims
the trailing blanks away, and copies data into the output array ttl[]. It then reads data from the
file into other components of the item data¡Xid number, quantity on hand, category. The final call
to getline() raises the end of file condition if the line just read is the last line in the physical file.
When this is the case, the file object becomes null, and getItem() returns zero to indicate the end
of input data to the caller (class Store). Otherwise, it returns one, indicating that there is more data
to be read.

The method saveItem() saves item data to the physical file. To make sure that the integer category
is converted into the corresponding letter correctly, it uses the switch statement.

The method getCustomer() reads the customer name, trims the trailing blanks away, reads the
customer phone and count of movies on loan, and then reads the ids of the movies on loan.

Method saveCustomer() writes to the physical file customer name, phone, count of movies, and
the movie ids.

Method trim() strips the trailing blanks from the name because getline() does not stop when it
finds the end of the word in the input file. It needs either a given number of characters to read or the
terminator (carriage return). The string to be trimmed is passed as a parameter. The method trim()
does not deal with other data members of the class. Hence, the trim() function should be declared

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (868 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

static. Also, the method trim is called only from File methods getItem() and getCustomer().
Hence the trim() function should be declared private.

Example 14.13. Implementation of class File (file file.cpp).
// file file.cpp

#include <iostream>
using namespace std;
#include "file.h" // this is a necessity

File::File(const char name[], int mode)
{ f.open(name,mode); // used in loadData(), saveData()
 if (f.fail()) // if (f.is_open()) is OK, too
 { cout <<" File is not open\n"; exit(1); } }

int File::getItem(char *ttl, int &id, int &qty, char &type)
{ char buffer[200]; // in loadData()
 f.get(buffer,TWIDTH);
 trim(buffer);
 strcpy(ttl,buffer); // it knows file structure
 f >> id; f >> qty; f >> type; f.getline(buffer,4);
 if (!f) return 0;
 return 1; }

void File::saveItem(const Item &item) // in saveData()
{ char tt[27]; int id, qty, type;
 item.getItem(tt,id,qty,type);
 f.setf(ios::left,ios::adjustfield);
 f.width(TWIDTH); f << tt; // it knows file format
 f.setf(ios::right,ios::adjustfield);
 f.width(IWIDTH); f << id ;
 f.width(QWIDTH); f << qty;
 switch (type) { // different for different subtypes
 case 1: f << " f\n"; break;
 case 2: f << " c\n"; break;
 case 3: f << " h\n"; break; } }

int File::getCustomer(char *name,char *phone,int &count,int *m)
{ char buffer[200]; // in loadData()
 f.get(buffer,NWIDTH);
 trim(buffer);
 strcpy(name,buffer);
 f >> buffer; f >> count; // it knows file structure
 strcpy(phone,buffer);
 for (int i=0; i < count; i++)
 f >> m[i];
 f.getline(buffer,2);
 if (!f) return 0;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (869 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return 1; }

void File::saveCustomer(const char *nm, const char *ph,
 int cnt, int *m) // in saveData()
{ f.setf(ios::left,ios::adjustfield); f.width(NWIDTH);
 f << nm;
 f.setf(ios::right,ios::adjustfield); f.width(PWIDTH);
 f << ph << endl << cnt; // it knows file structure
 for (int i=0; i < cnt; i++)
 { f.width(6); f << m[i]; }
 f << endl; }

void File::trim(char buffer[]) // in getItem(), getCustomer()
{ for (int j = strlen(buffer)-1; j>0; j¡X)
 if (buffer[j]==' '||buffer[j]=='\n')
 buffer[j] = '\0';
 else
 break; }

The top-level class in this design is class Store. Listing 14.14 shows its specification. Even though
class Store is a server to only one program component, global function main(), I still go through
that dance around the conditional compilation for the sake of uniformity.

This file will not compile without including the " inventory.h " header file¡Xthe compiler will not
know what the name Inventory means. However, it is possible to compile this file without the "
file.h " header file because the name of the class File is mentioned only in the implementation of
class Store member functions (see Listing 14.15).

Hence, you can get away with including the " file.h " header file in the implementation file and
not in the header file for class Store. The compiler will have no difficulty figuring that out. This is
probably not a good idea from the point of view of human comprehension. It is better to keep all
server header files in one place, in the header file of the class, to make it easy for the maintenance
programmer to immediately see what server classes this class uses.

Some designers go so far that they include the header files for the servers of the servers, for
example, " item.h " and " customer.h ". This is probably too much¡Xit creates unnecessary
clutter in the client header files.

As Listing 14.14 demonstrates, class Store has no data members. This would be the alarm signal
for a class in the middle of the hierarchy of classes, but is quite all right for a top-level client class.
The methods of class Store are responsible for high-level operations that describe the external
interfaces of the system: loading the database at the beginning of system execution, finding the
customer in the database, processing requests for renting and returning movies for the customer,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (870 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

and saving the database at program termination.

Example 14.14. Class specification for the Store class (file store.h).
// file store.h

#ifndef STORE_H
#define STORE_H
#include "inventory.h"
#include "file.h"

class Store {
public:
 void loadData(Inventory &inv);
 int findCustomer(Inventory& inv);
 void processItem(Inventory& inv);
 void saveData(Inventory &inv);
} ;
#endif

Listing 14.15 shows the implementation of class Store. Method loadData() creates a local File
object and sends to it the getItem() messages to read data from the external file. Each set of item
data is used as arguments in the call to appendItem(). This message is sent to the Inventory
object, which loadData() receives as its parameter. Then loadData() creates another local File
object, reads customer data from the file and saves it to the Inventory object. The local File
objects disappear when loadData() terminates. This terminates the connection between physical
files " Item.dat " and " Cust.dat " and the File objects.

Example 14.15. Implementation of class Store (file store.cpp).
// file store.cpp

#include <iostream>
using namespace std;
#include "store.h" // this is a necessity

void Store::loadData(Inventory &inv)
{ File itemsIn("Item.dat",ios::in); // item database
 char ttl[27], category; int id, qty, type; // item data
 cout << "Loading database ¡K " << endl;
 while (itemsIn.getItem(ttl,id,qty,category)== // read in
 { switch (category) { // set category for the
subtype
 case 'f': type = 1; break;
 case 'c': type = 2; break;
 case 'h': type = 3; break; }
 inv.appendItem(ttl,id,qty,type); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (871 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 File custIn("Cust.dat",ios::in); // customer database
 char name[25], phone[15]; int movies[10], count;
 while (custIn.getCustomer(name,phone,count,movies)==1)
 { inv.appendCust(name,phone,count,movies); } } // pump data

int Store::findCustomer(Inventory& inv)
{ char buffer[200]; char name[25], phone[13];
 int count, movies[10];
 cout << "Enter customer phone (or press Return to quit) ";
 cin.getline(buffer,15);
 if (strcmp(buffer,"")==0) return 0; // quit if no data entered
 bool found = false;
 while (inv.getCustomer(name,phone,count,movies) != 0)
 { if (strcmp(buffer,phone) == 0) // search for the phone
 { found = true; break; } } // stop if phone found
 if (!found)
 { cout << "\nCustomer is not found" << endl;
 return 1; } // give up if not found
 cout.setf(ios::left,ios::adjustfield);
 cout.width(22); cout << name << phone << endl; // print data
 for (int j = 0; j < count; j++)
 { inv.printRental(movies[j]);} // print movie Id's
 cout << endl;
 return 2; } // success code

void Store::processItem(Inventory& inv)
 { int cmd, result, id;
 cout << " Enter movie id: ";
 cin >> id; // search attribute
 cout << " Enter 1 to check out, 2 to check in: ";
 cin >> cmd;
 if (cmd == 1)
 { result = inv.checkOut(id); // analyze return value
 if (result == 0) // not found
 cout << "Movie is not found " << endl;
 else if (result == 1) // out of stock
 cout << "Movie is out of stock" << endl;
 else // it is a success
 cout << " Renting is confirmed\n"; }
 else if (cmd == 2)
 inv.checkIn(id); // feedback in checkIn()
 cin.get(); } // eliminate CR from line

void Store::saveData(Inventory &inv)
{ File itemsOut("Item.out",ios::out); Item item; // item file
 while (inv.getItem(item)) // no internal structure
 itemsOut.saveItem(item); // save each item
 File custOut("Cust.out",ios::out); // customer output file
 char name[25], phone[13]; int count, movies[10];

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (872 of 1187) [8/17/2002 2:58:04 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "Saving database ¡K " << endl;
 while(inv.getCustomer(name,phone,count,movies)) // pump data
 custOut.saveCustomer(name,phone,count,movies); }

Method findCustomer() prompts the operator for the customer phone and terminates (returning
zero) if the operator just presses the Enter key without entering any data. If the phone number is
entered, findCustomer() retrieves each customer data sending the getCustomer() message to the
Inventory object, which is passed to findCustomer() as the argument. If the phone number is not
found, an error message is printed and findCustomer() returns 1 to notify its client. Otherwise, the
customer name, phone number and the movie data are printed and the method returns 2.

Method processItem() also has a parameter of type Inventory. The method prompts the
operator for the movie id and for the command (to check in or to check out) and then sends either
the checkOut() message or the checkIn() message to its parameter. When checkOut() returns,
processItem() analyzes the return value and prints the corresponding message. When checkIn()
returns, processItem() just terminates because it is checkIn() that analyzes the results of the
operation and prints the messages to the operator.

Method saveData() mirrors the actions of loadData(). It creates local File objects and sends
them saveItem() and saveCustomer() messages with information that saveData() extracts from
its Inventory parameter by using messages getItem() and getCustomer().

The last element of the program is the client of Store, the function main(). Listing 14.16 shows
that main() instantiates two objects, one of class Inventory and one of class Store. It sends
messages to the Store object and passes the Inventory object as an argument to these messages.

Example 14.16. Implementation of function main() Store (file video.cpp).
// file video.cpp

#include <iostream>
using namespace std;
#include "store.h" // this is a necessity

int main()
{
 Inventory inv; Store store; // define objects
 store.loadData(inv); // load data
 while(true)
 { int result = store.findCustomer(inv); // check results
 if (result == 0) break; // terminate program
 if (result == 2) // 1 if not found
 store.processItem(inv); } // process the cassette
 store.saveData(inv); // save database

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (873 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return 0;
 }

Figure 14-12 shows the sample of the program execution. It is only a sample; it would be too
cumbersome to demonstrate the complete testing sequence. This sample corresponds to the input
files shown in Figures 14-8 and 14-9. The output files produced by the execution are shown in
Figures 14-10 and 14-11.

Figure 14-12. Example of the execution of the program in Listings 14.6-14.16.

Presumably, the list of classes that the application implements corresponds to the list of real-life
entities that the system has to deal with. This is why these classes are derived from the analysis of
the functional specification. Usually, the distribution of responsibilities between classes in the
application is quite natural. It is natural that class Item maintains the information about movies but
not about customer names or disk files.

This is natural and relatively easy. Things become less certain when it comes to client classes at the
top of the hierarchy of classes. Class Store does not have any intuitively clear responsibilities. The
division of responsibilities between class Store and main() is completely arbitrary. Some
designers feel that main() should have no responsibilities. It should instantiate the top object of the
application, and actions should originate from that constructor call.

With such an approach, the contents of main() would be moved to the Store constructor. The
Store object would not be needed in the constructor because the Store member functions are
available in the constructor immediately, without a target object. Since Store member functions

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (874 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

are called from the Store constructor only, these member functions do not have to be public¡Xthey
can be made private.

class Store {
private:
 void loadData(Inventory &inv);
 int findCustomer(Inventory& inv);
 void processItem(Inventory& inv);
 void saveData(Inventory &inv);
public:
 Store(void)
 { Inventory inv; // define objects
 loadData(inv); // load data
 while(true)
 { int result = findCustomer(inv); // check results
 if (result == 0) break; // terminate program
 if (result == 2) // 1 if not found
 processItem(inv); } // process the cassette
 saveData(inv); } // save database
 } ;

Function main() becomes very simple.

int main()
{ Store store;
 return 0; }

From an aesthetic point of view, this is a more elegant solution. From a practical point of view,
there are neither advantages nor disadvantages. As I mentioned earlier, the division of
responsibilities between top classes in the class hierarchy and the function main() is arbitrary and
cannot be designed from the analysis of system functionality.

On Class Visibility and Division of Responsibilities

The case study described in Listings 14.6-14.16 presents a good opportunity for a discussion of
relationships among classes.

One of the important ideas discussed in the first part of the book was the idea of dividing
responsibilities among functions to avoid excessive communication between the functions (and
excessive coordination and cooperation among developers). This excessive communication often

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (875 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

results from tearing apart what should belong together and from pushing responsibility up to client
functions rather than down to server functions.

In this part of the book, this idea takes the form of dividing responsibilities among classes to avoid
excessive communication between the classes and excessive communication among developers
responsible for different classes.

Excessive communication between classes often results from tearing apart what should belong
together: from dividing responsibilities among different functions and different classes so that they
have to communicate through function parameters and class data members. The more extensive the
communication is between classes, the more details that class designers should keep in mind, and
the increased likelihood there is of errors.

Working with classes also involves pushing responsibilities from client classes to server classes.
Failure to do so results in simpler server classes but makes client classes more complex and more
difficult to understand. This makes the task of the client programmer and the maintainer more
complex and error-prone.

An additional concept that is relevant only to design with classes and not to design with functions is
the concept of class visibility. The more server classes a client class uses, the broader is the scope
of attention of the client class designer and maintainer¡Xthey have to study the interfaces of the
server classes and understand the constraints on the use of the server classes. Decreasing the
number of server classes visible to a client class (that the client designer should know about) makes
the program easier to understand and maintain.

Conversely, the larger the number of client classes using the same server class, the more sensitive
the program design is to the changes to the server class. Decreasing the number of client classes to
which the server class is visible improves the program stability.

Of course, these statements should not be taken to the extreme. After all, any program can be
designed using only one class (or no classes at all), and the problems of communication between
classes, division of responsibilities among classes, and class visibility to each other happily
disappear. Yes, we want to build our program with cooperating classes, but we want the class
communication to be minimized.

Using UML class diagrams (similar to the one shown in Figure 14-4) is a good method of
analyzing the structure of the program. Class relationships on a class diagram illustrate class
visibility: They show which client classes know about a particular server class. Unfortunately, class
relationships on UML diagrams cannot illustrate the division of responsibilities among classes,
pushing responsibility down to servers, and tearing apart what should belong together. For that, you
have to analyze the distribution of data members and member functions among classes. Class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (876 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

diagrams similar to ones shown in Figure 14-3 are more useful for that purpose.

Class Visibility and Class Relationships

Figure 14-13 demonstrates the relationships between classes described in the case study in Listings
14.6-14.16.

Figure 14-13. The UML class diagram for the program in Listings 14.6-14.16.

The UML class diagram shows that class Inventory "owns" the arbitrary number of objects of
classes Item and Customer. In the design of class Inventory, I used the physical limits for array
sizes, but these are arbitrary artifacts not related to the conceptual relationships among class
Inventory and the objects it contains. From the conceptual point of view, class Inventory can
contain any number of Item and Customer objects, and this is what I used in the class diagram in
Figure 14-13.

The rest of the class diagram indicates that class Store is the client of classes Inventory and
File, and that main() is the client of class Store and class Inventory, It also shows that class
File is the client of class Item but not of class Customer.

This is the result of the inconsistency I noticed earlier in the design of classes Item and Customer.
The objects of class Item know how to print themselves. The objects of class Customer do not

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (877 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

know how to do that. This is why class Customer provides the method getCustomer(), which is
used by the client code to retrieve the Customer data member for printing.

This inconsistency was further supported by the design of class Inventory. Its method getItem()
provides the client code with the Item object and leaves it to the client code to access the
components of the Item object. The Inventory method getCustomer() provides the client code
with the Customer components but not with the Customer object. This is why class File sees class
Item but does not see class Customer.

The visibility of one class in another class of the same program is an important characteristic that
designers can use to minimize dependencies among classes and coordination among developers.

When an object is defined as a local object in a client method, it is only this client method where
the object is visible. The amount of coordination is minimal. The example is class File whose
objects are defined in Store methods loadData() and saveData() only and are not visible in
other classes or in other methods of class Store.

When an object is defined as a data member in a client class, it is visible to all methods of the client
class. This is a stronger degree of dependency¡Xthe client methods have to coordinate the use of
server objects. The example is class Item and class Customer, whose objects are defined as data
members of class Inventory, and indices custIdx and itemIdx, which point to these objects. All
methods of class Inventory have access to these two arrays and these two indices. This provides
greater convenience and flexibility. This also requires greater human coordination.

Consider, for example, Listing 14.11 where class Inventory is implemented. Method
getCustomer(), which is called from the Store method findCustomer(), sets the index
custIdx that points to the Customer object, which will participate in the checking-in or checking-
out operation. Methods checkOut() and checkIn() access the same object using the same index
variable custIdx, but they have to subtract 1 to get to the right object. This is an example of
coupling, which is created by access to the same computational object from different methods.

When a client object is defined in a method of its own client, its server might be sent to its methods
as a parameter¡Xsorry for the complexity of this statement. For example, Figure 14-13 shows that
class Store is a client of class Inventory. The client object (Store) is defined as a local variable
of its client (function main().) and the server object (Inventory) is sent to Store methods as a
parameter.

Listing 14.16 shows the implementation of this relationship. The function main() is the client of
both classes, Inventory and Store. It defines Inventory and Store objects and sends the
Inventory object to the Store methods as an argument. Both the designer of main() and the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (878 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

designer of Store should know about class Inventory.

This is the familiar issue of information hiding that can now be discussed in terms of object
visibility. If the Inventory object is defined as a data member of class Store rather than as a
variable in main(), then it is only the methods of class Store that have access to this object.

class Store {
 Inventory inv;
public:
 void loadData();
 int findCustomer();
 void processItem();
 void saveData();
} ;

The designer of main() in this version knows nothing about class Inventory. His or her scope of
attention is reduced. The complexity of programming and maintenance tasks is reduced as well.

Pushing Responsibilities to Server Classes

Pushing responsibilities down to server classes is a good way to streamline code in client methods
and to eliminate low-level processing details that make the client code more difficult to read and to
grasp the meaning of processing.

For example, in Listing 14.6, class Item provided the methods getId() and getQuant(). These
are general methods, which provide the actual item id and item quantity. Because of this generality,
this design will satisfy almost any requirements that utilize this data.

This is good in a library class, which you want to sell to the largest number of possible clients. This
is not so good for a part of the program that you want to design to satisfy specific requirements of
specific client classes that belong to the same program or to the next release of the same program.
With a general "library-type" design, the client classes should be flexible to be able to use the
services that the server classes provide. Usually, client classes get more information from servers
than they really need, and they have to adapt this information to current client needs.

For example, in Listing 14.11, the client function printRental() scans each Item object in class
Inventory and retrieves the value of the Item object id. Now printRental() could do whatever it
wants to this value, but it need only compare it with the parameter value.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (879 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void Inventory::printRental(int id) // used in findCustomer()
{ for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 { if (itemList[itemIdx].getId() == id)
 { itemList[itemIdx].printItem(); break; } }
 itemIdx = 0;}

This information is redundant because the client code only needs to know whether the id inside the
next Item object is the same as the parameter value. The client code gets more information than it
needs (the id value), but it has to work harder using this information. A better division of
responsibilities would require the client code to pass the parameter value down to the server
function so that the server code can do the work on behalf of the client (compare ids) rather than
bringing up information for the client code to process. Then the client code would look this way.

void Inventory::printRental(int id) // used in findCustomer()
{ for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 { if (itemList[itemIdx].sameId(id)) // important difference
 { itemList[itemIdx].printItem(); break; } }
 itemIdx = 0;}

Similarly, the client function checkOut() in Listing 14.10 calls the server function getQuant() to
decide whether the current item is available for rental. Now the client function can do with this
value whatever it wants, but it only compares this value with zero.

int Inventory::checkOut(int id) // used in processItem()
{ for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 if (itemList[itemIdx].getId() == id) break;
 if (itemIdx == itemCount)
 { itemIdx = custIdx = 0; return 0; }
 if (itemList[itemIdx].getQuant()==0) // what is the meaning?
 { itemIdx = custIdx = 0; return 1; }
 itemList[itemIdx].incrQty(-1);
 custList[custIdx - 1].addMovie(id);
 itemIdx = custIdx = 0;
 return 2; }

Again, this information is redundant because the client code only needs to know whether the item is
available. The client code gets more information than it needs (the quantity value) but it has to
work harder using this information. A better division of responsibilities would require the server

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (880 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function to do the comparison with zero so that the client code would not even know the business
rules for item availability. To avoid bringing information from the server up to the client code for
processing, the server can provide function inStock(). Then the client code would look this way.

int Inventory::checkOut(int id) // used in processItem()
{ for (itemIdx = 0; itemIdx < itemCount; itemIdx++)
 if (itemList[itemIdx].sameId(id)) break;
 if (itemIdx == itemCount)
 { itemIdx = custIdx = 0; return 0; }
 if (itemList[itemIdx].inStock()) // meaning is self-evident
 { itemIdx = custIdx = 0; return 1; }
 itemList[itemIdx].incrQty(-1); // job is pushed to server
 custList[custIdx-1].addMovie(id); // job is pushed to server
 itemIdx = custIdx = 0;
 return 2; }

Notice that the function checkOut() could save the value of the quantity on hand, check whether it
is positive, decrement it by 1, and save the new quantity value in the Item object. This would be
another example of pulling responsibility up to the client code. Instead, the function checkOut()
says to the Item object: "Hey, I do not know how many items are there, and I should not worry
about the exact number as long as I know there are items available for rental. So, whatever the
quantity is, please decrement it by 1 and let us proceed." This is a good example of pushing
responsibility down from a client class to its server class.

Using Inheritance

In the UML diagram in Figure 14-13, inheritance is not used because it is an implementation
technique rather than a model of how real-life objects are related to each other.

Inheritance can be used to simplify the design of server classes, simplify the code of the client
classes, and reduce the amount of common knowledge shared by classes in the application.

For example, the case study in Listings 14.6-14.16 implements a sort of idiosyncratic behavior for
inventory items. In the input file, the kind of movie is denoted by a letter, for example, "f." The
same is done in the output file. In the item display, the kind of movie is denoted by a word, for
example, "feature." In memory during execution, it is denoted by an integer, for example, 1.

These business requirements are quite common. It is important to make sure that the clients of the
server class with such behavior were protected from the need to know about it. The design in
Listings 14.6-14.16 does not satisfy this requirement well. Class Item knows about it: in its method

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (881 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

printItem(), it decides which word to display. So does the Item client File: in its saveItem()
method, it decides which letter to write to the output file. And so does class Store, in its method
loadData(): Store checks which integer it has to save in the item memory for further use. It is
only class Inventory that is not involved in this issue, which was my error of forgetting to make
sure that it does.

If the designer does not try to contain common knowledge among classes, it spreads around the
program like cancer. Instead of doing productive work related to the high-level goal of the
application, the designers of the client classes are occupied with a host of small details that should
be pushed down to server classes.

Inheritance is a good mechanism for containing the knowledge in server classes. By making class
Item the base class for a set of derived classes, for example, FeatureItem, ComedyItem, and
HorrorItem, you can keep the knowledge about specialized item behavior in these classes and
prevent the spread of this knowledge throughout the program.

I am not implementing this solution in this chapter because it requires the use of polymorphism,
which will be discussed in the next chapter.

Another issue related to the use of inheritance in the case study in Listings 14.6-14.16 is the design
of the File class. In this program, objects of class File are used for four purposes: reading item
data, reading customer data, writing item data, and writing customer data. Each object is good for
only one purpose. For example, the File object itemsOut in the method saveData() in Listing
14.15 can be used only for writing item data. If the client programmer tries to send the File
message getCustomer() to this object, the compiler will accept this function call. It is only at run-
time that the program will be aborted, because the physical file is open for writing.

Notice that if the client programmer uses this File object for accepting the message
saveCustomer(), not only will the compiler accept this code, but the run-time system will have no
objection. Wrong data will be written to the output file.

Using inheritance allows you to create specialized classes that can do only one kind of work. For
example, class FileOutItem can only write data to the file that contains item data. It cannot read
data or write customer data.

class FileOutItem : public File
{
public:
 FileOutItem(const char name[]);
 void saveItem(const Item &item);
 } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (882 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

With this design, an attempt by the client code to send to the FileOutItem object the message
getItem() or saveCustomer() will be interpreted by the compiler as a syntax error. This is very
good. The tradeoff is that you wind up with a large number of very small classes in the program,
and that might make maintenance more complex.

Some programmers say that if a File object is opened for writing item data, it is only a person with
limited abilities and a narrow span of attention that will try to read data from that file or write
customer data instead. I do not know. Theoretically, sure. Errors like this should not happen. But
they do. Under pressure, many a programmer who is usually intelligent and alert becomes a less-
capable person with a somewhat impaired attention span. (I am trying to be polite.) There is
nothing wrong with capable and alert people making mistakes. It is not healthy to deny reality and
insist that if the programmer is capable and alert there will be no mistakes. It is much better to face
reality and consciously avoid situations that are conducive to making mistakes.

Figure 14-14 shows the UML diagram for the case study. Here, both class Item and class File are
used as base classes for specialized derived classes.

Figure 14-14. The UML class diagram for the program in Listings 14.6-14.16 with
inheritance.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (883 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that I am not advocating this design. I am saying that we should consider this type of use of
inheritance. The factors to take into account when considering tradeoffs are the number of classes
to implement, the protection against misuse of objects, and avoidance of the spread of common
knowledge between classes in the application.

Summary

In this chapter, we compared the use of inheritance with other programming techniques, such as
aggregation and a general relationship among classes.

I tried to stress the viability of other alternatives because I feel that in general inheritance is used
too much. Yes, the job of the server class designer is simpler with the use of inheritance. Formally,
the task of the client designer is not more difficult. But it is not more difficult only in the sense of
writing code, and this is only a small part of what we do when implementing a program. The use of
inheritance forces the client programmer to learn more about the server design than is necessary,
especially if the inheritance hierarchy is tall and bushy.

We also looked into examples of using UML diagrams to illustrate the designs. These diagrams are
helpful because they allow the designers to look at the big picture discussing the relationships

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (884 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

among classes. I used only basic constructs of UML in the examples. The full UML is very
complex. Whether you should be in a rush to study UML or concentrate on mastering C++ well
first is debatable.

Since I am writing a book on C++ rather than on object-oriented analysis and design, I put a higher
premium on C++ skills. It is your ability to write C++ code that pushes responsibilities to server
classes that the quality and maintainability of software depend on. As far as your ability to draw
complex diagrams is concerned¡Xwell, it is useful, but is less useful than the mastery of C++.

Part IV: Advanced uses of C++

The last part of the book discusses advanced uses of the C++ language: virtual functions, abstract
classes, advanced overloaded operators, templates, exceptions, special casts, and run-time
identification information.

Chapter 15, "Virtual Functions and Other Advanced Uses of Inheritance," describes the
implementation of polymorphism with virtual functions¡Xanother jewel of object-oriented
programming. First, it introduces the necessary (and often counterintuitive) background material on
safe and unsafe type conversions between related and nonrelated classes. Then it applies this
material to the task of processing heterogeneous lists of objects that belong to different (but related)
classes and perform the same operation in a somewhat different manner. After that, it introduces
the syntax of virtual functions and shows the dramatic simplification of the client code that these
virtual functions allow.

In addition, Chapter 15 covers pure virtual functions and abstract classes and multiple inheritance.
Although virtual functions are very useful for the processing of heterogeneous lists, the importance
of this task is often exaggerated. This is even more true of multiple inheritance¡Xits complexity far
exceeds its utility from a software engineering point of view.

In Chapter 16, "Advanced Uses of Operator Overloading," I discuss advanced uses of operator
overloading: unary operators, subscript and function call operators, and input/output operators. As
with other uses of overloaded operators, these operators produce a nice syntax in the client code.
Otherwise, the contribution of operator syntax to the quality of a C++ program is limited.

In Chapter 17, "Templates: Yet Another Design Tool," I introduce yet another C++ technique for
design reuse: generic templates. The syntax of template definitions is quite complex. Their impact
on the size of the object code and on the program execution time is often detrimental, and
beginning C++ programmers should exercise restraint in building their own template classes.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (885 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

However, the template classes that come with the C++ Standard Template Library (STL) are very
well designed and should be used for complex data structures whenever possible. These template
library classes give an excellent example of design and code reuse.

Chapter 18, "Programming with Exceptions," covers exception processing, yet another new C++
technique. This is a very interesting area of computer programming. You should probably try to use
exceptions in a limited way to accumulate your own experience so that you can judge how useful
this technique is for you. This chapter also discusses special casts and run-time object
identification.

Chapter 19, "What We Have Learned," is a review chapter. In this chapter, I say everything that
other authors say in their introductions. I postponed this until the end of the book to make sure that
my words do not sound hollow. I hope that you will come to like this wonderful programming
language and will be able to use it productively.

Chapter 15. Virtual Functions and other Advanced Uses of Inheritance

Topics in this Chapter

ϒΠ Conversions Between Nonrelated Classes

ϒΠ Conversions Between Classes Related Through Inheritance

ϒΠ Virtual Functions: Yet Another New Idea

ϒΠ Multiple Inheritance: Several Base Classes

ϒΠ Summary

In the previous chapter, we discussed the UML notation for representing client-server relationships
and looked at the techniques of implementing these relationships in C++ programs.

The most common relationship is the relationship of containment (composition or aggregation).
The most common implementation of this relationship is making an object of the server class a data
member of the client class. The server object is operated on exclusively by its client object without
sharing with other client objects.

The most general relationship is that of association. If the client class contains a pointer or a
reference to an object of the server class, it implements a general association among classes, and
the server object can be shared with other client objects.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (886 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

If the server object has only one client, so that the client object uses the server object exclusively,
the server object could be implemented as a data member of the client class even when the objects
are related with a general association and not aggregation.

The implementation of the client-server relationship with the server object as a data member of the
client object results in a middle degree of visibility. The server object is visible to all member
functions of the client class, but it is not visible to other classes in the program. The designers of
other classes do not have to learn the details of using this object and coordinate its use with other
designers.

A more limited degree of visibility is achieved when the server object is implemented as a local
variable in a member function of the client class. In this case, the server object is visible only to this
member function and to no other member function of the client class or any other class outside this
member function. A broader degree of visibility can be achieved when the server object is passed
as a parameter to a member function of the client class. In this case, the server object can be
associated with many other objects outside of the client class, and these objects have to cooperate
in using the server object.

Implementing associations by defining the server object as a local variable in a server method
results in fewer dependencies between parts of the program and hence in less complexity for the
implementers and the maintainers. Implementing associations by passing the server object as a
parameter to a client method results in greater flexibility but might increase the complexity of the
design for the implementers and the maintainers.

Choose whatever is most appropriate¡Xthe least degree of visibility that still supports client
requirements. The C++ programmer should always think about choosing one of these three
alternatives for implementing the association. The UML design notation does not distinguish
between these three techniques. Often, the designers do not even know which technique is most
appropriate in each case. They just state that the objects are related. So, it rests with the C++
programmer to make the right choice.

We also looked at the implementation of the specialization/generalization relationship between
classes. Using inheritance for implementing this relationship between classes allows the
programmer to build the server class in stages, implementing part of the server class functionality
in the base class and part in the derived class (or classes). Thus, inheritance is a powerful, flexible
mechanism for reusing C++ designs.

In this chapter, I will discuss advanced uses of inheritance programming with virtual functions and
abstract classes. In its simple form, the goal of utilizing inheritance is making the job of the server
class designer easier. In advanced uses, the goal of inheritance is making the job of the client
programmer easier by streamlining the client code. This is important when the client code deals

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (887 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

with collections of similar objects that undergo similar processing.

"Similar objects" means that they have attributes and operations in common, but some attributes
and operations are somewhat different between different kinds of objects. "Similar processing"
means that the client code treats these different kinds of objects basically the same way. However,
depending on the type of object, some things should be done somewhat differently.

For example, in the case study in the previous chapter, the inventory items of different kinds
(feature movies, comedy movies, or horror movies) were treated by the client code in the same
way. They were read from the file, linked to the customers that rented them, underwent the
checking in and checking out operations, and were saved to the file. In a few stages of processing
the items of different kinds were treated differently. For example, when the item data is displayed
on the screen, different labels should be displayed, depending on whether the item is a feature
movie, comedy movie, or horror movie.

This is why client code in the previous chapter had to use the switch statements to figure out what
kind of inventory item it was dealing with and what particular kind of processing should be used.
You will see that the use of virtual functions and abstract classes helps you streamline the client
code and eliminate this kind of run-time analysis from the client source code.

As the technical foundation for the use of virtual functions and abstract classes, I will first discuss
the issues related to using objects of one class where objects of another class are expected. The
C++ rules for this substitution with the use of inheritance are quite different from the rules for
nonrelated objects. They are also different from what our everyday intuition suggests about the
behavior of computational objects, and I will try to explain in what direction you should sharpen
your intuition.

And at the end of the chapter, I will discuss how the techniques of using inheritance, virtual
functions, and abstract classes can be extended to the case where a derived class has more than one
base class.

Programming with virtual functions and abstract classes is often presented as the essence of object-
oriented programming. From the practical point of view this is not so. Most of C++ code deals with
cooperating objects and does not need virtual functions. Actually, most C++ code is (and should
be) written without the use of inheritance. However, programming with virtual functions is
definitely fun and is often useful. It is one of the most complex topics in C++, and I hope that you
will learn how to use virtual functions correctly and enjoy using them.

Conversions Between Nonrelated Classes

As stated earlier, C++ aspires to support the concept of strong typing. I would like to make sure
that you find this principle of modern programming intuitively natural and appealing: If the code

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (888 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

context expects an object of a particular type, it is a syntax error to use an object of a different type
instead.

What are possible contexts where this rule is important? They include:

ϒΠ expressions and assignments

ϒΠ function arguments (including pointers and references)

ϒΠ objects used as targets of messages

I will call two different classes nonrelated if neither of them serves as a direct or indirect base class
for another class. Notice that the classes that are not related to each other through inheritance might
be associated with each other through aggregations and general associations. This is fine, but still
you cannot use objects of one class instead of objects of another class. If the classes are related
through inheritance, this is a different story.

Here is a small example that demonstrates all three contexts where C++ supports strong typing.
There are two classes, class Base and class Other, which are not related through inheritance. The
member function Base::set() expects an integer argument. The member function
Other::setOther() expects an argument of type Base, and the member function
Other::getOther() expects a pointer to a Base object. For simplicity, I do not include examples
with reference parameters, but everything I am going to say about pointers also holds for
references.

class Base { // one class
 int x;
public:
 void set(int a) // modifier
 { x = a; }
 int show() const // accessor
 { return x; }
} ;

class Other { // another class
 int z;
public:
 void setOther(Base b) // modify target
 { z = b.show(); }
 void getOther(Base *b) const // modify parameter
 { b->set(z); }
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (889 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the following client function main(), I define three objects to manipulate, one each of type Base
and type Other, and one of a numeric type. The second line is correct and trivial: The parameter is
of the correct type, and the message target is of the correct type. The third line is also correct and
trivial: The expression operands are compatible with each other, and the assignment target is
compatible with the type of the rvalue.

Compatibility here means that the values of two different types (in this case, integer and double
floating point) have the same operations defined for them (addition, assignment), and the values
can be converted from one type to another (integer to double) and back (double to integer).

The next two statements are also correct. The message names in these statements (setOther() and
getOther()) match the member function names described in the target class (class Other), and the
message arguments are of the correct type (class Base on the fourth line or class Base pointer on
the fifth line). All other statements in the client code are incorrect, and I commented them out. Let
us discuss each statement and its problems in turn.

int main()
{
 Other a; Base b; int x; // create objects
 b.set(10); // OK: correct parameter and target types
 x = 5 + 7.0; // OK: right types for expression and lvalue
 a.setOther(b); // OK: right type for the target, argument
 a.getOther(&b); // OK: right type for the target, argument
// b = 5 + 7; // not OK: no operator = (int) defined
// x = b + 7; // not OK: no operator or conversion to int
// b.set(a); // not OK: an object as a numeric argument
// a.setOther(5); // not OK: cannot convert number to object
// a.getOther(&a); // no: no conversion from Other* to Base*
// b.getOther(&b); // not OK: wrong target type, not a member
// x.getOther(&b); // not OK: a number as a message target
 return 0; }

In the first assignment (see below), the compiler expects an lvalue of a numeric type; instead, I use
an object of a programmer-defined type. The compiler would like me to define the assignment
operator=(int) with an integer argument for the type Base. This would make the first statement
legal. In the second case, I add an object of the programmer-defined type and a numeric variable.
These types are incompatible. For this statement to be legal, the compiler would like me to define
the operator+(int) for the type Base. In both cases, the C++ attitude is noncompromising:
Strong typing weeds out errors at the compilation stage rather than at run time.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (890 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 b = 5 + 7; x = b + 7; // syntax errors

The next two statements deal with parameter passing. If a function, for example, Base::set(int),
expects an argument of a numeric type, you cannot use an object of a programmer-defined class
instead. A conversion operator could help, but we will study it only in the next chapter. Conversely,
if a function, for example, Other::setOther(Base), expects an argument of a particular
programmer-defined type, you cannot use a numeric value or a value of some other programmer-
defined type instead. In all these cases, the compiler refuses to convert the value of one type to the
value of another type and labels them as compile-time errors.

 b.set(a); a.setOther(5); // syntax errors

C++ also tries to support the principle of strong typing for pointers and references. I lumped
together pointers and references because the rules for them are the same. If a function has a
parameter that is defined as a pointer (or a reference) to an object of some type it is an error to pass
to it a pointer (or a reference) to an object of any other type, built-in or programmer-defined.

 a.getOther(&a); // syntax error

It goes without saying that a function that expects a pointer cannot be called with a reference or an
object as an actual argument, even if the reference or the object is of the same type as the pointer.
Similarly, if a function expects a reference parameter, the actual argument cannot be a pointer, even
if it is of the same type (it is fine to pass an object as the actual argument to a function with a
reference parameter).

For message targets, the concept of strong typing manifests itself in limiting the set of messages
that could be legitimately sent to a given target (an object, pointer, or reference). If the name of the
message sent to an object is not found in the class specification, it is an error regardless of whether
this function is found in any other class or in no class at all. For the compiler, it is enough that the
message is not found in the class to which the message target belongs. And, of course, you cannot
send a message to a numeric variable or value because a numeric variable or value does not belong
to any class and can respond to no messages. The compiler needs a variable of a programmer-
defined type to the left of the dot selector operator.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (891 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 b.setOther(b); x.setOther(b) ; // incorrect target types

A pointer (and a reference) variable can point to a value of only one type, the type used in its
declaration. This is yet another manifestation of strong typing. In this next code snippet, the second
line is correct, but the third line is not.

 Other a; Base b;
 Base &r1 = b; Base *p1 = &b; // OK: compatible types
 Base &r2 = a; Base *p2 = &a; // non-compatible types

Strong Typing and Weak Typing

This is the ideal state of affairs. However, C++ allows a number of exceptions to these strict rules.
Some of these liberties C++ inherits from C.

For example, all numeric types are considered equivalent from the point of view of type checking.
You can mix them freely in an expression, and the compiler will silently convert "smaller"
operands to "larger" operands so that all operators are applied to the operands of the same type. On
the right-hand side of an assignment or as an argument in a function call, you can use a value of a
"larger" numeric type where a value of a "smaller" numeric type is expected. The compiler will
again silently convert the "larger" value (e.g., a long integer) into the "smaller" value (e.g., a
character). The compiler assumes, so to speak, that you know what you are doing.

If you use a numeric value of a "larger" type where a value of a "smaller" type is expected, some
compilers might give you a warning message. This happens, for example, when you try to squeeze
a double floating-point value into an integer or into a character variable. But this is just a warning,
not a syntax error. Following C, C++ allows you to use explicit casts to indicate to the reader the
intent of the designer to convert a value of one numeric type into a value of another numeric type.

But this is just an option for maintenance-conscious programmers. For brevity-starving
programmers, again following C, C++ makes all implicit conversions between numeric types legal.
This liberal attitude toward a potential loss of precision applies both to assignments and to
parameter passing.

From this point of view, C++ is (similar to C) a weakly typed language. In all these cases, the
compiler assumes that you know what you are doing and does not try to second-guess you. If you
do not know what you are doing or you do not pay attention to this side of your computation, well,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (892 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

let us hope that your computation indeed does not depend on the precision of the truncated values.

C++ also supports other exceptions to the rules of strong typing that cannot be blamed on the
backward compatibility with C. These exceptions stem from the use of special member functions
that C++ allows you to add to the design of your classes and from the use of casts:

ϒΠ conversion constructors

ϒΠ conversion operators

ϒΠ casts between pointers (or references)

These special functions represent the ways to talk the C++ compiler into accepting the client code
that violates the rules of strong typing.

Conversion Constructors

Assume, for example, that class Base provides a conversion constructor with a numeric argument.

Base::Base(int xInit = 0) // conversion constructor
{ x = xInit; }

With this constructor available, this statement now compiles.

a.setOther(5); // incorrect type, but no syntax error

The compiler interprets this message in the following way.

a.setOther(Base(5)); // compiler's point of view

A temporary object of class Base is created, initialized with a call to the conversion constructor,
used as an actual argument of the correct type, and then destroyed. Hence, the requirement of
strong typing is satisfied at the compiler level¡Xthe function gets a value of the type it needs. This
requirement is not satisfied at the programmer level; the programmer passes to setOther() an
argument of an incorrect type and gets away with it.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (893 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that I supplied the default parameter value to this constructor. Why did I do that? Before I
added this constructor to class Base, it had the system-supplied default constructor, and I was able
to define class Base objects without arguments. With the conversion constructor in place, the
system took away the default constructor, and the definitions of Base objects without arguments
would become syntactic errors.

As I mentioned earlier, C++ has this exceptional ability to make existing code syntactically
incorrect when a new segment of code (in this case, the constructor) is added without removing
anything from the code. In other languages, when you add new code, you can make non-related
parts of the program run incorrectly, but you cannot make it syntactically incorrect. From one point
of view, this is distressing, because adding nonrelated code should not cause problems in existing
parts of the program. From another point of view, this is exciting, because the compiler notifies the
programmer about problems at compile time, not at run time.

To avoid these problems, I could have added to class Base a programmer-defined default
constructor that does nothing. This was probably the best solution because I did not need the object
to be initialized to any particular value. (I do not have any further use for that value.) But I was lax,
and instead of adding yet another constructor, I just added the zero default parameter value to make
the existing client code compile. What is the drawback of this solution? I pretend that this zero
value is somehow used elsewhere. Meanwhile, it is not used. I know that it is not used, but the
maintainer will have to figure that out. Hence, I made a contribution (however small) to increasing
the level of difficulty of reading this code.

So, adding the conversion constructor to class Base makes the call to the member function
Other::setOther(Base) compile with the actual argument of a numeric type.

 a.setOther(5); // the same as a.setOther(Base(5));

When the compiler does not find the exact match for the parameter type, it will search for a
possible numeric conversion. If there is no appropriate numeric conversion, it will search for a
combination of a numeric and programmer-defined conversion. The conversion constructor is one
of the possible programmer-defined conversions.

With this constructor in place, the next statement also becomes legitimate because the compiler
calls the conversion constructor to satisfy the requirements of strong typing.

 b = 5 + 7; // no error: the same as b = Base(5+7);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (894 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In a sense, the compiler is trying to second-guess the programmer. One of the goals of C++ design
was to avoid this and let the programmer explicitly state what the code means. One of the ways to
explicitly state what we mean is to use explicit casts. However, according to C/C++ rules of weak
typing, explicit casts are not required for conversions among numeric types, and the calls to the
conversion constructors can be done implicitly, without explicit calls. What to do? The ISO/ANSI
standard comes with a compromise. If the class designer feels that the conversion constructor
should be called only explicitly, the keyword explicit is used as the modifier. (See Chapter 10,
"Operator Functions: Another Good Idea," for more examples.)

explicit Base::Base(int xInit = 0) // no implicit calls
{ x = xInit; }

The use of the keyword explicit is optional. If you use it in the design of the Base class, your
code will be harder to write. (You use this extra keyword explicit.) Also, the client code will be
harder to write (the client programmer will use explicit casts), but the resulting code will be easier
to understand. If you do not use this keyword, you will make everybody's life (including yours)
easier, but the quality of the code will suffer. It is hard to strike a good compromise.

C++ allows all kinds of silent conversions, but the explicit keyword prevents you from using them.
This statement now is a syntax error again despite the presence of the conversion constructor; it
needs an explicit cast.

a.getOther(5); // illegal if constructor is defined as explicit

Notice that the implicit conversions apply only to an argument that is passed by value. It does not
work with reference and pointer parameters. Adding the conversion constructor would not make a
call to Other::getOther(Base* b) compile with the numeric argument.

int x = 5
a.getOther(&x); // is this is still a syntax error

Casts Between Pointers (or References)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (895 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The rules for implicit conversions (weak typing for values) apply only to values and not to
references or to pointers (strong typing for addresses). However, explicit conversions can be
applied to arguments of any nature. Can you pass an integer pointer to the place where the Base
pointer is expected? No; according to the rules of strong typing, this line is an error:

 a.getOther(&x); // syntax error

However, you can always tell the compiler that you know what you are doing and you want it to
accept this code. The C++ way of telling the compiler that you know what you are doing is to use
an explicit cast to the correct type.

 a.getOther((Base*)&x); // no problem, conversion is OK!!

In this function call, a Base pointer is created and is initialized to point to the memory location that
contains x. Inside getOther(), Base class messages are sent to the area occupied by x. Since
Base methods do not know about the data structure of x, they can easily damage it. The whole
operation does not make sense at all, but it is legal in C++. If you insist that you know what you are
doing, the compiler will not argue with you.

The same is true about pointer (or reference) conversions among pointers (or references) of any
type. Implicit conversions among different types are not allowed. For example, this is an error.

 a.getOther(&a); // error: no conversion from Other* to Base*

The method getOther() expects a pointer of type Base. Instead, it gets a pointer to an object of
type Other. According to the principles of strong typing, the compiler flags this line as a syntax
error¡Ximplicit casts between pointers (or references) of different types are not allowed. However,
the function call with an explicit case is acceptable to the compiler.

 a.getOther((Base*)&a); // no problem, explicit conversion is OK

Here, a pointer to the Base class object is created and initialized to point to the Other object a.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (896 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This pointer is passed to the getOther() method as an actual argument. Inside the getOther()
method, this pointer is used to send to the Other object messages that belong to class Base. The
compiler cannot flag these messages as erroneous. The execution of the program might result in a
crash or might quietly produce incorrect results. This code is utter nonsense, but it is legal C++.

Conversion Operators

As far as the conversion operators are concerned, they are used as regular C++ casts. When applied
to objects of programmer-defined types, they usually return a value of one of the object
components. For example, the cast to int applied to an object of type Other might return the value
of the data member x. The use of this operator eliminates a syntax error when an object of type
Other is used where an integer (or other numeric type) is expected.

 b.set(a); // the same as b.set(int(a));

Of course, this does not become legal just because I want it to. This is an example of client code
that should be supported by adding appropriate services to the server class Other. I will tell you
how to implement this kind of service in Chapter 16, "Advanced Uses of Operating Overloading."
But the moral of using conversion operators is clear¡Xthis is yet another blow to the C++ system of
strong typing.

If you wrote this code because you wanted the conversion from Other to int to happen, fine (using
explicit cast would be better). If you used the object a instead of an integer by mistake, the
compiler does not stand by to tell you about it. The protection of strong typing is removed, and you
have to discover the error through run-time testing and debugging.

In summary, C++ is a weakly typed language as far as numeric types are concerned. You can
convert from one numeric type to another freely, and explicit casts are not required. If you made a
mistake, beware.

C++ is a strongly typed language as far as programmer-defined types are concerned. The language
provides no casts between numeric types and programmer-defined types or between different
programmer-defined types. If you made a mistake, it is flagged as a syntax error, and you can
correct it before running the program.

Conversion constructors and conversion operators weaken the C++ system of strong typing for
programmer-defined types. They allow explicit and even implicit conversions between numeric
types and programmer-defined types. If you make a mistake, beware: It is not flagged as a syntax

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (897 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

error.

As far as pointers (and references) are concerned, C++ provides a similar mixture of strong typing
and weak typing. Pointers (and references) cannot point to objects of types different from their own
type. However, they can be freely converted to a pointer (or a reference) of any other type. All that
you have to do is to use explicit cast (unlike with numeric values implicit casts are not allowed,
even for pointers to numeric types). Be very careful that the memory pointed to by the pointer (or
the reference) is used correctly after this cast. Use casts with care.

Conversions Between Classes Related Through Inheritance

The use of inheritance introduces additional possibilities for using an object of one type where an
object of another type is expected. Classes related through public inheritance are not totally
incompatible because a derived class object has all the operations and data members that a base
class object has. As you are going to see, one can assign an object of one class to an object of
another type (possibly using an explicit cast). One can pass an object of one class as an argument
where a parameter of another class is expected (again, you might need a cast).

The C++ rules for conversions between classes related through inheritance are not very complex. It
seems, however, that they run against common programming intuition. If this will be the case for
you, make sure that you adjust your intuition accordingly. I will try to help you to do so.

What you should know is that when a derived class publicly inherits from its base class, C++
supports implicit standard conversions from a derived object to its public base class. Conversions
from the base object to the derived class are allowed too, but they require explicit casts. This rule
applies to class objects, references to class objects, and object pointers.

This is the rule. Why is the rule designed this way? To make this formal rule more intuitive for you,
I will consider several examples and offer diagrams that illustrate the conversions from one type to
another.

The important concepts that I will use to clarify these conversions are the concepts of safe
conversion and unsafe conversion.

Safe and Unsafe Conversions

Let us consider the following code snippet that uses numeric variables and illustrates the handling
of variables of different types.

int b = 10; double d;
d = b; // from "smaller" to "larger" type: safe move

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (898 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In this example, I am moving a small piece of data (4 bytes on my machine) into a larger piece of
data (8 bytes on my machine). Whatever value an integer variable contains, it can be comfortably
saved in a double floating-point variable; in the transfer, it can lose neither precision nor value.
This is why we think about this conversion as being safe. This is why the C++ compiler does not
issue any warning for this type of code.

Now let us consider the movement of data in the opposite direction.

int b; double d = 3.14;
b = d; // from "larger" to "smaller" type: unsafe move

Here, 8 bytes of the double floating-point value might not fit into a smaller shoe of an integer
variable. The fractional part will definitely be lost. If the double value is outside the legal range for
integers, the value will be lost as well. This is why we think this conversion is unsafe and this is
why C++ compilers might issue a warning for this type of code.

However, C++ does not make this assignment illegal. After all, not all unsafe operations are
incorrect operations. The double value might contain a small value that fits into an integer easily.
The double value might not have any fractional part at the moment, or the value of the fractional
part might not be important for the application.

This is why C++ defers to the programmer in evaluating the situation. If you know what you are
doing (what value you are converting and what will happen to this value as the result of the move)
and are happy with the results, fine. If not, C++ is not going to be Big Brother and look over your
shoulder.

This is the logic behind the C++ rules for conversions between numeric variables. Next we discuss
the conversions between variables of different classes. Unlike in the previous section, where I
discussed conversions between objects of unrelated classes, I will assume that the classes are
related through inheritance.

Let us look at the Base class (which on my machine contains one integer data member and its size
is 4 bytes) and the Derived class (which contains two integers and its size is 8 bytes on my
machine).

class Base { // Base class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (899 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

protected:
 int x; // protected data
public:
 Base(int a) // to be used in Derived
 { x = a; }
 void set (int a) // to be inherited
 { x = a; }
 int show () const // to be inherited
 { return x; }
} ;
class Derived : public Base {
 int y; // in addition to x
public:
 Derived (int a, int b) : Base(a), y(b) // initialization list
 { } // empty body
 void access (int &a, int &b) const // additional capability
 { a = Base::x; b = y; } // retrieve object data
} ;

Let us apply this logic of "fitting into the shoe" to moving data between variables of these two
classes.

Base b(30); Derived d(20,40);
d = b; // from "smaller" to "larger" type: it fits

Similar to the previous example with numeric values, I am moving a "smaller" value (4 bytes on
my machine) into a "larger" value (8 bytes on my machine). There is plenty of space in the target
object to accommodate the move, and no data is going to be lost.

Now let us move data in the opposite direction.

Base b(30); Derived d(20,40);
b = d; // from "larger" to "smaller" type: it does not fit

Here, I am moving a larger Derived value into a smaller Base variable. The Base variable does not
have enough memory to accommodate all data members of a Derived value. The big value does
not fit into a small shoe. This situation is illustrated in Figure 15-1. It shows the movement of data
from a smaller value to a larger value and labels it as being safe. It shows the movement of data

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (900 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

from a larger value to a smaller value and labels it as being unsafe.

Figure 15.1. Moving data between values of different sizes: incorrect version.

As you saw earlier, this logic works well for numeric variables but fails for objects of classes
related through inheritance. You need to adjust your intuition as quickly as possible. The real issue
for class objects is not the existence of sufficient space but rather the availability of data for the
consistent state of the object.

When you move data from a derived object to a base object, the derived object has enough data to
fill the base object. It has more, but this is not a problem. The extra data will be dropped on the
floor¡Xthe base object has no use for it. The base object will always be in a consistent state. This is
safe.

When you move data from a base object to a derived object, the base object only has enough data to
fill the base part of the derived object. The data to set the derived part of the derived object is
nowhere to be found, and this is the problem. The derived object winds up in an inconsistent state.

This is not safe, and C++ declares this move a syntax error. Figure 15-2 illustrates this point of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (901 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

view. It shows that for numeric values the issue is the preservation of value and precision, and for
the class values the issue is the availability of data to set all the fields of the target object.

Figure 15.2. Moving data between values of different sizes: correct version.

Will the explicit cast help? After all, C++ always gives you the means to tell the compiler that you
know what you are doing.

Base b(30); Derived d(20,40);
d = (Derived)b; // data has nowhere to come from

This is still a syntax error because the base object is not able to supply the missing data. You might
want to use zeros to set the derived class data members that cannot be initialized from the base
object (data member y in this example). This is fine, but this cannot be done by default¡Xthe
compiler does not know whether these zeroes are acceptable. To notify the compiler, you can

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (902 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

overload the assignment operator for the Derived class: Give this operator a Base parameter, copy
the parameter fields and set the remaining fields to whatever you like.

void Derived::operator = (const Base &b) // Base parameter
 { Base::x = b.show(); y = 0; } // a compromise

You can find other examples of class assignment operators in Chapter 11, "Constructors and
Destructors: Potential Trouble." In these examples, the assignment operators have the parameter
either of the same class as the class of the assignment target or the type of one of the class
components. Here you see the assignment operator whose parameter is of the base class. This is
fine, because the overloaded assignment operator is just a C++ function, and you can design C++
functions using parameters of any type. And the base class object is one of the components of the
derived class object.

Now, two questions. Question number one: why is the body of this assignment operator so
complex? Why should I dance around the Base class with such respect as if I am afraid to touch it?
Why do I use the scope operator? Why do I use the show() function? After all, the data member x
is protected in the Base class, right? You might say that this is more than one question. All right,
here is just one question: Can I make the assignment operator simpler and write it this way?

void Derived::operator = (const Base &b) // Base parameter
 { x = b.x; y = 0; } // nice!!

The answer to this question will appear later in this chapter.

Question number two: Here are two code lines that try to copy a Base class object into a Derived
class object. Which line is supported by this assignment operator? The first line? The second one?
Both lines? Neither?

d = b; // is this the same as d.operator=(b); ??
d = (Derived)b; // is this the same as d.operator=(b); ??

The correct answer is the first line. How do I know that? Because the second line does not call the
assignment operator; it is the first line that does. I have told you that you should always think about
the difference between assignment and initialization because they are different in C++. To support

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (903 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the second line, you need the member function that will be called when the cast operator is
compiled. What does the cast mean? The cast means the call to a constructor. To what class does
the constructor belong? It belongs to the class of the cast. Hence, to support the second line of code,
you should write something like this:

Derived::Derived(const ??? &b) // what type for the parameter?
{ /* what do I do here? */ }

All right, now we know the name of the constructor. What is the type of its parameter? It is the type
you are going to use to initialize the fields of the Derived class object. According to the code line I
want to support, the parameter should be of the type Base.

Derived::Derived(const Base &b) // Base parameter
{ /* what do I do here? */ }

Notice how often in this discussion I use the words "the code line that I want to support" in
different forms. The reason for this is that it is from the client code to be supported that you decide
what the server classes should look like. What I should do is to copy the parameter into the Base
part of the Derived class object and do something with the Derived part of the object that leaves
the object in the consistent state. Similar to the assignment operator, I can set the Derived data
member to zero.

Derived::Derived(const Base &b) // Base parameter
{ Base::x = b.x; y = 0; } // Hey, this is incorrect!

This is incorrect. I did not heed my own advice to think about the object construction process all
the time. I thought that the constructor is called when the object is constructed and not after.

When the object is constructed, its components are allocated memory, and the constructor for each
component is called before the next component is allocated memory. For the Derived class object,
the Base component is allocated first. Hence, a Base constructor is called. Which constructor?
Since I do not pass any data to the Base part, it is the default constructor. Let us go to the Base
class definition and check whether this class has the default constructor. No, it has a conversion
constructor without a default parameter value. Hence, the attempt to call the Derived constructor I

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (904 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

am designing will result in a call to a missing Base constructor and hence will result in a syntax
error. Sound familiar? Good, you should think about these things all the time.

What is the remedy? I should make the default Base constructor available. I could add one to the
Base class or add the default parameter value to the existing Base conversion constructor. Another,
better way to resolve this problem is not to provide the default constructor in the Base class but to
use the initialization list for the Derived constructor I am designing. Let us use the initialization
list.

Derived::Derived(const Base &b) // Base parameter
 : Base(b.x) // pass data member?
{ y = 0; } // is not this nice?

But this is also incorrect. The data member x in class Base is not public and hence cannot be
accessed from outside of the class scope. Some programmers argue that the constructor code that
follows the Derived:: scope operator is inside the Derived class, and the Derived class has
access to non-private Base data members. This is true. However, a Derived class object has access
to its own non-public data defined in Base. But parameter object b is different from the message
target, and Derived class methods cannot access its non-public data. This is part of the answer to
the first question I asked earlier: The Derived class assignment operator cannot access the internals
of its Base parameters. It can access only its own internals defined in Base. This is why a Base
member function should be used.

Derived::Derived(const Base &b) // Base parameter
 : Base(b.show()) // pass return value
{ y = 0; } // is not this nice?

This is correct but probably is too exquisite. I am calling the Base member function show() and
passing its return value to the Base conversion constructor. It is simpler to call the Base copy
constructor. This constructor is always available. Since the Base class does not manage its memory
dynamically, there is no need to write a custom-made copy constructor.

Derived::Derived(const Base &b) : Base(b), y(0) // copy
{ } // this is really nice

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (905 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Therefore, this is the story about copying a Derived object into a Base object (no problem, it is
always safe) and about copying a Base object into a Derived object (not safe, this operation is an
error unless it is supported by a copy constructor or an assignment operator). The story applies both
to using objects in assignment operators and to passing objects to functions by value.

In narrating this story, I used the data integrity analogy. I told you that copying a Derived object
into a Base object is safe because the Derived object has all Base data (plus more), and the
resulting Base object would be in a consistent state. I told you that copying a Base object into a
Derived object is not safe because a Base object is a small object and it does not have data
necessary for initializing a larger Derived object. Hence, this operation could leave the Derived
object in an inconsistent state.

Another possible way to sharpen your intuition is to use the analogy with capabilities to perform
operations. The use of an object of one type in the place where an object of another type is expected
would be safe only if the object being used can perform all operations that the expected object
might be asked to perform. I will illustrate this approach while discussing the use of pointers (or
references) of one type where a pointer (or a reference) of another type is expected.

Conversions of Pointers and References to Objects

The next story is about using pointers and references that point to Derived and Base objects. For
the sake of brevity, I will discuss pointers only, but everything I have to say about pointers applies
to references as well. I will discuss a hierarchy of only two classes, Base and Derived, but
everything I have to say about these two classes also applies to taller and to wider hierarchies of
classes, where the base class has other derived classes, and derived classes are used as bases for
other classes.

First, I will create a Base object dynamically and will try to call its methods using a Base pointer
(this is, of course, always possible) and a Derived pointer (there will be some problems with that).
Next, I will create a Derived class object dynamically and then try to call its methods using a
Derived pointer (this is always possible) and a Base pointer (again, there will be some problems).
After that, I will generalize the results for passing parameters to functions by pointer and by
reference.

Here is an object of the Base class, which I allocate on the heap. I can use the Base pointer that
points to this object to access all Base methods (e.g., show()) but not methods of any other class.
The methods of the Derive class (e.g., access()) are also out of reach for the Base pointer simply
because they do not belong to the Base class.

In processing these messages, the compiler identifies the name of the pointer (pb) that points to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (906 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

unnamed target object, uses the pointer declaration to establish the class of the pointer (Base), goes
to the class specification, and searches the class specification for the method name. If the name is
found (in this case, show()), the object code is generated. If the method name with the appropriate
signature is not found (in this case, access()), it is a syntax error.

int x, y; Base *pb = new Base(60); // base object
cout << " x = " << pb->show() << endl; // this is OK
pb->access(x,y); // this is always impossible

Next, I try to set a Derived class pointer to point to the same Base class object. The algorithm for
the function name resolution previously described is expanded when the pointer (or, for that matter,
a variable) belongs to the Derived class. If the method with the name of the message is found in
the Derived class, fine. If not, the compiler goes to the description of the Base class. It is only after
the method with the appropriate signature is not found in the Base class description that the
compiler flags the function call as a syntax error.

Hence, this Derived class pointer would be able to use any feature of the Derived class. "Any
feature" here means the features defined in the Derived class (e.g., access()), and the inherited
features (e.g., show()). But no such luck. When I try to set the Derived pointer to point to the Base
object, the compiler balks without even getting to the other statements.

Derived *pd = pb; // point to Base object: not OK
cout << " x = " << pd->show() << endl; // this would be OK
pd->access(x,y); // but this should be prevented

The formal explanation is very simple: The conversion from a Base object to a Derived object is
not safe. Hence, the conversion from a Base pointer (or reference) to a Derived pointer (reference)
is not safe. Period. They all generate syntax errors.

However, the formal explanation does not take you too far in understanding what is going on. You
have to develop the appropriate intuition. Unfortunately, programming in traditional programming
languages does not develop intuition related to conversions between classes, object substitutions,
and allowed and disallowed function calls. Similar to the problem of object conversion, I will try to
develop your intuition about pointer and reference conversions using graphics and analogies based
on the object size and the ability to do work for the client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (907 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 15-3 shows a Derived pointer as a larger rectangle than a Base pointer, not because the
Derived pointer is allocated more memory (it is not), but because the Derived pointer can provide
more features than the Base pointer can. It is the object's capability to respond to messages and to
do the work for the client code that is important in this analysis.

Figure 15.3. Accessing a Base object through a pointer of the Derived class: unsafe.

The Base pointer can access the Base class features only, and the Derived pointer can access the
Base class features and the Derived class features. I am showing a dynamically allocated Derived
class object as a larger rectangle than a Base object not only because it takes more space in memory
but because it contains more capabilities. Even if it does not have additional data members (in this
example, it does), it always contains additional member functions. I am showing a Base class
object with a dashed complement to indicate the capabilities that are present in the Derived class
object but are absent in the Base class object. The letters B and D inside the object rectangle denote
the Base part and the Derived part of the object, respectively.

As Figure 15-3 shows, copying the contents of pointer pb into pointer pd makes both pointers point
to the same Base object. Again, I am not looking into the actual physical addresses or whether the
pointers point to the beginning or to the middle of the object¡Xthis is not important. What is
important is that a pointer that points to an object is capable of invoking object capabilities
according to the type of the pointer, not according to the type of the object.

I suggest that you think about base class objects as thin, weak, emasculated objects that can do very
little. I suggest you think about derived objects as big, strong, powerful objects capable of doing
everything that a base object could do plus much more.

Similarly, you should think about base pointers as thin, weak, myopic pointers that cannot see too
far and can fetch only the capabilities defined in the Base class but not the capabilities defined in
the Derived class. For example, a Base pointer can fetch the method show() defined in the Base

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (908 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class but not the method access() defined in the Derived class.

And finally, pointers of the Derived type should be thought of as big, strong, farsighted pointers
that see far and can fetch a lot of capabilities (both show() from Base and access() from
Derived).

When you set a powerful pointer of the Derived class to point to a weak Base class object, this
pointer can fetch more than the object can deliver. Of the two lines that follow the pointer
assignment pd = pb above, the first line (a call to show()) would be all right, but the second line (a
call to access()) would not¡Xthere is no access() in Base. This is why C++ declares the
conversion pd = pb to be a syntax error: to prevent calls such as pd->access(x,y). This call is
syntactically correct (pd belongs to class Derived) but is semantically meaningless¡Xa Base object
cannot respond to this message.

Of course, the compiler could see what you see, that is, that the Derived pointer pd points to a
Base object and hence the call pd->show() should be allowed and the call pd->access(x,y)
should not be allowed. But that would require too much from the compiler writer. When it comes to
choosing between the interests of the compiler writer and a C++ programmer, C++ often favors the
compiler writer. The C++ compiler is not required to do data flow analysis. You are required to
learn the rules of conversion.

All right, the conversion pd = pb is not safe and is flagged as a syntax error. But what if you have
only good intentions? What if you are going to call the Base functions only (e.g., show()), and not
the Derived functions (e.g., access())? There should be a mechanism for telling the compiler
what it does not know but you do, namely, that you will be using the Base capabilities only. As you
remember from Chapter 6, "Memory Management: The Stack and The Heap," and from the
beginning of this chapter, such a mechanism indeed exists. It is called a cast.

Using the cast, you request the compiler to perform the unsafe conversion for you because you
want to take the law into your own hands: You want to call pd->show() but not pd-
>access(x,y).

Derived *pd = (Derived*)pb; // hey, compiler, I know what I do
cout <<"x="<<pd->show()<< endl; // I will do this, this is safe
// pd->access(x,y); // do not even think about this!

Notice that the cast name includes not just the class name, but the pointer as well. It would be
incorrect to omit the pointer notation. Also, you cannot use the functional notation; this notation is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (909 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

allowed only when the type name is an identifier, and Derived* is not an identifier (recall that
asterisks are not allowed in C++ identifiers).

Derived *pd = (Derived)pb; // cannot convert pointer to object
Derived *pd = Derived*(pb); // illegal name for functional cast

If you do want to use the functional notation, use the typedef to make up a type name you would
like to use, for example, DerivedPtr.

typedef Derived* DerivedPtr; // new type name: an identifier
Derived *pd = DerivedPtr(pb); // identifier: OK for this cast

Next, let us create a Derived class object on the heap. Using the Derived class pointer (big,
powerful, far-sighted) that points to this object, you can invoke both the capabilities inherited from
the Base class and the capabilities defined in the Derived class. And this is okay because the
Derived class object has all these capabilities (big and powerful).

Derived *pd = new Derived(50,80); // Derived object can do all
cout <<" x="<<pd->show()<< endl; // OK to call a base method
pd->access(x,y); // OK to call a derived method

Now let us copy the contents of the Derived pointer into a Base pointer (thin, weak, and
shortsighted). This is a type conversion: the Base pointer can access only the Base capabilities of
the object it is pointing to. Trying to access the Derived class capabilities through this pointer is
futile; these capabilities are not there, and the compiler will generate a syntax error.

Base *pb = pd; // pointer to the same object
cout <<" x="<<pb->show()<< endl; // sure, Base method is there
// pb->access(x,y); // error: not in Base class

Figure 15-4 illustrates what is going on. Again, I am showing a Derived pointer as a larger
rectangle than that of a Base pointer. I am showing a dynamically allocated Derived class object as

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (910 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

a larger rectangle than that of a Base object. The letters B and D inside the object rectangle denote
the Base part and the Derived part of the object.

Figure 15.4. Accessing a Derived object through a pointer of the Base class: safe.

As Figure 15-4 shows, copying the contents of pointer pd into pointer pb makes both pointers point
to the same Derived object (big, strong, powerful, capable of doing everything that a Base object
can do plus much more). But this Base pointer pb is thin, weak, and myopic, it cannot see too far
and can fetch only Base capabilities of the object but not Derived capabilities. (Even if they are
there, in the object pointed to by this pointer.)

When you set a weak pointer of the Base class to point to a big Derived class object, this weak
pointer can do no harm. This pointer can invoke only Base capabilities (e.g., show()), and they are
always present in the powerful Derived object. This is why C++ accepts the conversion pb = pd
as safe, just as it accepts the copying of a large Derived class object into a small Base object. This
conversion cannot result in sending to the unnamed object a message to which the object cannot
respond.

If you want to be explicit and tell the maintainer what you know at the time of writing the code
(that you are converting a Derived pointer into a Base pointer), you can use an explicit cast. Since
this conversion is safe, the cast is optional.

Base *pb = (Base*)pd; // explicit cast: alert others
cout <<" x="<<pb->show()<< endl; // sure, Base method is there
// pb->access(x,y); // error: not in Base class

This conversion is safe, but it is unnecessarily restrictive. The compiler flags the call to the
Derived method access(x,y) in this code snippet as a syntax error. The compiler does this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (911 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

because it knows that the pointer pb is of the Base class, and the Base class does not have any
access() method. Since the C++ compiler does not do data flow analysis, it has the right not to
know what I know, that the pointer pb, however weak and myopic, points to a full-fledged
Derived object that is as capable of responding to the access() message as is any other Derived
object. Again, the C++ compiler writer gets a break, and I am left to search for a method of telling
the compiler what I know.

Of course you know how to tell the compiler that this small pointer points to a large object. The
way to tell the compiler what you know is to use casting. You have to cast this weak Base pointer
(the one that cannot fetch Derived class capabilities) to the powerful Derived pointer so that the
Derived methods will became reachable.

Base *pb = (Base*)pd; // explicit cast: alert others
cout <<" x="<<pb->show()<< endl; // sure, Base method is there
(Derived*)pb->access(x,y); // error: priority of operators

This is nice. However, this is not nice enough. The arrow selector operator has a higher priority
than the cast operator. As a result, the compiler will try to convert to the derived pointer whatever
the method access() returns, and it will become confused. So I have to use yet another pair of
parentheses. It looks intimidating, but come to think of it (in steps), there is not much behind this
syntax.

 ((Derived*)pb)->access(x,y); // hey, it works!

Yes, it works, but it looks horrible, and all this complexity gets into the code because the compiler
cannot recognize that the pointer pb points to the Derived object. It really feels like sanding the
floorboards and then putting the boards sanded-side down.

Let us put all of these components together. Listing 15.1 shows the Base and Derived classes, and
the client code handles objects of these classes. The output of the program is shown in Figure 15-5.

Figure 15.5. Output for program in Listing 15.1.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (912 of 1187) [8/17/2002 2:58:05 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 15.1. Using pointers to access objects of base and derived classes.
#include <iostream>
using namespace std;

class Base { // base class
protected:
 int x;
public:
 Base(int a) // to be used by Derived
 { x = a;
 void set (int a) // to be inherited
 { x = a; }
 int show () const // to be inherited
 { return x; } } ;

class Derived : public Base { // derived class
 int y;
public:
 Derived (int a, int b) : Base(a), y(b)
 { } // empty constructor body
 void access (int &a, int &b) const // added in derived class
 { a = Base::x; b = y; } } ;

int main()
{
 int x, y;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (913 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Derived *pd = new Derived(50,80); // unnamed derived object
 cout << " 1. Derived pointer, object, and derived method\n";
 pd->access(x,y); // no problem: type match
 cout <<" x = " <<x <<" y = " <<y <<endl << endl; // x=50 y=80
 cout << " 2. Derived pointer, derived object, base method\n";
 cout << " x = " << pd->show() << endl << endl; // x = 50
 Base *pb = pd; // pointer to same object
 cout << " 3. Base pointer, derived object, base method\n";
 cout << " x = " << pb->show() << endl << endl; // x = 50
// pb->access(x,y); // error: no access to derived method
 cout << " 4. Converted pointer, derived object and method\n";
 ((Derived*)pb)->access(x,y); // we know it is there
 cout <<" x = " <<x <<" y = " <<y <<endl << endl; // x=50 y=80
 pb = new Base(60); // unnamed base object
 cout << " 5. Base pointer, base object, base method\n";
 cout << " x = " << pb->show() << endl << endl; // x = 60
 cout << " 6. Converted pointer, base object, derived method\n";
 ((Derived*)pb)->access(x,y); // pass on your own risk
 cout <<" x = " <<x <<" y = " <<y <<endl << endl; // junk!!
 delete pd; delete pb; // necessary tidiness
 return 0;
 }

First, client code creates an object of the Derived class and uses the Derived class pointer to
access the derived class method access(). This is trivial. The compiler finds the method in the
definition of the class to which the pointer belongs and calls it. It prints x=50, y=80, the first
output.

Then the client code calls the Base method show() using the same Derived class pointer. This is
also trivial. The compiler does not find the definition of the method in the Derived class
description, goes to the definition of the Base class, finds the method and generates the call (and
prints x=50). No type conversion is involved. The unnamed object pointed to by the Derived
pointer is of Derived type and can do everything that might be required from either a Base or a
Derived class object (second output).

Next, the client code sets the Base pointer to point to the Derived object. This is not so trivial
because these pointers are not of the same type. Normally, implicit conversions between pointers of
different types are not allowed. Since these pointers are of a related type, this rule is relaxed for
safe conversions.

Base *pb = pd; // different types: safe for related types

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (914 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It is safe because the Derived class pointer can do everything a Base class pointer can, and there is
no danger that the Base pointer pb will be asked by the client code to do something it cannot do.
Still, some programmers believe that the explicit cast is useful because it tells the maintainer (not
the compiler¡Xit knows what is going on) about the conversion.

Base *pb = (Base*) pd; // related types: cast is optional

In Listing 15.1, the client code does not use this conversion¡Xit is optional. Next, the client code
uses this Base pointer to call the Base method show(). Since the unnamed object to which the
Base pointer is pointing is of type Derived, there is no problem with sending the base class
message to that object. (It prints x=50, third output).

Next, the client code uses the Base pointer to call the access() method. Here, the issue of safety is
irrelevant. It does not matter that the pointer points to a Derived class object, which can handle the
job. The compiler does not look at the object. The compiler looks at the pointer, searches the
definition of the class to which the pointer belongs (Base), does not find the match for the method,
and declares the call a syntax error. I commented it out.

Next, the client code tells the compiler what the designer knows but the compiler does not, that this
base pointer points to a Derived object. The client code does it by converting the Base pointer into
a Derived pointer. This conversion is not safe and has to be done explicitly. The converted pointer
is of class Derived, and the compiler has no problem calling a Derived method through this
pointer.

((Derived*)pb)->access(x,y); // we know it is there

Since the object pointed to by this converted pointer is indeed a Derived class object, the method
call executes correctly and prints x=50, y=80, the fourth output.

Next, the client code creates a Base object and uses the Base pointer to call the Base method
show(). This is again trivial. The compiler searches the definition of the class to which the pointer
belongs, not the class to which the object belongs (never mind that here it is the same class),
matches the message and the method and calls it. (It prints x=60, fifth output.)

Finally, the client code does that horrible thing that the oversight of freedom from the compiler
allows it to do. It casts the Base pointer into a Derived pointer. This conversion is not safe, so the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (915 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

explicit cast is needed to tell the compiler what the compiler does not know, that I know what I am
doing. I cast the pointer using all appropriate parentheses and call the Derived method access().

((Derived*)pb)->access(x,y); // pass on your own risk

Here, telling the compiler that I know what I am doing means that I will not call the Derived class
methods using this pointer because the object it is pointing to can do only the Base class work.

Since I told the compiler that I know what I am doing, the compiler does not try to second-guess
me and figure out what kind of object the Base pointer is actually pointing to. This is a pity,
because the Derived method access(), being called on a Base object, prints whatever it wants
(sixth output). This is pretty much like the Soviet Union, which used to have common borders with
whatever countries it wanted.

This is a good example of how you can shoot yourself in the foot using perfectly legitimate (if
somewhat complex) C++ coding patterns.

Three comments are in order. First, everything I said here about pointers is true about C++
references as well. (The only difference is that a reference cannot be turned to point to another
object.) A reference of a base type can point to a derived class object without casting and invoke
only methods defined in the base class but not in the derived class. If this base reference is cast to
the derived class, it can invoke methods defined both in the base class and in the derived class. A
reference of a derived class cannot point to a base class object without an explicit cast. With the
cast, it can point to a base class and invoke any method. It is up to the programmer to make sure
that a derived class method is not called using a derived class reference that points to the base class
object.

NOTE

Pointers (and references) of a base class can point to a derived class object without an explicit
cast. They can do no damage because they can access only the base part of the derived object.
Explicit cast is optional. Pointers (and references) of a derived class should not point to a base
class object because they might ask this object to respond to derived class messages. If you feel you
have to do that, you must use explicit cast.

Second, all that I have told you here about pointers and references holds only for related classes. If
classes are not related through inheritance, then pointers (and references) of these classes cannot

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (916 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

point to objects of other classes without explicit casts (and these casts usually make no sense). No
implicit conversions are allowed because the classes do not have common operations (see the first
section of this chapter). The only reason why a base pointer is allowed to point to a derived object
is that the base and derived classes have common operations¡Xthe operations defined in the base
class. It is these operations that the base pointer can invoke.

ALERT

Pointers (and references) of a specific class must not point to objects of classes not related to this
one by inheritance. This is a syntax error. If you feel that you have to do that, you must use explicit
cast. C++ allows this cast¡Xand this is a pity. Trying to treat the same object as an object of two
different classes is asking for trouble.

Third, the implicit casts between classes related through inheritance are allowed only if the mode of
inheritance is public. If inheritance is private or protected, all conversions require explicit casts.
Why is this so? Because with private or protected mode of inheritance, public operations of the
base class become private or protected in the derived class. There is no guarantee that the base and
the derived classes have any operations in common. Hence, the base pointer should not be allowed
to point to a derived class object. The operations of the derived class are not accessible for the base
pointer (the major property of C++ classes), and the operations of the base class are not accessible
to the derived object (the property of private and protected inheritance).

This is why it is a good idea to only use the public mode of derivation.

TIP

Derive your derived classes using public derivation only. This allows you to point pointers (or
references) of one class to an object of another class in the same inheritance hierarchy. With
private and protected inheritance, the base and the derived objects do not have public operations
(or data) in common. Pointing a pointer of one class to an object of another class in the hierarchy
makes as much sense as pointing a pointer of one type to an object of an unrelated class¡Xit is
asking for trouble.

Conversions of Pointer and Reference Arguments

Now we have all of the necessary tools to discuss the conversion of arguments in function calls.
Here is the class Other, which implements member functions with pointer and reference
parameters of classes Base and Derived.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (917 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Overloaded methods setB() expect arguments of class Base. They set the value of the Other data
member to the value of the data member inside the Base parameter. Overloaded methods setD()
expect arguments of class Derived. They set the Other data member to the value of the additional
data member inside the Derived parameter object. Method get() returns the internal state of the
Other object.

class Other { // another class
 int z;
public:
 void setB(const Base &b) // pass by reference
 { z = b.show(); }
 void setB(const Base *b) // pass by pointer
 { z = b->show();
 void setD(const Derived &d) // pass by reference
 { int a; d.access(a,z); }
 void setD(const Derived *d) // pass by pointer
 { int a; d->access(a,z); }
 int get() const // selector
 { return z; } } ;

This is enough to demonstrate the major issues. In the next snippet of code, each function gets an
argument of the type specified in the function interface. This is the most natural way of using
functions. Since the function expects an argument of a certain type, small wonder that inside the
function the argument receives messages that belong to the corresponding type. In the setB()
functions, the parameter is sent the Base message show(). In the setD() functions, the parameter
is sent the Derived message access().

Base b(30); Derived d(50,80); // related objects
 Other a1, a2; // unrelated objects
 a1.setB(b); a2.setD(d); // exact match
 a1.setB(&b); a2.setD(&d); // exact match

In addition to the messages defined in the Derived class, the functions that expect a Derived class
reference as a parameter could send to the parameter messages that are defined in the Base class as
well. This is not a problem because the argument of the Derived class can respond to messages
inherited from the Base class (provided that inheritance is public and not protected or private).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (918 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In functions that expect a Base class parameter (a reference or a pointer), messages of the Derived
class cannot be sent to the parameter. How do I know that? Because an argument of the Base class
cannot respond to messages defined in the Derived class, and an attempt to send such a message
inside the function would not compile.

class Other { // another class
 int z;
public:
 void setB(const Base &b) // Base object is expected
 { int a; d.access(a,z); } // error: Derived message
 . . . } ; // the rest of class Other

It is these two observations that allow us to decide what happens if a pointer or a reference of a
different class is passed as an actual argument of a function. If the parameter and the argument
types are not related through inheritance, the answer is simple. If there is no explicit cast, the
function call is a syntax error, whether the parameter is passed by reference or by pointer.

Account acc1(100), acc2(1000); // unrelated objects
Other a1, a2; // unrelated objects
a1.setB(acc1); a2.setD(acc2); // syntax error
a1.setB(&acc1); a2.setD(&acc2); // syntax error

When parameters are passed by value, implicit casts are possible if the parameter class provides
appropriate constructors. No such mechanism exists for reference and pointer parameters. The only
way to eliminate syntactic errors is to use an explicit cast.

a1.setB((Base&)acc1); // no syntax error but useless
a1.setB((Base*)&acc1) ; // no syntax error but useless

These function calls are not syntax errors¡Xthe compiler accepts my pledge that I know what I am
doing. This is too bad, because I do not know what I am doing. Inside these functions, the argument
Account objects are going to respond to Base messages, in this case, show(). This is a semantic
error: what the program does makes no sense.

When the formal parameter and the actual argument types are related to each other through
inheritance, the situation is more complex.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (919 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When a function expects a Base pointer (or a Base reference) parameter, you can call this function
with a Derived pointer (or reference) as the actual argument. This is fine because the Derived
object can do everything that a Base object can. The function that expects a Base parameter will
ask its parameter to perform only Base duties in the body of the function. As I said earlier, Derived
class messages inside the body of this function would not be tolerated by the compiler.

void Other::setB(const Base &b) // pass by reference
{ int a; b.access(a,z); } // syntax error

This situation is impossible because C++ is a strongly typed language. Hence, the conversion from
Derived pointer (reference) to Base pointer (reference) is safe¡Xbad things will not happen to the
Derived argument object inside the function that expects a Base object.

a1.setB(&d); // safe conversion

Figure 15-6 illustrates this function call. When the space for the pointer parameter b is allocated, it
is initialized to the contents of the actual argument (the thick arrow). The actual argument is an
unnamed pointer to the Derived object d. I denote this unnamed pointer as &d. As a result, both
pointers point to the same Derived class object (the thin arrows). When the function executes, it
sends messages to its parameter b. Since this parameter is of the Base class, it can fetch messages
only from the Base part of the object (the dashed line under the object). The parameter pointer
cannot fetch messages from the Derived part of the object, but these messages are not called inside
the function because its parameter is of the Base class, not of the Derived class.

Figure 15.6. Conversion from Derived to Base pointer in parameter passing.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (920 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When a function has a Derived pointer (or reference) parameter, you should not call this function
with a Base pointer (or reference) as the actual argument. Inside this function, the object pointed to
by the parameter pointer might be asked to do things that only a mighty Derived object could do
but a weak Base object could not.

 a2.setD(&b); // syntax error

This conversion is not safe and is flagged as a syntax error. Figure 15-7 illustrates this function call.
When the space for the parameter d is allocated, it is initialized to the contents of the actual
argument, an unnamed pointer to the Base object b. When the function executes, it sends messages
to its parameter d. Since this parameter is of class Derived, it can fetch messages both from the
Base and the Derived parts of the object (the dashed line).

Figure 15.7. Conversion from Base pointer to Derived pointer in parameter passing.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (921 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

But this little object does not have any Derived part. A weak Base object does not know how to
respond to them. When a message to a nonexistent part of the object is sent at run time, the results
are undefined. The program might crash, or it might produce incorrect results.

Let us say the method Derived::setD() is written differently and sends only Base class messages
to its parameter.

void setD(const Derived *d) // pass by pointer
{ z = d->show(); } // Base services only

It is actually safe to send a Base object to this function, but the compiler does not know that. You
can insist. I can use our old friend explicit cast to let the compiler know what I know.

a2.setD((Derived*)&b); // explicit conversion

This is a common way to tell the compiler that you know what you are doing. When you saw this
cast the first time, it probably looked confusing and complex. But it does not contain anything
mysterious under the hood. It just says that this Base object will be safe within the setD()
function. So this little Base object can pretend that it is a grown-up Derived object; this is all right,
because inside this function it will be doing only Base work anyway. But just make sure you know
what you are doing!

In Listing 15.2, I summarize the results of this discussion. The output of the program is presented in
Figure 15-8.

Figure 15.8. Output for program in Listing 15.2.

Example 15.2. Passing pointer and reference arguments of base and derived classes.
#include <iostream>
using namespace std;

class Base { // base class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (922 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

protected:
 int x;
public:
 Base(int a) // to be used by Derived
 { x = a; }
 void set (int a) // to be inherited
 { x = a; }
 int show () const // to be inherited
 { return x; } } ;

class Derived : public Base { // derived class
 int y;
public:
 Derived (int a, int b) : Base(a), y(b)
 { } // empty constructor body
 Derived(const Base &b) : Base(b) // supports implicit cast
 { y = 0; } // explicit
initialization
 void access (int &a, int &b) const // added in derived class
 { a = Base::x; b = y; } } ;

class Other { // another class
 int z;
public:
 void setB(const Base &b) // pass by reference
 { z = b.show(); }
 void setB(const Base *b) // pass by pointer
 { z = b->show();
 void setD(const Derived &d) // pass by reference
 { int a; d.access(a,z); }
 void setD(const Derived *d) // pass by pointer
 { int a; d->access(a,z); }
 int get() const // accessor
 { return z; }
} ;

int main()
{
 Base b(30); Derived d(50,80); // related objects
 Other a1, a2; // unrelated object
 a1.setB(b); a2.setD(d); // exact match
 cout && " a1=" && a1.get() && " a2=" && a2.get() && endl;
 a1.setB(d); a2.setD(b); // implicit conversions
 cout && " a1=" && a1.get() && " a2=" && a2.get() && endl;
 a1.setB(&b); a2.setD(&d); // exact match
 cout && " a1=" && a1.get() && " a2=" && a2.get() && endl;
 a1.setB(&d); // implicit conversion
 // a2.setD(&b); // syntax error
 a2.setD((Derived*)&b); // explicit conversion

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (923 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout && " a1=" && a1.get() && " a2=" && a2.get() && endl;
 return 0;
 }

In this example, I use the same classes Base and Derived as in the previous examples. Class
Derived has an additional constructor I will comment on shortly.

Class Other has two overloaded functions setB(), which expect a reference and a pointer
parameter of class Base; two overloaded functions setD(), which expect a reference and a pointer
parameter of class Derived; and a method get(), which returns the value of the data member z.

The client code defines and initializes a Base object, a Derived object, and two Other objects. The
first output line produces a1=30 and a2=80 because the function calls to setB() and setD() use
the exact match between the types of actual arguments and formal parameters.

The function call to setB() with a Derived class actual argument does not cause problems. The
Base reference can be initialized by a Derived object without a cast because this conversion is
safe. The function call to setD() with a Base class argument results in an unsafe conversion.
Normally, this function call should be rejected as a syntax error. The call might be made acceptable
to the compiler with the use of the explicit cast.

a2.setD((Derived&)b); // syntax for casting references

Of course, this cast does not do any good because it just placates the compiler. The Derived
reference inside setD() still points to the little Base object (see Figure 15-7), and the function call
to Derived::access() in the body of setD() accesses memory that does not belong to the
argument object b.

To make this call meaningful, the Derived parameter pointer in setD() should point to a Derived
object, not to the Base object. This Derived object has to be initialized to the values that are
contained in the fields of the Base actual argument. However, the Derived object has fields that are
not found in the Base object. They have to be set to some reasonable values, for example, 0, or
whatever suits the application.

What function should the Derived class provide to ensure proper initialization of the object fields?
Right, this is your old friend the constructor. Which constructor? The name of the constructor
depends on the number and type(s) of its parameter(s). Since this constructor initializes the fields of
a Derived object using data from a Base object, it needs only one parameter, and the type of this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (924 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

parameter is Base (or a Base reference). Hence, the name of this constructor is a conversion
constructor.

As you see, this is an apt name. It is well suited for the constructor, which converts a value of the
Base class into a value of the Derived class.

Derived::Derived(const Base &b) : Base(b) // copy constructor
{ y = 0; } // explicit initialization

The conversion constructor can be called explicitly, creating a temporary Derived class variable,
which is initialized by the constructor, is pointed to by the reference parameter inside setD(), and
is deleted after the call to setD().

 a2.setD((Derived)b); // explicit constructor call

This means that this technique can be used for the input parameters only. If it is used for an output
parameter, the changes made within the function will be made to a temporary copy, which will be
destroyed after the call.

Since I did not define this constructor as explicit, implicit calls to it are possible, and this is what
the client call does in Listing 15.2. The next output line produces a1=30 and a2=0.

The second part of the client code deals with pointer parameters rather than with reference
parameters. The first two calls to setB() and setD() use an exact match and produce output a1=30
and a2=80. The call to setB() with a Derived pointer as an actual argument causes no
problems¡Xthe conversion from Derived to Base is safe. The call to setD() with a Base pointer as
an argument is problematic. This conversion is not safe and is flagged as a syntax error. (I
commented this call out.)

To talk the compiler into accepting this call, I use the explicit cast from a Base to Derived pointer.
This placates the compiler but does not create a Derived object. A constructor with the Base
pointer parameter (similar to one I use for the reference parameter) would resolve this problem. But
these constructors are not common, and I decided that I will allow the example to produce junk to
illustrate once again that the cast from Base to Derived is not safe.

NOTE

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (925 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It is always safe to pass a derived class pointer (or reference) as an argument to a function with a
base class pointer (or reference) parameter (cast is optional). It is a syntax error to pass a base
pointer (or reference) as an argument to a function with a derived pointer (or reference)
parameter. It is unsafe to coerce the compiler into accepting this function call by casting the base
pointer (or reference) to the derived class.

As you can see, I am spending significant time on and paying serious attention to the issues of
conversion between objects (or pointers or references) of different classes. For unrelated classes,
this topic is not of any practical significance. It is quite rare that one has a legitimate desire to use
one type where another unrelated type is expected. In those few cases where this desire seems
legitimate, you might try to distract yourself with something entertaining to see whether the desire
to do this cast disappears. You will see that there are ways to eliminate the problem without the
cast. Conversions between unrelated types are confusing and dangerous.

It is a totally different story for classes related through inheritance. The use of one type from the
inheritance hierarchy where another type from the same hierarchy is expected is very popular in
C++ programming. Actually, it is very popular in any object-oriented programming. This is why it
is important that you understand this technique, its limitations, and its implications.

Conversions between types related by inheritance are also confusing. They can also be dangerous.
They do not conform to common programming intuition about conversions among numeric types. I
hope that this discussion will help you develop your intuition in terms of what is and is not
appropriate. The major yardstick in evaluating conversions is not whether the result of conversion
has enough space to accommodate the source but just the other way around. The major criterion is
whether conversion is safe, whether the result of conversion will be asked to do something it cannot
do.

Conversion from derived type to base type is safe. Conversion from base type to derived class is
not safe.

With this approach well understood, let us look at C++ virtual functions.

Virtual Functions: Yet Another New Idea

In C++, each computational object is characterized by the properties that define the type of the
object. The object is denoted by its name (identifier), and the type is associated with this identifier.
Throughout the book, this association was taking place when I specified the object type in object
declarations or definitions. This was true both of program variables and of program functions.

At the declaration or definition of a variable, the source code must make the commitment and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (926 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

specify the type of the computational object. This association between the object name and its type
cannot be broken during program execution. The program can define other computational objects
using the same identifier and the same (or possibly different) type. This is fine. But these other
objects will be other objects. Even if they use the same name, they are different computational
objects.

The same is true of program functions. The function declaration (its prototype) or the function
definition (its body) includes an identifier for the function name. The function name becomes
associated with the object code generated for this function. This is a commitment that cannot be
broken or changed during program execution. The program might define some other functions
using the same function name. These functions might be in the same class (with a different
signature) or in another class or scope (with the same or different signature). But these would be
different functions. They would just happen to have the same function name.

Actually, C++ function name overloading did not break the C commitment to unique function
names. For a human being, when the name of the function is reused in the same class or in another
scope, it is the same name. For the compiler, all these functions would have different names. The
name that the compiler knows is a concatenation of the name of the class to which the function
belongs, the function identifier, the return type, and the types of its parameters.

So, when the compiler see a function definition, it creates modified names that add the class name,
return type, and parameter types to the function identifier. As a result, each function name is
actually unique for the compiler. This technique is known as name mangling.

For example, a function draw() might be defined in several classes and with different signatures.
Each function represents a separate computational entity.

class Circle {
 int radius;
public:
 void draw();
 } ; // the rest of class Circle

class Square {
 int side;
public:
 void draw();
 } ; // the rest of class Square

class Rectangle {
 int side1, side2;
public:
 void draw();

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (927 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 } ; // the rest of class Rectangle

What we often take for granted is the time in which the association between the name and the
computational object takes place. It takes place at compile time, when the compiler processes the
definition or the declaration of the computational object.

Consider, for example, the following client code segment that defines Circle, Square, and
Rectangle objects and draws them on the screen.

Circle c; Square s; Rectangle r; // name/type are connected
c.draw(); s.draw(); r.draw(); // name/function are coupled

The compiler (and the maintainer) knows that the object c is of the type Circle and the object s is
of the type Square and the object r is of the type Rectangle. The compiler (and the maintainer)
knows that the first call to draw() refers to Circle::draw(), the second call to draw() refers to
Square::draw(), and the third call to draw() refers to Rectangle::draw().

In languages like C++, we would not like to change these compile-time associations during
program execution. Type of an object in programming describes fixed properties of the object. This
is yet another manifestation of strong typing.

Strong typing in expressions and parameter passing is now taken for granted. For each
computational object, the set of legal operations over the object is known in advance, both to the
compiler and to the designer of client code (and to its maintainer).

Strong typing provides what is known as early binding. The type of the computational object is
fixed early, at compile time, and does not change during program execution. Another popular term
is static binding. It has the same meaning: The link between the name of the object and the object
type is fixed at compile time and cannot be changed dynamically during program execution.

When a message (defined by its name and a list of actual arguments) is sent to an object, the
compiler interprets this message according to the class (type) of that object. The class name of the
object is known at compile time and cannot change during execution.

Static binding is standard in modern languages such as C++, C, Java, Ada, Pascal (but not Lisp). It
was first introduced to improve performance, not the quality of the program. Dynamic binding, the
search for the function call meaning at run time, takes time. When the meaning of the function call
is fixed at compile time, it increases compilation time; however it speeds up program execution.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (928 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Later, it was found that static binding could be successfully used to enforce type checking. If a
function is called with the wrong number of or wrong types of arguments, this call is rejected at
compile time rather than left to manifest incorrect behavior at run time. If the message name (with
the appropriate signature) is not found in the class specification, the call is rejected at compile time
rather than at run time.

Strong typing provides compile-time type checking and improves run-time performance. This
serves most applications well.

At what other times would we want to establish the association between the identifier and the
computational object? And the answer is: later, at run time. What possible advantages might it
bring?

Consider the processing of a heterogeneous list of objects or the processing of an external input
stream with objects of different types. With file input or interactive user input, the program does
not know the exact object type that comes from the environment.

For example, a program might draw a picture on the screen by drawing component shapes one after
another. Depending on the actual nature of each shape, the program should call Circle::draw(),
Square::draw(), Rectangle::draw(), or whatever other shapes it might know. It would be
nice, however, if we could use only one statement in the source code and change its meaning
depending on the actual nature of the shape object.

 shape.draw(); // from class Circle, Square, or Rectangle

If the object shape in the current pass through the loop is a Circle, then this statement should call
Circle::draw(). If it is a Square, it should call Square::draw(). If it is a Rectangle, it
should call Rectangle::draw(). And so on.

With strong typing, this is impossible. The compiler will find the declaration of the variable shape,
identify its class, and inspect the class definition. If a void function draw() with no parameters is
not found in this class, the compiler will generate an error message. If the function is found, the
compiler will generate object code. But the type of the function draw() will be fixed at compile
time. There is no room for searching for the meaning of the function draw() at run time.

What we are looking for here is called run-time, late, or dynamic binding. We do assume that
several computational objects exist (functions draw() in different classes). We want one of these
computational objects to be bound to the name draw() in a particular function call. We want this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (929 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function draw() in this function call to mean Circle::draw(), Square::draw(),
Rectangle::draw(), and so on. And we want this meaning to be established, not at compile time,
but at run time, so that different shapes would be drawn depending on the meaning of the function
call.

A few words about terminology. The technical term for establishing the meaning of the function
name is binding. The compiler binds the function name to a particular function. We want this
binding to take place at run time. This is why it is called run-time binding rather than compile-time
binding. We want this binding to take place later than during the compile time. This is why it is
called late rather than early binding. We want this binding to allow the same function name to take
on different meanings depending on the nature of the object used. This is why it is called dynamic,
rather than static, binding.

The ability of the function name in a function call to take different meanings is called
polymorphism (from "many forms"). Some authors use the term polymorphism in a much broader
sense, including the use of the same function name in different classes but without dynamic
binding. I do not want to get into an argument of which definition is more correct (or more useful).
And I will not use this term much. But every time I use this term it will mean late or dynamic
binding, assigning the meaning to the method call at run time depending on the actual type of the
object that is the target of the message.

And this is what C++ virtual functions are set to achieve.

Dynamic Binding: Traditional Approach

Of course, dynamic binding is not an issue specific to object-oriented programming. Processing of
heterogeneous lists has always been a common computational task, and programmers used to
implement dynamic binding in whatever languages were available. In all the cases, the task was to
process similar objects. They are so similar that it makes sense to use the same name for a function
in each category of objects (e.g., draw()). But the types of objects are not identical¡Xeach function
does things in its own specific way.

Let us consider an example of processing a list of entries in a university database. For simplicity,
let us assume that there are only two types of records: for students and for faculty members. Let us
also assume that the program maintains only three pieces of information: university id, name, and
either rank (for faculty members) or major (for students). A short sample of data is shown in Figure
15-9.

Figure 15.9. Input data for the dynamic binding example.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (930 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The length of the id value is the same for each individual (nine characters) and it can be
implemented as a fixed-length character array. The name, rank, and major have different lengths
for different individuals. It is appropriate to implement them as dynamically allocated arrays. This
is how the structure for one individual looks.

struct Person {
 int kind; // 1 for faculty, 2 for student
 char id[10]; // fixed length
 char* name; // variable length
 char* rank; // for faculty only
 char* major; } ; // for student only

Of course, I could have implemented this structure as a class with constructors, the destructor, and
member functions, but at this stage of discussion, this machinery would make the example more
obscure. I will introduce these elements later, during the discussion of a more modern approach.

In my first, more traditional approach, I merge characteristics of different kinds of objects (e.g.,
rank, major) in one class definition. To process each kind of object differently, I add a field to
describe to which kind the specific object belongs. In the client code, I will use either switch
statements or if statements whose branches will implement processing for different kinds of
objects.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (931 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

I could have used the union construct instead of defining fields for both kinds of objects. For fixed-
size arrays it would make sense. But with dynamic memory management, I decided that memory
savings of one pointer per object does not justify the extra complexity that comes with the use of
union.

Managing memory dynamically saves space and prevents memory overflow. A simple method of
keeping data in memory would be defining an array of Person objects. Although I use the keyword
struct, the variables of type Person are objects, because in C++ the keywords struct and class
are synonymous (with the exception of default access rights and default inheritance).

 Person data [1000]; // array of input data

Further flexibility can be achieved by keeping data in an array of pointers to objects and not in an
array of objects. Allocating a large array of pointers is inexpensive. In case of overflow, the array
of pointers can be reallocated without copying existing data (see examples in Chapter 6). The space
for each Person object will be allocated on the heap after the data for that object is read from the
input file.

 Person* data [1000]; // array of pointers

For reading data from the input file, I will define an object of the library class ifstream. An object
of this class is always open for input. To associate a physical file with the logical file object, the
name of the physical file has to be specified as an argument in the constructor call.

ifstream from("univ.dat"); // input data file
if (!from) { cout << " Cannot open file\n"; return 0; }

For each object in the input file, the program allocates the structure dynamically and then reads
four items of data: the string that defines the type of the object, the id, the name, and either the rank
(for faculty) or major (for student). To save input data properly, the program checks the value of
the string that defines the type of the object (" FACULTY " or " STUDENT ") and sets the kind field of
the object either to 1 or 2.

char buf[80]; // buffer for input data

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (932 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Person *p = new Person; // allocate space for new object
from.getline(buf,80); // recognize the incoming type
if (strcmp(buf, "FACULTY") == 0)
 p->kind = 1; // 1 for faculty
else if (strcmp(buf, "STUDENT") == 0)
 p->kind = 2; // 2 for student
else
 p->kind = 0; // type not known

Since the length of the id field is known, it can be read directly into the field of the Person object.
The length of the name, rank, and major data are not known in advance, before data is read into
memory. Hence, the program should read the data in the fixed-size buffer, measure the length of
data, allocate enough heap memory, and copy data from the buffer into the heap memory.

from.getline(p->id,10); // read id
from.getline(buf,80); // read name
p->name = new char[strlen(buf)+1]; // allocate space
strcpy(p->name, buf); // copy name
from.getline(buf,80); // read rank/major
if (p->kind == 1)
{ p->rank = new char[strlen(buf)+1]; // space for rank
 strcpy(p->rank, buf); } // copy rank
else if (p->kind == 2)
{ p->major = new char[strlen(buf)+1]; // space for major
 strcpy(p->major, buf); } // copy major

Figure 15-10 shows the memory data structure for the example. Array data[] on the left of the
picture is a stack array, and all other memory to the right of the array (objects of type Person and
their dynamic memory) is allocated from the heap.

Figure 15.10. The structure of dynamically allocated memory for input data.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (933 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

It is a good idea to encapsulate the reading algorithm in a function, for example, read(), so that
the client code passes to this function the file object and the Person pointer. Function read()
should allocate the Person object, read data from the file, and fill the Person object with input
data.

Person* data[20]; int cnt = 0; // array of pointers
ifstream from("univ.dat"); // input file: a library object
if (!from) { cout << " Cannot open file\n"; return 0; }
while (!from.eof()) // read until eof
{ read(from, data[cnt]); // data[cnt] is of type Person*
 cnt++; }
cout << " Total records read: " << cnt << endl << endl;

Now I can assemble the read() function from the pieces I have described previously. There are
two major flaws in this function, and both are related to parameter passing.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (934 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void read (ifstream f, Person* person) // bad interface
{ char buf[80];
 Person* p = new Person; // allocate space for new object
 f.getline(buf,80); // recognize the incoming type
 if (strcmp(buf, "FACULTY") == 0)
 p->kind = 1; // 1 for faculty
 else if (strcmp(buf, "STUDENT") == 0)
 p->kind = 2; // 2 for student
 else
 p->kind = 0; // type not known
 f.getline(p->id,10); // read id
 f.getline(buf,80); // read name
 p->name = new char[strlen(buf)+1]; // allocate space
 strcpy(p->name, buf); // copy name
 f.getline(buf,80); // read rank/major
 if (p->kind == 1)
 { p->rank = new char[strlen(buf)+1]; // space for rank
 strcpy(p->rank, buf); } // copy rank
 else if (p->kind == 2)
 { p->major = new char[strlen(buf)+1]; // space for major
 strcpy(p->major, buf); } // copy major
 person = p; } // hook it up to array

Be sure you see that I pass parameters to this function by value. It is obvious in the case of the file
object. When you read data from the file, you change the internal state of the file object. If the
internal state is not changed for some reason, the next time around, the file will read the same data,
not the next record. When the file object is passed by value, the internal state of the parameter
object will change, but the internal state of the argument file object will remain the same. As I had
an opportunity to say earlier, we should not pass objects by value. They should be passed by
reference.

void read (ifstream& f, Person* person) // read one record
{ char buf[80];
 Person* p = new Person; // allocate space for new object
 . . . // the rest of read()
 person = p; } // hook up new object

I also insisted that object references be labeled as constant if the function does not change object
state during its execution. Here, the const modifier is absent because the file object changes when
the information is read from the file. As a client programmer of the server class ifstream, I should

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (935 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

be insulated from the details of the server class design. It is enough for me to know that the state of
the file object changes to reflect the results of the physical I/O operations.

Now let us look at the pointer parameter. In C++, if a parameter is passed by pointer (or by
reference), its value can be changed within the function, and the change will affect the actual
argument in the client space. What should be taken seriously in this statement is that it says "a
parameter is passed by pointer." It does not say "pointer parameter," and this is where some
programmers get confused. In the version of the function read() above, the Person pointer person
is not passed by pointer. It is passed by value. Hence, its value cannot be changed in the function
call. If before the function call the argument pointer was pointing nowhere, it will be pointing
nowhere after the function call, not to the newly allocated Person object.

What is passed by pointer here? Formally, you can say that it is a Person object (not the pointer)
that is passed by pointer. Indeed, if you properly pass a Person object to this function it will be
filled correctly with incoming file data.

Person person; // Person object, not pointer
read(from, &person); // object is passed by pointer

As you can see, passing "properly" means passing an address of an object. This object exists in the
client space. Passing an object by pointer allows the program to change its state during the function
call. Even with this interpretation, the function read() has a problem: variable person now is of
type Person, but variable p used in the last line of read() is of type Person*. As I stressed in
Chapter 6, these two types look very similar, but do not discard this little difference. These are two
very different types. One is a class with all its members, another is a pointer to a class object. This
can be fixed if necessary, but that would leave us with the array of Person objects in the client
space instead of an array of Person pointers.

So, how do you fix this function read() to make sure that all this heap memory allocated in
read() is correctly hooked up to the stack memory depicted in Figure 15-10?

At the time of the function call to read(), the Person object does not exist yet¡Xit will be
allocated within the function. It is a pointer to a Person object that exists in the client space (the
whole array of pointers). It is a pointer that is passed to the function read().

while (!from.eof()) // read until eof
{ read(from, data[cnt]); // data[cnt] is of type Person*
 cnt++; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (936 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Before the call, the actual argument, the Person pointer, contains junk, because it is part of a heap
array. After the call, the pointer points to the Person object allocated within the function read(),
as Figure 15-10 shows. Hence, it contains a valid address of a chunk of head memory and its
contents changed after the call. The pointer should then be passed either by reference or by pointer.
This is why the version of read() presented above is incorrect.

Make sure that you are not lost in this barrage of terms: pointers to objects, references to pointers,
pointers to pointers, or whatever. Just keep in mind that a pointer is an ordinary variable and as
such can be passed either by value, by reference, or by pointer. It is just an unfortunate incident of
C++ notation (inherited from C) that allows for two interpretations of the function interface.

void read (ifstream& f, Person* person) // read one record
 { char buf[80];
 Person* p = new Person; // allocate space for new object
 . . . // the rest of read()
 person = p; } // hook up new object

Here, Person* person can be interpreted either as a Person object passed by pointer or as Person
pointer (of type Person*) that is passed by value. To pass this pointer by reference is not at all
difficult. The standard C++ rule (described in Chapter 7, "Programming with C++ Functions")
says that to switch from pass by value to pass by reference, you should do just one thing, insert the
ampersand sign between the type name and the parameter name. No other changes are necessary,
neither in the body of the function nor in the syntax of the function call. This is how it should look.

void read (ifstream& f, Person* &person) // read one record
{ char buf[80];
 Person* p = new Person; // allocate space for new object
 . . . // the rest of read()
 person = p; } // hook up new object

It is to make this transition easier that I initially named this parameter Person* person and not
Person *person. But this does not matter. C++ is space blind in this regard, and you can align the
asterisk (and the ampersand) between the type name and the parameter name the way you see fit.

What about passing a pointer by pointer? No problem. You have to take care of three places in the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (937 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

program¡Xthe function call, the function interface, and the function body. In the function call, you
insert the asterisk before the name of the variable (i.e., before the pointer name data[cnt]). This is
what the function call will look like.

while (!from.eof()) // read until eof
{ read(from, &data[cnt]); // passing pointer by pointer
 cnt++; }

In the function interface, you insert the asterisk before the name of the parameter. That is, instead
of Person* person, you should say Person* *person (or even Person** person).

In the function body, and this is the most error-prone moment, you should use the asterisk before
the name of the parameter. The name of the parameter is person, not *person or **person.
Hence, the last statement in the function read() should use dereferencing:

void read (ifstream& f, Person** person) // pointer by pointer
{ char buf[80];
 Person *p = new Person; // allocate space for new object
 . . . // the rest of read()
 *person = p; } // bingo!

This is not difficult after all, but passing a pointer by reference is much simpler than passing a
pointer by pointer. But this is true of any type¡Xpass by reference is simpler and less error prone.

So far I have been discussing the technicalities of entering data into the array inside the computer.
This discussion has nothing to do with dynamic binding, polymorphism, and other issues. I need to
review this only because I want to have a running program at the end. Also, I felt that reviewing the
material from Chapters 6 and 7 on dynamic memory management, file I/O, and parameter passing
will not do anyone any harm.

Dynamic binding becomes an issue when the program starts processing data that is already in
memory. Since different kinds of objects have to be handled differently, the program has to
recognize what kind of object it is dealing with in each specific call. This is where the field kind of
class Person comes in handy. In this simple example, "processing data" means going over the array
of pointers and printing each Person object either as a faculty member (with rank displayed) or as
a student (with major displayed). In real life, there would be a number of functions that have to
treat various kinds of objects differently. In this example, I put this processing in main().

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (938 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

for (int i=0; i < cnt; i++) // go over the array of
pointers
{ cout <<" id: " <<data[i]->id << endl; // print id, name
 cout <<" name: " <<data[i]->name << endl;
 if (data[i]->kind == 1)
 cout <<" rank: " <<data[i]->rank << endl; // faculty rank
 else if (data[i]->kind == 2)
 cout <<" major: " <<data[i]->major << endl; // student major
 cout << endl; }

This loop is the center of the program: it processes the heterogeneous list of objects according to
the actual type of the object. First, it unconditionally does whatever there is to be done for all types
of objects¡Xit prints the university id and the name with appropriate captions. To process each
object according to its kind, the loop accesses the kind field of the object and prints either the rank
or the major.

Listing 15.3 demonstrates the complete program that processes the input file shown in Figure 15-9.
In addition to the type Person and function read() described previously, the program contains
function main() that plays the role of the client code; it defines the array of pointers and the file
object, reads input data in a loop, processes data in a loop, and then returns dynamic memory in a
loop. The results of the program execution are shown in Figure 15-11.

Figure 15.11. Output of processing of a heterogeneous list of objects.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (939 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 15.3. Heterogeneous list processing¡Xtraditional approach.
#include <iostream>
#include <fstream>
using namespace std;

struct Person {
 int kind; // 1 for faculty, 2 for student
 char id[10]; // fixed length
 char* name; // variable length
 char* rank; // for faculty only
 char* major; // for student only
 } ;

void read (ifstream& f, Person*& person) // read one record
{ char buf[80];
 Person* p = new Person; // allocate space for new object
 f.getline(buf,80); // recognize the incoming type
 if (strcmp(buf, "FACULTY") == 0)
 p->kind = 1; // 1 for faculty
 else if (strcmp(buf, "STUDENT") == 0)
 p->kind = 2; // 2 for student
 else
 p->kind = 0; // type not known
 f.getline(p->id,10); // read id
 f.getline(buf,80); // read name
 p->name = new char[strlen(buf)+1]; // allocate space
 strcpy(p->name, buf); // copy name

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (940 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 f.getline(buf,80); // read rank/major
 if (p->kind == 1)
 { p->rank = new char[strlen(buf)+1]; // space for rank
 strcpy(p->rank, buf); } // copy rank
 else if (p->kind == 2)
 { p->major = new char[strlen(buf)+1]; // space for major
 strcpy(p->major, buf); } // copy major
 person = p; // hook it up to array
}

int main()
{
 Person* data[20]; int cnt = 0; // array of pointers
 ifstream from("univ.dat"); // input data file
 if (!from) { cout << " Cannot open file\n"; return 0; }
 while (!from.eof())
 { read(from, data[cnt]); // read until eof
 cnt++; }
 cout << " Total records read: " << cnt << endl << endl;
 for (int i=0; i < cnt; i++)
 { cout <<" id: " <<data[i]->id << endl; // print id, name
 cout <<" name: " <<data[i]->name << endl;
 if (data[i]->kind == 1)
 cout <<" rank: " <<data[i]->rank << endl; // faculty
 else if (data[i]->kind == 2)
 cout <<" major: " <<data[i]->major << endl; // student major
 cout << endl; }
 for (int j=0; j < cnt; j++)
 { delete [] data[j]->name; // delete name
 if (data[j]->kind == 1)
 delete [] data[j]->rank; // delete rank/major
 else if (data[j]->kind == 1)
 delete [] data[j]->major;
 delete data[j]; } // delete the record
 return 0;
 }

There is nothing difficult or confusing about this solution (with the possible exception of pointer
notation). Although I am using many nice trappings of the C++ language (e.g., structures, pointers,
dynamic memory management with operators new and delete, parameter passing by reference,
library file objects), this program could have been written in any language. It achieves the purpose
of dynamic binding (each object is processed according to its own kind). However, it does not take
advantage of the object-oriented features of the language (e.g., binding together data and
operations, constructors and destructors, pushing responsibility to the servers, putting together what
should belong together, and, yes, inheritance).

Dynamic Binding: Object-Oriented Approach

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (941 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the next version, I will create three classes, Person, Faculty, and Student. All features
common to faculty and student processing will go to the base class Person - id, and the kind
fields. Instead of using numeric conventions to denote the kind of object (1 for faculty, 2 for
student), I introduce the enumeration type with self-explanatory values. This is especially
convenient when there are several kinds of objects and when new kinds of objects could be added.

I define data members of the base class Person as protected rather than private, so that the derived
classes, Faculty and Student, can access these data members without burdening the designer of
class Person with the design of trivial access functions.

struct Person {
public:
 enum Kind { FACULTY, STUDENT } ;
protected:
 Kind kind; // FACULTY or STUDENT
 char id[10]; // data common to both types
 char* name; // variable length
public:
 Person(const char id[], const char nm[], Kind type);
 Kind getKind() const;
 ~Person(); } ;

The constructor accepts three parameters for initializing three object data members. It performs the
operations that in the previous version were performed in function read(): dynamic memory
allocation for the name. The destructor performs the operations that in the previous version were
performed in function main(): deallocation of heap memory. This is a nice, albeit small, example
of putting together into the same class what otherwise could have been torn apart and allocated to
different parts of code (thus creating the need for coordination).

Yet another member function, getKind(), is of auxiliary nature. This message will be sent by the
client code (function read()), to the objects of derived classes (Faculty and Student), to figure
out who they are. In the previous version, function read() accessed the kind field directly, thus
creating dependencies among different parts of code. In this design, the field kind is protected, not
public, and the class Person must provide the access function to serve the clients of its derived
classes. I am not sure this is such a great improvement over direct access to the kind field, but it is
a common practice (and probably some improvement).

As you see, I treat the client code with more reverence than I do the derived classes. For the derived
classes, I allow direct access to the base data members, and I feel no pangs of conscience. For the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (942 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

client code, I provide the functions to access server data members, even though I do that
grudgingly.

Derived classes Faculty and Student inherit from Person publicly. Even though I use the
keyword struct to define them, I specify the mode of inheritance explicitly to avoid confusion.
Had I skipped the mode, it would be public by default. The public mode is the most natural and
convenient; it does not take away the capabilities of the base class from the clients of the derived
classes. In this case, this is not very important: The base class is so small that there is only one
capability that the client code uses¡Xthe getKind() method.

Nevertheless, the use of public inheritance is important here. I am using an array of pointers of type
Person, but I am going to set these pointers to point to objects of classes Faculty and Student.
This of course involves casting. To make implicit casting possible, C++ requires the mode of
inheritance to be public.

This is an issue of convenience¡Xafter all, an explicit cast can be used if necessary. But there is
another, more important issue. Eventually, I am going to use virtual functions in this design. They
allow the client code to call a method of a derived class, for example, write(), and let the run-
time system figure out to which of the derived classes this function belongs. This behavior is
possible only if the mode of derivation is public.

struct Faculty : public Person { // public inheritance
private:
 char* rank; // for faculty only
public:
 Faculty(const char id[], const char nm[], const char r[]);
 void write () const; // display record
 ~Faculty(); } ; // return heap memory

struct Student : public Person { // public inheritance
private:
 char* major; // for student only
public:
 Student(const char id[], const char nm[], const char m[]);
 void write () const; // display record
 ~Student(); } ; // return heap memory

Derived classes Faculty and Student inherit all the data members from their base class, Person,
and define their own data, specific to each kind of Person (rank or major).

Constructors for derived classes, Faculty and Student, accept parameters necessary for

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (943 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

initialization of all their fields, whether they are defined in the derived class or inherited from the
base class, Person. It is the job of the derived class constructor to pass the data to the base class
constructor in the initialization list. As you see from the interface of the Person constructor, this
includes the specification of the kind of object being created, Faculty or Student. For many
programmers, this means that the parameter list for the derived class constructors should include
data for initializing the base part (three parameters) and data for initializing the derived part (major
for Student, rank for Faculty).

Faculty(const char id[], const char nm[], Kind k, const char r[])
 : Person(id,nm,k) // initialization list
 { rank = new char[strlen(r)+1];
 if (rank == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(rank,r); }

This is a typical example of popping responsibility to the client of the derived class. The client code
(function read()) will create Faculty objects using something like this:

person = new Faculty(id,name,FACULTY,buf); } // object is Faculty

But this is an imposition; the client code has already said that it creates a Faculty object, so why is
it forced to do the useless work of passing an argument that says it is Faculty? This responsibility
should be pushed down to the Faculty object: It knows it is Faculty, and it should tell this to its
Person part without dragging the client read() into the loop of cooperation.

Faculty(const char id[], const char nm[], const char r[])
 : Person(id,nm,FACULTY) // this is what OOP is all about
 { rank = new char[strlen(r)+1];
 if (rank == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(rank,r); }

Now the client code has a simpler job to do.

person = new Faculty(id,name,buf); } // object is Faculty

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (944 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that the constructor prototypes in the Faculty and Student specifications have only three
parameters, not four. This is the essence of object-oriented programming: looking for the right way
to distribute responsibilities among cooperating classes.

The destructors for derived classes deallocate memory allocated on the heap by the constructors
(rank for Faculty, major for Student).

The member function write() is implemented in both derived classes. They are similar so that
they can have the same name. This calls for implementing write() in the base class. But the
algorithms for different kinds of Person are not identical. This is why each class has its separate
function but they use the same name. These functions will eventually be called polymorphic.

Functions write() represent part of the functionality of the function main() of the previous
version. Since each derived class, Faculty and Student, knows its nature, there is no need to look
at the kind of target object.

void Faculty::write () const // display record
{ cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;
 cout << " rank: " << rank <<endl << endl; } // faculty only

void Student::write () const // display record
{ cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;
 cout << " major: " << major <<endl << endl; } // student only

The global function read() represents a streamlined modification of the function from the previous
version of the program. It reads data from the input file into local arrays and then checks the
kind[] array to see what kind of object it has to construct. If it says " FACULTY ", read() creates a
new Faculty object (using the operator new). If it says " STUDENT ", read() creates a new Student
object (again, using the operator new). In each case the data is sent as arguments to the class
constructor.

void read (ifstream& f, . . . ?? person) // what is its type?
{ char kind[8], id[10], name[80], buf[80];
 f.getline(kind,80); // recognize the incoming type
 f.getline(id,10); // read id
 f.getline(name,80); // read name
 f.getline(buf,80); // rank or major?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (945 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (strcmp(kind, "FACULTY") == 0)
 { person = new Faculty(id,name,buf); } // object is Faculty
 else if (strcmp(kind, "STUDENT") == 0)
 { person = new Student(id,name,buf); } // object is Student
 else
 { cout << " Corrupted data: unknown type\n"; exit(0); } }

What should be the type of the second parameter to this function? It has to be a pointer; otherwise,
it cannot accept the return value of the operator new. It should be passed by reference rather than
by value; otherwise, the new object will be pointed to by the local pointer person only, not by the
actual argument, and the new object cannot be accessed from the client code. It cannot be a
Faculty pointer; this pointer cannot point to a Student object. It cannot be a Student pointer, as
this pointer cannot point to a Faculty object.

So, it cannot be a Faculty pointer, and it cannot be a Student pointer, so what should it be? What
should be the type of pointer that is capable of pointing to objects of different classes? Recall from
the first section of this chapter that if these different classes are not related through inheritance, no
pointer can point to objects of these classes and do any meaningful work. Recall from the second
section of this chapter that if these different classes are related through inheritance, a base class
pointer can point to objects of any derived class¡XA, B, or otherwise. A big brother can point to
wherever it wants as long as the class of the target is within the limits of the inheritance hierarchy.

So, it has to be a Person pointer, just like in the previous version. Inside the function read(),
objects of different derived classes are created and hooked up to the pointer of the base class.

void read (ifstream& f, Person*& person) // read one record
{ char kind[8], id[10], name[80], buf[80];
 f.getline(kind,80); // recognize the incoming type
 f.getline(id,10); // read id
 f.getline(name,80); // read name
 f.getline(buf,80); // rank or major?
 if (strcmp(kind, "FACULTY") == 0)
 { person = new Faculty(id,name,buf); } // object is Faculty
 else if (strcmp(kind, "STUDENT") == 0)
 { person = new Student(id,name,buf); } // object is Student
 else
 { cout << " Corrupted data: unknown type\n"; exit(0); } }

The function read() is called from main() in the same way as in the previous version. The
difference is that the components of the array data[] (of type Person*) now point to objects of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (946 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

different derived classes (Faculty or Student).

int main()
{ cout << endl << endl;
 Person* data[20]; int cnt = 0; // array of pointers
 ifstream from("univ.dat"); // input data file
 if (!from) { cout << " Cannot open file\n"; return 0; }
 while (!from.eof())
 { read(from, data[cnt]); // read until eof
 cnt++; }
 . . . } // the rest of main()

The problem, however, is that the base pointer is myopic¡Xit cannot invoke the operations that are
defined in derived classes. This is not a difficult problem. As long as the base pointer points to a
derived object, there is always a way to tell the compiler what we know, that the base pointer points
to a derived object. As you remember, the way to tell that to the compiler is to use the cast to the
derived class.

I would like to encapsulate the process of this decision-making in a function, for example,
write(). Similar decision-making functions should be designed for each operation that is
performed somewhat differently for different kinds of similar objects. The difficulty here again is
in deciding on the type of parameter to this function. Here is the outline of this function:

void write (. . . ?? p) // display record
{ switch (p.getKind()) { // get object type
 case Person::FACULTY:
 . . .; break; // do it Faculty way
 case Person::STUDENT:
 . . .; break; } } // do it Student way

What should be the type of this function parameter? It will get two types of actual arguments,
Faculty objects and Student objects. If the type of the object is Faculty, then this function will
be able to call Faculty::write() only. If the type of the parameter is Student, then this function
will be able to call Student::write() only.

It is here where the material of the previous section on conversions between classes should be used
again. I can try to use the parameter of type Person because both Faculty objects and Student
objects can be copied into a Person object. (Recall that a derived class object has enough data to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (947 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

initialize a base class object.)

void write (Person p) // display record
{ switch (p.getKind()) { // get object type
 case Person::FACULTY:
 . . .; break; // do it Faculty way
 case Person::STUDENT:
 . . .; break; } } // do it Student way

One problem with this solution is that it passes the parameter by value, and this is definitely not a
good idea when objects manage their memory dynamically. The second problem with this solution
is that the function body is stuck with a Person object, and there is no way to convert a base object
back to the derived class object. The original data is stripped away and cannot be restored. Even if I
were to add to each derived class a constructor that converts a base object into a derived class
object (see Listing 15.2 for an example), this would not be enough. The most this constructor could
do is to set default values to derived class fields. What I need, however, is the original values of
faculty rank or student major.

This rules out the use of a base object value as the function parameter but does not preclude me
from using a base pointer as the function parameter. A derived class pointer (a powerful, farsighted
pointer that can perform all operations of the derived class) can be easily converted to a base class
pointer¡Xthis is a safe conversion, so it needs no cast. No data is stripped away, and conversion
back to the derived class pointer is possible. (However, this conversion is not safe and hence it will
need a cast.)

void write (Person* p) // display record
{ switch (p->getKind()) { // get object type
 case Person::FACULTY:
 . . .; break; // do it Faculty way
 case Person::STUDENT:
 . . .; break; } } // do it Student way

What is lost during this transformation is the ability to perform the operations that are defined for
the derived class. All that the weak, shortsighted base pointer can do is to reach the functions that
are defined in the base class. But the major advantage of this solution is that this base pointer still
points to an object of a derived class. In the switch statement, the function write() just found out
if the actual argument points to a Faculty object or to a Student object. So what remains to be
done is to call either method write() from class Faculty or method write() from class Student.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (948 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void write (const Person* p) // display record
{ switch (p->getKind()) { // get object type
 case Person::FACULTY:
 p->write(); break; // do it Faculty way
 case Person::STUDENT:
 p->write(); break; } } // do it Student way

Since pointer p is a base class pointer, it can reach only base class methods. Hence the calls to
write() in both branches of the switch statement either will reach the write() from the base class
(if the Person class has one) or will result in a syntax error (if the Person class does not have a
method write()).

As you can see, this function write() just learned what kind of object its parameter pointer is
pointing to. But the compiler does not know that; all the compiler knows is that it is a pointer of
class Person. So, function write() should tell the compiler what it knows: it should cast the base
pointer either to class Faculty (first switch branch) or to class Student (second switch branch).

void write (const Person* p) // display record
{ switch (p->getKind()) { // get object type
 case Person::FACULTY:
 ((Faculty*)p)->write(); break; // do it Faculty way
 case Person::STUDENT:
 ((Student*)p)->write(); break; // do it Student way
} }

As many casts do, these casts look awful and intimidating. But they do exactly what I said in the
previous statement¡Xthey cast the pointer p (of class Person*) into a pointer of type Faculty* (the
first branch) or into a pointer of type Student*. Parentheses, however unpleasant, should be used
because the arrow selector operand is of higher priority than are the cast operands. Should you omit
the parentheses and use, for example, (Faculty*)p->write(), the compiler will decide that you
want to convert the return value of the call to write() and not the pointer p. Just keep these
parentheses there.

This function write() will be called in a loop, receiving as actual arguments Person pointers that
point to either Faculty or Student objects.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (949 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

for (int i=0; i < cnt; i++)
 { write(data[i]); } // display data

The complete program is shown in Listing 15.4.

Example 15.4. Heterogeneous list processing¡Xobject-oriented approach.
#include <iostream>
#include <fstream>
using namespace std;

struct Person {
public:
 enum Kind { FACULTY, STUDENT } ;
protected:
 Kind kind; // FACULTY or STUDENT
 char id[10]; // data common to both types
 char* name; // variable length
public:
 Person(const char id[], const char nm[], Kind type)
 { strcpy(Person::id,id); // copy id
 name = new char[strlen(nm)+1]; // get space for name
 if (name == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(name,nm); // copy name
 kind = type; } // remember its type

 Kind getKind() const
 { return kind; } // access Person's type

 ~Person()
 { delete [] name; } // return heap memory
} ;

struct Faculty : public Person {
private:
 char* rank; // for faculty only

public:
 Faculty(const char id[], const char nm[], const char r[])
 : Person(id,nm,FACULTY) // initialization list
 { rank = new char[strlen(r)+1];
 if (rank == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(rank,r); }

 void write () const // display record
 { cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (950 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << " rank: " << rank <<endl << endl; } // faculty only

 ~Faculty()
 { delete [] rank; } // return heap memory
} ;

struct Student : public Person {
private:
 char* major; // for student only

public:
 Student(const char id[], const char nm[], const char m[])
 : Person(id,nm,STUDENT) // initialization list
 { major = new char[strlen(m)+1];
 if (major == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(major,m); }

 void write () const // display record
 { cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;
 cout << " major: " << major <<endl << endl; } // student only
 ~Student()
 { delete [] major; } // return heap memory
} ;

void read (ifstream& f, Person*& person) // read one record
{ char kind[8], id[10], name[80], buf[80];
 f.getline(kind,80); // recognize the incoming
type
 f.getline(id,10); // read id
 f.getline(name,80); // read name
 f.getline(buf,80); // rank or major?
 if (strcmp(kind, "FACULTY") == 0)
 { person = new Faculty(id,name,buf); } // object is Faculty
 else if (strcmp(kind, "STUDENT") == 0)
 { person = new Student(id,name,buf); } // object is Student
 else
 { cout << " Corrupted data: unknown type\n"; exit(0); }
}

void write (const Person* p) // display record
{ switch (p->getKind()) { // get object type
 case Person::FACULTY:
 ((Faculty*)p)->write(); break; // do it Faculty way
 case Person::STUDENT:
 ((Student*)p)->write(); break; // do it Student way
} }

int main()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (951 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ cout << endl << endl;
 Person* data[20]; int cnt = 0; // array of pointers
 ifstream from("univ.dat"); // input data file
 if (!from) { cout << " Cannot open file\n"; return 0; }
 while (!from.eof())
 { read(from, data[cnt]); // read until eof
 cnt++; }
 cout << " Total records read: " << cnt << endl << endl;
 for (int i=0; i < cnt; i++)
 { write(data[i]); } // display data
 for (int j=0; j < cnt; j++)
 { delete data[j]; } // delete the record
 return 0;
 }

This solution is much nicer than the previous one is. Data and operations are bound together, work
is pushed to server classes, tearing apart of related code is eliminated. As in any object-oriented
solution, the source code is longer than is the corresponding non-object-oriented solution.
Otherwise, the program does exactly what the program in Listing 15.3 does. Its output is the same
as for the program in Listing 15.3 (see Figure 15-11).

Our next step is to eliminate the tests for the kind of object that the function write() is dealing
with. Instead of testing what kind of object the target is, casting the pointer back to that type and
then invoking the appropriate derived class function, we want the compiler to do all that. The
compiler should generate object code that tests the type of the object, performs casting, and calls
the appropriate method. The key to doing this is the use of keyword virtual in designating base
class member functions.

Dynamic Binding: Virtual Functions

Keyword virtual is a syntactic maneuver. It creates the run-time type resolution property for a
message sent to an object of a derived type. To use this property, you implement the function with
the same name in the base class and in each of the derived classes.

For the example we are discussing this means implementing method write() for the base Person
class and for the derived classes Faculty and Student. This allows you to write the global
write() function in the following way:

void write (const Person* p) // display record
{ p->write(); } // is not this nice?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (952 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

For compile-time binding, this simply means the call to a method write() defined in class
Person. For run-time binding, the code generated by the compiler will analyze the type of the
object pointed to by the base pointer p, will decide what type the method to be called belongs to,
and will call the method write() from that type. Depending on the object pointed to by the pointer,
either the Faculty method will be called or the Student method will be called. All this will be
defined at run-time.

However, there are a number of restrictions to satisfy for this approach to work. A virtual function
that belongs to a derived class has to be invoked only through a base pointer or a base reference.
There is no run-time binding if a message is sent to an object, whether a base object or a derived
class object. In both of these cases, the algorithm for static binding is used: Whatever is the type of
the object, from that class the message is invoked.

For example, the meaning of x.write() depends on the type to which the object x belongs, and
this type is specified at compilation time, not at execution time.

A virtual function cannot be static. It cannot be called through the class scope operator; it must be
called through a base pointer (reference) that points to an object of a derived class.

The inheritance mode of derivation has to be public, not protected nor private. Implicit casts are
available for public derivation only.

The member function is designated as virtual in the base class of the inheritance hierarchy. The
function with the same name as the base virtual function has to be implemented in each derived
class. The function redefinition in a derived class must match the name, signature, and return type
of the virtual function from the base class.

If the name in a derived class is different, it is not an issue, but this function cannot be called using
run-time binding. Dynamic binding is based on the use of the same function call and interpreting it
differently.

If the signature is different, the derived method hides the base method and destroys the virtual
function mechanism. If, for example, derived classes define a void function write() with no
parameters, and the base class defines a void function write(int), there is no way to call derived
class functions using dynamic binding. In this case, p->write() will invoke the function that
belongs to the class of pointer p. If this function exists, it will be called. If it does not exist, it is a
syntax error.

If the return type of the virtual functions is different in derived classes, it is a syntax error, even if
the signature of the functions is the same.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (953 of 1187) [8/17/2002 2:58:06 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The keyword virtual appears only within the class specification of the base class. There is no
need to repeat it in the function definition of the base class. There is no need to repeat it in a
derived class specification.

If your hierarchy includes more than two levels of classes, you can define virtual functions at any
level of the hierarchy. There is no obligation to implement the function defined, for example, at the
top of the hierarchy, at each lower level of the inheritance hierarchy. It can be inherited indirectly.

If all restrictions are satisfied, there is no need to define the kind field in the base class, and there is
no need to define a method that returns the value of the kind field. All that it takes to convert the
program in Listing 15.3 into a program with virtual functions is to define a function write() in
class Person. The function has to have the void return type and have no parameters.

struct Person {
protected:
 char id[10]; // no Kind
 char* name;
public:
 Person(const char id[], const char nm[]); // no Kind
 virtual void write () const; // const is part of signature
 ~Person(); } ;

As a result, there is no need for the derived classes to push the kind information to the base class.

struct Faculty : public Person {
private:
 char* rank; // for faculty only
public:
 Faculty(const char id[], const char nm[], const char r[])
 : Person(id,nm) // no FACULTY
 { rank = new char[strlen(r)+1];
 if (rank == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(rank,r); }
 void write () const // it is virtual now
 { cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;
 cout << " rank: " << rank <<endl << endl; } // faculty only
 ~Faculty()
 { delete [] rank; } } ; // return heap memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (954 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Most important, there is no need to check the kind of object in the client code. Listing 15.5 shows
the program from Listing 15.4, which uses the virtual function write() to eliminate the subtype
analysis from the client code. The output of the program is the same as for the previous version (see
Figure 15-11).

Example 15.5. Heterogeneous list processing using virtual functions.
#include <iostream>
#include <fstream>
using namespace std;

struct Person {
protected:
 char id[10]; // data common to both types
 char* name; // variable length

public:
 Person(const char id[], const char nm[]) //, Kind type)
 { strcpy(Person::id,id); // copy id
 name = new char[strlen(nm)+1]; // get space for name
 if (name == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(name,nm); // copy name
 }

 virtual void write() const // not much to do
 { }

 v~Person() // return heap memory
 { delete [] name; } // for Person object only
} ;

struct Faculty : public Person {
private:
 char* rank; // for faculty only

public:
 Faculty(const char id[], const char nm[], const char r[])
 : Person(id,nm) // initialization list
 { rank = new char[strlen(r)+1];
 if (rank == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(rank,r); }

 void write () const // display record
 { cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;
 cout << " rank: " << rank <<endl << endl; } // faculty only

 ~Faculty()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (955 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { delete [] rank; } // return heap memory
} ;

struct Student : public Person {
private:
 char* major; // for student only

public:
 Student(const char id[], const char nm[], const char m[])
 : Person(id,nm) // initialization list
 { major = new char[strlen(m)+1];
 if (major == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(major,m); }

 void write () const // display record
 { cout << " id: " << id << endl; // print id, name
 cout << " name: " << name << endl;
 cout << " major: " << major <<endl << endl; } // student only

 ~Student()
 { delete [] major; } // return heap memory
} ;

void read (ifstream& f, Person*& person) // read one record
{ char kind[8], id[10], name[80], buf[80];
 f.getline(kind,80); // recognize the incoming type
 f.getline(id,10); // read id
 f.getline(name,80); // read name
 f.getline(buf,80); // rank or major?
 if (strcmp(kind, "FACULTY") == 0)
 { person = new Faculty(id,name,buf); } // object is Faculty
 else if (strcmp(kind, "STUDENT") == 0)
 { person = new Student(id,name,buf); } // object is Student
 else
 { cout << " Corrupted data: unknown type\n"; exit(0); }
}

void write (const Person* p) // display record
{ p->write(); } // Faculty or Student?

int main()
{ cout << endl << endl;
 Person* data[20]; int cnt = 0; // array of pointers
 ifstream from("univ.dat"); // input data file
 if (!from) { cout << " Cannot open file\n"; return 0; }
 while (!from.eof())
 { read(from, data[cnt]); // read until eof
 cnt++; }
 cout << " Total records read: " << cnt << endl << endl;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (956 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 for (int i=0; i < cnt; i++)
 { write(data[i]); } // display data
 for (int j=0; j < cnt; j++)
 { delete data[j]; } // delete the record
 return 0;
 }

Polymorphism (run-time interpretation of messages to objects) is based on the legality of implicit
casts from derived to base objects: a base pointer (Person in our example) can point to a derived
object (Faculty or Student) without an explicit cast.

Person *p, *pf, *ps; // pointers of type Person
p = new Person("U12345678", "Smith");
pf = new Faculty("U12345689", "Black", "Assistant Professor");
ps = new Student("U12345622", "Green", "Astronomy");

The cast is optional. It can be used to attract the maintainer's attention to type transformations
between pointers.

ps = (Person*) new Student("U12345622", "Green", "Astronomy");

Virtual functions make it unnecessary to cast the message back to the type of the object that the
derived pointer points to. Notice that pointers to derived objects cannot point to base objects
without an explicit cast. A derived pointer cannot call the base method without an explicit cast
either.

Student* s = (Student*)ps; // cast is mandatory
s->write(); // derived class pointer

With virtual functions, using the base pointers results in calls to derived class member functions.

 ps->write(); // base class pointer

However, all of these improvements are cosmetic¡Xthey improve the appearance of the client code.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (957 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Under the hood, the program in Listing 15.5 does the same thing that the program in Listing 15.4
does. The kind field is gone from the class Person, but actually it is there, accessed by the
compiler-generated code and not by the programmer-written source code. The switch statement is
gone from the client code, but it too is there, implemented by compiler-generated code and not by
programmer-written source code.

The program in Listing 15.4 explicitly allocated extra space to analyze the kind of Person objects
and spent extra time deciding which write() function to call. The program in Listing 15.5 spends
the same extra space and extra time.

Some programmers, especially those programmers who write real-time control systems, say that
virtual functions are wasteful. This is not fair. It is the polymorphic algorithm that takes extra space
and time. Whether it is implemented explicitly, as in Listing 15.4, or with virtual functions as in
Listing 15.5, makes little difference.

However, many programmers love virtual functions and make everything in sight virtual. Well,
whether or not you use polymorphic algorithms, virtual functions are going to consume some space
and execution time. If these resources are scarce in your application, make sure that you make
virtual only those functions that contribute to making client code simpler.

Dynamic and Static Binding

Dynamic binding offers the programmer a new and exciting way to structure processing algorithms.
You can create a family of related derived classes under a common public base class, equip each
derived class with a function that performs processing in the way that is specific for this derived
class, make sure that each function has the same name and interface, call this function through a
base class pointer, and bingo¡Xthe function that is called does not depend on the type of pointer
that points to the object; it depends on the type of the object pointed to by the pointer. This is
wonderful!

But dynamic binding does not make traditional static binding irrelevant. In most cases of C++
programming, the method being called depends on the type of the pointer that points to the object,
not on the type of the object to which the pointer points. This introduces an additional dimension of
complexity.

For static binding, when you analyze a function call, you have to consider the type of the target of
the message and the signature of the method being called. When dynamic binding is a possibility,
you have to consider several additional factors.

First, you have to consider whether the target of the message is an object or a pointer (a reference).
If it is an object, only static binding is possible, and you have to consider only the signature of the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (958 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

method to verify that the function call is correct. If the target of the message is a pointer or a
reference, dynamic binding remains a possibility.

Next, you should define to which place in the inheritance hierarchy the pointer belongs. If the
pointer is of the base type, dynamic binding remains a possibility¡Xit depends on the type of the
object pointed to and how the function is defined. If the pointer is of one of the derived types, only
static binding is possible. However, the result of the call also depends on the type of the object
pointed to and how the function is defined.

This leaves you with two factors to consider: the type of the object pointed to and how the function
is defined. The object might be of the base type (no dynamic binding) and of one of the derived
types (dynamic binding is possible only if the object is pointed to by the base pointer). The function
can be defined either in the base class or in the derived class. Also, the function can be defined both
in the base class and in the derived class. For this case, you should distinguish between functions
that are redefined in the derived class with the same signature as in the base class and functions
with a different signature. Only functions that are redefined with the same signature can support
dynamic binding. Other functions only support static binding, and not all of them can be called for
a given combination of pointer type and object type. All in all, you should distinguish between four
different kinds of member functions:

ϒΠ defined in the base class and inherited in a derived class without redefinition

ϒΠ defined in a derived class without a counterpart in the base class

ϒΠ defined in the base class and redefined in a derived class with the same name and with
the same or different signature

ϒΠ defined in the base class and redefined in a derived class with the same name and the
same signature as virtual

Sounds complex? Yes, it is, especially when you are first learning virtual functions. It will become
simpler soon.

For the base pointer pointing to a base object, only those methods defined in the base class can be
called, regardless of whether they are inherited in derived classes as is or redefined there. An
attempt to call a function defined in a derived class without a counterpart in the base class is a
syntax error. An attempt to call a function redefined in a derived class is futile¡Xthe function
defined in the base class will be called anyway.

For a derived pointer pointing to a derived object (of the same class), base functions are not
available with the exception of those that are defined in the base class and are inherited as is. This
pointer can call those methods that are added in the derived class and those that are redefined in the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (959 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

derived class. Functions redefined in the derived class are called statically no matter how they are
redefined¡Xwith the same signature or not, as virtual functions or not.

Notice that the base functions that are redefined in the derived class are not accessible to the
derived class pointer pointing to the derived class object; they are hidden by the corresponding
derived class functions. An attempt to reach a base function will result in a static call to the
function defined in the derived class (virtual or non-virtual) if the signatures match or in a syntax
error if the signatures do not match.

The base class pointer pointing to an object of a derived class can call base methods that are
inherited (and not redefined) by the derived class. It cannot reach the methods defined in the
derived class without a counterpart in the base class. If the derived class redefines a base method as
a non-virtual function (either with the same or different signature), this derived method also cannot
be called through the base pointer¡Xthe corresponding base method will be called statically instead.
If the derived class redefines a base method as a virtual function, it is the derived class method that
is called through the base class pointer, not the base class method. This is the only case where
dynamic binding is possible.

The derived class pointer pointing to a base object is an anomaly. It can call methods defined in the
base class and inherited in the base class without redefinition. It cannot call base class methods
redefined in the derived class; they are hidden from this pointer. It cannot call derived class
methods that redefine base class methods (as virtual or non-virtual, with the same or different
signature); they are not supported by the base object, and an attempt to do so causes a run-time
error: a crash or incorrect results.

This description is lengthy and cumbersome, but it has a very simple foundation. It is based on two
principles:

ϒΠ A derived pointer pointing to a derived object can reach methods defined in the derived
class and methods inherited from the base class as is. Methods redefined in the derived class
hide methods defined in the base class (with the same or different signature, virtual or not)
from the derived class pointer.

ϒΠ A base pointer pointing to a derived object can reach only those methods defined in the
base class with one exception: If the function is redefined in the derived class as virtual, it is
the derived class function that the base pointer invokes using dynamic binding, not the base
class function.

This is very simple, but it might take some time to digest. When I was writing this, I was struggling
with the task of inventing a simple graphical or tabular representation of these rules. The results are
in Figure 15-12 and in Table 15.1.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (960 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 15.12. Static and dynamic binding for base and derived class pointers.

Figure 15-12 shows base class pointers (narrow ones) and derived class pointers (fat one, with two
parts) that point to base class objects (the dashed part represents the missing derived part) and to
derived class objects (the left part represents the base part, the right part represents the derived
part).

The vertical lines inside each part represent member functions of four types. Type 1 is defined in
the base class and is inherited in the derived class as is. Type 2 is added to the derived class without
a counterpart in the base class. Type 3 is defined in the base class and redefined in the derived class
with the same name (with the same or different signatures) Type 4 is defined in the base class (as
virtual) and is redefined in the derived class with the same name and the same signature.

The methods that can be called through the pointer are underlined. In case A, functions of types 3
and 4 defined in the base class are hidden by the functions defined in the derived class. In case B,
only functions defined in the base class are accessible. In case C, only functions defined in the base
class are accessible, but the functions redefined in the derived class as virtual hide their base class
counterparts and can be called dynamically. In case D, only functions defined in the base class and
not redefined in the derived class can be called.

Table 15.1 summarizes the same rules. The columns describe kinds of objects and kinds of pointers
that point to these objects, the rows describe different kinds of member functions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (961 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Table 15.1. Summary of Rules for Static and Dynamic Binding
Kind of Member Function Base Pointers Derived Pointers

 Base object Derived object Base object Derived object
Functions defined in the Base class
Inherited in Derived class as available available available available
Redefined in Derived (non-virtual) available available not available hidden
Redefined in Derived (virtual) available hidden not available hidden
Functions defined in the Derived class
Defined in Derived class only syntax error syntax error crash available
Redefined in Derived (non-virtual) not available not available crash available
Redefined in Derived (virtual) not available dynamic binding crash available

Pure Virtual Functions

Base virtual functions may have no job to do because they have no meaning within the application.
Their job is just to define the interface as a standard for its derived classes. This is why virtual
functions are introduced in the first place.

For example, the write() method in class Person does not contain anything. It has no code.
Notice too that it is never called. All calls to the write() method in the client code (global function
write()) are resolved either to a Faculty class or to a Student class method write().

Actually, class Person is a pure generalization with no real role. There are no Person objects in the
application. All objects are created with the operator new in the global function read() and are
either of Student or Faculty class. The description of the problem at the beginning of this section
simply says that there are two types of records, one for students and one for faculty members. Class
Person was first introduced into the application as an abstraction that merges the characteristics of
faculty objects and student objects into one generalized class (Listing 15.3). Later, it was used to
define a hierarchy of derived classes (Listing 15.4). In the last version of the program (Listing
15.4), class Person was used to define the interface of the virtual function write().

In real life, class Person might be a very useful class. In addition to the university id and the name,
it can contain date of birth, address, phone number, and a host of other characteristics that are
common to Faculty and Student objects. In addition to data, class Person can define numerous
methods such as change of name, address or phone number, retrieval of the university id, and other
data common to Faculty and Student objects. The derived classes can inherit all these useful
functions. The clients of derived classes can use these functions by sending these messages
(defined in the Person class) to objects of classes Faculty and Student. Again, I am not saying
that class Person is useless. I am saying that objects of class Person are useless for this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (962 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

application. The application needs only objects of classes derived from Person. Please keep this
distinction in mind.

The Person class designer knows that the application does not create class objects and that class
objects have no job to do. It would be nice to pass this knowledge on to the client programmer (and
to maintainers), not in comments, but rather in code. C++ allows you to define the base class in
such a way that an attempt to create an object of this type would be illegal and would result in a
syntax error.

C++ makes it possible through the use of pure virtual functions and abstract classes. I am not sure
why two terms, "pure" and "abstract," are used to describe the same idea. A pure virtual function is
a virtual function that should not be called (like write() in class Person). If the program tries to
call this function, a syntax error results. An abstract class is a class with at least one pure virtual
function (more than one is okay). It is illegal to create objects of this class. If the program tries to
create an object of this class either dynamically or on the stack, a syntax error results.

There are no C++ keywords for pure virtual functions and abstract classes. Instead, a pure virtual
function is recognized (by the compiler, client programmer, and maintainer) as a member function
whose declaration is "initialized" to zero. Here is the class Person whose write() member
function is defined as a pure virtual function.

struct Person { // abstract class
protected:
 char id[10]; // data common to both types
 char* name;
public:
 Person(const char id[], const char nm[]);
 virtual void write() const = 0; // pure virtual function
 ~Person();
} ;

Of course, the assignment operator does not denote the assignment here. This is just another
example of giving a symbol an additional meaning in yet another context. This is confusing.
Adding another keyword, such as pure or abstract, would probably be a better design.

A pure virtual function has no implementation. Actually, it is a syntax error to supply the
implementation of the pure virtual function (or to invoke the function). It is the presence of virtual
functions that makes a class an abstract (or partial) class.

In addition to the lack of instantiated objects, an abstract class is required to have at least one

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (963 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

derived class. If the derived class implements this function, it becomes a regular class. If the
derived class does not implement this function, it becomes an abstract class as well. It is illegal to
create objects of that derived class, and this class must have at least one derived class.

The derived classes implement the pure virtual functions in the same way they implement regular
virtual functions. This means that the derived class should use the same name, the same signature,
and the same return type as the pure virtual function should use. The mode of derivation should be
public. Here is an example of class Faculty that implements the virtual function write(). It is a
regular non-abstract class.

struct Faculty : public Person { // regular class
private:
 char* rank; // for faculty only
public:
 Faculty(const char id[], const char nm[], const char r[]);
 void write () const; // regular virtual function
 ~Faculty();
} ;

Actually, this is the same derived class I used in Listing 15.5. Looking at the regular non-abstract
class, you cannot say whether it is derived from an abstract class or from a regular class. This is
perfectly all right, because for the user of the class Faculty it does not matter how the base class
Person is implemented, as long as the client code does not try to instantiate the objects of the
abstract class.

For a regular class with virtual functions, the client code can create objects of this class, send
messages to these objects, and use polymorphism if needed.

Again, an abstract class is a C++ class in all regards; it can have data members and regular nonpure
functions, including virtual functions.

If a class inherits a virtual function as a pure virtual function without defining its body, this derived
class is also an abstract class: No objects of that class can be created. If the client code needs
objects of that class but is not going to call that function on these objects (because this function has
no job yet), an empty body of the function can be used. The class becomes a regular, non-abstract
class, and an object of that class can be created.

class Base { // abstract class
public:
 virtual void member() = 0; // pure virtual function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (964 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 ¡K. } ; // the rest of Base class
class Derived : public Base { // regular class
 public:
 void member() // virtual function
 { } // empty body: noop
 ¡K. } ; // the rest of Derived class

Here, class Base is an abstract class. The objects of this class cannot be created. Class Derived is a
regular class. Its objects can be instantiated both on the stack (as named variables) and on the heap
(as unnamed variables). Function member() in the Base class is a pure virtual function. It cannot be
called. Function member() in the Derived class is a regular virtual function. However, its call
results in no operation.

Base *b; Derived *d; // Base and Derived pointers
b = new Base; // syntax error, abstract class
d = new Derived; // OK, regular class, heap object
b = new Derived; // OK, implicit pointer conversion
d->member(); // OK, compile time binding, no op
b->member(); // OK, run time binding
d->Base::member(); // linker error: no implementation

Redefinition with a different signature makes the function non-virtual in the derived class. Here,
class Derived1 is a class that inherits from the abstract class Base but does not redefine the pure
function member() with no parameters. Instead, it defines a function member(int) with one
parameter.

class Derived1 : public Base { // also an abstract class
 public:
 void member(int) // non-virtual function
 { } // empty body: noop
 ¡K. } ; // the rest of Derived1 class

This means that class Derived1 is an abstract class. It is a syntax error to create objects of this
class. Since this class is not used as a base class to derive other classes, it is quite useless, since
there is no way one can use any of its functions.

class Derived2 : public Derived1 { // regular class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (965 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 public:
 void member() // virtual function
 { } // empty body: noop
 ¡K. } ; // the rest of Derived class

Class Derived2 inherits from class Derived1. It implements the virtual member function
member(), and hence it is legal to create objects of this class. The objects of this class can respond
to the message member(), both with run-time binding and with static binding. The objects of this
class cannot respond to the message member(int) because this function is hidden by the member
function member() defined in class Derived2.

Derived2 *d2 = new Derived2; // OK, regular class, heap object
d2->member(); // OK, static binding
b = new Derived2; // OK for virtual functions
b->member(); // OK, dynamic binding
b->member(0); // syntax error
d2->member(0); // wrong number of parameters

Notice that the base class pointer b, when pointing to the derived class object, can invoke only

ϒΠ non-pure member (virtual or non-virtual) functions defined in the base class

ϒΠ virtual functions defined in the derived class

It cannot invoke non-virtual member functions defined in the derived class. It is a myopic pointer.
It takes a virtual function to extend its scope of vision to the derived part of the object it is pointing
to. Otherwise, it can see only the base part of the derived object. It takes the derived class pointer to
access both the base part and the derived part of the derived object.

Virtual Functions: Destructors

When the delete operator is invoked, the destructor is called and the object is destroyed. Which
destructor is called? The destructor defined in the class of the pointer pointing to the object or the
destructor defined in the class to which the object pointed to by the pointer belongs?

When the pointer and the object pointed to by the pointer belong to the same class, the answer is
simple: the destructor is of that class.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (966 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Derived2 *d2 = new Derived2; // OK, regular class, heap object
d2->member(); // OK, static binding
b = new Derived2; // OK for virtual functions
b->member(); // OK, dynamic binding
delete d2; // class Derived2 destructor
delete b; // ??

C++ destructors are member functions. They are regular non-virtual member functions. When the
delete operator is used, the compiler finds the definition of the pointer operand, searches the
definition of the class to which the pointer belongs, and calls the destructor that belongs to that
class. All this happens at compile time. The compiler pays no attention to the class of object to
which the pointer is pointing.

When the pointer and the object are of the same class there is no problem: The dynamic memory
(and other resources) allocated to the object are returned as the destructor code executes. When the
derived class pointer points to a base object¡Xwell, you should not do that. The big and powerful
derived class pointer will require the little base object to do things it cannot do.

Person p; Faculty f; // base and derived pointers
p = new Person("U12345678", "Smith");
f = p; // syntax error: stay away
f = (Faculty*)p; // I insist I know what I do
delete f; // Faculty destructor

In this example, the Faculty destructor is invoked on a Person object. The delete operator is
called for the data member rank that is not in the object. The results are undefined.

When a base pointer points to a derived class object, the base class destructor is called. This might
or might not be troublesome. If the dynamic memory is handled in the base class but not in the
derived class, there is no problem; the heap memory is returned by the base destructor. If the
derived class handles the heap memory, it is not returned by the base destructor. A memory leak
results.

Person *p; Faculty* f; // base and derived pointers
f = new Faculty("U12345689", "Black", "Assistant Professor");
p = f; // or p = (Person*) f;
delete p; // memory leak

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (967 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In this example, the delete operator invokes the Person destructor, which deletes dynamic
memory allocated for the name. The Faculty destructor is not called, and the heap memory
allocated for the rank is not returned.

In Listing 15.5, the client code uses a loop to go over the array of base pointers and delete each
object allocated dynamically at the beginning of the execution. For each object in the data structure,
the Person destructor is executed.

for (int j=0; j < cnt; j++)
{ delete data[j]; } // delete Person heap memory

As far as Faculty and Student objects are concerned, their memory is returned completely. The
delete operator deletes the object no matter what the type of the object. The problem is not with
the object memory but with the heap memory allocated to the derived class objects, the right-most
part on Figure 15-10. The Person destructor deletes the heap memory allocated for name but not
the heap memory allocated for rank and major. When a derived object is destroyed through a base
pointer, only the base destructor is called, and the derived class destructor is not called.

C++ offers a way out of this: to declare the base destructor virtual. By convention, it makes every
derived class destructor also virtual. When the delete operator is applied to a base pointer, the
target class destructor is called polymorphically (and then the base class destructor, if any).

struct Person { // abstract class
protected:
 char id[10]; // data common to both types
 char* name;
public:
 Person(const char id[], const char nm[]);
 virtual void write() const = 0; // pure virtual function
 virtual ~Person(); // this makes the trick
} ;

struct Faculty : public Person { // regular class
private:
 char* rank; // for faculty only
public:
 Faculty(const char id[], const char nm[], const char r[]);
 void write () const; // regular virtual function
 ~Faculty(); // now this is virtual, too
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (968 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This solution is somewhat awkward. After all, the first thing you should remember about virtual
functions is that you use exactly the same name everywhere, in the base class and in all derived
classes. With destructors, this is not the case because each destructor has the same name as the
class name. Hence, destructors violate the rules of virtual functions. This is similar to constructors,
and, indeed, there are no virtual constructors in C++.

However, practical considerations are more important that logical beauty. Memory leaks are too
dangerous to put up with. This is why C++ allows this inconsistency and supports virtual
destructors.

Multiple Inheritance: Several Base Classes

In C++, a derived class might have more than one base class. With single inheritance, the hierarchy
of classes is a tree, with the base class on the top of the hierarchy and derived classes below the
base class.

With multiple inheritance, the hierarchy of classes might become a graph rather than a tree as with
single inheritance. This makes the relationships among classes more complex than with single
inheritance. The issues related to multiple inheritance are more difficult to understand than for
simple inheritance.

Similar to single inheritance, multiple inheritance is not so much a technique to make the client
code simpler or easier to understand; it is a technique that makes the server code easier to produce.
Unlike single inheritance, multiple inheritance allows the server class designer to mix the
characteristics of diverse classes in one class.

Let us consider a simple example. Let us assume that class B1 provides the clients with a public
service f1() and class B2 provides the clients with a public service f2(). This is almost exactly
what the client code needs, but in addition to these two services the client code needs a public
service f3() to be available. One possible technique to serve the client is to merge characteristics
of classes B1 and B2 into one class using multiple inheritance.

class B1
 { public:
 void f1(); // public service f1()
 ¡K }; // the rest of class B1
class B2
 { public:
 void f2(); // public service f2()

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (969 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 ¡K }; // the rest of class B2

By inheriting publicly from class B1 and B2, class Derived becomes able to provide its clients with
the union of services provided by each of the base classes, in this case, methods f1() and f2().
This means that to provide its clients with all three services (f1(), f2(), f3(),) the designer of
class Derived has to implement only one function, f3(). This is quite an accomplishment.

class Derived : public B1, public B2 // two base classes
 { public: // f1(), f2() are inherited
 void f3(); // f3() is added to services
 ¡K }; // the rest of class Derived

Now the client code can instantiate Derived objects and send to them messages that they inherited
from both base classes and messages that are added by the Derived class.

Derived d; // instantiate Derived object
d.f1(); d.f2(); // inherited services (B1, B2)
d.f3(); // the service is added in the Derived class

We see that a derived class provides clients with capabilities of all the bases plus its own data and
behavior.

Initially, C++ did not have multiple inheritance. But Stroustrup, the designer of C++, complained
that programmers "demanded multiple inheritance," and now C++ has it. I am not sure to what
extent this was a result of the external pressure. I know of quite a few suggestions that he did not
give in to.

Multiple inheritance is good for customizing existing class libraries, for example, for adding or
redefining members in existing classes. Derived classes represent a combination of base classes
rather than a refinement of a single base class. Each parent class contributes properties to the
derived class; the derived class is a union of the base features.

Examples of using multiple inheritance include graphic objects, NOW accounts, and iostream
classes in the C++ standard library.

For a graphics package, classes Shape and Position were used as base classes to produce class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (970 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Object. The objects of class Object (sorry for the pun, it was not intended) combined properties
of Shape objects and Position objects. This is an example of unreasonable use of multiple
inheritance. Sure, a graphics object is a shape, but it is a stretch to state that a graphics object is a
position. It is more natural to say that a graphics object has a position.

For NOW accounts, the classes represent savings accounts and checking accounts. This is a better
example of using multiple inheritance because a NOW account indeed combines the properties of
savings accounts and checking accounts: It pays interest and allows check writing. However, if you
talk to a bank officer, you would hear that yes, basically this is correct, but there are quite a few
exceptions that make a NOW account different from both a savings account and a checking
account. This means that the benefits of easily merging basic characteristics are offset by the
drawbacks of suppressing features that do not fit.

For the C++ iostream class library, the use of multiple inheritance to merge characteristics of input
stream classes and output stream classes makes sense. The resulting iostream classes support both
input operations and output operations, and there is nothing to suppress in the derived classes.

Notice that C++ does not put a limit on the number of base classes that can participate in forming a
derived class. All examples that I cited involve only two base classes. In all examples of multiple
inheritance that follow, I will limit myself to two base classes as well. Why not three or four? The
answer is simple¡Xit is hard to come up with examples of multiple inheritance with three or four
base classes so that they make good sense and do not confuse the user. Why is two better than three
or four? I suspect that the examples of multiple inheritance with two base classes are also hard to
come by.

This is why I recommend that you use multiple inheritance with caution. The advantages are few
and complications are many. There are always ways to adequately support the client code without
using multiple inheritance.

Multiple Inheritance: Access Rules

With multiple inheritance, a derived class inherits all data members of all bases and all member
functions of all bases. The space that an object of the derived class occupies in memory is the sum
of the space that the objects of the base classes occupy in memory (with possible addition for
alignment).

Access rules for multiple inheritance are the same as for single inheritance. The methods of the
derived class can access public and protected members (data and methods) of all its base classes
without any limitations. They cannot access private members of the base classes.

Inheritance links can be public, protected, or private. In either case, all data members and member

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (971 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

functions of all base classes are inherited in the derived class, but the access rights can change
depending on the mode of derivation.

Modes of derivation for multiple inheritance are the same as for single inheritance. With public
derivation, each base member, private, protected, and public, has the same access rights in the
derived class object as in the base object. This is the most natural mode of inheritance.

With protected derivation, protected and public base members remain protected and public in the
derived class, but public base members (data and functions) become protected in the derived class.
Since the derived class has full access to protected base components, protected inheritance does not
affect access rights of the derived class. Similar to single inheritance, it does affect access rights of
the client code. The client code loses the right to use public base services. The derived class has to
provide adequate services to the clients without making the public base services available to the
client code.

With private inheritance, all base members become private in the derived class. Similar to single
inheritance, the mode of derivation is private by default. The mode of derivation should be
specified for each base class separately.

Let us consider the same two base classes B1 and B2 as in the previous example.

class B1
 { public:
 void f1(); // public service f1()
 ¡K }; // the rest of class B1

class B2
 { public:
 void f2(); // public service f2()
 ¡K }; // the rest of class B2

Let us combine their characteristics in a derived class Derived and add yet another member
function in the derived class.

class Derived : public B1, B2 // two base classes
 { public: // f1(), f2() are inherited
 void f3(); // f3() is added to services
 ¡K }; // the rest of class Derived

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (972 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Then the client code can define and use the objects of the Derived class.

Derived d; // instantiate Derived object
d.f1(); // inherited from B1
d.f2(); // syntax error: f2() is private
d.f3(); // the service is added in the Derived class

This is yet another manifestation of the difference between the keyword public used for describing
access rights and used for describing the mode of derivation. With access rights, the scope of the
keyword public includes as many class members as needed, until another access right keyword is
found or until the end of the class definition. With mode of derivation, the scope of the keyword
public is only one identifier.

In the example above, it is only class B1 from which class Derived inherits publicly. For class B2,
the default (private) mode of derivation is used. This is why method f2() becomes private in the
Derived class, and as such is not available to the client code.

Conversions Between Classes

Conversion rules for multiple inheritance are similar to those for single inheritance. If a base class
is inherited from publicly, objects of the derived class can be implicitly converted into objects of
that base class; no explicit cast operator is needed for such a conversion.

The concepts behind this rule are the same as those for single inheritance. An object of the derived
class has all the capabilities, data, and functions of objects of base classes. Conversion from a
derived object to a base object cannot result in the loss of capabilities unless, of course, the mode of
derivation is not public.

B1 b1; B2 b2; Derived d;
b1 = d; b2 = d; // OK: extra capabilities are discarded
d = b1; d = b2; // error: inconsistent state of object

Conversion from a base class to the derived class is not allowed. A base object has only part of the
data and capabilities that a derived object has, and the missing capabilities are nowhere to come
from. This conversion is not safe.

Similar rules apply to pointers and references. A pointer (reference) of a base class can safely point

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (973 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

to an object of the derived class. The derived class object can do everything the base pointer can
demand and probably more. This is safe. However, the base pointer can invoke only part of the
capabilities of the derived object.

B1 *p1; B2 *p2; Derived *d;
p1 = new Derived; p2 = new Derived; // OK: safe
d = new B1; d = new B2; // syntax errors
d = p1; d = p2; // syntax errors
d = (Derived*) p1; // OK: explicit cast

A pointer of the derived class should not point to a base object (the third line in this example). The
base object lacks many capabilities that a derived object has and that are available through the
derived class pointer. To avoid run-time errors, the compiler declares this code to be a syntax error.

Similarly, a base pointer (which presumably points to a base object) cannot be copied into a derived
class pointer (the fourth line of code in the example). This is not safe: The derived pointer might
require services that the base object cannot perform, and the compiler will not be able to catch that.
This is why this pointer manipulation is also considered a syntax error.

What do you do if you know that the base pointer indeed points to a derived class object rather than
to a base object? The same thing you do with single inheritance¡Xyou tell the compiler that you
know what you are doing by means of a cast (the last line in the example). Since the compiler
cannot check you, it accepts your assurance. You had better be right.

The same rules apply to parameter passing. If a function expects a pointer (or a reference) to one of
the base classes, it is safe to call this function, passing to it the address of a derived object instead.

void foo1 (B1 *b1) // derived objects have additional services
 { b1->f1(); }

void foo2 (B2 *b2) // derived objects have additional services
 { b2->f2(); }

void foo(Derived *d) // base objects cannot do that
 { d->f3(); }

B1 *b1 = new Derived; B2 *b2 = new Derived;
Derived d;
foo1(&d); foo2(&d); // both are OK: safe conversion
foo(b1); foo(b2); // syntax errors: unsafe conversion
foo((Derived*)b1); foo((Derived*)b2); // pass at your own risk

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (974 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the last example, functions foo1() and foo2() can accept Derived objects as actual arguments
because inside these functions their parameters respond to base messages only (f1() and f2(),)
and derived objects can respond to these services. Function foo() cannot accept base pointers
because inside this function the parameter should respond to the derived class message f3(), and
base objects cannot do that. On the other hand, pointers b1 and b2 point to Derived class objects
that can do the job. To tell the compiler about this, the last line of the code above explicitly casts
the base pointer to the Derived pointer.

With the private or protected mode of inheritance, no implicit conversion from objects of the
derived class into objects of its base classes is allowed. Even in this "safe" case, an explicit cast by
client code is needed (because this case is not "safe" anymore). Conversion from any base class to a
derived class requires an explicit cast for any mode of multiple inheritance.

Multiple Inheritance: Constructors and Destructors

A derived class is responsible for the state of its components inherited from the base classes. As
with single inheritance, the base class constructors are called when an object of a derived class is
constructed.

The mechanism for passing parameters to the base class constructors is similar to single
inheritance: The member initialization list should be used. In the next example, the base class B1
has one data member, the base class B2 has another data member, and the derived class has yet
another data member (a dynamically allocated character array). The Derived class should provide a
constructor with three parameters so that it can pass data to its B1 and B2 components and to its
own data member.

class B1 {
 int m1;
public:
 B1(int);
 void f1(); ¡K };

class B2 {
 double m2;
public:
 B2(double);
 void f2(); ¡K };

class Deived: public B1, public B2 {

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (975 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 char* t;
public:
 Derived(const char*, double, int);
 ~Derived();
 void f3(); ¡K };

If the member initialization list is not provided, default base constructors are called. If base classes
provide no default constructors, it is a syntax error.

In the member initialization list, the Derived class constructor calls base constructors using class
names B1 and B2 (not data member names) in a comma-separated sequence of constructor calls;
parameter names for base constructors usually come from the Derived constructor parameter lists
(literal values are also okay).

Derived::Derived(const char *s, double d, int i) : B1(i),B2(d)
 { if ((t = new char[strlen(s)+1]) == NULL)
 { cout << "\nOut of memory\n"; exit(1); }
 strcpy(t,s); }

All base class constructors are called before the derived class constructor is called. They are called
in the order in which the base classes are listed in the derived class declaration, not in the order of
the initialization list of the derived class constructor.

Similarly to single inheritance, data members of the derived class can be initialized either in the
body of the derived class constructor or in the member initialization list.

When a derived class object is destroyed (dynamically or by going out of scope), the derived class
destructor is called first.

Then the base class destructors are called in an order that is the reverse of constructor invocations.

Multiple Inheritance: Ambiguities

The use of multiple inheritance might result in name conflicts. If the derived class has a data
member or a member function of the same name as one of the base classes, the base class service is
hidden by the name defined in the derived class.

In the next example, the Derived class has data member x with the same name as a data member in
the base class B1; in addition, the Derived class has member function f2() with the same name as

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (976 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

a member function in the base class B2.

class B1 {
protected:
 int x; // hidden by Derived::x
public:
 void f1(); ¡K };

class B2 {
public:
 void f2(); ¡K }; // hidden by Derived::f2()

class Derived: public B1, public B2 {
protected:
 float x; // hides B1::x
public:
 void f2(); // it hides B2::f2()
 void f3()
 { x = 0; } ¡K }; // Derived::x is used

In this example, the object of the Derived class has two data members x; the data member
inherited from B1 is hidden in Derived; the member function f2() inherited from base B2 is
hidden by the added function f2().

Both the client code and the Derived class code can override the scope rules by using the explicit
scope operator.

void Derived::f3()
 { B1::x = 0; } // disregard Derived::x

Derived d;
d.f2(); // Der::f2();
d.B2::f2(); // B2::f2();

Clashes between the derived class name and the base class names are not very frequent. Usually,
the designer of the derived class has an opportunity to review the design of base classes and avoid
conflicts if they are considered harmful.

Base class member names may also clash. This is a more common occurrence and a more difficult
one to deal with because base classes are often developed independently from each other and there

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (977 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

is little opportunity to coordinate their development to avoid name conflicts.

If two base classes have a data member or a member function with the same name, the derived
class object has both copies. The language provides no predefined precedence rules for access to
data and functions. If needed, we resolve ambiguities with the use of explicit qualification; the
scope operator has to be used both by the client and by the derived class.

In the next example, both base classes have a public member function named f1(). This means
that the client code cannot use either of them unless the client code provides an explicit indication
of which one to use.

class B1 {
public:
 void f1(); ¡K } ;

class B2 {
public:
 void f1(); ¡K } ;

class Derived : public B1, public B2 {
public:
 void f3(); ¡K } ;

Derived d;
d.f1(); // ambiguous message
d.B1::f1(); d.B2::f1(); d.f3(); // OK

This technique for eliminating ambiguity flies in the face of principles of object-oriented
programming. The problem is resolved by adding more responsibility to the client code rather than
to its server class. Make sure that you spot these kinds of designs and avoid them.

A better approach would be to ask the Derived class to insulate the client code from ambiguity in
member function names.

class Derived: public B1, public B2 {
public:
 void f1() { B1::f1(); } // one-liners
 void f2() { B2::f1(); }
 void f3(); ¡K } ;

Derived d;
d.f1(); d.f2(); d.f3(); // client is insulated

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (978 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is a much better solution. It is the server code (class Derived) that goes to the trouble of
dealing with the problem. The client code is insulated from the problem. After all, when the client
code uses class Derived as its server, the client code should not be exposed to the details of the
server design¡Xwhat it inherits, from whom it inherits, what conflicts it has to deal with, and so on.
All that the client code should know is how to call the services f1(), f2(), and f3() to get the job
done.

If two (or more) base classes have a data member with the same name (of the same or different
types), the derived class object has both copies, and this results in ambiguity.

class B1 {
protected:
 int m;
public:
 B1(int);
 void f(); ¡K };

class B2 {
protected:
 double m;
public:
 B2(double);
 void f(); ¡K };

class Derived : public B1, public B2 {
 char* t;
public:
 Derived (char*,double,int);
 void f3() { cout << "m=" << m << endl; } // ambiguity
 ¡K };

Conflicts between names of data members should be resolved by the derived class to avoid
ambiguities and to protect the client code. The scope operator has to be used.

void Derived::f3()
{ cout << "m=" << B1::m << endl; } // no ambiguity

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (979 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Multiple Inheritance: Directed Graph

This is the most insidious form of ambiguity. It happens when a base class is inherited from more
than once. In general, C++ is against that, and a class may explicitly appear only once in a
derivation list for a derived class.

class B {
public:
 int m; } ;

class Derived: public B, public B // syntax error
 { } ;

This does not make much sense, and it is outlawed as a syntax error. However, the same class can
appear multiple times in an inheritance hierarchy. Different base classes may have common
parents; such a parent will appear more than once in derivations, and its data will have multiple
copies in derived classes.

class B1 : public B { // class B is above
 protected:
 int mem;
 public:
 void f1(); ¡K };

class B2 : public B { // class B is above
 protected:
 int mem;
 public:
 void f2(); ¡K };

class Derived : public B1, public B2 { // inherited from B twice
 public:
 void f3(); ¡K };

In this design, class Derived has two data members named mem that are inherited from different
base classes. They have the same names, but they refer to different locations in memory. Their
roles in the program are also different: They come from different classes. Managing them is a
headache, and this headache should not be passed on to the client.

The situation with data member m is worse. Each object of class Derived has two instances of this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (980 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

data member; one is inherited through class B1 and the other through B2. Space required for
multiple instances of the same base data member is wasteful. Also, these two data members are
functionally the same¡Xthey come from the same class, but one of them serves the needs of the B1
part of Derived, and another serves the needs of the B2 part of Derived.

C++ comes with an interesting fix for this problem. It gives the programmer an opportunity to
explicitly state that using two (or more) copies of the same data and functions is undesirable. I wish
this were the default case, and people who like puzzles would have the right to request that using
two copies of the same data and functions is desirable.

You stipulate that by specifying the base classes as virtual base classes. The keyword virtual
modifies declarations of the derived classes, which are later used in multiple inheritance.

class B { // common base class
 int m;
public:
 void f(); ¡K } ;

class B1 : virtual public B { // virtual base
 protected:
 int mem;
 public:
 void f1(); ¡K };

class B2 : virtual public B { // virtual base
 protected:
 int mem;
 public:
 void f2(); ¡K };

class Derived : public B1, public B2 { // works by magic
 public:
 void f3(); ¡K };

Now the Derived class has only one copy of data and functions inherited from class B. Notice that
to eliminate the problems in the Derived class, it is the designers of its base classes B1 and B2 that
have to define these classes as virtual. This flies in the face of the principle that base classes do not
know about their derived classes; it is derived classes that know about their bases.

And a final comment: You should not confuse the keyword virtual used in this context with the
keyword virtual used for virtual functions. They are totally different. It would be nice to have two
different keywords. It would probably be even nicer not to have multiple inheritance.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (981 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Multiple Inheritance: Is It Useful?

I am not sure I can answer this question impartially, but I feel that the complexity of design with
multiple inheritance (and I discussed here only part of what exists) outweighs the advantages of its
use.

So, what do you do when you feel you have to design a class that provides to its clients the union of
services provided by other classes? My answer to this question is: Use composition, or use
composition with inheritance.

Consider again the first example of inheritance that I discussed in the beginning of this section. The
goal of this design is to provide the client code with the ability to call functions f1(), f2(), and
f3(). Functions f1() and f2() are already implemented in classes B1 and B2. Function f3()
needs to be implemented. These are two classes that implement required functions f1() and f2().

class B1
 { public:
 void f1(); // public service f1()
 ¡K }; // the rest of class B1

class B2
 { public:
 void f2(); // public service f2()
 ¡K }; // the rest of class B2

When you use multiple inheritance, you implement the required function f3() in the new class
Derived.

class Derived : public B1, public B2 // two base classes
 { public: // f1(), f2() are inherited
 void f3(); // f3() is added to services
 ¡K }; // the rest of class Derived

Instead, you can create class Derived inheriting function f1() from class B1. To provide clients of
Derived with the function f2(), you make a field of class B2 a member of class Derived.

class Derived : public B1 { // single inheritance

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (982 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 B2 b2; // class composition
public:
 void f2() { b2.f2(); } // one-liner
 void f3(); ¡K };

Now the client code can instantiate Derived objects and send them messages exactly as in the case
of multiple inheritance.

Derived d; // instantiate Derived object
d.f1(); // inherited services (B1)
d.f2(); // passed from B2 through Derived
d.f3(); // added in the Derived class

It goes without saying that this client code should not go into the details of how its server class
Derived is designed. It provides the required services, and this is all that is needed¡Xwithout the
complexity of multiple inheritance.

Summary

In this chapter, we looked at advanced uses of inheritance. They all rotate around the fact that base
classes and derived classes have some capabilities in common; hence, objects of one class can be
used instead of objects of another class, at least in some circumstances.

You saw that it is always safe to use an object of the derived class where an object of a base class is
expected. This conversion is safe, but it is not very interesting. This derived object will be asked to
do only things that a base object could do, and the derived class object can do much more.

However, the same is true about pointers (and references), and this is much more interesting. This
means that you can use a pointer of the base class where a derived class pointer is expected, that is,
you can point to derived class objects using base class pointers.

Why would you want to do that? The most common context for doing that is processing a
collection of objects of different classes.

This has always been a problem in programming languages. All of our collections that are
supported by modern languages are homogeneous. C++ arrays cannot contain components of
different classes. C++ linked lists cannot use nodes of different types. It is only the use of
inheritance that allows you to use collections of objects of different classes. These classes are not
totally different. The heterogeneous lists discussed in this chapter cannot contain objects of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (983 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

arbitrary classes. But they can contain objects of classes related by inheritance.

When a heterogeneous collection of objects (related by inheritance) is processed, four types of
messages are sent to the objects in the collection.

ϒΠ Messages that every object in the collection can respond to: These are methods defined
in the base class of the inheritance hierarchy and are not overwritten in derived classes.

ϒΠ Messages that only some kinds of objects in the collection can respond to: These are
methods defined in derived classes of an inheritance hierarchy without a message with the
same name in the base class.

ϒΠ Messages whose names all kinds of objects in the collection can respond to but which
are defined as non-virtual functions in base and derived classes (with the same or different
interface).

ϒΠ Messages that each kind of object in the collection can respond to, which are defined as
virtual functions using the same interface in the base and derived classes.

The first type of message can be accessed using the base class pointer; no conversion is necessary
when the object in the collection is accessed.

The second kind of message can be sent using only derived class pointers: When the object is taken
from the collection, the base pointer has to be converted to the pointer of the class to which the
object belongs; only then will the message of the second kind become accessible. This conversion
is not safe, and you should know what you are doing (that the object can respond to this message)
because the compiler is not able to protect you.

The third kind of message also requires conversion if the object should respond to a message
defined in the derived class. The base class message is hidden by the derived class message.

The fourth kind of message does not require conversion. Even though these messages are sent using
the base class pointer, they are interpreted by the run-time system according to the type of the
object the pointer points to (dynamic binding). The design that uses virtual functions encapsulates
the algorithms that are performed differently for different kinds of objects into the functions with
the same name.

The use of virtual functions entails some space and performance penalty. Each object of the class
that uses virtual functions has a hidden data member that specifies the kind of object or a pointer
that points to the table with addresses of available virtual functions. Each time the virtual function
is called, this pointer is used to find the required object code, and this extra step of indirection adds
to the execution time. This penalty is not large and for most applications is not an issue.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (984 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

We also took a look at multiple inheritance. I think that the complexity of this topic might equal the
complexity of the rest of the language. Meanwhile, its practical utility is small. Everything that can
be done with the use of multiple inheritance can be achieved as a combination of inheritance and
composition. Use multiple inheritance sparingly if at all.

With virtual functions, it is a different story. They are immensely popular in C++ programming.
They are so popular that I am afraid it is not politically correct to argue against their use.
Remember, however, that the virtual function mechanism is fragile. You have to use public
inheritance. You have to use the same name in all classes in your inheritance hierarchy. You have
to use exactly the same parameter list, return value, and even const modifiers. Have a small
inconsistency, and your program will call a totally different function just because it has the same
name, and you might not notice it.

This being said, use virtual functions everywhere the processing of different kinds of related
objects can be reasonably described using the same function name.

Chapter 16. Advanced Uses of Operator Overloading

Topics in this Chapter

ϒΠ Operator Overloading: A Brief Overview

ϒΠ Unary Operators

ϒΠ Subscript and Function Call Operators

ϒΠ Input/Output Operators

ϒΠ Summary

I already discussed C++ overloaded operators in Chapters 10, "Operator Functions: Another Good
Idea," (numeric classes) and 11, "Constructors and Destructors: Potential Trouble," (nonnumeric
classes). In this chapter, I am going to extend this coverage and explain more exotic uses of
operator overloading in C++. For some, any operator overloading is already quite eccentric. For
these programmers, what you will learn in this chapter might appear remote from what most C++
programmers do every day.

This might be true¡Xyou do not write advanced overloaded operators often. But this topic is
definitely not remote from what many C++ programmers use every day. Advanced operators are an

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (985 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

important component of any C++ library, standard or nonstandard, and it is useful to understand
how they work. It is certainly not your first priority in studying C++. But these operators are
intellectually challenging and aesthetically exciting. You will surely be rewarded for the time and
energy spent on studying them.

Operator Overloading: A Brief Overview

An overloaded operator is a programmer-defined function that has a special name (composed of the
keyword operator and the operator symbol or symbols). Overloaded operators are also known by
the names of operator functions, overloaded operator function, or just operators. They provide the
convenience of operator syntax for manipulating objects of programmer-defined classes.

The driving force behind the incorporation of overloaded operators into C++ is the desire to treat
objects of programmer-defined types in the same way as variables of built-in types are treated. If
you can add two numeric values, there is no good reason why you cannot add two Account objects.
If you can add three numeric values, you should be able to add three Account objects, and so on.
The overloaded operators enable you to do that.

It is the C++ language that defines the meaning of built-in operators over built-in types. For
overloaded operators, the meaning is defined, not by the language, but by the programmer. This
meaning should not be arbitrary: it should depend on the nature of objects being added, multiplied
and so on. But the programmer has significant freedom in defining the operator meaning, and this
can easily lead to abuse¡Xto the design of overloaded operators whose meaning is not intuitively
clear. A good example of such abuse is the unary operator plus that I designed in Chapter 10 for
displaying the fields of a Complex number (see Listing 10.4). Used in the client code, this operator
will confuse any maintainer. Very few people could guess correctly that, for example, +x means
display the fields of the object x in a specified format.

For the freedom to choose any content of overloaded operators, we pay with the lack of freedom in
choosing their names. The name of an operator function should include the keyword operator
followed by any legal C++ operator (two-symbol operators like == or += are allowed).

There are five exceptions to this rule: operators " . ", " .* ", " :: ", " ?: " and " sizeof ".
Overloaded operators can be defined as either class members (and hence used as messages) or top-
level global functions (usually, friends of the class whose objects are used as operands of
overloaded operators). If an operator is overloaded as a class member, it can have whatever
arguments are appropriate.

The target of the message will be used as the first operand. If an operator is overloaded as a global
function, it has to have at least one class argument; it cannot have arguments of built-in types only.
This limitation does not apply to memory management operators (new, delete, and delete []).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (986 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Operators overloaded in a base class are inherited in derived classes. Obviously, these operators
cannot access members defined in derived classes, because the derived class members are outside
of the scope of the base class and hence cannot be accessed from the base class methods. The
overloaded assignment operator is an anomaly¡Xit is not inherited by the derived classes, or, rather,
it can access only the base part of the derived object, not the derived part of the derived object.
Hence, each class in the inheritance hierarchy has to define its own assignment operator if needed.

Operator precedence for overloaded operators is the same as for their built-in counterparts. For
example, the multiplication operator always has a higher precedence than does the addition
operator, whatever their meaning is for the programmer-defined class. The expression syntax for
overloaded operators is the same as for corresponding built-in operators. For example, binary
operators always occur between their two arguments, whether they are built-in or overloaded.
(However, in this chapter you are going to see some exceptions to this rule.)

Arity (the number of operands) for overloaded operators is the same as for corresponding built-in
operators. Binary operators remain binary; they require two operands. As global nonmember
functions (e.g., friends), binary overloaded operators must have two parameters. As class member
functions, binary overloaded operators have only one parameter, because another parameter
becomes the target object of the message.

Similarly, unary built-in operators remain unary when they are overloaded. If a unary overloaded
operator is implemented as a global nonmember unary operator (e.g., a friend), it will have one
parameter. If this overloaded operator is defined as a member function (which is sent as a message
to a target object), it will have no parameters.

As a simple example, consider class Account similar to one discussed in Chapter 13, "Similar
Classes: How to Treat Them." The class maintains information about the owner name and the
current balance and supports services that allow the client code to access the values of object data
members and carry out deposits and withdrawals.

In addition to four inline member functions, the class has a general constructor. The class does not
need a default constructor, since Account objects will be created on the heap only when they are
needed. The default constructor might be useful only if class objects were created in advance, when
the name of the owner and the initial balance are not yet known.

Since the class manages memory dynamically, it would be a good idea to add to it the copy
constructor and the assignment operator or, better yet, make the prototypes of these member
functions private (see Chapter 11 for more details). For the simplicity of the example, I am not
doing that here because I am not passing Account objects by value, I do not initialize one Account
object from the data of another Account object, and I do not assign one Account object to another

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (987 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Account object. In real life, it would be important to protect Account objects from accidental
abuse.

class Account { // base class of
hierarchy
protected:
 double balance; // protected data
 char *owner;
public:
 Account(const char* name, double initBalance) // general
 { owner = new char[strlen(name)+1]; // allocate heap space
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, name); // initialize data fields
 balance = initBalance; }
 double getBal() const // common for both
accounts
 { return balance; }
 const char* getOwner() const // protect data from
changes
 { return owner; }
 void withdraw(double amount)
 { balance -= amount; } // pop responsibility up
 void deposit(double amount)
 { balance += amount; } } ; // increment
unconditionally

I am going to create an array of Account pointers, create Account objects dynamically, initialize
them, search for an account that belongs to a given owner, and deposit and withdraw funds. Again,
for simplicity of the example, I will use hardwired data rather than data loaded from an external
file.

Listing 16.1 shows the source code for the example. Function createAccount() creates an
Account object dynamically, calls the Account constructor with two parameters, and returns the
pointer to the newly allocated object. Function processRequest() sets up the ios flags for
printing floating point numbers in the fixed format and with the trailing zeros, searches the
customer name within the objects and prints a message if the name is not found. Otherwise, the
function prompts the user for the transaction code, requests the transaction amount and performs
the transaction (deposit or withdrawal).

The main() function defines an array of Account pointers and calls createAccount() to created
Account objects. In a loop, it prompts the user to enter the customer name and calls
processRequest() to process the transaction. An example of the program run is shown in Figure

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (988 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

16-1.

Figure 16-1. Output for program in Listing 16.1.

Example 16.1. Example of handling class Account with programmer-named methods.
#include <iostream>
using namespace std;

class Account { // base class of
hierarchy
protected:
 double balance; // protected data
 char *owner;
public:

 Account(const char* name, double initBalance) // general
 { owner = new char[strlen(name)+1]; // allocate heap space
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, name); // initialize data
fields
 balance = initBalance; }

 double getBal() const // common for both
accounts
 { return balance; }

 const char* getOwner() const // protect data from
changes
 { return owner; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (989 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void withdraw(double amount)
 { balance -= amount; } // pull responsibility
up

 void deposit(double amount)
 { balance += amount; } // increment
unconditionally
} ;

Account* createAccount(const char* name, double bal)
{ Account* a = new Account(name,bal); // account on the heap
 if (a == 0) { cout << "\nOut of memory\n"; exit(0); }
 return a; }

void processRequest(Account* a[], const char name[])
{ int i; int choice; double amount;
 cout.setf(ios::fixed,ios::floatfield);
 cout.precision(2);
 for (i=0; a[i] != 0; i++)
 { if (strcmp(a[i]->getOwner(),name)==0) // search for name
 { cout << "Account balance: " << a[i]->getBal() << endl;
 cout <<"Enter 1 to deposit, 2 to withdraw, 3 to cancel: ";
 cin >> choice; // transaction type
 if (choice != 1 && choice != 2) break; // get out
 cout << "Enter amount: ";
 cin >> amount; // transaction amount
 switch (choice) { // select further path
 case 1: a[i]->deposit(amount); // unconditional
 break;
 case 2: if (amount <= a[i]->getBal()) // enough funds?
 a[i]->withdraw(amount);
 else
 cout << "Insufficient funds\n";
 break; } // end of switch scope
 cout << "New balance: "<< a[i]->getBal() << endl; // OK
 break; } } // end of search loop
 if (a[i] == 0)
 { cout << "Customer is not found\n"; } }

int main()
{
 Account* accounts[100]; char name[80]; // program data
 accounts[0] = createAccount("Jones",5000); // create objects
 accounts[1] = createAccount("Smith",3000);
 accounts[2] = createAccount("Green",1000);
 accounts[3] = createAccount("Brown",1000);
 accounts[4] = 0;
 while (true) // process requests
 { cout << "Enter customer name ('exit' to exit): ";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (990 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cin >> name; // accept name
 if (strcmp(name,"exit")==0) break; // test for end
 processRequest(accounts, name); // next transaction
 }
 return 0;
 }

In this example, class Account relies on its client code to check whether the withdrawal transaction
is legitimate. The advantage of this approach is that the Account member functions are not
involved in the user interface; they are responsible for the access to Account data members only.
The disadvantage of this approach is that the data is popped up to the client code for further
handling instead of pushing responsibility down to the server code. The reason why I chose this
design is that it lends itself better to using overloaded operators.

The first candidates for becoming overloaded operators are Account member functions deposit()
and withdraw(). All that it takes to convert them into operator functions is to cut out their current
names (deposit and withdraw) and move in their new names (operator+= and operator-=). No
other changes are necessary.

void operator -= (double amount)
{ balance -= amount; } // client tests feasibility

void operator += (double amount)
{ balance += amount; } // increment unconditionally

Instead of calling the deposit() and withdraw() member functions, the client function
processRequest() will be able to use the expression syntax where the operator is inserted
between the left operand (message target) and the right operand (message parameter).

switch (choice) {
 case 1: *a[i] += amount; // a[i]->deposit(amount);
 break;
 case 2: if (amount <= a[i]->getBal())
 *a[i] -= amount; // a[i]->withdraw(amount);
 else
 cout << "Insufficient funds\n";
 break; }

Notice that the target of the message is an Account pointer, and hence it has to be dereferenced

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (991 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

when used in expressions. This is an inconvenience but is not very serious. At least not more
serious than deciding whether you should use the dot selector operator (when the message target is
an object or a reference) or the arrow selector operator (when the target is a pointer).

The real meaning of the expression syntax is, of course, a function call, a message sent to the left
operand in the expression: a[i]->operator+=(amount) and a[i]->operator-=(amount).

Listing 16.2 shows the program that uses the overloaded operator functions instead of programmer-
named methods. It is similar to the program in Listing 16.1. Before starting the interacting stage of
processing, the main() function calls the function printList() that goes over the list of Account
pointers and prints the contents of the objects pointed to by the pointers (see Figure 16-2). Notice
the statements that format the names to be printed left justified and the account balances to be
printed right justified.

Similar to processRequest(), the function printList() iterates through the list until the null
pointer (this pointer plays the role of the sentinel value) is found in the array. Notice the difference
in the loop headers in these two functions. In printList(), the index i is local to the loop. In
processRequest(), the index is global to the loop. (It is local to the function scope.) The reason
for the difference is that the index value is not needed after the loop in printList(): Iterations are
always from the beginning of the list to the end. In processRequest(), the iteration might be
stopped before the end of the list is reached (if the name is found), and processRequest() needs
to know about it.

Example 16.2. Example of handling class Account with overloaded operator methods.
#include <iostream>
using namespace std;

class Account { // base class of
hierarchy
protected:
 double balance; // protected data
 char *owner;
public:

 Account(const char* name, double initBalance) // general
 { owner = new char[strlen(name)+1]; // allocate heap space
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, name); // initialize data
fields
 balance = initBalance; }

 double getBal() const // common for both
accounts

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (992 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { return balance; }

 const char* getOwner() const // protect data from
changes
 { return owner; }

 void operator -= (double amount)
 { balance -= amount; } // pull responsibility
up

 void operator += (double amount)
 { balance += amount; } // increment
unconditionally
} ;

Account* createAccount(const char* name, double bal)
{ Account* a = new Account(name,bal); // account on the heap
 if (a == 0) { cout << "\nOut of memory\n"; exit(0); }
 return a; }

void processRequest(Account* a[], const char name[])
{ int i; int choice; double amount;
 cout.setf(ios::fixed,ios::floatfield);
 cout.precision(2);
 for (i=0; a[i] != 0; i++)
 { if (strcmp(a[i]->getOwner(),name)==0 // search for name
 { cout << "Account balance: " << a[i]->getBal() << endl;
 cout <<"Enter 1 to deposit, 2 to withdraw, 3 to cancel: ";
 cin >> choice; // transaction type
 if (choice != 1 && choice != 2) break;
 cout << "Enter amount: ";
 cin >> amount; // transaction amount
 switch (choice) {
 case 1: *a[i] += amount; // a[i]-
>operator+=(amount);
 break;
 case 2: if (amount <= a[i]->getBal())
 *a[i] -= amount; // a[i]->operator-
=(amount);
 else
 cout << "Insufficient funds\n";
 break; } // end of switch scope
 cout << "New balance: "<< a[i]->getBal() << endl;
 break; } } // end of search loop
 if (a[i] == 0)
 { cout << "Customer is not found\n"; } }

void printList (Account* a[])
{ cout << "Customer List:\n\n";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (993 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 for (int i=0; a[i] != 0; i++)
 { cout.setf(ios::left, ios::adjustfield); cout.width(30);
 cout << a[i]->getOwner();
 cout.setf(ios::right, ios::adjustfield); cout.width(10);
 cout << a[i]->getBal() << endl; }
 cout << endl; }

int main()
{
 Account* accounts[100]; char name[80]; // program data
 accounts[0] = createAccount("Jones",5000); // create objects
 accounts[1] = createAccount("Smith",3000);
 accounts[2] = createAccount("Green",1000);
 accounts[3] = createAccount("Brown",1000);
 accounts[4] = 0;
 printList(accounts);
 while (true) // process requests
 { cout << "Enter customer name ('exit' to exit): ";
 cin >> name; // accept name
 if (strcmp(name,"exit")==0) break; // test for end
 processRequest(accounts, name); // next transaction
 }
 return 0;
 }

Implementing overloaded operators as global functions is simple: The target of the message
becomes the first function parameter. Instead of data members of the target object, the operators
use data members of the first parameter. Here are the two operators implemented as global
functions.

void operator -= (Account &a, double amount) // global function
 { a.balance -= amount; } // pop responsibility up

void operator += (Account &a, double amount)
 { a.balance += amount; } // increment
unconditionally

Figure 16-2. Output for program in Listing 16.2.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (994 of 1187) [8/17/2002 2:58:07 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Since these two functions access nonpublic members of class Account, they should be declared as
friends of class Account. Some programmers view this as an annoyance, as it requires additional
work. As I mentioned earlier, the modern approach to programming does not view additional
writing as a shortcoming if it results in more understandable code. You write additional
declarations only once, but you (and others) read them many times in the course of program
development, testing, and maintenance.

In this case, adding friend function declarations to the class clearly indicates that these functions
belong to this class. They belong to the class physically; that is, they cannot be used without objects
of class Account. They belong to the class conceptually; that is, they are part of operations
provided by the class. The syntax of friend functions is different from the syntax of member
functions, but this is a minor technical peculiarity. Frequent accusations against using friend
functions, breaking of encapsulation and development of extra dependencies between parts of the
program, are nonissues for overloaded operator functions.

class Account { // base class of
hierarchy
protected:
 double balance; // protected data
 char *owner;
public:
 Account(const char* name, double initBalance) // general
 { owner = new char[strlen(name)+1]; // allocate heap
space
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, name); // initialize data
fields
 balance = initBalance; }
 double getBal() const // common for both
accounts
 { return balance; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (995 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 const char* getOwner() const // protect data
from changes
 { return owner; }
friend void operator-= (Account &a, double amount); // operators
friend void operator+= (Account &a, double amount);
} ;

The expression syntax in client code does not change with the switch from member function
operators to friend operators.

switch (choice) {
 case 1: *a[i] += amount; // operator+=(*a[i],amount);
 break;
 case 2: if (amount <= a[i]->getBal())
 *a[i] -= amount; // operator-=(*a[i],amount);
 else
 cout << "Insufficient funds\n";
 break; } // end of switch scope

The meaning of this code changes. The expression syntax is still a syntactic sugar for a function
call, but it is a call to a global function. There is no need for the target object in the function call.
Instead, the object that participates in the operation is passed as the actual argument to the function.
This is how the compiler perceives this client code.

switch (choice) {
 case 1: operator+=(*a[i],amount); // a.k.a. *a[i]+=amount;
 break;
 case 2: if (amount <= a[i]->getBal())
 operator-=(*a[i],amount); // a.k.a. *a[i]-=amount;
 else
 cout << "Insufficient funds\n";
 break; } // end of switch scope

Notice that the actual argument has to be dereferenced because a[i] is a pointer to an Account
object, not an object itself. The reference argument has to be initialized with the value of an object,
not with the value of a pointer. This is why this function call needs dereferencing.

The use of overloaded operators offers us a very nice way to write client code, but it does not solve

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (996 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

any essential software engineering issues. Everything that can be done with the use of overloaded
operators can be done with the use of conventional member functions, as Listing 16.1 clearly attests
to.

Unary Operators

Unary operators have only one operand. They include increment and decrement operators, negation
operators, logical and bitwise negation, positive and negative sign operators, cast, address, and
dereference operators, and operators new, delete, and sizeof. All these operators (with the
exception of sizeof) can be overloaded.

Of course, not every operator can have its own special meaning for every class. In Chapter 10, I
overloaded the positive sign operator for class Complex as an output operator, and this design is
confusing. This is why overloading of unary operators is not very popular. However, there are some
situations where these operators can contribute to intuitive understanding of the client code. In this
section, I will discuss several examples of overloaded unary operators.

Increment and Decrement Operators

Increment and decrement operators are very popular in C++. They are especially popular in text
processing, where incrementing (or decrementing) a pointer can be combined with access to the
current character for processing.

void printString(const char data[]) // text does not change
{ const char *p = data; // point to start of data
 while (*p != 0) // go until the end of data
 { cout << *p; // print current character
 ++p; } // point to next character
 cout << endl; }

In this example, the character array is passed to the global function (as a constant), and each
character is displayed in turn. The pointer p is first set to point to the first character of the array
data[] and then is incremented until it points to the terminating zero. Even though it looks like a
very low-level control construct that increments the memory address, in reality this operation is
rather abstract because it does not reveal the real details of storage management¡Xby how much the
address is changed and whether it is actually incremented or decremented.

For example, there is no guarantee that an argument array is located in memory from lower
addresses to higher addresses. On my machine, physical addresses decrease to the end of the array.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (997 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Hence, there is no guarantee that the contents of the pointer are actually increased when the
increment operator is applied to the pointer. What it implies is that the pointer is set to access the
next array component, no matter what size the component is (it can be larger than one) or in what
direction the pointer moves.

Nevertheless, this "open" access to array components by the client code is error prone. Accesses to
locations outside of array boundaries are not flagged as syntax errors at compile time. These
accesses might crash the program at run time, they can quietly produce incorrect results, or they can
quietly produce correct results until some later time when the use of memory changes and disaster
strikes.

Combining data and operations together in a class protects data from inept access from client
programmers and gives client programmers the tools for handling objects that prevent mistakes.
Here is an example of class String that is similar to one discussed in Chapter 11.

class String {
 int size; // string size
 char *str; // start of internal string
 void set(const char* s); // private string allocation
public:
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 int getSize() const; // current string length
 char* reset() const; } ; // reset to start of string

The class data member str points to a dynamically allocated array whose size is stored in the data
member size. The private member function set() is used by class constructors and the
assignment operator. This function accepts a character array (labeled as constant) as an argument,
allocates heap memory dynamically, sets the data member pointers str to point to that newly
allocated memory, and initializes dynamically allocated memory using the text array supplied as
argument.

void String::set(const char* s)
 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (998 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 strcpy(str,s); } // copy client data to heap

This is a typical design for dynamic memory management. This private function is convenient
because it encapsulates the operations common to the constructors and the assignment operator.

As befitting a class that manages its memory dynamically, class String provides a conversion
constructor (which doubles as a default constructor because of the default parameter value), a copy
constructor, an assignment operator, and a destructor. The default constructor passes to set() an
empty string. The conversion constructor passes to set() its own character array parameter. The
copy constructor passes to set() the heap memory of its argument object. The destructor returns
the heap memory allocated for the String object by a constructor or by an assignment operator.

This complement of member functions supports the use of String objects in a variety of contexts.
Client code can define a String object as a noninitialized variable (the default constructor is
called), as an object initialized with a character array value (the conversion constructor is used), or
as an object initialized with the data from another existing String object (the copy constructor is
called).

The assignment operator is intelligent. It supports the assignment of an object to itself (by checking
whether the this pointer points to the location of the actual argument). It deletes the existing heap
memory and allocates and initializes new heap memory by calling set(). It supports the client
code that uses the expression syntax for multiple chain assignments (by returning the reference to
the target String object). Notice that even though the body of the assignment returns the whole
String object (dereferenced pointer this), it is only a reference to the object that is
returned¡Xthere is no copying.

String& String::operator = (const String& s)
{ if (this == &s) return *this; // no work if self-assignment
 delete [] str; // return existing memory
 set(s.str); // allocate/set new memory
 return *this; } // to support chain assignment

Listing 16.3 shows the complete implementation of class String (together with inline member
functions getSize() and reset()). The first function returns the maximum number of symbols a
String object can contain, and the second function returns the pointer to the internal string, so that
the client code (functions printString() and modifyString()) can initialize the external pointer
that points to the internal string.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (999 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

These two client functions use the increment operator to retrieve and replace the symbols inside
their parameter String objects. The loop in printString() continues until the terminating zero is
found in the internal string of the String parameter. (The pointer p to the internal string character
has to be dereferenced.) The loop in modifyString() continues until all characters in the
parameter character array text[] have been copied.

The main() function creates and initializes a String object, prints its contents, modifies its
contents, and then prints again. Since the loop in modifyString() does not take into account the
current size of the heap memory allocated to its String parameter, this results in memory
corruption. The output of the program is shown in Figure 16-3.

Figure 16-3. Example of memory corruption by program in Listing 16.3.

Example 16.3. Example of using the increment operator with a pointer to internal data.
#include <iostream>
using namespace std;

class String { //string size
 int size; // string size
 char *str; // start of internal
string
 void set(const char* s); // private string
allocation
public:
 String (const char* s = "") // default and
conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 int getSize() const; // current string
length
 char* reset() const; } ; // reset to start of
string

void String::set(const char* s)
 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); } // copy client data to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1000 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

heap

String& String::operator = (const String& s)
{ if (this == &s) return *this; // no work if self-
assignment
 delete [] str; // return existing
memory
 set(s.str); // allocate/set new
memory
 return *this; } // to support chain
assignment

int String::getSize() const // no change to String
object
{ return size; }

char* String::reset() const // no change to String
object
{ return str; } // return pointer to
start

void printString(const String& data) // no change to string
{ char *p = data.reset(); // point to first
character
 while (*p != 0) // go until end of
characters
 { cout << *p; // print the current
character
 ++p; } // point to the next
character
 cout << endl; }

void modifyString(const String& data, const char text[]) // bad
{ char *p = data.reset(); // point to first
character
 int len = strlen(text) + 1; // set the iteration
limit
 for (int i=0; i < len; i++) // go over each
character
 { *p = text[i]; // copy the current
character
 ++p; } } // point to the next
character

int main()
{
 String data = "Hello World!";
 printString(data); // good output
 modifyString(data,"How is the weather?");

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1001 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 printString(data); // memory is corrupted
 return 0;
 }

This problem is not too difficult to correct. The client code, modifyString(), should check for the
space available and stop pumping data into the object when the limit is reached.

void modifyString(const String& data, const char text[]) // ok
{ char *p = data.reset(); // point to first character
 int len = strlen(text) + 1; // set one the iteration limit
 int size = data.getSize(); // set another iteration limit
 for (int i=0; i<len &&i<size; i++) // go over each character
 { *p = text[i]; // copy the current character
 ++p; } } // point to the next character

This modifyString() function eliminates the problem of memory corruption. It does not eliminate
the design flaw: The responsibility for understanding the details of the server (in this case, String)
design is popped up to the client code, not pushed down to the server class. Solving this problem by
using overloaded operator functions might be useful.

The String design should reflect this change of attitude. To be able to protect its object from client
abuse, class String should maintain the state of its objects. In this case, the state should include a
pointer to the current character being printed or being modified.

This is an important technique of design with C++. When you decide what data the class should
maintain, always include data members that reflect the state of the object for the client (it is not
nice to depend on the kindness of client code designers). This technique will free your objects from
this dependency (something I failed to do in Listing 16.3). Here is a better version of class String.

class String {
 int size; // string size
 char *str; // start of internal string
 char *ptr; // pointer to current symbol
 void set(const char* s); // private string allocation
public:
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1002 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 String& operator = (const String& s); // assignment
 char* operator++(); // prefix increment operator
 int getSize() const; // current string length
 char* reset(); } ; // no const: object changes

Here, pointer ptr points to the current symbol. This pointer is driven along the heap memory in the
increment operator, which returns the address of the current symbol for the client to access or to
modify. The increment operator checks whether the client request drives the pointer ptr off the
heap character array. If it does, the operator does not increment the pointer. Instead, it sets the
character pointed to by the pointer to " \0 " to make sure that the character array is always properly
terminated. Again, I use the expression ptr-str<size, but this does not mean that the address
value in the data member ptr is indeed larger than the address value in the data member str. It is
just a nice way to express the pointer displacement without getting into any messy details of
physical storage management.

char* String::operator ++() // increment then access
{ if (ptr-str < size) // check if room is available
 return ++ptr; // pointer to next character
 else
 { *ptr = 0; // set the terminating zero
 return ptr; } } // do not move it if at end

A good place to initialize this pointer is in the member function reset(). It can be called by the
client code before the start of the next iteration through the text. The important difference between
this design and the previous design in Listing 16.3 is that in this version, function reset() cannot
be labeled as constant¡Xit modifies the state of the object. Always pay attention to the mode of
method behavior, and do not neglect to label the member function appropriately. (This issue is not
relevant for nonmember functions.)

char* String::reset() // no const: object changes
{ ptr = str; // set current pointer to start
 return str; } // return pointer to start

Some programmers feel uncomfortable when a data member is not initialized to a specific value
when the object is created. These programmers would also initialize the data member ptr in each
constructor call. In this design, where each constructor calls the private function set(), it can be

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1003 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

done in this function:

void String::set(const char* s)
 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); // copy client data to heap
 ptr = str; } // initialize running pointer

What does this design achieve? From the moment the object is born, it is ready for the iteration.
There is no need to explicitly send the reset() message to it. This is a very good philosophy: the
responsibility is shifted from the client code (which should call reset() in the previous design) to
the object constructor.

This idea works well with the read-only access to the String object data. The printString()
function stops the iteration when the terminating zero is found, and the increment operator could
recognize that and set the running pointer back to the beginning of the string.

char* String::operator ++() // increment then access
{ if (ptr-str < size) // check if room is available
 return ++ptr; // pointer to next character
 else
 { *ptr = 0; // set the terminating zero
 ptr = str; // point to start of data again
 return ptr; } } // do not move it if at end

This eliminates the need for the member function reset() and removes the client responsibility to
call it. After each scan through the data of the String object, the pointer would be reset, and the
object would be ready for the next scan.

void printString(String& data) // no const: string changes
{ char *p = data.reset(); // is this call really needed?
 while (*p != 0) // go until end of characters
 { cout << *p; // print the current character
 p = ++data; } // nice syntax: object changes
 cout << endl; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1004 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In my design, however, function reset() is still needed because the client function
modifyString() can try to access the string data beyond its legal bound. Since the increment
operator has no knowledge of how long the client code will be supplying new data for copying into
the string, it cannot move the pointer to the beginning of data.

Of course, all these problems stem from the arrogant nature of the function modifyString(),
which pumps data into its parameter String object without regard for available space.

void modifyString(String& data, const char text[]) // no const
{ char *p = data.reset(); // point to first character
 int len = strlen(text) + 1; // set the iteration limit
 for (int i=0; i < len; i++) // go over each character
 { *p = text[i]; // copy the current character
 p = ++data; } } // point to the next character

Notice that the parameter object data does not have the const modifier, but not because the
function modifyString() writes new contents to its heap memory. In Listing 16.3, the function
modifyString() does the same thing, but the parameter data is labeled as const. C++ is oblivious
to the changes to the heap memory of the object but is sensitive to the changes to the data members
of the object. The increment operator (and the reset() function) causes changes to the data
member ptr and hence prevents the use of the const modifier with the String parameter.

Listing 16.4 shows the complete program that implements the increment operator for the String
class. The output of the program is shown in Figure 16-4. As you see, the memory corruption
problem went away.

Figure 16-4. Output of program in Listing 16.4.

Example 16.4. Example of using the increment operator as a message to the object.
#include <iostream>
using namespace std;

class String {
 int size; // string size
 char *str; // start of internal string
 char *ptr; // pointer to current symbol
 void set(const char* s); // private string allocation

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1005 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

public:
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 char* operator++(); // prefix increment operator
 int getSize() const; // current string length
 char* reset(); } ; // no const: object changes

void String::set(const char* s)
 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); // copy client data to heap
 ptr = str; } // initialize running pointer

String& String::operator = (const String& s)
{ if (this == &s) return *this; // no work if self-assignment
 delete [] str; // return existing memory
 set(s.str); // allocate/set new memory
 return *this; } // to support chain assignment

int String::getSize() const // no change to String object
{ return size; }
char* String::reset() // no const: object changes
{ ptr = str; // set current pointer to start
 return str; } // return pointer to start

char* String::operator ++() // increment then access
{ if (ptr-str < size) // check if room is available
 return ++ptr; // pointer to next character
 else
 { *ptr = 0; // set the terminating zero
 return ptr; } } // do not move it if at end

void printString(String& data) // no const: string changes
{ char *p = data.reset(); // point to first character
 while (*p != 0) // go until end of characters
 { cout << *p; // print the current character
 p = ++data; } // point to the next character
 cout << endl; }

void modifyString(String& data, const char text[])
{ char *p = data.reset(); // point to first character
 int len = strlen(text) + 1; // set the iteration limit
 for (int i=0; i < len; i++) // go over each character

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1006 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { *p = text[i]; // copy the current character
 p = ++data; } } // point to the next character

int main()
{
 String data = "Hello World!";
 printString(data); // good output
 modifyString(data,"How is the weather?");
 printString(data); // memory is NOT corrupted
 return 0;
 }

Of course, the use of the increment operator provides for nice syntax. This is why these operators
are so popular. Two side comments about this example are in order. First, the overloaded increment
operator checks the index boundary conditions, something that the built-in increment operator
cannot do. By doing that in the operator, responsibilities are pushed down to the server class.
However, it is the boundary check that makes this example nice, not that it is an increment operator
that allows for the nice syntax in printString() and modifyString(). The same boundary check
could be performed if the name of the function were movePointer() or next() rather than
operator++().

Second, this implementation of the increment operator returns a pointer to the current character in
the heap memory and lets the client do with this pointer whatever the client wants. This is a
dangerous and error-prone practice. Later on in this chapter, I will show you less offensive ways to
do that.

Decrement operators are built similarly to increment operators. There are no new principles or
ideas involved in their implementation.

Postfix Overloaded Operators

In C++, built-in prefix and postfix unary operators are distinguished by their position relative to the
operand of the expression. If the expression is written as ++data, it is a prefix operator. If the
expression is written as data++, it is a postfix operator. It is important to distinguish between
them.

The same is true of overloaded increment and decrement operators. The increment operator was
implemented as a prefix operator in Listing 16.4: The state of the target object was changed first,
and then the new value (of the current pointer) was returned by the use of the client code.

This is not appropriate for postfix operators. A postfix operator for class String, for example, has
to first return the current value of the pointer and then increment this value (for future use). Hence,
this should be a separate function, different from the increment operator implemented in Listing

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1007 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

16.4

What is the name of this separate function? Well, according to the C++ rules, it has to be composed
out of the keyword operator and the symbol(s) that comprise the operator, in this case, either ++
or --. It looks as if the name of the postfix overloaded increment operator should be
operator++(). Similarly, the name of the postfix overloaded decrement operator should be
operator--().

But these are exactly the same names that should be used for the prefix overloaded operators! It is
illegal to have two functions with the same name in the same scope, unless, of course, these
functions have different signatures¡Xa different number or different types of parameters.

As I mentioned earlier, the number of parameters for overloaded operators cannot be chosen
arbitrarily, at the whim of the programmer. If a binary operator is implemented as a member
function, its first operand plays the role of the target of the message, and its second operand plays
the role of the message parameter. If a unary operator is implemented as a member function, its
only operand should be used as the target of the message. Such an overloaded operator cannot have
parameters.

So, we would like to implement in the same class two overloaded operators with the same name
(e.g., operator++) and the same signature (no parameters). This is, of course, asking for trouble.
The compiler is going to complain that it cannot distinguish between the two.

But, of course, C++ programmers demand that increment and decrement operators could be
implemented both in the prefix form and in the postfix form. To resolve this problem, C++ come up
with a fix: a dummy integer parameter.

char* String::operator ++(int) // access first then increment
{ if (ptr-str < size) // check if room is available
 return ptr++; // pointer to next character
 else
 { *ptr = 0; // set the terminating zero
 return ptr; } } // do not move it if at end

The role of the dummy parameter is very limited: It has to tell the compiler that this function is a
genuinely different function, not a redefinition of the overloaded increment (or decrement) operator
with no parameters. On the other hand, this parameter has no role within the function body itself.
This is why you can omit the parameter name¡Xthe compiler will not indicate that the name is not
specified.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1008 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

With these two functions in place, the compiler finds ++data in the client code, it is interpreted as
data.operator++(), and the prefix operation is performed. When the compiler finds ++data in
the client code, it is interpreted as data.operator++(0), and the postfix operation is performed.
The prefix meaning of operator++() and the postfix meaning of operator++(int) are not
enforced by the language. It is the class designer who is responsible for their contents.

Listing 16.5 shows the program from Listing 16.4 with the postfix overloaded operator, which is
called from modifyString(). The postfix operator returns a pointer to the current symbol in heap
memory. To change this symbol, the client code has to dereference the value returned from the
function. This results in neat syntax of the assignment, which is exactly the same as if the variable
data were a pointer.

 *data++ = text[i]; // copy character

The output of this version of the program is, of course, the same as for Listing 16.4 (see Figure 16-
4).

Example 16.5. Example of using the prefix and postfix increment operators.
#include <iostream>
using namespace std;

class String {
 int size; // string size
 char *str; // start of internal string
 char *ptr; // pointer to current symbol

 void set(const char* s); // private string allocation
public:
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 char* operator++(); // prefix increment operator
 char* operator++(int); // postfix increment
operator
 int getSize() const; // current string length
 char* reset(); } ; // no const: object changes

void String::set(const char* s)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1009 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); // copy client data to heap
 ptr = str; } // initialize running
pointer

String& String::operator = (const String& s)
{ if (this == &s) return *this; // no work if self-
assignment
 delete [] str; // return existing memory
 set(s.str); // allocate/set new memory
 return *this; } // to support chain
assignment

int String::getSize() const // no change to String
object
{ return size; }

char* String::reset() // no const: object changes
{ ptr = str; // set current pointer to
start
 return str; } // return pointer to start

char* String::operator ++() // increment then access
{ if (ptr-str < size) // check if room is
available
 return ++ptr; // pointer to next character
 else
 { *ptr = 0; // set the terminating zero
 return ptr; } } // do not move it if at end

char* String::operator ++(int) // access then increment
{ if (ptr-str < size) // check if room is
available
 return ptr++; // pointer to next character
 else
 { *ptr = 0; // set the terminating zero
 return ptr; } } // do not move it if at end

void printString(String& data) // no const: string changes
{ char *p = data.reset(); // point to first character
 while (*p != 0) // go until end of
characters
 { cout << *p; // print the current
character
 p = ++data; } // point to the next
character
 cout << endl; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1010 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void modifyString(String& data, const char text[])
{ data.reset(); // point to first character
 int len = strlen(text) + 1; // set the iteration limit
 for (int i=0; i < len; i++) // go over each character
 *data++ = text[i]; } // nice syntax: copy
character

int main()
{
 String data = "Hello World!";
 printString(data); // good output
 modifyString(data,"How is the weather?");
 printString(data); // memory is NOT corrupted
 return 0;
 }

As in the case of the prefix increment and decrement operators, the overloaded postfix operators
improve the appearance of the program, but they are not very important from a software
engineering point of view.

Conversion Operators

Casting a value of one type into a value of another type is achieved by applying the name of the
target type to the value (for the name of the variable) of the source type. There are two forms of
syntax: traditional syntax and the new function-like syntax. With traditional syntax, the name of the
target type (in parentheses) is used in front of the source value (or variable). With the new function-
like syntax, the name of the target type is used as if it were a function with one parameter, and the
source value (or variable) is used as the actual argument to the function.

int x; double y;
x = int ('A'); // function-like syntax; x contains 65
y = (double)x; // traditional syntax, y contains 65.0
double *p = &y; // correct pointer type: this is safe
int *q = (int*)p; // int q points to double y: trouble

The only difference between these two forms of casting is that the traditional syntax can be used
with any legitimate type name, and the function-like syntax requires an identifier for the type name.
This is why in the last example, there are two examples of casts among numeric types and only one
example of a cast among pointers. The type name int* is a legitimate type name but it is not a
legitimate identifier.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1011 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

C++ allows casts between any numeric types without any restrictions. These casts can be explicit
(with the use of cast operator), or implicit (without the use the operator).

int x; double y;
x = 'A'; y = x; // implicit casts: no problem in C++

C++ also allows casts between arbitrary pointers (and references), including any programmer-
defined types. These conversions can be done employing explicit casts only; implicit casts between
pointers are not allowed. Using these casts is almost always asking for trouble. In this segment of
code, a String pointer points to an integer. The String pointer can legally respond to any String
message. In doing so, it will interpret the memory as if it belonged to a String object. Since the
first String data member is an integer size, the message getSize() will retrieve the value at the
start of the String object. Actually, this is the value in the integer variable z. If the first data
member in the String class were not an integer, this code would display gibberish.

int z = 42; String *ptr = (String*) &z; // asking for trouble
cout <<"Size: " <<ptr->getSize() << endl; // it prints 42

In this segment of code, an integer pointer points to a String object. The pointer will interpret the
memory of the String object as if it were an integer. The value retrieved by the pointer can be used
in any expression that requires an integer value. In this example, the String object contains an
integer data member size at its start, and this value is retrieved by the integer pointer. Had the
String class started with a noninteger data member, this segment of code would print nonsense.

int *r; String s("Hello, World!");
r = (int*) &s;
cout << "String: " << 2 + *r << endl; // it prints 15

Listing 16.5 shows the output of the program in Listing 16.5 with the code of these two segments
added at the end. As you see, these operations interpret the memory layout for the String structure
correctly and retrieve the first value in the String object that happened to be an integer data
member. This is legal C++, but from the software engineering point of view, this is a maintainer's
nightmare. If you change the order of data members in the class definition without making any
other changes to the code, your output changes drastically.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1012 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 16-5. Output of the program in Listing 16.5 with two segments of code added.

The permission to cast arbitrary pointers and references is not extended to objects. You cannot
convert an integer to an object of a programmer-defined class. You cannot convert an object of a
programmer-defined class to an integer or to another numeric value or to an object of another
programmer-defined class.

String s; Account a; int x;
x = s; a = x; s = a; // this is nonsense

C++ allows casts between pointers or references of classes related by inheritance. These casts can
be implicit if the cast target (a pointer or a reference) is of the public base class and the cast source
(value, pointer, or reference) is of a class publicly derived from the cast target. They are
particularly useful when objects of different derived classes are pointed to by an array of pointers of
the base class. Insertion of these objects into the array can be done without explicit conversion.

Casts from the base pointer (or reference) to a derived class pointer (or references) must be explicit,
similar to casts between unrelated types. They are particularly useful when a derived class object is
pointed to by the base class pointer (or reference) but has to perform operations that are defined in
the derived class and not in a base class. The explicit cast indicates to what derived class the
requested operation belongs.

Casts from a base object to a derived object are not allowed. This is similar to how objects of
unrelated types are treated. If necessary, this conversion might be allowed by adding a conversion
constructor to the derived class. This constructor should have a parameter of the base class. You
saw examples of such casts and constructors in Chapter 15, "Virtual Functions and Other Advanced
Uses of Inheritance."

For classes related by inheritance, C++ allows yet another break in strong typing. While implicit
casts from a base object to a derived object are not allowed, the implicit conversions from derived
class objects to the base class objects are permitted. The extra data members (and operations) of the
derived object are stripped off without explicit cast.

In summary, C++ maintains strong typing only for objects of programmer-derived classes. For

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1013 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

other types, conversions are allowed. Some conversions can be done only explicitly, with the cast
operator (for pointers and references of any types). Other conversions can be done even implicitly,
without explicit cast (between numeric values or from objects, pointers, and references of derived
types to objects, pointers, and references of the base type). These conversions give the programmer
additional flexibility in implementing algorithms that handle values of different types. Since these
conversions break the strong typing, they remove the protection that the syntax checking gives us.

This is not enough, however. C++ allows the programmers to implement additional casts for
objects of programmer-defined classes, the only category for which strong typing is maintained.
Notice that the protection of syntax checking is not lifted summarily. It is lifted only for designated
classes. The programmer designates the classes for which the protection is lifted by using
conversion constructors and conversion operators.

I described conversion constructors in Chapter 9, "C++ Classes as a Unit of Modularization." The
conversion constructor has one parameter of the type that should be converted to the given class.
For example, class String has a conversion constructor that converts the value of a character array
into a String value.

String (const char* s) // conversion constructor
 { set(s); }

With this constructor in place, a character array can be used where a String object is expected
without generating a compile-time syntax error. Since String is a programmer-defined class, the
situations where a String object is expected are not numerous: They are limited to object
definition, passing parameters by value (not by pointer or by reference), assignment, and sending
messages to an object.

printString("Hi there"); // error: pass by reference
printString(String("Hi there")); // OK: object is created
int sz = String("Hi there").getSize(); // object is created

The cast can be implicit (without the use of the cast operator) if the compiler can ascertain the
identity of the type required, as in the assignment operator:

 String s;
 s = "Hi there"; // same as s = String("Hi there");

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1014 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In all these cases, an unnamed String object is created on the stack, and the conversion constructor
is called. The object is then deleted (with a call to the destructor). C++ does not specify the exact
moment when the object is destroyed. The compiler writer has to make sure that the object does
exist immediately after its use, and that it disappears before the current scope is terminated.

It is usually assumed that the parameter for the conversion constructor should have a type that
belongs to one of a class data member. For example, the conversion constructor for class String
has a character array (character pointer) parameter, and the class String has a character pointer
data member. This is often true, but it does not have to be so.

The class designer can dream up a conversion from any type the designer sees fit. For example,
class Account from Listing 16.1 (or Listing 16.2) can have a conversion constructor with the
parameter of the type String even though there is no String data member in class Account. Here
is this constructor.

Account(String& s) // conversion (String changes)
{ char* p = s.reset(); // get pointer to the array
 owner = new char[strlen(p)+1]; // allocate heap memory
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, p); // initialize data fields
 balance = 0; } // default for new account

Now a String object can be used anywhere an Account object is expected. Since a new Account
object with zero balance is pretty useless unless it is a target of a series of messages, the most
appropriate use of this constructor is to create Account objects when the owner data is represented
as a String object rather than as a character array.

 String owner("Smith");
 Account a(owner); // create and initialize
 a += 500; // use the Account object

As you can see, conversion constructors allow the class designer to explicitly designate what types
can be used where the value of the given class is expected. Notice that these constructors
implement casts between objects, not between pointers or references, which are always allowed in
C++. The casts implemented by conversion constructors might be explicit (if the compiler cannot
define from the context on which class to perform the conversion) or even implicit (if the target of

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1015 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

conversion is clear from the context).

Conversion constructors weaken strong typing. They remove compiler protection when conversion
is done inadvertently. However, they are very popular in C++ because they allow for greater
flexibility in writing C++ code.

The second mechanism for designating which conversions between objects are possible is the use
of conversion operators. The conversion operator is an overloaded operator whose name is the
name of the target type. As an overloaded operator, the conversion operator is subject to general
rules for overloaded operators. However, its syntax is rather unusual.

Similar to constructors and destructors, it should have no return type. Similar to destructors, it
should have no parameters. Unlike constructors and destructors, it must return a value. This value
should be of the type to which the conversion is made (i.e., the type used in the name of the
operator). Here is how an integer conversion operator for class String looks:

String::operator int() const // no change to String object
{ return size; } // no return type, just value

Usually, the return value is a value of one of the data fields of the class of the appropriate type. If
the class has more than one data member of that type, it is up to the class designer to decide which
(or no) value is more appropriate to be used in the conversion. If you cannot decide which field to
choose, do not anguish over this decision. Recall that all operators are used for convenience and for
nicer syntax in the client code, not because they do the job a regular member function cannot do.

Depending on the circumstances, a class can have more than one conversion operator. Here is a
character pointer conversion operator for class String that can replace the method reset().

String::operator char* () const // object does not change
{ return str; } // return pointer to start

Now you can streamline the client code (Account conversion constructor) using these two String
conversion operators.

Account(const String& s)
{ int len = (int)s; // get the size of string
 owner = new char[len+1]; // allocate heap memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1016 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, (char*)s); // initialize data fields
 balance = 0; }

Here, explicit casts help the maintainer understand the flow of values in the function. However,
they are not mandatory. If the compiler has no difficulty figuring out what type is required, the
explicit casts can be omitted; implicit casts would do.

Account(const String& s)
{ int len = s; // implicit cast to integer
 owner = new char[len+1]; // allocate heap memory
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, s); // implicit cast to char array
 balance = 0; }

As you can see, a String object can be used everywhere an integer or a character array value is
expected. Do not forget that under the hood of the C++ program, the casts, whether implicit or
explicit, are messages: function calls to overloaded conversion operators. This is how both versions
of the constructor look to the compiler.

Account(const String& s)
{ int len = s.operator int(); // call to an operator
 owner = new char[len+1]; // allocate heap memory
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, s.operator char*()); // call to an operator
 balance = 0; }

In most cases, conversion operators are employed to extract from an object a value of one of its
fields. But this is by no means an inherent limitation. Similar to conversion constructors,
conversion operators are used by the class designer to indicate type conversions for the class
objects. Whatever the designer designates as a legitimate conversion, goes. For example, class
Account might support two conversion operators, to double and to String, even if the class
Account does not have a String data member:

Account::operator double () const // object does not change
{ return balance; } // return double value

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1017 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Account::operator String () const // create a String object
{ return owner; } // implicit conversion

Notice that in the second conversion operator, implicit conversion to class String is taking place.
The String object is created and returned for use in the client code. It is destroyed automatically in
the client scope. Notice that I am not saying "when the client terminates" because the time of
destruction is not defined exactly. Notice also that using a reference in the operator name would be
syntactically incorrect because all references must be constant in C++.

Account::operator String& () const // syntax error
{ return owner; } // implicit conversion

To remedy this problem, you can specify the operator name as a constant String reference. That
will placate the compiler.

Account::operator const String& () const // no syntax error
{ return owner; } // not a good idea

This is fine, but the reference that is returned is a reference to an unnamed temporary object, which
can be destroyed whenever the compiler wants it to be destroyed. As a result, the client code might
receive an invalid reference. This not a good programming practice.

With these conversions in place, the client program can convert a String object to an integer value
and to a character pointer (through conversion operators) and to an Account object (through the
Account conversion constructor). It can convert an Account object to a double value and to a
String value (through conversion operators). Also, a character array can be converted to a String
object (through the String conversion constructor).

Listing 16.6 demonstrates these conversions. A String object is handled by the client code as if it
were a character array. An Account object is handled by the client code as if it were a double value
and a String value. The results of the execution are shown in Figure 16-6.

Figure 16-6. Output of the program in Listing 16.6.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1018 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 16.6. Examples of using conversion constructors and conversion operators.
#include <iostream>
using namespace std;

class String {
 int size; // string size
 char *str; // start of internal string
 void set(const char* s); // private string
allocation
public:
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 operator int() const; // current string length
 operator char* () const; // return pointer to start
} ;

void String::set(const char* s)
 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); } // copy client data to heap

String& String::operator = (const String& s)
{ if (this == &s) return *this; // no work if self-
assignment
 delete [] str; // return existing memory
 set(s.str); // allocate/set new memory
 return *this; } // to support chain
assignment

String::operator int() const // no change to String
object
{ return size; }
String::operator char* () const // object does not change
{ return str; } // return pointer to start

class Account { // base class of hierarchy
protected:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1019 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 double balance; // protected data
 char *owner;
public:

 Account(const char* name, double initBalance) // general
 { owner = new char[strlen(name)+1]; // allocate heap space
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, name); // initialize data fields
 balance = initBalance; }

 Account(const String& s)
 { int len = s; // get the size of string
 owner = new char[len+1]; // allocate heap memory
 if (owner == 0) { cout << "\nOut of memory\n"; exit(0); }
 strcpy(owner, s); // initialize data fields
 balance = 0; }

 operator double () const // object does not change
 { return balance; }

 operator String () const // create a String object
 { return owner; } // implicit conversion

 void operator -= (double amount)
 { balance -= amount; } // pop responsibility up

 void operator += (double amount)
 { balance += amount; } // increment
unconditionally
} ;

int main()
{
 String owner("Smith"); // conversion constructor
 Account a(owner); // conversion constructor
 a += 500; a -=200; a += 400; // overloaded operators
 String s = a; // handle as a String value
 double limit = 2 * a; // handle as a double value
 cout << "Name: " << (char *)s << endl; // explicit conversion
 cout << "Balance: " <<(double)a << endl; // explicit conversion
 cout << "Credit limit: " << limit << endl;
 return 0;
 }

If several types could be used in the given context, the compiler needs a hint for which type to use.
This hint can be made in the form of the cast. In the output statements, a value of any type could be
a legitimate output value. The explicit casts are a necessity if more than one type conversion is
possible. For example, the String value above could be converted to an integer and a character

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1020 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

array. The compiler (and the maintainer) has to be told what the programmer intended.

If the specified conversion is not found, the compiler searches for a built-in conversion (among
numeric types) to make the call resolution possible. Consider, for example, the statement:

cout << "Balance: " <<(float)a << endl; // explicit conversion

Class Account does not provide the float conversion operator. This does not mean, however, that
the line above is in error. Since the conversion from double to float is available as a built-in
conversion, the compiler converts the Account value to double and then converts the double value
to float. The compiler cannot add more than one programmer-defined conversion. The compiler
cannot chain more than one built-in conversion to the programmer-defined conversion. But
chaining of one programmer-defined conversion and one built-in conversion is possible.

Subscript and Function Call Operators

These two operators are binary operators, but they are quite different from other C++ overloaded
binary operators in how the client call to the operator is converted to a binary expression. For other
overloaded operators, the target of the message is used as the left operand in the expression, with
the operator (from the method name) inserted between the right and the left operand and the
parameter of the function call used as the right operand of the expression. This is not so with the
subscript and function call operators. (You will see the examples soon.)

Another difference is that these overloaded operators can be implemented as class members
only¡Xthey cannot be implemented as global nonmember functions. The reason for this is to make
the context analysis easier for the C++ compiler.

The Subscript Operator

Ideally, the expression form of the overloaded subscript operator should be the same as the
syntactic form of the built-in subscript operator: The name of the variable is appended with the
subscript surrounded by the left and right brackets. For example, s[i] should be interpreted as the
subscript i applied to the object (variable) s.

The meaning of this operation can,of course, be completely arbitrary. Most C++ programmers (and
all C++ libraries) interpret this expression as the retrieval of the value of the ith component of the
object s. Another popular interpretation is the assignment to the ith component of the object s.

In both cases, the interpretation assumes that the object s is a container that contains an array or a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1021 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

linked list or another appropriate collection of components, and the expression s[i] refers to the
value of the ith component in the container. Hence, the overloaded subscript operator is a function
that returns the value of a component of a container.

As a simple example of the container class, let us consider a simplified version of the Array class.
This is a container class similar to the String class from Listing 16.6. The components of the
container are of type int rather than char.

The Array class addresses two drawbacks of built-in C++ array: array overflow and invalid index
values. The first problem is addressed by allocating the components on the heap. The solution, as
do many solutions, creates other problems to be addressed: To protect the integrity of the program,
class Array should provide a copy constructor, the destructor, and the overloaded assignment
operator.

The second invalid index problem is addressed by providing member functions getInt() and
setInt() that access the internal Array memory on behalf of the client code.

class Array {
public:
 int size; // number of valid components
 int *ptr; // pointer to array of components
 void set(const int* a, int n); // allocate/init heap memory
public:
 Array (const int* a,int n); // general constructor
 Array (const Array &s); // copy constructor
 ~Array(); // return heap memory
 Array& operator = (const Array& a); // copy array to another
 int getSize() const;
 int getInt(int i) const; // return the i-th component
 void setInt(int i, int x); // set int x at position i
 } ;

It probably goes without saying, but I would still like to mention that the ith position means in fact
the (i+1)th position. That is, the first component is under the index 0, the second component is
under the index 1, and so on.

Hence, the member function getInt() returns the integer under the index i in the internal heap
array. Since getInt() is called as a function, I can do some useful things in addition to just
retrieving the value from the array. The useful thing to do is to check the validity of the index
relative to the string bounds.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1022 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int Array::getInt (int i) const // object does not change
{ if (i < 0 || i >= size) // index is out of bounds
 return ptr[size-1]; // return the last component
 return ptr[i]; } // legal index: return value

Using this function, the client code can implement iterative algorithms that are very similar to the
algorithms used for built-in C++ arrays but are safer because they cannot access memory areas
outside the array.

void printArray(const Array& a)
{ int size = a.getSize(); // get array size
 for (int i=0; i < size; i++) // go over each
component
 { cout << " " << a.getInt(i); } // print next component
 cout << endl << endl; }

One problem with this additional functionality in getInt() is that it slows down the execution of
the program somewhat. It was precisely the desire to avoid this slowdown that was the reason that
C and C++ did not introduce index checking initially. However, most modern applications will not
suffer much from this slowdown. If this issue turns out to be important, you can always use a faster
version of the function that will not spend any time on checking indices and will be implemented
inline.

Another problem with this design is that is imposes on the client code the need to check the return
value (whether or not the client code needs it). After all, if the client felt that it needed this check,
the size of the Array object data could be retrieved using the getSize() member function (as in
the function printArray() above or how it is done in Listing 16.6 for similar container, the
String class). This allows the client to do the check explicitly. This is a valid objection. However,
every design decision is the result of tradeoffs. In general, pushing responsibility to the server code
(including the integrity checks) and streamlining the client code so that its algorithm is not
burdened by minute details of integrity checks is considered a sound software engineering practice.

Returning the last value in the container when the index is invalid sounds like a good decision.
Another alternative is to return a special sentinel value, for example, zero. This will allow the client
code to structure the iterations around the Array object to terminate iterations when the zero code is
found. But this approach works only when the zero value of the component is illegal from the
application point of view¡Xoften zero values are legal.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1023 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Next, let us look at the setInt() method. It is also a good idea to do some useful things while
executing this method, and a useful thing is, of course, boundary checking.

void Array::setInt(int i,int x) // modify Array object
{ if (i < 0 || i >= size) // check if index is legal
 return; // no op if it is out of bounds
 ptr[i] = x; } // legal index: set the value

One might argue that boundary checking is even more important for this function than for the
getInt() method. In getInt(), you risk bringing incorrect data up to the client code, and this can
be discovered during debugging and testing. In setInt(), you risk the corruption of memory, and
this could elude early detection.

For those of you who are still suffering from the rigid nature of C++ indexing, here are the versions
of these two functions that allow the client code to work with indices changing from 1 to the size of
the array.

int Array::getInt (int i) const // object does not change
{ if (i < 1 || i > size) // index is out of bounds
 return ptr[size]; // return the last component
 return ptr[I-1]; } // legal index: return value

void Array::setInt(int i,int x) // modify Array object
{ if (i < 1 || i > size) // check if index is legal
 return; // no op if it is out of bounds
 ptr[I-1] = x; } // legal index: set the value

Here is the version of printArray() that takes advantage of this arrangement. I hope that by now
you feel comfortable with the common convention and do not have to write code like this.

void printArray(const Array& a)
{ int size = a.getSize(); // get array size
 for (int i=1; i <= size; i++) // go from 1 to size
 { cout << " " << a.getInt(i // print next component
 cout << endl << endl; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1024 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 16.7 shows the implementation of the class Array with the driver client code. The output of
the program is shown in Figure 16-7.

Figure 16-7. Output of the program in Listing 16.7.

Example 16.7. Using an Array class as a container for integer components.
#include <iostream>
using namespace std;

class Array {
public:
 int size; // number of valid components
 int *ptr; // pointer to array of components
 void set(const int* a, int n); // allocate/init heap memory
public:
 Array (const int* a,int n); // general constructor
 Array (const Array &s); // copy constructor
 ~Array(); // return heap memory
 Array& operator = (const Array& a); // copy array to another
 int getSize() const;
 int getInt(int i) const; // return the i-th component
 void setInt(int i, int x); // set int x at position i
 } ;

 void Array::set(const int* a, int n)
 { size = n; // evaluate array size
 ptr = new int[size]; // request heap memory
 if (ptr == 0) { cout << "Out of memory\n"; exit(0); }
 for (int i=0; i < size; i++)
 ptr[i] = a[i]; } // copy client data to heap

Array::Array (const int* a, int n) // general
 { set(a,n); }

Array::Array (const Array &a) // copy constructor
 { set(a.ptr,a.size); }

Array::~Array() // destructor
 { delete [] ptr; }

Array& Array::operator = (const Array& a)
{ if (this == &a) return *this; // no work if self-assignment
 delete [] ptr; // return existing memory

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1025 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 set(a.ptr,a.size); // allocate/set new memory
 return *this; } // to support chain assignment

int Array::getSize() const // get array size
{ return size; }

int Array::getInt (int i) const // object does not change
{ if (i < 0 || i >= size) // index is out of bounds
 return ptr[size-1]; // return the last component
 return ptr[i]; } // legal index: return value

void Array::setInt(int i,int x) // modify Array object
{ if (i < 0 || i >= size) // check if index is legal
 return; // no op if it is out of bounds
 ptr[i] = x; } // legal index: set the value

int main()
{
 int arr[] = { 1,3,5,7,11,13,17,19 } ; // data to process
 Array a(arr, 8); // create the object
 int size = a.getSize(); // get array size
 for (int i=0; i < size; i++) // go over each component
 { cout << " " << a.getInt(i); // print next component
 cout << endl << endl;
 for (int j=0; j < size; j++) // go over the array again
 { int x = a.getInt(j); // get next component
 a.setInt(j, 2*x); } // update the value
 for (int k = 0; k < size; k++)
 { cout << " " << a.getInt(k); // print updated array
 cout << endl;
 return 0;
 }

In this example, the functions set(), the constructors, the destructor, and the assignment operator
are similar to the member functions of class String in Listing 16.6. The major difference is that the
String functions use the terminating zero in their loops, and the Array functions use the number of
components in the container.

A full-fledged Array class should also support adding new components at the end and in the middle
of the array, deleting components, comparing components, testing for the presence of valid data,
and the like. I have omitted all of that for the sake of brevity of the example.

As I mentioned above, the syntax of using the getInt() method is nice and close to what we do
with a built-in C++ array. The syntax of using the setInt() method is more awkward.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1026 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

for (int j=0; j < size; j++) // go over the array again
 { int x = a.getInt(j); // get next component
 a.setInt(j, 2*x); } // update the value

Here, I go over each component of the array and double the value of each component. The syntax
of updating here is different from the syntax of access to the components. Meanwhile, the built-in
C++ arrays use the same syntax for accessing the elements of the array (e.g., x=a[j]) and for
assigning the elements of the array (e.g., a[j]=2*x).

It would be nice to structure the client code for updating the values in the container in the same way
as for accessing the values.

 for (int j=0; j < size; j++) // go over the array again
 { int x = a.getInt(j); // get next component
// a.setInt(j, 2*x); } // update the value
 a.setInt(j) = 2 * x; } // update the value

In traditional programming, this is impossible¡Xthe return value of a function cannot be used on the
left-hand side of the assignment. C++ makes it possible if the function returns a reference to a value
rather than the value itself. Of course, the reference must be a valid reference and should not
disappear when the function terminates, but this is another issue.

In Chapter 7, "Programming with C++ Functions," I already discussed the possibilities that
returning references from functions opens for writing terse and expressive client code. Here, this
opportunity presents itself again. Let us remove the value parameter from the setInt() interface
and change the return type of setInt() from an integer value to an integer reference.

int& Array::setInt(int i) // modify Array object
{ if (i < 0 || i >= size) // check if index is legal
 return ptr[size-1]; // return the last component
 return ptr[i]; } // legal index: return reference

This function supports the client loop above: It returns a reference to an integer, and the loop
assigns a value at the address to which the reference is pointing. The crucial element in this scheme
is that the reference is not to a local value that would disappear when the setInt() function
terminates. The reference is to the array component that existed before setInt() was called and

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1027 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

will exist after setInt() would terminate.

Now let us compare getInt() and the new version of setInt(). You see that their
implementations are the same. Does the client code need both functions? There are two differences
between these functions, and they are both in the function interface. The return value of getInt()
is a value, not a reference. This is not a serious problem. Let us change the return value of
getInt() to the reference to an integer.

int& Array::getInt(int i) const // object does not change
{ if (i < 0 || i >= size) // index is out of bounds
 return ptr[size-1]; // return the last component
 return ptr[i]; } // legal index: return reference

With this function, the client code in Listing 16.7 (and in any other place too) will work as before.

for (int i=0; i < size; i++) // go over each component
{ cout << " " << a.getInt(i); } // OK if reference is returned
cout << endl << endl;
for (int j=0; j < size; j++) // go over the array again
 { int x = a.getInt(j); // OK if reference is returned
 a.setInt(j) = 2 * x; } // OK if reference is returned

The second difference is that getInt() does not change the state of the object it operates on and is
labeled as constant. On the other hand, setInt() modifies the state of the object it is sent to as a
message, and hence it is not labeled as a constant. Do you see that?

This is a typical mistake many C++ programmers make in dealing with the const modifiers. Yes,
the function setInt() modifies the state of the heap memory that belongs to the target object. But
this memory is not part of the object¡Xit only belongs to it. Data members are part of the object, not
the heap memory. The function setInt() does not modify data members of the target object, and
this is what counts. This is one of those concepts the C++ programmer has to always remember.

I designed the member function setInt() incorrectly. It has to be labeled as const because it does
not change the state of its target object.

int& Array::setInt(int i) const // Array object is not modified
{ if (i < 0 || i >= size) // check if index is legal

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1028 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return ptr[size-1]; // return the last component
 return ptr[i]; } // legal index: return reference

This is clear from this version of the function. But it has to be clear even from the version of the
function in Listing 16.7. Despite the comment that says that the object is modified, setInt() in
Listing 16.7 does not modify its target object. Remember that story about the brick that I told you
in Chapter 8, "Object-Oriented Programming with Functions" ? Make sure you think about the
const modifiers all the time.

Now that both functions, getInt() and setInt(), look exactly the same, we can eliminate one of
them. Listing 16.8 shows the version of the program from Listing 16.7 where only one function,
getInt(), is used. The output of this example is the same as that of Listing 16.7

Example 16.8. Using the same member function to get and to set Array data.
#include <iostream>
using namespace std;

class Array {
public:
 int size; // number of valid components
 int *ptr; // pointer to array of integers
 void set(const int* a, int n); // allocate/init heap memory
public:
 Array (const int* a, int n); // general constructor
 Array (const Array &s); // copy constructor
 ~Array(); // return heap memory
 Array& operator = (const Array& a); // copy array
 int getSize() const;
 int& getInt(int i) const; // get/set value at position i
} ;

 void Array::set(const int* a, int n)
 { size = n; // evaluate array size
 ptr = new int[size]; // request heap memory
 if (ptr == 0) { cout << "Out of memory\n"; exit(0); }
 for (int i=0; i < size; i++)
 ptr[i] = a[i]; } // copy client data to heap

Array::Array(const int* a, int n) // general constructor
 { set(a,n); }

Array::Array (const Array &a) // copy constructor
 { set(a.ptr,a.size); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1029 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Array::~Array() // destructor
 { delete [] ptr; }

Array& Array::operator = (const Array& a)
{ if (this == &a) return *this; // no work if self-assignment
 delete [] ptr; // return existing memory
 set(a.ptr,a.size); // allocate/set new memory
 return *this; } // to support chain assignment

int Array::getSize() const // get array size
{ return size; }

int& Array::getInt(int i) const // Array object is not modified
{ if (i < 0 || i >= size) // check if index is legal
 return ptr[size-1]; // no op if it is out of bounds
 return ptr[i]; } // legal index: set the reference

int main()
{
 int arr[] = { 1,3,5,7,11,13,17,19 } ; // data to process
 Array a(arr, 8); // create an object
 int size = a.getSize(); // get array size
 for (int i=0; i < size; i++) // go over each component
 { cout << " " << a.getInt(i); } // print next component
 cout << endl << endl;
 for (int j=0; j < size; j++) // go over the array again
 { int x = a.getInt(j); // get next component
 a.getInt(j) = 2*x; } // update the value
 for (int k = 0; k < size; k++)
 { cout << " " << a.getInt(k); } // print updated array
 cout << endl;
 return 0;
 }

The next step is to replace the member function getInt() with an overloaded subscript operator.
The change of the function itself is very simple. You take the function, cut out its name getInt,
move in the keyword operator, and add the symbol for the operator (in this case, []).

//int& Array::getInt(int i) const // Array object is not modified
int& Array::operator [](int i) const // operator header
{ if (i < 0 || i >= size) // check if index is legal
 return ptr[size-1]; // no op if it is out of bounds
 return ptr[i]; } // legal index: set the reference

Similar changes should be done in the client code¡Xthe name of the member function is now

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1030 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

operator[], not getInt.

int size = a.getSize(); // get array size
for (int i=0; i < size; i++) // go over each
component
{ cout << " " << a.operator[](i); } // print next
component
cout << endl << endl;
for (int j=0; j < size; j++) // go over the array
again
{ int x = a.operator[](j); // get next component
 a.operator[](j) = 2*x; } // update the value
for (int k = 0; k < size; k++)
{ cout << " " << a.operator[](k); } // print updated array
cout << endl;

But of course we did not go all the way from the first implementation in Listing 16.7 only to stop
here. The function call syntax should be replaced with the expression syntax. However, treating the
operator[] as any other operator results in awkward code. How, for example, do you treat the
operator+? You use the message target as the first operand, then the symbol from the operator, for
example, +, and then the parameter as the second operand.

 a.operator+(b); // same as a + b;

If you do the same thing with the subscript operator, you will arrive at something unreadable.

 cout << " " << a.operator[](i); // same as a[]i !

To make the subscript operator function consistent with the usage of the built-in subscript operator,
C++ cuts a special deal. The compiler is instructed to tolerate the deviation from the general rule.
Listing 16.9 shows this example with the use of the overloaded subscript operator.

Example 16.9. Using the overloaded subscript operator to get and to set Array data.
#include <iostream>
using namespace std;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1031 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Array {
public:
 int size; // number of valid components
 int *ptr; // pointer to array of integers
 void set(const int* a, int n); // allocate/init heap memory
public:
 Array (const int* a, int n); // general constructor
 Array (const Array &s); // copy constructor
 ~Array(); // return heap memory

 Array& operator = (const Array& a); // copy array
 int getSize() const;
 int& operator [] (int i); // get/set value at position i
 } ;

 void Array::set(const int* a, int n)
 { size = n; // evaluate array size
 ptr = new int[size]; // request heap memory
 if (ptr == 0) { cout << "Out of memory\n"; exit(0); }
 for (int i=0; i < size; i++)
 ptr[i] = a[i]; } // copy client data to heap

Array::Array(const int* a, int n) // general constructor
 { set(a,n); }

Array::Array (const Array &a) // copy constructor
 { set(a.ptr,a.size); }

Array::~Array() // destructor
 { delete [] ptr; }

Array& Array::operator = (const Array& a)
{ if (this == &a) return *this; // no work if self-assignment
 delete [] ptr; // return existing memory
 set(a.ptr,a.size); // allocate/set new memory
 return *this; } // to support chain assignment

int Array::getSize() const // get array size
{ return size; }

int& Array::operator [](int i) // Array object is not modified
{ if (i < 0 || i >= size) // check if index is legal
 return ptr[size-1]; // no op if it is out of bounds
 return ptr[i]; } // legal index: set the value

int main()
{
 int arr[] = { 1,3,5,7,11,13,17,19 } ; // data to process
 Array a(arr, 8); // create an object

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1032 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 int size = a.getSize(); // get array size
 for (int i=0; i < size; i++) // go over each component
//{ cout <<" "<<a.operator[](i); } // alternative syntax
 { cout << " " << a[i]; } // print next component
 cout << endl << endl;
 for (int j=0; j < size; j++) // go over the array again
 { int x = a[j]; // special deal
// { int x = a.operator[](j); // alternative syntax
 a[j] = 2*x; } // special deal
 for (int k = 0; k < size; k++)
 { cout << " " << a[k]; } // print updated array
 cout << endl;
 return 0;
 }

It is not clear how much of an improvement this version is over the original one in Listing 16.7. But
the operator syntax is nice. And it is definitely useful to review the issues related to returning a
reference from a function rather than returning a value and the use of the const modifiers.

Function Call Operator

The function call operator (two parentheses are considered to be an operator in C++) also can be
used to access or to set the values of components in a container class object. The operator is often
used when the container structures the heap memory as a two-dimensional rather than as a one-
dimensional array (as in the previous example).

The reason for the use of the function call operator instead of the subscript operator is that for a two-
dimensional array, C++ uses two subscript operators joined together, for example, m[i][j]. Using
conventional programming syntax with one subscript operator, for example, m[i,j], would make
the subscript a ternary operator. (In this case, its operands are the array m and the indices i and j.)
For a multidimensional array, the number of indices might be more than two.

The designers of C and C++ felt that it was all right to allow the plus operator to change its
arity¡Xboth allow for a unary plus and a binary plus. But a similar dispensation was not made for
the subscript operator. It is a binary operator, and it cannot take more than two operands.

Instead of the subscript operator, we can use the function call operator. Its advantage in this
situation is that it can have any number of parameters.

As an example, let us consider a class Matrix, which implements a square matrix. The client code
manipulates the matrix components by specifying two indices¡Xone for the row and one for the
column of the matrix. Matrix objects can be created, passed as function parameters, and assigned
to each other. The implementation will be based on a dynamically allocated linear array whose size

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1033 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

depends on the size of the square matrix.

Class Matrix uses the private function make(), which is similar to the function set() from the
previous example, but it leaves the heap memory noninitialized. The function make() is called by
the conversion constructor, copy constructor, and the overloaded assignment operator.

class Matrix {
 int *cells; // heap array to house the matrix
 int size; // number of rows and of columns
 int* make(int size) // private allocator function
 { int* p = new int [size * size]; // total number of elements
 if (p == NULL) { cout << "Matrix too big\n"; exit(0); }
 return p; } // return pointer to heap storage
public:
 Matrix (int sz) : size(sz) // conversion constructor
 { cells = make(size); } // heap memory is not initialized
 Matrix (const Matrix& m) : size(m.size)
 { cells = make(size); } // copy constructor: for safety
 Matrix& operator = (const Matrix& m); // assignment operator
 int getSize() const // size of the side
 { return size; }
 int& get (int r, int c) const; // access or modify a component
 ~Matrix() { delete [] cells; } // destructor
 } ;

The assignment operator disposes of existing heap memory, allocates new memory on the heap and
copies data from the parameter Matrix object into the target of the assignment.

Matrix& Matrix::operator = (const Matrix& m) // assignment
{ if (this == &m) return *this; // no work if self-
assignment
 delete [] cells; // return existing memory
 cells = make(m.size); // allocate/set new memory
 size = m.size; // set the matrix size
 for (int i=0; i<size*size; i++) // copy data
 cells[i] = m.cells[i];
 return *this; } // to support chain
assignment

The function get() combines the responsibilities of functions getInt() and setInt() from the
previous example. It uses the row and column coordinates passed from the caller (starting with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1034 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

zero, of course) to compute the position of the matrix cell in the linear array. If the coordinates are
illegal, it quietly returns the last element of the array. If the coordinates are legal, it returns the data
stored at the given coordinates.

int& Matrix::get (int r, int c) const
 { if (r<0 || c<0 || r>=size || c>=size) // check validity
 return cells[size*size-1]; // return last matrix cell
 return cells[r*size + c]; } // return requested cell

Returning the last matrix cell if the row or column coordinate is outside of the matrix is not the best
solution. Another possibility is to terminate the execution or to throw exception, but I do not like
terminating execution, and we did not discuss exceptions yet. Another possibility is to return some
value not otherwise used in the application, for example, the maximum integer value MAX_INT.
However, the constant value cannot be returned by reference (lest you decide to modify it).

int& Matrix::get (int r, int c) const // not a good version
 { if (r<0 || c<0 || r>=size || c>=size) // check validity
 return MAX_INT; // illegal to return by
reference
 return cells[r*size + c]; } // return requested
cell

Listing 16.10 shows the program that implements the class Matrix with the function get() just
described. The client function printMatrix() goes over rows and columns of the matrix and prints
each row in turn. Notice the use of the setw() manipulator. Unfortunately, the <iostream> include
file is not sufficient for the code that uses manipulators, and you have to include the <iomanip>
header file.

The main() client function creates the square matrix object and initializes each cell by the product
of its row number and its column number (in scientific count, not in C++ count¡Xit starts with one).
In this loop, main() uses the return value of function get() as an lvalue. Then main() calls
printMatrix(), which uses the return value of function get() as an rvalue. Next, main() sets the
elements of the main matrix diagonal to zero (using get() as an lvalue) and prints the matrix again.
Finally, main() tries to access the cell outside of the matrix, and function get() returns the last cell
of the matrix (which has been set to zero). The results of the execution are shown in Figure 16-8.

Figure 16-8. Output of the program in Listing 16.10.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1035 of 1187) [8/17/2002 2:58:08 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 16.10. Using a Matrix class as a container for a square matrix.
#include <iostream>
#include <iomanip>
using namespace std;

class Matrix {
 int *cells; // heap array to house
the matrix
 int size; // number of rows and
of columns
 int* make(int size) // private allocator
function
 { int* p = new int [size * size]; // total number of
elements
 if (p == NULL) { cout << "Matrix too big\n"; exit(0); }
 return p; } // return pointer to
heap storage
public:
 Matrix (int sz) : size(sz) // conversion
constructor
 { cells = make(size); } // heap memory is not
initialized
 Matrix (const Matrix& m) : size(m.size)
 { cells = make(size); } // copy constructor:
for safety
 Matrix& operator = (const Matrix& m); // assignment operator
 int getSize() const // size of the side
 { return size; }
 int& get (int r, int c) const; // access or modify a
component
 ~Matrix() { delete [] cells; } // destructor
 } ;

Matrix& Matrix::operator = (const Matrix& m) // assignment
{ if (this == &m) return *this; // no work if self-

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1036 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

assignment
 delete [] cells; // return existing
memory
 cells = make(m.size); // allocate/set new
memory
 size = m.size; // set the matrix size
 for (int i=0; i<size*size; i++) // copy data
 cells[i] = m.cells[i];
 return *this; } // to support chain
assignment

 int& Matrix::get (int r, int c) const
 { if (r<0 || c<0 || r>=size || c>=size) // check validity
 return cells[size*size-1]; // return last matrix
cell
 return cells[r*size + c]; } // return requested
cell

 void printMatrix(const Matrix& m) // client function
 { int size = m.getSize();
 for (int i=0; i < size; i++) // go over each row
 { for (int j=0; j < size; j++) // and each column
 cout <<setw(4) <<m.get(i,j); // print cell at
m[i][j]
 cout << endl; } // end the current row
 cout << endl; } // end the matrix

int main()
{ cout << endl << endl;
 int i, j, n = 5; Matrix m1(n); // Matrix object
 for (i=0; i < n; i++)
 for (j=0; j < n; j++) // initialize cells
 m1.get(i,j) = (i+1) * (j+1); // m1[i][j] =
(i+1)*(j+1);
 printMatrix(m1); // print matrix state
 for (i=0; i < n; i++) // put 0's on main
diagonal
 m1.get(i,i) = 0; // m1[i][i] = 0
 printMatrix(m1); // print new state
 cout <<"m[10][10] = " <<m1.get(10,10) << endl; // out of range
 return 0;
 }

Transforming the function get() into the overloaded function call operator is very simple. You
replace the name get with the keyword operator and add the operator symbols: two empty
parentheses.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1037 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int& Matrix::operator() (int r, int c) const
 { if (r<0 || c<0 || r>=size || c>=size) // check validity
 return cells[size*size-1]; // return last matrix
cell
 return cells[r*size + c]; } // return requested cell

You can call this function using the function call syntax, as a synonym for get().

void printMatrix(const Matrix& m) // client function
{ int size = m.getSize();
 for (int i=0; i < size; i++) // go over each row
 { for (int j=0; j < size; j++) // and each column
 cout <<setw(4) <<m.operator()(i,j); // cell at m[i][j]
 cout << endl; } // end the current row
 cout << endl; } // end the matrix

It looks strange but is correct. All overloaded operators look strange until you get used to them.
Transforming the function call syntax into the expression syntax is unusual as well. The formal
application of the C++ rule would yield something like m()i,j. Instead, C++ gives you a special
dispensation to write it as m(i,j). For some C++ programmers, this syntax does not look like it
accesses the matrix component, but for many scientific programmers, this is quite close to what
FORTRAN allows you to do.

Listing 16.11 shows the complete version of the program in Listing 16.10, where calls to the
function get() are replaced with calls to the overloaded function call operator operator()(). (I
hope you see that the name operator()() is formed in the same way as any other function name.)
The output of the program is the same as the output of the program in Listing 16.10 (see Figure 16-
8).

Example 16.11. Using a Matrix class with the overloaded function call operator.
#include <iostream>
#include <iomanip>
using namespace std;

class Matrix {
 int *cells; // heap array to house the
matrix
 int size; // number of rows and of columns
 int* make(int size) // private allocator function
 { int* p = new int [size * size]; // total number of elements

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1038 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if (p == NULL) { cout << "Matrix too big\n"; exit(0); }
 return p; } // return pointer to heap
storage
public:
 Matrix (int sz) : size(sz) // conversion constructor
 { cells = make(size); } // heap memory is not
initialized
 Matrix (const Matrix& m) : size(m.size)
 { cells = make(size); } // copy constructor: for safety
 Matrix& operator = (const Matrix& m); // assignment operator
 int getSize() const // size of the side
 { return size; }
 int& operator () (int r, int c) const; // access or modify
 ~Matrix() { delete [] cells; } // destructor
 } ;

Matrix& Matrix::operator = (const Matrix& m) // assignment
{ if (this == &m) return *this; // no work if self-assignment
 delete [] cells; // return existing memory
 cells = make(m.size); // allocate/set new memory
 size = m.size; // set the matrix size
 for (int i=0; i<size*size; i++) // copy data
 cells[i] = m.cells[i];
 return *this; } // to support chain assignment

int& Matrix::operator () (int r, int c) const
 { if (r<0 || c<0 || r>=size || c>=size) // check validity
 return cells[size*size-1]; // return last matrix cell
 return cells[r*size + c]; } // return requested cell

void printMatrix(const Matrix& m) // client function
{ int size = m.getSize();
 for (int i=0; i < size; i++) // go over each row
 { for (int j=0; j < size; j++) // and each column
 cout << setw(4) << m(i,j); // print the cell
 cout << endl; } // end the current row
 cout << endl; } // end the matrix

int main()
{ cout << endl << endl;
 int i, j, n = 5; Matrix m1(n); // Matrix object
 for (i=0; i < n; i++)
 for (j=0; j < n; j++) // initialize cells
 m1(i,j) = (i+1) * (j+1); // m1[i][j] = (i+1)*(j+1);
 printMatrix(m1); // print matrix state
 for (i=0; i < n; i++) // put 0's on main diagonal
 m1(i,i) = 0; // m1[i][i] = 0
 printMatrix(m1); // print new state
 cout << "m[10][10] = " << m1(10,10) << endl; // out of bounds

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1039 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return 0;
 }

This design does not support matrix addition, multiplication, comparison, and other useful
operations. Its purpose is only to demonstrate the use of a function call operator.

Input/Output Operators

The C++ standard library overloads the input operator >> and the output operator << for all built-in
classes. Obviously, these operators do not know anything about programmer-defined classes. This
is why when you need to input or output object data, you have to do this individually for each data
member of the object.

It would be nice to overload the input/output operators for programmer-defined classes as well.
Encapsulating these operations in overloaded operators would contribute to streamlining the client
code, to eliminating low-level details of data management from the client code, and to pushing
responsibility from client code to server classes.

Overloading operator >>

Consider, for example, class String from Listing 16.6, which manages its memory dynamically
and supports the client code's access to its internal data.

class String {
 int size; // string size
 char *str; // start of internal string
 void set(const char* s); // private string
allocation
public:
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s) // assignment
 operator int() const; // current string length
 operator char* () const; // return pointer to start
} ;

It would be nice to overload input/output operators for this class so that client code might use
something like this:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1040 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main ()
{ String s;
 cout << "Enter customer name: ";
 cin >> s; // accept name
 cout << "The customer name is: ";
 cout << s << endl; // display name
 return 0; }

What should be the interface of the overloaded input operator? It is a binary operator that operates
on an object of type istream (which supports input from the library object cin and from disk files)
and on an object of type String. Let us overload operator >> for class String.

void String::operator >> (istream& in)
{ char name[80]; // local storage for data
 in >> name; // accept data
 delete [] str; // return existing memory
 set(name); } // allocate/init new memory

Notice that the function parameter is passed by reference, not by value, because it manages its
memory dynamically. Notice that this is not a reference to a const object¡Xthe input object
changes as a result of the input operation. Notice that the function is not labeled as const because it
changes the state of the object data members by deleting the existing heap memory and setting the
pointer to point to another area of heap memory.

This works. However, this operator provides an awkward interface: According the C++ rules of
transforming the function call syntax into expression syntax, it should be called with a String
object as a target and an istream object as an argument.

 s.operator >> (cin); // equivalent to s >> cin;

It would be nice to have a special dispensation similar to one given for the subscript operator and
the function call operator, but we do not; and no programmer would use the input operator if the
cin object were not the left operand.

If this does not work, let us design this operator as a member of the istream class. This is easier

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1041 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

said than done. The istream class is a library class, and we cannot butcher it for the benefit of our
programmer-defined String class.

So, we cannot overload this operator as a member of the istream class, and we can (but do not
want to) overload it as a member of the String class. What should we do? Remember that story
that I told you in Chapter 15 about A & B who were sitting on the chimney? Well, by eliminating
all other alternatives, we are left with nothing else but overloading this operator as a global
function.

void operator >> (String& s, istream& in) // global function
{ char name[80]; // local storage for data
 in >> name; // accept data
 String temp(name); // create/init new object
 s = temp; // copy it into the argument
}

This is not perfect¡Xit is not concise, and is somewhat slow because it first makes a temporary
String object and then copies it into its argument. But as a part of external input/output, this is not
going to affect program performance at all. The execution time for this function is much less than
that of human reaction or of reading from a disk file.

This is how you call this function using the function call syntax: the function name, the first
parameter, and the second parameter.

 operator >> (s, cin); // same as s >> cin

As you see, this did not buy us much¡Xthe problem is that the String object is the first operand,
not the second. Let us try again by changing the order of the function parameters.

void operator >> (istream& in, String& s) // global function
{ char name[80]; // local storage for data
 in >> name; // accept data
 String temp(name); // create/init new object
 s = temp; } // copy it into the
argument

This is much better¡Xwith the String object as the second parameter, the expression syntax is what
we want to see.

 operator >> (cin, s); // same as cin >> s;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1042 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The next step is to make this function a friend of class String so that it will not dance around the
target object but will go directly to using its nonpublic function set() and data members.

class String {
 int size; // string size
 char *str; // start of internal string
 void set(const char* s); // private string allocation
public:
friend void operator >> (istream& in, String& s);
. . . } ; // the rest of class String

This is almost perfect. For the purposes of this little example, it is indeed perfect. However, in
terms of treating programmer-defined classes similarly to built-in classes, this function does not
measure up. For built-in types, the iostream library supports chain operations.

 double x, y;
 cin >> x >> y; // same as cin >>x; cin >>y;

For our example, this client code does not work¡Xit generates a syntax error.

 String s; int qty;
 cout << "Enter customer name and quantity: ";
 cin >> s >> qty; // error: no chain calls

 String s; int qty;
 cout << "Enter customer name and quantity: ";
 cin >> s >> qty; // error: no chain calls

What is the meaning of the last line in this last code snippet? Of course, you can always say that
this is how it is done in C++ and hence it should compile, but this explanation is not good enough.
If you look up the definition of the function operator >> (overloaded for all possible types) you
will see that its return type is a reference to type istream. This is the only reason this chain syntax
is possible¡Xno special dispensation would make it possible.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1043 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

First, you call this operator with objects cin and s as arguments. When the operator returns an
istream object reference, you send to it another version of the operator (this time from the library
class istream) with the variable qty as an argument.

(operator>>(cin,s)).operator>>(qty); // same as cin >>s >>qty;

But the function that I defined returns void, not istream&. It is no good for sending to it any
messages. The remedy is simple: just redefine the return type to istream&.

Listing 16.12 shows the program that implements the class String and overloads the operator >>
as a class friend. Returning an istream reference supports chain operations. The output of the
program is shown in Figure 16-9.

Figure 16-9. Output of the program in Listing 16.12.

Example 16.12. Overloading the input operators for a programmer-defined type.
#include <iostream>
using namespace std;

class String {
 int size; // string size
 char *str; // start of internal string
 void set(const char* s); // private string allocation
public:
friend istream& operator >> (istream& in, String& s);
 String (const char* s = "") // default and conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 char* get () const // return pointer to start
 { return str; }
} ;

void String::set(const char* s)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1044 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); } // copy client data to heap

String& String::operator = (const String& s)
{ if (this == &s) return *this; // no work if self-assignment
 delete [] str; // return existing memory
 set(s.str); // allocate/set new memory
 return *this; } // to support chain assignment

istream& operator >> (istream& in, String& s) // global friend
{ char name[80]; // local storage for data
 in >> name; // accept data
 delete [] s.str; // return existing memory
 s.set(name); // allocate/init new memory
 return cin; } // important for chain work

int main ()
{
 String s; int qty; // local variables
 cout << "Enter customer name and quantity: ";
 cin >> s >> qty; // accept name, quantity
 cout << "The customer name is: ";
 cout << s.get() << endl; // using public methods
 cout << "Quantity ordered is: ";
 cout << qty << endl;
 return 0;
 }

This is a nice example of supporting the idea that programmer-defined types should be treated the
same way as built-in C++ types are.

Overloading operator <<

Similar to the operator >>, the output operator operator << can be overloaded for programmer-
defined types.

Similar to the overloaded input operator >>, it is not a good idea to implement the output
operator as a member function of the programmer-defined type, for example, String. Doing so
will force you to use awkward syntax, where the String object is on the left of the operator and the
output object cout is on the right.

 String s;
 s << cout; // same as s.operator << (cout);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1045 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Similar to the overloaded operator >>, it is not a good idea to implement the output operator as a
member function of the library output stream ostream class. The only available option is to
implement it as a global function. Make sure that the ostream object is the first parameter, not the
second. Otherwise, you will be trapped in the same syntax where the String object has to be on the
left of the operator.

void operator << (ostream& out, const String& s)
{ out << s.get(); }

There is no need to make this function a friend of the programmer-defined type it works with
because it has access to all necessary information. Whether or not this function has access to the
data, most programmers would make it into a friend.

This function is good for individual output items, but not for chain operations.

cout << "The customer name is: ";
cout << s;
cout << endl;

This is, of course, quite inconvenient. Similar to the overloaded input operator, the remedy is to
return a reference to the object, this time as the object of the output class ostream.

ostream& operator << (ostream& out, const String& s)
{ return out << s.get(); }

Now chaining of output operations becomes possible for programmer-defined types in the same
way as it is for built-in types.

cout << "The customer name is: " << s << endl; // nice syntax

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1046 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 16.13 shows the program that implements the class String and overloads the operator >>
as a class friend. Returning an istream reference supports chain operations. The output of the
program is shown in Figure 16-10.

Figure 16-10. Output of the program in Listing 16.13.

Example 16.13. Overloading the input and output operators for a programmer-defined
type.
#include <iostream>
using namespace std;

class String {
 int size; // string size
 char *str; // start of internal
string
 void set(const char* s); // private string
allocation
public:
friend istream& operator >> (istream& in, String& s);
friend ostream& operator << (ostream& out, const String& s);
 String (const char* s = "") // default and
conversion
 { set(s); }
 String (const String &s) // copy constructor
 { set(s.str); }
 ~String() // destructor
 { delete [] str; }
 String& operator = (const String& s); // assignment
 char* get () const // return pointer to
start
 { return str; }
} ;

void String::set(const char* s)
 { size = strlen(s); // evaluate size
 str = new char[size + 1]; // request heap
memory
 if (str == 0) { cout << "Out of memory\n"; exit(0); }
 strcpy(str,s); } // copy client data
to heap

String& String::operator = (const String& s)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1047 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ if (this == &s) return *this; // no work if self-
assignment
 delete [] str; // return existing
memory
 set(s.str); // allocate/set new
memory
 return *this; } // to support chain
assignment

istream& operator >> (istream& in, String& s)
{ char name[80]; // local storage for
data
 in >> name; // accept data
 delete [] s.str; // return existing
memory
 s.set(name); // allocate/init new
memory
 return cin; }

ostream& operator << (ostream& out, const String& s)
 { return out << s.str; } // it is allowed to
a friend

int main ()
{ cout << endl << endl;
 String s; int qty; // local data
 cout << "Enter customer name and quantity: ";
 cin >> s >> qty; // accept name and
quantity
 cout << "The customer name is: " << s << endl; // verynice
 cout << "Quantity ordered is: " << qty << endl;
 return 0;
 }

Even though the same purpose could be achieved by writing specialized member functions for
input and output of object data, these overloaded operators give a nice elegant touch to C++
programs.

Summary

This chapter covers a number of topics that are related by one concept: to make it possible to write
functions that would allow the client code to treat programmer-defined objects similarly to
variables of built-in types.

We looked at unary operators, prefix and postfix increment and decrement operators that give C++
programs a nice touch. We discussed conversion operators¡Xtogether with conversion constructors,
they continue the C++ tendency to weaken strong typing rules in favor of greater flexibility in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1048 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

handling objects.

I also reviewed the subscript and function call operators¡Xa strange breed, they do not follow the
common rules of transformation from the function call syntax to the expression syntax. Unlike
most C++ operators, they can be overloaded only as member functions and not as global functions.
These operators are not very popular, but in cases where they are used, they help create nice effects
in client code.

Finally, I examined overloaded input/output operators. This is where operator overloading really
shines! These operators allow client code to mix the objects of programmer-defined classes and
built-in types. Even though they are not very significant from a software engineering point of view,
they streamline the client code.

The overloaded input/output operators are very popular. I hope you will enjoy using them for your
classes.

Chapter 17. Templates: Yet Another Design Tool

Topics in this Chapter

ϒΠ A Simple Example of a Class Design Reuse

ϒΠ Syntax of Template Class Definition

ϒΠ Template Classes with Several Parameters

ϒΠ Relations Between Instantiations of Template Classes

ϒΠ Template Specializations

ϒΠ Template Functions

ϒΠ Summary

The remaining two chapters of this book will deal with advanced C++ programming topics:
programming with templates and programming with exceptions.

Usually, container classes and processing algorithms (sorting, searching, etc.) should be designed
for a specific type of component. If the container contains a set of integers, you cannot use this
container to store, for example, account objects. If a function sorts an array of integer values, you

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1049 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

cannot use this function to sort inventory items. Often, you cannot use it to sort even double
floating-point values. C++ templates allow the programmer to eliminate this limitation. With
templates, you can design generic classes and algorithms and then specify what type of component
should be handled by a specific container object or by a specific function call.

Programming with exceptions is used to streamline code that implements complex logic. Usually,
processing algorithms use C++ if or switch statements to separate normal processing of data from
processing of erroneous or faulty data. For multistep algorithms, the segments of source code for
the main algorithm and for the exceptional condition are written in alternative branches of the same
source code, and this often makes the source code harder to read¡Xthe main line is lost in the
multitude of exceptional and rare cases. C++ exceptions allow the programmer to isolate
exceptional cases in other, remote, segments of source code and streamline the base processing so
that it is easier to understand.

These language features, templates and exceptions, share several common characteristics: They are
complex, they increase the size of the executable code of the applications you write, and they
introduce additional execution time overhead.

Space and time overhead is the immediate result of the power and complexity of these
programming techniques. If you write real-time applications under severe memory and execution
speed constraints, you probably should not use templates and exceptions. If your applications are
going to be run on computers with plenty of memory and with fast processors, then space and time
constraints are not that important.

Still, it might be a good idea to introduce these language features into your programs gradually. If
these techniques streamline your source code only marginally, it might not be worth the trouble. As
is often the case in programming, the compromise between advantages and disadvantages is in the
eye of the beholder. Make sure that in your pursuit of interesting and challenging language features
you do not make the life of the maintainer too difficult.

In this chapter, I will discuss programming with C++ templates. In the next chapter, I will cover
C++ exceptions and other advanced language features that did not fit into the previous chapters.

A Simple Example of a Class Design Reuse

The strong typing approach of C++ allows the compiler to spot programming errors when the
programmer uses one type instead of another. C++ allows a number of exceptions to this rule.
Numeric values can be used interchangeably. Programmer-defined types can be used instead of
other types provided that conversion constructors and conversion operators are available. Classes
related through inheritance also allow limited substitution.

Still, many limitations on the use of typed values remain. Many algorithms are essentially the same

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1050 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

regardless of the type of values they operate on. For example, searching for a given account in the
array of account objects requires going through each component of the array and comparing the
owner name with the given name. Similarly, searching for a given inventory item in the array of
items requires going through each component of the array and comparing the item id with the given
id. These are the same actions, but you cannot pass an array of inventory items as a parameter to a
function that implements the search in the array of accounts. You have to write another function.
This function will be almost identical to the account search function. The only difference will be in
the comparison operation: One function compares the given name with the owner name in the
account object, and another function compares the given id with the id in the item object.

Container classes¡Xstacks, queues, lists, trees, and others¡Xcan contain different kinds of
components. Often, component classes handle their components in a similar way regardless of the
component type. For example, stack operations¡Xpushing the new component on the top of the
stack, popping a component from the top of the stack, and checking whether the stack is empty or
has any components left¡Xdo not depend on the nature of the component. They are done in the
same way whether the components are characters, accounts, or inventory items. It would be nice to
be able to design a generic stack and use it for any type of component that the application requires.
C++ strong typing makes this impossible. A stack of characters contains characters and cannot
contain account objects or inventory items. And a stack of accounts contains account objects and
cannot contain characters or inventory items.

Let us consider a simple example¡Xa stack of characters. It is a popular data structure. It is used in
compilers, calculators, screen managers, and in other applications where the collection of items
should support the LIFO (last in, first out) protocol. The example of checking parentheses in the
expression in Chapter 8, "Object-Oriented Programming with Functions," was using the stack (I
called it temporary storage) as the underlying data structure. The stack in my next example
allocates the required number of characters on the heap dynamically and supports the push(),
pop() and isEmpty() operations. The pop operation always retrieves the top symbol of the stack,
the one that was last pushed on the stack. The next symbol is always pushed on the top of the stack
so that it is the first one to be popped out.

class Stack {
 char *items; // stack of character symbols
 int top, size; // current top, total size
public:
 Stack(int); // conversion constructor
 void push(char); // push on top of stack
 char pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1051 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Listing 17.1 shows the implementation of the stack along with the test driver for the class. The
conversion constructor uses the initialization list to initialize class data members: the total size of
the character array requested for the stack and the current position of the stack top in the array (the
index of the location where the next symbol will be inserted). The constructor allocates the heap
memory using the size requested by the client code. If the system is out of memory, the execution is
terminated.

The function push() inserts its parameter value into the heap array. Since the size of the heap array
is requested by the client code, and the client code should know how much stack storage it needs
for its algorithm, it is all right to terminate execution in case of array overflow. However, this
would pop too much responsibility up to the client code. Meanwhile, the client code should
concentrate on its algorithm (e.g., checking whether parentheses match) and not with the user
interface for diagnostic messages. It would be more appropriate to push the responsibility for
dealing with overflow down to the server class.

One alternative for handling array overflow is to terminate program execution. The advantage of
doing this in the server class rather than in the client code is that the client code is streamlined and
does not contain error processing related to the implementation details of the server. Another, better
alternative is to process the server problem (overflow) in the server and not in the client code. This
can be done, for example, by allocating additional memory in the server object in case of array
overflow.

How much additional memory to allocate is debatable. In Listing 17.1, I allocate a stack array of
double the current size, copy existing stack contents into the newly allocated array, dispose of the
existing array, and continue operations using the heap array that is twice as long as its previous
version. The client code is totally insulated from these details of memory management.

Function pop() is straightforward¡Xit just pops the top character from the stack and updates the
index that points to the top of the stack. For a large data structure, it would be appropriate to watch
the position of the top and return the existing memory when, for example, half of the existing array
is not used. For this simple example, there is no need to do that.

Function pop() could check whether the stack is empty and send a message (or a return value) if
there is nothing to pop from the stack. I felt that this approach, although possible, would make
communications between the stack class and its clients unnecessarily complex. Also, what would a
client do if it tries to pop the stack when the stack is empty? In most cases (see, e.g., Chapter 8 and
its examples in Listing 8.10-8.13), the empty stack is a signal to the client to stop one phase of
processing and to start another phase. Hence, there is no need to involve the server class into this
application-related decision. The client code should call the stack method isEmpty() before each

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1052 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

call to pop() and either call the pop() method if the stack is not empty or do something else. In
Listing 17.1, I terminate the algorithm¡Xthe empty stack signals the end of processing.

The last two methods, the method isEmpty() and the Stack destructor, are trivial. The isEmpty()
method checks whether the stack index has returned into its initial position. The destructor returns
the heap memory allocated to the object during its lifetime.

Class Stack objects can only be used to store the elements of given type, not for other operations.
These objects are not meant to initialize one another or to be assigned to one another. Formally,
you can perform these operations on any C++ variables, including Stack objects. Actually, if
somebody uses a Stack object in initialization or in assignment, this should not be supported. This
means that adding the copy constructor and the assignment operator to class Stack is overkill. On
the other hand, making their prototypes private is helpful. For example, if one wants to pass a
Stack object by value, this will be a syntax error.

For illustration purposes, Listing 17.1 initially allocates a very small array for the Stack object.
This is why you can see debugging messages that report the change in the array size. The output of
the program is shown in Figure 17-1.

Figure 17.1. Output for program in Listing 17.1.

Example 17.1. Class Stackthat contains characters.
#include <iostream>
using namespace std;

class Stack {
 char *items; // stack of character symbols
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(char); // push on top of stack
 char pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1053 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Stack::Stack(int sz = 100) : size(sz),top(0)
{ items = new char[sz]; // allocate heap memory
 if (items==0)
 { cout << "Out of memory\n"; exit(1); } }

void Stack::push (char c) // pass by reference
 { if (top < size) // normal case: push symbol
 items[top++] = c;
 else // recover from stack overflow
 { char *p = new char[size*2]; // get more heap memory
 if (p == 0) // test for success
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < size; i++) // copy existing stack
 p[i] = items[i];
 delete [] items; // return heap memory
 items = p; // hook up new memory
 size *= 2; // update stack size
 cout << "New size: " << size << endl;
 items[top++] = c; } } // push symbol on top

char Stack::pop()
{ return items[-top]; } // pop unconditionally

bool Stack::isEmpty() const // anything to pop?
{ return top == 0; }

Stack::~Stack()
{ delete [] items; } // return heap memory

int main()
{
 char data[] = "abcdefghij"; // pre-canned input data
 Stack s(4); // Stack object
 int n = sizeof(data)/sizeof(char)-1; // input data count
 cout << "Initial data: ";
 for (int j = 0; j < n; j++) // print initial data
 { cout << data[j] << " "; }
 cout << endl;
 for (int i = 0; i < n; i++) // push data on the stack
 s.push(data[i]);
 cout << "Inversed data: ";
 while (!s.isEmpty()) // pop until stack is empty
 cout << s.pop() << " ";
 cout << endl;
 return 0;
 }

The problem with this design is that if you want to have a container for other types of components,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1054 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the design has to be repeated from scratch. All instances of the previous component type should be
replaced by instances of another component type. For example, if you want to have a stack of
integers instead of characters, the stack specification should look this way.

class Stack {
 int *items; // stack of integer symbols
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(int); // push on top of stack
 int pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

For a stack of double floating-point values, the class has to be modified again.

class Stack {
 double *items; // stack of double symbols
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(double); // push on top of stack
 double pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

Notice that a global editor is not sufficient to do the job. To arrive at this design, I had to change
type int to double in the pointer definition, in the push() parameter list, and in the pop() return
value. The definition of data members top and size must not be changed; the type of the
constructor parameter does not change either. Hence, the reuse of this design requires attention.
This is by no means a no-brainer.

Another method of reusing the container is to design it with a generic "parameter" type. This type
corresponds neither to a programmer-defined type nor to a built-in type. For example, class Stack
can be defined in the following way.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1055 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Stack {
 Type *items; // stack of symbols of type Type
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(Type); // push on top of stack
 Type pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

This code does not compile unless the compiler knows what type Type is. Once you have defined
it, the code compiles. This is nice because it makes the job of substitution simpler and less error
prone. You should replace the instances of use of the type Type but not others. Moreover, the type
Type can be defined using the typedef definition, for example:

 typedef char Type; // type is equivalent to char

This definition has to be seen by the compiler before it processes the Stack definition. The
compiler will replace each instance of the identifier Type with the keyword char and will compile
the resulting class.

With this approach, the reuse of the class design is no longer impaired by random errors. All that is
needed to generate a version of the stack for another type of component is to replace the keyword
char in the typedef statement with the name of another type. There is no danger of accidental
errors. Listing 17.2 shows the version of the class Stack where the type Type denotes type int.
The output of this program is shown in Figure 17-2.

Figure 17.2. Output for program in Listing 17.2.

Example 17.2. Reuse of class design for a Stack that contains integers.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1056 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <iostream>
using namespace std;

typedef int Type; // portable type definition

class Stack {
 Type *items; // stack of items of type Type
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(const Type&); // push on top of stack
 Type pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

Stack::Stack(int sz = 100) : size(sz),top(0)
{ items = new Type[sz]; // allocate heap memory
 if (items==0)
 { cout << "Out of memory\n"; exit(1); } }

void Stack::push (const Type& c) // pass by reference
 { if (top < size) // normal case: push symbol
 items[top++] = c;
 else // recover from stack overflow
 { Type *p = new Type[size*2]; // get more heap memory
 if (p == 0) // test for success
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < size; i++) // copy existing stack
 p[i] = items[i];
 delete [] items; // return heap memory
 items = p; // hook up new memory
 size *= 2; // update stack size
 cout << "New size: " << size << endl;
 items[top++] = c; } } // push symbol on top

Type Stack::pop()
{ return items[-top]; } // pop unconditionally

bool Stack::isEmpty() const // anything to pop?
{ return top == 0; }

Stack::~Stack()
{ delete [] items; } // return heap memory

int main()
{

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1057 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Type data[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 } ;
 Stack s(4); // stack object
 int n = sizeof(data)/sizeof(Type); // input data count
 cout << "Initial data: ";
 for (int j = 0; j < n; j++)
 { cout << data[j] << " "; } // print input data
 cout << endl;
 for (int i = 0; i < n; i++)
 { s.push(data[i]); } // push data on the stack
 cout << "Inversed data: ";
 while (!s.isEmpty()) // pop until stack is empty
 cout << s.pop() << " ";
 cout << endl;
 return 0;
 }

The typedef approach allows you to reuse the class design, not only for built-in types but for
arbitrary programmer-defined types as well¡Xaccounts, inventory items, rectangles, and so on. The
caveat here is the ability of the component type to support operations that the component objects
undergo within the container class. This is not too difficult, but you should make sure you
recognize these operations in the container code¡Xthey are often implicit.

In the Stack example, the container class creates an array of components on the heap. This means
that the component class has to provide a default constructor. This is not a problem for built-in
types, but might be a problem for a programmer-defined type.

When a component object is inserted into the container in the push() method, the assignment is
used. If the component class does not handle its memory dynamically, this is not a problem. If it
does handle heap memory, the component class has to provide an overloaded assignment operator.
Notice that the assignment operator for the container remains private¡XI am talking about the
assignment operator for the component class.

Another reuse issue that requires support from the design of the component class is parameter
passing and returning values from container methods. For built-in data types, this issue is trivial.
This is why in Listing 17.1, method push() had a value parameter, and method pop() was
returning the value. In Listing 17.2, method push() passes the parameter as a constant reference to
avoid integrity problem and negative impact on performance (see Chapter 11, "Constructors and
Destructors: Potential Trouble," for a detailed discussion of these problems). Method pop() still
returns the value for compatibility with the first version of the program in Listing 17.1. However,
many container designers avoid returning values from container methods and pass reference
parameters (non-constant) instead.

This approach allows us to reuse the container design in another program for any type that supports

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1058 of 1187) [8/17/2002 2:58:09 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

assignment and copying. However, if stacks of different types are used in the same program, this
approach does not work. The type Type can have only one meaning during compilation.

When the same container is to be used for different types of components in the same program, we
are back to the technique of manual editing of design. In the case of the stack, each stack should
have a different name, for example, charStack, intStack, pointStack, and so on, and their
code and interfaces should be edited.

class doubleStack {
 double *items; // edit component type
 int top, size; // leave the type the same
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // leave the type the same
 void push(double); // edit parameter type
 double pop(); // edit return type
 bool isEmpty() const;
 ~Stack();
} ;

If source code for each class is edited individually, propagation of future modifications becomes
cumbersome and error prone. Unique class names clog the project name space and create the
potential for name conflicts.

Use of the macro facility can automate the generation of new class names and code, but this method
of reuse is cumbersome and error prone. I do not think that C++ programmers today should learn
how to write macros¡Xthis is an obsolete approach to design reuse. Just to satisfy your curiosity,
this is how the macro for this stack looks.

#define MakeName(a,b) a/**/b

#define DefineStack(Type) \
class MakeName(Type,Stack) { \
 Type *items; \
 int top, size; \
Stack(const Stack&); \
 operator = (const Stack&); \
public: \
 Stack(int sz = 100) : size(sz),top(0) \
 { items = new Type[sz]; \
 if (items==0) \
 { cout << "Out of memory\n"; exit(1); } } \

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1059 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void push(const Type& c) \
 { if (top < size) \
 items[top++] = c; \
 else \
 { Type *p = new Type[size*2]; \
 if (p == 0) \
 { cout << "Out of memory\n"; exit(1); } \
 for (int i=0; i<size; i++) \
 p[i] = items[i]; \
 delete [] items; \
 items = p; \
 size *= 2; \
 cout << "New size: " << size << endl; \
 items[top++] = c; } } \
 Type pop() \
 { return items[¡Xtop]; } \
 bool isEmpty() const \
 { return top == 0; } \
 ~Stack() \
 { delete [] items; } \
} ;

The client must first define stack types using the DefineStack name defined at the start of the
macro.

 DefineStack(int);

This will generate the name intStack as a concatenation of the type (specified in parentheses) and
the name Stack (the second argument to the MakeName macro). This will also define code for the
stack of integers. Then the client will be able to declare and use an appropriate stack object.

 intStack s(4);

Since all code fits into one preprocessor-generated line, it is difficult to debug. Lexical substitution,
as is often the case with macros, can generate incorrect code. This is not a good way to reuse class
design.

Syntax of Template Class Definition

C++ supports yet another method to reuse class design. This tool is called a template class. Instead
of the class with a fixed type of component, you create the class where the type of component is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1060 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

treated as a class parameter.

This parameter has a programmer-defined name, for example, Type, T, Tp, and so on. (As for any
parameter, it is up to the programmer to decide what to call it.) Its actual value can be any type,
built-in or programmer-defined. As for any parameter, its actual value cannot be known at the time
of compiling the template definition. When the client code instantiates an object of this class, it
specifies the actual type that should be used in the class instead of the class parameter.

Template Class Specification

Here is how the template class specification for the stack example looks. The type parameter is
denoted by the programmer-defined name Type.

template <class Type> // Type is given at instantiation
class Stack {
 Type *items; // actual type will be used
 int top, size;
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int);
 void push(const Type&); // actual type will be used
 Type pop(); // actual type will be used
 bool isEmpty() const;
 ~Stack();
} ;

Theoretically, this is an extension of the concept of function parameters. When a function is
written, each parameter is given a name, but this name is just an alias for the name that will be
specified later. The function designates all operations to be performed over the value of the actual
argument. But the value of the actual argument is not known when the function is written. It is only
at the time of the function invocation that the value of the actual argument becomes known. Then
all occurrences of the name of the formal parameter within the function are replaced by the name of
the actual argument and the computations are performed over this argument value.

The advantage of using functions with parameters is that at the time of the algorithm design, there
is no need to make the commitment as to the value over which to perform computations. The
computations can be performed over any value, and this value becomes known only at the time of
the function call. If the same algorithm is needed in another place in the program and for another
value of the argument, it is not necessary to implement it in the source code again. The same
function can be called from different places in the program (without any modification) with the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1061 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

names of the actual arguments specified. If necessary, the function can be called again with the
same arguments.

Similarly, the template tells the compiler how to generate code when a request for the use of a
particular type is made. When the template is written, the type is given a name, but this name is just
an alias for the name that will be specified later. The template designates all operations to be
performed over the values of this type. But the name of the actual type is not known when the
template is written. It is only at the time of the creation of the object that the name of the actual
type becomes known, and the computations are performed for this type of value.

The advantage of using template classes is that at the time of the algorithm design, there is no need
to make the commitment as to the type over which to perform computations. They can be
performed over any type (as long as the type can support these operations), and this type becomes
known only at the time of the object instantiation. If the design is needed in another place in the
program but for a different type, it is not necessary to implement it in the source code again. The
same template class can be instantiated at different places in the program for different types without
any modification. Each instantiation is different from another only in the name of the actual type. If
necessary, an object can be created with the same actual type as earlier.

This is very good. You design a class only once, and then you use it as a template (this is where the
name comes from) to generate any number of specific classes that designate what actual type to use
instead of the parameter type you used in the design of the class. Other terms for template classes
are generic classes and parameterized classes. They can be used with different actual types of
components.

The template is a C++ keyword. In the class definition, this keyword is followed by a nonempty
parameter list in angle brackets; these angle brackets (rather than parentheses in C++ functions) are
used to indicate type parameters. Each template class parameter in the parameter list is a
combination of a keyword class and a programmer-defined identifier.

Each template parameter in angle brackets is a placeholder for type. A parameterized class (generic
class) can have any number of type parameters. Multiple template parameters in the parameter list
are separated by commas.

template <class T1, class T2, class T3> // three type parameters
 class Triple; // class declaration

As in other cases in C++, the keyword class in the parameter list does not have the same meaning
as in other contexts. Its role here is to denote that the identifier that follows is a placeholder for an
actual type. This type does not have to be a class. It can be any built-in type as well. Expression

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1062 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

parameters of specific types are also allowed.

template <class Type, int size> // a type and a value
 class Array;

This is similar to function parameters¡Xat the time of instantiation of class Array, a value of the
specified type (here, of the type int) should be provided by the client code.

Template Instantiation

Creating an object of a template class is called instantiation, similar to creating an object of any
class in C++.

When the client code instantiates a specific object from a template class, an actual type argument
should be provided by the client code for each template parameter. The Stack template described
above is not a class, but only a template. It does not support creation of Stack objects directly. A
Stack object without an indication of the actual type is as absurd as a function call, for example,
push(), without indicating what actual value should be pushed onto the stack.

The actual type is specified at template instantiation as the type name in angle brackets that is
appended to the name of the template class. The object name is specified in the same way as for
nongeneric classes. Constructor parameters are used as usual where necessary.

Stack<int> is(50); // stack of integers, length 50
Stack<char> cs(200); // stack of characters, length 200

The instantiation resembles a function call where formal parameters are placeholders that receive
the values of actual arguments. In the function definition, the formal parameters are listed in
parentheses. In the function call, actual arguments are listed in parentheses. In the template
definition, the template parameters are listed in angle brackets. In the template object instantiation,
the actual types are listed in angle brackets. If the template definition has more than one class
parameter, the template instantiation has to specify the same number of actual types (separated by
commas) between the left and right angle brackets.

Unlike in a function call, only actual compile time values can be used in the template object
instantiation: They are directly hardcoded in the client code. C++ does not implement run-time type
variables: You cannot use a variable whose value is a type. Default parameter values cannot be
used for template type parameters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1063 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Notice that when the compiler elaborates the template class definition, it does not generate object
code for the class. It cannot do that because the actual type of class component is not known yet. So
the compiler maintains its internal tables with the information about the template but does not add
object code to the object file that corresponds to the source file with the template definition.

When the compiler elaborates a template instantiation, for example, Stack<int>is(50), it first
produces an actual class definition (in this case, Stack<int>) by replacing template formal
parameters by the actual template type arguments. This code should not go to the object code file
being generated, because the class might be used in another source file as well. So, the compiler
generates an additional object file for Stack<int>. After that, it generates the object of the
Stack<int> class.

template <class Type>
class Stack<int> { // type is given at instantiation
 int *items; // actual type is used
 int top, size;
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int);
 void push(const int&); // actual type is used
 int pop(); // actual type is used
 bool isEmpty() const;
 ~Stack();
} ;

Notice that in defining the generic template, the interface for the push() function was defined as a
reference to a constant. This is why this function is defined for Stack<int> as push(const
int&); this is overkill for built-in types, but it improves efficiency for actual types when they
represent large complex classes. Function pop(), however, returns a value rather than a reference
so that client code does not depend on the life span of the stack object and its elements.

The object is of type Stack<int> is of the same nature as any other C++ object. There is nothing
in this object that says that it is an object of a template class rather than an object of a regular class.
This object can be used anywhere a non-template object can; it can be passed as a parameter and
respond to messages defined for the generic class.

 if (!is.isEmpty()) // sending a message to object
 DebugPrint(is); // passing object as parameter

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1064 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The template class name can be used anywhere where a non-template class name can, but the
parameter list with the actual type names must be specified. For example, function DebugPrint()
here should be defined as a function that accepts arguments of a specific type, in this case,
Stack<int>.

 void DebugPrint(Stack<int>& stack); // function prototype

Implementing Template Functions

In the example above, the function DebugPrint() is a regular C++ function. The only difference
between this function and other C++ functions you saw earlier is that its parameter is an object of a
template class. In the body of this function, the parameter stack is treated as a regular C++ object
whose class is known.

If the debugging algorithm is the same for stack objects of different types, you might want to
specify that in the function interface. The type Stack<int> is too specific for such a function: With
this type, the function could accept actual argument of this type only, but not of other stack types.
To support generality, the function interface should indicate that a stack object of any type is
acceptable. C++ supports this with the concept of a template (generic) function.

A template function is specified in the same way as a template class. The keyword template is
followed with a type parameter list in angle brackets. Each entry in the parameter list is a
combination of the keyword class and an identifier that is a placeholder for the type name. (Again,
it does not have to be a class name¡Xany legal C++ type would do.) The template parameter list is
followed by the function header with the function name and the parameter list. In the function
parameter list, the notation for instantiated template classes is used. Instead of actual types, the
names of type parameters from the template parameter list are specified. This is how a generic
DebugPrint() function looks, one that is capable of accepting a stack parameter of any type.

template <class Type> // template parameter list
void DebugPrint(Stack<Type>& stack); // function parameter list

The same idea is used when methods of a generic class are implemented outside of the class scope
braces. These functions are generic functions¡Xthey should work with any type as long as this type
is specified as the actual type. (Well, the function might expect some properties in the objects of the
actual type, for example, the ability to support the assignment operator; this depends on the
algorithm that the function implements.)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1065 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

void push(const Type&); // no good outside of class braces

There are two problems with this function prototype. First, it should indicate that this function
belongs to class Stack; second, it should indicate that the identifier Type is a type parameter to be
specified later, not the name of the type specified earlier. If this is not done, the compiler will
complain that Type is not defined.

C++ treats member functions of template classes as template functions. The definition (or a
declaration) of a template function starts with the keyword template followed by the template
parameter list in angle brackets. Each component of the template parameter list includes the
keyword class followed by an identifier that specifies the name of the type parameter.

template <class Type> // template parameter list
void Stack::push(const Type&); // better but not good enough

Now the compiler knows that the identifier Type is a type parameter name and will wait for the
name of the actual type at class object instantiation. Yet another problem with this function
definition is the class name. I use the name Stack, but there is no such class in the program: the
name Stack denotes a template class, not a class. For the compiler, the name Stack without any
qualifier is not defined. It wants to know the components of the type this Stack has.

What should I tell the compiler? I do not know what type this Stack is going to be because at the
time of the class definition, this type can be anything, almost any type. The actual type will become
known at the time of instantiation. The only thing that I know is that whatever this type is going to
be, it will be the same type as the type specified in the function parameter list. Hence, it is this type
that should be specified in the angle brackets following the type name.

template <class Type> // template parameter list
void Stack<Type>::push(const Type&); // now it is good enough

This is an important concept to keep in mind when you are dealing with template classes. This
function prototype is built according to the same rules as any other C++ function prototype. It
specifies what the types of function parameters are (in this case, Type) and to what class this
function belongs to (in this case, Stack<Type>).

The template parameter list should be repeated for each member function defined outside the class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1066 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

specification.

template <class Type> // template parameter list
void Stack<Type>::push (const Type& c) // template prefix
 { if (top < size) // normal case: push symbol
 items[top++] = c;
 else // recover from stack overflow
 { Type *p = new Type[size*2]; // actual type will be used
 if (p == 0)
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < size; i++)
 p[i] = items[i]; // copy existing data
 delete [] items;
 items = p; // hook up new heap array
 size *= 2; // update stack size
 cout << "New size: " << size << endl;
 items[top++] = c; } } // push symbol on top

The scope operator in the name of the member function should specify the identifiers of the
template formal parameters; the generic class name is followed by the template parameter list in
angle brackets. This is consistent with the requirement to supply the names of generic parameters
every time the class name is mentioned outside the class definition.

Notice that the keywords template or class are not used in the template prefix of the scope
operator, just the type parameter names. The template prefix makes the formal parameters available
to the function that follows. The name of the function itself does not need type parameters.

template <class Type> // template parameter list
void Stack<Type>::push<Type> (const Type& c); // overkill

Here, the function name push<Type> makes no sense; the name of the function itself is sufficient.

Similarly, when defining template constructors and destructors, template arguments are specified
only once, in the template prefix, not in the member function name. You say
Stack<Type>::Stack(), not Stack<Type>::Stack<Type>(). Here, the second Stack is a
member function name rather than a type specifier.

template <class Type>
Stack<Type>::Stack(int sz = 100) : size(sz),top(0)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1067 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

{ items = new Type[sz];
 if (items==0)
 { cout << "Out of memory\n"; exit(1); } }

The same is true of the destructor: What follows the tilde is the name of the member function, not
the name of the class (even though the name is the same) and hence it should not include template
parameters. The part that precedes the colon scope operator is the class name and hence should
include template parameters.

template <class Type>
Stack<Type>::~Stack() // special destructor syntax
 { delete [] items; }

Notice that the destructor does not use the name of the type parameter in the body of the function.
However, the type parameter still has to be used both in the template parameter list and in the
template prefix. This is a general rule. The keyword template with the type parameter list in the
function definition has to include all type parameters mentioned in the template parameter list for
the class. The same is true of the template prefix that specifies the class name. All template
parameters must be mentioned even if not all parameters are used inside the function.

For example, the member function isEmpty() checks the value of the integer index. Its body is the
same no matter what actual type is used at the object instantiation. Nevertheless, the definition of
this member function requires the complete template parameter list and the complete template
prefix.

template <class T> // it is not used in the function
bool Stack<T>::isEmpty() const // return value of type bool
 { return top == 0; } // same body for any type

In this definition, I use the identifier T for the type parameter instead of Type. This is, of course,
allowed¡Xthe type name is just a placeholder, and I can use any name as long as I use the same
name in other places where the same name should be used. In this example, the requirement of
consistency is the requirement to use the same name in the template parameter list and in the
template prefix of the same function. For another function, another parameter name could be used.

Listing 17.3 demonstrates the implementation of a stack as a template class. For the sake of the
example, I used three different names for the type parameter: Type, T, and Tp. For different

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1068 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

member functions, these names are totally independent. After all, these functions could be
implemented in totally different source files. From the software engineering point of view, this is
not a good idea; C++ classes encourage us to put together what belongs together. But the language
syntax allows you to implement different member functions of the same class in different source
files.

In this version of the program, the client code instantiates a stack of Point objects. Objects of class
Point have two integer fields for their coordinates: an empty default constructor (to support
creation of an array) and a simple copy constructor (to support the return by value from the pop()
member function). For such a simple class, neither constructor is really necessary. For classes that
handle heap memory, both are necessary.

For compatibility with previous examples, the Point coordinates are displayed on the screen with
the use of the operator<<. The operator is overloaded as a global friend of the Point class. The
output of the program is shown in Figure 17-3.

Figure 17.3. Output for program in Listing 17.3.

Example 17.3. Reuse of class design for a Stack that contains Point objects
#include <iostream>
using namespace std;

class Point {
 int x, y;
friend ostream& operator << (ostream& out, const Point& p);
public:
 Point() { } // default constructor: empty
 Point(const Point &p) // copy constructor: for return
 { x = p.x; y = p.y; }
 void set(int a, int b) // set Point coordinates
 { x = a; y = b; }
} ;

ostream& operator << (ostream& out, const Point& p)
{ out << "(" << p.x << "," << p.y << ")";
 return out; }

template <class Type>

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1069 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class Stack {
 Type *items; // stack of items of type Type
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(const Type&); // push on top of stack
 Type pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

template <class Type>
Stack<Type>::Stack(int sz = 100) : size(sz),top(0)
{ items = new Type[sz]; // allocate heap memory
 if (items==0)
 { cout << "Out of memory\n"; exit(1); } }

template <class T>
void Stack<T>::push (const T& c)
 { if (top < size) // normal case: push symbol
 items[top++] = c;
 else // recover from stack overflow
 { T *p = new T[size*2]; // get more heap memory
 if (p == 0) // test for success
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < size; i++) // copy existing stack
 p[i] = items[i];
 delete [] items; // return heap memory
 items = p; // hook up new memory
 size *= 2; // update stack size
 cout << "New size: " << size << endl;
 items[top++] = c; } } // push symbol on top

template <class Type>
Type Stack<Type>::pop()
{ return items[¡Xtop]; } // pop unconditionally

template <class Tp>
bool Stack<Tp>::isEmpty() const // anything to pop?
{ return top == 0; }

template <class Type>
Stack<Type>::~Stack()
{ delete [] items; } // return heap memory

int main()
{

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1070 of 1187) [8/17/2002 2:58:10 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Point data[5];
 data[0].set(1, 2); data[1].set(3, 4); data[2].set(5, 6);
 data[3].set(7, 8); data[4].set(9, 0);
 Stack<Point> s(4); // stack object
 int n = sizeof(data)/sizeof(Point); // number of components
 cout << "Initial data: ";
 for (int j = 0; j < n; j++)
 { cout << data[j] << " "; } // print input data
 cout << endl;
 for (int i = 0; i < n; i++)
 { s.push(data[i]); } // push data on the stack
 cout << "Inversed data: ";
 while (!s.isEmpty())
 cout << s.pop() << " "; // pop until stack is empty
 cout << endl;
 return 0;
 }

You see that the names of the member functions become available for use in the client code as soon
as an object of the class is instantiated with specific values of type arguments. When a member
function is sent as a message to an object of the specific class, the function name in the client code
is specified without prefixes.

Stack<Point> s(4); // object is instantiated
. . .
for (int i = 0; i < n; i++)
 { s.push(data[i]); } // no type specifiers here

This is true of any client code¡Xnothing indicates that the messages are sent to objects of template
classes rather than regular classes. Inside the class definition, the situation is different: The name of
the class might or might not be followed by the parameter list in brackets. For example, for a linked
list implementation of a container, a node class will be a template that has a pointer to the next
node. Hence, the definition of the node class has to use the name of the class for its own data
member.

template <class T>
struct Node { // public data
 T item;
 Node *next; // field next points to Node
 Node(const T&); // constructor
 } ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1071 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Here, the name of the parameter is not used on the assumption that the compiler will understand
that the next field is of the same type as the class being defined. A more-consistent approach
recognizes that there is no such thing as class Node unless the type of the node component is
specified.

template <class T>
struct Node { // public data
 T item;
 Node<T> *next; // field next points to Node<T> *next
 Node(const T&); // constructor
 } ;

Again, from the software engineering point of view, the second version of class Node is slightly
better than the first one, but the compiler should compile either version without difficulty.

Recall that each class instantiation generates a separate instance of class object code. Depending on
the compiler implementation, object code might be placed in a separate object file that is later
linked with other object code files. One consequence of this is that the one-to-one correspondence
between source files and object files does not exist anymore. There are object files whose origin the
developer cannot easily identify.

Proliferation of template instantiations might significantly increase compilation and linking time
and the size of the object code. Some compilers might offer possible ways to decrease this negative
impact.

When template member functions are implemented inline in the class definition, there is no need to
specify the template prefix and the scope operator with parameter names.

template <class Type>
class Stack {
 Type *items; // stack of items of type Type
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:

 Stack(int sz = 100) : size(sz),top(0) // conversion constructor
 { items = new Type[sz]; // allocate heap memory
 if (items==0)
 { cout << "Out of memory\n"; exit(1); } }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1072 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void push(const Type& c) // push on top of stack
 { if (top < size) // normal case: push symbol
 items[top++] = c;
 else // recover from stack overflow
 { Type *p = new Type[size*2]; // get more heap memory
 if (p == 0) // test for success
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < size; i++) // copy existing stack
 p[i] = items[i];
 delete [] items; // return heap memory
 items = p; // hook up new memory
 size *= 2; // update stack size
 cout << "New size: " << size << endl;
 items[top++] = c; } } // push symbol on top

 Type pop() // pop the top symbol
 { return items[¡Xtop]; } // do it unconditionally

 bool isEmpty() const // is stack empty?
 { return top == 0; }

 ~Stack() // return heap memory
 { delete [] items; }
} ;

This class definition looks almost like a conventional class definition where the type of the
component is specified with the typedef statement (see Listing 17.2).

Nested Templates

A template class can use other templates as its data members. For example, a stack template
Stack<T> with components of class T can have a data member of the template type List<T>. It is
important to make sure that the list components are of the same type as the stack components.
Member functions of the stack template can send messages to the list template object to implement
stack operations.

Let us assume that the list template provides such operations as insert_as_first() and
remove_first() that add the component as the first element of the list and remove the first list
component.

template <class T>
class List {
 public:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1073 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void insert_as_first(const T& x);
 T remove_first();
 bool empty(); // is list empty?
 ¡K} ; // the rest of class List

Using a list template as a stack data member makes for a simple stack implementation. There is no
need to implement dynamic memory management; the list class takes care of this. There is no need
to include constructors or destructors or worry about memory overflow. There is still the need to
worry about stack underflow, but that is not the job of the stack designer. The client code should
structure stack handling algorithms so that underflow is avoided.

template <class T> // same type T for Stack and List
class Stack {
 List<T> lst; // template data member
public:
 void push(const T&); // const reference to T
 T pop(); // return value of type T
 bool isEmpty(); } ; // no need for a destructor

The implementation of stack member functions becomes very simple. The push() methods invoke
the corresponding list function and rely on the appropriate memory management there.

template <class T>
void Stack<T>::push(const T& item)
 { lst.insert_as_first(item); } // push work down to list

Similarly, the pop() and isEmpty() stack member functions push the work to the list member
functions.

template <class T>
T Stack<T>::pop() // return value of type T
 { return lst.remove_first(); } // push work down to list

template <class T>
bool Stack<T>::isEmpty()
 { return lst.empty(); } // call a similar function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1074 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When the client code instantiates a Stack<int> object, the member functions will be instantiated
as

void Stack<int>::push(const int& item)
 { lst.insert_as_first(item); }

int Stack<int>::pop() // return value of type T
 { return lst.remove_first(); }

When the client code declares an instance of a stack object, for example, Stack<int>, the
instantiation process iterates, and the compiler generates object code for List<int>. In turn, the
template object of class List<int> might need other templates too.

If an object of class List<int> cannot be instantiated, the stack instantiation results in an
instantiation error. It might be a result of either a bug in the list template or an illegal operation over
a template argument (e.g., a comparison might not be defined for a class, or a class operation is
applied to a built-in argument). This makes debugging template classes more difficult than
debugging regular classes.

Template Classes with Several Parameters

In previous examples, I used a template class with one type parameter only, even though I
mentioned that a template class can have several type parameters.

These parameters can be type parameters similar to the previous examples or even parameters that
resemble conventional value parameters in functions. Multiple parameters and the mix of type
parameters and expression parameters notably increase the flexibility of C++ templates. At the
same time, they introduce additional syntactic complexities.

Several Type Parameters

Let us consider a template class with more than one type parameter. The names of these parameters
should be used within the class for its data members, local variables, or method parameters. The
client code should supply the names of actual types at object instantiation. C++ uses the positional
principle for parameter passing: The first parameter specified by the client code corresponds to the
first parameter specified in the template class, and so on.

When specifying the list of type parameters in the template class, you should repeat the keyword
class for each type parameter (separating the keyword class and the type parameter with

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1075 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

commas). Here is an example of a template class for dictionary entries. The class has two
components: the key component and the information content component. These components can be
of arbitrary classes as long as they support assignment and copy constructors.

template <class Key, class Data>
class DictEntry {
 Key key; // key field
 Data info; // information field
public:
 DictEntry () { } // empty default constructor
 DictEntry(const Key& k, const Data& d)
 : key(k),info(d) {} // initialize data members
 Key getKey() const
 { return key; } // return key value
 Data getInfo() const
 { return info; } // return information value
 void setKey(const Key& k)
 { key = k; } // set key value
 void setInfo(const Data& d)
 { info = d; } // set information value
 } ;

This is a rather naive design, because the set of get() and set() functions for each class data field
can be eliminated and data fields made public¡Xthe quality of the design would not change. But
this is not important; the purpose of this class example is to demonstrate the use of multiple type
parameters.

This dictionary entry class implements two objects that can be handled as a pair. For example, an
object of this class can be returned from a function call in the client code. This is somewhat faster
or simpler than passing a pointer or a reference to an object created by the client code. This is
convenient for implementation of associated arrays or dictionaries where the key object serves as
an index for finding the associated value of the information field. For the search algorithm to work,
the Key class has to support the comparison operation in addition to the assignment operator and
copy constructor.

There is no need to provide a DictEntry destructor because the class itself does not handle its
memory (data members key and info) dynamically. If any of the component classes (Key or Data)
handles additional resources and has a destructor, this destructor will be called automatically in the
process of the destruction of the dictionary entry object. This is similar to the last version of the
Stack class implemented with the List data member¡Xthe class List has a destructor, but this
version of class Stack does not need one.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1076 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

To instantiate an object of the class DictEntry, the client code has to specify two actual types: one
for the key field and another for the data field. One can use built-in and programmer-defined types
in any combination, as long as these types support assignment and copying.

DictEntry<Point,char*> entry; // reference semantics for strings

Here, the character pointer points to a character array that could be shared with other objects in the
program. As a C++ type, the character pointer supports assignment and copying. Of course, the
client programmer has to be aware that it is reference semantics that are used in this case and avoid
operations appropriate for value semantics only. In addition to providing sharing, reference
semantics saves memory (there is no need to maintain multiple copies of the same data) and
execution time (there is no need to copy strings from one object to another.

All of the horror stories I was telling you about in Chapter 11 originate from the fact that the
destructor forcibly deallocates the heap memory. Since the character pointer is not implemented as
a class here, and there is no destructor, the dangers to program integrity that I was describing in
Chapter 11 are not relevant here.

Listing 17.4 demonstrates the use of the dictionary entry class for the application that needs to
annotate the points on the screen and find the annotation for each given point. The key field in the
entry is class Point similar to the one I used in Listing 17.3. (I added a general constructor to
simplify data initialization and the comparison operator to facilitate the search.) The information
field is initialized with pointers to string literals.

After initializing the array of dictionary entries, the main() test driver prints each entry in the array.
The results of the execution are shown in Figure 17-4.

Figure 17.4. Output for program in Listing 17.4.

Example 17.4. Example of a template class with two type parameters.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1077 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

#include <iostream>
using namespace std;

class Point {
 int x, y;
friend ostream& operator << (ostream& out, const Point& p);
public:
 Point() { } // default constructor: empty
 Point(const Point &p) // copy constructor: for return
 { x = p.x; y = p.y; }
 Point(int a, int b) // general constructor: set Point
 { x = a; y = b; }
 void set(int a, int b) // set Point coordinates
 { x = a; y = b; }
 bool operator == (const Point& p) const
 { return x == p.x && y == p.y; }
} ;

ostream& operator << (ostream& out, const Point& p)
{ out << "(" << p.x << "," << p.y << ")";
 return out; }

template <class Key, class Data>
class DictEntry {
 Key key;
 Data info;
public:
 DictEntry () { } // empty default constructor
 DictEntry(const Key& k, const Data& d)
 : key(k),info(d) {} // initialize data fields
 Key getKey() const
 { return key; } // return key value
 Data getInfo() const
 { return info; } // return information value
 void setKey(const Key& k)
 { key = k; } // set key value
 void setInfo(const Data& d)
 { info = d; } // set information value
 } ;

int main()
{
 DictEntry<Point,char*> data[5];
 data[0].setKey(Point(1,2)); data[0].setInfo("Initial stage");
 data[1].setKey(Point(3,4)); data[1].setInfo("Analysis");
 data[2].setKey(Point(5,6)); data[2].setInfo("Design");
 data[3].setKey(Point(7,8)); data[3].setInfo("Implementation");
 data[4].setKey(Point(9,0)); data[4].setInfo("Testing");
 int n = sizeof(data)/sizeof(DictEntry<Point,char*>); // risky

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1078 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 cout << "Associated Data:\n";
 for (int j = 0; j < n; j++)
 { cout << data[j].getKey() << " "
 << data[j].getInfo() << endl; } // print input data
 cout << endl;
 return 0;
 }

This example demonstrates the use of template classes with more than one type parameter. The use
of multiple parameters raises a question about name conflicts. Can you define several template
classes that use the same class name? If the class has only one type parameter, the answer is
obviously no¡Xthe compiler would not be able to decide which class to use when client code
instantiates a class object.

And what about multiple parameters? Is it possible to define template classes using the same class
name, provided these templates have different numbers of type parameters?

The answer is still no. Class template names cannot be overloaded. A program may contain only
one class template with a given name, even if the number of type arguments is different.

Templates with Constant Expression Parameters

As I mentioned earlier, template parameters can also be expressions rather than types. These
expressions can be of any built-in or programmer-defined type. The type is specified in the
template definition explicitly (not as a type parameter); the client code supplies a value of this type
at the time of object instantiation.

Here is an example of the Stack template where the initial size of the heap array is specified as a
template parameter rather than as a constructor parameter as in previous versions.

template <class Type, int sz> // expression parameter
class Stack {
 Type *items; // stack of items of type Type
 int top, size; // current top, total size
 Stack(const Stack&);
 operator = (const Stack&);
public:
 Stack(); // default constructor
 void push(const Type&); // push on top of stack
 Type pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1079 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When an object of this class is instantiated, it is not enough to specify the actual type for the
elements of the array. It is also necessary to specify the size of the array.

 Stack<int,4> s; // stack object s

Notice that the stack object itself does not have any parameters; the default constructor does not
require any. Also notice that the parameter must be passed by value¡Xthe information flows in one
direction only, from the client code to the template object. Reference parameters are not
allowed¡Xa template cannot pass information back to the client code through template parameters;
ordinary function parameters can only be used for this purpose.

Template expression parameters are inherently constant even though the const modifier is not used
in the parameter definition. They cannot be changed in the code of template functions. Their actual
values can be constant expressions only. You cannot use a non-constant variable as an actual
argument for template instantiation. Only literal values or identifiers labeled const are acceptable
as actual parameters at instantiation.

int size = 4; const int length = 4;
Stack<int,size> s; // syntax error: non-constant
Stack<int,length> s; // OK: compile-time constant

When template member functions are implemented outside the scope of the class definition, all
template parameters must be listed. If the template class has expression parameters, they have to be
listed both in the template parameter list and in the class template prefix.

template <class Type, int sz> // expression parameter
Stack<Type,sz>::Stack() // expression parameter
 : size(sz),top(0)
{ items = new Type[sz]; // use expression parameter
 if (items==0)
 { cout << "Out of memory\n"; exit(1); } }

Similar to type parameters (and function parameters), expression parameters are just placeholders;
their names are not important as long as they are consistent within the function. They do not have

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1080 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

to be consistent across different functions of the template class. Here is another stack function
where I use different names for the type parameter and for the expression parameter.

template <class T, int s> // different names for parameters
void Stack<T,s>::push (const T& c) // consistent parameter names
 { if (top < size) // normal case: push symbol
 items[top++] = c;
 else
 { T *p = new T[size*2]; // get more heap memory
 if (p == 0)
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < size; i++) // copy existing stack
 p[i] = items[i];
 delete [] items; // return heap memory
 items = p;
 size *= 2; // update stack size
 cout << "New size: " << size << endl;
 items[top++] = c; } } // push symbol on top

Similar to type parameters, expression parameters have to be listed both in the template parameter
list and in the class name prefix for all member functions. Even if an expression parameter is not
used within the body of the function, it still has to be listed.

template <class Type, int sz>
Type Stack<Type,sz>::pop() // parameters are not used
{ return items[¡Xtop]; }

template <class Tp, int s>
bool Stack<Tp,s>::isEmpty() const // parameters are not used
{ return top == 0; }

template <class Type, int sz>
Stack<Type,sz>::~Stack()
{ delete [] items; } // parameters are not used

The major characteristic of template classes with expression parameters is that each instantiation
represents a different C++ type. As different types, they are not compatible, and an object of one
type cannot be used where an object of another type is expected.

Stack<int,4> s; // stack object

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1081 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Stack<int,8> s1; // incompatible stack object

Consider, for example, a global function DebugPrint(). It has the parameter of class
Stack<int,4>. Notice that the parameter object is passed by reference¡Xthe private declaration of
the Stack<Type,sz> copy constructor prevents passing stack objects by value. Also notice that the
parameter is not labeled as const because it changes (even temporarily) during function execution.

void DebugPrint(Stack<int,4>& s) // no const modifier
{ Stack<int,4> temp;
 cout << "Debugging print: ";
 while (!s.isEmpty()) // pop until stack is empty
 { int x = s.pop(); temp.push(x); // save in temporary stack
 cout << x << " "; } // print each component
 cout << endl;
 while (!temp.isEmpty()) // pop until stack is empty
 { s.push(temp.pop()); } } // restore initial state

The stack objects s and s1, are of different types. Object s can be passed as a parameter to
DebugPrint(). An attempt to do so with object s1 causes a syntax error.

 DebugPrint(s); // OK
 DebugPrint(s1); // syntax error

Actual expressions that evaluate to the same value are equivalent.

const int length = 4;
Stack<int,length> s2; // compatible with Stack<int,4>

As far as templates with type parameters only are concerned, all instantiations with the same actual
type arguments are of the same type, and one object can be used instead of another object. Here we
reconsider the template class with one type parameter.

template <class Type>
class Stack {

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1082 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Type *items; // stack of items of type Type
 int top, size; // current top, total size
 Stack(const Stack& = 100);
 operator = (const Stack&);
public:
 Stack(int); // conversion constructor
 void push(const Type&); // push on top of stack
 Type pop(); // pop the top symbol
 bool isEmpty() const; // is stack empty?
 ~Stack(); // return heap memory
} ;

These two objects, even though they have different initial array lengths, are of the same class, and
one object can be used instead of another.

Stack<int> stack1(20); // same type as other Stack<int> objects
Stack<int> stack2(50);

This is more flexible and convenient than the implementation with the expression parameter. In
general, the template class with type parameters and a constructor parameter can do everything that
a template class with the additional expression parameter and no constructor parameter can do, plus
the objects of different initial length are compatible. Avoid templates with expression parameters
unless their advantages over templates with class parameters only are evident.

Relations Between Instantiations of Template Classes

Template instantiations can be used as actual type arguments to instantiate other template classes.
For example, you can create a stack of dictionary entries with the following declaration.

Stack<DictEntry<Point,char*> > stackOfEntries; // 100 entries

Notice an extra space between the two greater than signs. If you do not insert this space, the
compiler will misunderstand the code and will shower you with a deluge of irrelevant error
messages. None of these messages indicates that you need an extra space. This is the second place
where C++ is not space blind. Another place where space is important is defining the default
parameter value for a function parameter of a pointer type where the name of the parameter is not
used.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1083 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In the declaration above, the Stack instantiation prompts the DictEntry instantiation. An
optimized compiler might cache object code for reuse in future compilations. If the compiler does
not do that, compilation and link time can grow significantly.

Template instantiations for different actual types (and expression values) are separate and have no
relation or access to each other.

For example, DictEntry<int,int> and DictEntry<float,record> are two independent distinct
classes. So are instantiations for Stack<int> and Stack<float>. Objects of these types cannot be
used one instead of another.

A class can declare all its template instantiations to have a common base non-template class:

template <class T>
class Stack : public BaseStack {
¡K. } ;

All instantiations of class Stack will have access to BaseStack objects according to the rules of
inheritance. These instantiations cannot have access to each others non-public components.

Template Classes as Friends

A non-template class (or function) can be declared as a friend of all instantiations of a template
class, if the use of instantiated objects does not depend on their type:

template <class T>
 class Stack {
 friend class StackUser;
 ¡K. } ;

Here, class StackUser has access to non-public components of any instantiation of class Stack, no
matter what type is used as an actual type.

Conversely, a template class (or function) can be declared as a friend of a non-template class even
when its type parameter is not bound to any actual value.

class Node {
template <class T> friend class Stack;
 int item;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1084 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Node *next; // Node *next' is also OK
 Node(const int val) : item(val)
 { next = NULL; }
 } ;

Here the Node class can support the information field and the link to the next node in the linked list.
It does not need any member functions with the exception of the constructor that initializes both
data fields.

Each instantiation of the Stack class is a friend of the non-template class Node and has access to its
non-public members. This might be useful if factoring out common code decreases the size (and
compile/link time) of the object code. Instead of heap memory allocated at instantiation (or at array
overflow), the Stack class can allocate a Node object every time data is pushed on the stack and
deallocate the top Node object when the data is popped from the stack.

However, this is not very useful. One type Node (e.g., with the integer information field) cannot
accommodate different types of objects that the client code wants to push on the stack. This means
that class Node has to be a template as well.

This also means that class Node should be defined as a template class. Then different types of
Stack objects can instantiate and access different types of the Node object with different types of
the item field.

template <class Type> // template class
 class Node {
 friend class Stack<T>; // any type of component
 Type item;
 Node<Type> *next; // Node *next' is also OK
 Node(const Type& val) : item(val)
 { next = NULL; }
 } ;

The technical term for this use of templates is unbounded types. The parameter Type is independent
of parameter T, and each parameter can accept any actual values independently of each other.
Come to think of it, this is more than you need. Here, each instantiation of class Stack (e.g., for
type float) has access to details of each instantiation of class Node (e.g., of class Point). This
code does not implement a realistic model of the real world.

We need to enforce a one-to-one mapping between related instantiations, so that a stack of integers
becomes a friend of an integer node only, not of a node with other types of the item field. To

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1085 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

achieve that mapping, we can bind a friend (client) template class (in this case, Stack) to the same
type(s) as the template class that provides services (in this case, Node).

template <class Type> // template class
 class Node {
 friend class Stack<Type>; // same type of component
 Type item;
 Node<Type> *next; // Node *next' is also OK
 Node(const Type& val) : item(val)
 { next = NULL; }
 } ;

Here, for each instantiation of Node to a specific type (e.g., of class Point,) the Stack instantiation
to the same type (class Point) is made a friend to this instantiation of class Node.

Class Stack now has a data member of class Node pointer that is initialized to zero in the Stack
constructor. When the next node is pushed on the stack, this pointer points to the new node (and the
new node points to the node that used to be the first node in the list). The member function
isEmpty() checks whether this pointer is NULL or points to a node. This means that function pop()
has to set this pointer to NULL when the last node is removed from the stack.

template <class T>
class Stack {
 Node<T> *top; // Node *top; is illegal here
public:
 Stack() // default: no initial length
 { top = NULL; }
 void push(const T&);
 T pop();
 int isEmpty() const
 { return top == NULL; } // does top point to a node?
 ~Stack();
 } ;

As for any template, the use of Node outside of Node definition must be qualified with the
parameter list. This is why the Stack data member top cannot be of type Node*¡Xit should be of
type Node<T>*, where T is the Stack type parameter. As a result of this qualification in the Stack
definition, instantiation of a Stack class object results in the automatic instantiation of a Node class
data field of the same type.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1086 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The Stack method push() allocates a new Node object on the heap. The call to the Node
constructor initializes the item field of the Node object to the value of the push() parameter. The
next field of the new Node is set to point to the node that the Stack field top is currently pointing
to, and the top field is reset to point to the new Node object.

template <class T>
void Stack<T>::push (const T& val)
 { Node<T> *p = new Node<T>(val); // type Node<T>, not Node
 if (p == NULL)
 { cout << "Out of memory\n"; exit(1); }
 p->next = top; // point it to first node
 top = p; } // point to new node

There is no need to test for array overflow in push() because there is no array in this
implementation. There is still the need to test whether the allocation of the Node object is
successful. Notice the type of the pointer¡Xit is not Node*; it is Node<T>*. Similarly, when the
heap space is requested by the operator new, it is of type Node<T>, not of type Node, The type T
will be provided at the time of Stack instantiation.

The Stack method pop() sets the local pointer (of type Node<T>, not just Node) to point to the first
node of the stack, copies the information field into a local variable (of type T), moves the top field
to point to the second node, and deletes the top node because it is not needed anymore.

template <class T>
T Stack<T>::pop() // return value of type T
 { Node<T> *p = top; // Node of type T, not Node
 T val = top->item; // get the value of type T
 top = top->next; // point to the second node
 delete p; // return top node to heap
 return val; }

When pop() deletes the last node of the list (and there is no second node for the field top to point
to), the top pointer becomes NULL again. Why? Because when the first node was inserted in
push(), the statement p->next=top set this field to NULL (because the Stack constructor set the
field top to NULL.) Make sure you see that the member functions of the same class are tightly
coupled to each other through the class data. The source code of the member functions has to be
coordinated to make sure the functions cooperate correctly.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1087 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The Stack destructor has to scan the linked list of remaining nodes and return them to the heap.
The local pointer p of type Node<T> with the component of type T is used again. It is set to point to
the first node of the list. Notice that the pointer to the first node of the list, the data member top, is
of the same type as pointer p: Node<T>. In a while loop, the top pointer moves to the next node,
the node pointed to by the pointer p is deleted, and pointer p moves to point to the next node as
well.

template <class T>
Stack<T>::~Stack()
 { Node<T> *p = top; // type Node of type T
 while (top != NULL) // top is 0 when no nodes
 { top = top->next; // point to the next node
 delete p; // delete the previous node
 p = top; } } // traverse to the next node

The advantage of this approach is that class Node is independent of class Stack. This means that
class Node can be used by other friend classes, for example, Queue, and List. Since all Node
members (including the constructor) are private in this design, non-friend clients cannot create or
access Node objects.

Another approach is to provide each client with its own private server class. If the Node definition
is nested within the private section of the client, then only that client (and its friends) can access
class Node. This again raises the issue of coordination (mapping) between template definitions.

Nested Template Classes

With nested design, the definition of the template class Node is nested within the definition of the
container class that handles Node objects. Since the Node definition is entirely within the scope of
the container class (e.g., Stack,) the name Node is not visible to other potential clients (e.g., Queue
and List.) Hence, Node members can be made public, and there is no need to declare its single
client (e.g., Stack) as a friend to class Node.

This is the first attempt on the design with nested classes. Class Node is defined using the keyword
struct and all its members are public.

template <class T>
class Stack {
 template <class Type> // Is it legal? Is it needed?

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1088 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 struct Node {
 Type item;
 Node<Type> *next; // type depends on instantiation
 Node(const Type& val) : item(val)
 { next = NULL; } } ;
 Node<T> *top; // Stack data member
public:
 Stack() // default: no initial length
 { top = NULL; }
 void push(const T&);
 T pop();
 int isEmpty() const
 { return top == NULL; } // does top point to a node?
 ~Stack();
 } ;

There are two problems with this definition. First, some compilers do not accept nested template
definitions¡Xthey can only process global templates. Second, there is no need to use unbounded
template types. In this design, mapping between classes Stack and Node is one-to-many: For any
type argument for class Stack, class Node can use any other type. A mapping between Stack and
Node should be one-to-one rather than one-to-many: Class Stack needs a Node object that is
instantiated to the same actual type as class Stack itself.

A good way to achieve that is to define class Stack as a template and then define class Node as a
regular non-template class that uses the Stack type parameter for its data member and for its
method parameter types.

template <class T>
class Stack {
 struct Node { // it depends on parameter type
 T item; // same type as in Stack
 Node *next; // Node<T> is incorrect here
 Node(const T& val) : item(val) // same type as in Stack
 { next = NULL; } } ;
 Node *top; // it is not a template now
public:
 Stack() // default: no initial length
 { top = NULL; }
 void push(const T&);
 T pop();
 int isEmpty() const
 { return top == NULL; } // does top point to a node?
 ~Stack();

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1089 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 } ;

Each instantiation of the Stack templates generates a Node class that uses the same type as the
Stack actual type argument. There is no need to qualify the type Node within the Stack definition.

The same is true of Stack member functions. When a local pointer is defined in a member
function, it is defined as a pointer to type Node, not a pointer to the type Node<T>. For example,
method push() is almost the same as in the previous version, but the pointer p is defined
differently. I commented out the previous version of the pointer definition so that you can compare
both versions.

template <class T>
void Stack<T>::push (const T& val)
// { Node<T> *p = new Node<T>(val); // type Node<T>, not Node
 { Node *p = new Node(val); // type Node, not Node<T>
 if (p == NULL)
 { cout << "Out of memory\n"; exit(1); }
 p->next = top; // point it to first node
 top = p; } // point to new node

The same is true of other methods of the container class. Listing 17.5 shows the implementation of
the template class Stack with a nested class Node. The output of the program is shown in Figure
17-5.

Figure 17.5. Output for program in Listing 17.5.

Example 17.5. Example of a template class with a nested server class.
#include <iostream>
using namespace std;

template <class T>
class Stack {
 struct Node { // it depends on parameter type

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1090 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 T item; // same type as in Stack
 Node *next; // Node<T> is incorrect here
 Node(const T& val) : item(val) // same type as in Stack
 { next = NULL; } } ;
 Node *top; // it is not a template now
public:
 Stack() // default: no initial length
 { top = NULL; }
 void push(const T&);
 T pop();
 int isEmpty() const
 { return top == NULL; } // does top point to a node?
 ~Stack();
 } ;

template <class T>
void Stack<T>::push (const T& val)
// { Node<T> *p = new Node<T>(val); // type Node<T>, not Node
 { Node *p = new Node(val); // type Node, not Node<T>
 if (p == NULL)
 { cout << "Out of memory\n"; exit(1); }
 p->next = top; // point it to first node
 top = p; } // point it to new node

template <class T>
T Stack<T>::pop() // return value of type T
// { Node<T> *p = top; // type Node<T>, not Node
 { Node *p = top; // type Node, not Node<T>
 T val = top->item; // get the value of type T
 top = top->next; // point to the second node
 delete p; // return top node to heap
 return val; }

template <class T>
Stack<T>::~Stack()
// { Node<T> *p = top; // type Node of type T
 { Node *p = top; // type Node of type T
 while (top != NULL) // top is 0 when no nodes
 { top = top->next; // point to the next node
 delete p; // delete the previous node
 p = top; } } // traverse to the next node

int main()
{
 int data[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 } ;
 Stack<int> s; // stack object
 int n = sizeof(data)/sizeof(int); // number of components
 cout << "Initial data: ";
 for (int j = 0; j < n; j++)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1091 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { cout << data[j] << " "; } // print input data
 cout << endl;
 for (int i = 0; i < n; i++)
 { s.push(data[i]); } // push data on the stack
 cout << "Inversed data: ";
 while (!s.isEmpty()) // pop until stack is empty
 cout << s.pop() << " ";
 cout << endl;
 return 0;
 }

As you see, binding the component types for coordinated template classes depends on the overall
design approach. What is disheartening is that a solution appropriate for one design (e.g., global
classes) is not appropriate for another design (e.g., nested classes). In all cases, you should make
sure that when one class is instantiated for a specific type, the second class is instantiated to the
same type.

Templates with Static Members

If a template class declares static data, each template instantiation will have a separate set of these
static members. All objects that belong to this particular instantiation will share the same static
member(s), but they will have no access to static members that belong to an instantiation for a
different actual type parameter.

For example, class Stack can declare its top data member static. This is an interesting design
alternative¡Xwith the top data member static, the data fields item and next can be moved to the
class Stack itself as a non-static data member. What is left in class Node then? Nothing. It becomes
redundant. Hence, this design allows one to get rid of class Node.

In this design, class Stack combines the roles of the Stack in previous examples (calls to push(),
pop(), and isEmpty() member functions) and the role of the Node class (fields item and next.)
This is why it has two constructors: the default constructor and the conversion constructor.

The default constructor is called when a Stack object is instantiated in the client code. It does not
have to do anything, but it has to be there to eliminate a syntax error. The conversion constructor is
called from method push(): When a new node has to be allocated, push() creates a new Stack
object rather than a new Node object. The constructor initializes the item field (to the value to be
stored) and the next field (to point to the top stack node).

The pop() function deletes the top node using a local pointer. The type of pointer is a pointer to
Stack<T>. Since it is a pointer to an object of type Stack, the Stack destructor (instead of the
Node destructor as in previous versions) is called. In the previous versions, the Stack destructor

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1092 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

deleted remaining stack nodes. Here, this is harmful. This is the reason that class Stack does not
have a destructor. (It has the default destructor that does nothing.)

template <class T> class Stack {
 static Stack *top; // static data member
 T item; // from Node
 Stack *next; // from Node
public:
 Stack() { } // create object in client
 Stack(const T& val)
 : item(val), next(top) // create new node in push()
 { top = this; }
 void push(const T& val)
 { Stack<T> *p=new Stack<T>(val); } // no Node<T>, no Node
 T pop()
 { Stack<T> *p = top;
 T val = top->item; // no Node<T>, no Node
 top = top->next; // point to second node
 delete p; // delete top node: destructor
 return val; }
 int isEmpty() const
 { return top == NULL; }
 void remove() // no call to destructor
 { Stack<T> *p = top; // trailing pointer
 while (top != NULL)
 { top = top->next; // go to next node
 delete p; // delete previous node
 p = top; } } // catch up with next node
} ;

The absence of the destructor creates the danger of a memory leak. To avoid it, class Stack
provides the remove() method that does the same thing as the Stack destructor in the previous
versions. The drawback of this design is that the client code has to explicitly call the remove()
method to dispose of remaining nodes on the stack (if any).

Initialization of the static member of the template class takes place not at the beginning of the
program execution (as for static members of regular classes) but when a template object is
instantiated, because it is at this moment that the static member for this particular actual type is
created.

The syntax of the initialization statement (in a header file) should:

ϒΠ indicate that the static member belongs to template

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1093 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ specify the type of the static member

ϒΠ specify the scope of the static member

ϒΠ specify its name and the initial value

This is how the initialization statement for the stack static data member top looks: Its type is
Stack<T>*, its scope is Stack<T>, its name is top, and its initial value is NULL.

template <class T> // it belongs to template
 Stack<T>* Stack<T>::top = NULL;

The client can declare only one object of a given type. For example, for a stack of integers, this is
how the template instantiation looks like.

 Stack<int> s; // only one object per type

Since all stacks of integers share the same static member pointing to the top of the linked list, it is
not a good idea to instantiate more than one object of this type.

Template Specializations

The C++ idea of a template is based on the assumption that the algorithm works in exactly the same
way for different data types. Then writing just one class instead of writing a separate class for each
type makes sense. Sometimes, however, this assumption does not hold. The algorithm works the
same way for different data types, but for some types, some details of the algorithm have to be
implemented differently.

Consider, for example, a template class Array that contains a set of data (of a component type) and
allows the client code to check whether a given element (of the component type) can be found in
the collection.

template <class T>
class Array {
 T *data; // heap array of data
 int size; // size of the array
 Array(const Array&);
 operator = (const Array&);
public:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1094 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 Array(T items[], int n) : size(n) // conversion constructor
 { data = new T[n]; // allocate heap memory
 if (data==0)
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < n; i++) // copy input data
 data[i] = items[i]; }
 int find (const T& val) const
 { for (int i = 0; i < size; i++)
 if (val == data[i]) return i; // return index if found
 return -1; } // otherwise return -1
 ~Array()
 { delete [] data; }
 } ;

This template class contains only a constructor, a method find(), and a destructor. The
constructor allocates heap space sufficient for input data and copies the input array into the heap
memory. The method find() searches the heap array; if the parameter value is not found, it returns
1; if the value is found, the method returns the index of the value. The destructor returns the heap
memory.

The client code instantiates the Array object of type int, initializes it, and prints the results of the
search for the given value.

int main()
{ int data1[] = { 1, 2, 3, 4, 5 } ;
 int n1 = sizeof(data1)/sizeof(int); // number of components
 cout << "Initial data: ";
 for (int j = 0; j < n1; j++)
 { cout << data1[j] << " "; } // print input data
 cout << endl;
 Array<int> a1(data1,n1); // array object
 int item1 = 3; int idx;
 if ((idx = a1.find(item1)) != -1)
 cout << "Item " << item1 <<" is at index " << idx << endl;
 return 0; }

This should work for integers, characters, even Point objects in exactly the same way: For each of
these types, the Array object will contain an independent copy of the input values; and for each of
these types, the comparison operation in the find() method will do its job well. If, however, the
Array object is instantiated for the component of the character array type, both the constructor and
the find() method have a problem.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1095 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Array<char*> a2(data2,n2);

Here, the array data2[] is an array of character strings. The constructor of the Array template will
copy the pointers to strings, not the strings themselves. This creates no problem when the data
comes from the hardcoded set (as in the code snippet above). In real life, the data comes from an
external source (rather than from hardcoded arrays), and each input value has to be allocated its
independent space. The Array constructor does not do that: The pointers it will copy into the
container will point to the same character array in the client space. Similarly, the find() method
will compare the string addresses rather than the string contents. You see that for a character array
as an Array component, the general form of the template class does not work¡Xit needs copying
strings in the constructor and comparing strings in find().

C++ supports the concept of specialization to deal with the type arguments that need special
treatment. For each special class, a separate specialized class template should be provided. The
syntax for describing the specialization is a mixture of the syntax for the template class itself (with
the template parameter list) and the template initialization in the client code (with the actual type
list). You take the type parameter from the template parameter list and move it into the actual type
list. If the brackets of the template parameter list become empty as a result, this is fine. For
example, the Array template class header:

 template <class T> // remove class T from brackets
 class Array { // append <char*> to class name

becomes

 template <> // empty template parameter list
 class Array<char*> { // actual type list

In the methods of template specialization, you describe what should be done for this particular type.
Notice that the template definition and the specialized template definition should both be present. It
is not right to include the specialized template definition without the template itself. The template
specialization is instantiated using the same syntax as for the template class object: The actual type,
even though it was specified in the template description, is repeated in the type name in the client

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1096 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

code.

 Array<char*> a1(data2,n2); // specialized template object

Listing 17.6 shows the complete program that contains the template Array and its specialized
template for the components of the character array type. The test driver initializes the template class
object a1 and the specialized template object a2 and sends messages to each object. The output of
the program is shown in Figure 17-6.

Figure 17.6. Output for program in Listing 17.6.

Example 17.6. Example of a template class specialization.
#include <iostream>
using namespace std;

template <class T>
class Array {
 T *data; // heap array of data
 int size; // size of the array
 Array(const Array&);
 operator = (const Array&);
public:
 Array(T items[], int n) : size(n) // conversion constructor
 { data = new T[n]; // allocate heap memory
 if (data==0)
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < n; i++)
 data[i] = items[i]; }
 int find (const T& val) const
 { for (int i = 0; i < size; i++)
 if (val == data[i])
 return i;
 return -1; }
 ~Array()
 { delete [] data; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1097 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 } ;

template <> // empty template list
class Array <char *> { // type of specialization
 char* *data; // heap array of data
 int size; // size of the array
 Array(const Array&);
 operator = (const Array&);
public:
 Array(char* items[], int n) : size(n) // conversion
 { data = new char*[n]; // allocate heap memory
 if (data==0)
 { cout << "Out of memory\n"; exit(1); }
 for (int i=0; i < n; i++)
 { int len = strlen(items[i]); // special for strings only
 data[i] = new char[len+1];
 strcpy(data[i],items[i]); } }
 int find (const char*& val) const
 { for (int i = 0; i < size; i++)
 if (strcmp(val,data[i])==0) // special for strings only
 return i;
 return -1; }
 ~Array()
 { delete [] data; }
 } ;

int main()
{

 int data1[] = { 1, 2, 3, 4, 5 } ;
 char* data2[] = { "one", "two", "three", "four", "five" } ;
 int n1 = sizeof(data1)/sizeof(int); // number of components
 int n2 = sizeof(data2)/sizeof(char*);
 cout << "Initial data: ";
 for (int j = 0; j < n1; j++)
 { cout << data1[j] << " "; } // print input data
 cout << endl;
 for (int i = 0; i < n2; i++)
 { cout << data2[i] << " "; } // print input data
 cout << endl;
 Array<int> a1(data1,n1); // array object
 Array<char*> a2(data2,n2); // specialized object
 int item1 = 3; int idx;
 char* item2 = "three";
 if ((idx = a1.find(item1)) != -1)
 cout << "Item " << item1 <<" is at index " << idx << endl;
 if ((idx = a2.find(item2)) != -1)
 cout << "Item " << item2 <<" is at index " << idx << endl;
 return 0;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1098 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 }

C++ also supports partial specializations. They provide specific treatment for only one of several
type parameters. For example, the template class DictEntry from Listing 17.4 supports two type
parameters:

template <class Key, class Data>
class DictEntry {
 Key key;
 Data info;
public:
¡K} ; // the rest of the class

For the Key type instantiated to character array, a specialized template is created by moving the Key
parameter from the template parameter list and appending the specialized type (in angle brackets)
to the class name.

template <class Data> // remove the Key type
class DictEntry <char*>{ // append specialized type
 char* key; // replace the Key type
 Data info;
public:
¡K} ; // the rest of the class

This is not the end of the story. You can specialize as many type parameters as needed. When all
parameters are specialized, you wind up with the empty angle brackets in the template parameter
list. Here is the example for the DictEntry class.

template < > // remove both parameter types
class DictEntry <char*, char*>{ // append specialized types
 char* key; // replace the Key type
 char* info; // replace the Data type
public:
¡K} ; // the rest of the class

If only the second parameter should be treated in a special way, this is not a problem, but you have
to repeat the first type parameter in the list of actual types.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1099 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

template <class Key>
class DictEntry <Key, char*> {
 Key key;
 char* info;
public:
¡K} ; // the rest of the class

When the compiler processes a template instantiation, it selects the most specialized alternative that
fits the bill. If a specialized alternative for the actual type is not found, the compiler uses the
general template class to generate the object.

Using specialization is often a necessity (when one component type requires special treatment).
Using specializations makes programs larger, more complex, and more difficult to understand. Not
all compilers support specializations well. When one of the data types requires special treatment
(most often, it is a character array), consider writing a separate class with a separate name, for
example, CharArray. The advantage of writing a separate class is that there is no doubt which
class is used to instantiate the object. The disadvantage is that there is no guarantee that similar
features are treated similarly in different special classes.

Sometimes, this tradeoff is difficult to make. C++ specialized classes give you one way to resolve
the problem. Decide for yourself what you want to use.

Template Functions

A stand-alone nonmember function can be defined as a template; the syntax is similar to the syntax
of template class member functions.

template <class T>
void swap(T& x, T& y)
{ T a = x; x = y; y = a; }

When the function needs a prototype, it also contains the template parameter list with each class
keyword followed by a parameter.

template <class T> void swap(T& x, T& y);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1100 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Both the definition and the prototype (forward declaration) start with the template keyword
followed by the formal parameter list in angle brackets; each formal parameter consists of the
keyword class followed by a programmer-defined identifier. The keyword class and the
identifier are separated by commas. The identifier must occur only once in the parameter list.

template <class T, class T> // this is illegal
void swap(T& x, T& y)
{ T a = x; x = y; y = a; }

Each type parameter must be used in the parameter list of the template function. If the type
parameter is not present in the parameter list, the compiler flags it as a syntax error

template <class T>
 int isEmpty(void); // compile-time error for global function

Similar to non-template functions, template functions can be declared extern, inline, or
static; the specifier (if any) follows the template list of formal parameters and precedes the
function return type.

template <class T>
inline void swap(T& x, T& y) // inline function
{ T a = x; x = y; y = a; }

When the compiler processes the definition of a template function, it does not generate object code.
Instantiation of a template function takes place at its invocation. Since each actual parameter is
mentioned in the parameter list by name, and its type is known to the compiler, there is no need to
specify the actual argument type at the template invocation:

int a=5, b=10; double c=3.0, d=4.0;
swap(a,b); // instantiation for integers
swap(c,d); // instantiation for double

Since compiler knows the types of the actual arguments a and b for the first call and c and d for the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1101 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

second call, it generates code for swap(int&,int&) and swap(double&,double&).

A return value is not considered for parameter matching; conversions can be done as needed.
However, implicit conversions are not used for template arguments. If the compiler cannot decide
which function to generate to match arguments exactly, it is a syntax error.

 swap(a,c); // syntax error: no exact match

Overloading of template functions is allowed provided they can be distinguished by the types of the
actual arguments or by the number of arguments.

template <class T>
inline void swap(T& x, T& y, T& z) // three parameters
{ T a = x; x = y; y = z; z = a; }

This function can be distinguished from the swap() function with two parameters.

int a=5, b=10, c=20;
swap(a,b); swap(a,b,c);

Template functions can be specialized to adjust their behavior for specific types. For example,
character arrays cannot be swapped as integers, and a specialized version must be used. The rules
for forming function specializations are the same as for template class specializations. You deplete
the template parameter list and move actual types (in angle brackets) between the function name
and the parameter list. Here is a specialized function swap().

template < >
inline void swap <char*> (char* x, char* y)
{ char* a = new char[strlen(x)+1];
 char* b = new char[strlen(y)+1];
 if (b==NULL) { cout << "Out of memory\n"; exit(1); }
 strcpy(a,x); strcpy(b,y); // caller must assure space
 strcpy(x,b); strcpy(y,a);
 delete a; delete b; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1102 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Client code:

 char x[20]="Hello!", y[20]="Hi, there!"; int a=5, b=10;
 swap(a,b); // general template function is instantiated
 swap(x,y); // specialized template function is instantiated

The compiler first searches for a non-template function; if one is found and parameters match
exactly, templates are not considered; if more than one non-template alternative matches, it is a
syntax error.

If no matching non-template alternative is found, then templates are examined. If there is an exact
match and its instantiation already exists, it is used and no new object code is generated; otherwise,
the function is instantiated; if more than one match is found, it is an error.

If no matching template function is found, non-template functions are examined using implicit
conversions and promotions of arguments.

A template function cannot be called by or be passed as an argument to a non-template function.

Summary

In this chapter, we looked at a powerful tool for code reuse: C++ templates. The underlying idea is
very simple and attractive: If the algorithms should be the same for different types, you should
write it only once and later indicate for what actual type you want this algorithm to be used.

This is the ideal, but the practical use of this idea faces a number of difficulties. The syntax of C++
templates is complex. The use of specializations complicates matters even more. Sometimes
figuring out which specialization will be called in each case becomes a chore. Sometimes, what
works on one machine under one compiler will not work on another machine under a different
compiler.

In addition, the use of templates entails space and performance penalty. This is why many C++
programmers try to avoid templates. On the other hand, templates are utilized in the Standard
Template Library (STL), and you have to understand the basic principles of using templates to be
able to handle the STL library correctly.

It is a powerful tool. Use it with care.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1103 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Chapter 18. Programming with Exceptions

Topics in this Chapter

ϒΠ A Simple Example of Exception Processing

ϒΠ Syntax of C++ Exceptions

ϒΠ Exceptions with Class Objects

ϒΠ Type Cast Operators

ϒΠ Summary

In this chapter, I will deal with a relatively new C++ topic: programming with exceptions.
Exception is a language mechanism that allows the programmer to separate source code that
describes the main case of processing from source code that describes exceptional situations.
Exceptional situations are situations that should not occur during normal processing but from time
to time do occur. Separating this exception processing from the main case makes the main case
easier to read and to maintain. It also makes exceptional cases easier to read and to maintain.

This definition is somewhat vague, is it not? It does leave room for interpretation. Indeed, what
some people view as an exceptional or abnormal situation, other people perceive as a genuine part
of system operations. For example, when you allocate memory on the heap, the algorithm should
describe what happens if the request is satisfied. Since it is possible that the computer runs out of
memory, the algorithm should also specify what happens when memory is not available. Is running
out of memory an exception? Most people would say yes.

Similarly, when the program reads data interactively from the online user, the algorithm specifies
the processing of valid data. What happens if the user makes a mistake and inputs data that is
invalid? Is this an exception? Most people would say no, online mistakes are a way of life, and the
algorithms for processing these mistakes should be viewed as part of basic system functionality, not
something that happens only rarely.

Similarly, when you read data from a file in a loop, the algorithm specifies what happens when the
next record is read¡Xhow different parts of the record should be processed. Since it is possible that
there are no more records in the file, the algorithm should define what happens when there are no
more records to read. Is reaching the end-of-file indeed an exception? Most people would say no,
this is an event that marks the end of one stage of processing (reading file records in) and the
beginning of the next stage of processing (computations on data in memory).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1104 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Regardless of whether the programmer perceives the situation as mainline processing with some
additional exceptional cases (the first example) or as a set of different cases of approximately equal
importance (the second and the third examples), the issue of clogging the source code with diverse
computational tasks is both real and important.

To be able to make intelligent decisions on structuring your algorithms, you should have a good
understanding of the tools available in the programming language. This is why I will try first and
foremost to explain what exceptions (as a C++ programming technique) are, what syntax they
impose on the programmer, how to use them correctly, and what incorrect uses you should try to
avoid.

Initially, C++ did not support exceptions and relied on C mechanisms for exception processing by
using global variables accessible to the whole program (e.g., errno) or jumps and calls to special
functions whose names are fixed but whose contents might be specified by the programmer (e.g.,
setjmp and longjmp).

The C++ exception facility is a relatively new language feature. Similar to C++ templates, the
exception mechanism is complex. The experience in using exceptions is rather limited, and the
advantages of their use for system design are not demonstrated yet. In addition, the use of C++
exceptions increases the program execution time and the size of the executable program. This is
why I do not think you should use exceptions at every opportunity that presents itself. Eventually,
however, they should become a legitimate part of your programming toolbox.

A Simple Example of Exception Processing

Usually, processing algorithms use C++ flow control statements, mostly the if or switch
statements, to separate normal processing of data from processing of erroneous or faulty data. For
multistep algorithms, the segment of source code for main algorithm and for exceptional conditions
are written in alternative branches of the same source code, and this often makes code harder to
read¡Xthe main line is lost in the multitude of exceptional and rare cases.

When something goes wrong in a function, the function might not know what to do about the error.
Aborting the program might be a good solution in many situations, for example, trying to push an
item onto a system stack that turns out to be full. On the other hand, aborting the program might not
release resources held by the program, such as opened files or database locks.

Another approach is setting an error code or returning an error value for the caller to check and to
take a recovery action if this action is possible. For example, when the client code makes an
attempt to pop an item from an empty stack, returning an error value might be an attractive
alternative. However, this is not always feasible. If any return value of the given type is legal for
the pop function, there may be no special value to be returned to signal an exceptional condition to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1105 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

the caller.

When this approach is feasible, it imposes the obligation to always check for possible errors in
client code. This increases the overall size of the program, results in awkward client code, and
causes slower execution. In general, this approach is error prone. Some functions, such as C++
constructors, do not have returned values, and this approach cannot be used.

Setting a global variable, e.g., errno, to indicate an error does not work for concurrent programs.
It is also hard to implement consistently for sequential programs because it requires that the client
code diligently check the value of the global variable. These checks clog the client code and make
it more difficult to understand.

By using library functions such as setjmp and longjmp, the program can transfer control to an
action that would release external resources and perform error recovery, but this would unwind the
stack without calling destructors for objects created on the stack before these functions were called.
Hence, the resources held by these objects might not be properly released.

Let us consider a simple example and review the issues that exception processing techniques should
resolve. Listing 18.1 shows a program that interactively prompts the user for the values of a
numerator and denominator of the fraction and computes and prints the fraction's value. To
compute the result, the program uses two server functions, inverse() and fraction(). The first
function returns the inverse of its argument. It is called by the second function, fraction(), which
multiplies its first argument by the value returned by inverse().

This is, of course, a somewhat convoluted design for such a simple computational problem. A
simpler design would not let me demonstrate different options of exception processing. A more
complex problem would justify a more complex design but would drown me (and you) in a mire of
details.

In this problem, the zero value of the denominator is not acceptable and is rejected with a message.
A negative value of the denominator is not acceptable either: If the fraction is negative, it is the
numerator that should be made negative. The negative denominator value should be rejected with a
message that also prints the offending value.

The input loop continues until the user enters a letter instead of numeric input data. The cout
statement returns zero, and the break statement terminates the loop. The sample output of the
program is shown in Figure 18-1.

Figure 18-1. Output for program in Listing 18.1.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1106 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 18.1. Example of a program with error processing in the client code.
#include <iostream>
using namespace std;

inline void inverse(long value, double& answer)
{ answer = 1.0/value; } // answer = 1/value

inline void fraction (long numer,long denom,double& result)
{ inverse(denom, result); // result = 1.0 / denom
 result = numer * result; } // result = numer/denom

int main()
{
 while (true) // infinite loop
 { long numer, denom; double ans; // numerator and denominator
 cout << "Enter numerator and positive\n"
 << "denominator (any letter to quit): ";
 if ((cin >> numer >> denom) == 0) break; // enter data
 if (denom > 0) { // correct input
 fraction(numer,denom,ans); // compute result
 cout << "Value of the fraction: " << ans <<"\n\n";
 }
 else if (denom == 0) // invalid result
 cout << "\nZero denominator is not allowed\n\n";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1107 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 else
 cout << "\nNegative denominator: " << denom <<"\n\n"; }
 return 0;
 }

In this example, both exceptional conditions (the zero denominator and the negative denominator)
are discovered in the client code, and the errors are processed immediately in the place where they
are discovered. Server functions inverse() and fraction() do not have a chance to deal with
erroneous input data. This is why they compute their output unconditionally, without a test of the
validity of input data.

Error recovery here is done by printing an error message and repeating the request for the next
input data. The mainline code (a call to the fraction() server function) here is not separated from
error-processing code, but it does not result in serious problems.

Often, an error can be discovered only after some processing, in the server code, far from the place
where the error actually originated. Some of these errors could be processed at the place of their
discovery, but some might require additional knowledge that might be absent in the server function
that discovered the error. In this case, the information about the error should be passed back to the
client code for processing and, if possible, recovery. I will model such a situation by moving the
test of input data from client code to the server function inverse().

Listing 18.2 demonstrates this approach to error processing. Function inverse() computes the
inverse of its argument. If the value of the argument is zero, inverse() uses the DBL_MAX constant
(defined in the header file cfloat or float.h) as the inverse value. Then it checks the answer to
determine the validity of the result and tells the caller what happened during the call.

If the answer is DBL_MAX, the inverse() function processes the error by printing an error message
and returning the zero value to tell the caller about it. If the argument is negative, the inverse()
function returns its value¡Xthe client will figure that out and will process the error. Otherwise,
inverse() returns 1, and this will tell the caller that the value of the formal argument answer is
valid.

Function fraction() evaluates the return value of inverse(). If this value is 1 (the valid result),
it computes the value of the fraction. If the returned value is negative (a negative denominator), it
passes this value to its own client and sends to the client additional data for error processing (the
message to be printed). The client code evaluates the return value of fraction(). If it is 1, the
results are valid, and the main function displays the result. If the return value of fraction() is
negative, the client code prints this value and the message it received from fraction().
Otherwise, the client code does not do anything because the error (zero denominator) was already
processed in inverse(). The result of a sample run of the program in Listing 18.2 is shown in

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1108 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Figure 18-2.

Figure 18-2. Output for program in Listing 18.2.

Example 18.2. Example of a program with errors discovered by the server code.
#include <iostream>
#include <cfloat>
using namespace std;

inline long inverse(long value, double& answer)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 { cout << "\nZero denominator is not allowed\n\n";
 return 0; } // zero denominator
 else if (value < 0)
 { return value; } // negative denominator
 else
 return 1; } // valid denominator

inline long fraction (long n,long d,double& result,char* &msg)
{ long ret = inverse(d, result); // result = 1.0 / d
 if (ret == 1) // valid denominator
 { result = n * result; } // result = n / d
 if (ret < 0)
 msg = "\nNegative denominator: ";

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1109 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 return ret; }

int main()
{
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 char *msg; long ret; // error information
 cout << "Enter numerator and positive\n"
 << "denominator (any letter to quit): ";
 if ((cin >> numer >> denom) == 0) break; // enter data
 ret = fraction(numer,denom,ans,msg); // compute answer
 if (ret == 1) // valid answer
 cout << "Value of the fraction: " << ans <<"\n\n";
 else if (ret < 0)
 cout << msg << ret << "\n\n"; } // negative value
 return 0;
}

You see that the separation between the place of discovery of the error and the place of recovery
from the error results in a more complex solution. The server functions have extra return values and
extra parameters to deal with¡Xstronger coupling makes different parts of the program more
dependent on each other. The client code has to abide by complex conventions on return values (in
this example, returning 1 denotes the valid argument value, returning zero or a negative number
denotes an invalid argument value) and behave differently for different return values. This makes
the client code more complex and requires additional documentation so that client programmers
and server programmers use common conventions successfully.

Another problem with this approach is that the server code, in this example, the inverse() and
fraction() functions, is involved not only in error discovery but also in communications with the
user about the causes of the error. For this simple example of three functions this is probably not a
grave problem. In more complex programs, it is important to make sure that each function performs
one function (pun intended) only. The function that computes the inverse of its argument should
know how to compute the inverse of its argument and should not get into the user interface. The
function that is responsible for the user interface should know what to tell the user and should not
be involved in other computations. These responsibilities have to be separated.

Yet another problem with this approach is that the components of the user interface are spread all
over the code of the program. When the program has to be repackaged into French, Spanish,
Russian, or another language, there is no specific place in the program that has to be changed¡Xall
program source code has to be inspected and modified. This is asking for trouble.

Listing 18.3 represents an attempt to eliminate the last two drawbacks. It also gives you an
additional example of using static data members and static member functions. All output strings
used by the program are moved into a class, MSG, as a private static array of strings. The class

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1110 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

provides a public static function, msg(), whose argument indicates the index of the string to be
used. If the index is incorrect, an error message is produced instead of the expected information.

You see that the server functions are not involved in the user interface anymore. The code that
analyzes the situation, unfortunately, stays, but there was little that could be done about this. If the
code is required to discover an error, the code should test some relevant values, and that makes the
code more obscure.

You also see that all the components of the user interface are swept into one place. This facilitates
not only the adaptation of the program to other languages but also maintenance of the user interface
in general. If a prompt to a user has to be changed, it is only class MSG that changes. If a message
has to be added or removed, the static array MSG::data[] is edited, and the number of array
components in the MSG::msg() method changes accordingly. To avoid this change, the number of
components in the array (defined as local in msg()) can be computed as
sizeof(data)/sizeof(char*). Since the value of the number of messages is used only once,
keeping it as a literal value is not dangerous.

Notice the elements of the utilization of static data and methods: the keyword static,
initialization of data outside the class boundaries, the use of the class name in the initialization
statement and in the calls to the static function, the absence of object class MSG in the application,
the lack of name conflict between the function MSG::msg(), and a local variable msg in the client
code.

The output of this version of the program is the same as the output for two previous versions of the
application. This is why it is not shown again.

Example 18.3. Example of extensive communications between the client and the server
code.
#include <iostream>
#include <cfloat>
using namespace std;

class MSG {
 static char* data []; // internal static data
public:
 static char* msg(int n) // public static method
 { if (n<1 || n > 5) // check index validity
 return data[0];
 else
 return data[n]; } // return valid string
} ;

char* MSG::data [] = { "\nBad argument to msg()\n",

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1111 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

"\nZero denominator is not allowed\n\n", // depository of text
"\nNegative denominator: ",
"Enter numerator and positive\n",
"denominator (any letter to quit): ",
"Value of the fraction: "
 } ;

inline long inverse(long value, double& answer, char* &msg)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 { msg = MSG::msg(1);
 return 0; } // zero denominator
 else if (value < 0)
 { msg = MSG::msg(2);
 return value; } // negative denominator
 else
 return 1; } // valid denominator

inline long fraction (long n,long d,double& result,char* &msg)
{ long ret = inverse(d, result,msg); // result = 1.0 / d
 if (ret == 1) // valid denominator
 { result = n * result; } // result = n / d
 return ret; }

int main()
{
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 char *msg; long ret; // error information
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 ret = fraction(numer,denom,ans,msg); // compute answer
 if (ret == 1)
 cout << MSG::msg(5) << ans <<"\n\n"; // valid answer
 else if (ret == 0)
 cout << msg; // zero denominator
 else
 cout << msg << ret << "\n\n"; } // negative value
 return 0;
 }

You see that limiting the task of the inverse() function to error discovery and moving the task of
error recovery (in this case, printing a message with data) increases coupling between clients and
their servers. In Listing 18.3, function inverse() has an additional parameter, which is passed by
its client fraction() to its own client, main(). In the case of the zero denominator, only this fact
has to be reported. This information is passed up by the inverse() parameter msg. In the case of
the negative denominator, the value of the denominator has to be reported, and inverse() uses

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1112 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

both its parameter msg and its return value to communicate with its caller (and its caller's caller).

It is the use of extra parameters, return values, and complex calling conventions that C++
exceptions help to eliminate.

Syntax of C++ Exceptions

C++ exceptions allow the programmer to change the flow of control when some event occurs, for
example, an error. These errors happen at run time (file is not found, index is invalid, etc.); when
C++ raises an exception, the program may terminate if it has no handler that knows how to deal
with that exception.

Exception handlers are segments of program source code that should be executed when the
exception is raised, for example, printing a message to the user, collecting information for the
analysis of the causes of the exception, or error recovery.

Organizing error-related source code into exception handlers can make flow of control more
logical; instead of doing all the tests in the mainline of the algorithm and thus obscuring its
meaning, error handling is coded in a separate place. The tradeoff of this approach is the possibility
of obscuring the meaning of server functions that are involved in error discovery.

This separate place for error recovery can be in the same method that caused the exception, in a
caller of that method, in a caller of the caller, and so on. This flexibility makes the design with
exceptions more difficult. However, the exception mechanism allows the programmer to transfer
control to recovery actions in a disciplined way.

Presumably, C++ exceptions allow the programmer to isolate exceptional cases in other, remote
segments of source code and streamline the base processing. It should make the program more
readable so that it is easier to understand. I am not sure that this is often the case. As I mentioned
earlier, the utility of using exceptions is in eliminating extra parameters, return values, and complex
calling conventions among the functions that discover the problem and the functions that try to
recover from the problem.

When C++ raises or "throws" an exception, it can create an object of a predefined class Exception
or of a programmer-defined class. This programmer-defined class can be derived from class
Exception, or it can be an independent class. Again, this flexibility makes designing with
exceptions more open ended and hence more difficult to understand.

The exception might be thrown explicitly with the throw statement or implicitly as the result of an
illegal or invalid action. The exception is caught with the catch statement, and control is
transferred to the statement that caught the exception. The catch statement (or block of statements)

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1113 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

performs the error recovery (if any). The return of control after the error recovery in the catch block
depends on the structure of the program. In general, it does not return by itself to the place where
the exception occurred. This is why the programmer has to structure the program in a specific way
if such return (e.g., to continue processing) is desirable.

There are three operations related to exception handling:

ϒΠ throwing an exception

ϒΠ catching an exception

ϒΠ claiming an exception

Throwing an exception means specifying that certain exceptional (possibly erroneous) conditions
are discovered and that they should be processed using the C++ exception mechanism rather than
common control flow techniques.

Catching an exception means specifying a segment of code that is designed to respond to a
particular exceptional condition but not to other conditions.

Claiming an exception means specifying what exception can be raised within this method; it helps
the compiler (and the client programmer and the maintenance programmer) know what to expect
from the function and how it should be used.

Throwing an Exception

To raise an exception, the keyword throw is used. Its usage indicates that the server code has
discovered a condition that it does not know how to handle, and it throws the exception in the hope
that someplace (among its client or its client's clients) there will be a segment of code that knows
how to handle the situation.

The keyword throw is used in a throw statement. Its general syntactic form includes the keyword
throw with an operand that can be a value of any type to be thrown in search of the exception
handler.

throw value;

The throw statement is usually executed conditionally after testing some values or relationships in
the program and discovering that they do not satisfy requirements. This means that the server code

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1114 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

executes the throw statement to notify the client of the problem discovered in the server code.

The throw statement can take only a single operand of any type. However, some compilers do not
flag the throw statement as an error if you try to throw more than one value. The value of the
throw operand is used by the client code (that tries to process the exception) to retrieve information
about the context of the error. Often, this information is used to define the client code behavior in
error recovery.

Here is a modified example of the function inverse(). In Listing 18.3, this function sets up the
return values or parameter values to communicate with the client code. In this version, the function
inverse() throws exceptions in two cases: (1) if it discovers that the denominator is zero and (2) if
it discovers that the denominator is negative.

inline void inverse(long value,double& answer) // two parameters
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw MSG::msg(1); // zero denominator
 if (value < 0)
 throw value; } // negative denominator

You see that in the case of a zero denominator, the function throws a value of the character array
type, and in the case of a negative denominator, it throws a value of the long type. The fact that
these types are different is no accident. It would be more difficult to handle the exception handling
if both throw statements threw the values of the same type. If both exceptions have to be processed
the same way, this is not a problem. If the exceptions have to be processed differently, the client
code would have to figure out what really occurred in the server code that threw the exception.

If you compare this function inverse() with its version in Listing 18.1, you will see that their
interfaces are similar: Both functions return a void type and have only two parameters. In Listing
18.1, the function inverse() did not try to discover any exceptions. Neither did its client
fraction(). It was the job of the main() client code to discover both exceptions (zero
denominator, negative denominator) and process them.

In Listing 18.2 and Listing 18.3, functions inverse() and fractions() were trying to discover
exceptions, recover from some of them (zero denominator) and let the main() client recover from
others (negative denominator). The result was greater coupling and more confusing code. The last
version of inverse() throws both exceptions. It does have some analysis code (to decide what
exception to throw, if any), but its interface is as simple as in the first version in Listing 18.1. This
simplicity will be paid for by the additional code I will write to catch and to claim these exceptions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1115 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Catching an Exception

The function inverse(), which can throw two exceptions, has a direct client: function
fraction() that calls inverse() and an indirect client: function main() that calls fraction().
In general, the hierarchy of calls can be arbitrarily high. If a function, in this example inverse(),
throws an exception and does not process this exception itself, one of its callers (direct or indirect)
has to catch this exception.

Catching an exception is a process of finding the code that can handle the error (the exception
handler); this is done by searching through a chain of function calls.

One might think that catching an exception requires the keyword catch. This is true: C++ does
have the keyword catch, and this keyword is used in catching the exception. But this is not
enough. When a function catches exceptions, it cannot catch them from an arbitrary source of
exceptions. The function has to indicate from what segment of its code it will try to catch
exceptions. This requires the use of yet another C++ keyword: try. This keyword should be
followed by a block that can throw exceptions.

The client code that has the responsibility of catching errors encloses the code that can raise the
exception in a try statement.

void foo() // function that catches exceptions
{ try // the try statement
 { statements; } // statements that throw exceptions
 ¡K} // the rest of foo() with catch blocks

C++ exception handlers are implemented using the keywords try and catch; the statements (or
method calls) that may throw exceptions are put in the try blocks; the exception handlers
themselves are put into the catch blocks.

Syntactically, one or more catch blocks should follow a try block. Each catch block has a parameter
of the type that corresponds to the exception that this catch block handles.

void foo() // function that catches exceptions
{ try
 { statements; } // statements that throw exceptions
 catch (Type1 t1) // catch block for thrown type Type1
 { handler_for_Type1(); }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1116 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 catch (Type2 t2) // catch block for thrown type Type2
 { handler_for_Type2(); }

 catch (TypeN tN) // catch block for thrown type TypeN
 { handler_for_TypeN(); }
 statements_executed_after_the_try_or_catch_block; }

The try statement must be followed by at least one catch construct (block), which provides
exception handling. It is an error to use a catch block that is not preceded by a try statement. (It is
all right if there are other catch blocks between this one and the preceding try statement.) It is an
error to use a try statement that is not followed by a catch block or blocks.

Recall that the throw statement has an argument of some type¡Xa character array, a long value, or
even a value of some programmer-defined class type. The value of the argument usually carries
some data about the context of the error. In the case of the inverse() function, this data is either a
string with the message to be printed or the negative denominator value to be displayed. If the
throw statement throws an object of a class type, the constructor for that type should enable the
object to carry some information about the problem. This information might be used by the catch
construct for diagnostics and error recovery.

If there are several catch constructs after the try block, they have to have arguments of different
types. Since catch constructs do not have names, the signatures of these constructs must be unique.

If the exception type thrown in the try block "matches" the argument of a catch construct, the code
in the catch construct is executed and the search stops; when the catch block terminates, the
statements that follow the catch blocks for this try statement are executed

"Matching the argument" means that the exception object that is thrown by the try block can be
assigned to the parameter of the catch block, meaning the exact match, any of the standard
conversions, or any of subclasses of the parameter of the catch construct. For example, a double
value can be caught by a catch block with a long parameter, and a SavingsAccount object can be
caught by a catch block with an Account parameter.

After the catch block terminates, the statements that follow the try block and its catch constructs are
executed. These statements can have other try blocks (followed by catch constructs) if necessary. If
the try statement did not throw any exception, the catch constructs are treated as the null
statements¡Xthey are skipped.

If the exception was thrown in the middle of the try statement, the execution of the try statement is
terminated, the catch construct is found and executed, and so on; the statements in the try block that
follow the one that threw the exception are never executed. Usually, this is only logical: The

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1117 of 1187) [8/17/2002 2:58:11 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

exception was thrown because these statements could not be executed.

What happens if the code in the try block throws an exception that does not have a catch construct
of the appropriate type? Too bad¡Xthe function is terminated: Not only is the try block not executed
in its entirety, but the code that follows the catch constructs is not executed either. This means that
the appropriate catch block will be searched for in the client code of the function. If it is found, all
is fine and well. If the catch construct capable of handling the exception is not found even in
main(), the program is terminated.

Let us consider, for example, the following version of the inverse() function that throws the
exceptions and tries to catch them.

inline void inverse(long value,double&answer) // two parameters
{ try // start of try block
 { if (value == 0) // zero denominator
 throw MSG::msg(1);
 if (value < 0) // negative denominator
 throw value;
 answer = 1.0 / value; } // end of the try block
 catch (char* str)
 { cout << str; } // zero denominator
 catch (long val)
 { cout << MSG::msg(2) << val << "\n\n"; }} // negative value

If the first argument has a legitimate value, the try block is executed completely, and the catch
blocks are skipped. There are no statements following the catch blocks, so the function terminates
as if it had no exception handling at all.

If the first argument is zero, the character array exception is thrown and the first catch block is
executed. Notice that the catch block is a "block"¡Xit has its own scope, and it refers to its
parameter str rather than to the variable that has actually been thrown: MSG::msg(1).

Similarly, if the first argument is negative, its value is thrown, and the second catch block is
executed. Again, the name of the value to be printed is val rather than value. No matter what
exception is thrown, the statement answer = 1.0/value is never executed. This is reasonable
because this statement should be executed only if the value passes all the tests.

If the statements in the try block throw an exception that does not have a catch block to handle it in
the function inverse(), the search for the exception handler continues in fraction() and then in
main().

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1118 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

In this version of the inverse() function, the throw statements and the catch blocks are in the
same function scope. Syntactically, this is legal C++. From the software engineering point of view,
this is overkill¡Xthere is no need to use the exception handling mechanism if the information about
exception is not passed across different functions. In this case, a simple if statement within
inverse() would give the same results.

Another problem with this version of exception handling is related to the execution of the rest of
the program. After the function inverse() terminates, its callers, fraction() and main(), have
no idea whether any exceptions were raised. Meanwhile, if any exception was raised, the statement
that computes the answer was not executed, and callers of inverse() should know about that.

Next, let us again consider the version of inverse() that throws exceptions but does not catch
them.

inline void inverse(long value,double& answer) // two parameters
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw MSG::msg(1); // zero denominator
 if (value < 0)
 throw value; } // negative denominator

Let us try to catch these exceptions in the client function fraction().

inline void fraction (long numer, long denom, double& result)
{ try {
 inverse(denom, result); // result = 1.0 / denom
 result = numer * result; } // result = numer / denom
 catch (char* str)
 { cout << str; } // zero denominator
 catch (long val)
 { cout << MSG::msg(2) << val << "\n\n"; }} // negative value

This is not better than the previous version of inverse(). The exceptions should be processed in
such places in the client code where the information about the exception can be used to change the
behavior of the program, in this case, skipping the display of the result of computations.

Listing 18.4 demonstrates this example with exception handling in the main() function. As I noted
earlier, this example is somewhat artificial because main() could discover that the input is invalid

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1119 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

itself. Assuming it cannot do that, this scheme of exception handling makes sense: inverse()
discovers the error and sends information to main() so that main() could skip the use of invalid
results.

In Listing 18.4, function inverse() analyzes the situation and throws two expressions for the
benefit of its callers. Its immediate caller, fraction(), does not have any exception handlers
(catch constructs) because it is in the function main() where the statement to be skipped is located.
Since fraction does not have any catch constructs, it does not have a try statement either because it
would be illegal to have a try statement without catch constructs.

If inverse() does not throw exceptions, fraction() and main() continue to compute and to print
the result and to request the next set of data. If inverse() throws an exception, it is not processed
in inverse() because it does not have appropriate catch constructs. The search propagates to
fraction(). Since fraction() does not have any exception handlers, the search propagates to
main(). If main() does not have any exception handlers either, the program terminates.

When the search percolates to main(), it finds there both the try statement and the catch
constructs. From the point of view of main(), it is its server function fraction() that is the
source of trouble. The client main() does not care whether fraction() received the exception
from one of its servers or threw it itself. If fraction() throws an exception, the execution of the
try block is terminated before the answer is displayed. The corresponding exception handler prints
a message that uses the information generated in inverse().

Example 18.4. Example of throwing and catching exceptions.
#include <iostream>
#include <cfloat>
using namespace std;

class MSG {
 static char* data []; // internal static data
public:
 static char* msg(int n) // public static method
 { if (n<1 || n > 5) // check index validity
 return data[0];
 else
 return data[n]; } // return valid string
} ;

char* MSG::data [] = { "\nBad argument to msg()\n",
"\nZero denominator is not allowed\n\n", // depository of text
"\nNegative denominator: ",
"Enter numerator and positive\n",
"denominator (any letter to quit): ",

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1120 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

"Value of the fraction: "
 } ;

inline void inverse(long value, double& answer)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw MSG::msg(1);
 if (value < 0)
 throw value; }

inline void fraction (long numer, long denom, double& result)
{ inverse(denom, result); // result = 1.0 / denom
 result = numer * result; } // result = numer/denom

int main()
{
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; // valid answer
 }
 catch (char* str) // zero denominator
 { cout << str; }
 catch (long val) // negative value
 { cout << MSG::msg(2) << val << "\n\n"; }
 }
 return 0;
 }

How large should a try block be? In this example, the try is composed of two statements: a call to
fraction() and the output statement. What happens if I move the call to fraction() outside of
the try block?

int main()
{ while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 fraction(numer,denom,ans); // compute answer
 try {
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer
 catch (char* str) // zero denominator
 { cout << str; }
 catch (long val) // negative value

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1121 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { cout << MSG::msg(2) << val << "\n\n"; } } // end of loop
 return 0; }

This design misses the boat. The try statement will not raise any exceptions. And the catch blocks
will never intercept any¡Xthey can process only exceptions that originate within the preceding try
statement. When inverse() throws an exception to fraction(), and fraction() throws this
exception to main(), no catch block will handle the exception, and the program terminates.

What about putting only the function call in the try block, leaving the output statement outside?
The rationale for doing that is that since this statement does not throw any exceptions, it pollutes
the precious space in the try block.

int main()
{ while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); } // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; // valid answer
 catch (char* str) // zero denominator
 { cout << str; }
 catch (long val) // negative value
 { cout << MSG::msg(2) << val << "\n\n"; } } // end of loop
 return 0; }

This results in a syntax error. The output statement is now between the try statement and the catch
blocks. Hence, the try statement is not directly followed by the catch constructs. To add insult to
injury, the catch blocks are not immediately preceded by the try statement. What exactly the
compiler will tell you is anybody's guess, but you are not going to like it.

What about expanding the try statement, including in it more loop statements? The rationale for
that might be to combine different sources of exceptions and process them in one cache of catch
constructs.

int main()
{ while (true)
 { long numer, denom; double ans; // numerator/denominator
 try {
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1122 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 if ((cin >> numer >> denom) == 0) break; // enter data
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // end of try
 catch (char* str) // zero denominator
 { cout << str; }
 catch (long val) // negative value
 { cout << MSG::msg(2) << val << "\n\n"; } } // end of loop
 return 0; }

This is doable and would be useful if this segment of client code produced additional exceptions. In
general, however, it is desirable to keep the scope of the try statement as narrow as possible to
make it easier for the maintenance programmer to figure out where the exceptions could come
from.

And what about putting the whole while loop into the try statement? Well, this depends on how
you do it. If you just move the try keyword with the opening brace up and leave the closing brace
in place, the compiler is not going to like it.

int main()
{ try {
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // end of try
 catch (char* str) // zero denominator
 { cout << str; }
 catch (long val) // negative value
 { cout << MSG::msg(2) << val << "\n\n"; } } // end of loop
 return 0; }

Now the scope of the try statement is not nested within the scope of the while loop. Whatever
design decision you make, your scopes have to nest correctly; otherwise, the compiler becomes
confused. In general, the more narrow the scope of the try statement, the better.

As these examples show, the design with exception handlers has to answer three basic questions:

ϒΠ where to throw an exception

ϒΠ where to catch the exception

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1123 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

ϒΠ what information to send to the exception handler

At the beginning of this chapter, I mentioned the popular rationale for using
exceptions¡Xstreamlining the client code through separation of the main line of processing from
processing of exceptional cases. In this example, this rationale was of secondary importance at best.
If anything, the client code became clogged with the try statement and the catch constructs with
their parameters and braces.

It is just the other way around in the design with exceptions: You throw the exception in the place
where you can discover the error and collect the data necessary for error recovery. You place the
catch clauses in the place where the decision how to recover from the error can be made. In this
simple example, this decision was just to skip the display of the answer. Still, it required sending
data from the place of discovery to the place of recovery.

Claiming an Exception

Claiming exceptions is specifying what exceptions can be thrown within this function without
handling it within the function itself, that is, what exceptions the function could pass to its caller. If
the function does not catch the exception itself and expects some other function to deal with the
problem, it has to declare (claim) the exception.

The keyword throw is used in claiming exceptions. Its general syntactic form combines the
conventional function declaration, the keyword throw, and the list of types (in parentheses) whose
values are being thrown by the function in search of the exception handler.

 functionDeclaration throw (Type1, Type2, ¡K TypeN);

Exceptions can be thrown by the function code implicitly, when an illegal condition occurs in a
function call to its server function or explicitly by using the keyword throw.

If an exception is thrown by the function code and is caught in the function itself, there is no need
to include it in the throw list. If the server function throws an exception and catches it, then this
exception should not be included in the list. The list includes only those exceptions that the clients
of this function will have to deal with.

For example, function inverse() in Listing 18.4 throws (and does not catch) two exceptions
explicitly, a character array and a long. The definition of this function should include the throw
keyword with these two types.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1124 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inline void inverse(long value, double& answer)
 throw (char*, long)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw MSG::msg(1); // explicit throw
 if (value < 0)
 throw value; } // explicit throw

Similarly, function fraction() in Listing 18.4 does not throw any explicit exceptions, but its
server function inverse() throws (and does not catch) two exceptions. This means that function
fraction() throws these two exceptions implicitly and should claim both of them.

inline void fraction (long numer, long denom, double& result)
 throw (char*, long)
{ inverse(denom, result); // implicit throw
 result = numer * result; } // result = numer/denom

If a function throws no exceptions at all, it can be declared with the empty throw specification
throw(). For example,

 void foo() throw (); // expect no exceptions

If a function does not define the exception specification, it might throw any exception.

 void foo(); // no throw: expect any exception

It would be nice if it were an error in C++ to claim an exception that a function actually does not
throw. It would also be nice if it were an error not to claim an exception that a function actually
throws, either implicitly or explicitly. However, this is not the case, and you can get away with
deceiving claims (claiming exceptions that the function does not throw) or inadequate claims
(claiming only part of exceptions that the function throws) or blissfully ignoring the issue, as my
Listing 18.4 amply illustrates.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1125 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Understanding somebody else's design of exception handling in the program could be a daunting
adventure, and one might need all the help one could get. Claiming exceptions is a powerful
technique for documenting design in code. Make sure that you use it wisely.

When a function processes exceptions only partially, this is reflected in how the function claims
exceptions. Listing 18.5 demonstrates claiming of exceptions for a different division of
responsibilities between functions inverse() and fraction(). While function inverse() throws
(and claims) the same exceptions as in Listing 18.4, function fraction() handles the exception of
type long itself. Hence, it claims only one exception in its interface, the character array.

This is why the main() function has to handle only one exception rather than two as in Listing
18.4. The output of a sample run of the program is presented in Figure 18-3.

Figure 18-3. Output for program in Listing 18.5.

Example 18.5. Example of claiming, throwing, and catching exceptions.
#include <iostream>
#include <cfloat>
using namespace std;

class MSG {
 static char* data []; // internal static data
public:

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1126 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 static char* msg(int n) // public static method
 { if (n<1 || n > 5) // check index validity
 return data[0];
 else
 return data[n]; } // return valid string
} ;

char* MSG::data [] = { "\nBad argument to msg()\n",
"\nZero denominator is not allowed\n\n", // depository of text
"\nNegative denominator: ",
"Enter numerator and positive\n",
"denominator (any letter to quit): ",
"Value of the fraction: "
 } ;

inline void inverse(long value, double& answer)
 throw (char*, long)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw MSG::msg(1);
 if (value < 0)
 throw value; }

inline void fraction (long numer, long denom, double& result)
 throw (char*)
{ try {
 inverse(denom, result); } // result = 1.0 / denom
 catch (long val) // negative value is OK
 { cout << MSG::msg(2) << val << "\n\n"; }
 result = numer * result; } // result = numer / denom

int main()
{
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer
 catch (char* str) // zero denominator
 { cout << str; }
 }
 return 0;
 }

This example shows the advantage of claiming exceptions in function interfaces. When the client
programmer wants to know what exceptions the client function should deal with, it is sufficient to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1127 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inspect the claims of all server functions that this client function calls.

Rethrowing an Exception

Notice that the program behavior shown in Figure 18-3 is different from the behavior shown in
Figure 18-2. In Figure 18-2, a negative value of the denominator is rejected, and the new input is
requested from the user. In Figure 18-3, a negative value of the denominator is rejected, but the
value of the result is printed anyway.

The reason for that is that the function fraction() recovers from this exception itself (by printing
a message and the value of the denominator), and the main() function thinks that the result is valid
and does not suppress its output.

This is a quite common situation, where the function can recover from the exception only partially,
but some other action should be taken in one of its callers. C++ supports this need by allowing the
function to rethrow the exception. This can be done by using the throw statement in the catch
construct.

For example, function inverse() can avoid fooling main() into thinking that it completed the
recovery by throwing the exception again.

inline void fraction (long numer, long denom, double& result)
 throw (char*, long) // extra exception claim
{ try {
 inverse(denom, result); } // result = 1.0 / denom
 catch (long val)
 { cout << MSG::msg(2) << val << "\n\n";
 throw val; } // throw it again
 result = numer * result; }

Notice that this does not cause an infinite loop. The exception thrown in the catch construct scope
cannot enter this scope¡Xto be able to do that, the exception should originate in the try block that
precedes the catch construct. Formally, the exception is considered handled on entry into its
exception handler. Hence, this throw statement will cause the search for another long error handler
at a higher level, in the client code that called the function fraction().

Another way to rethrow the exception of the same type (and value) is just to say throw in the catch
construct, and the exception specified in the parameter of the catch construct will be thrown again.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1128 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

inline void fraction (long numer, long denom, double& result)
 throw (char*, long) // extra exception claim
{ try {
 inverse(denom, result); } // result = 1.0 / denom
 catch (long val)
 { cout << MSG::msg(2) << val << "\n\n";
 throw; } // same as "throw val"
 result = numer * result; }

Listing 18.6 demonstrates this technique. Function inverse() is the same as in Listing 18.5.
Function fraction() does partial processing of the long exception, but then it throws this
exception again. This means that fraction() has to claim this exception in its interface, and
main() has to provide the catch clause to handle this exception. If main() fails to do so, the
program will terminate abnormally.

Since the only goal of throwing this exception again is to avoid the display of a result in main(),
there is no processing that the catch construct for this exception should do in main(). This is why
the body of the catch block is empty. It still should be there. To avoid generating a warning that the
parameter of the catch construct is not used, I omit it from the parameter list, leaving only the type
of the value. This is somewhat awkward but legitimate C++ technique.

The output of the program is shown in Figure 18-4. You see that the extraneous output is
successfully suppressed.

Figure 18-4. Output for program in Listing 18.6.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1129 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 18.6. Example of rethrowing of an exception in a catch construct.
#include <iostream>
#include <cfloat>
using namespace std;
class MSG {
 static char* data []; // internal static data
public:
 static char* msg(int n) // public static method
 { if (n<1 || n > 5) // check index validity
 return data[0];
 else
 return data[n]; } // return valid string
} ;

char* MSG::data [] = { "\nBad argument to msg()\n",
"\nZero denominator is not allowed\n\n", // depository of text
"\nNegative denominator: ",
"Enter numerator and positive\n",
"denominator (any letter to quit): ",
"Value of the fraction: "
 } ;

inline void inverse(long value, double& answer)
 throw (char*, long)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw MSG::msg(1);
 if (value < 0)
 throw value; }

inline void fraction (long numer, long denom, double& result)
 throw (char*, long)
{ try {
 inverse(denom, result); } // result = 1.0 / denom
 catch (long val) // negative value is OK
 { cout << MSG::msg(2) << val << "\n\n";
 throw val; }
 result = numer * result; } // result = numer / denom

int main()
{ cout << endl << endl;
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1130 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 catch (char* str) // zero denominator
 { cout << str; }
 catch (long) // just type
 { } // empty body
 }
 return 0;
 }

This is a powerful technique for making several functions cooperate over processing the same
exception. Use it with care, because at the root of this approach is the tearing apart (exception
processing) of what probably should belong together. When it becomes difficult to concentrate
exception processing in one place, programmers might be tempted to use this technique to make
writing programs easier. It will most probably make understanding the code more difficult.

Exceptions with Class Objects

In the examples above, the throw statements not only send control to a catch block, but also pass
along a value of the specific type. This value can be accessed in the catch block. This technique is
an important means of establishing communications between the place of error discovery and the
place of error recovery.

Sending a value of a specific type is both a privilege (communication is established) and a
limitation because a function cannot throw the values of the same type so that they would be
processed by different catch blocks. For example, if a function throws two different character
strings from two different places, these two strings must be processed by the same catch block. If
the error recovery is limited to printing the message, this is fine¡Xthe same catch block will print
two different messages.

void foo() throw (char*)
{ if (test1())
 throw "One bad thing happened"; // one problem
 else if (test2())
 throw "Another bad thing happened"; // another problem
 proceed_safely(); } // no problem

void client()
{ try
 { foo(); } // no problem
 catch(char* msg)
 { cout << msg << endl; } } // either problem

If, however, the program behavior should be different for different sources of trouble, this

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1131 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

mechanism of passing data becomes too restrictive¡Xthe catch block has to analyze the data sent by
the throw statement and take different branches depending on the result. This defeats the goal of
processing different errors in different catch blocks.

Another inherent limitation of this exception-handling mechanism is that only one data value can
be sent from the try statement to the catch block. When more than one data value needs to be sent,
the programmer has to resort to trickery. In the examples shown in Listings 18.1-18.6, exception
handling for a negative denominator requires two pieces of information: the fact that the
denominator is negative and its value. I sent one piece of information (the value of the
denominator) as the parameter to the catch block, and I used a global character array for the error
message.

C++ resolves these problems by making it legal to throw composite objects rather than simple
values of built-in types.

Syntax of Throwing, Claiming, and Catching Objects

Throwing an object adds a new dimension to C++ programming: The designer has to decide what
data items should be sent from the place where the error is discovered to the place where the
recovery will take place. For each exception, one has to create a class whose objects can carry
necessary data from the place of error. The methods of this class should allow the catch construct to
have adequate access to the object data.

For example, class ZeroDenom could be designed to carry the data about a zero denominator. At the
place of error discovery, an object of this class would be created and thrown. This object needs
only one piece of information (the message), and this piece of information is the same for all cases
of the error. Hence, the class ZeroDenom should have the default constructor. In the catch block, the
message has to be printed. Class ZeroDenom could provide a method print() that would be called
by the catch block.

class ZeroDenom {
 char *msg; // data to be carried to error handler
public:
 ZeroDenom () // it is called by the throw statement
 { msg = MSG::msg(1); }
 void print () const // it is called by the catch block
 { cout << msg; }
} ;

With class objects used as the carriers of exception information, similar to values of built-in types,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1132 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

you should go through the same three steps of (1) throwing an exception, (2) catching the
exception, and (3) claiming the exception.

The function that discovers the exceptional condition, for example, inverse(), creates an object
of this class and throws it in the search of the catch block.

if (answer==DBL_MAX)
 throw ZeroDenom(); // unusual syntax

Notice the syntax of the default constructor call with the class name and two empty parentheses. In
other contexts (e.g., creating an object with the operator new), using the parentheses would be a
syntax error; in this context, it would be a syntax error to omit the parentheses. If you feel uneasy
about this syntax, you can create an object of the required type and then throw this object much the
same way as you throw variables of built-in types.

if (answer==DBL_MAX)
 { ZeroDenom zd; throw zd; } // conventional syntax

When a nondefault constructor is used, the syntax of throwing the object is the same as it is for
other contexts. For example, to carry the information about the negative denominator, I can design
class NegativeDenom with data members for the error message and the value of the denominator
and with the methods that access the object data members.

class NegativeDenom {
 long val; // private data for exception info
 char* msg;
public:
 NegativeDenom(long value) // conversion constructor
 : val(value), msg(MSG::msg(2)) { }
 char* getMsg() const
 { return msg; }
 long getVal() const // public methods to access data
 { return val; }
} ;

To throw an object of this type, the argument value has to be specified for the constructor by the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1133 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

method that throws the object, for example, inverse().

if (value < 0) // analyze the situation
 throw NegativeDenom(value); // throw an exception

Similar to objects without arguments, the object can be created using the conventional syntax and
then thrown similarly to a value of a built-in type.

if (value < 0)
 {NegativeDenom nd(value); throw nd; }

The syntax for claiming exceptions is the same as for built-in values, but the name of the class
should be used instead of the name of a built-in type. Here is the function inverse() that claims
the exceptions of class ZeroDenom and class NegativeDenom.

inline void inverse(long value, double& answer)
 throw (ZeroDenom, NegativeDenom) // claim exceptions
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw ZeroDenom(); // throw class object
 if (value < 0)
 throw NegativeDenom(value); } // throw class object

To catch a class object, the catch construct should define the parameter of this class. Within the
scope of the catch construct, the rules of accessing the object are the same as for objects of any
other class. Here is how the client main() catches these two exceptions.

try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer
catch (const ZeroDenom& zd) // zero denominator
 { zd.print(); }
catch (const NegativeDenom &nd) // negative value
 { cout << nd.getMsg() << nd.getVal() << "\n\n"; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1134 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The first catch construct sends a message to the object asking it to print its information, and the
second catch construct retrieves the values of the object data members and then prints these values.
The first method is, of course, better. With the second method, the data members of the
NegativeDenom class could just as well be public.

Listing 18.7 shows the same program as in Listings 18.1-18.6. The function inverse() throws
objects of class ZeroDenom and NegativeDenom. Since this function is called by the function
fraction(), and fraction() does not know how to handle these exceptions (from the point of
view of the caller of the fraction()), it is this function that throws these exceptions. This is why
the function fraction() also claims these two exceptions. This is why main() has to put the call
to fraction() in the try block and supply two catch constructs, one for each exception.

Example 18.7. Example of throwing class objects rather than built-in values.
#include <iostream>
#include <cfloat>
using namespace std;

class MSG {
 static char* data []; // internal static data
public:
 static char* msg(int n) // public static method
 { if (n<1 || n > 5) // check index validity
 return data[0];
 else
 return data[n]; } // return valid string
} ;

char* MSG::data [] = { "\nBad argument to msg()\n",
"\nZero denominator is not allowed\n\n", // depository of text
"\nNegative denominator: ",
"Enter numerator and positive\n",
"denominator (any letter to quit): ",
"Value of the fraction: "
 } ;

class ZeroDenom {
 char *msg; // data to be carried to error
handler
public:
 ZeroDenom () // it is called by the throw
statement
 { msg = MSG::msg(1); }
 void print () const // it is called by the catch block
 { cout << msg; }
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1135 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class NegativeDenom {
 long val; // private data for exception info
 char* msg;
public:
 NegativeDenom(long value) // conversion constructor
 : val(value), msg(MSG::msg(2)) { }
 char* getMsg() const
 { return msg; }
 long getVal() const // public methods to access data
 { return val; }
} ;

inline void inverse(long value, double& answer)
 throw (ZeroDenom, NegativeDenom)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw ZeroDenom();
 if (value < 0)
 throw NegativeDenom(value); }

inline void fraction (long numer, long denom, double& result)
 throw (ZeroDenom, NegativeDenom)
{ inverse(denom, result); // result = 1.0 / denom
 result = numer * result; } // result = numer/denom

int main()
{
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer
 catch (const ZeroDenom& zd) // zero denominator
 { zd.print(); }
 catch (const NegativeDenom &nd) // negative value
 { cout << nd.getMsg() << nd.getVal() << "\n\n"; }
 }
 return 0;
 }

Using Inheritance with Exceptions

Error conditions in the program might be similar to one another. The information that is necessary
for error recovery might also have similar structure. For example, in Listing 18.7, each exception
carries a pointer to the character array that should be printed as an error message.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1136 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

As is often the case with similar classes, the designer might organize the program exception classes
into an inheritance hierarchy. For example, one might redesign classes ZeroDenom and
NegativeDenom so that class NegativeDenom is derived from class ZeroDenom.

class ZeroDenom {
protected:
 char *msg;
public:
 ZeroDenom (char* message) : msg(message)
 { }
 void print () const
 { cout << msg; }
} ;

In the previous version of this class, I hardcoded the name of the character array in the class
constructor. As a result, the client of this class, the function inverse() in Listing 18.7, did not
have to know which message to send with the exception: It just had to create an exception object
using the default constructor. In this version, it is class ZeroDenom that does not know what its
objects carry, and its clients will have to specify explicitly which message to carry.

I am not sure which approach is better. In general, the first approach (implemented in Listing 18.7)
pushes the responsibility down to the server class ZeroDenom, and the second approach pops the
responsibility to the class clients. However, the overall scheme of distributing knowledge between
program classes might make the second approach more attractive. Whatever is better in each
particular case, I want to make sure that this difference is not lost on you, that you notice it, and
that you are sensitive to the issue of "who knows what" in the program.

class NegativeDenom : public ZeroDenom {
 long val;
public:
 NegativeDenom(char *message, long value)
 : ZeroDenom(message), val(value) { }
 void print () const
 { cout << msg << val << "\n\n"; }
} ;

I am deriving NegativeDenom from ZeroDenom rather than the other way around. Is it possible to
derive ZeroDenom from NegativeDenom? In principle, it is possible. From a practical point of view,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1137 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

however, this is not a good idea. Class NegativeDenom has more data members than class
ZeroDenom does.

I am making data in the base class ZeroDenom protected rather than private so that the derived class
NegativeDenom is able to access the base data. If the ZeroDenom data were private, the methods in
NegativeDenom would have to use the ZeroDenom methods to access ZeroDenom data. For
example, class NegativeDenom could be designed this way.

class NegativeDenom : public ZeroDenom {
 long val;
public:
 NegativeDenom(char *message, long value)
 : ZeroDenom(message), val(value) { }
 void print () const
 { ZeroDenom::print(); // call to the base method
 cout << val << "\n\n"; }
} ;

On the one hand, I think that if two algorithms, in the base class and in the derived class, have
common elements, it is nice to stress this fact in the code of the derived class (by calling the base
class method in the corresponding derived class method). On the other hand, I do not think it is a
good use of time and effort to add to the base class access methods that are used only in the derived
class.

When exception classes are related through inheritance, claiming exception and throwing exception
objects are the same as they are for unrelated exception classes. However, catching exceptions
might present additional problems unless you pay attention to the relationships among classes.
Listing 18.8 shows the program from Listing 18.7, modified so that the class NegativeDenom is
derived from the class ZeroDenom.

Functions inverse() and fraction() claim exceptions in the same way as they do in Listing
18.7. However, it is the function inverse() rather than exception classes ZeroDenom and
NegativeDenom that knows which message is generated for each exception.

The sample output of the program is shown in Figure 18-5. I am using approximately the same
sequence of input data as for the previous versions of the program.

Figure 18-5. Output for program in Listing 18.8.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1138 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Example 18.8. Example of using exception classes related through inheritance.
#include <iostream>
#include <cfloat>
using namespace std;

class MSG {
 static char* data []; // internal static data
public:
 static char* msg(int n) // public static method
 { if (n<1 || n > 5) // check index validity
 return data[0];
 else
 return data[n]; } // return valid string
} ;

char* MSG::data [] = { "\nBad argument to msg()\n",
"\nZero denominator is not allowed\n\n", // depository of text
"\nNegative denominator: ",
"Enter numerator and positive\n",
"denominator (any letter to quit): ",
"Value of the fraction: "
 } ;

class ZeroDenom {
protected:
 char *msg;
public:
 ZeroDenom (char* message) : msg(message)
 { }
 void print () const

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1139 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { cout << msg; }
} ;

class NegativeDenom : public ZeroDenom {
 long val;
public:
 NegativeDenom(char *message, long value)
 : ZeroDenom(message), val(value) { }
 void print () const
 { cout << msg << val << "\n\n"; }
} ;

inline void inverse(long value, double& answer)
 throw (ZeroDenom, NegativeDenom)
{ answer = (value) ? 1.0/value : DBL_MAX;
 if (answer==DBL_MAX)
 throw ZeroDenom(MSG::msg(1));
 if (value < 0)
 throw NegativeDenom(MSG::msg(2), value); }

inline void fraction (long numer, long denom, double& result)
 throw (ZeroDenom, NegativeDenom)
{ inverse(denom, result); // result = 1.0 / denom
 result = numer * result; } // result = numer / denom

int main()
{
 while (true)
 { long numer, denom; double ans; // numerator/denominator
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer
 catch (const ZeroDenom &zd) // zero denominator
 { zd.print(); }
 catch (const NegativeDenom &nd) // negative value
 { nd.print(); } } // end of loop
 return 0;
 }

As you see, the program output is incorrect. When the denominator is negative, the program prints
the appropriate error message but does not display the value of the negative denominator. Instead, it
goes on to request the next set of input data. What went wrong?

Recall that an exception can be thrown in two contexts: within a try block and outside of any try
block. When the exception is thrown outside a try block, the function terminates immediately, and
the test is repeated in the caller space: The call to the function that threw the exception might be

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1140 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

either within a try block or outside of any try block.

For example, function inverse() throws its exceptions outside of any try block. When any of
these exceptions is thrown, inverse() terminates immediately and control is passed to its caller,
fraction(). In fraction(), the call to inverse() that threw an exception is outside of any try
block. This is why fraction() also terminates immediately, and control is passed to main().

When an exception is thrown within a try block, control is transferred to the end of the try block
that contains the throw statement. The try block must be followed by one or several catch
constructs. The parameters of these catch constructs are inspected strictly one after another. If no
match is found, the situation is treated exactly as if the exception is thrown outside of the try
block¡Xthe function terminates immediately, and control is passed to its caller. If a match is found,
the search is terminated, and control transfers to the matching catch construct. After this catch
construct terminates, all following catch constructs (if any) are skipped and execution continues by
executing the statements that follow the catch constructs.

The types match if they are the same. They also match if the thrown object is derived from the
caught type or if the thrown object points to a derived class object, while the caught type points to
an object of a base class. Sound complex? Make sure that you recognize here the rule we discussed
in Chapter 15, "Virtual Functions and Other Advanced Uses of Inheritance:" A derived class object
can be used where a base class object is expected.

In Listing 18.8, when a NegativeDenom exception is processed, functions inverse() and
fraction() terminate because they do not have a try block. When function fraction()
terminates, it throws the exception (received from inverse()) to function main(). Since main()
calls fraction() within the try block, the catch constructs are inspected one after another. The
catch with the ZeroDenom parameter is inspected first. Since the NegativeDenom object thrown by
fraction() can be used where a ZeroDenom object is expected, the search terminates, and the
ZeroDenom catch block is executed. It sends the base class ZeroDenom::print() message to its
argument object, and it prints only the message, not the value that a NegativeDenom object has, but
ZeroDenom::print() does not know how to print because the value is a data member of the
derived class.

Some compilers could produce a warning about the problem, but no compiler will flag this design
as a syntax error because it is the programmer's inalienable right to place the catch blocks in the
order the programmer sees fit.

The remedy is relatively simple¡Xyou do not put the catch block for the base class first, you put it
last in the series of catch blocks. But you have to remember this. Here is how the main() function
in Listing 18.8 looks in eliminating this problem.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1141 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

int main()
{ while (true)
 { long numer, denom; double ans;
 cout << MSG::msg(3) << MSG::msg(4); // prompt user for data
 if ((cin >> numer >> denom) == 0) break; // enter data
 try {
 fraction(numer,denom,ans); // compute answer
 cout << MSG::msg(5) << ans <<"\n\n"; } // valid answer
 catch (const NegativeDenom &nd) // derived class
 { nd.print(); }
 catch (const ZeroDenom &zd) // base class
 { zd.print(); } } // end of loop
 return 0; }

Standard Library Exceptions

The C++ standard library defines several standard exception classes organized in an inheritance
hierarchy. The most important classes are class exception (all in lowercase) that is the base class
of the hierarchy and bad_alloc that is derived from class exception.

The exception class is defined in the header file <exception>, <except.h>, or
<exception.h>. The exception class has a virtual function what() that returns a character
pointer, similar to the method getMsg() in class NegativeDenom in Listing 18.7 above. The
contents of the string are not defined, but you can design a class that inherits from class exception,
and you can redefine what() in that class.

class NegativeDenom {
 long val; // private data for exception info
 char* msg;
public:
 NegativeDenom(long value) // conversion constructor
 : val(value), msg(MSG::msg(2)) { }
 const char* what() const // can return an arbitrary string
 { return msg; }
 long getVal() const
 { return val; }
} ;

Class bad_alloc is defined in the header file <new> or <new.h>. Its object is thrown when the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1142 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

operator new fails to allocate the required amount of memory from the heap. Not all compilers
support this exception yet. Here is a small example that builds a long linked list of blocks of
memory. It uses both the bad_alloc exception and the test of whether the new operator returns the
null pointer.

#include <iostream> // include files
#include <exception>
#include <new>
using namespace std;

struct Block
{ char a[1000]; // memory block
 Block* next;
Block (Block* ptr) // hook up before ptr
 { next = ptr; } } ;

int main()
{ Block *list = 0, *p; int cnt = 1;
 while (true) // go until it crashes
 { try {
 p = new Block(list); } // this can fail
 catch (bad_alloc &bad)
 { cout << bad.what() << endl; // message as recovery
 exit(0); }
 if (p == 0) // message as recovery
 { cout << "Out of memory\n\n"; exit(0); }
 list = p; // success: top of list
 if (++cnt%100 == 0)
 cout << "Block #" << cnt << endl; } // watch progress
 while (p != 0)
 { p = p->next; delete list; list = p; } // return memory
 return 0; }

The exception mechanism does not support asynchronous exceptions such as interrupts. It handles
synchronous exceptions that arise in the course of sequential execution, such as overflow, out-of-
range errors, resource allocation errors, and bad input data. Exceptions should not be used for
conditions that are normal for the flow of execution, for example, to terminate one stage of normal
processing (end-of-list iteration) and start another. This is slower and more complex than
necessary.

There are two major advantages in using C++ exceptions. One advantage is that they provide
communications between the place of the discovery of the error and the place where the recovery
can be done. Another advantage is that unwinding the stack in the process of terminating the called

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1143 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

function and returning control to the calling function is safe. If any of the called functions allocate
objects on the stack, the destructors for these objects are called in exactly the same way as if each
of these functions returned normally. This ensures the orderly return of system resources, and
prevents deadlocks and depletion of resources.

Type Cast Operators

This material does not actually belong to this chapter. However, it could not be discussed earlier in
the book because it is based on advanced concepts of inheritance, templates, and exceptions.

Actually, I had doubts about discussing these cast operators at all. They are relatively new to the
C++ language, and the experience of using them in industry is rather limited. There is no strong
evidence that these operators are better than the standard simple casts we used on so many
occasions before.

However, these cast operators represent a set of interesting software engineering ideas, and it is
definitely worth becoming familiar with them. As far as using them in your practice¡Xsee for
yourself.

As you have seen on many previous occasions, cast operators and conversion constructors weaken
the strong typing system of C++. They add to possible type conversions. Client programmers and
maintenance programmers might become confused as to what conversions are possible and what
conversions are in fact taking place.

To help the programmers to deal with this situation, C++ introduces a number of additional cast
operators. They are more verbose than standard casts discussed earlier. Actually, this is viewed as
one of their advantages because these cast operators are easier to spot in the source code than
standard casts are.

The static_cast Operator

The static_cast operator can be applied everywhere a standard cast can. Well, this is an
exaggeration. It can be applied everywhere a standard cast makes sense, but it cannot be applied
where the standard cast is considered too dangerous. You will see a few examples in a moment.

The static_cast is a unary operator that is applied to the operand of one type to receive a value of
another type. The programmer has to specify the operand (an object or an expression of the type
being converted) in regular parentheses. In addition, the programmer has to specify the target type
as a parameter in angle brackets similar to the syntax that is used in templates.

valueOfTargetType = static_cast<TargetType>(valueOfSourceType);

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1144 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

As you can see, this cast is not really a unary operator because it needs both the value of the source
type (one operand) and the name of the target type (another operand). However, it is not really a
binary operator because the name of the cast does not appear between operands as is common for
binary operators.

The use of this cast is not limited to the assignment as in the example above. It can be used
anywhere a value of the target type TargetType (assuming it is defined) can be used. Here is a
simple example.

 double d; int i = 20;
 d = static_cast<double>(i); // ok: d is 20.0

You might ask how it is better than your old and reliable friend cast double. It does exactly the
same thing.

 double d; int i = 20;
 d = double(i); // ok: d is 20.0

Here is a more-complex example. Class Account provides several conversion operators that
retrieve the values of its components. For simplicity, I use the fixed-size array for the owner name.

class Account { // base class of hierarchy
protected:
 double balance; // protected data
 int pin; // identification number
 char owner[40];
public:
 Account(const char* name, int id, double bal) // general
 { strcpy(owner, name); // initialize data fields
 balance = bal; pin = id;}
 operator double () const // common for both accounts
 { return balance; }
 operator int () const
 { return pin; }
 operator const char* () const
 { return owner; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1145 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void operator -= (double amount)
 { balance -= amount; }
 void operator += (double amount)
 { balance += amount; } // increment unconditionally
} ;

As I told you in Chapter 15, these overloaded operator functions can be called using the same
syntax as standard casts.

 Account a1("Jones",1122,5000); // create object
 int pin = (int)a1;
 double bal = (double) a1; // legitimate casts
 const char *c = (const char*) a1;

The static_cast operator is also available in this context. It does exactly the same job as the
standard casts.

 Account a1("Jones",1122,5000); // create object
 int pin = static_cast<int>(a1); // ok
 double bal = static_cast<double>(a1);
 const char *c = static_cast<const char*>(a1);

Make no mistake: These static_cast operators work for only one reason: because the class
Account supports overloaded conversion operators int, double, and const char*. Otherwise,
an attempt to apply the static_cast operator to Account objects would be as futile as an attempt
to apply the standard casts.

The major difference between standard casts and static_cast is in how they convert pointers.
Standard casts rely on the common sense of the programmer. If you want to point a double pointer
to an int variable, this means that you have a good reason to do so, and nobody is going to look
over your shoulder telling you what to do and what not to do.

Listing 18.9 shows a simple example of using pointer conversions. The results of the program
execution are shown in Figure 18-6.

Figure 18-6. Output for program in Listing 18.9.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1146 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

At the start of main(), two pointers, pd and pi, are set to point to an integer variable i. Then
these pointers are dereferenced to print the value of i. As you see, the integer pointer pi retrieves
the value of i correctly, and the double pointer pd retrieves junk.

Then the double pointer pd is set to point to an Account object a1. Dereferencing this pointer, the
program not only retrieves the value of the object's data member balance but also changes it to
whatever it wants.

Example 18.9. Examples of pointer conversions using standard casts.
#include <iostream>
using namespace std;

class Account { // base class of
hierarchy
protected:
 double balance; // protected data
 int pin; // identification
number
 char owner[40];
public:
 Account(const char* name, int id, double bal) // general
 { strcpy(owner, name); // initialize data
fields
 balance = bal; pin = id; }
 operator double () const // common for both
accounts
 { return balance; }
 operator int () const
 { return pin; }
 operator const char* () const
 { return owner; }
 void operator -= (double amount)
 { balance -= amount; }
 void operator += (double amount)
 { balance += amount; } // increment
unconditionally
} ;
int main()
{
 double *pd, d=20.0; int i = 20, *pi = &i;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1147 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 pd = (double*) pi;
 cout << "i=" << *pd << " i=" << *pi << endl;
 Account a1("Jones",1122,5000); // create objects
 pd = (double*)(&a1);
 cout << "balance = " << *pd << endl;
 *pd = 10000; // change data member
 cout << "balance = " << *pd << endl;
 return 0;
 }

Here, the behavior of static_cast is different from the behavior of standard casts. The double
pointer is able to misrepresent the value of variable i because the integer address can be used as an
operand for the (double*) cast. This is impossible to do using the static_cast operator.

 pd = (double*) pi; // ok
 pd = static_cast<double*> (pi); // syntax error

Similarly, the double pointer pd is able to access and modify an Account object data member only
because the Account address could be used as an operand to a standard cast. This is impossible to
do if the static_cast operator is used.

 Account a1("Jones",1122,5000); // create object
 pd = (double*)(&a1); // ok
 *pd = 10000; // ok
 pd = static_cast<double*>(&a1); // syntax error

This does not mean that the static_cast operator cannot be used with pointers. It can. It cannot
be used with pointers where conversion does not make software engineering sense. When pointer
conversion makes sense, the static_cast operator can be used even if it is not particularly safe to
do. Consider, for example, class SavingsAccount: it is publicly derived from class Account.

class SavingsAccount : public Account {
 double rate; // fixed interest rate
public:
 SavingsAccount(const char* name, int id, double bal)
 : Account(name, id, bal), rate (6.0) { }
 void payInterest() // pay once a month
 { balance += balance * rate / 12 / 100; }
} ;

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1148 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

SavingsAccount objects can do everything that Account objects can, plus they have more data
members and more member functions. Hence, an Account pointer can point to a SavingsAccount
object without any difficulty. This is safe and does not require any cast, standard or otherwise.

Account a1("Jones",1122,5000); // create objects
SavingsAccount a2("Smith",1133,3000);
Account *pa = &a2; // save conversion, no cast is needed

A SavingsAccount pointer should not point to an Account object because this pointer could send
to the object a message that a base object would not be able to respond to.

 SavingsAccount *psa = pa; // syntax error

Of course, if that Account pointer actually points to a SavingsAccount object, this assignment
(conversion) makes sense, but you should tell that to the compiler using a cast. A standard cast
would do.

 psa = (SavingsAccount *)pa; // explicit cast is ok

It is in this situation that the static_cast operator uses its aversion to pointers. It can be used for
this conversion instead of a standard cast.

 psa = static_cast<SavingsAccount*>(pa); // this is perfectly ok

And, of course, the static_cast operator can be used in situations where the conversion is not
safe. Here, for example, I point the SavingsAccount pointer to an Account object, and the
static_cast operator has as few objections to that as does a standard cast operator.

 psa = static_cast<SavingsAccount*>(&a1); // this is perfectly ok

To summarize, the answer to the question how is this cast better than standard casts is twofold.
First, it is verbose: this cast is easier to notice in code. Second, it is less permissive than standard
casts. If you think that these advantages are somewhat offset by the increase in typing, I will have
to correct you: On many occasions, Bjarne Stroustrup, the creator of C++, has said that the less we
use casts the better, and everything that discourages us to use casts is beneficial.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1149 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The reinterpret_cast Operator

The reinterpret_cast operator is designed to do everything that standard casts could do, without
limitations that the static_cast operator imposes.

The reinterpret_cast operator can be applied when the programmer knows what the compiler
does not know about the actual types pointed to by pointers. In the example below, an integer
pointer p points to a double value. In the last line, the double pointer q is assigned the value of p.
The compiler does not know that the pointer p in fact points to a double value. The programmer
tells this to the compiler by using the reinterpret_cast operator.

double y = 42;
int *p = reinterpret_cast<int*>(&y); // potential trouble
double *q = reinterpret_cast<double*>(p); // p points to double
cout << "The answer is " << *q << endl; // it prints 42!

The same result could be achieved by using the standard casts int* and double*.

double y = 42;
int *p = (int*)&y; // integer p points to double:
trouble
double *q = (double*)(p); // ok because p points to
double
cout << "The answer is " << *q << endl; // it prints 42!

The reinterpret_cast operator is considered better than standard casts because it is more
conspicuous.

Notice that static_cast cannot be used here: It can convert values of different types but not
pointers. Notice also that the static_cast operator is portable because the compiler checks
whether the types are related (as numeric types) or whether the appropriate conversion operator or
conversion constructor exists.

The reinterpret_cast operator is not guaranteed to be portable. It simply picks up the set of bits
in the source expression and interprets it according to the rule of the target type. There is no
guarantee whatsoever that what happens on one machine will happen on another machine. The
results are indeed machine dependent.

This cast should be used as little as possible. Still, if you have to use a cast (remember that story
about traveling abroad?), use the reinterpret_cast operator rather than a standard cast.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1150 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

The const_cast Operator

The const_cast operator has the power to eliminate the constant property of a constant value or
object. Its syntax is the same as that of other C++ modern casts, including the target type in angle
brackets and the source expression in parentheses. (The parentheses are mandatory.)

 nonConstValue = const_cast<TypeName>(constValue);

Its syntax and semantics are more rigid than for other casts. All that it can do is remove the const
property of the source value constValue, so that the assignment from a constant value
constValue to a nonconstant value nonConstValue becomes possible. The type of
nonConstValue should be exactly TypeName. The type of constValue should be const
TypeName.

Consider the following simple example. Since the variable d is defined as const, a regular pointer
cannot point to it (to avoid the change in value through the dereferenced pointer).

 const double d = 42;
 double *pd = &d; // error: to prevent *pd = 21

A pointer to constant value can point to the variable d, but this pointer cannot be used to change
the value of its target.

 const double d = 42;
 const double *pd = &d; // ok but not very useful
 *pd = 21; // syntax error: a pointer to const

The const_cast operator does the trick: It removes the constant requirement and opens the
possibility for changing the value that is defined as const.

 const double d = 42;
 double *pd = const_cast<double*>(&d); // remove const
 *pd = 21; // now it is ok
 cout << "The answer is " << *pd << endl; // it prints 21

This is a trick that even standard C-type casts cannot do. Obviously, you should not do it very
often. One situation where it might be necessary is maintenance of code where a variable was
defined as const, but new conditions require changing it. Rather than changing the existing
definition, you might prefer to add new code where the variable is changed with the use of the
const_cast operator.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1151 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Using the const_cast operator removes the protection. The pointer does not have to be a pointer
to a constant, and it can be dereferenced while changing the object it is pointing to. This is a very
offensive technique.

Consider again, for example, the class Account.

class Account { // base class of hierarchy
protected:
 double balance; // protected data
 int pin; // identification number
 char owner[40];
public:
 Account(const char* name, int id, double bal) // general
 { strcpy(owner, name); // initialize data fields
 balance = bal; pin = id; }
 operator double () const // common for both accounts
 { return balance; }
 operator int () const
 { return pin; }
 operator const char* () const
 { return owner; }
 void operator -= (double amount)
 { balance -= amount; }
 void operator += (double amount)
 { balance += amount; } // increment unconditionally
} ;

If you try to call a non-const member function (e.g., operator+=()) on a const object of class
Account, the compiler will reject the code.

const Account a1("Jones",1122,5000.0); // create object
a1 += 1000.0; // syntax error

If you try to set a regular Account pointer to point to a const object, the compiler will also reject
this code for fear that the object can be changed through the dereferenced pointer.

const Account a1("Jones",1122,5000.0); // create object
Account *pa = &a1; // syntax error

If the pointer points to a constant object, it has to be defined as a pointer to a const object. This is
permitted, but this pointer cannot be used to change the state of the object.

const Account a1("Jones",1122,5000.0); // create object
const Account *pa = &a1; // ok

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1152 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

*pa += 1000.0; // syntax error

However, a regular pointer can be set to point to a const object using the const_cast operator.

const Account a1("Jones",1122,5000.0); // create object
Account *pa = const_cast<Account*>(&a1); // ok
*pa += 1000.0; // this is permitted

As a result, the state of a constant object changes¡Xits balance now is $6,000, but no explicit
operation over the object was performed directly.

The only job that the const_cast operator can do is to remove the const protection. It cannot do
any additional type conversions. If the nonConstValue (the result of the cast) is not of the same
type as constValue (the value being cast) and a type conversion is needed, it has to be done as a
separate additional step.

For example, the const char*() conversion operator of class Account returns a character pointer
that cannot (and should not) be used to change the contents of the character array within an
Account object.

const Account a1("Jones",1122,5000.0); // create object
char *c2 = static_cast<const char*>(a1); // syntax error

This pointer can be assigned to a pointer to a constant only, and this pointer cannot be used to
change the state of the Account object.

const Account a1("Jones",1122,5000.0); // create object
const char *c2 = static_cast<const char*>(a1); // this is ok
strcpy(c2,"Jones"); // syntax error

Using the const_cast operator on the Account object does not help because the target value and
the source value are of different types.

const Account a1("Jones",1122,5000.0); // create object
char *c2 = const_cast<char*>(a1); // syntax error

Since the const_cast operator can do only one job, it is perfectly all right to convert a constant
Account object to a pointer to a constant first (using a static_cast or a standard cast) and then
convert the pointer to a constant to a regular pointer (using const_cast).

const Account a1("Jones",1122,5000.0); // create object
const char *c1 = static_cast<const char*>(a1); // this is ok
char *c2 = const_cast<char*>(c1); // and this is ok
strcpy(c2,"Jones"); // not a syntax error

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1153 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Again, the name of the owner is changed without explicit processing of the constant Account
object.

The dynamic_cast Operator

The dynamic_cast operator is an element of a set of C++ components that supports run-time-type
information (RTTI). Other elements of this set of components are the typeid operator and the
type_info structure.

The dynamic_cast operator is used to convert pointers (or references) of the base class into
pointers (or references) of one of the derived classes. As you saw earlier, the static_cast operator
(or a standard cast) could be used too, but the program must know the type of the object to make
sure it converts the pointer to the correct class.

The dynamic_cast operator uses the same syntax as do other cast operators: The argument pointer
(or reference) is in parentheses, and the target type to convert the argument to is in angle brackets.
If the argument pointer does indeed belong to the target type requested, then the operator returns
the argument pointer to the object unchanged. It also returns the pointer to the object if the
argument pointer points to an object of a class derived (directly or indirectly) from the target type.
Otherwise, it returns null, and the program can check the value.

For this technique to work, the hierarchy of classes has to contain both virtual and nonvirtual
functions. It does not work for inheritance without virtual functions.

Consider, for example, a simplified Account class that has a virtual function display(). It
displays the contents of the Account object.

class Account { // base class of hierarchy
protected:
 double balance; // protected data
 int pin; // identification number
 char owner[40];
public:
 Account(const char* name, int id, double bal) // general
 { strcpy(owner, name); // initialize data fields
 balance = bal; pin = id;}
 virtual void display() // virtual function for
RTTI
 { cout.setf(ios::fixed,ios::floatfield); cout.precision(2);
 cout <<setw(6) << pin << setw(20) << balance
 << " " << owner << endl; }
 void operator -= (double amount)
 { balance -= amount; }

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1154 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 void operator += (double amount)
 { balance += amount; } // increment
unconditionally
} ;

The derived class SavingsAccount adds an additional method payInterest() and redefines the
base method display() so that the additional data member interest is also displayed.

class SavingsAccount : public Account {
 double rate, interest; // accumulated interest
public:
 SavingsAccount(const char* name, int id, double bal)
 : Account(name, id, bal), rate (6.0), interest(0) { }
 void payInterest() // pay once a month
 { double pay = balance * rate / 12 / 100;
 balance += pay; interest += pay; }
 virtual void display()
 { cout.setf(ios::fixed,ios::floatfield); cout.precision(2);
 cout <<setw(6) << pin << setw(8) << interest << setw(12)
 << balance << " " << owner << endl; }
} ;

Here, I am defining two objects, one of the base class and another of the derived class. I also define
an Account pointer and use the dynamic_cast operator to set this pointer to point to the base
object first and then to the derived object. As is common when using the dynamic_cast operator, I
check whether the pointer is null. If it is, then the question is answered in the negative. If the
pointer is not null, the answer is affirmative¡Xyes, the object pointed to by the pointer can be used
as an object of the class specified in the dynamic_cast operator.

Account a1("Jones",1122,5000); // create objects
SavingsAccount a2("Smith",1133,3000);
Account *pa = dynamic_cast<Account *>(&a1); // ok
if (pa == 0)
 cout << "Null pointer\n";
else
 pa->display(); // Jones
pa = dynamic_cast<SavingsAccount *>(&a2); // ok
 if (pa == 0) cout << "Null pointer\n";
else
 pa->display(); // Smith

In this example, the answers to this question are not very important because the pointer I use as the
target of the assignment is a base pointer¡Xit cannot do much damage, whether it points to a base
class object or to a derived class object. Indeed, the first cast returns a pointer to object a1, and the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1155 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

second cast returns a pointer to object a2, which is converted to the base pointer. Since the
function display() is polymorphic, it displays data in the base format in the first case and in
derived format in the second case. This code snippet demonstrates the behavior of the
dynamic_cast operator when the object pointed to by the pointer is of the same type as the type
specified in the operator.

In the next code snippet, I use the base pointer as the target again. First, I point it to the base object
and ask whether it can perform Account operations. The answer is yes; that is, the operator returns
a base pointer pointing to the object in question. Nevertheless, the display() message sent through
this pointer points data in the derived class format because the function is virtual, and the object is
of the derived class. Next, I check whether the object a1 can perform the duties of the
SavingsAccount object. The answer is no, it is a base class object, and the operator returns null.

pa = dynamic_cast<Account *>(&a2); // ok
if (pa == 0)
 cout << "Null pointer\n";
else
 pa->display(); // Smith
pa = dynamic_cast<SavingsAccount *>(&a1); // null
 if (pa == 0) cout << "Null pointer\n";
else
 pa->display();

The next code snippet is more interesting because it uses the derived class pointer. First, I check
whether the object a1 can perform the derived class duties. As in the previous case, the answer is
no: It does not matter whether the target of the assignment is a base pointer (as in the previous case)
or a derived pointer (as in this case)¡Xthe null is the null. Next, I check whether the object a2 can
perform the duties of the derived class. The answer, as in the very first code snippet, is yes, it can.
In the first snippet, I converted the result to the base pointer and hence could call only Account
methods and virtual methods of the derived class. Here, there is no conversion. The target of the
assignment is a derived pointer, and it can access the base functions, virtual functions, and
functions defined in the derived class.

SavingsAccount *psa = dynamic_cast<SavingsAccount *>(&a1); // 0
if (psa == 0)
 cout << "Null pointer\n"; // null
pointer
else
 psa->display(); // no
display
psa = dynamic_cast<SavingsAccount *>(&a2); // ok
if (psa == 0)
 cout << "Null pointer\n";
else

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1156 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

 { psa->payInterest(); // derived
method
 psa->display(); } // Smith

You see that the dynamic_cast operator provides a powerful method of checking whether a given
object can perform the required operation. Since it is a relatively new language feature, not all
compilers support it. Those that support it might not do it by default. To use the feature, you have
to set up the compiler flags or choices to explicitly support RTTI features.

Similar to operator new, C++ supports another method of checking whether the cast was
successful: throwing an exception. If the pointer does not point to an object of the class specified in
the operator, the bad_cast exception is thrown. This is especially important for references. C++
pointers might or might not point to an object, but C++ references always do¡Xthey cannot have a
null value. For references, the use of dynamic_cast is not asking a question (as for pointers) but is
making an assertion that it indeed points to an object of the class specified in the cast. When the
assertion fails, throwing an exception is appropriate.

The typeid Operator

Another technique for deciding into what class to cast the base pointer is based on using the
operator typeid. The operator typeid allows you to do one of two things: check what the name of
the argument class is or check whether the object pointed to belongs to a given class.

Unlike cast operators, the typeid operator works with an object argument, not with a pointer
argument. It returns a reference to an object of the library class type_info. The implementation of
this call is compiler dependent. However, it always includes a member function name() among its
class members. This function returns a character array that is, again, implementation dependent;
most often, it is the name of the class to which the argument of the operator belongs or the name of
the class preceded by the keyword class.

Some compiler implementations make the type_info constructors private. In this case, the C++
program cannot create an object of class type_info. Instead, it has to send a message to a return
value of the typeid operator.

Account a1("Jones",1122,5000); // create objects
SavingsAccount a2("Smith",1133,3000);
const char *c1 = typeid(a1).name(); // get class name
const char *c2 = typeid(a2).name();
cout << c1 << endl; // prints "class
Account"
cout << c2 << endl; // prints "class
SavingsAccount"

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1157 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

This is, of course, not very useful unless it is used for debugging. The real utility of the typeid
operator is based on the fact that its operator cannot only be an expression of some class but also a
class name spelled as an identifier (no quotes). This allows you to compare the results of applying
the typeid operator to the class name and to the object. If the equality operator returns true, the
object belongs to the specified class.

if (typeid(Account) == typeid(a1)) // true
 cout << "a1 is Account\n";
if (typeid(SavingsAccount) == typeid(a2)) // true
 cout << "a2 is SavingsAccount\n";
if (typeid(Account) == typeid(a2)) // false
 cout << "a2 is Account\n";
if (typeid(SavingsAccount) == typeid(a1)) // false
 cout << "a1 is SavingsAccount\n";

When dealing with a collection of heterogeneous objects pointed to by base pointers, the pointers
have to be dereferenced when used as typeid arguments.

pa = &a2;
if (typeid(Account) == typeid(*pa)) // false
 cout << "pa points to Account\n";
if (typeid(SavingsAccount) == typeid(*pa)) // true
 cout << "pa points to SavingsAccount\n";

Notice that these comparisons do not compare objects¡Xthe operation of comparison is not defined
for C++ structures. It does not compare pointers: Unlike other special casts, the typeid operator
returns an object, not a pointer. It applies the overloaded comparison operator to the type_info
object, which is returned by the typeid operator.

The typeid operator is a very powerful tool and can easily be abused. It is an unstructured
competition to the use of virtual functions. Make sure you do not use it too much.

Summary

The topics discussed in this chapter are relatively new. Not all compiler and library
implementations support them. The industry has not accumulated much experience in using them.
This is why you should use these C++ features with caution.

Exceptions come with significant memory and execution time penalty. This might be important for
some applications. For most applications, this is not very important. What is important, however, is
how to use exceptions to structure and simplify the flow of control in the application.

It seems that exceptions that throw values of built-in types are not very useful, because the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1158 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

exception handlers cannot distinguish between values of the same type thrown from different
places in the source code. Designing classes for passing exception information from the place of
error discovery to the place of error recovery is more useful and interesting, even though it
increases the number of classes in the application and the number of lines to write.

Many people say the exceptions streamline the flow of control in the application and allow the
designer to separate mainline processing from processing of confusing exceptional cases. Perhaps.
The use of if and switch control constructs is indeed confusing¡Xthe source code is complex and
hard to understand. But this complexity reflects the complexity of the task performed by the
program, and it is foolish to blame the control constructs for the complexity of the code. The
definite advantage of using standard control constructs for processing different cases is that the
code is all in the same place; it is not broken into separate pieces.

When exceptions are used, the maintainer has to perform an additional task: the analysis of the
decisions made by the designer as to how to break processing into separate pieces. These decisions
are often complex and arbitrary; what has to be kept together is sometimes broken into separate
pieces. All this adds to the complexity of the program.

I think that the use of exceptions is definitely justified in one case only¡Xwhen the program is
designed in such a way that the part of the program that does error recovery does not have
information that is known only to the part of the program that discovers the error; in this case, using
exceptions to pass necessary data from one part of the program to another part of the program. This
is fine, but keep in mind that the cause of the need to pass information from one part of the program
to another is the previous design decision to break processing into separate pieces. Reconsidering
this decision might eliminate the need for excessive exception handling.

When you use C++ exceptions, make sure that you do not make the life of the maintainer too
difficult. Claim all exceptions that each function throws or passes through from its servers, and do
not claim exceptions that the function cannot throw. Document exception processing in the source
code and in separate documentation as much as possible (that is, as much as your boss will let you).
Make sure that you test every exception handler, even when testing exceptions is not easy.

The type cast operations that I discussed at the end of this chapter are rather new, and industry does
not have much experience in their use. I have to admit that I also do not have much experience
using them¡XI use C-style standard casts and feel that they are quite adequate.

Yes, standard casts can be easily abused. Yes, standard casts allow me to make conversions
between pointers that do not make sense, and the static_cast operator would prevent me from
doing that. But I do not make conversions that do not make sense. Also, if I wanted to make such a
conversion, the reinterpret_cast operator would allow me to do that as easily as a standard cast
would.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1159 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

However, most experts agree that these cast operators add to code readability: They are
conspicuous and easily attract the maintainer's attention. This is true, and I recommend that you try
to use them. With more experience, you might come to love them.

Chapter 19. What We Have Learned

Topics in this Chapter

ϒΠ C++ as a Traditional Programming Language

ϒΠ C++ as a Modular Language

ϒΠ C++ as an Object-Oriented Language

ϒΠ C++ and Competition

ϒΠ Summary

All right, it was a long way to go. I have to admit that this book took so much work that sometimes
I thought that I would never get to write this last chapter. I am glad that I was wrong. The time
came to stop plowing ahead. Now we can look back at the starting point and at the road that has led
us here.

In this chapter, there will be no new syntax to study. Instead, I will try to summarize the basic
characteristics of this great, wonderful, confusing¡Xand dangerous¡Xlanguage: C++ as we know it.
Now that you have grasped the entire subject and understand how different components fit
together, you can appreciate how much thought went into its design and how careful one has to be
in using it.

In earlier chapters, I had to constrain myself as to what I could and could not discuss with you,
because some of the things that were relevant for the discussion were not yet familiar to you. Now
that we have discussed everything, this limitation no longer applies. That is why this last chapter is
great fun for me.

C++ was designed as a software engineering language for building large computer programs. It
pursued several goals, and these goals were sometimes conflicting. On the one hand, C++ tries to
be a performance-oriented systems programming language: It provides low-level operators (e.g.,
shifts and bitwise logic operators) and supports access to machine resources (e.g., the register and
volatile data types and arithmetic operations over pointers). On the other hand, C++ tries to

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1160 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

facilitate the breaking up of programs into relatively independent pieces that can be developed by
different programmers, who communicate with one another as little as possible.

C++ is a tool for achieving several conflicting goals. It was designed:

ϒΠ as a high-level language for readability (data aggregation, flow of control, scope of
names)

ϒΠ as a language for sharp and quick minds (unique shorthand operators, concise
expressions)

ϒΠ to use character strings and dynamic memory management

ϒΠ to use libraries that are provided (defacto standard)

C++ as a Traditional Programming Language

Unlike many high-level languages, C++ is case sensitive. Similar to many modern high-level
languages, C++ is space blind (with two or three exceptions). It uses end-of-line comments but
does not use nested block comments.

Similar to most other programming languages, C++ provides basic built-in data types with
operations over the values of these types. The C++ built-in data types are rather limited¡Xjust
simple integers and floating point values.

C++ Built-in Data Types

To achieve maximum performance, the C++ integer type is always the fastest type on any platform.
Its size is 16 bits on 16-bit machines and 32 bits on 32-bit machines. This results in a portability
problem, so typical for C++: There is no guarantee that a program running on one machine will
produce exactly the same results on another machine.

To aid flexibility (i.e., to save memory where possible) and to add computational power (i.e., to
expand ranges where necessary) for complex computations, C++ provides size modifiers (short,
long, unsigned) for finer use of memory. C++ does not standardize the sizes of different types. It
just requires that a short value is not longer than an integer value; it also requires that a long value
is not shorter than an integer value.

As a result, on modern machines, short values are always 16 bits, and long values are always 32
bits. Programmers who strive for portability avoid using plain integers and instead use either short
or long modifiers. Programmers who strive for speed use plain integers and avoid using short and
long modifiers.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1161 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Use of unsigned values supports even finer memory use and is even more controversial. On the one
hand, defining a value as unsigned indicates to the maintainer that the value is inherently positive
and cannot be negative. Also, the use of the unsigned qualifier doubles the maximum integer value
on the given architecture (for the same number of bits). On the other hand, the mixture of signed
and unsigned values might result in incorrect results in computations. To avoid these errors, many
programmers give up the potential benefits of unsigned values by not using them.

To simplify the choices for the programmer, C++ supports defaults. If the programmer does not
specify whether the value is signed or unsigned, the default is signed; if the programmer does not
specify whether the value is a short integer, a long integer, or just an integer, the default is just an
integer.

Striving for maximum performance, C++ tests computational results neither for underflow nor for
overflow. Everything that should be tested in the program should be tested explicitly in the source
code of the program on the program's own time. If the program does not want to spend time
checking the legitimacy of the results, C++ does not provide any default tests or warnings.

C++ treats characters as just another kind of integer. Their size varies from one byte per character
to two bytes per character (expanded character set). Arithmetic operations over character values are
legal in C++. They are popular, but they could create portability problems when different machines
use different character sets.

The language allows the programmer to specify both signed and unsigned characters. There is no
standard for default type¡Xon some machines it is unsigned, on others it is signed. It is a good idea
to assume that a character cannot contain a negative value and to use an integer instead of a
character if a negative value (e.g., end-of-file code) is possible.

Character literals are enclosed in single quotes. They should not be confused with string literals that
are enclosed in double quotes. C++ does not store the string length with the string contents. It uses
the 0 code to mark the end of the string. This is why the length of a string literal is one more than
the number of characters in the literal.

For floating point types, C++ supports three different sizes: float, double, and long double. Their
sizes range from 4 to 8 to 10 bytes, their precision ranges from 7 to 15 to 19 digits. These
characteristics are machine dependent. C++ floating-point constants are always double, not float or
long double. In most cases, this is not important. When it is necessary to specify that the literal is,
for example, float, the appropriate suffix should be used. C++ supports both the fixed decimal point
notation and scientific notation (with the exponent).

Boolean types have two values, true and false. They are also treated as small integers. The size of a
Boolean value of type bool is one byte rather than one bit. C++ does not pack Boolean values one

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1162 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

per bit because addressing individual bits in C++ requires logical operations and shifts. In this
tradeoff between space efficiency and time efficiency, C++ favors time efficiency, since the byte is
the least segment of memory that can be addressed directly.

Symbolic names for literal values of any built-in type can be specified using the preprocessor
#define directive. The preprocessor will replace each occurrence of the symbolic name in the
source code with the literal value. Since this is done before the compiler sees the source code, the
errors in the preprocessor directives are often hard to find. Using the const modifier is better
because the names defined with the const modifier follow the scope rules (the names defined in
the #define directive are global).

For each data type, C++ supports two derived data types, a pointer type and a reference type. Both
these types contain an address of the value, but the syntax of their use is different.

C++ allows any conversions between numeric values of different types: the value of one type can
be used where the value of another type is expected. Boolean values and numeric values are also
interchangeable¡Xno syntax error is generated. For numeric values, C++ is a weakly typed
language.

The values of pointers (or references) to different types cannot be converted to each other (or to the
value of the type). For addresses, C++ is a strongly typed language¡Xa syntax error is generated
even when the pointers of different types contain the same address.

An explicit cast can be used for conversions between pointers (and references), but the integrity of
results remains the responsibility of the programmer¡Xno syntax error is generated by the compiler
if the results do not have reasonable meaning or are not portable between different computer
architectures.

C++ Expressions

C++ contains a conventional set of operations over numeric values, such as sign operators,
arithmetic operations, relational operators, equality operators, and logical operators. It has no
exponentiation operator. Similar to most other programming languages, it has no implied
multiplication¡Xthe asterisk should be used as an explicit operator.

C++ treats statements as expressions. To achieve this uniformity, C++ treats the assignment and the
comma as operators (although their priority is the lowest). As a result, erroneous constructs can be
accepted by C++ compilers as valid code.

Since the number of operators is large, C++ uses two-symbol operators and even one three-symbol
operator (the conditional operator). In C++, the meaning of an operator (and of a keyword) is often

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1163 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

reused for different purposes and thus depends on the context.

Since the sizes of built-in data types are machine dependent, C++ allows the programmer to
evaluate the size of a given variable (given the name of the variable) or the size of any variable of a
given type (given the type name).

Logical, relational, and equality operators return Boolean values true and false, but these values can
be freely converted to numerical values 1 (true) and zero (false). Moreover, any numerical value
can be used where a Boolean value is expected¡Xno syntax error is generated. The zero value is
converted to false, and any other numeric value is interpreted as true. This leniency sometimes
forces C++ compilers to accept code that is semantically incorrect.

Another source of error is the equality operator, which is written as two consecutive equal signs:
omitting one equal sign does not generate a syntax error but quietly changes the meaning of the
source code. This is a common source of error that causes waste of time, frustration, and anxiety.

Logical operators && and || are of different priority¡Xthe operator && binds tighter than ||. This
allows avoiding extra parentheses. Both logical operators are short-circuit operators: In the
compound logical expression, the first operand is evaluated first, and the second one is not
evaluated if the result of the operation is known from the evaluation of the first operator.

C++ has a number of unique operators that provide access to the underlying representation of
information in computer memory. Bitwise logical operators are these operators along with,
inclusive or, exclusive or, negation (complement). They operate on each bit of the operand(s)
individually, creating the result bit by bit.

Bitwise shifts shift the given bit pattern to the left and to the right. When the pattern is shifted to the
left, or a positive value is shifted to the right, zeroes are shifted in¡Xthese operations are portable.
When a negative value is shifted to the right, the result depends on the implementation: Either
zeroes are shifted in (logical shift), or ones are shifted in (arithmetic shift). This operation is not
portable.

Another set of unique operators includes the increment and decrement operators. They emulate
assembly language type processing by providing a side effect (increment or decrement by 1) on the
single lvalue operand. These operators can be prefix or postfix. The prefix operator is applied first,
then the value is used in other expressions; the postfix operator is applied after the value is used in
other expressions.

C++ does specify the order of evaluation of operators in an expression. However, it does not
specify the order of evaluation of operands. Hence, a C++ program is not allowed to rely on a
specific order of evaluation of operands in an expression. In particular, the operands with side
effects (increment and decrement operators) are a common source of portability problems. It is a

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1164 of 1187) [8/17/2002 2:58:12 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

good idea to only use increment and decrement operators in stand-alone expressions to avoid
portability issues.

Another unique operator is the conditional operator: Depending on the value of its first operand, it
evaluates either its second operand (the first operand is true) or its third operand (the second
operand is false).

Yet another set of unique C++ operators includes arithmetic assignments and the comma operator.
These operators help to write succinct and expressive C++ code.

C++ binary operators are always applied to operands of exactly the same type. When the source
code specifies operands of different types, C++ applies widening conversions: A shorter operand is
converted to the widest type in the expression. In the assignment operator, the value on the right-
hand side is converted to the type of the left-hand side, even if this might cause a possible loss of
precision.

C++ Control Flow

As in other languages, C++ statements are executed sequentially. Each statement is terminated by a
semicolon. Blocks (compound statements) are allowed; they are delimited by braces and can have
local variables. No semicolon is used after the closing brace of the block.

Compound statements can be nested; they can serve as a function body or as a control statement
body. Local variables defined in a nested block are not visible outside the block.

C++ has a standard set of control constructs. The if-else statement does not use the then
keyword; it executes the true branch when the statement's expression has a nonzero value of any
type; it executes the false branch when the statement's expression has a zero (false) value.

It implements repeated actions. C++ supports three forms of iterative statements: the while loop (it
allows for zero repetitions), the do-while loop (it enforces at least one repetition), and the for loop
(mostly for a fixed number of repetitions).

A popular C++ programming idiom is to combine a test for continued iteration with the
assignment. Using this idiom, one has to be careful with parentheses: Omitting parentheses might
change the meaning of the expression because C++ comparison has a higher precedence than C++
assignment has.

C++ does not support unrestricted jumps. The goto statement cannot leave its scope and cannot
jump over definitions of variables. The break statement exits from a loop so that control flow
jumps to the statement after the loop. The break statement can be used with all three loop

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1165 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

constructs and is usually executed in a conditional statement. The continue statement skips the
rest of the loop body and returns to the loop top for the test of further iterations.

The C++ switch statement supports multiway decisions in the program: It provides alternative
execution paths based on the value of an integral expression. (Floating point cannot be used.) The
default case is executed if no match is found. Unlike in other languages, the default statement is
optional; if it is absent and the match is not found, the next statement is executed. To create a
construct with multiple branches, break statements should be used at the end of each branch.

C++ as a Modular Language

Similar to most modern high-level languages, C++ supports hierarchies of building blocks for
program data and for program operations. From a software engineering point of view, the benefits
of modularization for large projects include division of labor, simpler programming tasks, reusable
and maintainable program elements, and the opportunity to study the program at different levels,
either in general (disregarding details), or in detail (disregarding high-level issues).

When used correctly, these benefits result in higher productivity both for development and for
maintenance and in fewer errors.

C++ supports programmer-defined aggregate data types: arrays, structures, unions, and
enumerations. Their components can be either of built-in data types or of other C++ aggregate
types (arrays, structures, etc.).

C++ supports programmer-defined functions. The hierarchies of functions model the hierarchies of
actions of real-life objects that the program maintains information about. C++ supports the use of
standard libraries. Standard libraries implement a variety of common tasks. Library functions are
optimized, well tested, and have broad applicability.

The need to specify header files with function prototypes makes using library functions more
difficult than necessary, but one can learn to live with it.

C++ Aggregate Types: Arrays

C++ arrays can only contain elements of the same type. The greatest limitation of C++ arrays is
that the array size must be known at compile time. If the array contains more elements than
necessary, memory is wasted. If the array contains less elements than necessary, memory is
corrupted.

Another common source of errors in using C++ arrays is that the index of the first element is
always 0. This cannot be changed. Hence, the index of the last element is 1 less than the array

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1166 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

range. C++ does not support the compile time index check: This is often impossible, but the
compiler would not do that even if it were possible. Neither does C++ support the run-time test of
index validity: It would affect execution time.

C++ philosophy assumes that you do not want to waste time at any access to the array; when you
want to check index validity, you can write your own code to do that; when you do not check index
validity, C++ assumes that you know what you are doing. On memory-rich machines, index errors
might not result in incorrect run-time results (until the memory usage changes). This is a serious
problem with no good solution.

C++ allows the programmer to implement array processing algorithms using either indices to
access array components or pointers. This is based on the fact that the increment (or decrement)
operator applied to a pointer increments the address not by 1 but by the size of the array element.
This operation points the pointer to the next element of the array. The use of pointers allows one to
write concise and expressive array processing code. However, there are no performance advantages
in using this technique. Some programmers find this kind of code somewhat difficult to verify.

C++ supports arrays of any dimension. Under the hood, they are implemented as one-dimensional
arrays with the row-major order. (The right subscript varies the fastest.) Similar to one-dimensional
arrays, C++ multidimensional arrays support no checks of index validity.

C++ represents text as arrays of characters. These arrays have to have an extra element to
accommodate the zero sentinel value that is used to mark the end of valid data in the array. When
the compiler processes the program text literals, it also appends the terminating zero to the symbols
of the string; hence, the literals have an extra element as well. All library functions that deal with
arrays of characters expect the terminating zero at the end of valid data. When these library
functions change the contents of the array, they append the terminating zero to the end of valid data
to keep the string in the valid state.

C++ supports neither array assignments nor array comparisons. For arrays of arbitrary types, it is
the responsibility of the programmer to make sure that these operations are performed correctly.
For text strings, library functions are used for assignment, comparisons, concatenation, and other
standard operations.

Most library functions do not work well when strings overlap in memory. When writing to a
character array, no C++ library function checks for available space. If the string does not have
enough available space, the computer memory is silently corrupted. This is a serious integrity
problem.

C++ Aggregate Types: Structures, Unions, Enumerations

C++ structures combine related components. What components are related and what are not is often

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1167 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

a matter of judgment. C++ leaves this to the discretion of the programmer and does not impose any
limitations on the types of the components.

The structure definition is a blueprint for creation of structure variables. For each structure field,
the programmer supplies the type and the name of the field. The scope of the structure definition is
delimited by the opening and the closing brace that is followed by the semicolon.

Structure variables can be initialized using the syntax similar to the syntax of array initialization (a
comma-separated list of values delimited by the braces).

The dot selector operator selects a structure object's fields (both as an lvalue and as an rvalue).
When the structure variable is referred through a pointer, the dot selector operator does not work;
instead, the arrow selector operator should be used.

C++ supports assignment for structure variables of the same type. The value semantics is
implemented: The fields of the rvalue structure variable are copied bitwise into the fields of the
lvalue structure variables.

Assignments between structure variables of different types are not allowed, even when they have
the same composition and even when the fields in both structure definitions have the same names.
It is the type name that has to be the same. Notice that using the typedef facility would not make
the type name the same: It would only create a synonym for the type name.

Assignments between structure variables and numeric variables (or pointer or reference variables)
are not allowed: For programmer-defined types, C++ behaves as a strongly typed language, and
these assignments are marked as syntax errors by the compiler.

C++ supports no structure comparisons or any other operations over structures; you should write
your own code to implement structure operations.

Union is a type definition that syntactically is similar to the structure definition: Several fields of
different types can be listed between the scope braces (followed by a semicolon). However, these
fields exist in the memory of the computer, not simultaneously (as in structure variables), but
sequentially.

This design allows the program to save space: A union variable can contain information of one of
the mutually exclusive types specified in the union type definition. This is, of course, error prone
because the programmer should make sure that the value retrieved from the union variable is of the
same type as the value saved in this variable earlier, and the union itself has no means to keep the
type information.

If the program makes a mistake and retrieves a value of a different type, there is no compile-time

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1168 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

error, and there is no run-time error; a useless bit pattern is retrieved silently. To avoid these errors,
union variables can be used as fields of structures; a tag field can be added to the structure to keep
information on how the union field value was initialized. When the union value is retrieved, the
program consults this tag field and acts accordingly. This is how polymorphism used to be
implemented before virtual functions were invented.

Enumeration types define variables that accept values from a predefined set of symbolic identifiers.
The syntax of the enumeration type definition is similar to the syntax of the structure definition: A
set of comma-separated symbolic names is specified within the scope of the braces (followed by
the semicolon). This is a popular way to define symbolic constants for the program.

C++ defines no operations over enumeration values. Under the hood, they are implemented as
integer (starting, naturally, with zero), and the program might try to use this knowledge, but this is
not a good idea.

C++ Functions as Modularization Tools

C++ supports hiding operation complexity in functions. The client code uses server functions as
single units of code. This streamlines the caller code toward its goal: The client code is expressed in
terms of function calls to the server functions rather than in terms of lower-level details of
operations over data.

In the latter case, when the client code implements data processing without calling server functions,
the maintenance programmer should figure out what the meaning of the sequence of statements is.
In the case of using server functions, the goal of each operation is expressed by the name of the
function (provided that the function name is sufficiently descriptive).

C++ functions cooperate with each other working toward a common program goal. They cooperate
by working on common data. The values of data can be set in one function and used in another
function. The exchange of data can be implemented using global variables, parameters, and return
values. Coupling through global variables is implicit: It is not immediately evident to the
maintainer and hence should be used as little as possible.

Coupling through parameters is better because it is explicit: It is immediately evident to the
maintainer (and to the client programmer) what values participate in the data flow between the
function and its client functions.

Coupling (the number of parameters) should be minimized by dividing responsibilities between
functions so that what belongs together is not torn apart between different functions. It is the
tearing apart of what should belong together that causes the need for communication between
functions.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1169 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

When calling a function, the client code has to supply an actual argument for every formal
parameter in the function definition. It is possible to define default values of the arguments so that
they will be used when the client code does not specify the values of actual arguments.

In parameter passing, C++ is designed as a strongly typed language: the number of arguments
should match the number of formal parameters; the type of each argument has to match the type of
the corresponding formal parameter. The deviations from this rule are flagged as syntax errors by
the compiler.

The exception to this rule is made for numeric types only. If there is a type mismatch between a
formal parameter and its actual argument, promotions and conversions can be applied: small
arguments (enum, char, unsigned char, short) are promoted to integers, unsigned short
are promoted either to int or to unsigned int (depending on the machine architecture), and
float arguments are promoted to type double. If after promotion the actual argument type still
does not match the formal parameter type, conversions are applied: Any numeric type can be
converted to any other numeric type, even if it results in loss of accuracy (e.g., from double to
integer).

Promotions and conversions do not apply to programmer-defined types, pointers, and references
(even when they are pointers or references to numeric types). They are applied to numeric types
only.

C++ is a language for separate compilations. To assist the compiler, the function interface must be
known to the compiler before a function call is processed. Unless the function definition precedes
the function call in the source file (not a common occurrence), a function prototype should be used,
with the types of parameters and return value specified. Parameter names in a function prototype
are useful but optional.

A C++ function may be defined only once. It can be declared (as a prototype) as many times as
needed. If the function is used in several files, it has to be declared in each one. Function prototypes
are often put in #include header files.

A C++ global function is defined by its name and by the sequence of types of its parameters. When
the function is defined as a class member, the class name is also a part of the function definition.
This combination (the function signature)¡Xthe class name (if any), the function name, and the list
of parameter types¡Xhas to be unique. This means that the function name can be overloaded: A
function with the same name but with a different set of parameters will be considered a different
function. The return type of the function is not a part of the function signature.

A C++ function can be defined as an inline function. Instead of the function call, the compiler
generates object code for such a function and inserts it into the client code. When this function is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1170 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

called, time is not spent on the context switch. For applications that are concerned with the speed of
execution, this is important.

C++ has functions only: There are no procedures. If the application needs a procedure, a void
function can be used.

If a function returns a value, C++ allows the caller to ignore a return value in a call and use a
function as a statement. Many C++ library functions have return values that are rarely used. It is a
good idea, however, not to ignore return values.

C++ Functions: Parameter Passing

C++ passes parameters by value. At the time of the call, the space for parameters and local
variables is allocated from the stack, and the argument values (variables, expressions, or literals)
are copied into the space allocated for parameters. These values are used in the function during its
execution. When function terminates, the stack space is returned.

In parameter passing, the values move in one direction only, from actual arguments to formal
parameters; changed parameter values are not passed back, and the actual arguments in the client
scope do not change.

For side effects in the client space, C++ supports pass by pointer: instead of the value of a given
type, a pointer to the value of a given type is passed as an actual argument. C++ pointers are
variables in all respects. They are passed by value: The value of the pointer is copied into the
formal parameter. When the pointer is used during function execution, it contains the address of the
variable in the client space. The value of this variable can be changed through the pointer if
necessary.

When the function execution reaches the closing brace, the pointer is destroyed along with other
formal parameters (if any). Hence, the function cannot change the value of the pointer. But this is
not a problem, because there is no need to change the address. The goal of parameter passing by
pointer is to change the variable in the client space whose address is passed as the actual parameter.

Passing parameters by pointer is complex: The programmer has to coordinate the code in three
places: (1) the pointer notation (*) is used in the function header and in the prototype, (2) the
dereferencing operator (*) is used in the function body, and (3) the address-of operator (&) is used
in the function call.

To simplify parameter passing, C++ adds yet another mode of parameter passing that supports side
effects in the caller space. In pass by reference, the coordination between different places in code is
simpler: (1) the name of the variable without operators is used in the function header, (2) the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1171 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

reference operator (&) is used in the function body, and (3) the name of the variable without
operators is used in the function call.

Since this mode of passing parameters supports side effects, it could be used for output parameters
(modified by the function) of built-in types instead of passing by pointer.

C++ passes arrays the same way whether its components change in the body of the function or not.
Again, there are three places where the code should be coordinated: (1) array name with empty
brackets in the function header, (2) index notation (or array name without brackets) in the function
body, and (3) array name without brackets in the function call.

C++ structure objects can be passed by value, by pointer, and by reference. Passing parameters by
value is simple: The name of the variable without modifiers is used in all three places (in the
function header, in the function body, and in the function call). However, it does not support side
effects in the client space. Even when the side effects in the client space are not needed, passing by
value might be detrimental when large structure variables are passed: Copying them could slow the
program down.

Passing parameters by pointer is complex, but it supports side effects in the client space, and it does
not require copying the data even for large structures. Passing structure parameters by reference
combines the advantages of pass by value and pass by pointer.

This mode of passing parameters should be used for both input and output parameters of
programmer-defined types. To tell the maintenance programmer which parameters are modified by
the function and which are not (without the need to inspect the function in detail), the designer
should use the const modifier for the input parameters (not modified by the function). This is a
powerful technique for expressing the intent of the designer directly in code and not in comments.

Scope and Storage Class in C++

Lexical scope in C+ is conventional: Objects (variables) are defined at the beginning (or in the
middle) of a scope denoted by the braces; names defined within the scope can be reused in
independent scopes; if the same name is reused in nested scopes, the inner scope object hides the
object in the outer scope.

Storage class (extent) is a span of run time when the storage is allocated for the object, and its name
is associated with its location in memory. Most C++ variables belong to the automatic storage
class; these are variables that are defined as local variables in the scope of a function or a block.
The storage for an automatic variable is allocated from the system stack when execution enters the
opening brace of the block.

Automatic variables exist (and can be referenced by name) from the place of declaration to the

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1172 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

closing brace. Automatic variables can be initialized at definition. If they are not initialized, they
have no default initial values: When they are allocated on the stack, they contain a random set of
bits left from the previous use of this memory.

Memory used for another call to the function (or another iteration through the block) might not be
at the same location. Hence, an automatic variable cannot pass data between consecutive calls to
the same function.

The advantage of using automatic variables is that the name can be reused in different functions
without any coordination among development teams.

Global (or extern) variables are declared outside any function, at the start of a file (or elsewhere in
the file scope). Their scope is from the place of declaration until the end of the file. The space for
global variables is allocated before the start of program execution (the opening brace of main) and
is returned at program termination, when the execution reaches the closing brace of main.

Global variables can be initialized at definition. If a global variable has no initialization, it is
initialized to zero by default.

A global variable can be redeclared as a local variable in any file or function. The local name hides
the global name in the scope of the block where the local name is defined. The local name uses a
different location in memory and does not affect the memory allocated for the global variable.

Global variables can be made visible in other files with the use of an extern declaration. This is a
popular technique for communications between functions implemented in different files.

C++ static storage class represents a design compromise: This is the keyword that can be used in
several contexts.

When a global object is defined as static, its space is allocated before the start of main and is
destroyed at program termination, similar to a regular global variable. Unlike a regular global
variable, a static global variable cannot be made external in other files: It is visible to functions in
one file only. In a sense, it is a crude way to support private data.

When a local object is defined as static, its space is also allocated before the start of main and is
destroyed at program termination. A static local variable is private in a scope¡Xit cannot be
accessed by other functions. However, the variable (and its value) exists when it is not in scope. It
becomes available when the function is called again.

If the function initializes a local static variable, this initialization is performed only once (at the
start of the program). When the function terminates, the static local variable retains its value, and
this value can be used in another invocation of the function. It is a tool for communications

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1173 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

between different invocations of the same function.

Dynamic storage class gives control over allocation and deallocation of the variable to the
programmer. There are two dangers that the programmer should avoid when the program uses
dynamic memory management: not returning the memory that the program has and using the
memory that the program does not have.

Not returning memory that the program has results in memory leak. Memory leaks deplete the
program of memory, especially when the program works around the clock. The program crashes or
produces incorrect results.

Using memory that the program does not have results in memory corruption. The program crashes
or produces incorrect results or produces correct results until the memory use on the computer
changes. The program suddenly crashes or produces incorrect results (quietly).

C++ as an Object-Oriented Language

Even without its object-oriented features, C++ provides a number of improvements over C. Such
features as end-of-line comments, flexible definitions of variables in the middle of a scope,
symbolic constants for variables and pointers, the scope operator, function-like casts between types,
the new and delete operators, default parameters, reference parameters, function and operator
overloading, inline functions, the iostream library of I/O objects, and operations (this is quite a long
list) contribute to the program quality.

But the major contribution of C++ to software engineering is the implementation of object-oriented
features¡Xclasses, data members and member functions, constructors and destructors, class
composition and inheritance, virtual functions, templates, and exceptions.

C++ Classes

The major goal of C++ classes is to give the programmer the tool for binding together related data
and operations. This eliminates the drawbacks of using stand-alone global functions for
implementing operations over values of programmer-defined data types.

The data is specified as class data members. The operations are specified as class member
functions. The syntax of the class definition specifies data members and member functions within
the class scope that is delimited by the opening and closing braces (followed by a semicolon).

C++ allows the class designer to specify the rights that other parts of the program (client code) have
for accessing the class components. Public members can be referenced from everywhere where a
class object can be defined. Protected members can be referenced from class member functions and
from member functions of the classes for which this class is a base class (directly or indirectly).

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1174 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Private members can be referenced from class member functions only.

Hence, parts of the program that do not belong to the given class can access class public members
only. This rule can be relaxed with the use of friend classes and functions: They have the same
access rights as do the class member functions.

Usually, data members are defined as private, and member functions are defined as public. This not
only binds together data and operations in the eyes of the maintenance programmer, but it also
hides data implementation from the client code. With data private and operations public, the class is
viewed by the client code as the combination of its function interfaces. This supports such modern
programming concepts as data encapsulation and information hiding.

Programming with data encapsulation prevents the client code from using the names of class
private (or protected) data members. This in turn protects the client code from ripple effects when
the data implementation changes. The client code is also protected from ripple effects of changes in
the member function implementation as long as the function interfaces remain the same.

Of course, the benefits of object-oriented programming do not come automatically just because
C++ classes are used. If member functions just save the values of class data members and retrieve
them for use in the client code, the use of these functions in the client code does not make the client
code easier to read or to modify. The class designer has to push responsibility down to the server
class instead of popping it up to the client code. This is done by adding to class member functions
that implement operations significant to achieving client code goals.

Expressing the client code in terms of calls to these server class member functions (rather then in
terms of retrieving and manipulating class data members) makes class code self-explanatory,
facilitates both design and maintenance, decreases the number of errors, and does all kinds of good
things to the quality of the program.

Constructors, Destructors, and Overloaded Operators

Constructors and destructors are special member functions that cannot have arbitrary programmer-
defined names. Their names must be derived from the name of the class to which they belong. In
return, the client programmer is freed from the duty of calling this function explicitly. Instead, they
are called automatically at specific moments in the life of a class object.

A constructor is automatically called immediately after a new class object is created (on the stack
or on the heap). A class can have several constructors: They all have the same name (class name),
but they should have different parameter lists. Which constructor is called depends on the number
and type of arguments that the client code specifies when the object is created.

In the constructor, the class designer specifies how the class data members are initialized and how

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1175 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

additional resources (e.g., heap memory) should be allocated.

Constructors should not have return types, and they cannot return values. If the constructor should
communicate with the caller and provide information that something went wrong when the object
was initialized, the constructor could throw an exception.

Important constructors include a default constructor, a copy constructor, and conversion
constructors. The default constructor is called when an object is created without passing any
arguments to it. A conversion constructor is called when only one parameter (usually of the type of
one of the class data members) is specified.

The copy constructor is called when another object of the same class is used to supply initialization
data to the target object. It is also called when a class object is passed to a function by value.

When the class objects allocate heap memory (or other resources) dynamically, passing these
objects by value creates integrity problems: The program crashes or behaves erratically (or
produces correct results until the memory usage of the computer changes). To prevent integrity
problems, the copy constructor can be used to implement value semantics. However, this slows the
program down. It is better to pass class objects by reference, not by value. To make passing class
objects by value impossible, the copy constructor can be declared private (or protected).

A destructor is called automatically, immediately before the object is destroyed (because of the
scope rules or as a result of the delete operator). In the destructor, the class designer specifies how
the resources that the object acquired during its lifetime are returned to the system.

Destructors cannot have return types, they cannot return values; in addition, they cannot have
parameters. This means that the destructors cannot be overloaded.

Using constructors and destructors requires an adjustment in how we think about program
execution. In C++ (unlike in other languages) there is no such thing as merely creating or
destroying an object of a programmer-defined type. It is always a constructor call that follows the
object creation, and it is always the destructor call that precedes the object destruction.

The usefulness of constructors and destructors for dynamic memory management cannot be
overestimated. Instead of dealing with complex and confusing linked data structures that consist of
many diverse components, the programmer manages a narrow and well-defined task of handling
only one or two components. As a result, the complexity of the programmer's task decreases, and
the likelihood of errors becomes less.

C++ is designed to treat objects of programmer-defined types and the variables of built-in types in
the same way. This is why, in addition to function overloading, C++ supports operator overloading.
This unique feature allows the client code to apply C++ operators to class objects. In most cases,

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1176 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

this is a cosmetic, but nice, improvement.

Some overloaded operators provide more than just cosmetic improvement. For example, the
subscript operator can be designed to enforce index checking and avoid memory corruption that is a
common threat when standard C++ arrays are used. The assignment operator can be designed to
enforce value semantics and avoid memory corruption and memory leaks. If the value semantic is
not necessary (one object should not be assigned from another object), the assignment operator
should be made private (or protected).

Class Composition and Inheritance

Using classes gives the greatest flexibility when class objects work together. C++ supports
implementation of associations among objects using pointers and references: Data members of one
class point to objects of another type.

C++ also supports class composition where objects of one class are used as data members of
another class. Another important relationship between classes that can be implemented in C++ is
class inheritance, where one class is used as a base class and another class is used as a class derived
from the base class.

With class composition, C++ breaks the process of object creation at run time into stages: First the
component objects are created, and then the container object is created. Since object creation is
always accompanied by a function call to a constructor, creation of composite objects often
becomes a long series of function calls that might affect program performance. Another possible
complication is that creating an object results in constructor calls to constructors that are not
implemented by the class (resulting in a syntax error).

C++ provides the initialization list technique that resolves both of these problems. Its syntax is
unusual (it gives yet another job to the colon operator), but the result is superior to the simple-
minded approach. It specifies the names of data members whose nondefault constructors should be
called instead of default constructors and specifies the arguments for these constructor calls. It is
important to master this technique of object initialization and use it well.

With inheritance, C++ allows the programmer to link two classes with a conceptual link. As a
result, everything that is defined for the base class also becomes defined for the derived class. The
derived class can define some additional data members and member functions and also redefine
some member functions, using the same name and replacing the function body with more
appropriate contents.

From the client code point of view, an object of the derived class is the combination of capabilities
defined in the base class and in the derived class. Using inheritance is a great way to reuse software
design, because the capabilities defined in the base class are immediately reused in the derived

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1177 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

class without writing any code.

As the result, a derived class object's data members are defined in the base class and in the derived
class. It also has member functions defined in the base class and in the derived class. The client
code has access to all public members (data members and member functions) of the derived class
object, both inherited from the base class and added in the derived class. The derived class code has
access to public and protected members of the base class (both data members and member
functions) but not to private base class members.

The syntax of inheritance reuses the keywords public, protected, private (and the colon operator)
with different meaning. With the public mode of inheritance, the public, protected, and private data
members and member functions defined in the base class remain public, protected, and private in
the derived class object. With protected inheritance, public base members become protected in the
derived class object and hence are not available to the client code. With private inheritance, public
and protected base members become private in the derived class object and hence are not available
for further derivation.

This is a rather complex system of changing access rights, and it is a good idea to use public
inheritance that maintains the most natural relationships between classes: An object of the derived
class is also an object of the base class. This means that a derived class object has all the data
members and member functions of the derived class.

When an object of the derived class is instantiated, its base part is created first. This involves a call
to the base class constructor; the absence of the default constructor could present syntactic
problems. C++ provides the initialization list technique that resolves this problem. Its syntax is
similar to the initialization list for class composition, but the base class name is used instead of the
names of the component data members. It is important to master this technique of object
initialization and use it well.

When a message is sent to an object of the derived class, the compiler searches the definition of the
derived class for a match. If no match is found, the compiler searches the base class (or the base of
the base class, etc.); if a match is found there, the appropriate function call to the base method is
generated; if no match is found, it is a syntax error. If the function name is found in the derived
class, the search is terminated. If the arguments match the parameter list, the function call to a
derived class method is generated. If the arguments do not match, the search is not resumed: It is a
syntax error even when the base class has a function with the same name that matches the
arguments.

This means that the derived class method hides the base class method of the same name, no matter
what the signatures of these two methods are: There is no function overloading between functions
in different scopes with different signatures. This is often a source of subtle errors, when a function

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1178 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

that is actually called is different from the function the client programmer (or the maintainer) thinks
should be called.

Since an object of the publicly derived class has all the properties of a base class object, the derived
object can be used anywhere a base class object is expected¡Xin assignment, parameter passing,
and pointer manipulation. The conversion from derived objects (pointers, references) to base
objects (pointers, references) is safe. It can always be done and does not even need an explicit cast.

The conversion from a base object to a derived object is not safe. It can be performed only if an
explicit assignment operator or conversion constructor is available.

The conversion from a base class pointer (reference) to a derived class pointer (reference) is not
safe. It cannot be done implicitly: An attempt to do so is flagged as a syntax error. If the base
pointer points to a derived class object, the conversion to the derived class pointer makes sense. To
talk the compiler into accepting such a conversion, the explicit cast should be used. If the
programmer makes a mistake (the base pointer does not point to a derived class object) a run-time
error results.

Virtual Functions and Abstract Classes

Virtual functions extend the concept of hiding base functions in derived class objects. These
functions are used when the program has to process a heterogeneous collection of objects that
belong to a family of similar classes.

Each class defines a function (they use the same name, e.g., update; and the same signature) that
performs a similar operation (again, update) on objects of these classes but does it somewhat
differently for objects of different classes (e.g., SavingsAccount and CheckingAccount).

The goal of the design is to achieve a polymorphic effect, that is, send the update() message to
each object in the list and invoke either the update() message of the SavingsAccount class or the
update() message of the CheckingAccount class. To achieve that goal, you derive these similar
classes from the same class (e.g., Account).

There are several restrictions to abide by. The derivation should be public. The base class should
have the method with the same name and the same signature (e.g., update) as in the derived classes.
This method should be defined as virtual. The heterogeneous collection of objects should be
implemented as a list of pointers of the base class pointing to dynamically allocated objects of
derived classes.

As the reward for complying with these limitations, the message sent to the base pointer does not
invoke the base class method, but rather invokes the method of the derived class to which the object

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1179 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

pointed to by the pointer belongs. For example, if the base pointer points to a SavingsAccount
object, it will call the update() method from the SavingsAccount class. If it points to a
CheckingAccount object, it will call the update() method of the CheckingAccount class.

Many C++ programmers are excited about this technique. This is small wonder because this
technique is very nice and very elegant. However, it is not terribly important because the
processing of heterogeneous lists is not the most frequent programming task.

Often, the base objects for such a family of classes have no job in the application (e.g., the
application deals with savings accounts and checking accounts, but not with unidentified accounts).
The further extension of this technique is making the base class into an abstract class.

In an abstract class, the virtual function is defined as a pure virtual function, that is, as a function
that has no implementation. Instead, its prototype in the class specification is "assigned" to zero.
This is the syntax that defines the virtual function as a pure function and the base class as an
abstract class. The application cannot create objects of the abstract class. If the programmer creates
an object of the abstract class by mistake, it will be flagged as a syntax error.

Templates

Templates represent yet another tool for design reuse. When the application needs container classes
that contain components of different types, it would be nice to avoid repeating the design for each
component type¡Xthese classes would be almost identical.

C++ templates allow the programmer to create a class where the type of components is defined as a
class parameter. When an object of this type is instantiated, the client code supplies the name of the
actual type, and the compiler generates class object code where each instance of the class parameter
is replaced by the name of the actual type specified by the client code.

The template syntax is rather complex: It involves using parameter lists in angle brackets. The
syntax of object instantiation is also complex: The client code specifies actual types also by using
angle brackets. Implementation of member functions requires angle brackets for the formal
parameter lists and for the class name in the scope operator.

It is not clear to what extent individual applications can benefit from using templates. This is a
relatively new feature that is not supported by all compilers yet and the experience of using this
feature is limited. However, the C++ Standard Template Library uses templates to implement data
structures such as lists, queues, vectors, hash tables, and the like. These classes are well designed
and optimized. Their use in individual applications is definitely beneficial. This is why it is
important to understand the syntax of instantiating and using template objects.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1180 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Exceptions

Exceptions also represent a new C++ feature, designed to support separation between the
processing of the main algorithm and the processing of exceptional and rare cases. Presumably, this
untangles convoluted code, contributes to streamlining the main processing algorithm, and reduces
the complexity of the entire program.

When exception is thrown, an object of a built-in or programmer-defined type is created and sent
from the place where the exceptional condition occurred to the place where the exception should be
processed. This value (or object) carries the information that is useful for exception processing, for
example, a string with an error message.

The syntax of using exceptions requires the programmer to write statements for claiming
exceptions, throwing exceptions, and catching exceptions.

When claiming exceptions, the programmer uses the keyword throw between the function header
and the function body followed by the list of types that this function could throw (in parentheses,
comma separated). If the function prototype is specified, the keyword and the list are inserted
between the closing parenthesis of the parameter list and the final semicolon.

When throwing an exception, the programmer uses the same keyword throw with the single
argument (a value of a built-in type or an object of a programmer-defined type). This statement is
usually used within a conditional: Some condition is tested, and if it turns out to be true, the
exception is thrown to notify the exception handler that the condition turns out to be true.

If the throw statement throws an exception of a programmer-defined class, and the data should be
passed with the object, the exception class should define a constructor that accepts necessary values
and initializes object data members. If the object does not need any data, the default constructor is
called: Unlike in all other cases of creating an object with a default constructor, the empty
parentheses must be used after the name of the object.

When catching an exception, a complex syntactic construct should be used¡Xthe try block with a
statement that could throw an exception and the set of catch blocks that follow the try block. Each
catch block is designed to process an exception of only one type.

The try block is just an unnamed block that is preceded by the keyword try. A catch block is just a
block that is preceded by the keyword catch and a parameter list with only one parameter. The
type of the catch parameter is of the type (built-in or programmer defined) that this catch block is
designed to process.

If the statements in the try block throw no exception, the try block terminates, the catch blocks are

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1181 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

skipped, and the next statement (if any) is executed. If one of the statements in the try block throws
an exception, the segment of code from this place until the end of the try block is skipped; it will
not be executed even if the exception is caught and processed.

Then the catch blocks are examined in sequence for a match between the type in the parameter list
and the type of the value thrown in the exception. If the value does not match, the next catch block
is examined. If the value matches the parameter type, this catch block is executed and does
whatever it takes to process this exception. After that, the rest of the catch blocks are skipped, and
the statement following the last catch block is executed.

If no match is found, the statements following the try-catch sequence are skipped, and the function
that contains this try-catch sequence is terminated. Before termination, it throws the exception that
has not been caught, and the search continues in the caller of this function. If the catch block that
handles the exception is found, all is well and the program continues. If not, the search propagates
to main() and the program is terminated.

This technique can result in complex coding patterns because the programmer can place the try-
catch sequences in any function and in any combination. Often, it is hard to figure out in what place
the exception is processed and how the program continues the execution. It is not clear whether the
use of exceptions indeed results in streamlining of the main line of processing and in easy-to-
understand exception processing.

The advantage of this technique is that the place of error discovery can be quite separated from the
place of error recovery, and all the necessary information can be sent from the place of discovery to
the place of recovery inside the exception object thrown by the throw statement. Another advantage
is that the destructors are called for all the objects that are removed from the stack in the process of
terminating the functions that do not have the appropriate catch block. This means that if the
program recovers from the error and continues execution, it will not suffer from the memory leak.

C++ and Competition

In a sense, C++ competes with every programming language in use today, from FORTRAN and
COBOL to PL/I and Ada.

C++ and Older Languages

Of course, even older languages have their own strengths. For example, FORTRAN is superior for
implementing scientific algorithms. Its libraries make the job of a scientific programmer much
easier.

COBOL and PL/I are superior to C++ when it comes to flexible formatting of output: a C++
programmer has to work much harder to achieve similar results, especially if the iostream library is

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1182 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

used. If the older standard library is used, formatting code can be more concise. Still, it is error
prone and complicated.

Ada has such features as tasks for concurrent programming and packages for implementing simple
objects. These features allow the programmer to implement basic object-oriented designs.

However, none of these languages supports composition, inheritance, and virtual functions. Object-
oriented features of C++ make it superior to these languages for writing large applications.

C++ and Virtual Basic

One interesting competitor to C++ that is becoming more and more important is Visual Basic. Over
the years, Visual Basic has evolved from a very simple language into a powerful and flexible
language.

The output formatting facilities that Visual Basic supports rival those of COBOL and PL/I and are
much better than those supported by C++. Visual Basic gives the programmer quick and easy
access to building interactive input and output with Graphical User Interfaces (GUIs). For C++
programmer to achieve a similar effect, one has to learn a window library, and all libraries available
on the market today are extremely difficult to learn and to use.

Visual Basic also supports some object-oriented features, even though its object-oriented features
do not rival those of C++. The learning curve for Visual Basic is easier than for C++: One can learn
to produce meaningful applications in Visual Basic much faster than in C++.

However, object-oriented features of C++ are integrated into the language better than in Visual
Basic, where they remain a nice but alien addition.

C++ and C

Another language with which C++ has to compete now is its own predecessor, the C programming
language.

C remains a language of choice for those programmers who develop real-time and embedded
systems. These programmers are apprehensive of such complex C++ features as virtual functions,
templates, iostream library, and exceptions. They have a point¡Xall of these features affect program
performance and increase the size of the executable code. For real-time and embedded systems,
both performance and the size of executables are of primary importance. This is why acceptance of
C++ for these kinds of applications has been relatively slow.

I think this was a mistake. C is a language designed for quick and sharp minds, and it is conducive
to using concise and expressive coding patterns. These coding patterns sometimes become quite

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1183 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

confusing for the reader, especially when the programmer tries to optimize performance and
minimize the size of the object code.

As a result, the organizations that use C for real-time and embedded systems wind up with complex
schemes of using memory, complex global data structures with dynamic memory management, and
convoluted calling conventions. The design of these systems is so complex that they cannot be
properly documented given the pressure of tight release schedules. Training new hires takes a long
time and negatively affects the productivity of existing staff. Misconceptions and incomplete
understanding of decisions made for other parts of the system lead to design errors and mistakes in
maintenance that are costly to correct.

I am not sure whether what I am describing is universal, but this is what I saw in several companies
that were struggling with the issue of switching from C to C++.

It is obvious that using C++ classes with private data members and public member functions will
result in better modularization of code with no effect on program performance and on the size of
the object code. Using constructors and destructors properly will eliminate mistakes in memory
management and will make the search for errors easier. Also, limited use of virtual functions will
not have a significant impact on program size and performance.

After all, polymorphic algorithms can be implemented in any language, and when you implement
them, say, in C, you do allocate additional memory to store information about the kind of object the
program is dealing with, and the program spends some time figuring out how to treat this object.
Using C++ encapsulates this complexity for the programmer and does not waste additional
resources.

Unfortunately, many C++ compilers produce bloated object code regardless of whether the
programmers use templates, iostream libraries, exceptions, or run-time identification. The limited
use of advanced C++ facilities requires cooperation from compiler vendors, so that the
programmers could choose what should be included in each build. I think that eventually all C
programmers will switch to C++, even if not all C++ features will be used in each application.

C++ and Java

Java is probably the most formidable competition to C++ today. Java is a C++ cousin¡Xsimilar to
C++, it was designed as a superset of C. Most of Java object-oriented syntax is borrowed from C++
(with some changes).

Similar to C++, Java was designed to support classes with data members, member functions,
constructors, virtual functions, and exceptions. Java code is a collection of cooperating objects that
provide services to each other. Java supports class composition, class inheritance, and
polymorphism. Java encourages reuse of programmer-defined classes and reuse of the library

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1184 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

classes for graphical visual user interface.

Unlike C++, the goal of backward compatibility with C was not a Java design goal. As a result,
Java avoided a significant number of error-prone features that C++ inherited from C. In addition,
Java does not include a number of C++ features that either result in the increase in size of object
code or encourage inferior software engineering techniques.

Some people say that Java does not have pointers, and hence Java source code is much simpler that
comparable C++ code. These people just do not know what they are talking about. Java does have
pointers; those who do not believe me are invited to run a simple program and see the message
"Null pointer exception" appear on the screen before the program aborts.

Java has an explicit new operator similar to C++. However, Java does not have an explicit delete
operator. Instead, Java uses garbage collection. This is a major break from C/C++ ideology: Less
time is spent on debugging of memory management; more time is left for other algorithms.

The use of the garbage collector, along with the use of the interpreter during run time, makes Java
significantly slower than C++. A few years ago, this conclusion would have meant the death of the
language: Nobody would touch it with a ten-foot pole. Not so today. Performance, however
important, is not the most important criteria in evaluating a programming language anymore.
Portability, robustness, and simplicity are much more important (provided that the language does
support a modern object-oriented software engineering approach).

Java is portable: All Java data types are of standard sizes on all machines. An integer is always four
bytes; it is not necessarily the fastest type on a given platform, but the program executes the same
way on all machines. One cannot choose between signed and unsigned data types: Numeric types
are always signed, and boolean and characters are always unsigned. Java identifiers can be of any
length.

Java is robust: Implicit casts between numeric types are not allowed; explicit casts are allowed
between numeric types but not between numeric types and boolean types. Unlike in C/C++, the
relational and logical operators return boolean "true" or "false", and not int 1 or 0; hence,
misspelling the comparison operator == as an assignment operator = is flagged as a syntax error¡Xa
major source of programming errors disappears without a trace.

Java is simple: It lacks many error-prone C++ features: overloading operator functions, generic
templates, multiple inheritance, parameter passing by pointer, pointer-related unprotected array
operations, friend classes and functions, global functions, and variables with project-wide names.
(Each Java function, including main, must be a member of some class.)

Java has no preprocessor with its macros, include files, and conditional compilations. There is no

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1185 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

need for function prototypes¡Xa major source of headache in C++. The Java compiler knows where
libraries are located and does not expect the programmer to specify the location.

Java implements object-oriented features that C++ does not have: All functions are virtual
functions by default, inheritance supports both hiding the base functions in the derived class and
overloading if the signatures are different; classes can be combined into packages. Java has the
interface construct that governs the use of objects of one class where the object of another class is
expected better than inheritance. Java supports threads that help implement concurrency.

Instead of producing machine-dependent object code, the Java compiler generates so-called
bytecode that requires the interpreter to be run. This looks like a liability, right? No, this means that
Java bytecode can run on any platform equipped with a Java interpreter: A program compiled on a
Solaris machine can run on any UNIX, PC, or Mac machine without any changes. C++
programmers cannot even dream about this kind of portability.

This is why Java is such a success as an Internet language: The bytecode produced on one platform
can be downloaded from another platform and executed without even asking what the server
platform is. Java programs can be used on heterogeneous networks as easily as on homogeneous
networks.

Java comes with a huge library of GUI classes. It is true that learning these classes is no piece of
cake. However, a novice programmer can produce a meaningful Java application almost as easily
as producing a Visual Basic application and much more easily and faster than producing a similar
C++ application.

On the Internet, Java is a clear winner. For backend processing, C++ is a clear winner, mostly
because of its performance superiority. But the situation today is not as clear cut as it was several
years ago.

Summary

How do you like it? You have seen it all by now. I have tried to be honest with you about the
advantages and disadvantages of C++. Those features that are great, I told you are great. Those
features that are not so great, I told you are not so great. Those features that are dangerous, I told
you are dangerous.

But first and foremost, I tried to show you that using C++ effectively requires a change in
programming thinking. You should think about the division of responsibilities between different
parts of a program and about pushing these responsibilities down to server classes. You should
think about making design decisions clear to the maintenance programmer in code, without
comments. You should think about using objects of one class where an object of another class is
expected.

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1186 of 1187) [8/17/2002 2:58:13 PM]

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm

Using these software engineering principles, you will be able to create robust, portable, reusable,
and maintainable C++ applications. And you will be able to do that while having fun, because C++
is a fun language to use.

I wish you well!

file://///Administrator/General%20English%20Learning/it2002-7-6/core.htm (1187 of 1187) [8/17/2002 2:58:13 PM]

InformIT -- Author Biography

Victor Shtern

Victor Shtern is Professor at Boston University's Metropolitan College, considered one of the top U.S.
schools for working professionals. In addition to teaching C++ at the university level, Shtern also teaches
training courses to experienced programmers.

Technical Reviewers: Dan Costello, Senior Software Engineer, GE Marquette Medical Systems Steve
Glass, Senior Software Engineer, Motorola

Technical Editor: Clovis Tondo, author of The C Answer Book and The C++ Answer Book

Close Window

http://www.informit.com/safari/author_bio.asp?ISBN=0130857297 [8/17/2002 3:42:32 PM]

javascript:{window.close();}

	Table of Content
	Preface
	Part I: Introduction to Programming with C++
	Chapter 1. Object-oriented approach: What's So Good About It?
	Chapter 2. Getting Started Quickly: A Brief Overview of C++
	Chapter 3. Working with C++ Data and Expressions
	Chapter 4. C++ Control Flow
	Chapter 5. Aggregation with Programmer-Defined Data Types
	Chapter 6. Memory Management: the Stack and the Heap

	Part II: Object-oriented programing with C++
	Chapter 7. Programming With C++ Functions
	Chapter 8. Object-Oriented Programming with Functions
	Chapter 9. C++ Class as a Unit of Modularization
	Chapter 10. Operator Functions: Another Good idea
	Chapter 11. Constructors and Destructors: Potential Trouble

	Part III: Object-Oriented Programming with Aggregation and Inheritance
	Chapter 12. Composite Classes: Pitfalls and Advantages
	Chapter 13. Similar Classes: How to Treat Them
	Chapter 14. Choosing between Inheritance and Composition

	Part IV: Advanced uses of C++
	Chapter 15. Virtual Functions and other Advanced Uses of Inheritance
	Chapter 16. Advanced Uses of Operator Overloading
	Chapter 17. Templates: Yet Another Design Tool
	Chapter 18. Programming with Exceptions
	Chapter 19. What We Have Learned

