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11.4 GÖDEL THEOREM VS. PHYSICS OF MIND 388
Note 390
Bibliographical Notes 390

12 Toward Physics of Consciousness 391
12.1 PHENOMENOLOGY OF CONSCIOUSNESS 392

12.1.1 Popular Conceptions and Misconceptions about
Consciousness 392

12.1.2 What Is Consciousness? 393
12.1.3 Consciousness of Bodhisattvas 395
12.1.4 Consciousness versus Unconscious 396
12.1.5 Consciousness versus Emotions 397
12.1.6 Why Is Consciousness Needed? 400
12.1.7 Collective and Individual Consciousness 400
12.1.8 Consciousness, Time, and Space 403
12.1.9 MFT and Searle Revisited 404
12.1.10 Neural Structures of Consciousness 409

12.2 PHYSICS OF SPIRITUAL SUBSTANCE: FUTURE DIRECTIONS 412
12.2.1 Path to Understanding 412
12.2.2 Physical Nature of Symbol and the Emergence of

Consciousness 414
12.2.3 Nature of Free Will and Creativity 415
12.2.4 Mysteries of Physics and Consciousness: New Physical

Phenomena? 418



Contents xvii

12.3 EPILOGUE 419
Notes 422
Bibliographical Notes 423

LIST OF SYMBOLS 425
DEFINITIONS 429
BIBLIOGRAPHY 447
INDEX 461



This page intentionally left blank 



PREFACE

This book describes a new mathematical concept called modeling field theory; demonstrates
applications of neural networks based on this theory to a variety of problems; and analyzes
relationships among mathematics, computational concepts in neural networks, and concepts
of mind in psychology and philosophy. Deep philosophical questions are discussed and
related in detail to mathematics and the engineering of intelligence. The book is directed
toward a diverse audience of students, teachers, researchers, and engineers working in the
areas of neural networks, artificial intelligence, cognitive science, fuzzy systems, pattern
recognition and machine/computer vision, data mining, robotics navigation and recogni-
tion, target tracking, sensor fusion, spectrum analysis, time series analysis, and financial
market forecast. Mathematically inclined philosophers, semioticians, and psychologists
will find many issues of interest discussed. Although graduate level is assumed, interested
undergraduates will find that most of the material is readily accessible.

Architectures and learning mechanisms of modeling field neural networks utilize a
concept of an internal “world” model. The concept of internal models of the mind originated
in artificial intelligence and cognitive psychology, but its roots date back to Plato and
Aristotle. Intelligent systems based on rules utilize models (rules) in their final conceptual
forms. Like the Eide (Ideas) of Plato, rules lack adaptivity. In modeling field theory, the
adaptive models are similar to the Forms of Aristotle and serve as the basis for learning.
By combining the a priori knowledge of models with adaptive learning, the new mathe-
matical concept addresses the most perplexing problems in the field of neural networks
and intelligent systems: fast learning and robust generalization. An important aspect of this
mathematical and engineering advancement is the discovery of a new type of instinct, a basic
instinct to learn, and the role of the related affective signals in general learning. Modeling
field theory serves as a stepping stone toward mathematical description of the general
phenomena of mind identified by Kant: Understanding (pure reason), Judgment (including
higher emotions, beautiful, and sublime) and Will (practical reason and freedom). The
combination of intuition with a mathematically unified paradigm provides the foundation
of a physical theory of mind.

The book is based on a number of conference presentations and journal publications.
It summarizes results of a large research and development effort: during the past 12 years
I have been leading a large and successful government-funded neural network program at
Nichols Research Corporation. It was expanded to commercial applications, most notably
data mining in several areas. In 2000, new commercial companies were formed including
InnoVerity (for developing applications in the areas of internet and bioinformatics) and

xix
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Ascent Capital Management (for financial predition and investment management). The
book describes applications to a number of complicated, real-world problems that have not
been solved in the past by other approaches. These applications address pattern and image
recognition, data mining, nonlinear time series prediction and spectrum estimation, tracking
of patterns in data and imagery sequences, using a variety of sensors and information
sources, and the problems of sensor and information fusion.

The first three chapters review mathematical and philosophical concepts of intelli-
gence and mind. Chapter 1, the introduction, begins with the discussion of mathematical
approaches to intelligence during the past 50 years and their relationships to philosophical
concepts of mind during the 2300 years since Plato. Classical mathematical concepts
of hypothesis choice, pattern recognition, prediction, association, tracking, and sensor
fusion are reviewed in a concise, mathematically unified framework. This original, unified
mathematical framework is presented with an eye toward modeling field theory, which is
gradually developed throughout the book.

Chapters 2 and 3 review concepts of the mind in mathematics, engineering, philosophy,
psychology, and linguistics and analyze fundamental computational concepts of major
algorithmic and neural network paradigms. This analysis provides continuity to a large
variety of seemingly disparate techniques and establishes relationships between contem-
porary computational concepts of modeling intellect and concepts of mind discussed over
2300 years. I found this interrelationship to be much closer than currently thought among
scientists and philosophers of today. From the contemporary point of view, the questions
about mind posed by ancient philosophers are astonishingly scientific. Contemporary math-
ematical concepts of intellect are traced as a continuous line through the entire history of
psychology and philosophy to the concepts of mind developed in Buddhism, Judaism,
Islam, Christianity, and ancient Greece. This interrelationship is emphasized throughout
the book. I discuss specific mathematical reasons that lead to a conclusion that knowledge
has to be given to us a priori, that is inborn. I show that this knowledge cannot be given as
expert rules similar to the Ideas of Plato, but has to be given in a different representation,
as in the Aristotelian Forms of mind, which correspond to modeling fields in my theory.
The origin of Aristotelian mathematics is traced in Grossberg’s ART neural network, in
the concept of neural field theory, and in similar concepts of other neural networks. It is
a striking conclusion that philosophers of the past have been closer to the computational
concepts emerging today than pattern recognition and AI experts of just few years ago.
Chapter 2 analyzes learning requirements for each fundamental computational concept and
considers relationships between learning requirements, computational complexity, Turing,
and physical computability. Chapter 3 relates mathematical and engineering analysis to
philosophical analysis. It turns out that fuzzy logic, introduced by Zadeh 2300 years after
Aristotelian logic, is an essential ingredient for developing mathematical concepts of the
mind based on the Aristotelian theory of Forms.

Chapters 4 through 10 present the new mathematical apparatus for modeling intel-
ligence, with examples of engineering applications. The modeling field theory (MFT)
is introduced in Chapter 4. Its three main components are internal models, measures of
similarity between the models and the world, and adaptation laws. Deterministic, stochastic,
and fuzzy variabilities in data are discussed, followed by an introduction of the concept of
modeling fields. A general theory of similarity between a set of models and the world is de-
veloped. Aristotelian, fuzzy, and adaptive-fuzzy similarities are considered. Maximization
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of adaptive-fuzzy similarity leads to dynamic learning equations of modeling field theory.
Two types of adaptive-fuzzy similarity are formulated based on two fundamental concepts
of statistics and information theory: Bayesian likelihood and Shannon’s information. The
principle of similarity maximization, and in particular maximization of likelihood and in-
formation, is discussed as an internal drive or instinct to improve the internal representation
of the world, that is, an instinct to learn.

Chapters 5 through 7 develop several specific model-based neural networks for vari-
ous applications of increasing complexity. Chapter 5 discusses the Maximum Likelihood
Adaptive Neural System (MLANS), based on Bayesian similarity, for pattern and image
recognition applications. Chapter 6 considers Shannon–Einsteinian similarity and discusses
Modeling-field Einsteinian ANS (MEANS) for spectrum estimation of transient signals
in the frequency domain and in the two-dimensional time-frequency domain. Chapter 7
discusses dynamic temporal and spatiotemporal models for prediction, association, tracking,
and recognition of objects and spatiotemporal patterns. Tracking multiple patterns is related
to nonlinear time series prediction and tracking applications are discussed along with
financial market prediction. Association models are extended to multiple sensor fusion
and related to mechanisms of attention. These chapters contain numerous examples of
applications to complex real-world problems, many of which could not have been previ-
ously solved.

Chapter 8 addresses a possibility that biological neurons may perform quantum
computations. A quantum computation algorithm for MFT is described. Chapter 9 con-
siders general limitations on learning for any intelligent system, algorithm, or neural net-
work. Fundamental bounds on learning (the Cramer–Rao bounds) are discussed and new
types of bounds are presented for clustering, association, tracking, and nonlinear predic-
tion. Is it possible to compute the fundamental mathematical bound on the entire evolu-
tion process?

Chapter 10 discusses the architecture and organization of an intelligent system. The
three-component mathematical structure of the modeling field theory is related to the three
main components of intelligence identified by Kant: Understanding, Judgment, and Will.
Hierarchical and heterarchical organization of Kant–MFT intelligent systems is related to
genetic algorithms, complex adaptive systems, and semiotics. A dynamic nature of symbol
is discussed. What are the relationships between emotions and thinking? Is a mathematical
theory of emotional intellect possible? What kinds of internal models are needed for higher
emotional feelings and ethics? Learning behavior leads to improving the internal model,
and its mechanisms are related to Kantian reflective judgment—a foundation of higher
intellectual abilities. The mathematics of the learning instinct is related to the concept
of beauty.

The last two chapters, 11 through 12, contain fun stuff: philosophy and psychology
are combined with conjectures based on physical and mathematical intuition about mind.
Chapter 11 considers general limitations of logic, computational complexity, Turing com-
putability, and Gödel theorems. Are Gödel theorems relevant to the problems of recognition?
Are difficulties encountered by algorithms and neural networks of mathematical intelligence
related to Gödel theorems? Does it explain the difference between a human and a machine
mind? the nature of free will and creativity? Chapter 12 discusses a possibility of the
physical theory of consciousness based on modeling field theory. I discuss the differentiated
phenomenology of consciousness and creativity within a framework of modeling field
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theory. The Epilogue presents a fresh view on the main discussions of this book: concepts
of computational intelligence versus concepts of mind in philosophy, psychology, and
linguistics. Can our contemporary mathematical concepts throw light on ancient philo-
sophical problems? Can the thoughts of ancient philosophers guide us in constructing
mathematical theories of mind? This book gives affirmative answers to both questions.
However, mathematicians and engineers should not be too cavalier about mysteries of the
mind, and contemporary philosophers should not bow to mathematical fashions of the day.
I attempt to delineate a fuzzy boundary separating questions that today are beyond the
scientific method. The book ends with a consideration of the future directions of research
in the physical theory of mind.

HOW TO READ THIS BOOK

The book is self-contained in that the concepts of philosophy and mathematics are introduced
from the basics. Detailed references are provided for further exploration of individual
topics. The Definitions section at the end of the book summarizes all the important con-
cepts used throughout the book in alphabetical order for easy reference. The following
table provides guidance for several types of readers, who might prefer to read this book
selectively.

Concepts Chapters and Sections

General Philosophical Concepts of Intellect and Their Relationships to
Mathematical Concepts

Ch. 1, Sec. 1.1
Ch. 2, Sec. 2.1, 2.8
Ch. 3
Ch. 9, Sec. 9.5
Ch. 10 through 12

Overview of Basic Mathematical Concepts of Modeling Intelligence and Their
Relationships to Philosophical Concepts

Ch. 1, Sec. 1.2, 1.3, 1.4
Ch. 2
Ch. 9 through 12

Mathematical Concepts and Techniques Related to Specific Applications with
Intermittent Discussions of Philosophical Connections

Ch. 1, except Sec. 1.1
Ch. 2, except Sec. 2.1
Ch. 4 through 9

Bibliographical references as well as cross-references among the book chapters were
kept to the minimum within the main text. These are contained in Notes and Bibliographical
Notes at the end of each chapter, as well as in the Bibliography section at the end of
the book.

SEMESTER COURSES: SUGGESTED OUTLINES

Several semester courses can be designed using this book. The following table outlines a
few suggestions.
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Course Title and Description Book Chapters

1. Introduction to Modern Pattern Recognition, Prediction, Tracking, and Fusion.
A general unified mathematical formulation of problems and solution methods in
several areas of statistics and signal processing.
Prerequisites: probability
Desirable: signal processing
Level: graduate or advanced undergraduate

Chapter 1 (Sec. 1.1 is optional), plus any of the
examples from Chapters 5 through 7. Or, use
your favorite problems.

2. Mathematical Concepts of Intelligence.
The course reviews classical mathematical concepts of intelligent algorithms,
symbolic AI, and neural networks. After analysis of successes and deficiencies
of the classical techniques, new emergent concepts are introduced: evolutionary
computation, hierarchical organization, and neural fields.
Prerequisites: probability
Desirable: a course in neural networks or AI
Level: graduate or advanced undergraduate

Chapter 2 (Sec. 2.1 is optional), plus any of the
examples from Chapters 5 through 7. Or, use
your favorite problems.

3. Model-Based Neural Networks: Statistical Models.
Internal models of the world are considered an essential part of intelligence in AI,
cognitive sciences, and psychology. The course describes how to design neural
networks with internal models. Model-based neural networks combine domain
knowledge with learning and adaptivity of neural networks.
Prerequisites: probability
Level: graduate or advanced undergraduate

Chapter 5.

4. Model-Based Neural Networks: Dynamic Models.
Internal models of the world are considered an essential part of intelligence in AI,
cognitive sciences, and psychology. The course describes how to design neural
networks with internal models. Model-based neural networks combine domain
knowledge with learning and adaptivity of neural networks.
Prerequisites: probability and signal processing
Level: graduate or advanced undergraduate

Chapters 6 and 7.

5. Relationships between Philosophical and Mathematical Concepts of Mind (for
students with hard-science background).
Relationships between contemporary mathematical concepts of intelligence and
2300-year-old philosophical concepts of mind are much closer than is generally
recognized. Specific mathematical concepts and debates are related to specific
philosophical ones.
Prerequisites: a course in AI, neural networks, pattern recognition, signal processing,
or control
Level: graduate or undergraduate

Chapter 2, Chapter 3, Sec. 3.1, Chapters 10
through 12.

6. Relationships between Philosophical and Mathematical Concepts of Mind (for
students without hard-science background).
Relationships between contemporary mathematical concepts of intelligence and
2300-year-old philosophical concepts of mind are much closer than is generally
recognized. Specific mathematical concepts and debates are related to specific
philosophical ones.
Prerequisites: a course in classical or contemporary philosophy
Level: graduate or undergraduate

Chapter 2, Chapter 3, Sec. 3.1, Chapters 10
and 11 (with mathematical contents being
optional), Chapter 12.
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part one

OVERVIEW
2300 Years of Philosophy, 100 Years of
Mathematical Logic, and 50 Years of
Computational Intelligence

This part of the book consists of three chapters: Chapter 1

is an introduction to the book and to the concepts of

intelligence in philosophy and mathematics. Chapter 2

reviews mathematical concepts of intelligence. And

Chapter 3 relates the mathematical concepts to the

philosophical concepts of intelligence from Plato to

Jung.
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chapter 1

INTRODUCTION
CONCEPTS OF INTELLIGENCE

This chapter serves as an introduction to the book. It begins with an overview of the history of
mathematical and philosophical concepts of intellect illustrating close relationships between
the two areas. Then, it reviews classical mathematical concepts used in the design of intelligent
algorithms: theory of probability, Bayesian hypothesis testing, pattern recognition, estimation,
clustering, association, and prediction methods for a single process (regression and autore-
gression) and for multiple processes (tracking). These diverse areas are reviewed in a concise,
mathematically unified framework. The original, unified mathematical framework serves as
an introduction to modeling field theory, which is gradually developed throughout the book.
We review concepts of intelligent systems’ architecture and organization. A mathematical
concept of the internal model is introduced. Its fundamental role in intelligence is established
by relating it to the philosophical concepts of mind.

1.1 CONCEPTS OF INTELLIGENCE IN MATHEMATICS, PSYCHOLOGY,
AND PHILOSOPHY

This section overviews the history of concepts of intellect and serves as an introduction to
metaphysical and mathematical analysis in Chapters 2 and 3.

1.1.1 What Is Intelligence?

The human mind, intelligence and its limits, the range of spiritual human experiences
and computers, artificial intelligence, robots, the Internet’s sea of information, and as yet
unexhausted possibilities—what a huge area for study and research! But how often we
have to say to ourselves in despair: is it possible to explore these vast spaces? Thousands
of powerful minds have treaded here. Is it possible to grasp the expanses of their thoughts?
And, to go beyond? But curiosity has its rewards in heaven and even on earth.

What is the subject of this book? Is there a definition of intelligence? Do we need
one? In my opinion, clear definitions appear at the end of research, so I will not worry
about the absence of a concise definition at the beginning. Notwithstanding, as a first step
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and a suggestion for further thinking, let us characterize intelligence as a goal-directed
functioning. Then, one may add functioning inside and outside of an intelligent system
self; selection of goals and subgoals; sensing, perception, recognition, decision making,
planning, acting; acting inside and outside of the self; learning and adaptation; memory;
acquiring, storing, and using knowledge; hierarchical and parallel organization (of all of
the above: goals, functioning, knowledge); reproduction; evolution; social organization;
organization of environment; organization of self. This list should be continued toward
thinking, feeling, emotion, intuition, consciousness, free will, and creativity.

But then, where shall we start? What is the minimal subset of the above properties
that would lead to an interesting, nontrivial theory of intelligence? The theory, on the one
hand, should be useful in engineering applications, and on the other should conform to our
knowledge of psychology, neurobiology, brain organization, and, if not satisfy, at least not
offend too much our intuition of what is intelligence, or what I call a physical intuition about
spiritual substance. This first section of this chapter can be considered as an introduction to
the topic. I will show that a particular relatively small subset of the above properties attracted
significant attention in our mathematical research of intelligence during the past 50 years
and spurred philosophical debates during the past 2300 years. This fascinating property of
intelligence is an ability to combine a priori knowledge (available before experience) and
adaptive learning (from experience). Over more than two millennia, these properties seemed
to symbolize the basic aspects of mind, while at the same time they seemed mysterious to
philosophers and elusive to mathematicians. Let us review the history of debates of apriority
and adaptivity of mind in mathematics and philosophy.

1.1.2 Plato, Occam, and Neural Networks

A contemporary direction in the theory of intellect is based on modeling neural structures
of the brain. It was founded by McCulloch and co-workers beginning in the early 1940s.
McCulloch intended to create a mathematical theory of intellect on the basis of complicated
a priori neural structures. The basis of this search for the material structures of intellect,
for the explanation of how the interactions of brain neurons could process the information
and perform computations was founded on a realistic philosophy, created by the school of
Plato and Aristotle.

Plato, 2300 years ago, came to a conclusion that the ability to think is founded in the
a priori knowledge of concepts: the concepts or abstract ideas (Eide) are known to us a
priori, through a mystic connection with a world of Ideas. For example, chair as a concept
describes the whole class of objects (individual chairs). The Eide, according to Plato, have
true existence or are real in some sense in which our everyday concrete experience lacks
reality. This conception that, at first glance, might seem ridiculous to a scientific mind has
been much debated throughout antiquity and the Middle Ages, and is being debated today,
unexpectedly turning into the basis of many algorithms of artificial intelligence. Aristotle,
Plato’s pupil, critiqued his teacher’s theory by pointing out that it does not account for
an important aspect of the intellect—an ability to learn or adapt to a changing world.
Throughout early antiquity and the Middle Ages, concepts of Plato and Aristotle were
unified into a grand philosophical system based on the realism of Ideas. The ways in which
the intellect combines apriority with adaptivity, and is determined by the measured play of
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these two factors, has remained at the center of philosophical, theological, and mathematical
debates on the nature of mind.

According to McCulloch, the a priori Eide of Plato were encoded in the complicated
neural structures of brain. In search of a mathematical theory unifying neural and cognitive
processes, McCulloch and co-workers combined an empirical analysis of biological neural
networks with information theory and mathematically formulated important properties of
neurons. McCulloch and Pitts (1943) reduced a complicated entanglement of a large number
of complex factors characterizing biological neurons to a few important properties necessary
for mathematical modeling of the neural organization of the brain. They created a simple
mathematical model that was later named the formal neuron. This model was supplemented
by an adaptation mechanism by Hebb in 1949, and it served as a basis for creation of the first
artificial neural networks. The first neural network utilizing properties of formal neurons
was built by Minsky and Edmonds in 1951 using tubes, motors, and clutches, and it modeled
the behavior of a rat searching for food in a maze.

In the 1950s, neural networks utilizing formal neurons were developed by several
groups of researchers including Rosenblatt and Widrow. Widrow’s adalines utilized a
cybernetic concept of control based on simple models, Wiener filters, that led to fast learning
in linear signal filtering problems (Widrow, 1959). Perceptrons created by Rosenblatt (1958)
were capable of learning linear classification rules from training data. Thus, perceptrons
learned classes of similar input data patterns, or in other words, they learned “concepts”
from empirical data! Early neural networks utilized simple structures. It was expected that a
large number of adaptive neurons connected into a network would be able to learn complex
cognitive and behavioral concepts on their own. A priori knowledge, it seemed, was not
needed, and could not be utilized by early neural networks. The complex neural structures
postulated by McCulloch were not needed nor was the reality of the Plato’s Eide: concepts
could be learned from experience.

This view on the origin of concepts of mind was not new. Occam, who lived in the
fourteenth century and is considered one of the last great medieval scholastic thinkers,
rejected the realism of Plato and Aristotle. He felt that predominantly theological thinking
emphasizing the a priori aspect of intellect based on God-given knowledge had a stifling
influence on the development of knowledge. Following Antisthenes, founder of the Cynic
school of philosophy, Occam held nominalistic views. Nominalism considers ideas to be just
names (nomina) for classes or collections of similar empirical facts. For example, a concept
chair is just a name for the class of objects (individual chairs). Nominalism emphasizes
the ability of mind to learn from experience. Occam set to overcome the limiting influence
of the conception of apriority. He came to believe that only particular experiences have
real existence and that general concepts (universals) are just names for similar types of
experiences, devoid of any real existence. Analyzing the empirical, experiential origin of
knowledge, Occam developed the basis for the coming philosophy of empiricism, which
was essential for the development of the scientific method in the following centuries. His
work indicated (or initiated?) a shift of interest away from spiritual, mental processes, away
from the question of the rational understanding of the intellect, and toward an objectified
method of inquiry, which later became associated with the scientific method.

McCulloch believed that the nominalistic way of thinking was detrimental to the
development of theories of mind: “under the influence of nominalistic concepts since
Occam, the realistic logic decayed, which caused problems for scientific understanding of
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mind.” The attempt by McCulloch to found a new theory of neural networks on a realistic
philosophy was revolutionary and counter to the 500 year evolution of the mainstream
of the scientific method. This revolutionary attempt to understand the mind based on the
apriority of concepts was short lived. As mentioned, early neural networks deviated from the
program outlined by McCulloch: their learning was based entirely on experience, unaided
by specialized a priori structures.

The early research in neural networks from the 1940s to 1960s generated tremendous
interest as it promised to resolve the mystery of the mind. Why did the Goliath-to-be fall
down in the late 1960s? How did it happen that a relatively mild criticism of perceptrons
by Minsky and Papert in 1969 had a devastating effect on the interest in artificial neural
systems? The question of why this happened was widely discussed in the scientific com-
munity. However, the often offered explanations pointing to personal opinions cannot be
accepted, since they are unscientific and relatively useless. A personal opinion can produce
a large scale effect in a society only if it captures, embodies, and serves as a conduit for
a changing philosophical trend. The crisis in the field of early neural networks coincided
with the contemporaneous downfall of behavioristic psychology and philosophy that share
nominalistic origins. Simple structures of early neural networks and learning based entirely
on concrete empirical data were in agreement with the nominalistic concept of the intellect
dominant at the time. This begs a question: Was this association not the real, philosophical
reason for the downfall of the early neural network research—brought about by the downfall
of behaviorism, a philosophy no longer tenable—rather than by scientific criticism? It seems
that scientific and mathematical paradigms are directly related to the philosophical debates
of the past and to shifts in metaphysical paradigms of thought between analytic and holistic,
spiritual and material, empirical and a priori. Thus, it is revealing to trace the metaphysical
origins of our mathematical concepts of intellect.

1.1.3 Rule-Based Artificial Intelligence, Complexity, and Aristotle

Near the end of the 1960s, being dissatisfied with the existing capabilities of mathematical
methods of modeling neural networks, Minsky suggested a different concept of artificial
intelligence that descended from Plato’s principle of apriority of ideas. For a computer to
operate and make decisions in a complicated environment, concluded Minsky, knowledge
ought to be placed into the computer a priori. In Minsky’s method, named expert or
rule systems, a system of logical rules is put into a computer. This system contains all
possible situations (for example, all possible readings of sensors of a particular device or
system) and expert decisions or rules of what is to be done in each particular situation.
This method, which I will call the Plato–Minsky approach,1 became the foundation for
many practical applications of computers, from factory floors to space shuttles. It was
the next attempt (after McCulloch) to understand the intellect on the principle of realism
of ideas.

Answering the very first question of intelligence: How is intelligence possible?—the
Plato–Minsky approach does not explain an important aspect of mind—an ability to learn
and to adapt, leaving unanswered the second question about intelligence: How is learning
possible?

Although in 1975 Minsky emphasized that his method does not solve the problem of
learning, notwithstanding, attempts to add learning to Minsky’s artificial intelligence have
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been continuing in various fields of modeling the mind, including linguistics and pattern
recognition throughout the 1970s, 1980s, and continue today. In linguistics, Chomsky
proposed to build a self-learning system that could learn a language similarly to a human,
using a symbolic mathematics of rule systems. In Chomsky’s approach, the learning of a
language is based on a language faculty, which is a genetically inherited component of the
mind, containing an a priori knowledge of language. This direction in linguistics, named
the Chomskyan revolution, was about recognizing the two questions about the intellect
(first, how is it possible? and second, how is learning possible?) as the center of a linguistic
inquiry and of a mathematical theory of mind. However, combining adaptive learning with
a priori knowledge proved difficult: variabilities in data required more and more detailed
rules leading to combinatorial complexity of logical inference. Combinatorially complex
solutions are not physically realizable for complicated real-world problems.

Here, we just met with a ubiquitous problem of combinatorial complexity. On the
one hand, intelligence should be flexible enough to manipulate various combinations of
multiple elementary notions, concepts, and plans in order to find suitable decisions in
complex situations. On the other hand, a straightforward evaluation of combinations leads
to a combinatorial explosion: we will see that the number of combinations, even for problems
of moderate complexity, is very large, exceeding the number of particles in the universe.
Therefore, brute-force solutions are impossible. We will be returning to this problem
throughout the book.

Concurrently with early neural networks and rule-based intelligence, wide use of digital
computers beginning from the 1960s resulted in a large body of self-learning, adaptive
algorithms for pattern recognition based on statistical techniques. To recognize objects
(patterns of data) using these methods, the objects are characterized by a set of classification
features that is designed based on a preliminary analysis of a problem and thus contains
the a priori information needed for a solution of this type of problem. Within the limits
of similar type problems, these algorithms can adapt by using adaptive statistical models.
However, their application to complicated real-world problems that are not limited to a
single well-determined type is rarely achievable, because general mathematical methods
for the design of classification features have not been developed, and their design based on a
priori knowledge remains an art requiring human participation. When problem complexity
is not reduced to a few classification features in a preliminary analysis, these approaches
lead to difficulties related to exorbitant training requirements. In fact, training requirements
for these paradigms are often combinatorial in terms of the problem complexity. These
algorithms, therefore, are not suitable as physically realizable models of intellect.

A striking fact is that the first one who pointed out that learning cannot be achieved in
Plato’s theory of mind was Aristotle. Aristotle recognized that in Plato’s formulation there
could be no learning, since Ideas (or concepts) are given a priori in their final form. Thus,
learning is not needed and is impossible, and the world of ideas is completely separated
from the world of experience. Searching to unite the two worlds and to understand learning,
Aristotle developed a concept of Form, having an a priori universal reality and being a
formative principle in individual experience. In Aristotelian theory of Form, the adaptivity
of the mind was due to a meeting between the a priori Form and matter. The major point
of Aristotelian criticism of Plato’s Eide concepts was that before a Form meets matter, it
does not attain its final form of a concept. This theory was further developed by Avicenna
(XI), Maimonides (1190), Aquinas (XIII), and Kant (1781) among many other philosophers
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during the past 2300 years. Aristotelian Forms are dynamic entities afforded variable degrees
of uncertainty before their potentialities are realized. However, Aristotelian logic described
laws governing eternal truths, not fluid Forms. For example, the Aristotelian law of excluded
third states that every concept (or statement) is either true or false, anything else is excluded.
It is more applicable to Plato’s Ideas than to Aristotelian Forms.

The contradiction between Aristotelian theory of mind and Aristotelian logic is inher-
ited by contemporary mathematical theories of intellect. Algorithms that are most widely
utilized today to combine adaptivity and apriority are based on Aristotelian logic, which is
inadequate for this purpose. These algorithms face combinatorial computational complexity
and are not suited for real world problems. And a National Science Foundation report
concluded that “much of our current models and methodologies do not seem to scale out of
limited ‘toy’ domains.”

A mathematical description of the Aristotelian theory of mind should overcome the
inadequacy of the Aristotelian logic for this purpose, it should address the a priori Forms
and the process of meeting between Forms and matter. A first step toward this was the
development of fuzzy logic by Zadeh. Fuzzy logic operates without the law of excluded
third; it accounts for the inherent approximate nature of thoughts and concepts. A second
step toward mathematics of the Aristotelian theory of mind was made by Grossberg, a
founder of contemporary neural network theory. In the 1980s, Grossberg established that a
fundamental mechanism of perception and cognition is interaction between signals coming
from within the mind and from the outside world (efferent and afferent signals). This is the
Aristotelian meeting of Form and matter. It was a fundamental departure from early neural
networks, which emphasized learning from data (signals coming from the outside). And
it was contrary to the rule-based artificial intelligence that emphasized the role of signals
coming from within the mind. A third step that combines (1) fuzzy logic and (2) interaction
of efferent and afferent signals with (3) adaptive fuzzy models of the a priori forms is a
subject of this book.

1.1.4 Philosophy vs. Architecture of Intelligent Tracker

Let us relate concepts discussed above to a concrete example of an engineering design. This
section describes an intelligent system and relates engineering and mathematical concepts
to the philosophical ones using this concrete example. From an engineering standpoint,
it is a large-scale complex operational system involving radars and computers, and the
description here will be limited to most important concepts related to intelligence. From the
point of view of general intelligence, it is a very simple system, comparative to the human
or even animal mind. Nevertheless, this example gives us a chance for a concrete discussion
of many of the concepts of intelligence discussed above: apriority and adaptivity, learning
and combinatorial complexity, concepts, and objects. Even more, we will introduce several
new concepts related to intelligence: hierarchical vs. heterarchical organization, internal
models, similarity measures, intelligent agents, the nature of signs and symbols, and their
relationships to concepts and internal models. This section previews many of the issues
that will be discussed throughout the book. We will barely touch on many complex issues
here; these issues will be discussed in details later. Therefore, at first reading, I’ll suggest
that readers skip anything that may seem insufficiently explained or superficial; it might be
useful to refer back to this section while reading the rest of the book.
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The description below consists of two parts: (1) an overall architecture and (2) a more
detailed discussion of the architecture at the most “interesting” level.

1.1.4.1 A Hierarchical Architecture
This tracker is a hierarchical system comprised of several layers. It is designed to detect and
track aircraft and ships within an area of several million square miles. At the bottom level,
there are the radar data (signal strength), dimensioned by range, azimuth, doppler velocity,
and time; this can be envisioned as a time sequence of three-dimensional images.

At the next level there are two types of intelligent agents: search agents and track
agents. Each agent is an automaton or a semiautonomous subsystem. The entire field of
data over some time window is “watched” by about a hundred of search agents, which are
looking for track-like events. Each agent is responsible for his “territory” (about 10,000
data pixels). When it “sees” a track-like event, it starts tracking it and becomes a track
agent; a new search agent is put in its place by a higher level.

The next level decides which of the track agents are “good” and which do not really
track anything.

The next level forms long-duration tracks.
The next level makes corrections to these tracks (there is a large number of things

related to the complex nature of the propagation of the radiowaves through the ionosphere).
The next level interacts with operators: displays results and accepts operator cor-

rections.
The next level interacts with the user of the system: a high-level military commander.

1.1.4.2 “Interesting” Architectural Details:
Intelligent Agents
An architecture of the search and track agents implements several concepts of general intelli-
gence. Each search or track agent has three subsystems: (1) internal model (IM), (2) similar-
ity measure or association subsystem (AS), and (3) adaptation law or parameter estimation
subsystem (PS). The agent operations consist in iterative performance of 1 → 2 →
3 → 1 . . . This iteration always converges (that is, after few iterations, parameters reach
their proper values and do not change much thereafter).

1. IM is a parametric model of an object-track (the law of motion plus the law of
radar signal propagation and scattering); its parameters are the track state vector
(position, velocity, radar cross section) and its errors. From these parameters, IM
computes the (expected or predicted) position of the track, its expected errors, and
the radar signal strength. Note that here we are talking about two different levels
of the model representation: the concept-model (laws and parameters or attributes)
and object-model (computed expected signal).

2. AS computes similarity measures between each pixel in the agent’s field of view and
the computed track signal (it associates track with data). This computation accounts
for the expected track errors computed above. It also computes the overall similarity
measure between its track and all its pixels, which is used by the higher level to
decide on continuation or killing of the track-agent.

3. PS estimates the IM parameters (the track state vectors and their errors). This
estimation is based on the association computed in step (2).
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1.1.4.3 Comments: Philosophy vs. Mathematics
The IM contains the a priori knowledge: its parametric form is given a priori. The IM
is an adaptive model: its parameters are computed adaptively, from data; as data change,
the parameters may change as needed. Thus, the intelligent tracker combines the apriority
and adaptivity.

The IM is a fuzzy model: it is characterized not only by parameters, but also by their
expected errors. The errors are used in AS to compute the similarities leading to fuzzy
association between pixels and models. The search agent starts with large errors or large
fuzziness (therefore, its initial parameter values are not too important). In the process of
iterations, errors get reduced and the estimated track parameter values converge to the true
values. Thus a search-agent smoothly becomes a track-agent; searching and tracking are
different states of the same automaton. This adaptation of the parameters comprises the
agent’s learning process. The degree of fuzziness is reduced in the process of learning.

This intelligent tracker is different from other approaches to tracking in a fundamental
way: it is inherently noncombinatorial. It is commonly believed that complex tracking
problems are inherently combinatorial, for the following reasons. To estimate parameters
of a track model, it is necessary to know which pixels belong to the track. Therefore, classical
approaches to tracking involve first, generating a large, combinatorial number of alternative
candidate tracks defined by various combinations of pixels, and second, evaluating which
of these tracks are “more likely” according to some criterion. Contrary to this, the intelligent
tracker system requires no combinatorial searches. Combinatorial searches are eliminated
by fuzzy associations.

Let us analyze the above discussion of the combinatorial problem and its solution in
more detail. In classical approaches, alternative candidate tracks are generated according
to the Aristotelian logic: a particular pixel either belongs to a track or does not (the third
is excluded). This leads to a combinatorial explosion of the number of possible alternative
tracks. In the intelligent tracker a single search-agent is associated with all pixels (in its
field) in a fuzzy way, excluding a need for the combinatorial search. Thus, fuzzy logic is
used to overcome the combinatorial complexity of the Aristotelian logic.

The above analysis is not limited to a tracking problem, but is of a general nature. Many
complex problems of recognition, planning, etc., are solved by a structural combination of
“primitives” or agents, each solving a small part of the problem. Finding a good structural
combination is widely believed to require combinatorial searches, for the same reason as
above: the Aristotelian logic used in the search process is inherently combinatorial. Fuzzy
logic can be used to overcome this difficulty. To accomplish this, in the general case, as in
the case of the intelligent tracker, we need to develop suitable measures of similarity and
the adaptation procedures. In other words, we need model-based adaptive fuzzy logic. The
development of this technique is one of the main themes of this book.

The process of adaptation of the intelligent tracker resembles the process of learning
as described by Aristotle. A highly fuzzy search-agent corresponds to an a priori Form. The
process of adaptation to the data corresponds to the meeting of Form and matter: in this
process an a priori Form (search-agent) is transformed into a nonfuzzy concept (track-agent).

1.1.4.4 Intelligent Tracker vs. Intelligence
Each intelligent search-track-agent of the tracker possesses a formidable degree of intel-
ligence: an a priori knowledge of a general concept of a track, an ability to recognize
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a specific subset in the data that corresponds to this general concept, and an ability to
learn a specific concept-object of a particular track. Throughout the book I will argue that
these properties represent an essential element of the thought process. And, developing
mathematical methods suitable for these type of intelligent agents occupies a significant
part of the book.

Compared to the human mind, the agents are not very intelligent. They do not possess
much understanding of what they are doing. (One may argue that we, humans, also do
not understand much of what we are doing. Still, we understand something.) An agent
cannot even be said to understand the meaning of the single concept that it comes up
with, the concept-object of a track. At most, we can say that an agent understands the
unordered unstructured manifold world around him in terms of this concept of a track.
But an understanding of what the track is belongs to the higher level of the architecture
of the tracker. There, in the next level, tracks found by various agents are compared to
each other, real tracks are sorted out from track-like clutter events, long-duration tracks are
formed, and appropriate signal-reports are sent to a next higher level. Establishing these
relationships among various concepts is the essence of the understanding of the meaning
of these concepts.

At an appropriately high level, characteristics of tracks are compared to the goals that
the system is tasked to perform. This comprises an essential element of the understanding
of the situation. Based on this understanding, reports are issued to the human commander,
which eventually might affect events in the world. The tracker is not capable of generating
its own system-level goals (and we are not sure that we, humans, can generate our top-level
goals either). Still, the tracker can propagate his human-given system-level goal down to
the lower levels and to generate their “subgoals.” An example of a subgoal could be to find
slow-moving objects, which will be translated into a subsubgoal to allocate more resources
to slow-moving objects, etc. An individual agent does not generate behavior in the outer
world. Still, there are two types of behavior that each agent performs. Upon convergence, it
sends a signal to the higher level. And it performs adaptation of its model to the data, or in
other words, it improves its knowledge about the world. Possibly, this latter ability forms
the foundation for all or many of our higher intellectual abilities, this will be discussed in
Chapter 10.

1.1.4.5 Signs, Symbols, and Tracks
Signs and symbols are essential aspects of intelligence. The nature of signs and symbols
and their roles in intelligence are studied by semiotics. This places semiotics close to both
mathematics and the philosophy of intelligence. A reader not interested in the nature of signs
and symbols can omit this subsection on first reading. Here, I relate the above discussions to
semiotical concepts and terminology. For example, consider the following material entity
in the world: a written sequence of characters, say “chair.” It can be interpreted by a mind to
refer to something else: another entity in the world, a specific chair, or the concept “chair”
in your mind. In this process, a mind, or an intelligent system, is called an interpreter, the
written word is called a sign, the real-world chair is called a designatum, and the concept in
the interpreter’s mind, the internal representation of the results of interpretation, is called an
interpretant of the sign. The essence of a sign is that it can be interpreted by an interpreter
to refer to something else, a designatum. This is achieved through the interpretant, which,
in turn, becomes a sign for the next layer of the interpreter’s architecture, where it would
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be interpreted as referring to something else, say to the “behavior of sitting in the chair,”
etc. A collection of the multiple relationships of the interpretant to other concepts refers to
the designatum, an object-chair in the world. This is a simplified description of a thinking
process, called semiosis. And even this simplified description implies specific consequences
for an architecture of any intelligent system.

Note that one of the functions of the intelligent system is to “interpret” the world, that is
to develop internal representations of the world and to establish the correspondence between
the world and the interpreter’s representations. Any structure or object in the world exists
only as a result of interaction between the world and interpreter. Establishing structures
requires a measure of similarity, which has to be represented inside of an intelligent
(semiotical) system.

Let us analyze our tracker using the semiotical terminology. A search-track-agent
interacts with the world. In the process of this interaction it finds/imposes a structure on
the world. It does so by possessing an inherent a priori measure of similarity between its
model-track and the world. In the result it comes up with an object-concept: a track of
a moving object (track-agent). A semiotical analysis distinguishes the material entity in
the world from the sensory data about the object and from the concept in “the mind” of
the intelligent system—tracker. The identified structure in the sensory data is a sign. It
refers to the material entity in the world (a moving object), a designatum. The tracker is an
interpreter. The interpreted sign is represented inside the interpreter by an interpretant: a
track-agent, which is a concept of a moving object, or a concept-object.

Note a difference between search-agents and track-agents. Search-agents are highly
fuzzy and highly adaptive: due to their large error and uncertainty, they can find many
different tracks within their field of view. Track-agents are little fuzzy and little adaptive:
their errors and uncertainty are small, and if track parameters change drastically, the track
can be lost. A search-agent is a process of an emergent concept, whereas a track-agent is
a well-established fairly specific concept-object. The dynamic process of formation of an
emergent concept out of uncertainty I call a symbol or symbol-process.2 Search-track-agent
is a symbol. It is a dynamic process, a subprocess of the semiosis performed within the entire
system. Upon convergence of the search-agent’s iterative estimation process, it becomes
a track-agent and it sends a signal to the higher levels of the hierarchy. This signal is the
interpretant of the moving object. For the higher levels of the hierarchy, this signal is not a
dynamic symbol but a simple nonadaptive sign of a track. Note similarities and differences
between the process of semiosis and Aristotelian description of a meeting between Form
and matter (Problem 1.1-1).

1.1.5 Summary

The relationship between the mathematical and philosophical concepts of mind, touched
upon in this section, continues in Chapter 3 and in a less conspicuous way penetrates the
entire book. Philosophical analysis helps to place the right emphases in the mathematical
analysis and vice versa. Throughout the history of philosophy, concepts of apriority and
adaptivity of mind remained in the center of debates, and often split the philosophical
community. But the great unifiers of philosophy worked toward combining both factors.
The philosophical analysis emphasizes that factors of apriority and adaptivity ought to be
combined by physically acceptable concepts of the intellect. This conclusion is compared
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with the mathematical analysis of approaches to the design of systems and algorithms
of intelligence in Chapter 2. The mathematical analysis leads to a conclusion that there
are few basic computational concepts forming the foundation for all the multiplicity of
learning algorithms and neural networks. These basic concepts are closely related to the
philosophical conceptions of mind, the apriority and adaptivity. Both types of algorithms
faced combinatorial explosion, those associated with apriority faced logical complexity,
and those associated with adaptivity faced training complexity. Attempts to combine the
two led to combinatorial complexity of computations.

The difficulty of combining apriority and adaptivity was traced to the original contra-
diction in Aristotelian teachings, and the Aristotelian logic was identified as a culprit. This
analysis continues in the following chapters. Chapters 2 and 4 discuss a need to use fuzzy
logic for the mathematical description of Aristotelian Forms. Thus, fuzzy logic, formulated
by Zadeh in 1965, 2300 years after Aristotle, provides the foundation for developing
mathematical theory of Aristotelian Forms. The Forms are described in contemporary terms
as model-based adaptive fuzzy concepts. The mathematics of Aristotelian theory of mind
should combine fuzzy logic with apriority and adaptivity. Such a mathematical theory is
developed in Chapter 4, which describes a theory of neural modeling fields combining
a priori knowledge with learning and fuzzy logic as a step toward physically acceptable
concepts of intellect.

But before turning to these, we need to review several topics of classical theory of
probability and statistics. A reader familiar with this subject may skip it, or may choose
to look briefly through the rest of this chapter in order to note the notations: systematic
notations are introduced here that are used throughout the book, across several areas of
statistics and signal processing.

1.2 PROBABILITY, HYPOTHESIS CHOICE, PATTERN RECOGNITION,
AND COMPLEXITY

This section introduces classical mathematical concepts and definitions, and relates the main
subject of this book, the concepts of intellect, to classical areas of probability, choice of hy-
pothesis, pattern recognition, estimation theory, and prediction. It serves as an introduction
to Chapters 3 and 4.

1.2.1 Prerequisite: Basic Notions of the Theory of Probability

Readers familiar with probability theory can skip this section. Here, in simple form, we
briefly overview the basic notions, definitions, and notations of probability theory used
throughout this book. I emphasize the rationale for the concepts, while keeping the mathe-
matical rigor at the bare minimum, although all of the notions and definitions can be made
mathematically rigorous.

Probability theory is used for mathematical modeling of uncertainty. Probability theory
begins with a notion of a random variable. A random variable x (or event) can be observed
multiple times, and from observation to observation, x varies randomly and does not vary
deterministically. For example, x is a particular dice throw, or a card hand, or the result
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of a measurement or observation conducted with finite precision. The notion of a random
variable is approximate only in practical applications and it does not cover all types of
uncertainty (Fig. 1.2-1). When the assumption of randomness does not seem appropriate,
one can attempt to separate predictable deterministic effects from random, unpredictable
effects. When uncertainty involves unknown circumstances that are not of random origin,
one can attempt to use fuzzy variables or fuzzy logic. Advanced methods combining random
probabilistic variabilities with deterministic variabilities and with non-random uncertainties
are considered later, throughout the book.

Definition of Probability. Probability of an event x, P(x), is the relative frequency of
observing event x among all other events (in the limit of infinite number of observations).
Thus, if event x is observed Nx times and the total number of observations is N,P (x) =
Nx/N , in the limit of N → ∞.

For example, a measurement is performed resulting in value x. We call it an event x.
Probability P(x) is the relative frequency of measuring this value among all other values
of x. If x is a continuous variable, we usually talk about the probability of observing values
in a small interval from x to x + dx, P(x to x + dx) = f (x)dx. The function f is called
a probability density function (pdf), or simply probability density, and we usually denote it
as pdf(x) (see Fig. 1.2-2).

From the definition, it follows that∑
x

P (x) = 1 (1.2-1a)

For example, in a fair coin toss, P (head) = P (tail) = 0.5, P (head) +P (tail) = 1. For a
continuous variable x, the sum above is substituted by an integral,

∑
x

P (x) →
∑
x

pdf(x)dx →
∫

pdf(x)dx = 1 (1.2-1b)

Definition of Independent Events. Two events x and y are called independent if the proba-
bility of x is unaffected by occurrence of y and vice versa.

Rule of Combining Independent Probabilities. If x and y are independent events, the
probability of the joint event (x, y) is given by P(x, y) = P(x)P (y). Correspondingly,
pdf(x, y) = pdf(x)pdf(y) (see Fig. 1.2-2c, and d).

For example, in a fair coin toss, the outcomes of the first and second tosses are
independent; the probability of the event of two heads in two tossesP (head,head)= P (head)
P (head) = 0.52 = 0.25.

Definition of Conditional Probability. When considering the probability of x, given that
event y has occurred, the conditional probability of x given y is denoted P(x|y). For
continuous variables, pdf(x|y) denotes pdf of x given y [that is P(x to x + dx) given y].
For independent events, P(x|y) = P(x) (see Fig. 1.2-2d).

Rule of Conditional Probability. Probability of the occurrence of both events, x and y,

P(x, y) = P(x|y)P (y), pdf(x, y) = pdf(x|y)pdf(y) (1.2-2)

Definition of Alternative Events. Two events x and y are called alternatives if either one
can occur with some probability, but not both (see Fig. 1.2-2e).
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Figure 1.2-1 Examples of probabilistic (a), deterministic (b), and fuzzy (c) events. (a) Probability
works well for predicting dice throws, even if dice are uneven; (b) prediction of satellite motion in
orbit is best accomplished by using deterministic Newtonian laws (this is true up to a point; collisions
with meteors could be described as random probabilistic events); (c) if you never measured the size
of your cellar, you may be uncertain about exact dimensions, but if it is not random, fuzzy variables
can be appropriate for describing your knowledge.

For example, if we perform one measurement of x, different x values are alternatives.

Definition of a Complete Set of Events. If a set of events exhausts all possibilities, it is
called complete (see Fig. 1.2-2f).

Rule of Combining Alternative Probabilities. If x and y are alternative events, the proba-
bility of either of the events x or y is given by P(x or y) = P(x)+ P(y).

For example, x and y could be two different outcomes of the same process, say a single
coin toss, P (head or tail) = P (head) +P (tail). For a complete set of alternatives, the sum of
probabilities is 1. If the coin is unfair, P (head) �= P (tail), but still, P (head) +P (tail) = 1.
Another example: Eq. (1.2-1): all different values of x form a complete set of alternatives.

Consider a more complicated combination of alternatives. For example, tomorrow
the Federal Reserve Board is going to announce its decision concerning interest rates,
and your subjective probabilities for their actions are (1) interest rates will go down with
probability P(1) = 0.3, (2) interest rates will not change with probability P(2) = 0.5,
(3) the decision will be postponed with probability P(3) = 0.2, or (4) interest rates will go
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up with probability P(4) = 0.0. Only one of these four can actually occur, therefore, these
are the four alternative processes or events that might affect your portfolio. You would like
to predict how this will affect your portfolio, and you have a model that tells you that in case
(1), the probability density for the price of your portfolio x is pdf(x|1) and correspondingly,
you have pdf(x|2), pdf(x|3), and pdf(x|4). In this case, the total pdf for tomorrow’s price
of your portfolio, taking into account the four alternatives and the corresponding models,
is given by

pdf(x) = P(1)pdf(x|1)+ P(2)pdf(x|2)+ P(3)pdf(x|3)+ P(4)pdf(x|4) (1.2-3)

This equation is a consequence of the two rules: conditional probabilities and combining
alternatives. Note, when writing the above equation it is important to account for all alterna-
tives, that is a set of alternatives has to be exhaustive, or complete. What if, in addition to the
above four alternatives, several major companies would announce unexpected performance
results? Should this be accounted for in the list of alternatives? No. Think why not, and
see the answer in Note 3 at the end of the chapter.3 These more complicated issues are
introduced in the next section.

Gaussian or Normal Density. When observations of a continuous random variable x are
affected by multiple random effects, in most cases the pdf(x) has a specific functional shape
that is called Gaussian. This fact is to a significant extent independent of the particular
nature of the multiple random effects that contributes to the randomness of x. The exact
formulation of this statement and its proof is a subject of the Central Limit Theorem
(Cramer, 1946). Thus, Gaussian pdf plays a fundamental role in probability theory, and
often is called a normal density. Most of this book is devoted to complicated cases,
when a Gaussian shape is not appropriate for modeling pdfs. Nevertheless even in those
cases, modifications or combinations of Gaussian functions will often be used. This is
because when all deterministic sources of uncertainty are removed, the remaining random
uncertainty is often normal, or Gaussian. Let us consider the basic properties of the Gaussian
pdfs. For one scalar variable x, the Gaussian pdf, G(x) is

G(x) = (2πσ 2
)−1/2

exp
[−0.5(x −M)2/σ 2

]
(1.2-4)

Here, M and σ are the parameters of the density: the mean and standard deviation. Also,
σ 2 is called variance. Neither M nor σ is generally known and they have to be estimated
from the data. The coefficient (2πσ 2)−1/2 is defined so that ∫G(x)dx = 1. We will also
use notations G(x|M,σ 2) for G(x) to emphasize that this is the density, given the values
of M and σ 2. A one-dimensional Gaussian density is illustrated in Fig. 1.2-2g.

Before we consider multidimensional densities, let us introduce basic vector and matrix
notations. Vectors and matrices are used when a single event or object is characterized by
several quantities. For example, a yesterday’s Dow Jones closing is a single number x (called
a scalar). But predicting its future values requires additional information, for example, a
set of three values could be used (Dow Jones closing, interest rate, and gold price); such a
set of three numbers is called a three-dimensional vector, denoted x, or (x1, x2, x3), or (xi).
Uncertainty of the predicted values of this vector can be characterized by using a covariance
matrix, C = (Cij ). Uncertainties of Dow Jones closing, interest rate, and gold price, when
taken in isolation are characterized by C11, C22, and C33, correspondingly; other elements
of the covariance matrix characterize correlated uncertainties involving two variables.
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Figure 1.2-2 Illustration of basic notions of the probability theory. (a) probability of discrete events; (b) pdf of
continuous events; (c) independent events; (d) dependent events and conditional probabilities; (e) alternative events;
(f) a complete set of alternative events (H1 · · · H20); (g) Gaussian distribution is a bell-shaped curve.
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Vector and Matrix Notations. Multidimensional vector quantities x are one-dimensional
arrays of scalar quantities, x = (x1, x2, . . . , xD); vectors and higher dimensional quantities
are denoted in bold. Each xd is called a component of the vector x. The number of
components, D, is called dimensionality. A matrix is a two-dimensional array,

C =




C11 C12 . . . C1D

. . . . . . . . . . . .

. . . Cij . . . . . .

. . . . . . . . . . . .

CD1 CD2 . . . CDD




or C = (Cij , i, j = 1, . . . , D) (1.2-5)

In two-dimensional case, components are often denoted x and y (instead of x1 and x2):

C =
{
Cxx Cxy

Cxy Cyy

}
(1.2-6)

Definition. A vector is normally considered as a column; to denote a row vector, we use
the transpose notation: xT. For a matrix, transposition exchanges columns and rows: for
C = (Cij ),CT = (Cji).

Definition. Vector and matrix multiplication rule is “row by column”:

Cx =

∑

j

Cij xj


 , xTC =

(∑
i

xiCij

)
, xTy =

(∑
i

xiyi

)
(1.2-7)

The above rule is called “inner product.” Note that xyT is not an inner product,

xyT = (xiyj ) (1.2-8)

It is called an outer product; it is a matrix.

Definition of Expected Value. The expected value of x is

E{x} =
∑
x

xP(x) or
∫

x pdf(x) dx (1.2-8a)

Similarly, for any function f (x)

E{f (x)} =
∑
x

f (x)P (x) or
∫
f (x)pdf(x) dx (1.2-8b)

Definition of the Mean and Covariance. The expected value of x is called the mean of x
(or mean value of x, or mean x), M = E{x}. Covariance of x[Cov(x), or Cov, or C] is

Cov{x} = E
{
(x − M)(x −M)T

} =
∫
(x −M)(x −M)Tpdf(x) dx (1.2-8c)

Definition of the Average Value. Given observed data
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{xn, n = 1, . . . N} (1.2-8d)

the average value of x, x-average or x̄, is

x̄ = (1/N)
∑
n

xn (1.2-8e)

Similarly, the average value of f (x), f̄ (x) is

f̄ (x) = (1/N)
∑
n

f (xn) (1.2-8f)

Definition of the Estimation and Estimator. Estimation is a process of finding approximate
values for model parameters from the observed data. An estimation procedure is called
an estimator.

To derive a good estimation procedure, we first must define what constitutes good esti-
mation properties. This problem is considered in Chapter 4. Often, but not always, average
values are good estimators for the corresponding expected values. We will sometimes use
the same notations for parameters and their estimated values, say M for x̄.

Multidimensional Gaussian Density. For D-dimensional vector x, Gaussian density is

G(x|M,C) = (2π)−D/2(detC)−1/2 exp
(−0.5DT C−1D

)
D = x −M, DTC−1D =

∑
i;j

(xi −Mi)C
−1
ij

(
xj −Mj

)
(1.2-9)

Here, det C is a determinant of the matrix C, and C−1 is an inverse matrix of C. In a
two-dimensional case,

det C = CxxCyy − C2
xy, C−1 =

{
Cyy −Cxy
−Cxy Cxx

}/
detC (1.2-10)

In higher dimensional cases, determinants and inverse matrixes are given by relatively
complicated expressions or algorithms (for example, see Searle, 1982). We can use standard
subroutines available in many software packages to compute these quantities. The shape of
a D-dimensional Gaussian density can be illustrated by a D-dimensional contour of the bell
curve computed at some constant pdf value, such a contour is an ellipsoid (see Fig 1.2-2h
and Problem 1.2-1).

Elements of covariance matrixesCij are called covariances of xi and xj and the diagonal
elements, Cii, are called variances. Alternative notations are often used for the elements of
covariance matrixes Cij :

Cii = σ 2
i , Cij = σiσj rij (1.2-11)

where σi is called a standard deviation of xi and rij is called a correlation coefficient between
xi and xj . For example, if x1 = Dow Jones, and x3 = interest rate, a correlation coefficient
value of r13 = 0.3 means that on average 30% of the Dow Jones variations go the same
way as interest rate variations (and the other 70% go equally both ways).
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Note that we used the same notations for M and C defined as expected values and as
parameters of Gaussian densities. This requires justification (see Problem 1.2-2).

1.2.2 Classical Hypotheses Choice Paradigms and Definitions

In a classical hypothesis choice problem a decision has to be made based on available data. A
decision consists in selecting one of several available hypotheses. Hypotheses represent the a
priori knowledge, that is, the knowledge existing before the current piece of data is available.
A decision is made a posteriori, that is, after the current piece of data became available. This
area of probabilistic theory was developed by Bayes in 1763, and it is often called Bayesian
decision theory. It was the first mathematical technique to combine a priori knowledge with
data in the face of uncertainty, for making a posteriori predictions or decisions. Bayesian
theory does not explain learning, still it represents one aspect of Aristotelian theory of Form:
meeting between the a priori Forms (hypotheses) and matter (data).

In Bayesian theory each piece of data characterizing an object or a process is comprised
of a set of measurements or vectorx = (x1, . . . , xD). The D-dimensional space {x} is called a
decision or classification space. Hypotheses concerning objects, or in other words classes to
which objects belong, are denoted as {H1, . . . HK}or simply, k = 1, . . . , K . Each hypothesis
or class is characterized by a priori probability, P(Hk), and class-conditional probability
density functions, pdf(x|Hk). Using the rule of conditional probabilities, Eq. (1.2-2), the
joint density of (Hk and x) is given by (see Problem 1.2-3)

pdf(Hk, x) = P(Hk) pdf(x|Hk) (1.2-12)

These probabilities and pdfs are called a priori, becauseP(Hk) and the functional expression
for pdf(x|Hk) are known prior to data x being observed. [Probabilities P(Hk) are called
priors in classical statistics; but to emphasize that these quantities can be estimated from
data we will usually call them class rates and use simplified notations rk = P(Hk).]

After data x is observed, what is the probability of each hypothesis? What are the a
posteriori probabilities, P(Hk|x)? Using the rule of conditional probability, Eq. (1.2-2),

P(Hk|x) = pdf(Hk, x)/pdf(x) = P(Hk) pdf(x|Hk)/pdf(x) (1.2-13)

Example. Consider all pdf(x|Hk) being of the same shape. Then, observations of x do not
bring any additional classification information, and a posteriori probabilities remain equal
to the a priori values, P(Hk|x) = P(Hk). (See also Problem 1.2-4 and the comment there.)

To complete the derivation of a posteriori probabilities from the measured data and
a priori information, we need to express pdf(x) in Eq. (1.2-13) in terms of a priori quan-
tities. Since various hypothesis are alternatives, the total a priori pdf(x) is a sum over
the alternatives

pdf(x) = P(H1) pdf(x|H1)+ P(H2) pdf(x|H2)+ · · · + P(HK) pdf(x|HK) (1.2-14)

Combining Eqs. (1.2-13) and (1.2-14), we obtain the famous Bayes expression for a
posteriori probabilities:
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P(Hk|x) = P(Hk) pdf(x|Hk)/
[
P(H1) pdf(x|H1)+ · · · + P(HK) pdf(x|HK)

]
(1.2-15)

To repeat again, this Bayesian a posteriori probability was the first mathematical technique
combining a priori knowledge with data for a posteriori predictions or decisions.

When choosing among hypotheses we often need to account for the cost and benefit of
various decisions. If the cost/benefit of each decision in each case is known, and the cost
= −benefit, this can be done as follows. Consider the benefit and cost matrixes

B(k|k′) = −C(k|k′) = benefit of making the decision k,

when the actual class is k′ (1.2-16)

[Presumably the benefit of the correct decision, B(k|k) is the highest among B(k|k′) for
k �= k′; C(k|k) is the lowest cost among C(k|k′).] A choice of hypothesis that maximizes
the expected benefit is given by

max
k

∑
k′

B(k|k′)P (Hk′ |x) (1.2-17)

The fundamental significance of the Bayes theory is that any other hypothesis choice will
result in a benefit less than (or the same as) that above. In the case of B(k|k′) = δkk′(=
1 for k = k′, 0 otherwise), the best decision is given by the maximal a posteriori Bayes
probability, maxk = P(Hk|x).

The choice between two hypothesis H1 and H2, in the case of B(k|k′) = δkk′ , is given
by maxk[B(k|k)P (Hk|x)]. The decision rule can be written as

if B(1|1)P (H1|x) > B(2|2)P (H2|x) => H1

if B(1|1)P (H1|x) < B(2|2)P (H2|x) => H2 (1.2-18)

This rule can be written as the likelihood ratio (LR) test:

LR = pdf(x|H1)/pdf(x|H2)

threshold = P(H2)B(2|2)/[P(H1)B(1|1)]
if LR > threshold => H1; if LR < threshold,=> H2 (1.2-19)

Comment on Terminology. The word likelihood is used for a pdf, when it is considered
for fixed data, as a function of hypotheses and their parameters. Although pdf(x|H) was
orginally used to describe probabilistic uncertainty of our knowledge about x, given that it
belongs to class H (is described by the model H), likelihood is used to characterize how
well the observed data fit the model, or how likely is our model, given the observed data.

Example. Consider a more complicated example of the Bayes decision theory applica-
tion. You are trading on a stock exchange. You have a model predicting the probabilities
that the market will significantly move up or down within the next few days. That is,
based on the information x available today, your model predicts a posteriori probabilities
P(up|x) = p, P (dn|x) = q, and P(no move|x) = 1 − p− q. (Note, this is a complete set
of alternatives.) You would like to buy calls,4 or puts, or do nothing. From your previous
experience, you established the following sell rule: you close your position (that is you
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sell all your calls or puts) in one of two cases: you gained 100% or you lost 30%. Given
this rule, how should you formulate the optimal decisions? This means that you have to
establish thresholds for the prediction probability, at which you will buy. This is done as
follows. Your benefit/cost matrix is given by your sell rule

B =



+1 −0.3 −0.3

−0.3 +1 −0.3

0 0 0


 (1.2-20)

Here, rows correspond to hypothesis/actions (buy–call, buy–put, nothing) and columns
correspond to actual outcomes (up, dn, no move). Say B11 = 1 corresponds to your buying
calls and the market moves up, so you make a 100% gain (+1); if instead, the market moves
down, you loose 30%,B12 = −0.3. Your probabilities corresponding to the three outcomes,
k′, form a vector P(Hk′ |x) = (p, q, 1 − p − q). According to Eq. (1.2-17), the optimal
decision rule is given by (see Problem 1.2-5)

max[(1.2p − 0.3), (1.2q − 0.3), 0], or equivalently, max[p, q, 0.23], so

buy call if p > q and p > 0.23

buy put if q > p and q > 0.23 (1.2-21)

1.2.3 Pattern Recognition

The importance of likelihoods or probabilities is due to the fact that the best decisions are
based on these quantities. In a card game or stock market, the winner would be the one
who uses for his decisions likelihoods or probabilities, if they are known. Similarly, when
probabilities are known, the probabilistic framework provides for optimal formulation of
any decision making. In the last example, any rule other than the Bayesian rule Eq. (1.2-21),
would be less beneficial, if the probabilities p and q are correct.

However, applying probabilistic rules is usually complicated due to the fact that prob-
abilities and pdfs are unknown and should be estimated from the data. The problem of
applying the probabilistic rules is the central problem of the theory of probability; one
could call it a “forward” problem. Estimating pdfs from data is the central problem of
statistics; one could call it an “inverse” problem. In general, inverse problems are more
complex than forward ones.

This complex problem of estimating pdfs is one of the central problems in mathematical
methods of decision making. Often this problem gets replaced by other, simpler problems,
because it is too complex. Another argument against estimating pdfs is that it requires a lot
of data, and sometimes more direct goal optimization could be more efficient and could lead
to a faster adaptivity. However, in the areas of hypothesis choice and recognition there are
no general methods as powerful as the Bayesian one. An adaptive Bayesian method based
on accurate estimation of pdfs, accounting for all the available information, if possible to
implement, is usually the best approach. How to accomplish this, even in difficult cases, is
discussed throughout this book.

The problem of hypothesis choice coupled with pdf estimation belongs to the area of
pattern recognition. A large number of techniques have been developed for pdf estimation.
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A mathematical analysis of the basic computational concepts is presented in Chapter 4. Here
we introduce basic definitions and discuss some of the issues involved in this problem.

Definition. A labeled data set is a set of observations xn, n = 1, . . . , N , each provided
with an accurate label Hk . We denote a labeled data set {(xn,Hk)}, or, alternatively, we say
that an observation xn corresponds to a hypothesis Hk , or n ∈ k.

Definition. When a labeled data set is used for estimation of pdfs, learning (or training) is
called supervised.

Definition. When a labeled data set is unavailable, the problem of learning is often for-
mulated as clustering or grouping of observations {xn} into “naturally occurring” clusters
within the data set. Finding these groups or clusters is called unsupervised learning.

Sometimes, the concept of clustering is applied to supervised learning, when several
clusters of data exist within each class. Thus, supervised and unsupervised learning become
interwoven. A number of techniques have been developed to estimate pdfs, to cluster data,
and to label clusters with class labels.

A widely used approach to supervised pdf estimation assumes a Gaussian shape of the
class-conditioned pdfs, pdf(x|Hk) = G(x|Mk,Ck). Then, a pdf estimation is reduced to the
estimation of the pdf model parameters Mk and Ck , which is accomplished using standard
equations given in Chapter 4. This is called a parametric approach, because it is based on
a parametric model of the pdf [Eqs. (1.2-4) or (1.2-9)].

A parametric approach utilizing a particular model is appropriate only if the model
adequately represents the data. The Gaussian model is appropriate when there is a single
deterministic phenomenon that determines the mean vectorMk of the density for each class
and the deviations Dxk of the observations from this mean are of a random nature (Fig.
1.2-3a). In this case, the density is often Gaussian.5 However, when there are two or more
deterministic processes determining the means for each class, such as front and side views
of an object, the density is likely to have two or more peaks in the classification space,
deviating significantly from the Gaussian shape (Fig. 1.2-3b and c). To estimate pdfs of any
shape, nonparametric methods of the pdf estimation were introduced. For example, in the
Parzen method the pdf is estimated by placing kernel functions at each observed location
xn in the classification space. If a Gaussian kernel function is used, the pdf is estimated as
follows:

pdf(x|Hk) =
∑
n∈k

(2π)−D/2 (detCk)
−1/2 exp(−0.5 DT

xn C
−1
k Dxn)/Nk

Dxk = x − xn; Nk =
∑
n∈k

1 (1.2-22)

Here Nk is the number of observations from class k in the training data set. Nonparametric
methods use many parameters (e.g., the location of kernel functions, xn),6 whereas para-
metric methods use few parameters (e.g., the mean and covariance of the Gaussian density).

Nonparametric methods are efficient in classification spaces of low dimensionality,
D ∼< 6. In high-dimensional spaces, learning requirements often grow fast as a function
of the dimensionality. In fact, the number of observations in a training data set required
for statistically accurate learning, Nk , often grows combinatorially or exponentially, Nk ∼
exp(D). This contrasts with modest learning requirements of parametric methods: a general
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rule for accurate estimation of the parameters of the Gaussian density [Eq. (1.2-13)] is
Nk ∼ max

[
10 ·D,D2

]
. Thus, parametric methods learn relatively fast. Fast learning or

adaptation is at a premium in our ever-changing world; therefore, parametric methods
are often used for practical real-world problems of medium dimensionality and reduction
of dimensionality is desirable. But when dimensionality is high, training requirements of
conventional parametric methods become prohibitive. More complicated parametric models
accounting for more a priori information and using fewer parameters can adapt faster. These
types of models and their estimation techniques are considered throughout the book.

1.2.4 A Priori Information and Adaptation

Relative roles of a priori information and adaptation have been debated among philosophers
during the past 2300 years. This issue has continued to be among the most controversial ones
during the past 50 years among researchers of intelligence. It acquired various names such as
internal representations, symbolic or discrete methods (a priori) vs. neural, connectionist, or
continuous (adaptive). In classical statistical pattern recognition, adaptivity is accomplished
by pdf estimation; in the case of the parametric models, such as Gaussians, adaptivity is
due to adaptive parameters of pdfs, which are estimated using available data. Learning is
called supervised when pdf are estimated using a labeled data set: each object is assigned to a
known class. A labeled data set is prepared using a priori knowledge, so that there is no real-
time adaptation. In unsupervised learning, adaptation occurs in real time, as data become
available. A priori information includes a training data set, knowledge of the parametric
shape of pdf or kernel functions, and knowledge of classification features. Features are
functions of observables that are designed or selected in such a way that the important
classification information is preserved, while the dimensionality of the problem is reduced.
The components of the data vector x = (x1, . . . , xD) can be defined as raw sensory data or
as features computed during preprocessing.

The importance of feature selection follows from the above discussion of training
requirements. Consider typical problem dimensionalities. For example, a stock market
prediction may depend on the market values over the previous 30 days, also on interest
rates over the past 30 days, on closings of several international markets, and several other
indicators computed for 30 days each; so, the desire to account for more information
quickly leads to hundreds of dimensions. Similarly, a radar target signature may contain
hundreds of time-point measurements, and at every time point, amplitudes and phases
at multiple frequencies might be measured; even more pixels are usually contained in
imaging sensory data. Thus, even a modest requirement of D2 training signatures per class
is often prohibitive.

Feature design and selection are based on careful analysis of a priori phenomenological
or scientific information about the data as well as on the analysis of statistical properties
of data and features. A large amount of technical literature is devoted to feature selection,
which remains to a significant extent application specific. Considerations of invariances
with respect to translation, rotation, etc. are often used to design features for image data.
Discussion of general feature evaluation methods can be found in Fukunaga (1972, 1991);
these methods are useful for subselection of features out of an initial set of features. It
should be pointed out that from a statistical theoretical point of view, there always exists a
“superfeature,” a single feature containing all the classification information. A likelihood
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Figure 1.2-3 A single class density can be modeled as Gaussian, if there is a single deterministic
phenomenon that determines the class mean and the deviations are random (a). When there are two
deterministic processes within each class, such as male and female heights (b), front and side views
of an object, or diverse market forces (c) the density is likely to have two or more peaks in the
classification space, deviating significantly from the Gaussian shape.

ratio, or the Bayes classifier, or a sufficient statistics7 of the sensory data are such features,
and, sometimes, useful features can be constructed by approximating sufficient statistics.
However, general automatic methods of designing features have not been found in classical
statistical pattern recognition. As already mentioned, statistical pattern recognition models
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the adaptive nature of the intellect; however, it has not succeeded in modeling the a priori
nature of the intellect.

An entirely different approach to utilizing a priori information for decision making and
pattern recognition is utilized in rule-based or expert systems. In the Plato–Minsky method,
classification decisions are specified as a series of “if–then” rules. The main advantage of
this method is that it explicitly incorporates detailed, high-level a priori knowledge into
the decision making. The main drawback of this method is difficulty of combining rule
systems with adaptive learning as discussed in the previous section. Extensions of the rule-
based concept to two-dimensional (2-D) and three-dimensional (3-D) sensory data led to
another mathematical concept of utilizing the a priori information, model-based vision.
Model-based approaches in machine vision utilize detailed a priori information on objects’
shape for image recognition and understanding. Models used in machine vision typically
are complicated geometric 3-D models. To find and identify objects in a scene, first, one has
to extract a subset of the image that corresponds to a single object; this is called grouping,
selection, or segmentation. Second, one has to match the extracted data to a model from a
database of models; this is called matching.

If the position, size, and orientation of an object in the image are known with little
uncertainty, model-based vision works well. But if there is uncertainty, the solution becomes
combinatorially complex because it is necessary to consider all or many of the possible
combinations of all the parameters involved: subsets of imagery data, object models,
object position, and orientation. For example, consider a medium complexity problem of
recognizing one of 100 possible objects that should be identified in an image of 1000×1000
pixels. If we know the size and orientation of every object, the only unknowns are the
position and type of the object. One needs to evaluate no more different positions than
there are pixels, ∼ 106. There are 100 possible objects that should be matched to the image
in every position. The number of all possible matches to be evaluated in this example is
∼ 106 × 100 ∼ 108, which is a very large number. And even this number is limited by our
assumptions that we know the size of the object in the image, that there is no obscurations
or other uncertainties due to illumination, deviation of objects from their models, etc.
When many objects obscure each other, this leads to uncertainty in segmentation: which
pixel belongs to which object. It is necessary then to consider many possible different
segmentations of every little part of an image; if two objects may occupy a 100 × 100
pixel subimage, using brute force may lead us to consider a significant part of all possible
segmentations, on the order of 100100. This number is comparable to the number of all
interactions of all elementary particles in the entire history of the universe and certainly that
many matches cannot be implemented in any computer. In fact, the uncertainties require
more options in the matching or more detailed models, potentially leading to a combinatorial
explosion at every one of the model-based vision steps discussed above: “the key issues . . .
the inherent uncertainty of data measurements” and “combinatorial explosion inherent in
the problem” (Grimson and Huttenlocher, 1991).

Nevertheless, the concept of an internal model is among the most important in the
mathematics of intelligence, because it combines the apriority of a model with the adaptivity
of model parameters. Developing mathematical methods that utilize internal models, while
avoiding combinatorial explosion, is among the main thrusts of this book. As an introduction
to this development, the next subsection considers a mathematical formulation of the internal
model and analyzes the emerging difficulties.
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1.2.5 Mathematical Formulation of Model-Based Recognition

The following discussion refers to pixels and images, but it is equally applicable to virtually
any type of data. In case of images, we use geometric models and features such as edges or
corners, and in case of stock market, we use models and features such as bottoms and tops.

A mathematical formulation of recognition based on internal models consists of two
steps: first, the a priori step of model development and second, the adaptive step of recogni-
tion of objects in real-time data, while adapting unknown parameters of the models. Models
of data should be developed for every class k of objects. We denote models for class k as
Mk and the nth data vector as xn. Models represent an expected, deterministic aspect of the
data. In the case of perfect models and no uncertainties, when the data xn originate from an
object of class k, the data perfectly matches the model,

xn = Mk (1.2-23)

When there are deterministic uncertainties, the models are functions of unknown model
parameters,Sk (such as orientation),Mk = Mk(Sk). And the above expression is understood
as an equation for model parameters: there are values of parameters Sk such that Eq. (1.2-
23) holds. For imaging data, every data vector xn is a subset of image pixels, or features
extracted from a subset of the image. The model is a prediction of this vector (of pixels
or features) and it should account for the properties of objects and the sensory system. In
reality, a perfect match as in Eq. (1.2-23) cannot be attained because there are multiple
sources of deviations between the model and the data. If all deterministic aspects of the
problem are accounted for in the model Mk(Sk), the deviations can be treated statistically;
that is, for some values of the parameters Sk , the model is a class-conditional statistical
expectation of the data vector

Mk(Sk) = E{xn|k} (1.2-24)

The expectation here is conditioned on k, rather than on the class-k hypothesis Hk , to
emphasize that it is taken with respect to the true pdf(xn|k), which is not known. Let us
emphasize again that the above equation is not a definition of the model, but the goal that
the model should satisfy.

If the deterministic modelMk(Sk) is accurate in the sense of Eq. (1.2-24), and deviations
of data from the model are caused by multiple random effects, then according to the Central
Limit theorem, the pdf can be approximated by a Gaussian density, conditioned on class
and model parameter values,8

pdf(xn|Hk) = G [xn|Mk(Sk),Ck(Sk)] (1.2-25)

Here, G is Gaussian density, Eq. (1.2-9), with the mean given by the deterministic
model and the covariance Ck(Sk), which should either be modeled deterministically or
estimated from the data. This formulation, combining deterministic models and statistical
uncertainties, relates the model-based recognition problem to the classical problem of
hypothesis choice considered in Section 1.2.2.

The next step, adaptive object recognition, consists in finding the class k and the values
of parameters Sk that result in the best match in some sense consistent with Eqs. (1.2-23) or
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(1.2-24). This problem can be formulated mathematically as follows. Consider all possible
associations (also called segmentations or partitions) of data among all classes or hypothesis.
Association mathematically can be described as a partition � of all the data (pixels or
samples) into subsets ξn corresponding to particular objects,

� = {ξ1, . . . , ξN } (1.2-26)

Pixels from a subset ξn are used to form a data vector xn to which the model Mk is
then matched. Here, n = 1, . . . , N numbers the objects, k = 1, . . . K numbers the classes
of objects, and the partition � establishes the correspondence between them, k(n). An
adaptive matching of the models to data involves estimation of the unknown parameters
of the models, Sk , for every subimage ξn. A standard preferable approach to parameter
estimation is to maximize the likelihood, L, or overall pdf of all pixels in the image.
Theoretical advantages of likelihood maximization are well known and will be discussed in
Chapter 4. To obtain an expression for the likelihood, we need to examine the probabilistic
interpretation of the segmentation (1.2-26). The global hypothesis corresponding to this
partition states that the following events occur concurrently: object k(1) is observed in
pixel subset ξ1, . . . , object k(n) is observed in pixel subset ξn, etc. Models account for any
deterministic variability, whereas deviations from the models are random and statistically
independent for different subsets. For statistically independent events, the joint pdf is a
product of individual pdfs. Thus, the likelihood conditioned on a particular segmentation,
L(�), is a product of conditional pdfs, pdf

(
xn|Hk(n)

)
,

L(�) =
∏
n

pdf
(
xn|Hk(n)

)
(1.2-27)

It is worth emphasizing that although Eq. (1.2-27) is a product of individual subset pdfs,
it does not require an assumption of statistical independence of xn and xn′ : they can always
be made statistically independent with the appropriate selection of models, which may
account for intersegment dependencies through the models.9 This will be further discussed
in Chapters 4 through 7.

The maximum likelihood estimate of the set of parameters {Sk} is obtained by maxi-
mizing expression (1.2-27) over the parameters, which we will denote as

{Sk} = arg max L(�) (1.2-28)

According to (1.2-27), this problem factors into maximizing pdf of each individual
subimage over the parameters of each individual model

Sk(n) = arg max pdf(xn|Hk(n)) (1.2-29)

This greatly simplifies the problem of parameter estimation, which still could be quite
substantial for complex models. After the best set of model parameters is obtained for every
partition, the likelihood for every partition is computed and parameter values corresponding
to the maximum likelihood partition are selected.

The above formulation of the model-based pattern recognition problem is fairly broad.
It addresses the top level of the problem, while omitting details important for specific
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application areas and for specific approaches to controlling the combinatorial explosion.
This general formulation will be referred to as the Multiple Hypothesis Testing (MHT)
algorithm, designating the fact that multiple partitions of data among hypotheses have to be
tested to find the maximum likelihood partition and parameters. Most of existing approaches
can be formulated within the MHT framework. The model-based pattern recognition is a
step toward mathematical description of the Aristotelian theory of mind. The functional
shapes of models, Mk(Sk), are specified a priori and correspond to the Aristotelian Forms.
The adaptation or learning is achieved by estimating model parameters, Sk , from the data;
this process mathematically describes the meeting of the Form and matter. However, the
need to consider all or many of the partitions or groupings (1.2-26) is the main source
of the intrinsic combinatorial complexity of the model-based approach. Overcoming this
complexity is considered in Chapter 4.

1.2.6 Conundrum of Combinatorial Complexity

Combinatorial complexity seems to be an omnipresent fixture in every computational con-
cept. Attempts to develop self-learning, adaptive algorithms utilizing no a priori knowledge
faced combinatorial complexity of the amount of required training data. Rule-based ap-
proaches, which were proposed to overcome this difficulty by using the concept of apriority,
faced combinatorial complexity of rule systems. And attempts to combine apriority and
adaptivity using model-based approaches faced computational combinatorial complexity.
The conundrum of combinatorial complexity will be further analyzed in Chapter 2, where it
will be related to the general properties of Aristotelian logic. And, in Chapter 10, it will be
discussed in relationship to the Gödel theorems. In Chapter 4, we develop a computational
concept of modeling field theory that resolves this conundrum using adaptive fuzzy logic.

1.3 PREDICTION, TRACKING, AND DYNAMIC MODELS

Here we introduce basic definitions, summarize classical approaches, and discuss relation-
ships among prediction, tracking, and pattern recognition. Then we consider the general
problem of prediction in complicated cases when dependencies among variables are nonlin-
ear and data, in addition to signals of interest, contain noise and clutter (distracting signals).
This section serves as an introduction to Chapter 7.

In the beginning of every mythology, theology, or cosmogony, there is a concept
of the original chaos. An emergence of ordered cosmos is equated with the divine act
of creation, which psychologically is equivalent to an emergence of consciousness. An
ability to order, to predict is considered fundamental to consciousness. Ancient Greeks’
passion for mathematics was related to the psychological need to counter chaos, and the
same psychological need moves many of us today. Ancient mathematical concepts of
arithmetic and geometry countered chaos by establishing deterministic relationships among
mathematical objects. This deterministic mathematics was used for prediction in astronomy,
where deterministic predictions work very well. Beginning with the sixteenth century, more
sophisticated mathematical methods emerged, rationalizing the chaos itself. Prediction of
outcomes in card games and gambling stimulated the development of probability theory,
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which was originally developed for predicting random combinations of a few basic simple
events. Next, prediction methods were developed for continuous variables. These eventu-
ally led to mathematical techniques combining the deterministic and probabilistic aspects
of nature.

The most basic and widely used prediction method that combines probabilistic and
deterministic aspects is linear regression. It is used to establish linear relationships among
variables when such a relationship is of a stochastic nature and does not hold precisely for
every set of measurements, but is observed probabilistically over a large set of observations.
(We use the words measurements and observations interchangeably.) Regression can be used
to establish relationships between the past and future values of the same variable. A set of
measurements obtained over regular (or irregular) time intervals is called a time series, and
a linear regression model applied to time series is called autoregression. Autoregression
modeling methods were developed in the first half of this century. Further development
of prediction methods was affected by two events: the development of stochastic process
theory, and the need to solve the problem of target tracking that came up during World
War II, when radar was used to track aircraft. Today, tracking applications are numerous
in both military and civilian areas of surveillance, navigation, guidance, air traffic control,
and robotics. To track targets or objects it is necessary to be able to detect the presence of a
target and to predict where the target will appear in the next moment. These detection
and prediction aspects of tracking are considered in this book. Tracking problems are
characterized by complex models: deterministic tracking models are often nonlinear, and
probabilistic tracking models often account for multiple sources of signal: multiple targets
of interest as well as multiple sources of noise and cutter. Sophisticated tracking methods
are utilized for prediction, in particular, of stock markets.

Three hundred years ago, prediction of outcomes in card games and dice gave an
impetus to the development of the theory of probability. Today, new mathematical methods
of prediction are being developed for predicting stock markets. Identification of investment
opportunities is crucial for the efficient economy and enriches those who can predict better
than average state-of-the-art techniques.

In this section we introduce the mathematics of linear regression in the most simple
case of two variables. Then we briefly consider autoregressive modeling and tracking, em-
phasizing similarities and differences among regression, tracking, and pattern recognition.

1.3.1 Linear Regression

Consider an estimation of unknown values of variables y from known values of variables
x. For example, x may include time, known past values of y (autoregression), or other
variables useful for predicting y. Classical linear regression estimates a linear relationship
between x and y from available past observations of pairs (x, y). Here we consider a simple
case of one (scalar) known variable x and one scalar unknown variable y; a general case
of vector-valued x and y is considered in Chapter 7. Linear relationship between x and y
is given by

y = ax + b (1.3-1)

where a and b are the parameters of the regression model that should be estimated from the
available data
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{(xn, yn), n = 1, . . . , N} (1.3-2)

In the real world, Eq. (1.3-1) cannot hold exactly, because of measurement errors and other
random effects. Thus, we have to account for the error,

εn = yn − axn − b (1.3-3)

This error can often be considered a random variable, with the same probability density
pdf(εn) = pdf(yn − axn − b) for every n. If the data (xn, yn) for every n are affected by
statistically independent random effects, then the joint pdf or likelihood of the data {(xn, yn)}
is given by a product of individual pdf(yn−axn−b) overn. It is more convenient to consider
the logarithm of the likelihood (log likelihood), LL = ln L,

L =
∏
n

pdf(yn − axn − b); LL = ln L =
∑
n

ln pdf(εn),

εn = yn − axn − b (1.3-4)

This likelihood combines the deterministic model (1.3-1) with a probabilistic model given
by pdf(ε). Parameters a and b of the regression model can be obtained by maximizing LL
over a and b. Classical linear regression considers pdf(ε) to be a Gaussian density, (1.1-3),
so the log likelihood is given by

LL =
∑
n

ln
[(

2πσ 2
)−1/2

exp
(−0.5 ε2

n/σ
2
)]

=
∑
n

{−0.5 ln
(
2πσ 2

)− 0.5 ε2
n/σ

2
}

(1.3-5)

Here, the first item in the parentheses does not depend on the regression parameters a and
b. Therefore, for the maximum likelihood estimation of the regression parameters, it is
sufficient to consider just the second item,

maxa,b

{∑
n

(−0.5 ε2
n/σ

2
)}

(1.3-6)

or equivalently,

mina,b

{∑
n

ε2
n

}
, εn = yn − axn − b (1.3-7)

Because of the sum of squares in this expression, this technique is often called the least
mean square method. To find this minimum, the derivatives with respect to a and b are
equated to 0:

d/da

{∑
n

ε2
n

}
= d/da

{∑
n

(yn − axn − b)2

}
= −2

∑
n

(yn − axn − b) xn = 0

d/db

{∑
n

ε2
n

}
= d/db

{∑
n

(yn − axn − b)2

}
= −2

∑
n

(yn − axn − b) = 0

(1.3-8)
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This is a linear system of equations for a and b and it can be solved in a straightforward
manner. Let us introduce the following notations: x-average, x̄, and y-average, ȳ,

x̄ = (1/N)
∑
n

xn, ȳ = (1/N)
∑
n

yn (1.3-9)

variance of x, Cxx , and covariance of x and y, Cxy

Cxx = (1/N)
∑
n

(xn − x̄)2, Cxy = (1/N)
∑
n

(xn − x̄)(yn − ȳ) (1.3-10)

Note, that we are using here the same notations as we used for the covariance matrix of
the Gaussian densities in Eqs. (1.2-9) and (1.2-10). These quantities are closely related as
explained in Section 1.2.1 and in the next section. With simple manipulations (see Problem
1.3-1), Eqs. (1.3-8) can be rewritten as

Cxy − aCxx = 0 (1.3-11)

ȳ − ax̄ − b = 0

}
(1.3-12)

From here, we obtain parameters of the linear regression model:

a = Cxy/Cxx, b = ȳ − (Cxy/Cxx) x̄ (1.3-13)

Substituting these expressions into Eq. (1.3-1), we obtain the linear regression model:

y(x) = x Cxy/Cxx + ȳ − (Cxy/Cxx) x̄ = ȳ + (x − x̄)Cxy/Cxx (1.3-14)

Or, by using notations of Eq. (1.2-11),

y(x) = ȳ + (x − x̄) rxyσy/σx (1.3-15)

This expression can be interpreted as follows: y(x) equals y-average plus the rescaled
deviation of x from x-average; the rescaling factor, rxyσy/σx , accounts for the correlation
between x and y and for the difference in scales between x and y, as measured by the
standard deviations of x and y.

1.3.2 Regression as an Expectation

The previous section introduced regression as an estimation of the parameters of a deter-
ministic model. Another fundamentally important point of view, which connects regression
and pattern recognition, is to consider regression as an expectation of a y value, given a
value of x. The mathematical expectation E{y|x} (read: “expected value of y, given x”) is
defined as

E{y|x} ≡
∫
y pdf(y|x)dy (1.3-16)

Here, pdf(y|x) is a conditional density of y, given x. This conditional density can be
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defined through the joint density of x and y, pdf(x, y), and unconditional density of x,
pdf(x), according to the rule of conditional probabilities,

pdf(x, y) = pdf(y|x)pdf(x), or pdf(y|x) = pdf(x, y)/pdf(x) (1.3-17)

The meaning of this expression is very simple: pdf(y|x) is proportional to pdf(x, y), and
the denominator in the above expression assures the proper pdf normalization: ∫ pdf(y|x)
dy = 1; this can be seen from pdf(x) = ∫ pdf(x, y) dy.

Consider joint pdf(x, y) to be Gaussian, (1.1-3). Substituting Gaussian densities for
pdf(x, y) and pdf(x) in (1.3-16 and 1.3-17) (see Problems 1.3-4 and 1.3-5), we obtain the
same expression as in the previous section, (1.3-14):

E{y|x} = ȳ + (x − x̄)Cxy/Cxx (1.3-18)

Note that in Eq. (1.3-18) averages and covariances are the true theoretical values of the
density parameters, whereas in the previous section we used their values estimated from the
data. Obviously, in practice the “true theoretical values” of parameters are not known and,
using the regression Eq. (1.3-18) for prediction requires estimated parameters of pdfs.10

This need to estimate pdf unifies regression and pattern recognition.
Summarizing this section, we can say that Gaussian densities imply linear relationships

between variables. In Chapter 7 we consider more complicated densities leading to nonlinear
relationships.

1.3.3 Autoregression

Consider a time series {xt , t = 1, . . . , N}. For simplicity we use integer time values, but
use the index t instead of our usual n to emphasize the nature of the data as a time series.
And let us consider the problem of predicting xt+1 from xt . We will use liner regression:

xt+1 = axt + b (1.3-19)

This is equivalent to assuming that xt+1 is affected only by xt , and that the joint density is
Gaussian. This model is called autoregressive, and a is called the autoregressive coefficient.
The solution for the coefficients a, b is given by Eq. (1.3-15)

xt+1 (xt ) = r (σt+1/σt ) (xt − x̄t )+ x̄t+1 (1.3-20)

Note that here σx = σt and σy = σt+1, and we denoted rt,t+1 as r . In the previous two
sections we assumed that we have multiple observations of the pairs of (x, y) from previous
experience. This allowed us to estimate parameters of statistical models: means, standard
deviations, and correlations (parameters of statistical models are also called statistics).
Without this assumption, regression will be useless. For a time series, we never have the
same x and y, as both of them are changing with time. So how can we obtain statistics,
x̄t , x̄t+1, r, σt , σt+1, which are needed to use Eq. (1.3-20) for prediction? For a time series,
it is often the case that although xt are changing significantly and randomly from t to
t + 1, statistics of this random process change slowly. An idealization of this observation
is formulated as
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stationarity assumption: assume that statistics do not change in time (1.3-21)

So that x̄, r , and σ remain constant, x̄t = x̄t+1 and σt = σt+1. Then, the autoregression
Eq. (1.3-20) simplifies,

xt+1 (xt ) = r (xt − x̄)+ x̄, or x ′
t+1 (xt ) = rx ′

t (1.3-22)

where the normalized zero-mean variables are introduced: x ′
t = xt − x̄, x ′

t+1 = xt+1 − x̄.
This model is more specifically designated as the first-order autoregressive model (it looks
just one step back), or a random walk model. It predicts that tomorrow’s x value will be
closer to the average than today’s value. It can be used for prediction, for example, of the
stock market (see Problem 1.3-8). Statistics, x̄, r , and σ , should be estimated from the
past data, going as far back in the past as one believes in the stationarity assumption. The
stationarity assumption can be verified by comparing statistics over various time intervals
(see Problem 1.3-9).

For stock market predictions, the basic assumptions of the model are too simplistic.
There are two assumptions: stationarity and the first-order single-variable autoregressive
model. Concerning stationarity, it is well known that the average stock price is steadily
rising, so this assumption is wrong. Instead of stock prices let us consider their changes,
x ′
t = xt − xt−1. The average value of this variable is very close to 0. Therefore, it is better

to use x ′ than the original x, as x ′ is closer to the assumption of stationarity. The first-order
autoregressive model for x ′ contains information about yesterday’s, in addition to today’s
price: this model predicts that the change in price tomorrow will be similar to today’s change
if r > 0, or the opposite if r < 0 (see Problem 1.3-10).

Still, x ′ usually is not stationary because the autoregression (correlation) coefficient
and standard deviation may change with time. In some market conditions, it is positive: the
next day change tends to be in the same direction as today’s change. In other market
conditions, change tends to be contrarian (r < 0). Therefore, the correlation coeffi-
cient has to be estimated from the minimum amount of the past data to be as current
as possible (see Problem 1.3-11). But reducing the past interval too much will result in
inaccurate (statistically unreliable) estimation. Also, predicting types of markets (r > 0
or r < 0) may require other variables (say interest rates); thus, one has to consider pre-
dictive models with multiple variables. Using multiple variables increases dimensionality
and requires even more data for estimation of statistics. This is an inherent difficulty of
prediction problems.

The prediction methods just described are practically useful and mathematically op-
timal in very many cases. Could they be used for stock market prediction? And if not,
why are they not good enough? The answer is no, and the reason is very simple: these
methods are widely known and constantly used by very many investors. So whatever
could be predicted with these methods becomes immediately predicted, money from the
entire financial community is redistributed more efficiently, and the potential for above-
average gains for individual investors is reduced. When the previously described methods of
prediction, based on stationary linear models, were introduced in the financial markets, they
first resulted in above-average gains, and second, in increased market efficiency. Increased
market efficiency eliminated formerly predictable stationary linear effects, so whatever
could be predictable now has to be nonstationary, nonlinear, and, in other ways, more
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complicated than the state of the art. Thus it is important to identify principled limitations
of existing methods.

Among limitations of the autoregression model, even with many variables and of
a high order, is a restricted nature of its adaptivity. Autoregression models, as well as
regression models in general, assume that there is a single deterministic process determining
the mean of the future price and that other effects are random deviations from the mean.
The assumption of the Gaussian density of the deviations further restricts adaptivity to
linear combinations of input variables. But the stock market is not linear, and it is affected
by a number of dynamic processes or forces acting concurrently. The next section intro-
duces classical prediction methods developed in the area of target tracking. Target tracking
combines pattern recognition and prediction, and provides a springboard to developing
prediction methods that can adapt to new forms of nonlinearities and account for multiple
concurrent processes.

1.3.4 Tracking

Powerful techniques combining prediction with pattern recognition have been developed in
the field of target tracking that concern detection of moving objects and estimation of their
trajectories in sensory data. Sensor measurements typically contain data that originate from
multiple sources: objects of interest called targets, objects of no interest called background or
clutter, and sensor noise. In simple cases, when there is a single target and no noise or clutter,
the data can be considered as a time series of coordinate measurements. Tracking is similar to
prediction problems considered previously: it consists in estimating parameters of motion
models (Fig. 1.3-1a). Complicated tracking problems involving multiple targets, noise,
and clutter have been traditionally approached by subdividing them into several simpler
steps, called functions: detection, association, and track estimation. Detection refers to the
process of determining samples or pixels of data containing target signals while rejecting
clutter and noise. Association refers to grouping of data from multiple frames into subsets
corresponding to a single object. And track estimation refers to estimating parameters of
the model of target motion (position, velocity, etc.) (see Fig. 1.3-1b).

Detection and association functions correspond to the segmentation step in computa-
tional vision. Historically, mathematical methods of tracking and computer vision evolved

Figure 1.3-1 Tracking is easy for a single target without noise or clutter (a). Association is required
when multiple targets or clutter signals are present (b); association is performed using gates.
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along different routes, but today they are beginning to merge. Tracking begins to be
concerned with imagery data, and vision is concerned with image flow and motion. In
computational vision, a segmentation is naturally the first step to be performed, whereas
object models are complicated and have been incorporated into recognition only recently.
In simple tracking cases, track-model parameters can be estimated without association,
and model-based tracking algorithms were quickly developed. Combining tracking with
association was developed only much later. Today, powerful tracking techniques are being
applied in the area of prediction, in particular, stock market prediction, where identification
and estimation of multiple concurrently acting forces mathematically resemble the problem
of multiple object tracking. Contemporary development in these fields brings them together,
leading to the emergence of a unified model-based pattern recognition method. We formulate
tracking as recognition of spatiotemporal patterns based on dynamic models, similar to
image recognition based on geometric models.

Classical approaches to target tracking have been developed to track single targets
and assume that an input to a tracking algorithm is comprised only of the target (position)
data, whereas all extraneous or clutter data are perfectly rejected before tracking. Initial
approaches to tracking were based on autoregressive models, also called Wiener filters in
this application (Wiener, 1948) (fixed-coefficient filters, such as the once popular simple
α–β tracker, are Wiener filters). A significant improvement in tracking came with the
invention of Kalman filters that combined a complicated dynamic model of target motion
with a probabilistic model of the observation process (Kalman, 1960). Classical tracking
methods including Kalman filters considered data association as an afterthought.

In a Kalman filter formalism, a target track is characterized by a track model, by model
parameters that are usually called state parameters, by model predictions of the expected
values of data, and by covariances of the deviations between the data and predictions. We
extend this to multiple targets. According to the notations of Section 1.2.5, we denote data
vectors xn, their expected values or modelsMk(Sk) or simplyMk , state or model parameters
Sk , and the hypothesis about the model and parameters Hk . In this section, a data vector
corresponds to a single observation (not to a segment of data), and usually is comprised of
coordinates. For example,

xn = (xn, yn) (1.3-23)

where xn and yn are two angle coordinates or an angle and range coordinates. A data
vector may also include other measurements, such as an amplitude of a signal, or several
amplitudes for multiband sensors. An index n enumerates observations in multiple time
frames, therefore there is a time parameter tn associated with each observation n, which we
will not usually show explicitly. The model includes the laws of motion, computing predicted
data for every time point tn; therefore, an index n is added to the model predictions, and
models should be designed to predict expected values of the data for multiple points in time,

Mnk (Sk, tn) = E {xn|k, tn} (1.3-24)

Consider a simple example of an unresolved target moving with a constant velocity
v. And let the data xn be the Cartesian coordinates in some coordinate system. The state
parameters completely characterizing the model in this case are

Sk = (Rk,Vk) (1.3-25)
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where k is an index of a considered target andRk is its initial position. The model is given by

Mnk = Rk + Vktn (1.3-26)

In this formulation, state parameters are constant whereas predicted data are propagated
through time. Sometimes, it is convenient to propagate state parameters before computing
observations for the following reasons. Equations of motion are often specified in a co-
ordinate system different from the one in which the measurements are performed. Also,
the number of measured coordinates can be less than have to be used in the equations of
motion. For example, data from passive sensors such as a TV camera contain information
only on angular positions of objects, whereas equations of motion might be given in 3-D
Cartesian coordinates. Therefore, in addition to equations of motion, models often include
coordinate transformations and can be nonlinear and significantly more complicated than
(1.3-26). Also, equations of motion may include a rigid body rotation and other physical
dynamic laws as appropriate.

Real-time implementation was a challenge for early tracking systems. Radar sensors
provided very high rate data streams, whereas computers were not as powerful as those
available today. Because of this, tracking algorithms had to be developed in a recursive
form, that is, they utilized only the most recent data to update track parameters, while
“forgetting” data as soon as possible. Kalman filters provide for this capability. However,
this is achieved in Kalman filters at the expense of nonoptimal or simplified treatment of
other aspects of the problem. There are many books devoted to Kalman filters. In this book
we concentrate on development of more powerful methods, addressing the fundamental
complexities of tracking that have not been addressed by Kalman filters. One of these
complexities is the problem of association, which unifies tracking with pattern recognition.

1.3.5 Association Problem

The classical tracking methods described above have not considered the problem of multiple
targets or clutter and noise rejection. When there is just a single target which is clearly visible
in each data frame (or scan), for example, when a target signal is much stronger than all other
signals, the detection step is trivial and is accomplished by thresholding the data. However,
when multiple targets are present, or when the target signal is not much above noise or clutter,
the problem of association of data and target tracks becomes the most complex aspect of
tracking. Mathematically, the problem of target tracking in these complex cases resembles
the problem of model-based vision. Detection and association in tracking correspond to the
segmentation step in computer vision. Similarly, the need to associate multiple subsets of
data with multiple possible tracks often leads to a combinatorial explosion of computational
complexity.

Let us formulate the association problem within the model-based Bayesian framework.
Then powerful probabilistic methods can be applied to the problem of data association. We
will use the notations of Sections 1.2.3 and 1.2.5, with k standing for a particular track
(moving object) and n enumerating measurements at several time points, tn. Accordingly,
the conditional pdf of the data xn is given by

pdf (xn|Hk) = G(xn|Mnk (Sk, tn) ,Ck) (1.3-27)

Assuming a particular association between the data and models, �, the conditional likeli-
hood (conditioned on the association) is written similarly to (1.2-27),
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L(�) =
∏
k

∏
n∈k

pdf (xn|Hk) (1.3-28)

Here, n ∈ k denotes pixels n associated with track k, and the likelihood is a product over all
pixels, which is rearranged by tracks. The main difference in notations between (1.3-28) and
(1.2-27) is that here each xn is an individual data point (pixel) and not a segment (subset)
of data points. Correspondingly here, the product over n ∈ k corresponds to a segment
(subset) of observations that is associated with the hypothesis Hk , and the product over k
has the same meaning as in Eq. (1.2-27). Here, the joint pdf of all the pixels associated
with the object k is taken as a product of individual pixels; again, as in Section 1.2, this
does not require an assumption of their statistical independence: they can always be made
statistically independent with the appropriate selection of models (see Note 8).

A solution to the association and track estimation problems is obtained by (1) maxi-
mizing the above expression over the set of track parameters, (2) repeating this step for all
plausible associations between data and track hypotheses, and (3) selecting the association
and track parameters corresponding to the maximum of the likelihood. This is similar to
the model-based vision problem considered in Section 1.2.5, where the likelihood is maxi-
mized over parameters and segmentations. Similarly, a need to consider a combinatorially
large number of associations leads to an explosion of computational complexity. Let us
consider a concept used to reduce this complexity, which is popular in many association
and tracking algorithms.

Association as Assignment. The Bayesian formulation for the association problem was
developed by Sittler (1964); it became practically useful in the 1970s and 1980s after
the widespread adoption of Kalman filtering techniques that provided for estimation of
the covariance matrixes, C. Historically, the problem of data association was considered
after many years of successful development and practical implementation of recursive
tracking algorithms. First formulations of the data association problem involved relatively
few observations and tracks, for example, from crossing tracks, as illustrated in Fig. 1.3-2.
In this problem, decisions have to be made as to which of the tracks has to be updated
and which of the observations should be used. Within a recursive approach, this decision
is made just once for each observation, using just the current frame (scan) of data. When
tracks are well separated and clutter is not severe, association can be done by using track
gates. A gate is a region around the predicted target position where observed data points
are assigned to this target track. Gates are illustrated in Fig. 1.3-2; they can be specified by
using track error covariances, for example, as 2 − σ boundaries,

(x −Mk)
T C−1

k (x −Mk) < 4 (1.3-29)

In the presence of signals from noise, clutter, or closely spaced targets, the gates might
overlap and data points may fall into more than one gate, so an approach is needed to make
the best possible or most likely assignment. Using the likelihood expression (1.3-28), this
problem can be formulated as the classical assignment problem of linear programming.
The optimal assignment minimizes a total cost function, which is the sum of the individual
assignment costs. Defining the individual assignment cost as the negative logarithm of pdf,
(1.3-27), the total cost is given by the negative log-likelihood (1.3-28). Thus, the assignment
problem is equivalent to maximizing the likelihood over various possible assignments. A
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Figure 1.3-2 Examples of the data assignment
problem; dots and circles show the predicted target
positions and error bounds; crosses show measured
data; error bounds are used as association gates.

typical formulation of the assignment problem involves first, computing a cost matrix, in
our case LP(n, k) = ln pdf(xn|Hk), and then selecting a single entry from each column
and each row so as to minimize the total cost, in our case the negative log-likelihood. An
efficient algorithm for this problem was developed by Munkres (1957) and modified for
tracking in Burgeois and Lassalle (1971). The computational complexity of this algorithm is
on the order of n2m, where n = min (number of observations, number of tracks),m = max
(number of observations, number of tracks).

Assignment solves only one aspect of the problem; it assigns observations to tracks,
assuming that tracks have been accurately estimated. Even the optimal solution of the
assignment problem does not eliminate assignment errors, which, in turn, affect the accuracy
of tracks. Errors in track estimation may lead to errors in gating and to more errors in data
assignment, leading to lost tracks and poor performance. This problem has been partially
addressed by considering misassociation as a source of errors that should be included into
the Kalman filter estimation of the covariance matrices. When the number of possible
misassociations is not very large, an assumption that tracks are known is appropriate, and
the assignment technique can be used efficiently. However, in more complicated cases, when
the number of misassociations and false alarms is large, initiating tracks becomes a most
complex part of the problem. Tracking in imagery data, or estimating multiple concurrent
dynamic processes in multidimensional data, cannot be solved by assignment algorithms,
and concurrent association and track estimation are required.

Multiple Hypothesis Tracking. When target signals are of the same order of magnitude as
clutter signals or when multiple targets are present, target detection cannot be performed
on a single frame or scan. Multiple time measurements have to be utilized for target
detection and association, which requires knowledge of tracks. Thus, the problems of
detection, association, and track estimation have to be solved concurrently. The same is
true for estimating multiple concurrent dynamic processes in multidimensional data and
predicting such data. These problems resemble pattern recognition in space and time (or
in multidimensional spaces that include time). Human and animal visual systems have
separate subsystems that perform detection based on motion, that is, concurrent detection
and tracking. Such a capability is referred to as track-before-detect or more accurately
as track-while-detect. Solution of this problem requires associating multiple subsets of
data with multiple possible track models, which often leads to a combinatorial explosion.
Mathematical formulation and computational complexity of this general tracking problem
resemble that of model-based vision. And similar mathematical concepts have been used
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for attacking these problems. According to the concept of Multiple Hypothesis Tracking,
the overall likelihood is maximized by a combinatorial search over a set of all possible track
hypotheses. This concept is similar to the Multiple Hypothesis Testing approach discussed
in Section 1.2.5 and we will use the same abbreviation, MHT.

In tracking applications, two approaches to forming hypotheses have been considered:
first, hypotheses based on data partitions, and second, hypotheses based on partitioning the
space of track model parameters. In the first approach, the data from multiple frames are
partitioned in all plausible ways, similar to (1.2-26) (Fig. 1.3-3a). For each partition, the
conditional likelihood given by (1.3-28) is maximized over parameters of all hypotheses,
similar to (1.2-29). Due to factorization of the conditional likelihood (1.3-28) into the
product of conditional track-likelihoods [L(k,�)], parameters of each track (conditional
on segmentation �) are estimated independently from other tracks,

Sk(�) = arg max L(k,�); L(k,�) =
∏
n∈k

pdf (xn|Hk) (1.3-30)

The factorization greatly simplifies the parameter estimation problem, which now can be
solved by using a Kalman filtering technique applied to a segmented data set {Xn, n ∈ k}
for estimating a single track k. After the best set of model parameters is obtained for every
partition, the likelihood for every partition is computed and parameter values corresponding
to the maximum likelihood partition are selected.

In the second approach, model parameter space is partitioned first (Fig. 1.3-3b). A
set of hypothesis is formed, each comprised of a track model and specific values of the
model parameters. Then the data are partitioned using an assignment algorithm, such as
discussed in the previous section. For each hypothesis, track parameters are reestimated.
At this point, the decisions are made as to which of the hypothesized tracks correspond to
real targets and which do not. This can be done by applying likelihood ratio tests. To form
a set of hypotheses based on partitioning the parameter space, it is necessary to decide on
the coarseness of the hypotheses set in the space of parameter values. This is an important
and nontrivial issue because too coarse a set of initial hypotheses may lead to lost tracks
whereas too fine a set of initial hypotheses leads to a combinatorial explosion.

The two approaches to track hypotheses formation are inherently combinatorial, but
their computational complexities are determined by different factors. The computational
complexity, c, of the first approach, in which hypotheses are formed based on data partitions,

Figure 1.3-3 Association can be based on data partitioning (a) or parameter space partitioning models
(b). Data (�), association or track hypothesis ( ), initiated tracks ( ).
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is determined primarily by the number of data partitions. It grows combinatorially with the
number of frames (time points) used in estimation, on the order of

c ∼ C1∗k∗nf (1.3-31)

where C1 is the number of operations required to maximize the conditional likelihood and
estimate parameters for a single hypothesis, k is the number of tracks, n is the number of
observations per frame (time point), and f is the number of frames.

Computational complexity of the second approach, in which hypotheses are formed
by partitioning the parameter space, is determined primarily by the coarseness of model
parameter specification. It grows combinatorially with the complexity of models, on the
order of

c ∼ C2∗k∗vp (1.3-32)

whereC2 is the number of operations to compute data assignment, maximize the conditional
likelihood, and estimate parameters for a single hypothesis, p is the number of parameters
per model, and v is the number of values for each parameter, determined by the coarseness
of the model specification. Factors C1 and C2 are approximately linear in the number
of frames,

C1, C2 ∼ f (1.3-33)

The two tracking methods just discussed are modifications of the general MHT ap-
proach described in Section 1.2.5. The advantage of the MHT approach is that it is general
and utilizes all information on multiple frames. This is especially important when target
signals are weak relative to clutter signals so that targets cannot be reliably detected from
a single frame, and multiple frames have to be utilized to determine the presence of a
target. However, it is precisely under these conditions that MHT suffers from combinatorial
explosion. When hypotheses are formed by data partition (the first approach), the com-
binatorial explosion is due to the large number of clutter returns on each scan and to the
large number of frames that need to be used. When hypotheses are formed by partitioning
the model parameter space (the second approach), the combinatorial explosion is due to
the fine partition of the parameter space that is needed to achieve the required sensitivity.
During the 1970s and 1980s several algorithms were developed based on this concept of
maximizing the overall likelihood over the set of all possible tracks in multiple frames.
These algorithms use different techniques to control the combinatorial explosion; still the
combinatorial complexity is an essential property of the MHT concept related to considering
combinations of many factors (data or parameters).

Probabilistic Data Association. A different tracking concept was proposed to overcome
this essential combinatorial complexity of MHT algorithms. A concept of fuzzy association
of tracks with multiple data points was developed by Bar-Shalom and co-workers (Bar-
Shalom and Tse, 1975). For the case of a single target in clutter it was named Probabilistic
Data Association (PDA), and for multiple targets in clutter, it was named Joint PDA
(JPDA). In this technique, all measurements are probabilistically associated with each track
using a posteriori Bayes probabilities, P (Hk|Xn), (1.2-15). And the parameter update is
computed by using a Kalman filter modified to account for this probabilistic association as
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follows. In a standard application of the Kalman filtering technique, the parameter update
is computed from the differences between the track measurement and its prediction (so-
called residuals),

Dnk = xn −Mnk (Sk, tn) (1.3-34)

In JPDA, the a posteriori probabilities are used as weights to compute a probability-weighted
sum of residuals,

〈Dnk〉 =
∑
n

P (Hk|xn) Dnk (1.3-35)

And parameters of each track k are updated by using a Kalman filter with these weighted
residuals. The JPDA concept relies on the existence of previously initiated tracks and per-
forms parameter updates recursively, using only the data from the last scan. By using fuzzy
data association, JPDA solved one part of the difficulty associated with the combinatorial
explosion. However, JPDA relies on existent tracks. It is unsuitable for track initiation and
cannot be used for target detection in heavy clutter nor for identification and prediction
of temporal patterns in multidimensional signals. The problem of combinatorial explosion
discussed in Section 1.2.5 for pattern recognition is equally relevant to tracking. This is not
surprising when tracking is viewed as recognition of spatiotemporal patterns.

Conclusion. Target detection and track initiation in heavy clutter require concurrent pro-
cessing of multiple frames (time points), while avoiding the combinatorial explosion. The
same is true for identification and prediction of multidimensional dynamic patterns. The
advantages of MHT and JPDA should be combined, while avoiding their drawbacks. Such
a technique is considered in Chapter 7. Tracking multiple targets and identification and
prediction of multidimensional temporal patterns are discussed there together with financial
market prediction. We treat tracking multiple targets similarly to estimating concurrently
operating market forces. Unknown tracks or market forces described by fuzzy adaptive
models are similar to Aristotelian Forms, which in the process of real-time adaptation and
learning become concepts of estimated tracks or market laws.

1.4 PREVIEW: INTELLIGENCE, INTERNAL MODEL, SYMBOL,
EMOTIONS, AND CONSCIOUSNESS

This section previews the contents of the book from the vantage point of the first chap-
ter. Chapter 2 continues reviewing mathematical concepts of intelligence. I attempted to
overview most of fundamental mathematical concepts used for the modeling of mind. The
domain is well beyond a single chapter. My attempt to overview this entire vast field is
based on concentrating on the main computational or mathematical concepts. Because
of space limitations, some of the mathematical concepts were left out of this review.11

In the mathematical analysis, I had to leave out interesting variations and motivations,
neural, psychological, cognitive, and many others. A mathematical analysis summarized
in Chapter 2 shows that there are few basic “classical” computational concepts underlying
most of algorithms of intelligence and neural networks. Each concept faces a combinatorial
explosion of complexity, which became a nemesis of computational intelligence. Different
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types of combinatorial complexity are related to the roles of a priori knowledge and adaptive
learning. This analysis leads to close links between mathematical concepts of intellect
and philosophical concepts of mind. Chapter 2 begins with the analysis of a contradiction
between two concepts due to Aristotle: Aristotelian logic and Aristotelian theory of Form
(theory of mind). And the ubiquitous problem of computational complexity is traced to
this contradiction. Fuzzy logic is identified as a main ingredient needed to overcome
combinatorial complexity.

Adaptive model-based fuzzy logic is discussed as a way to close the 2300-year gap
between the logic and concepts of mind, to overcome mathematical difficulties, and to
mend the schism between philosophy and mathematics. The stage is set for modeling field
theory considered in Part II of the book. Then I review currently emerging computational
concepts attempting to resolve the conundrum of combinatorial complexity: genetic al-
gorithms, complex adaptive systems, mathematical semiotics, hierarchical organization,
and neuronal fields. Relationships between these concepts and modeling field theory are
discussed throughout the book.

Chapter 3 establishes detailed correspondence between the mathematical concepts of
mind and philosophical concepts developed over the past 2300 years. Of course, this is
a daring task, especially within the confines of a single chapter. I concentrate on those
concepts that are most closely related to the current mathematical and scientific debates
about the nature of mind. Although it is possible to argue that the entire human spiritual
endeavor, including philosophy, gnosticism, alchemy, mysticism, and theology, is relevant
to the scientific analysis of mind, much of this thought is still beyond mathematical analysis.
Still, a surprisingly large area of thought from ancient Greek philosophers, to Gnostics, to
Medieval philosophers and theologists, to Kant and post-Kantian development including
psychological, cognitive, and mathematical debates of the nineteenth and twentieth cen-
turies, evolves around a single issue, often called the “mind–body problem.”

It might seem even more surprising that it is possible to trace continuous connections
of concepts of mind in thinkers, separated by time, culture, and geography, along the lines
of two main concepts. Materialism vs. idealism, realism vs. nominalism, immanence vs.
transcendence, behaviorism vs. innateness, a priori knowledge vs. learning from experience,
internal representations vs. situated behavior, parallel processing vs. sequential, neural vs.
symbolic, and connectivism vs. logic are but a few names under which the proponents of the
two main lines of thoughts draw the boundaries of their convictions. In the past, the debates
might have led to spilled blood. In this century, it is usually research funding that is at stake.
Throughout this book, I call these two main lines of thought apriority and adaptivity of
mind. I have shown so far but a glimpse of the difficulty of unifying the two views.

Part II describes modeling field theory (MFT) and its engineering applications. MFT is a
mathematical apparatus that combines apriority and adaptivity, and resolves the conundrum
of combinatorial complexity by using model-based adaptive fuzzy logic. It consists of the
three a priori ingredients: internal models that ascend to Plato and Aristotle, measures of
similarity between internal models and input data, and the dynamic laws of adaptivity
that maximize the similarity between the models and data, which comprises learning.
Chapter 4 develops similarity measures and general laws of adaptive dynamics suitable
for complicated internal models composed of multiple submodels. An architectural organi-
zation is discussed, including hierarchical and heterarchical types. Each submodel with its
cooperative and competitive dynamics is identified as an intelligent agent within the overall
system architecture.
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Chapters 5 through 8 describe engineering applications and specific types of adaptive a
priori internal models useful for these applications: classification and recognition; signal and
image processing; spectrum estimation, including multidimensional time–space–frequency
spectra; prediction and tracking, including complicated nonlinear relationships, multiple
concurrent processes and targets, and noise and clutter; and sensor fusion, including data
association and sensor management, which is related to the attention. These chapters include
a number of examples of complex real-world problems, with the performance of the MFT
significantly exceeding that of the prior state-of-the-art algorithms and neural networks.

Chapter 9 describes the fundamental mathematical limits on learning, depending on
the amount of available data and contents of the a priori models. Part II concludes with
Chapter 10, which continues the discussion of architectures of intelligent systems that we
began in Section 1.1.4 with the discussion of the intelligent tracker. Chapter 10 establishes
a close relationship between MFT and Kant’s theory of mind, including emotions. The
Kant–MFT theory of mind provides a foundation for the mathematics and physics of the
concept of beauty. Then Chapter 10 discusses the relationships between MFT and complex
adaptive systems, genetic algorithms, and semiotics, a science of signs and symbols. MFT
agents are identified with the dynamic process of symbol formation, the process of semiosis
combining internal representations, meaning, and behavior. Relationships among Kantian
theory of mind, MFT, and semiotics are established.

Part III of the book discusses fun stuff: futuristic directions of research toward the
physical theory of mind including consciousness, creativity, and free will. An important
part of this investigation is delineation of what we can hope to understand from a rational
scientific point of view, and what is currently beyond such hope. The line delineating
boundaries of applicability of the scientific method is a moving one; still, it needs to be
identified so that our scientific discussions could be properly focused. To this purpose,
the first chapter of Part III (Chapter 11) starts with a discussion of the Gödel theorems
concerning limitations of logic and their relevancy to the theory of mind. Recently, this
topic provoked a heated debate involving physicists, mathematicians, and philosophers,
with the final scores being far from settled. Gödel proved that formal systems related to
Aristotelian logic or logic of predicates are fundamentally limited. Turing has reformulated
this result for computational systems. There have been several attempts to use these results
for proving the principled difference between the mind and machine. A most recent one
is due to Penrose, who believes that the Gödel–Turing limitations have to be surpassed in
order to model the mind. I briefly review the Gödel–Turing results, Penrose’s arguments, and
some counterarguments. I analyze the combinatorial nature of Aristotelian logic as revealed
by the Gödel and Turing arguments, and compare it with the combinatorial explosion of
complexity of intelligent algorithms and neural networks. My conclusion is that the Gödel–
Turing results establish limitations to Aristotelian logic, but are not necessarily relevant to
the theory of mind.

The last chapter, Chapter 12, is a prolegomenon to the future physical theory of
consciousness. What is consciousness? Why is it needed in biological or artificial systems?
Can it be understood as a physical phenomenon? Can it be described mathematically? I
outline a future modeling field theory of consciousness. In this theory, consciousness is
due to an internal model. The chapter overviews the phenomenology of consciousness and
properties of the related internal model. It begins with popular conceptions and misconcep-
tions and then continues the analysis, relating phenomenology to modeling field theory. A
complex, differentiated nature of consciousness is discussed, and the phenomenology of
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consciousness is described in its intimate connection to the rest of the psyche, including
the unconscious and emotions. Hypotheses and historical evidence concerning origins and
evolution of consciousness are summarized. Properties of consciousness are related to
and explained within the modeling field theory. I overview neural structures involved in
consciousness and emotions and identify candidate neural correlates for the modeling field
theory modules and for the Kantian theory of mind.

The discussion continues toward more complicated aspects of consciousness, including
the nature of creativity and free will. I analyze the differentiated nature of the process
in which consciousness analyzes itself. This process is related to the nature of symbol
in Jungian psychology and in modeling field theory. I identify an essential connection
between creativity, consciousness, unconscious, and fuzziness, and attempt to delineate the
boundaries of what is accessible today to the scientific method. Is it possible that mysteries
of consciousness that are beyond rational understanding today are related to new physical
phenomena, the discovery of which will resolve the mysteries of matter related to the yet
unexplained nature of quantum measurement and quantum gravity?

NOTES

1. Marvin Minsky has contributed to a number of approaches to computational intelligence, including
one of the very first neural networks (Minsky, 1954). He is most famous for his contribution to
rule-based artificial intelligence (AI) or expert systems based on logical rules, which is referred to
in our designation of the Plato–Minsky method. Rule-based AI is often called symbolic AI, because
it operates with name variables rather than with numbers. I will usually avoid the symbolic AI
designation, because it is a misnomer: name variables are signs, not symbols. Symbols are complex
adaptive dynamic entities, of which name variables are only a small part. Mathematical description
of symbols are considered in Chapter 10. See also Note 2.

2. In classical semiotics, words signs and symbols were not always used consistently. I designate a
symbol as a dynamic process of concept formation and sign as a nonadaptive “mark.” My designation
is in line with analytic psychology and the general cultural usage of the word symbol as something
having a profound effect on psyche.

3. These and other possible events are not alternatives, because they may or may not occur in addition
to whichever would be the FRB decision. Our models for pdf(x|k), for k = 1, . . . , 4, should
account for these other possibilities to the extent that we can model them. Of course, our models are
approximations; they could be inaccurate, and we should try to make them as accurate as feasible.
But the set of alternatives always has to be complete, otherwise the theory is inconsistent. Sometimes
it is difficult to come up with a complete set of alternatives. If this requirement is relaxed, one has to
replace the theory of probability. For example, the Dempster–Shafer theory of evidence accumulation
is a consistent theory dealing with random uncertainties without this requirement. In complicated
cases, it might be faster to use the Dempster–Shafer theory than the theory of probability. But is it
better in terms of performance? In my experience, when exact knowledge of all the circumstances
is not known, still, using subjective sets of alternatives and adaptive models within the probability
theory is preferable.

4. Calls and puts (also called options) are contracts traded at a stock exchange. A call gives its owner
a right to buy a certain stock at a certain price (strike) before a certain day (expiration day). A put is
a right to sell the stock at the strike price before the expiration day. Options are used both as highly
risky investments and as a way of protecting assets against unexpected market moves.

5. The fundamental role of the Gaussian distribution in statistics is due to the fact that when uncertainty
is caused by multiple random effects, the distribution most often is Gaussian. A theorem that proves
this is called Central Limit Theorem (Cramer, 1946).
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6. Estimation of the width of kernel functions (C) for the Parzen method is an unresolved problem for
high dimensions: a narrow function requires too many training samples, whereas a wide function
compromises sensitivity to interclass differences.

7. Definition of a sufficient statistics. Consider a pdf(data). Data, in general, is a set of many observations
and/or dimensions, data = (x1, x2, . . . , xN ). For some functional shapes of the pdf, there is a single
scalar combination of data, on which the pdf depends. If it exists, it is called a sufficient statistics.
For example: pdf(x1, x2, . . . , xN ) = σ−N exp[−(x1 + x2 + · · · + xN)/σ ]. In this case, f =
(x1 + x2 + · · · + xN) is a sufficient statistics.

8. Note that the conditional pdf depend on class models and parameter values. This assumption is very
different from the standard assumption of Gaussian densities. The models Mk that we consider can
be of complex shapes in the data space (Chapter 7); therefore, the density (1.2-25) can model any
deterministic variabilities in the data. In Chapter 5, we consider several types of non-Gaussian pdf
including mixtures that can model arbitrary statistical variabilities.

9. To write the joint likelihood as a product, we do not need to assume independence of the data xn and
xn′ from different subsets ξn and ξn′ . We treat as statistically independent the deviations from the
data and models, xn − Mk . These deviations can always be made independent with the appropriate
definitions of the models. For example, let xn and xn′ be statistically dependent, xn = xn′ + ε,
were ε is a random variable independent from xn and xn′ . Then, define the kth model for the pixel
n as Mk = xn′ . This leads to (xn − Mk) = ε being statistically independent of xn′ . This is further
considered in Chapter 4, Problem 4.3-1.

10. The procedure used here of first deriving relationships that involve true theoretical values of param-
eters, and second, of substituting their estimated values is not grounded on a basic mathematical
principle and thus is an ad hoc procedure. Sometimes it leads to an approximation of a more
complicated, mathematically optimal expression. However, in the case of linear regression, we have
shown that it is exactly equivalent to the optimal maximum likelihood estimation.

11. Among mathematical concepts that I would like to include in my review, given enough space, are
chaotic attractors (Freeman, 1996), abductive logic (Kanal, in Bonnisone et al., 1991), inductive
learning (Goldfarb, 1996), Hamiltonian dynamics of logic (Brockett, 1991), and my own work on
quantum computation (Perlovsky, 1997c). I felt that some of these “left out” concepts are not crucially
important to the main subject of this book, the physics of mind, others are related to the concepts
already included in the review, and some were left out primarily because of space limitations. For
example, a possibility of a chaotic dynamics of neural processes, which would be important for
relating concepts of mind to the working of the brain, does not seem crucial to the theory of mind.
At this point, a theory of mind is concerned with properties of the attractors, which are related to
the modeling field theory developed in subsequent chapters. Still, given enough room I would have
included these concepts. If a reader believes that there are other fundamental mathematical concepts
relevant to the theory of mind that I left out, please let me know.

BIBLIOGRAPHICAL NOTES

This section contains references that were not directly given in the text, as well as some additional ones.
The order here is approximately historical.

Antisthenes, a founder of the Cynic school of philosophy, lived in Athens in fifth century BC. His ideas
were preserved in the works of other Greek philosophers (further see Windelband, 1893).

Plato’s theory of ideas was developed throughout his life; it’s essential features are discussed in Parmenides
(IV BC); and Timaeus (IV BC).

Aristotelian theory of Forms (theory of mind) is discussed in Aristotle’s Metaphysics (VI BC) and On
Psyche (VI BC). Aristotle developed a theory of logic in several works, including Prior Analytics,
Posteriori Analytics, Topics (see Aristotle, VI BC, The Complete Works of Aristotle).
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Probability theory, Bayes theory, and estimation theory: for further reading see, e.g., Cramer (1946) and
Anderson (1984). An alternative to probability estimation is called Statistical Learning Theory (Vapnik,
1995). I borrowed two concepts from Vapnik: referring to the probability theory as solving the forward
problem and to statistics as solving the inverse problem.

Fuzzy logic (Zadeh, 1962, 1965, 1997).
McCulloch: modeling of the neural structures of the brain (McCulloch and Pitts, 1943) and the influence

of Occam vs. the realistic logic (McCulloch, 1961, 1965).
Early artificial neural network: see Minsky and Papert (1988) and further references therein; Rosenblatt

(1958; 1962).
For the foundations of expert or rule systems: see Minsky (1968a. 1975).
Rule systems and learning, in general (Minsky, 1975; Winston, 1984), in pattern recognition (Winston,

1984; Bonnisone et al., 1991; Keshavan et al., 1993), and in linguistics (Koster and May, 1981; Botha,
1991).

Chomsky’s linguistics (Chomsky, 1972, 1981; Botha, 1991). The last book contains an excellent and lively
review of the field up to 1991.

Combinatorial complexity (Bellman, 1961; Winston, 1984; Segre, 1992; Perlovsky, 1994a).
Pattern recognition (Nilsson, 1965; Fukunaga, 1972; Duda and Hart, 1973; Watanabe, 1985). Classical

techniques of statistical pattern recognition are summarized (Fukunaga, 1991, 2nd edition). Feature
construction by approximating sufficient statistics (Perlovsky et al., 1992a).

Model-based approaches to machine vision (Nevatia and Binford, 1977; Brooks, 1983; Winston, 1984;
Grimson and Lozano-Perez, 1984; Chen and Dyer, 1986; Lamdan and Wolfson, 1988; Negahdaripour
and Jain, 1991; Bonnisone et al., 1991; Segre, 1992; Keshavan et al., 1993; Califano and Mohan, 1994).
National Science Foundation symposium on machine learning (Negahdaripour and Jain, 1991).

Tracking algorithms: classical “Hungarian” assignment algorithms (Munkres, 1957), modified for tracking
(Burgeois and Lassalle, 1971; Marty, 1976); association errors included into the Kalman filter estima-
tion of the covariance matrices (Nahi, 1969; Jaffer and Bar-Shalom, 1972); MHT tracking algorithms
(Singer et al., 1974; Reid, 1979; Blackman, 1986); Probabilistic Data Association tracking algorithms,
PDA and JPDA (Bar-Shalom and Tse, 1975; Fortmann et al, 1980).

Mathematical analysis of basic computational concepts of intelligence (Perlovsky, 1994a; 1998a; also see
Winston, 1984; Simpson, 1990; Girosi et al., 1995).

PROBLEMS 1.1–1 Establish a correspondence between the Aristotelian concept of Form, semiotical concepts of
sign, designatum, interpretant, and the intelligent tracker operation. Hint: identify material
entities in the world, a priori contents of mind, and results of mind’s adaptation to the world.
Note that the Aristotelian and semiotical concepts describe various aspects of the intelligent
tracker, which only partially overlap. The Aristotelian description concentrates on the role
of the a priori and on the process of adaptation. The semiotical description emphasizes the
structural elements, but ignores the mechanism of the adaptation.

1.2–1 Prove that G(x) = constant is the equation of an ellipsoid in D-dimensional x-space. Hint:
remember, that an ellipsoid is given by a second-order equation in terms of x1, . . . , xD .
Comment: a second-order equation could also correspond to a parabolic or hyperbolic curve;
in case of Gaussian density, this curve is always an ellipse due to the positive definiteness of
a covariance matrix. Further explanations could be found in Searle (1982).

1.2–2 Prove that for a Gaussian pdf(x) = G(x|M,C),

M = E{x}, and C = E{(x −M)(x −M)T}

Note: for the beginner, it is sufficient to understand that the above expressions are the basis for
the identification of the Gaussian pdf parameters with the corresponding expected values. An
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advanced student should go through the following, as it teaches important tricks for deriving
more complicated theoretical relationships throughout the book and in mathematical statistics
and linear algebra, in general. (1) Prove the first of the above equations by observing that∫
(x−M)G(x|M,C) dx = 0, because (x−M) is an asymmetrical function about (x−M) = 0

and G(x|M,C) is a symmetrical one. (2) Prove the second of the above equations by (2.1)
using the equality

∫
G(x|M,C) dx = 1 and (2.2) taking the derivative, ∂/∂(C−1); in the one-

dimensional case, evaluate this derivative straightforwardly; in the multidimensional case, use
the following identities that are true for any matrixC, (detC)−1 = det(C−1), ∂/∂C(detC) =
detC/C−1, ∂/∂(C−1)(DTC−1D) = DDT.

1.2–3 Formulate Eq. (1.2-12) in terms of probabilities, rather than pdfs, so that it will match Eq. (1.2-
2) exactly. Hint: multiply each side of this equation by dx.

1.2–4 Formulate Eq. (1.2-13) in terms of probabilities, rather than pdfs. Hint: multiply the numerator
and denominator on the right-hand side of this equation by dx.

Comment. Is P(Hk|x) a probability or a pdf? In other words, when the accuracy of our
knowledge of x is very high, so that dx → 0, shouldn’t P(Hk|x) → 0? The arguments on
this issue can be presented as follows. If x is known within a certain finite-size region (over
which the a priori pdf vary substantially), the size and shape of the region have to affect the
a posteriori probabilities of various hypotheses P(Hk|x). But when the size of this region is
so small that the pdf do not vary over this region, the exact accuracy of the measurement of
x should not affect our decisions concerning probabilities of various hypotheses.

1.2–5 Verify Eq. (1.2-21). Hints: −0.3q−0.3(1−p−q) = −0.3(1−p); (1.2p−0.3) > (1.2q−0.3)
is equivalent to p > q, and (1.2p − 0.3) > 0 is equivalent to p > 0.23.

1.3–1 Solve the Regression Equations. Obtain (1.3-11 and 1.3-12) from (1.3-8). Hint:

1. Multiply the second of Eqs. (1.3-8) by x̄, and subtract it from the first of Eqs. (1.3-8).
Obtain ∑

n

(yn − axn − b) (xn − x̄) = 0

2. Using the first of Eqs. (1.3-9) prove that∑
n

(ȳ − ax̄ − b) (xn − x̄) = 0

3. Subtract this equation from the first of Eqs. (1.3-8) and obtain Eqs. (1.3-11).

4. Obtain Eqs. (1.3-12) straightforwardly from (1.3-9).

1.3–2 Normalized Variables. Instead of the data set {(xn, yn)}, consider a data set
{(
x ′
n, y

′
n

)}
, with

x ′
n = (xn − x̄) , y ′

n = (yn − ȳ). Following the procedure in Section 1.3.1, rederive a linear
regression equation y ′

n = ax ′
n and prove that it is equivalent to Eq. (1.3-1) with coefficients

given by (1.3-13). Lesson: it is more convenient to use normalized zero-mean variables
(x ′, y ′) than the original variables (x, y).

Repeat the above with x ′
n = (xn − x̄) /σx, y

′
n = (yn − ȳ) /σy . Lesson: it is even more

convenient to use normalized zero-mean unit-standard-deviation variables (x ′, y ′) than the
original variables (x, y).

1.3–3 Write a computer code to solve the linear regression problem, Eqs. (1.3-13). Select any values
for a and b, any small (positive and negative) values for εn , and fill the bottom row of the
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following table. Run your computer code, estimate a and b, and compare the estimated and
true values (yn = axn + b). Predict the y value for x = 11 and compare it with the true value.
Plot the data, and the estimated and true regression lines.

xn = 1 2 3 4 5 6 7 8 9 10

yn = axn + b + εn

1.3–4 Exercise in Manipulating Gaussian Densities. For the Gaussian densities given by (1.2-4)
and (1.2-9), verify the general relationship pdf(x) = ∫ pdf(x, y) dy. Solution:
We use the following notations: σx and σy are standard deviations of x and y and r is the

correlation coefficient between x and y; covariance matrix, C =
{
Cxx Cxy

Cxy Cyy

}
; elements of

this matrix are Cxx = σ 2
x , Cyy = σ 2

y , Cxy = r σx σy . The determinant and inverse of matrix
C are given by

detC = Cxx Cyy − C2
xy = σ 2

x σ
2
y

(
1 − r2) (P1.3-4a)

C−1 =
{
Cyy −Cxy
−Cxy Cxx

}/
detC (P1.3-4b)

For shortness, we will use normalized variables but will denote them with the same letters x
and y:

x and y instead of (x − x̄) and (y − ȳ) (P1.3-4c)

With these notations, Gaussian densities for x and (x, y) are written as

pdf(x) = (2πσ 2
x

)−1/2
exp
(−0.5x2/σ 2

x

)
(P1.3-4d)

pdf(x, y) = (2π)−1(detC)−1/2 exp
(−0.5DTC−1D

)
(P1.3-4e)

− 0.5DTC−1D = −0.5
[
(x/σx)

2 + (y/σy)2 − 2r xy/
(
σxσy

)]/ (
1 − r2) (P1.3-4f)

Let us rearrange the exponent in Eq. (P1.3-4f) as

− 0.5
[
(x/σx)

2 + (y/σy)2 − 2r xy/
(
σxσy

)]/ (
1 − r2)

= −0.5 (x/σx)
2 − 0.5

(
y − r x σy/σx

)2/[
σ 2
y

(
1 − r2)] (P1.3-4g)

Now, let us compute∫
pdf(x, y) dy =

∫
(2π)−1(detC)−1/2 exp

(−0.5DTC−1D
)
dy

= (2πσ 2
x

)−1/2
exp
(−0.5 x2/σ 2

x

)
·
∫ [

2πσ 2
y

(
1 − r2)]−1/2

exp
[
−0.5

(
y − r x σy/σx

)2/(
σ 2
y

(
1 − r2))] dy (P1.3-4h)

Comparing the last line here to Eq. (P1.3-4d), we observe that the integrand is the Gaussian
density for variable y, with the
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mean = (r x σy/σx) and standard deviation = [σ 2
y

(
1 − r2)] (P1.3-4i)

The Gaussian density with any mean and standard deviation is normalized so that its integral
equals 1. The first line here equals (P1.3-4d), which completes the proof.

1.3–5 Regression as Expectation. For the Gaussian densities given by (1.2-4) and (1.2-9), derive
(1.3-18). Outline of the solution: using (1.3-17) and (P1.3-4d) and (P1.3-4h), show that the
last line in (P1.3-4h) is pdf(y|x). According to (1.3-16), the expected value of y given x is
the mean value of pdf(y|x), and is given by (P1.3-4i). Remember that (P1.3-4i) is written for
the normalized variables, (P1.3-4c); substituting the original variables, obtain (1.3-18).

1.3–6 Stock Market Data. Go on the Internet and find stock market data (e.g., America-On-Line has
free data for several major indexes, such as Dow Jones, SP-500, etc.). Select any 12-month
interval. Evaluate performance of the most simple strategy “buy and hold”: buy on day 1,
hold for 12 months, sell after 12 months.

1.3–7 Stock Market Simplest Prediction. Write two computer codes (1) for prediction and (2) for
trading evaluation based on predictions. Start with simple codes:

1. Simple prediction code: tomorrow’s change equals today’s change; that is, if on day n the
market is up, that is, DJn > DJn−1, the prediction is +1; if DJn < DJn−1, the prediction
is −1.

2. Simple trading evaluation code: start with $1 cash. If the prediction is > 0, buy using all
your cash (if any, otherwise do nothing). If the prediction is< 0, sell all your holdings (if
any, otherwise do nothing). At the end of the 12-month interval, compute your gain (or
loss). Compare it to “buy and hold” strategy in Problem 1.3-6. Hopefully, the prediction-
based strategy is not worse than “buy and hold.” (In a bear market, even the simple
prediction strategy would be better; in a bull market, it is very difficult to predict better
than the market does on average.)

1.3–8 Autoregressive Prediction. Select 1 month of data prior to the 12 months considered above
and estimate the autoregressive coefficient Eqs. (1.2-11, 1.3-9, 1.3-10, 1.3-15, 1.3-22) from
this month data (training data). Replace your prediction code in Problem 1.3-7 with an
autoregression prediction, Eq. (1.3-22). Evaluate performance over 12 months and compare
with the Problem 1.3-7 result. Continue with the next two problems.

1.3–9 The Stationarity Assumption. The stationarity assumption can be verified by comparing
statistics over various time intervals. Select a 12-month interval of your data. Compute
statistics, x̄, r , and σ , 12 times separately over each of the 12 months.

1.3–10 Autoregressive Prediction using Differences. Repeat Problem 1.3-8 using x ′
t = xt − xt−1.

Compare results to Problem 1.3-7. If there is an appreciable difference (beyond computer
accuracy and round-offs), then examine your autoregressive coefficient, r: it should be a small
positive number. If r > /0, then (1) is it ≤ 0 within your computer roundoff errors?; (2) did
you select a training interval over which r ≤ 0? (see Problem 1.3-9); (3) look for bugs in the
code.

1.3–11 Adaptive Autoregressive Prediction. Repeat Problem 1.3-10 using x ′
t = xt−xt−1. Recompute

the autoregression coefficient r every day using the past month of data. Compare results to
Problem 1.3-7. If there is an appreciable difference (beyond computer accuracy and round-
offs), then examine your autoregressive coefficient, r . If r > /0, then (1) is it ≤ 0 within
your computer roundoff errors?; (2) does r really change sign? (see Problem 1.3-9); if so,
you should do better here than in Problem 1.3-7; (3) look for bugs in the code.



chapter 2

MATHEMATICAL CONCEPTS OF MIND

Aristotle, I heard you are writing books now. Are you going to make our
secret knowledge public?

—FROM A LETTER BY ALEXANDER

Alexander, do not worry: nobody will understand.
—FROM A REPLY LETTER BY ARISTOTLE

This chapter overviews computational concepts of intellect. A ubiquitous problem facing
intelligent algorithms and neural networks is their exploding computational complexity and
training requirements. Although Aristotelian logic is still the basis for most of our algorithms,
an argument is formulated that a solution to the conundrum of combinatorial complexity will
have to utilize fuzzy logic. This argument is traced through the rest of the chapter.

We begin with a mathematical analysis of the four basic computational concepts used
in traditional approaches: the nearest neighbor, gradient learning, rule-based, and paramet-
ric model-based concepts. Each concept faces a combinatorial explosion of computational
complexity, which became the nemesis of computational intelligence. Different types of
complexity are related to the roles of a priori knowledge and adaptive learning. This establishes
a connection between mathematical concepts of intellect and concepts of mind discussed by
philosophers since Plato. Difficulty of combining apriority and adaptivity was first analyzed
and philosophically resolved by Aristotle in his theory of Form. We trace contemporary math-
ematical difficulties involving complexity to the contradiction between Aristotelian theory
of Form and Aristotelian logic. Adaptive model-based fuzzy logic is discussed as a way to
close the 2300-year gap between logic and concepts of mind, to overcome mathematical
difficulties, and to mend the schism between philosophy and mathematics. After reviewing
classical mathematical concepts and their deficiencies, we turn to currently emerging mathe-
matical concepts proposed to overcome the combinatorial computational complexity: genetic
algorithms and evolutionary computation, mathematical semiotics, hierarchical organization,
and neural fields. The stage is set for modeling field theory considered in the second part of
the book.

Many excellent books describe in detail popular neural networks and production systems.
This chapter, instead, analyzes basic computational concepts underlying specific rule-based
and neural paradigms, so that one can foresee their general capabilities and limitations.

Section 2.1 provides a conceptual preview for the chapter. Sections 2.2 through 2.5
describe classical computational concepts of intelligence. Sections 2.6 through 2.9 address
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“transitional” techniques that were designed in search for resolving the conundrum of combi-
natorial complexity. In particular, Section 2.8 discusses major debate issues and controversies,
including the mathematical nature of thought, understanding, and emotions. And, finally,
Sections 2.10 through 2.14 describe newly emerging concepts having a potential to overcome
the conundrum of combinatorial complexity.

2.1 COMPLEXITY, ARISTOTLE, AND FUZZY LOGIC

2.1.1 Conundrum of Combinatorial Complexity

Intelligent computational methods and applications in diverse areas have faced difficulties
that are of related origin. We have already touched on this subject in Chapter 1. In areas
of adaptive control, pattern recognition, artificial intelligence, machine vision, image un-
derstanding, information and sensor fusion, solution of complex problems have met with
difficulties that are expressed in terms of the complexity of the solution process. Various
computational paradigms have their own sets of difficulties, but it seems that there always is a
step in the solution process that is exponentially or combinatorially complex.1 A well-known
term used in this regard is “the curse of dimensionality” (Bellman, 1961), which refers to a
combinatorial increase in the required number of training samples with the increase of the di-
mensionality of a control or a pattern recognition problem. A similar problem is encountered
in function approximation, and other areas (Girosi et al., 1995). The curse of dimensionality
is characteristical of adaptive algorithms and neural networks that learn from data.

Another set of difficulties is encountered by computational paradigms that utilize sys-
tems of a priori logical rules—rule-based artificial intelligence or rule-based AI. In the case
of rule systems, the difficulty is in the fast (combinatorial) growth of the number of rules with
the complexity of the problem (Winston, 1984). Model-based approaches that utilize process
or object models in the control or recognition process encounter difficulties manifested as
combinatorial complexity of required computations (Nevatia and Binford, 1977; Brooks,
1983; Grimson and Lozano-Perez, 1984). The difficulties of various paradigms have been
summarized in recent reviews as follows. “Much of our current models and methodologies
do not seem to scale out of limited ‘toy’ domains” (Negahdaripour and Jain, 1991). “The
key issues [are] . . . the inherent uncertainty of data measurements” and “combinatorial
explosion inherent in the problem” (Grimson and Huttenlocher, 1991).

The seemingly inexorable combinatorial explosion that reincarnates in every intelligent
computational paradigm is related in this chapter to the fundamental issue of the roles
of a priori knowledge vs. adaptive learning. This relationship was discussed in Perlovsky
(1994a; 1998a) for geometric patterns and in Girosi et al. (1995) for function approximation.
The issue of the roles of a priori knowledge vs. adaptive learning has been of an overriding
concern in the research of mathematics of intelligence since its inception. In the introduction
to Chapter 1, we briefly discussed the controversy about a priori knowledge and learning
tracing it throughout the entire history of the concepts of mind through the Middle Ages
to Aristotle and Plato and established links between philosophy and mathematics. The
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philosophical thoughts of the past turned out to be directly relevant to the development of
mathematical concepts of intellect today. The next section discusses mathematical difficul-
ties of relying either on adaptive learning or on a priori knowledge (which is discussed in
more details in later sections). The discussion then turns to difficulties of combining apriority
with adaptivity in the presence of uncertainty. Arguments are presented for Aristotelian logic
being culpable for the combinatorial complexity of combining adaptivity and apriority.2 We
discuss adaptive fuzzy logic as an approach to reducing algorithmic complexities. This
section (1) previews classical computational concepts of intelligence and summarizes more
detailed discussions of Sections 2.2 through 2.5 and (2) provides a basis for discussing
newly emerging concepts in Sections 2.9 through 2.15.

2.1.2 Adaptivity, Apriority, and Complexity

McCulloch, staying at the cradle of mathematical modeling of neural networks, believed
that the material basis of the mind is in complicated neural structures of a priori origin.
Specialized, genetically inherited a priori structures have to provide for specific types of
learning and adaptation abilities. An example investigated by McCulloch was a group-
averaging structure providing for scale-independent recognition of objects, which McCul-
loch believed serves as a material basis for concepts or ideas of objects independent of
their apparent size (Pitts and McCulloch, 1947). This direction of inquiry, however, was not
continued during the early neural network research in the 1950s and 1960s. Most notable
neural networks developed at that time, Perceptron and Adaline, utilized simple structures.
Their design concept was general learning from data without a priori knowledge. These
neural networks were the first examples of learning machines inspiring a generation of
researchers; still their capabilities were fundamentally limited.

In the 1960s and 1970s, pattern recognition algorithms were developed utilizing the
concept of classification or decision space (Nilsson, 1965; Fukunaga, 1972; Duda and Hart,
1973; Watanabe, 1985). Their concept also was general learning from data without a priori
knowledge. Pattern recognition algorithms often faced difficulties related to combinatorial
training requirements. Exorbitant training requirements of statistical pattern recognition and
control algorithms can be understood due to the geometry of high-dimensional classification
spaces. There are three basic approaches used to partition a classification space into class
or decision regions: model-based parametric classifiers, nearest neighbors, and gradient
learning using superpositions of planar surfaces (Perlovsky, 1994a). Simple decision regions
could be defined by using parametric models of their boundaries, such as derived from
Gaussian distributions. Like early neural networks, they are fundamentally limited to simple
shapes (such as the quadratic classifier). Nonparametric paradigms (gradient learning and
nearest neighbors) have been used to surpass limitations of simple parametric methods.
However, due to the fact that the volume of a classification space grows exponentially with
the dimensionality (number of features), training requirements for nonparametric paradigms
are often exponential in terms of the problem complexity (Perlovsky, 1994a). This is essen-
tially the same problem that was encountered earlier in the field of adaptive control and was
named “the curse of dimensionality” (Bellman, 1961). The father of cybernetics, Wiener,
also acknowledged this problem, he emphasized that using higher order predictive models,
or combining many simple models, is inadequate for the description of complex nonsta-
tionary systems, because of insufficient data for learning (Wiener, 1948). Mathematical
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analysis of nonparametric paradigms and their learning difficulties is presented in Sections
2.2 and 2.3. The algorithms designed for learning from data are shown to come up against
the fundamental limitation of combinatorial growth of learning requirements.

To avoid learning difficulties, Minsky suggested a different concept of artificial in-
telligence (AI) based on the principle of apriority. He argued that intelligence could be
understood only on the basis of extensive systems of a priori rules (Minsky, 1968a). This was
the next attempt (after McCulloch) to understand the intellect from the principle of apriority.
The main advantage of this method is that it requires no training, because it explicitly
incorporates detailed, high-level a priori knowledge into the decision-making process. The
a priori knowledge is represented in a set of logical rules similar to the high-level cognitive
concepts utilized by a human in conscious decision-making processes. However, systems
of logical rules turned out to be brittle in changing environments that did not exactly fit
into the design categories of a particular system. More and more rules should be added
to account for variabilities, leading to a combinatorial explosion of the complexity of rule
systems. A natural approach to overcoming this difficulty seemed to be to add adaptivity
to the rule systems. However, combining adaptive learning with a priori knowledge proved
difficult: variabilities and uncertainties in data required more and more detailed rules leading
to combinatorial complexity of logical inference (Winston, 1984). Section 2.4 is devoted
to analyzing this paradigm.

Model-based approaches to machine vision have been used to extend the rule-based
concept to 2-D and 3-D sensory data. Physically based models enable utilization of detailed
a priori information on objects’ properties and shape in algorithms of image recognition
and understanding (Nevatia and Binford, 1977; Brooks, 1983; Winston, 1984; Grimson and
Lozano-Perez, 1984; Chen and Dyer, 1986; Michalski et al., 1986; Lamdan and Wolfson,
1988; Negahdaripour and Jain, 1991; Bonnisone et al., 1991; Segre, 1992; Keshavan et al.,
1993; Califano and Mohan, 1994). Models used in machine vision typically are complicated
geometric 3-D models that require no adaptation. These models are useful in applica-
tions in which variabilities are limited and types of objects and other parameters of the
recognition problem are constrained. When unforeseen variabilities are a constant factor in
the recognition problem, utilization of such models involves difficulties that are common
to rule systems. More and more detailed models are required, potentially leading to a
combinatorial explosion.

Parametric model-based algorithms have been proposed to overcome the difficulties of
previously used methods by combining the adaptivity of parameters with the apriority of
models. In these approaches, adaptive parameters are used to adapt models to the variabilities
and uncertainties in data. Parametric adaptive methods date back to Widrow’s Adaline
and linear classifiers. These early parametric methods can be efficiently trained using few
samples; however, they are limited to simple control laws and simple decision regions and
are not suitable for complex problems. Complicated problems, such as image recognition,
require utilization of multiple flexible models. In the process of recognition, an algorithm
has to decide which subset of data corresponds to which model. The available data set of
pixels or samples has to be subdivided into subsets corresponding to classes or models.
This step is called segmentation, or association, and it requires a consideration of multiple
combinations of subsets of the data. Because of this, complicated adaptive models often
lead to combinatorial explosion of the complexity of the solution. Section 2.5 is devoted to
analyzing a model-based paradigm.
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The preceding discussion can be summarized as follows. A mathematical analysis of
classical approaches to the design of systems and algorithms of mathematical intelligence
leads to a conclusion that computational concepts of most of today’s neural networks and
fuzzy systems originate in classical control and pattern recognition algorithms, and that
there are four basic concepts forming the foundation for all the multiplicity of classical
algorithms and neural networks (Perlovsky, 1994a; 1998a). These are (1) the concept of
nearest neighbors and (2) the concept of gradient learning, both defined by the factor of
adaptivity (Nilsson, 1965; Duda and Hart, 1973); (3) the concept of rule systems (Minsky,
1968), defined by the factor of apriority; and (4) the concept of parametric models (Winston,
1984; Segre, 1992), which attempts to combine apriority and adaptivity. Whereas methods
based on adaptivity face combinatorial explosion of the training process, those based on
apriority face combinatorial explosion of the complexity of rule systems, and attempts
to combine the two face combinatorial explosion of computational complexity. Factors
of apriority and adaptivity ought to be combined by physically acceptable concepts of
the intellect. Therefore, approaches to combining both factors are of paramount interest.
However, existing computational paradigms have not resolved the problem of combinatorial
complexity. To repeat again, “Much of our current models and methodologies do not seem
to scale out of limited ‘toy’ domains” (Negahdaripour and Jain, 1991); “The key issues
[are] . . . the inherent uncertainty of data measurements” and “combinatorial explosion
inherent in the problem” (Grimson and Huttenlocher, 1991).

2.1.3 Fuzzy Logic and Complexity

Fuzzy logic can play a crucial role in reducing computational complexity of model-based
approaches to combining adaptivity and apriority, because it eliminates the continuum that
causes combinatorial complexity. The precision of Aristotelian logic allows for the contin-
uum of concepts: another concept can always be “inserted between” however similar Aris-
totelian concepts, while still preserving its own unique identity. Thus, Aristotelian concepts
that form only countable sets cannot exhaust “all possible Aristotelian concepts,” leading
to logical contradictions such as the Russell paradox and Gödel theorem of incompleteness.
This line of reasoning is further pursued in Chapter 11; here we illustrate how fuzzy concepts
eliminate combinatorial complexity of Aristotelian concepts using a simple example.

Consider a problem of segmentation or association, which leads to combinatorial
explosion of image recognition or nonlinear prediction. The segmentation or association
problem is illustrated in Fig. 2.1-1 using crisp membership functions for a one-dimensional
problem. Selecting the best association between the data {X} and concepts-models (Fig. 2.1-
1) during the process of adaptation requires evaluation of combinatorially many subdivi-
sions.3 The combinatorial complexity is illustrated for more complicated two-dimensional
cases in Fig. 2.1-2. The combinatorial complexity of Aristotelian logic is related to the
high (absolute) precision of every concept, which may not be warranted by an approximate
nature of data or knowledge.

The combinatorial complexity can be avoided by using fuzzy associations as illus-
trated in Fig. 2.1-3a. Here, every data point is associated with many concept-models and
combinatorial explosion is avoided. In addition, the fuzzy association in Fig. 2.1-3a accounts
for possible uncertainties in the data, which may not warrant the crisp memberships of
Figs. 2.1-1 and 2.1-2. The price paid, however, is a degree of fuzziness leading to overlap
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Figure 2.1-1 Combinatorial complexity of a segmentation or association problem is illustrated using
crisp membership functions for a one-dimensional case (X is a feature or a measurement). Two
associations are shown out of all possible combinations between models (m− 1, m− 2, m− 3, . . . )
and subsets of X.
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Figure 2.1-2 Association problem is illustrated for two-dimensional cases; (a) a simple case, (b) a
more complicated case. Class boundaries correspond to the boundaries of the crisp membership
functions.

between classes (models), which could be too large, unwarranted, and unacceptable. The
founder of fuzzy logic, Zadeh, emphasized that a fixed resolution of fuzzy concepts imposes
a limitation on usefulness of fuzzy logic for intelligent systems. An improvement can be
achieved by using adaptive membership functions, so that in the process of adaptation, the
initial association in Fig. 2.1-3a evolves into Fig. 2.1-3b and c. It is further illustrated for a
two-dimensional case in Fig. 2.1-4. This procedure, although contradicting the Aristotelian
logic, closely follows the Aristotelian description of the learning process, in which Form-
as-potentiality becomes a concept. Such a procedure can be effected by combining existing
fuzzy logic and adaptive clustering techniques. What needs to be developed is a combination
of adaptive and fuzzy mathematics with the concept of apriority, utilizing a priori adaptive
models as illustrated in Fig. 2.1-5. Here, an initial highly fuzzy configuration (a) evolves into
a final low-fuzzy configuration (b), which is determined by both the data and the adaptive
parametric models of these shapes. A combination of flexible model-based mathematics
with adaptive fuzzy mathematics has not before been available. Development of such
adaptive fuzzy model-based mathematics that I call modeling field theory or model-based
neural network is the subject of this book and is pursued in detail in Chapters 4 through
7. The rest of this chapter is devoted to analysis of classical and emerging computational
concepts of modeling intelligence.
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Figure 2.1-3 Adaptive fuzzy association avoids combinatorial explosion.

Figure 2.1-4 Adaptive fuzzy association in a two-dimensional case; (a) initial, (b) after adaptation.
Class boundaries are indicated by 0.5-membership contours of fuzzy membership functions.

Figure 2.1-5 Adaptive model-based fuzzy association; (a) initial, (b) after adaptation.
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2.2 NEAREST NEIGHBORS AND DEGENERATE GEOMETRIES

Classification and recognition of objects are among central problems of computational
intelligence. In this section we begin the analysis of the intelligent algorithms with the
nearest neighbor concept of recognition.

2.2.1 The Nearest Neighbor Concept

An obvious and straightforward classification concept is to classify each sample to the
same class or concept as the nearest (the most alike) sample from past experience (training
sample). The nearest neighbor concept (NNC) is the simplest mathematical realization of
the nominalistic concept of intellect, according to which ideas and concepts emerge in the
process of learning from experience as names of classes of similar objects (and not from a
priori knowledge). It is a highly intuitive concept and it serves as a basis for a large number of
algorithms and neural networks. Samples are considered as vectors in a metric classification
space, their coordinates are defined by measured signals or calculated feature values, and
a Euclidean metric is most often used to calculate distances between new samples, their
neighbors, and classes or concepts. The algorithms differ in selecting initial concepts and
in deciding which training samples to retain in the memory as representatives of classes.

The name nearest neighbor is used for algorithms that retain in their memory all or
many of the exemplars defining each class and arrive at a classification of a newcoming
sample by calculating its distance from each of the exemplars in the memory. For high-
dimensional objects, such as visual images or speech signals, the memory requirement can
grow quickly; it is necessary, therefore, to limit the number of stored samples. Mathematical
algorithms of many neural paradigms and their relationships to the NNC have been analyzed
by Simpson (1990). For example, the Additive neural network often called the Hopfield net
(McCulloch and Pitts, 1943; Grossberg, 1968; Hopfield, 1982) averages samples from each
class during training to estimate and store means for each class. During classification, each
sample is classified to a class according to the nearest mean; therefore the name of these
algorithms is the nearest mean algorithms.

The NNC can be used for both supervised and unsupervised learning. For the latter
case, various approaches are utilized to define new classes, to merge old classes, and to
update means of the classes, as in the Competitive learning networks (Grossberg, 1970;
Kohonen, 1984). Other neural networks based on the nearest neighbor concept include
Reduced Coulomb Energy (RCE) (Reilly et al., 1987), Probabilistic Neural Network (PNN)
(Specht, 1990), Neocognitron (Fukushima and Miyake, 1982), and Regularization neural
networks (Poggio, 1988).

There is a fundamental limitation to the NNC in high dimensional classification spaces,
leading to exorbitant training requirements. The NNC requires a dense sampling of the
decision space with training examples, in turn, requiring a combinatorially large number of
training examples, NT, as a function of dimensionality of the decision space D, NT ∼ 10D

(Perlovsky, 1994a). Even medium size problems of visual imagery or speech recognition
require considerations of hundreds of dimensions,D > 100, and the corresponding training
requirements for the NNC exceed the number of objects in the universe.4 This physically
unsatisfiable requirement points to the principal inadequacy of the nominalistic concept of
mind—learning from examples without using a priori knowledge is physically impossible.
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2.2.2 Mathematical Formulation

A mathematical formulation of the nearest neighbor recognition concept is as follows.
Figure 2.2-1 illustrates classification of each sample to the same class as the nearest training
sample. Each sample x is considered as a vector in a metric classification space x =
(x1, . . . , xD), its coordinates xi could be sensor measurements or feature values calculated
from measurements. Figure 2.2-1 shows two of N coordinates. A Euclidean metric for
calculation of distance d(x, y) between two samples x and y is defined as

d2(x, y) =
D∑
i=1

(xi − yi)
2 (2.2-1)

A simplest nearest neighbor recognition algorithm can be specified as follows: during
training, store all training samples xn, n = 1, . . . , N , together with their class labels, k(n).
When a new sample y is coming, find the distances between y and all xn, d(xn, y). Then,
find the minimal distance d(xn−min, y), and classify y to class k(n− min).

2.2.3 What Constitutes Simple and Complex Classification Problems?

Before turning to the fundamental limitation of the nearest neighbor concept in high
dimensional classification spaces, let us consider two types of classification problems
illustrated in Fig. 2.2-2.

In a simple case (a), the two classes are relatively far from each other, and any
classification approach easily separates these two classes. A nearest neighbor algorithm
would need only one example from each class to learn perfect classification without errors.
And there will be no difficulty with a similar case in a high-dimensional space. The complex
case in (b) is different: if one tries to extend this case to high dimensions, one will find that
the nearest neighbor concept is completely useless. In Section 2.2.2, we will explain why

Figure 2.2-1 The nearest neighbor classification concept.

(a) (b)

Figure 2.2-2 Two examples of a two-class
problem: (a) simple geometry: far separated
classes, (b) complicated ‘gridlock’ geometry:
two classes are well separated, but not “far”
from each other.
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this example is important. We will demonstrate that this type of classification geometry,
resembling a gridlock in high dimensions, is common for image and signal classification
and for many other complex recognition problems. Although in this case the two classes are
well separated, the nearest neighbor approach will have to learn enough training samples
to provide for a dense sampling of the classification space. We will show now that for
high-dimensional spaces this requirement is prohibitive.

Consider the one-dimensional uniform distribution in Fig. 2.2-3a. If n samples are
drawn from this distribution randomly, an average distance between neighboring samples
will be d = n−1. A similar result for two dimensions (b) will be d ∼ n−1/2, and for
D dimensions d ∼ n−1/D . We see that in high dimensions the average distance between
neighboring samples remains almost unchanged as the number of samples increases. To
make distance between neighboring samples significantly smaller than the size of a class
as a whole, we will need on the order of n ∼ 10D samples. In the example of Fig. 2.2-3,
to make samples from each class closer to each other than to the samples from the other
class, more and more samples need be retained in the memory for higher dimensions, say,
for D ∼ 100 dimensions, it will be necessary to retain on the order of n ∼ 10100 samples.
An order of magnitude of this estimate is independent of the shape or uniformity of the
distribution: learning by the nearest neighbor rule requires a dense sampling of the decision
space and this, in turn, requires an exponentially large number of samples.

The inadequacy of the nearest neighbor concept in high-dimensional classification
samples has been observed by many experts in the field of pattern recognition. However,
in the absence of the formal proof given above, and also, because the nearest neighbor
concept is efficient for simple problems and in low-dimensional spaces, algorithms and
neural networks based on the nearest neighbor concept remain popular. They can be used
for simple problems, but one should not be surprised when a solution does not scale up for
more complicated problems.

2.2.4 Degenerate Geometry of Classification Spaces

In this section we will demonstrate that a gridlock-type geometry of classification space
illustrated in Fig. 2.2-2b is not an exception, but is commonplace for complicated problems.
Recognition of objects, for example of image patterns, is based on the interrelationship
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Figure 2.2-3 Relationship between dimensionality and near neighborliness.
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between the object’s parts: for a solid object in three-dimensional space, given the positions
of any three points, all the other points of the object are fixed. This trivial observation leads
to a nontrivial conclusion: there are high correlations between dimensionalities in pixel
space; if one would like to train an algorithm or a neural network to classify objects in
pixel space (without sophisticated procedures for feature extraction), one will often face
degenerate geometries of the type shown in Fig. 2.2-2b.

This is illustrated in Figs. 2.2-4 and 2.2-5. Figure 2.2-4 shows two simple geometric
patterns, a vertical bar and a horizontal bar, in a 3 × 3 pixel image. For translation invariant
recognition, there are only three different patterns of each bar in a binary representation.
For classification in pixel space each pattern is coded as a nine-dimensional vector of zeros
and ones. Thus, classification space is nine-dimensional, with each axis being an intensity
of a corresponding pixel.

The geometry of classification space is shown in Fig. 2.2-5 for the two-dimensional
subspace of the first two components (the first two pixels in the upper row of a 3 × 3
image). The vertical-bar class occupies three points in this subspace, (0,0), (0,1), and (1,0).
The horizontal-bar class occupies only two points, (0,0) and (1,1). If gray-scale invariance
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Figure 2.2-4 Three images.
(a) There are three images cor-
responding to a vertical bar.
(b) There are three images cor-
responding to a horizontal bar.

Horizontal barVertical bar

11
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Figure 2.2-5 The classification space of the two classes of Fig. 2.2-4 (only the first two dimensions—
pixels are shown). These classes, like a multidimensional gridlock, occupy close regions in classifica-
tion space and cannot be effectively separated by a nearest neighbor classifier, yet they are completely
separable.
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is desirable (illuminance insensitivity), so that the gray scale can vary between 0 and 1 for
each bar-pixel independently, the vertical-bar class occupies both axes between 0 and 1
and the horizontal-bar class occupies the whole dashed square. Thus, in this subspace the
vertical-bar class occupies only a zero volume; in other subspaces a horizontal-bar class
occupies only a zero volume.

These two classes occupy the same general area of the classification space, still they
can be separated without error due to their degeneracy: the overlap between the two classes
is 0% of the total volume of each class. To separate these two classes without an error using
the nearest neighbor classifier, it is necessary to retain in the memory an infinite number
of samples from each class. If a small error is permitted, a finite (large) number of samples
will suffice, providing for a dense coverage of the classification space. As discussed in
Section 2.2.2, a dense coverage in high dimensions requires a combinatorially large number
of samples rendering the nearest neighbor concept useless.

Does the human visual system rely on the nearest neighbor learning of patterns in the
world? The answer is no. We know very well that our visual system (as well as vision of
other animals) relies on a priori models: edge recognition, moving dot detection, and other
simple-pattern recognition are based on inborn models. These models are encoded in the
structure of ganglion cells, which determine the a priori properties of the receptive fields in
the retina. For simple patterns, these models are hardwired so that almost no adaptation is
possible or needed. More complex functions of the visual system (e.g., stereoscopic vision)
are genetically prewired in such a way that some adaptation is possible (and has to occur
for successful functioning). As far as we know, the nearest neighbor recognition is not
employed by the visual system.

Let us summarize. The nearest neighbor concept is intuitive and practically useful
for simple problems. However, complex problems with degenerate geometry in high-
dimensional classification spaces cause difficulties for the nearest neighbor approaches. A
combinatorially large number of training samples is needed to learn what is similar and what
is dissimilar. The nearest neighbor concept is the simplest straightforward mathematical
implementation of the nominalistic conception of mind. According to the nominalistic
philosophy, all the knowledge is acquired from experience, no a priori ideas are needed,
and ideas and concepts are conventional names of classes of similar objects. Difficulties
of the nearest neighbor concept are related to the general deficiency of the nominalistic
concept: there are no measures of similarity in the world, they cannot be “just learned from
experience,” and they have to be inborn, a priori. The philosophical concept of nominalism
cannot explain working of the mind.

2.3 GRADIENT LEARNING, BACK PROPAGATION, AND
FEEDFORWARD NEURAL NETWORKS

2.3.1 Concept of Discriminating Surfaces and Gradient Learning

Whereas in the nearest neighbor concept an algorithm remembers volume of the multidimen-
sional classification space in the neighborhood of training samples, another mathematical
realization of the nominalistic concept of intellect consists in remembering a boundary
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separating classes or concepts in the classification space. Discriminating surfaces is a
concept according to which learning is a search for a collection of planar surfaces making
up a classification boundary. This concept was originally explored in pattern recognition
research in the 1960s (i.e., Duda and Fossum, 1966; Ho and Agrawala, 1968; Specht,
1967; Nilsson, 1965), and today this concept is revived in multilayer feedforward neural
networks or multilayer perceptrons and in several other similar architectures (e.g., recurrent
networks). The backpropagation mechanism most often used with these neural networks
is based on the gradient descent for learning parameters of these surfaces; therefore we
will call this concept “gradient learning of discrimination surfaces.” Backpropagation was
designed for supervised training and is not capable of self-learning within the internal neural
dynamics. However, the analysis below concentrates on more fundamental limitations of
this type of network, limitations related to the nominalistic concept in general.

Feedforward neural networks have been analyzed in detail by many authors (Moore
and Poggio, 1988; Carpenter, 1989). We summarize results of these analyses in terms
of classification space geometry and then analyze the mathematical reasons for the slow
learning of this type of neural network. Longstaff and Cross (1987) related a number of layers
in a feedforward neural network to its capability of representing a classifier of a complicated
shape and explained the role of nonlinearity in multilayer networks. A standard neuron is
shown to partition the classification space with a hyperplane into two halves and, therefore,
to be capable of representing a linear classifier. The multineuron, single-layer network is
capable of representing multiple linear classifiers, and a nonlinear transformation of the
neuronal output does not modify the nature of this neural network, remaining a collection
of linear classifiers.

A two-layer network is capable of representing a nonlinear classifier boundary, while
a nonlinear transformation is essential—otherwise the second layer of neurons would still
be computing linear combinations of the original input. With the nonlinear transformation,
it is easy to verify that each second-layer neuron is capable of representing an inside region
of any convex shape delineated by hyperplanes computed at the first layer. The exact shape
of the nonlinear transformation is not essential for the representational purpose: a smooth
function results in smooth boundaries. However, the implementation of a backpropagation
learning mechanism, which uses gradients, requires a smooth sigmoidal function. The third
layer of neurons is capable of combining regions computed at the second layer, similar to
the second layer combining hyperplanes computed at the first layer. By combining a number
of convex regions, a three-layer feedforward network is capable of representing a classifier
boundary of arbitrary nonlinear shape.

Experience with feedforward neural networks has shown that they are widely applicable
to relatively simple problems; however, they are poorly scaled up to large, real-world
problems. Even though there are examples of constructing complicated, structured networks
based on a feedforward architecture (Lang et al., 1990), they are based on extensive
experience and require a significant developmental effort for each concrete problem. In
essence, a priori knowledge of each problem has to be built into the feedforward neural
architecture—but feedforward networks have not been designed for and do not facilitate
such a procedure. Learning, thus, has to occur in spite of the architectural concept of
these neural networks designed for the purpose of general learning requiring no a priori
knowledge, based on the nominalistic concept of learning from examples.

The main impediment to application of these neural networks is their slow learning: a
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huge number of training examples is required even when a special architecture is designed
for a concrete problem. Mathematical analysis of this learning disability shows that in a
general case of aD-dimensional classification space, a feedforward neural network requires
at least an order of 20 · D2 training examples for each deterministically differentiable
subclass—a convex region in a classification space that does not overlap with other classes
(Perlovsky, 1994a). For complicated but practically important cases, it is necessary to
consider spaces of hundreds of dimensions and the number of subclasses (while smaller
than the required number of training samples in the nearest neighbor concept) may increase
combinatorially, thus rendering feedforward neural networks unsuitable. These neural net-
works cannot fulfill an expectation of the adaptive model of the intellect, self-learning
from examples, without utilizing a priori knowledge—one more mathematical example
that nominalism (learning from experience without a priori knowledge) is not a physically
acceptable concept of mind.

2.3.2 Mathematical Formulation

The concept of gradient learning is illustrated in Fig. 2.3-1: learning is a search for a
collection of planar surfaces making up a classification boundary.

The beginning of our analysis follows Longstaff and Cross (1987) explaining a relation-
ship between the number of layers, a neural network’s capability to represent a classifier of a
complicated shape, and explaining the role of nonlinearity in multilayer networks. Consider
a typical neuronal operation,

y = (wx)+ w0 =
D∑
i=0

wixi (2.3-1)

where w = (w1, . . . , wD) are neuronal weights, x = (x1, . . . , xD) are input (for notation
convenience define x0 = 1),w0 is a threshold (x0 = 1 is defined for notation convenience),
and y is an output (before a nonlinear transformation). Equation (2.3-1) defines a hyperplane
in x-space, such that y > 0 on one side of the hyperplane and y < 0 on the other
side. It follows that a neuron calculating the sign of the expression (2.3-1) is partitioning
the classification space with a hyperplane into two halves, and is therefore capable of

Figure 2.3-1 Discriminating surface concept.
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representing a linear classifier (Fig. 2.3-2a). The multineuron single-layer network of
Fig. 2.3-2b is capable of representing multiple linear classifiers. Note that if a nonlinear
transformation is applied to the neuronal output y,O = s(y), were s is a sign or a sigmoidal
function, this does not modify the nature of the neural network: it is still a collection of
linear classifiers.

A two-layer network, as represented in Fig. 2.3-3a, is capable of representing a non-
linear classifier boundary. At this step, it is necessary to introduce a nonlinear trans-
formation, o = s(y), otherwise the second layer of neurons would still be computing
linear combinations of the original input x. With the nonlinear transformation, it is easy
to verify that the second-layer neurons are capable of representing the inside region of
any convex shape delineated by hyperplanes computed at the first layer. The exact shape
of the nonlinear transformation is not essential for the representation purpose: a smooth
function results in smooth boundaries. However, for the implementation of a backpropa-
gation learning mechanism (as well as any gradient method), a smooth sigmoidal function
is important.

The third layer of neurons, Fig. 2.3-3b, is capable of combining regions computed at the
second layer, similar to the second layer combining hyperplane-defined regions computed
at the first layer. The three-layer feedforward network is therefore capable of representing
a classifier boundary of arbitrary shape.

Learning consists in defining parameters of Eq. (2.3-1), w0, . . . , wD , for each neuron.
These parameters are defined so that the error between the desired output and actual output
of the network is minimized. To define the error function and derive the learning equations,
let us first introduce appropriate notations for multilayer feedforward networks. Consider
a network with two layers of neurons (Fig. 2.3-3a). It has input signal nodes, middle (or
hidden) layer nodes, and output nodes; three indexes i, j, k are used for each layer of nodes.
The lower, input signal nodes contain the components of the data pattern (or vector) xi . The
weighted sums of these input data at the middle (or hidden) layer are denoted yj , etc., as
defined in Table 2.3-1.

The error function, on presentation of the input pattern Xn = (xn1, . . . , xnD) is de-
fined as

En = 0.5
∑
k

(Tnk −Onk)
2 (2.3-2)

Figure 2.3-2 A single neuron (a) is capable of representing a linear classifier. A single-layer network
(b) is capable of representing a collection of linear classifiers.
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Figure 2.3-3 A two-layer network (a) is capable of representing convex-shaped classes. A three-layer
network (b) is capable of representing classifier boundaries of any shape.

Using the definitions in Table 2.3-1, the explicit expression for the network output Onk is

Onk = s (ynk) = s


∑

j

wkjOnj


 = s


∑

j

wkj s
(
ynj
)

= s


∑

j

wkj s

(∑
i

wjixni

) (2.3-3)

The learning equations, specifying the weight update after presentation of each pattern, are
determined by the gradient descent, 
w = −η∂En/∂w, and, by combining Eqs. (2.3-2)
and (2.3-3), we obtain the explicit equations called error backpropagation (Werbos, 1974;
Parker, 1985; Rumelhart et al., 1986 ):


nwkj = −η∂En/∂wkj = η (Tnk −Onk) s
′ (ynk)Onj


nwji = −η∂En/∂wji = η
∑
k

(Tnk −Onk) s
′ (ynk) s ′ (ynj )wkjOni (2.3-4)

Here, s ′ denotes the derivative of the nonlinear transform s, and η is a constant determining
the convergence rate.
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TABLE 2.3-1
Definition of a Feedforward Neural Network with Two Layers of Neurons

Weighted Target
Layer Index Input Weights Sum Output Output

Output k Onj = s(ynj ) wkj ynk =
D∑
i=0

wkjOnj Onk = s(ynk) Tnk

Middle (hidden) j xni wji ynj =
D∑
i=0

wjixni Onj = s(ynj )

Input i xni

2.3.3 Learning Disability

Experience with feedforward neural networks has shown that they are general and applicable
to a variety of problems. However, they are poorly scaled up to large, real-world problems;
in particular, they are notoriously slow learners. Three types of learning problems have been
reported in the literature: first, the large number of iterations needed for convergence, given
the training data set; second, convergence to local minima of the error function; third, the
large number of training samples required for learning. The first two types of problems can
be mitigated to some extent by modifying the learning algorithm. The third one is due to
the fundamental limitation of the nominalistic concept of learning from examples without
a priori knowledge.

Here we analyze only the third problem. The analysis of degenerate geometries of
classification spaces in Section 2.2.3 showed that a large number of hyperplanes might be
needed to separate classes in complicated cases. Examine Fig. 2.2-5: to separate the two
classes shown there, a single hyperplane is needed for each of the two shown dimensions,
so this problem is easy to solve with feedforward neural networks. However, consider a
different problem: shift-invariant recognition of classes defined by checkerboard-type pat-
terns with boxes of varying size. These types of classes occupy corners of a D-dimensional
cube in the pixel-classification space. Even a few classes of patterns can be defined so that
their invariant recognition requires checking a majority of cube corners. In terms of the
feedforward neural network, every cube corner should be defined as an isolated region in
the second neuronal layer. There are 2D corners, thus an exponentially large number of
isolated regions are needed. The above example illustrates mathematical reasons for the
learning disability of neural networks that are based on the concept of gradient learning
of discriminating surfaces (including feedforward networks). Other examples as well as
formal mathematical proofs of the combinatorial nature of the training requirements for
this type neural networks have been discussed in the literature (Minsky and Papert, 1988;
Blum and Rivest, 1992).

Now let us determine training requirements in simple cases: How many weights and
training examples does a feedforward neural network need for constructing/recognizing
a single isolated bounded region in classification space? Delineating a bounded region in
a D-dimensional space requires on the order of ∼ 2D hyperplanes: two hyperplanes per
dimension. For example, aD = 3 cube is bounded by six planes. Each (D−1)-dimensional
hyperplane in aD-dimensional space is defined byD parameters, e.g., by aD-dimensional
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vector perpendicular to the hyperplane. Therefore, a feedforward neural network needs at
least an order of 2D2 weights to define 2D hyperplanes for each bounded classification
space region. To establish a minimal training requirement for learning an isolated bounded
region, note that the required minimal number of training samples is larger than the number
of weights, otherwise feedforward neural networks tend to memorize exactly all the training
samples and fail to “generalize” or to classify correctly any new sample (Lang et al., 1990).
At least an order of magnitude more training samples than the number of weights in a neural
network is required for a robust generalization. Thus, even a simple classification geometry
of a single bounded region requires ∼ 20 · D2 training samples, which is prohibitive for
classification spaces of hundreds of dimensions.

It should be emphasized again that the above limitations are fundamental and originate
in the limited a priori knowledge utilized by feedforward backpropagation neural networks.
These limitations cannot be alleviated by modifications of the learning algorithm that
improve convergence, or by using recurrent neural architectures. Using higher order neural
networks, calculating terms ∼ W ∗

ii′x
∗
i xi′ etc. in addition to terms in Eq. (2.3-1), does not

alleviate the learning disability either, because the number of such terms is large, on the
order of D2, and grow exponentially with order of nonlinear terms.

Let us summarize. Neural networks that learn discriminating surfaces can be quite
efficient in simple cases. And extensive experience may allow for determining the most
important terms (neurons in the hidden layer) for a particular problem, thus reducing training
requirements. Nominalistic concept of learning implemented by these neural networks can
lead to discovering classes in certain simple cases, and thus to formation of concepts. But the
structure of these neural networks does not facilitate incorporation of complicated a priori
knowledge. And neural networks of this type cannot learn complex classes or concepts
on their own. This deficiency is related to the general inadequacy of the nominalistic
philosophy, which cannot explain learning of complex concepts by mind.

2.4 RULE-BASED ARTIFICIAL INTELLIGENCE

2.4.1 Minsky, Apriority, and Adaptivity

Early neural network and cybernetics research demonstrated adaptive solutions of limited
classes of relatively simple problems, but could not be applied to solving the more compli-
cated problems routinely performed by humans. Analyzing their limitations, Minsky came
to the conclusion that the development of truly intelligent machines should be based on
utilization of extensive a priori knowledge rather than on self-learning. Self-learning does
not have a principal role in intellect, suggested Minsky, illustrating his point by an example
of Newton’s laws—Newton discovered these laws (“self-learned” in this terminology), but
our knowledge of these laws is acquired ready-made from textbooks and is an a priori
knowledge. Since self-learning is very rarely achievable even by human intellect, solving
a self-learning problem by computers, maintained Minsky, was not principally important
and was technologically premature.

A framework for incorporation of extensive a priori knowledge into a recognition
process was described in Minsky (1968a). Called frame theory, it was based on utilizing a
priori information in the form of rules, simulating a process of deliberate rational thinking
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by a human. This approach to modeling intelligence got the name “symbolic AI” or “rule-
based AI.” Throughout this book I call it “rule-based” AI rather than “symbolic” because the
nature of symbol is much more complicated than logical rules.5 In rule systems, categories
and concepts are defined a priori, like Eide or Ideas in Plato’s concept of mind. This
new approach proved to hold the key for successful application of computer technology
in many areas. Over the following 10 to 20 years, a large number of small- and large-
scale AI systems were developed in areas including computer design, engineering design,
geophysical exploration, factory automation, military operations, and many others. Rule-
based AI research has addressed and solved a number of complicated problems, but some
of them turned out to be unsolvable within the rule-based AI paradigm. A number of
controversial issues were widely discussed in the scientific literature, often with passionate
debates, including proponents and opponents on several sides. Some of these concepts and
controversies are discussed in this section.

The main controversy about the rule-based AI concerned the issue of learning and
adaptation. Rule systems are most useful when the problem can be exhaustively analyzed
during system design and clear rules can be found for every possible case. When uncertainty
is an inherent part of the data and unexpected situations are often encountered, rule systems
become brittle and inflexible. Minsky’s initial attitude toward the problem of adaptation to
the ever-changing world and to related stochastic uncertainties was to assume that more
and more complex heuristic methods will permit us to get rid of these problems within
the framework of rule systems. Reality turned out to be more mischievous than Minsky
assumed: uncertainties in data and inaccuracies in solutions, accumulating at each step in
the chain of logical inferences built by a rule system, required more and more detailed rules,
leading to a combinatorial (or exponential) complexity of the logical inference, which is
physically unrealizable.

A rule-based AI approach to utilization of extensive a priori knowledge represented the
next attempt after McCulloch to understand intelligence on the basis of realistic philosophy.
Similarity between rule systems and Plato’s conception of mind based on a priori ideas was
discussed by Chomsky (1972). He directly related the principle of apriority in algorithm
design to the philosophy of realism. He also hoped that the problem of learning could be
solved using a rule-based approach to intelligence. Chomsky attempted to explain language
learning based on the theory of language faculty containing a priori linguistic knowledge.
The language faculty was understood as a system of grammatical rules (Berwick, 1982).

However, combining grammatical algorithms in a unified system of the language faculty
involved the same obstacles that had confronted other adaptive algorithms proposed for
rule-based AI: combinatorial computational complexity. The mathematics of rule systems
is inadequate for adaptation and learning. This was emphasized by Minsky (1975), the
founder of this approach to computational intelligence, and was confirmed in multiple
attempts to solve the problem of learning on the basis of rule systems (Winston, 1984).
Chomsky came to a similar conclusion, and later he proposed a different approach to the
problem of learning based on a priori principles and adaptive parameters (Chomsky, 1981).
This principles-and-parameters approach in linguistics was similar to parametric model-
based approaches to combining apriority and adaptivity in pattern recognition. It was a step
in the direction of model-based learning developed in this book, but, as discussed in the next
section, existing mathematical methods in the 1980s used for this purpose were inadequate
and faced combinatorial computational complexity.
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Chomsky’s attempt to base learning on rule systems was one among numerous attempts
to add adaptivity to the apriority of the Plato–Minsky rule-based AI. Winston (1984) notes
that learning in many algorithms encounters barriers related to the problem of computational
complexity: the number of required operations grows combinatorially. Analysis of adaptive
algorithms proposed for rule systems, which at first did not seem to be combinatorial, showed
this to be an illusion because variabilities and uncertainties were ignored in the original
simplified examples. A need to account for uncertainties at the intermediate computational
steps turned every algorithm of this kind into a combinatorial one, which is not physically
realizable. This was discussed by a number of researchers (Chapman, 1987; Maes, 1991;
Franklin, 1995).

Many of the learning systems being developed today still utilize modifications of
mathematical methods related to Plato’s conception of mind. Looking back at the many years
of failed attempts to develop a mathematical theory of learning based on rule systems, it is
surprising that the fundamental nature of the difficulties still has not been fully appreciated.
The mathematical progress could be faster, if the close relationship between mathematical
and philosophical concepts is understood. This is why I would like to summarize again
the Aristotelian account of why learning cannot be achieved in Plato’s theory of mind.
In Plato’s theory, there could be no learning, since Ideas (or concepts) are given a priori
in their final forms of eternal unchangeable truths. Thus, learning is not needed and is
impossible, and the world of ideas is completely separated from the world of experience.
This difficulty was “rediscovered” in rule-based AI: new “learned” concepts constructed
according to rules do not necessarily correspond to objects in the real world. To remedy
the situation, special procedures have to be designed called “symbol grounding.” The
adaptive relationship between the concepts of mind and objects of the world is treated
as an afterthought in rule-based AI as well as in Plato’s theory of mind. The intrinsic
connection between the world of concepts and the world of objects is missing. It is truly
amazing that the impossibility of learning within Plato’s theory of intellect was so clearly
identified 2300 years ago by Aristotle!

Among the most important achievements of rule systems in the 1970s was that it
initiated concerted research on the internal representation of knowledge: “many researchers
set aside their interest in the study of learning in favor of examining the representation
of knowledge in many different contexts and forms. The result was . . . new and power-
ful ideas—among them frames, conceptual dependency, production systems, word-expert
parsers, relational databases, K-lines, scripts, nonmonotonic logic, semantic networks,
analogy generators, cooperative processes, and planning procedures” (Minsky and Papert,
1988). Some of these concepts are considered in the following sections.

2.4.2 Soar Production System

Newell and Simon were among the founders of AI. They believed that logic is a fundamental
paradigm of human thought. In the 1950s, they developed a computer algorithm, General
Problem Solver (GPS), that was capable of proving theorems in logic. They considered com-
puters and the human brain as symbol-manipulating systems, or “physical symbol systems.”
By symbols they meant abstract mathematical notations such as used in mathematical logic
and algebra. Let me repeat again that this designation is fundamentally limited: symbols
are much more complex entities than signs used in mathematical notations.
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A more general intelligent system evolving Newell and Simon’s ideas was developed
by Laird in 1981. Its name, SOAR, originally stood for State, Operator, And, Result, its
basic problem-solving unit. Since then, it was in continuous development. Currently, “Soar”
is a name rather than abbreviation. Soar is intended as a paradigm of general intelligence, a
general cognitive architecture for solving problems in any domain. Its view of intelligence
is a deliberative logical decision process, whose goal is to solve a specific problem. In a
model of the world in Soar, its representation of a problem-solving situation is called a
state. The world model is what you might expect it to be: for an example of a robot, it may
include objects that it perceives around itself. The set of states is called a problem space.
This is a theoretical notion that does not exist in Soar explicitly. Transits from one state
to the next is accomplished by operators. A desired state is called a goal. Reaching the
goal-state constitutes the solution to a problem.

Problem solving in Soar consists in formulating, selecting, and applying operators to a
state. This is called a series of decisions. A basic decision cycle involves productions and
preferences. Productions are if–then rules: if C then A. Conditions C refer to characteristics
of objects present in the current state, including goals, etc. Actions A propose changes to a
state, called preferences. First, all productions try to match their conditions, C, to the current
state and create their preferences in the preference memory. Some productions may retract
preferences. Second, preferences are evaluated and the best (or acceptable to all) action is
selected; it is called an operator, and it leads to a change of the state.

Separating productions from operators differentiates Soar from many other production
systems. It makes it possible to represent actions without taking them. This enables the
internal deliberation during the decision process. An operator may act in the world, or may
add an object to a state, which will initiate new productions.

The Soar architecture includes three types of memories and input/output (I/O) (Fig. 2.4-
1). Working memory contains a short-term knowledge: the current state including input-
perceptions, production matches, output-motor commands, and internal intermediate data
structures. Working memory consists of elements, with each element a simple object/ident-
ifier-attribute-value relationship (such as i7 ˆcolor red; i7 refers to a particular object).
Production memory containing productions is the only long-term memory of Soar. I/O inputs
sensory information into the current state and outputs motor commands to the actuators in
the world.

A decision process may come to an impasse, for example, when there are no sufficient
preferences to select a single operator among several proposed, or when not a single operator
is acceptable. In this case Soar creates a subgoal to resolve an impasse. Creation of a subgoal
leads to a new set of production matches. If a subgoal is achieved, an impasse is cleared;
alternatively a new impasse may appear. This leads to a hierarchy of subgoals. The top goal
is generated by a human designer. A hierarchy of subgoals is automatically generated by
Soar. A hierarchy of subgoals decomposes a task into subtasks, subsubtasks, and so on.
Subgoals may be generated from a set of predetermined subgoals. Alternatively, Soar can
use general goal-search methods. An example is a gradient or hill-climbing; it requires a
measure of distance from any state to a goal-state as a function of state parameters.

Soar is also capable of learning. Learning is changing the permanent memory, and
consists in adding new productions. Soar employs one learning method called chunking.
It works as follows. When Soar clears an impasse, the chunking mechanism creates a new
production, whose condition C corresponds to the state leading to the impasse, and whose
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Figure 2.4-1 Soar top-level architecture.

action combines all the actions that have led to the impasse clearing. If the same state occurs
again, it does not lead to an impasse, since the new production suggests an adequate action.

As we see, Soar uses a small number of distinct architectural mechanisms. A problem
space is a framework for every task. All temporary knowledge is represented in the working
memory by objects characterized by attributes with their values. All permanent knowledge
is represented by productions. All intermediate goals are generated by a single mechanism
of automatic subgoaling. And its only learning mechanism is chunking.

According to Soar’s authors, they would like Soar to be able to work on the full range of
tasks, including complicated open-ended problems; represent and use appropriate forms of
knowledge, such as procedural, declarative, episodic, and iconic; employ the full range
of the problem-solving methods; interact with the world; and learn about all aspects of the
tasks and about its own performance. Important aspects of a general intelligence that are
currently missing include the following. Soar does not create its own representations. And
its knowledge retrieving is often too slow.

I would add that Soar suffers from general problems of logical rule systems: deliberative
thinking is brittle and inflexible; combining it with learning leads to combinatorial com-
plexity. Productions combine specific declarative object-knowledge with specific actions.
But they are not adaptive: their conditions are either satisfied or not and they cannot see
anything even slightly different from their conditions; multiple conditions lead to a degree
of adaptivity, but a very limited one: using multiple conditions to describe a continuum of
uncertainties cannot succeed. This leads to a combinatorial proliferation of productions in
the presence of uncertainty. These difficulties are of general nature, related to the limitation
of Platonian philosophy with respect to learning.

Soar is a continuously changing system. Will its architecture, based on a deliberative
logical argumentation, turn out to be too inflexible for the general paradigm of intelligence?
Or will it be able to modify to incorporate neural structures and more powerful learning
and adaptation methods?
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2.5 CONCEPT OF INTERNAL MODEL

The concept of an internal model is among the most important concepts of mathematical
intelligence. According to this concept, the entire functioning of an intelligent system
(including perception, cognition, prediction, planning, etc.) is based on an internal model
(or multiple submodels). Significant aspects of internal models are inborn, a priori. The
following main questions should be answered: Which aspects of models are a priori and
which are learned? And what is the nature of the a priori representation, so that it supports
learning? Various answers to these question relate mathematical internal models to Platonian
Ideas, Aristotelian Forms, and Jungian archetypes. Logical rules considered in the previous
section are a particular case of internal models related to Platonian Ideas. Here, we overview
the historical development of this mathematical concept, including successes and difficulties
encountered by various approaches to utilize internal models in intelligent data processing
and decision making.

2.5.1 Prolegomena: Parametric vs. Nonparametric Estimation

In the AI community during the 1960s, “intellectual battle lines began to form along such
conceptual fronts as parallel (connectionist) vs. serial (symbolic) processing, learning vs.
programming, and emergence vs. analytic descriptions” (Minsky and Papert, 1988). At the
same time, in several fields of applied mathematics, including financial and economic pre-
diction, pattern recognition, and signal and image processing, conceptually related extensive
discussions were carried out concerning relative merits of parametric vs. nonparametric
techniques (Tukey, 1960, see 1977). These early discussions revealed methodological
differences underlying the two approaches. In parametric techniques, a mathematical (or
statistical) model is developed for the problem under analysis based on statistical, geometric,
physical, or other phenomenological considerations. A relatively small number of unknown
model parameters is estimated from the data. Parametric approaches require a priori analysis
and understanding of the problem and can lead to fast real-time adaptation. In nonparametric
approaches, no a priori model is postulated, and the large number of estimated parameters
is not directly related to the underlying process or phenomenon. Nonparametric approaches
were considered suitable for initial, exploratory stages of analysis. Examples of nonparamet-
ric techniques in signal processing are Fourier transforms, in which Fourier coefficients are
not parameters of any physical model, and parametric autoregressive analysis assuming an
autoregressive model of a signal source. In prediction, parametric linear regression is based
on a Gaussian model of data variabilities. In classification, linear and quadratic classifiers
are parametric techniques based on a Gaussian model of the data variabilities. Examples of
nonparametric techniques include those based on the nearest neighbor and discrimination
surface concepts discussed in previous sections.

Classical examples of parametric techniques are linear and quadratic classifiers based on
the a priori statistical model of Gaussian distributions discussed in Section 1.3. Adaptation
or learning consists in estimating parameters of the distributions. The number of these
parameters, Npar, is relatively small, growing slowly with the problem dimensionality,
D: for linear classifiers Npar ∼ D; for quadratic classifiers Npar ∼ D2. Utilization of
optimal statistical learning techniques results in fast learning that requires few samples—
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the required number of training samples, NT , remains essentially constant independent
of dimensionality for the linear classifier, NT ∼ constant, and it grows linearly for the
quadratic classifier, NT ∼ D. Using a priori statistical models thus leads to fast and
physically acceptable adaptation. These models, however, are too simple for modeling the
intellect: classifiers based on these models are limited to simple shapes of decision regions
in classification spaces.

The differentiation between simple parametric and nonparametric approaches, as dis-
cussed, seems to be a methodological one, while fundamental philosophical or mathematical
differences are muffled. For example, in signal processing an autoregressive analysis is now
often used as an exploratory method, with many parameters that are not necessarily related
to an underlying model. From a mathematical standpoint, it seems that a most important
difference between the two approaches is how fast the number of parameters grows with the
growth in problem complexity. However, later development toward modeling intellect and
involving complicated models for large-scale problems revealed the fundamental nature
of the differences. The first indication was that training requirements for nonparametric
techniques were prone to combinatorial explosion, essentially making them useless for
complex problems and as a mathematical apparatus for describing intellect. Model-based
techniques could combine apriority of models with adaptivity of model parameters, but early
models were too simple for modeling the intellect. We will see in the following sections that
utilization of complex models requires development of new mathematical techniques and
commitment of considerable resources, and could not have been accomplished without a
fundamental shift in the AI paradigm. A shift of the AI paradigm in the 1960s from the con-
nectivist to the rule-based one, from self-learning based on experience to preprogrammed
rule systems, was related to the philosophical shift from nominalism to realism. This shift
influenced the development of complicated model-based techniques.

2.5.2 Model-Based Vision (MBV)

Success of rule-based AI in the 1970s was extended toward machine vision by developing
geometric object models and Model-Based Vision (MBV) recognition techniques (Nevatia
and Binford, 1977; Brooks, 1983; Winston, 1984; Grimson and Lozano-Perez, 1984; Chen
and Dyer, 1986; Michalski et al., 1986; Lamdan and Wolfson, 1988; Negahdaripour and Jain,
1991; Bonnisone et al., 1991; Segre, 1992; Keshavan et al., 1993; Califano and Mohan,
1994). An MBV paradigm is illustrated in Fig. 2.5-1. It is characterized by an iterative
loop of four steps: (1) generating a hypothesis about an image content; then, based on
a model corresponding to the hypothesis, (2) predicting features expected in the image
and (3) describing features observed in the image in terms of the model components;
(4) matching predicted and described features, then, refining the hypothesis and repeating the
four steps. Steps 2 and 3 represent an important conceptual advancement in AI: a counterflow
of processing is combined, the top-down processing from the models toward the image with
the bottom-up processing from an image toward the model elements (features).

Instead of continuously varied parameters of simple model-based techniques con-
sidered in the previous section, variability in MBV models is achieved by considering
composite models that are composed of various submodels. These high-cognitive level,
syntactic models of objects are similar to rule systems. Successes and difficulties of MBV are
similar to those of rule systems: MBV techniques do not need training data and do not learn
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Figure 2.5-1 A model-based recognition concept.

on their own. MBV is successful in structured environments with well-defined objects and
constrained variability. When variability increases, it becomes exceedingly difficult to build
more and more complicated models and to reason about them. Combining top-down with
bottom-up processing in the prediction and description steps helps to mitigate this problem.
Another approach to limit real-time computational requirements is to select a limited initial
set of object hypotheses using bottom-up processing techniques, which is called indexing
(Lamdan and Wolfson, 1988; Califano and Mohan, 1994). But when unforeseen variabilities
are a constant factor in the recognition problem, MBV faces difficulties that are common
to rule systems. More and more detailed models are required, potentially leading to a
combinatorial explosion of model complexity. MBV models in their completeness resemble
Plato’s ideas, and mathematically are similar to rule systems. Thus, the MBV method faces
difficulties that are generic to the Plato–Minsky rule-based paradigm of intellect, which
treats adaptation as an afterthought.

2.5.3 Adaptivity and MBV

Whereas simple parametric models emulated adaptivity of intellect in simple situations,
complicated rule-based models discussed above emulated the intellect’s apriority. To com-
bine their advantages and overcome their limitations, parametric model-based techniques
have been proposed to combine the adaptivity of parameters with apriority of models. In this
approach, adaptive parameters are used to adapt models to variabilities and uncertainties
in data. A basic mathematical apparatus for achieving this synthesis is called the Multiple
Hypothesis Testing (MHT) algorithm formulated in Section 1.3.3.

MHT attempts to combine multiple adaptive parametric models into a complex world
model. In the process of learning, the MHT algorithm selects the most appropriate model
for each piece of data, which is achieved by checking all (or a significant part of) possible
associations or combinations of models and data. By utilizing complex adaptive models,
MHT combines both factors of the intellect, the apriority of models and adaptivity of
model parameters. However, MHT leads to another type of limitation: computational
complexity. The number of required elementary operations in the MHT algorithm grows
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combinatorially as a function of model complexity and becomes too large even for relatively
simple problems. For realistic problems of medium complexity the number of required
computations becomes unphysically large, exceeding the number of all interactions between
all elementary particles in the entire history of the universe6; for this reason the MHT method
is also not suitable as a foundation for the physical intuition of the nature of mind. Let us
repeat again, this limitation of the approach based on models specified in their final crisp
forms is related to the general limitation of the Platonian conception of mind based on
ready-made Ideas that are given a priori, before any experience.

2.6 ABDUCTIVE REASONING

2.6.1 Deduction, Induction, and Abduction

Let us overview the three common ways of reasoning. Deduction is reasoning from general
to concrete. For example, let A be a statement defining an apple: “an apple is red, round,
and sweet.” And let X be a scene. The deductive reasoning goes as follows: if X contains
an apple, then X should contain a red and round object, and this object should be sweet.
Deduction is a top-down reasoning. Deductive approach to designing intelligent systems
suggests that a robot should be supplied with a priori knowledge (a database) of general
concepts. This is the approach of expert systems and rule-based AI. It works well when
there is little variability in the data, and every object is exactly as described by the general
concept. When there is variability or uncertainty, the deductive approach is prone to a
combinatorial explosion of the complexity and number of rules. This approach is related
to Plato’s philosophy of realism: general concepts are given to the mind a priori, before
any experience.

Induction is reasoning from the concrete to the general. In our example of apples,
induction goes as follows. I see one red round object, I tasted it, and it is sweet. I see
another red round object, I tasted it and it is sweet. I may conclude that every red round
object is sweet, that they make up “a class of objects,” A, that I will arbitrarily call, say
“yabloko” (this means apple in Russian). An inductive approach to designing intelligent
systems suggests that a robot does not need any a priori knowledge of general concepts.
Robot “just sees” similarities, and it groups (or clusters, or classifies) objects according
to their similarities. Then some arbitrary names are assigned to these classes (in order to
understand each other, of course, robots, like people, will have to agree on some arbitrary
convention of names). This is the approach of self-learning clustering algorithms, such as
the nearest neighbor. It works well when there are few clearly distinct types of objects,
which can be differentiated using few distinctly perceived attributes. When there are a lot
of attributes, and objects may be similar in some and dissimilar in other attributes, the
inductive approach faces combinatorial explosion of the complexity of learning and of the
number of required examples to learn. This approach is related to Antisthenes’ philosophy
of nominalism: general concepts are names, arbitrarily given to classes of objects, and the
classes are groups of objects that look similar.

Abductive reasoning about our apples goes as follows. Given the general definition
A, and a red round object, I may conclude that this object is an apple. Note the difference
in the direction of inference comparatively to the deduction: here the inference is from
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the concrete to the general. But, unlike induction, it is according to the general law, which
should be given a priori. Abductive reasoning is also called reasoning by analogy: I conclude
about the general concept, which governs the concrete case, by analogy with other cases,
where this general concept has been applicable in the past. Some people consider abductive
reasoning to be the only way of creative reasoning: new general concepts can be created
by analogy with the old ones, by differentiating the old concept. For example, one can
perceive the similarity among red round objects according to the general concept, and
then learn differences between apples and nectarines from experience. Thus a concept of
“nectarine” is learned.

2.6.2 Abductive Reasoning Trees and Bayesian Networks

Abductive reasoning combines apriority of models with adaptivity to the data, and in this
way it is an adaptive model-based reasoning. Three types of models are in popular use
for abductive reasoning: logic-based models, probability-based modes, and a combination
of the two. A typical application for abductive reasoning is to find structural relationships
among variables in a database, given certain a priori knowledge of this structure. The
variables and relationships are the ingredients of the model. The relationships are the
domain’s knowledge, which should be improved using the existing data. An additional
aspect of the domain knowledge is that of uncertainty about the relationships and conditions
of their applicability. Logic-based models are good for representing qualitative structural
knowledge, but could be cumbersome in handling uncertainties. Probability-based models
are good for representing uncertainty, but do not represent the qualitative structures as well.
A method for combining these advantages was developed by Bhatnagar and Kanal (1993).

The Bayesian equation for the a posteriori probabilities that we discussed in Chapter 1
(1.2-15) is a classical example of abductive reasoning, from the data to the models, while
accounting for the restrictions imposed by the models. Since the Bayesian equation is a con-
sequence of the rule of conditional probabilities, it is very convenient to represent the a priori
knowledge about the domain structure in terms of conditional probabilistic relationships.
A joint probability (or probability density) of n variables can be written as follows:

P (x1, x2, x3, . . . , xN) = P (x1|x2, x3, . . . , xN)
∗ P (x2|x3, . . . , xN)

∗ · · ·∗ P (xN) (2.6-1)

This equation is obtained from the rule of conditional probability (1.2-2) by applying
it sequentially, as if in a “chain,” and it is called the chain rule. It is always valid; there
is no limiting assumption or specific domain knowledge incorporated in this relationship.
Learning or estimating this probabilistic model from the data will involve a combinatorial
explosion of training requirements characteristic of classical pattern recognition algorithms.
This is why the model-based approach consists in using restrictive models, which already
contain a significant amount of information about the domain. For example, if there are
reasons to believe that in a particular application domain all the relationships among
variables are pairwise, an appropriate model is given by

P (x1, x2, x3, . . . , xN) = P (x1|xm1)
∗ P (x2|xm2)

∗ · · ·∗ P (xN) (2.6-2)

Here, general conditional probabilities are replaced by pairwise relationships; it is
quite a restrictive general type limitation on the structure. And it contains only (N − 1)
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relationships, P(xn|xm). Usually, this type of model is further restricted by requiring that
each variable appears only once in the n-position, and after it does (in the left-to-right
direction along the chain), it is not used anymore in the m-position. With this restriction,
the model (2.6-2) is a “tree,” as illustrated in Fig. 2.6-1.

A more general type model can be written as

P (x1, x2, x3, . . . , xN) = P (x1|S1)
∗ P (x2|S2)

∗ · · ·∗ P (xN) (2.6-3)

Here, Sm is a subset of all variables {xn′ }, on which variable xn directly depends. This
more general model is called a Bayesian network (there are similar restrictions on variables
in n- andm-positions).7 A Bayesian network represents the domain knowledge of structural
relationships in terms of probabilistic conditional dependencies and independencies. The
probabilistic interpretation facilitates consistent computation of probabilities from the data.

Having described structural models that are typically used in abductive reasoning,
let us consider a problem of inferring “concepts” underlying the structure of data from a
database. Or, in other words, determining the detailed structure from the data, based on some
a priori assumption about the structure. This is approached by designing a certain criterion,
which should be maximized in the process of learning the structure. Such a criterion to
some extent depends on what is desired to be achieved. For example, Bhatnagar and Kanal
(1993), wanted to achieve an approximation of the distinct qualitative relationships, so that
all P (xn|Sm) are as much as possible close to either 1 or 0. If each data base case (xn)
corresponds to a separate “explanation” Sm, then the probabilities can be defined to be 0 or
1, but in order to have an explanatory power, a single “explanation” Sm must be suitable for
more than one case. Their procedure for achieving a consistent estimation, in a somewhat
simplified way, is to minimize the average conditional entropy

E = −
∑
n;m

P (xn|Sm) ln [P (xn|Sm)] (2.6-4)

Minimization of this criterion can be interpreted as minimization of the uncertainty
with which xnfollows from Sm. The algorithm used for the minimization of the entropy and
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x2 x2

x2x4 x4

x5 x5

x3 x3
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Figure 2.6-1 Illustration of trees and Bayesian network structures. (a) A tree and a Bayesian network;
(b) not a tree, not a Bayesian network; (c) a Bayesian network, but not a tree.
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estimation of the model parameters (sets Sm) is described in Bhatnagar and Kanal (1993). In
this algorithm, learning is combinatorial, as in other model-based approaches described in
Section 2.5 due to the need to consider combinations of subsets of {xn} that make up sets Sm.

Bayesian networks can be used as a consistent modeling tool. The technique described
above can be viewed as a model-based clustering, where a Bayesian network is used as a
model. Clusters are formed by those xn, which have high a probability of being “explained”
by the same model Sm. Model-based clustering therefore can be called adaptive model-
based reasoning. Conversely, an adaptive model-based reasoning is a form of abductive
reasoning: it combines knowledge with learning in that concepts-clusters are formed using
a priori models, while parameters of the models are estimated adaptively from the data.
Bayesian network models possess a desirable feature, they can naturally be used to form
hierarchies: every subset Sm can be composed of hierarchically restricted subsets. A simple
case of a hierarchy is a tree model. The importance of the hierarchical models for building
complicated intelligent systems will be discussed in Section 2.12. The technique described
above, however, led to combinatorial complexity. Although a step toward the Aristotelian
theory of mind, it relies on specific crisp structures, and in that is similar to the Platonian
conception of mind and to model-based approaches considered in the previous section.
Modeling field theory, described in Chapters 4 through 8, can be viewed as a model-
based clustering, in which combinatorial search is eliminated. A challenge remains to
develop modeling field theory for hierarchical internal models, like Bayesian networks,
or trees in such a way that hierarchies will emerge in the process of learning without
combinatorial searches.

2.7 STATISTICAL LEARNING THEORY AND SUPPORT VECTOR
MACHINES

2.7.1 Model Complexity: Risk Minimization vs. PDF Estimation

Estimation of probabilistic models or pdf of data is a general approach to solving a wide
range of problems in the areas of classification, recognition, prediction, and data mining.
Optimal solutions to these problems can be devised in terms of pdf. Estimating pdf in
high-dimensional spaces, however, involves the difficulty of combinatorial complexity:
estimating pdf in a general form without any constraints involves the “curse of dimen-
sionality”; imposing model-based constraints with flexible models composed of multiple
submodels leads to combinatorial complexity of computations. Another approach to limiting
complexity of the estimation process, called Statistical Learning Theory, was developed by
Vapnik and his co-workers. It is also known as the Vapnik–Chervonenkis (VC) theory.
Vapnik considers pdf estimation an overkill: pdf estimation might take more training
samples than designing a classifier or predictor. Therefore, he considers instead a problem
of risk minimization, where risk is an appropriate measure for a specific application. For
example, the maximum likelihood estimation can be considered as risk minimization if risk
is defined as negative likelihood. This section follows Vapnik (1995) and Cherkassky and
Mulier (1998). VC theory is often referred to as complicated and difficult to understand,
therefore here I am concentrating on the main concepts and results, which are quite clear
and intuitively obvious.
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A general formulation of a risk-minimization problem is as follows. We would like to
predict y given x. For example, y could be a Dow Jones value (continuous) or a class of
objects (discrete number) and x could be the past values of Dow Jones, interest rates, etc.
During training, we have a set of training data ZN = {(xn, yn) , n = 1, . . . , N} = {zn}.
Predictions are made by prediction function,M(z, p) that depends on parameters, p, which
should be estimated during training or learning process from training data. (Parameters p
generally is a multicomponent vector, but for simplicity of notations we do not use bold for
p; the same is true about y.) For the example of Dow Jones prediction, an appropriate risk
measure R(p) is the expected error,

R(p) = E
{
[y −M(z, p)]2} (2.7-1)

Considered prediction functions belong to a set of prediction functions, which could
include all possible functions, or could be limited, say, to a specific functional shape. It is
convenient to perform the analysis by using loss functions, q(z, p), which depend on the
prediction function and on the type of the risk that is considered. For the above example,

q(z, p) = [y −M(z, p)]2 and R(p) = E{q(z, p)} (2.7-2)

The loss function depends on the parameter valuesp; asp values vary, the loss functions
vary over the set of loss functions,Q = {q(z, p)}. The final objective is to select parameter
values p that minimize the loss (2.7-1), however, the loss measure is unknown, because
it is an excepted value over the unknown pdf(z). Therefore, practically, we are limited to
using empirical risk, the risk averaged over the available training data,

Remp(p) = (1/N)
∑
n

q (zn, p) (2.7-3)

Vapnik calls minimization of (2.7-3) empirical risk minimization (ERM). In general,
the minimal empirical risk is too optimistic, minRemp(p) < minR(p). This is because it
is minimized over a limited number of samples and parameters p tend to be “overfitted” to
a particular training set. For example, with the nearest neighbor type training, it is easy to
achieve minRemp(p) = 0. Of course, this perfect performance would not generalize to a
new data point. The very first theoretical problem, therefore, is to establish conditions under
which ERM leads to an approximate minimization of the true risk (2.7-2). This requirement
can be formulated as follows. Let p∗ be the parameter values minimizing the empirical
risk. It is desirable that as the number of samples grow, the empirical risk and the true risk
converge to the true minimal risk value R(po) (over the given set of loss functions Q):

R(p∗, N) → R(po) and Remp(p
∗, N) → R(po), as N → ∞ (2.7-4)

This requirement is called consistency of the ERM. Statistical learning theory established
conditions of consistency of the ERM and bounds on its generalization ability, developed
inductive principles of learning from small training samples consistent with these bounds,
and developed constructive methods for implementing these principles. I will briefly review
some of these results.
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2.7.2 Consistency of ERM and VC Dimension

A nearest neighbor training example, as mentioned above (and in Problem 2.7-1), leads
to the perfect performance on the training data set, but does not generalize to new data.
The problem is that in the nearest neighbor training, the resulting set of loss functions is
too flexible: it can perfectly fit any training dataset, and, therefore, from the training data
we never now if the true risk minimization problem is easy or hard. An important idea
of the statistical learning theory, which it shares with all adaptive model-based learning
approaches, is that the flexibility (or diversity) of the set of models should be matched to
the training data set. If the flexibility of loss functions is large relative to the training data,
empirical risk will be much lower than the true one. And if the flexibility of loss functions
is small relative to the training data, empirical risk will be close to the true one; however,
the true minimal risk achievable with the given set of functions will be too high relative to
what could be achieved with more flexible functions.

To be able to match flexibility of loss functions to the size of the training data set,
one needs to have an independent measure of the flexibility of a set of functions. Such a
measure, called the Vapnik–Chervonenkis (VC) dimension, is a key result of the statistical
learning theory. Let us describe this quantity. A function q(z, p) can be used to partition a
training data set ZN into two sets as follows,

if q(zn, p)− th ≥ 0, zn ∈ set 1

if q(zn, p)− th < 0, zn ∈ set 2 (2.7-5)

We call such a partition a dichotomy (in order to attribute the dichotomy to q, we assume
that the threshold, th, is included into the set of parameters p). A flexibility or diversity of
the set of functions Q(z) = {q(zn, p)} can be measured by the total number of different
dichotomiesN(Q,ZN) that a given set ZN can be split into by the given set of functionsQ.

A growth function G(N,Q) is defined as a logarithm of the maximum number of
dichotomies that a given set Q can induce on any set of the size N ,

G(N,Q) = ln maxZN N(Q,ZN) (2.7-6)

What is the maximal value of G for any data set Q? A set of N points can be divided
into two subsets in 2N different ways, thus,

G(N,Q) ≤ ln 2N = N ln 2 (2.7-7)

The necessary and sufficient condition of the consistency of the empirical risk mini-
mization can be formulated in terms of the growth function as follows:

[G(N,Q)/N] → 0, as N → ∞ (2.7-8)

Note that this condition is independent of any specific pdf or training data set and refers
only to the size of the training data set. In addition to guaranteeing the consistency of the
estimation (2.7-4), the above condition also guarantees the fast rate of convergence defined
as follows:
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P
[
Remp

(
p∗, N

)− R
(
p∗, N

)
> ε
] ≤ exp

(−cNε2
)
, c > 0 (2.7-9)

This reads as follows: the probability that the difference between the true and empirical
risk exceeds some small positive value ε goes to zero exponentially as the number of training
samples goes to infinity. Because empirical risk is a random number, a small probability
cannot be excluded that a large deviation may occur between the empirical and true risk.
A higher precision (small error ε) requires a larger number of samples, N > 1/(cε2), and
c is a constant. This could be written as ε > 1/

√
N . Note, a very simple analog of this

relationship: expected error goes down as a square root of the number of samples (this
relationship is well known for simple cases, such as estimation of the mean by taking an
average value). For practical applications, the value of c is important. Vapnik indicated that
c ≤ 4, however, c = 4 is a worst case (such as discontinuous pdf); for practical purpose it
can be taken as c ∼= 1 (Cherkassky and Mulier, 1998).

The VC dimension of the set of functions Q is defined as follows. If N samples can be
partitioned by Q in all possible 2N ways, it is said to be shattered by Q. Set Q has a VC
dimension h if there exist a set of h samples that can be shattered by Q, but there is no set
of h+ 1 samples shattered by Q. Growth function is related to VC dimension of the set of
functions. It turns out that G(N) is limited either as

G(N) ≤ N ln 2, or (2.7-10)

G(N) ≤ h[1 + ln(N/h)] (2.7-11)

If the VC dimension is finite, than at large N the last condition holds true. Finite VC
dimension leads to (2.7-8) and is a necessary and sufficient condition for consistency and
fast convergence of the ERM. In addition, the following bound on the true risk was obtained:

R(p) ≤ Remp(p)+�(h) (2.7-12)

Here � is called the confidence interval; it is a growing function of the VC dimension.
It follows that the optimal minimization of risk can be formulated as a tradeoff between
empirical risk minimization (which is reduced as h increases) and confidence interval
minimization (which increases with h).

Examples. The VC dimension is difficult to compute for complicated sets of functions.
Table 2.7-1 contains several examples for which the VC dimension is known.

2.7.3 Support Vector Machines (SVM)

Conventional statistical and neural network methods control model complexity by using a
small number of features (the problem dimensionality or the number of hidden units). SVM
controls the model complexity by controlling the VC dimension of its models. This method
is independent of dimensionality and can utilize spaces of very large (infinite) dimensions.
Utilization of very large dimensional spaces permits constructing a very large number of
nonlinear features and then performing “adaptive feature selection” during training. By
“shifting” all nonlinearity into the features, SVM can use linear models, for which the VC
dimension is known. Only a sketchy outline of SVM is presented here; for more details the
reader is referred to Vapnik (1995) and Cherkassky and Mulier (1998).
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TABLE 2.7-1
Examples of VC Dimensions for Sets of Functions

Number Function Type Math. Definition VC Dimension

1 Linear functions in D
dimensions

q(z, p) =∑D
i=1 p∗

i zi + po h = D + 1
(the number of parameters)

2 Rectangular indicator functions
in D dimensions

q(z, c, w) = 1, if ci − zi | ≤ wi

q(z, c, w) = 0, otherwise
h = 2 ·D

(the number of parameters)
3 Radially symmetric indicator

functions in D dimensions
q(z, c, r) = 1, if ‖c − z‖ ≤ r

q(z, c, r) = 0, otherwise
h = D + 1

(the number of parameters)
4 Local functions in D

dimensions (G is a Gaussian
or any other “local” function)

q(z, c, r) = G(‖c − z‖/r)− th h = D + 1
(less then the number of
parameters,
c, r, th : D + 2)

5 Linear combination of a fixed
set of basis functions in D
dimensions

q(z, p) =∑M
i=1 p∗

i gi (z)+ po h = M + 1
(the number of parameters)

6 Linear combination of an
adaptive set of functions in
D dimensions, v is a set of
adaptive parameters

q(z, p) =∑M
i=1 p∗

i gi (z, v)+ po Unknown, even if the VC
dimension for each gi is
known

Consider a classification problem with two classes; the data are features x that are
vectors in D-dimensional space and class labels y with values ±1. A linear boundary (a
hyperplane) in x-space is given by (px)+po = 0. Training data are (xn, yn), n = 1, . . . , N .
Here we consider a case of linearly separable data (this restriction is not really required, but
this case is easier to analyze). For linearly separable data, class 1(yn = +1) data points are
on one side of the separating hyperplane, (pxn)+po ≥ 1, and class 2(yn = −1) data points
are on the other side of the separating hyperplane, (pxn)+ po ≤ −1. These equations can
be written in a compact form,

yn · [(pxn)+ po
] ≥ 1 (2.7-13)

Let us consider separating hyperplanes satisfying the constraint ‖p‖2 ≤ c. Here we
define the norm as ‖p‖2 = ∑D

i=0 p2
i . The VC dimension for separating hyperplanes

satisfying this constraint is given by

h ≤ min
(
r2c,D

)+ 1, for large D,h ≤ r2c + 1 (2.7-14)

Here, r is the minimal radius of a sphere that contains all the training data (x1, x2, . . . ,

xN). For large dimensionality D, the VC dimension is independent from D and depends
only on r2c.

Let us analyze the meaning of this expression for the VC dimension. Note a simple
geometric fact: a distance from a point x ′ to the hyperplane (px) + po = 0 is given by
[(px′) + po]/‖p‖2 (see Problem 2.7-2). Parameters p are measured in units of inverse x,
therefore, (1/‖p‖) has a unit of length in x-space. Although there is no intrinsic length
associated with the hyperplane (px) + po = 0 (scaling p by any value does not change
this equation), there is an intrinsic length associated with Eq. (2.7-13). Training data points
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that turn this inequality into an equality [(pxn)+ po = ±1] are lying at a distance (1/‖p‖)
from the separating hyperplane. These are the training data points that are most close to the
separating hyperplane. They are called the support vectors. Let us denote the distance from
the support vectors to the separating hyperplane ro (instead of 1/

√
c used above). So, the

VC dimension of the separating hyperplane satisfies

h ≤ (r/ro)
2 + 1 (2.7-15)

This is a very intuitive result: it says that the flexibility (or diversity) of the sets of
separating hyperplanes is a simple function of the ratio of the distance separating classes,
2ro, to the entire extent of the data, 2r (in the direction perpendicular to the separation
hyperplane). This is an exact mathematical formulation of the notion of simple and complex
problems discussed in Section 2.2 (Fig. 2.2-2). The problem is “simple” if classes are well
separable (r/ro is a small number); then the problem can be solved with a low-VC dimension
hyperplane. Remember that according to (2.7-12), the optimal solution is a tradeoff between
the empirical risk and confidence interval. The empirical risk of a separating hyperplane is
0, therefore we need to minimize the confidence interval, and, correspondingly, we need
to minimize the VC dimension. This, in turn, requires us to find a hyperplane leading to
the widest possible separation between classes. Such a hyperplane is called the optimal
separating hyperplane. For the optimal separating hyperplane, the following bound on the
classification error was obtained by Vapnik:

EN {error rate} ≤ EN {number of support vectors}/N (2.7-16)

Here, expectations are taken over all training data sets of size N . Again, this is a very
intuitive bound: the expected error is proportional to the relative number of the samples
that are closest to the separating hyperplane. Note that this expression does not imply that
the number of support vectors should be minimized, just the opposite, as argued above, the
number of support vectors should be maximized (because we want the widest separability
between classes); the above bound is obtained for the optimal separating hyperplane, which
is “supported” by the maximal number of support vectors.

Finding an optimal hyperplane requires solving a quadratic optimization problem,
which could be a computationally involved task in the spaces of millions of dimensions.
This problem was reduced by Vapnik to manageable complexity by “folding” a large number
of dimensions into a smaller dimensional space with nonlinear metrics. These algorithms,
however, are beyond the scope of this book.

Let us summarize the main points of the statistical learning theory (SLT) and its relation-
ship to the main topic of this book, modeling field theory. SLT provides the mathematical
apparatus for learning complicated nonlinear relationships from data, while controlling
combinatorial explosion and ensuring the generalization capability of the solution beyond
just the training data set. Its historical development was along the lines of “shrugging off”
the a priori information and concentrating on learning from the data—which is contrary
to the main line of modeling field theory: combining apriority with adaptivity. However,
SLT’s recent results indicate that a priori information can be quite useful for designing
nonlinear metrics that are used to “fold-in” the very large dimensional spaces into nonlinear
spaces of smaller dimensions. The original philosophy underlying the development of VC
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theory is that of nominalism: learning from data without a priori knowledge. Yet I prefer
to consider this theory as a general method applicable to model-based recognition and to
determining the optimal complexity of adaptive models relative to the amount of available
training data.

2.8 AI DEBATES PAST AND FUTURE

This Section summarizes the historical development of the mathematics of intelligence
as well as emergent trends in terms of the main lines of arguments, disagreements, and
debates. Its position in the middle of the chapter, half-way between the classical and newly
emerging concepts, is intended as a review of the classical concepts, their significance
for the general problem of the science of intellect, and the difficulties they faced. It also
outlines the directions of newly emerging concepts designed to counter the main difficulty
of the conundrum of combinatorial complexity, and thus prepares a background for the
following sections.

2.8.1 Arguments and Disagreements: An Overview

The beginning of the research field named artificial intelligence (AI) is usually dated to
the 1956 summer institute at Dartmouth College. The leading figures in the mathematics of
intelligence during the previous decades included Wiener, Neumann, Shannon, McCulloch,
and Turing. A new generation that came to lead the field after the 1956 meeting included
McCarthy, Minsky, Newell, and Simon. Although every new field of spiritual endeavor
has its disagreements, tensions, and detractors, the battles about AI “have been particularly
vehement, because of the dramatic promise of the thinking machine” (Minsky and Papert,
1988). The field at the center of inquiry was of the utmost importance and interest for
humankind, and researchers from various fields and of various persuasions were eager to
stake their claims. Before turning to specific contentious issues in the following subsections,
I first present a brief overview.

The main lines of disagreements included the fundamental paradigm of intelligence:
some researchers saw this as self-learning applicable to any problem, and others believed in
expert machines supplied with detailed knowledge about specific domains. This is the
same schism between adaptivity and apriority that we have already discussed. In the
1950s, the approach was to develop self-learning automata that could learn everything
from a few basic principles. Toward the late 1960s, the notion of expert systems, machines
supplied with a large body of expert knowledge about particular domain, became widely
accepted. During the 1980s this trend was reversed with advancements in neural networks.
A widespread realization that both aspects, the apriority and adaptivity, are needed came
only in the 1990s.

Another battle line was formed along logic vs. neural. The interests of a new generation
of AI researchers in the 1950s got gradually tilted toward utilization of logic as a fundamental
paradigm of human thought. The view considering intelligence equivalent to logic evolved
from Aristotelian logic over 2000 years. At the beginning of the nineteenth century, Boole
published a book, The Laws of Thought, in which he formalized Aristotelian logic and freed
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it from the ambiguities of natural language.8 Based on his work, Whitehead and Russell
in Principia Mathematica (1910–13) attempted to derive the entire mathematics from the
laws of logic. In 1931, Gödel proved the mathematical futility of this attempt. Nevertheless,
the practical consequences of Gödel’s theory, which we will discuss in Chapter 11, were
not clear to many at the beginning of the AI era. In the 1950s, Newell and Simon developed
computer algorithms that proved many of the theorems from Principia Mathematica, and
logic was widely believed to be the principal paradigm of intelligence.

In the 1980s, new powerful neural network algorithms were developed and the debate
was reinvigorated. The debate of neural vs. logic got entangled with the debate on apriority
vs. adaptivity. The 1990s saw the emergence of hybrid systems combining both approaches,
logical and neural. It is useful to remember that our brain evolved from a number of
subsystems, which possibly changed their functions in the course of evolution. And the term
hybrid might be quite appropriate. Still to me, the concept of a “hybrid” system is uninviting:
it emphasizes the luck of our understanding of how our mind combines these two aspects.
Especially so, because we still do not understand the principles of the subsystems that are
supposed to be combined in a hybrid. The evolution of the brain was a slow process, and
its various modules evolved to coordinate their mechanisms and functions in an amazingly
tuned way. In Section 2.14 we will return to this discussion and will emphasize the existence
of unifying organizational principles applicable to the diverse brain modules.

Can a machine think? was among the main issues vigorously debated since the 1950s.
Proponents of machine thinking included researchers too eager to exaggerate the state
of the art and boosting unrealistic expectations, before an in-depth understanding of the
complexities of the thinking process was attained. The opponents included people who
believed that thinking is a mysterious property of living matter and a machine would never
be able to think the way human do. To the opponents, I would offer a question: why are you
so sure that humans possess this mysterious property? Since Freud, psychology revealed
that our introspection can severely mislead us. I believe very strongly in the power of
intuition and introspection as far as they lead to rational explanation. But, as a support for
beliefs in mysterious powers, these are very shaky grounds. The resolution of this debate I
see in the rational analysis of the thinking process, in the differentiation of “thinking” into
constituent components and processes. To the extent that we succeed, we will be able to
build thinking machines. To the extent that some aspects of human thinking will remain
beyond our understanding, we will have to analyze reasons why this is so, rather than sweep
the annoying questions under the rug (but this is so difficult to avoid!). And a step in this
direction will be to identify and isolate mysterious aspects from the others that are easier to
understand. The debate on “can a machine think?” helps in this analytic process.

Most contentious issues include “representation.” Are there internal representations of
the world in the mind? Although sometimes debates help clarify the issue, in this case just
the opposite happened. Many immensely respectful scientists, especially of the neural bent,
would not admit the existence of internal representations. And some staked their careers on
disproving anything of this sort. This seems to be their reaction to the previous claims of
logical and rule-based AI researchers that the internal representations are the logical rules
hardwired in our brains. The point of view in this book is that the internal representations are
in the forms of models, which in rare cases could be similar to logical rules, but most often
are fuzzy, uncertain, fleeting, and capable of adaptation. Because of the contentious nature
of this issue, let me emphasize that internal representations discussed in this book are a
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ubiquitous property of the living beings even in the simplest forms. For example, an E. coli
bacteria sensing a gradient of sugar along its body possesses an internal representation of
the world. The gradient is the E. coli’s world model, even if it is represented just by a simple
change of some chemical inside the E. coli. The debate about internal representation started
in the 1980s, intensified in the 1990s, and likely will continue for a while.

2.8.2 Can a Machine Think?

I was a kid in a beautiful Odessa city, a port and resort on the Black Sea in southern
Ukraine. Odessa maps were state secrets and were not sold in stores. I knew how to get
around the city by using trolleys, but I vividly remember struggling in my mind when I
tried to visualize the entire city map. I tried to do this long before I had enough knowledge
to succeed. Undoubtedly, the human mind possesses an ability to figure out the map from
experience. And this ability is based on an inborn (a priori) ability to conceptualize an
ordered space (or spatial representation). Kant numbered this ability among the few main
a priori concepts.

The struggle in my mind was about how to reconcile two different internal repre-
sentations of the knowledge about the city. One representation listed trolley stops and
the rules of how to get “there” from “here.” Another representation was a spatial map.
These two representations are essentially about the same knowledge. In addition, the map
representation utilizes a concept of an ordered space, and the concepts of distance or
similarity, leading to a possibility for fuzzy reasoning. Both representations lead to an
understanding, but one understanding is much more powerful than the other.

This example illustrates that an understanding is a matter of degree and that different
representations underlie different understandings. There are types of understanding that
lead to combinatorial type algorithms, and other ones that lead to efficient algorithms.
Remember, driving a car according to instructions (“soon after T.J. Maxx turn left, but if
you see a flashing light, you missed your turn, and you should go back”). A set of instructions
very quickly grows combinatorially, and still you may get lost. At this moment, everyone
would appreciate having a map and enjoy a power of efficient representation of knowledge.
This is not a joke anymore: in the presence of uncertainty, logical rules lead to combinatorial
complexity. The rule-based AI was broken into pieces over this “simple” point.

One of the most dramatic examples questioning the nature of understanding is due
to the philosopher Searle (1980). In his famous “Chinese Room,” Searle imagines that
he is sitting in a closed room and he is supposed to answer written inquiries in Chinese.
He has no knowledge of Chinese, but he has a stack of file cabinets filled with look-
up tables, which contain all possible inquiries and answers. For every inquiry, he finds a
matching entry in a table and copies the answer. Nobody around can see that he does not
understand Chinese. But this kind of knowledge stored in look-up tables is not what we call
human understanding. Searle’s intention was to prove that computers cannot think the way
human do.

This example is not only dramatic, but also preposterous. The preposterous aspect
is in assuming that the entire language can be represented as a set of look-up tables, or
that any representation, significantly different from the one we actually use, will work
at all. The serious and nontrivial aspect of Searle’s example is in focusing our attention
on what is understanding. Philosophers from Aristotle to Kant answered this question
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by referring to internal representations: understanding is a set of concepts in our mind
along with interrelationships among them. The type of interrelationships is given by the
representations.

Several adamant arguments against computer’s thinking are discussed by Penrose
(1994). For example, he considers a chess position requiring a global analysis, which is
obvious to a human and very difficult for Deep Thought (a computer programmed to play
chess). In this case, it is obviously a matter of representation. It is easy (in principle) to
program a computer so that it would be capable of a specific type of global analysis required
by supplying it with an appropriate global representation. But there is no need for these
complicated examples: there are more convincing examples closer to home. Elementary
arithmetic is made easy by the specific representation of numbers we are using; it is called
Arabic numerals, or positional system. Multiplications and divisions of numbers are learned
by schoolchildren. In medieval Europe, when Roman numerals were used, the division of
numbers was a subject for college courses.

A mystery remains if you believe that human beings learn efficient representations on
their own. But this moves the debate from “thinking” into the areas of representations and
learning. We do not know what constitutes the a priori representation in the human mind that
allows us to learn these kind of things. One of the great unsolved difficulties of Chomskyan
linguistics is to figure out what explicitly constitutes the inborn knowledge of language. On
the one hand, this knowledge is specific enough so that every child is capable of learning a
human language, while no animal can do this. On the other hand, this knowledge is generic
enough so that a Japanese child born in America learns English, or a Madagascarian child
brought up in France learns French.

The debates about the possibility of thinking computers began with the beginning of
AI and likely will continue for a while in various forms. Before turning to the contemporary
state of these debates, let me briefly summarize the main points of discussions throughout
recent history. The stage for the debate was set by a famous Turing test, according to which
a computer can be deemed capable of thinking if a human interrogator cannot determine
who answers his questions, a computer or human. During the 1980s, the rule-based AI was
very popular and the arguments, both pro and contra, were often formulated in terms of
rule-based intelligence. It is worth remembering that Aristotelian logic, which is the basis
for the rule-based intelligence, was considered for centuries to be the main ingredient of
human intelligence. Both sides of the debates included mathematicians and philosophers.
The proponents included Newell and Simon (1982), who stated that logical rule systems are
necessary and sufficient conditions for general intelligence, including human intelligence.
Among the opponents, in addition to Searle and Penrose quoted above, I will mention
Dreyfus, who emphasized limitations of logical rules and a need for recognition based on
similarities. Also, Horgan and Tienson (1989) argued against the logical rules, emphasizing
the ever increasing complexity of rule systems and that, instead, intelligence is related to
satisfying a large number of soft constraints. (The word fuzzy used throughout this book is
similar to their soft.)

Related to this debate is a discussion in Franklin (1995) emphasizing varying degrees
of thinking: a computer able to solve a simple equation has a nonzero degree of intelligence.
And the degree of understanding is related to the complexity of a system and to the richness
of connections of a given concept to the entire body of knowledge available to the system. A
similar view was emphasized by Minsky (1985): intelligence is the result of the operation of
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a large number of agents, each possessing no intelligence. A conclusion seems to be that there
is no qualitative difference between intelligence and nonintelligence. This book presents
a contrary point of view, that there are specific characteristic properties of intelligence.
I formulate the main ingredients of a thinking process, which are present even at the
most elementary level. These ingredients were discussed in Section 1.1.4 for the agents
of the intelligent tracker: internal models, similarity measures between the models and the
world, and adaptation mechanisms. Even the simplest adaptive organisms exhibit thinking
processes with these three ingredients, and in addition, the same ingredients are essential
for the analysis of the human thinking.

To many people, analyses of the simplest animals and even viruses in the same terms
used for human thinking may seem superficial and preposterous. Therefore, let me make a
brief comment on the nature of the scientific method. When analyzing simple animals, we
do not have to use complicated notions such as internal models. We can directly analyze
their neural structures and describe them in terms that have little resemblance to human
intelligence. It is, however, advantageous to see what is similar, so that we can understand
the nature of our intelligence, as it evolved from the simplest forms. A similar situation
exists in every branch of science, for example, one does not have to see the same notions
of mass and force explaining the motion of planets and everyday earthly objects. Seeing
similarities throughout tremendous scales of events is the essence of science. Another
aspect of the scientific method is that these similarities should not be superficial and merely
metaphorical, but should lead to formalizable, preferably mathematical descriptions.

Let us summarize the above discussion of thinking and understanding. Understanding
refers to existing concepts (models) in our mind and to interconnections and interrelation-
ships among these concepts. Thinking refers to arriving at understanding, which includes
recognizing instances of concepts and establishing connections among them.

When our mind establishes that a subset of data in the world corresponds to a concept in
the mind, it is called perception. Let us reiterate, any structure in the world that we perceive
does not exist in the world alone, it is imposed by our mind. In other words, perception
can be described as a process in which a bunch of photons (or a sequence of changing air
pressure) suddenly “makes sense,” forms a recognized pattern: a moving dot, or line, or
specific sound.

A similar process occurs in cognition: a bunch of disparate concepts “suddenly” comes
together and “makes sense,” in other words, makes up a structured body, a new concept.
Cognition refers to recognizing that one concept is a particular case of another more general
concept. Or more generally, cognition refers to establishing a “super-concept”: recognizing
a relationship among several previously known but disparate, unrelated concepts. The nature
of perception and cognition is similar. In both cases, a fuzzy uncertain a priori model that
was dormant in our mind suddenly is activated by input signals, the model imposes its
structure on these signals, and in this process it becomes less fuzzy and more structured, as
if a resonance occurs between the input and the model. Suddenly, the model “snaps” on its
input, a new structured representation emerges, and a new concept is formed. In the case of
perception, this process refers to input signals coming from the world and to relatively less-
adaptive, low-fuzzy, a priori models. Examples of internal models employed in perception
include neural structures in the retina and in the early vision cortex (ganglion cells in retina
define receptive fields for edges or moving dots, etc.). In the case of cognition, input signals
are coming from other parts of the brain and a priori models could be more fuzzy and more
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adaptive. A mathematical description of this process developed in the following chapters
suggests that learning and creativity are related to the existence of a hierarchy of more and
more general a priori fuzzy concept-models.

A similar description of perception is given by Grossberg’s Adaptive Resonance Theory
neural network. And the first description of this process ascends to Aristotle, in his descrip-
tion of the interaction between Forms of mind and matter. As far as we have arrived at a
rational explanation of what are thinking processes, we can write computer codes capable
of thinking. The intelligent tracker discussed in Section 1.1.4 implements this perception–
cognition process. Its mathematics is developed in Chapter 4.

2.8.3 Rule-Based AI vs. Connectivism

In the midst of contradictions discussed above, heated debates revolved around the question
of how important parallel organization of computations, inspired by the neural networks of
the brain, is for mathematical theories of intellect and whether artificial intelligence could
be founded on sequential computations utilized by common (von Neumann’s) computers.
I would like to note three aspects of the controversy between the parallel and sequential
computational methods. First, mental processes in the brain could involve an as yet unknown
physics of interaction between quantum and macroscopic states (Penrose, 1989), which is
not equivalent to the Turing computer and is not reducible to an algorithmic mathematical
description. Second, rule systems of the Plato–Minsky type could be implemented using
parallel neural-network-type computers within the frameworks of existent computational
concepts. And third, investigations of the parallel organization of the brain computations
may lead to a new physical intuition of mind and creation of new mathematical methods.

Most of the neural computational concepts introduced so far are equivalent to the
Turing computer and can be modeled on a common, sequential computer. Still, quantum
computation may have an important role in the brain, and may surpass the fundamental
limitations of the Turing computers. If the role of quantum computation in the brain will
be confirmed by further research, this will open a most intriguing aspect of the problem
considered by Penrose, today still only a hypothetical one. We will continue investigation
of this intriguing proposal in Chapter 8, where we introduce a quantum implementation of
the modeling field theory, and in Chapters 11 and 12, where we consider its relationship to
the Gödel theory and its more far-fetched consequences for the consciousness.

As for the second aspect of the problem, parallel realization of systems of rules within
the frameworks of existing computational concepts is obviously possible, as discussed in
detail in Rumelhart and McClelland (1986). Nevertheless, parallelism by itself does not
solve the mathematical problem of combining apriority and adaptivity, because parallelism
results in only linear computational speed up as a function of the number of processors, while
the number of required computations in utilized methods grows combinatorially. That is,
computational needs grow much faster than capabilities of a parallel computational system.
Most of the methods used today are based on the concepts considered above; variations of
the MHT algorithm remain the only widely used method to combine apriority and adaptivity,
and I’ll repeat again the conclusion of a recent review that “much of our current models
and methodologies do not seem to scale out of limited ‘toy’ domains” (Negahdaripour and
Jain, 1991).

With regard to the third aspect of the controversy, it is quite clear today that the neural
organization of the brain does provide an inspiration toward developing physical intuition
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about the mind. This should not be misconstrued as an automatic endorsement of all “neural”
paradigms. But it is clear that our own mind is still the best intelligent system we know,
and studying principles of its material organization in our brain is certainly helpful and
inspiring as much as studying motion of planets was for the development of physics of the
material substance.

2.8.4 Emerging Debates

Mind as Thinking vs. Mind as Acting. One aspect of this topic is related to the old debate
of declarative vs. procedural knowledge (know what vs. how). However, it moved into
the new context: actions themselves rather than knowledge about actions. Traces of old
disagreements still can be perceived. Production systems choose actions among a pre-
determined set of alternatives. And the adaptivity of actions is achieved in production
systems due to planning, which evaluates multiple combinations of elementary actions (see
discussion of Soar in Section 2.4.2). Contrary to this, Grossberg and his co-workers study
neural mechanisms of actions. These include specialized neural networks for coordinated
control of multiple muscle groups and for sensorimotor coordination. It turns out that
these control mechanisms are similar to parametric models: a parameter or a small set of
parameters controls the overall scale of motions, whereas motions of individual muscles
and muscle groups relative to each other remain relatively constant. Adaptation in these
systems acquires a “holistic” character: a change in one parameter automatically leads to a
coordinated adaptation in multiple muscle groups. Thus, it seems that there are behavioral
concepts similar to object-concepts in the following way. Object recognition or formation
of object-concepts is the result of adaptation to the world of the a priori models (object-
models). Similarly, the choice of appropriate behavior is the result of the adaptation to the
world of the a priori behavior-models (leading to behavioral concepts).

There are several other aspects of this debate. One proposal is to consider acting similar
to thinking: some external stimuli produce concepts, other produce actions. Or is it even
possible that actions are concepts? And complicated internal representations of concepts
separate from actions are not really needed for most purposes. Let us remember that the
brain evolved as a control mechanism for bodily actions, therefore actions are the primary
manifestation of intelligence. Advocates of this point of view usually consider concepts as
conscious logical statements and associate them with the frontal cortex lobe activity. They
point out that a lot of actions are produced without involvement of cortex or consciousness.
My view is that there is an advantage to discovering unifying organizational principles
relating thinking-concepts and actions, whether the cortex or consciousness is involved or
not. Concepts, or internal models of the world, are not necessarily conscious or limited
to cortex, but are used in every system involved with perception (for example, a visual
perception of an edge, or moving dot). Whereas behavior also involves internal models,
these are adaptive internal models (representations or concepts) of actions, not of the world.
And I think that every behavioral act involves both internal representations of the world
and internal representations of actions (even if these are as simple as a change of a single
chemical or “prewired” muscle connections).

Still another aspect of the role of behavior in the thinking process is that adaptive
thinking is impossible without at least one type of action: adaptation of the internal models
to the changing world. In Chapter 10 I discuss that this type of action is responsible for
accumulation of knowledge and for other higher mental abilities.
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Signs vs. Symbols. The sign-nature and symbol-nature of mind is the ground for the next
emerging debate. The rule-based AI was historically called “symbolic AI,” I believe, for
two reasons. First, because abstract mathematical notations used in algebra, formal logic,
and predicate computations are conventionally called symbols. And second, because other,
more complicated and even mysterious meanings of the word symbol9 were not appreciated
and not considered at the beginning of AI. Since the end of the nineteenth century, signs and
symbols have been studied by semiotics. An emergent field of mathematical semiotics is
developing mathematical methods suitable for the properties of signs and symbols and for
the processes of their formation and interpretation in intelligent systems. This development
is closely related to the nature of the internal representations, and it is bound to have a
profound effect on the entire field of artificial or computational intelligence.

Signs, Representation, Mind, and Molecules. The debates about the role and nature of inter-
nal representations still continue, taking new turns and opening new vistas. It is a very active
topic in an Internet discussion of the Architectures of Intelligent Control Systems (where I
regularly participate). In this interdisciplinary discussion, engineers, mathematicians, and
physicists often argue with semioticians and philosophers. The discussion of representations
naturally spills into the discussion of the nature of intelligence. A discussion of internal
representation vs. situated behavior turns into discussing if a tornado is intelligent? A
tornado is a complex nonlinear process that is adaptive to its environment. So why not
consider it intelligent? Opponents of this view ask: what is the purpose of considering
a tornado as an intelligent being? One opinion is that it is useless and detracts from
understanding of intelligence: first, hydrodynamics is sufficient for describing tornadoes,
and second, nothing useful for understanding of human intelligence will come out of it.

Another opinion is that analyzing simple systems will help understanding the gradual
evolution of intelligence and its mechanisms. My view is that if we can analyze a tornado
in such a way that it enlightens us about human (or at least animal) intelligence, such
an analysis is useful. An extreme view in this direction is that even if we can analyze a
single simple molecule using the terminology usually reserved for intelligent beings, we
will make a step toward understanding intelligence and its evolutionary emergence. This
view is maintained by Taborsky (1998, 1999), who applies semiotical concepts to the world
of matter. In classical semiotics, a sign is defined as something that is (or can be) interpreted
by another system to mean something else. For example, a text is a sign: it is interpreted
by the reader to mean something very different from ink marks on a paper. Another “less”
intelligent example: a red round object on a tree is a sign: it is interpreted by a monkey as
sweet juicy food. Taborsky pushes this much further: a molecule is a sign: it is interpreted
by another molecule as something with which it can interact. Note the relationship of
this discussion to representations: in all three cases interpretation is accomplished through
internal representations. In the case of a molecule, the internal representation is a particular
active site on a molecule that interacts with another molecule.

Taborsky maintains that matter exists only in an organized form. There is no unorga-
nized matter. Organized matter exists only in interaction. Therefore everything is a sign and
everything is an internal representation.

What do you think? Does it sound a little far-fetched? Could it possibly be related to
intelligence? Meystel thinks that it is a waste of time, and that nothing useful could come out
of this discussion for the design of intelligent robots. My first opinion was even worse. Was
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the entire scientific method not made possible only after Descartes separated matter and
spirit? Before that, the spiritual emanation of Neoplatonics penetrated the entire material
world and interfered with the very notion of causal laws. But Taborsky made me change
my view. We made a long journey from medieval philosophers toward understanding of
matter. Spiritualization of matter that fascinated Neoplatonics and alchemists is not a threat
to our consciousness any longer (or so she thinks). Our aim is “to materialize” the spirit,
to come up with a scientific explanation of the mind. And using terminology, previously
reserved for intelligent beings, to describe matter is a step in this direction. I am ready to
declare myself a convert. I feel that the discussion of a molecule as a sign will affect my
future designs of the architectures of intelligent systems.

Hierarchy vs. Heterarchy. Hierarchical organization is needed for many different reasons
and one of them is fighting the combinatorial complexity. Research in hierarchical ar-
chitectures pursued by Albus and Meystel will be discussed in Section 2.11. Grossberg
cautions them along their way. He presents a number of arguments based on cognitive–
psychological experiments that strict hierarchies are rarely maintained in the brain. First,
the brain is made up of many modules often acting in parallel. Second, even within a
single module, the overall architecture of which is known to be very much of a hierarchical
nature (such as visual cortex, or speech perception), feedback loops are clearly present.
(For example: in vision, perception of local cues is affected by the global picture; in speech
understanding, perception of phonemes is affected by the meanings of words.) It seems
the situation is clear in this regard: there is less need for discussions of opposing views
as for consciously accounting in engineering designs for the feedback loops as needed.
The architecture of intelligent systems is a heterohierarchy. Another aspect of this topic,
which is less clear, is designing architectures with fixed, predetermined hierarchical levels
and fixed predetermined heterarchical loops vs. adaptive, self-organizing systems, in which
multilevel heterohierarchy emerges in the process of learning. Possible mechanisms for
such self-organization are not yet clear.

Emotions. The nature of emotions remained a mystery to the rule-based AI. Psychological
difficulties compounded the difficulty of the rational analysis. On one hand, the nature and
potential complexity of a “machine,” as partially revealed by Gödel, remain misunderstood
by both philosophers and scientists. On the other hand, the works of Kant, Freud, and Jung
initiated a rational analysis of the psychological nature of emotions and consciousness, but
this aspect of their work remains misunderstood. Until recently, the subject remained a
mystery, covered by introspection unaided by rational analysis. In the 1990s, researchers
of neural networks began an exploration of emotions and consciousness in neural circuits.
The field was pioneered by Grossberg, who was far ahead in this field, when in the 1970s he
began to study emotional or affective signals as an integral part of learning and behavior. In
Grossberg’s networks, affective signals have an evaluative role: they influence formation
of internal representations and recognition of objects and situations according to their
importance for satisfying instinctual needs.

A different approach to understanding emotions is advocated by Gudwin, which is
based on the classical semiotical notion of three types of signs: designative signs, appraisive
signs, and prescriptive signs. Designative signs are concepts. Prescriptive signs are actions.
And appraisive signs are emotions. Gudwin sees no difference between the three types
of signs, the only difference is how they are used inside the intelligent system. I have
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a problem with this approach. The problem with treating actions similar to thinking was
discussed above. The problem of treating emotions similar to the thinking-concepts is that it
potentially leads to combinatorial complexity. This was the case with Soar (Section 2.4.2):
Soar treats evaluative signals (preferences) as logical rules, similar to thinking-concepts. A
combinatorially large number of productions should be generated and evaluated.

Emotional, evaluative signals are related to Kant’s ability for judgment: it is an ability
for evaluation with respect to understanding. Judgment influences formation of internal
representations and recognition of objects and situations according to their importance for
satisfying the instinctual need for understanding. It follows that we possess the instinct for
understanding and knowledge. I am not aware if such an instinct was previously identified
by psychologists or biologists, and I do not know if my conclusion will spur a new debate.
I will further discuss this instinct and its mathematical forms in Chapter 10.

Consciousness. Scientific discussions of consciousness are just beginning. Everything is
debatable: is it “real” or just an epiphenomenon, something that is felt, but does not really
affect the working of the brain? Why is it needed? How did it appear in evolution? When
and at what level of organism complexity does it appear? Are dogs conscious? Are worms
conscious? Where is it located in the brain? What is the mathematical difference between
conscious and unconscious? What is the relationship between collective and individual con-
sciousness? Do we really possess individual consciousness? Chapter 12 is devoted to this
debate and to the answers suggested by modeling field theory.

Emergent Debate Conclusion: Unified Science Is Emerging. The future progress toward
understanding intelligence and building intelligent systems will require and will greatly
benefit from unifying the understanding and knowledge about intelligence and mind accu-
mulated in several fields, including “hard” and “soft” sciences: engineering, mathematics,
physics, psychology, neurobiology, semiotics, and philosophy. This will require the difficult
job of coming up with unified terminology and reconciling contradictions. Many of these
contradictions are due to entrenched, long-existing viewpoints. Fighting against entrenched
positions is never easy.

No less is required than to bridge the schism between mathematics and physics on
the one side and philosophy and semiotics on the other, while including in this unification
process several branches of science. Is it possible, given the fact that even within the math-
ematics of intelligence there are so many subfields, with researchers barely understanding
each other. There are hopeful signs: Grossberg’s department at BU teaches a curriculum
unifying mathematics with psychology and neurobiology; several volumes appeared unify-
ing mathematical methods of intelligence: neural paradigms, pattern recognition, statistical
learning theory, etc. Differences between hard sciences and philosophy were so great that
even a need for any reconciliation seemed to be out of the question. The hope is in that this
process has started. The benefits are impossible to overestimate.

2.9 SOCIETY OF MIND

2.9.1 Society of Agents

In Society of Mind (1985), Minsky powerfully articulated a concept of mind composed
of multiple semiautonomous agents, each performing its own task, each having very little
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intelligence, if any. This concept exerted significant influence on the entire AI community
and is now widely accepted. Minsky defined intelligence as “mental skills that . . . we
admire but do not understand.” This definition emphasizes his belief that there is nothing
specific about intelligence, no specific element of mind, nor architectural organization, nor
mathematical technique that specifically is responsible for intelligence.10 The idea that such
specific elements of intelligence can be identified he called a myth. (In the present book we
will find the “elements of intelligence” that have eluded Minsky’s search; we identify the
specific elements of intelligence embodied in every intelligent agent, in every “atom” of
intelligence, the general principles that are uniformly operational in simple organisms and
in simple acts of cognition as well as in cognition of complex concepts.)

Minsky’s book was influential in moving many scientists in the area of rule-based
AI toward combining rule-based and connectivist architectures, toward a need to consider
mind operations at “subsymbolic” levels, and toward considering architectural hybrids.
He wrote, “Logical thinking. . . . The popular but unsound theory that much of human
reasoning proceeds in accord with clear-cut rules. . . . In my view we employ logical
reasoning only in special forms of adult thought, which are used mainly to summarize
what has already been discovered. . . . Most of our ordinary mental work . . . applying . . .
our representations of seemingly similar previous experiences.” Minsky, however, did not
develop measures of similarity different from the logical ones, nor emphasize the need for
such measures. Chapter 4 identifies the measures of similarity as a fundamental aspect of
intelligence, and develops their mathematical techniques.

2.9.2 Types of Agents

Minsky discusses a number of specific types of agents. Sensors are sensitive to signals
coming from the world outside the brain. Demons constantly watch for certain conditions
and act when they occur. Recognizers identify specific signals. Nomes is a whole class of
nonadaptive agents including pronomes, isonomes, and paranomes. Paranomes are agents
that affect in parallel and in a similar way agencies operating in several different mental
areas. They operate by activating signal-agents called isonomes that have a similar effect on
several agencies. Pronomes are agents associated with a particular aspect of representation,
for example, they attach other agents to each other. Polynemes are adaptive agents that learn
from experience to arouse different activities in different agencies. Minsky discusses, in
particular, a number of agents related to memory. Script-agents generate a quick automatic
sequence of actions; they gain in speed but lose in adaptivity: their sequence-actions are
relatively nonadaptive. Nemes are agents that generate a fragment of an idea; every agent
operates within a context established by a collection of nemes connected to it.

One of the old questions about memory is how storing and using memories interact.
Minsky developed a memory theory called K-lines that addresses this question. K-lines
are memory-agents that reactivate particular groups of other agents. Say, a memory-agent
“St. Petersburg” reactivates the whole set of agents related to this experience: palaces and
museums, channels and bridges, movies with tsar balls and bolshevik revolution, and the
states of your mind during these movies, or during your visits there. K-lines partially return
your mind “back there” by activating agents that were active at the time. Thus, K-lines store
memory in their connections to many other agents, and this memory is used by activating
all these agents at once.
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2.9.3 Frames and Unity of Apperception

In the mind as a society of agents, the communication between agents becomes the crucial
point of the society organization. How do agents agree among themselves about a unified
view of the world, and how is this unified view maintained? And even more specifically,
how does a large number of agents form a unified picture of the surrounding so quickly?
“When we enter a room, we seem to see the entire scene at a glance.” This property of mind
that Kant called the “unity of apperception” is achieved in Minsky’s theory by special kind
of agents that he calls frames. A frame is a structure that is, a priori and in part, acquired
from previous experience. Frames have “blank fields” or terminals; for example, a house-
frame has terminals for rooms; a room-frame has terminals for windows, doors, furniture,
etc. The mind has millions of frames representing stereotypical situations. Terminals are
the connections at which other types of information can be attached. The terminals are
filled by defaults from previous experiences. Frames maintain the unity of apperception,
and defaults create an impression that we “see the entire scene at a glance.”

As we “look around,” defaults are displaced by information about the actual objects
around us. The agents recognizing actual objects and memory-agents attached to them
get attached to frames. Any kind of agent can be attached to a frame terminal: a K-line,
polyneme, isonome, script, or another frame. In particular, pronomes attach terminals to
other frames. Agents in Minsky’s theory are closely related to what we call models in
other parts of the book, and throughout the book we will elaborate on this relationship. In
particular, frames are models—internal structures representing the world.

2.9.4 Limitations and What Is Next

Minsky is one of few scientists possessing the bravery and insight needed to delineate the
limits of his theories. I mentioned in Section 2.4 Minsky’s early prophetic assertion that rule-
systems do not explain learning and adaptation.11 Similarly, in Society of Mind he discussed
limitations of rule-based approaches to building agents. Nevertheless, multiple attempts
to build agents using rule-based concepts are being undertaken; again and again they face
difficulties similar to those discussed in Sections 2.4 through 2.6. Although many researchers
still believe that logical rules are sufficient to explain intelligence in its most important
aspects, other become pessimistic about the possibility of understanding intelligence at all.
With regard to this undue simplification on the one hand and pessimism on the other, I
would like to list concepts that Minsky calls myths:

Consciousness as self-awareness about mind processes*

Creativity as a distinctive form of thought*

Intelligence as a specific element of mind*

Introspection as an ability to apprehend directly the working of mind†

Intuition as an ability for an immediate perception of truth†

Metaphor as distinct from thought
Self as a special part embodying the essence of the mind*

Freedom of will as distinct from either causality or chance†

In this list, a dagger (†) indicates a topic that is further discussed in the current book and an as-
terisk (*) indicates a topic on which a substantially new view is developed in the current book.
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Let me mention here two of the topics whose treatment in the Society of Mind is
fundamentally inadequate. Minsky considered emotions to be separate agents like many
other agents, including those responsible for recognition, memories, and behavior. Min-
sky called special agents involved in emotions protospecialists; they are responsible for
instinctive behavior. In other word, there are no difference in principle between emotions
and concepts. In this way, emotions are like preferences in Soar. We discussed that this is
inadequate mathematically. Treating emotions like concepts is one of the main causes for
combinatorial explosion, it contradicts psychological understanding of roles of emotions and
concepts in our psyche, and it contradicts the philosophical analysis of the roles of emotions
and concept due to Kant. This misunderstanding of the roles of emotions is related to another
fundamental limitation of Minsky’s theory, that there is nothing specific about intelligence,
no specific element of mind or specific mathematical technique required to describe it.

The present book makes a next step in understanding these complex issues. The opposite
idea is developed in the following chapters, that there are specific elements of intelligence.
They involve a dynamic process of concept formation in which fuzzy a priori concepts
interact with input signals to form new concepts, which are crisp or less fuzzy than the a
priori ones. This process of concept formation employs a mechanism of interaction between
concepts and emotions. Mathematical description of this process is developed throughout
the book (mostly in Chapter 4). This mechanism is uniformly employed in simple organisms
and in the human mind, and at multiple levels of a heterohierarchical organization: in
perception (formation of percepts from sensory signals) and in cognition (formation of new
concepts from previously learned concepts). The heterohierarchical organization as well as
a variety of a priori concepts and experiences determine the richness of the intelligence.
An appreciation of these mechanisms as fundamental elements of intelligence is helped by
relating the mathematical concepts to the concepts in philosophy, semiotics, and psychology.
This relationship is interspersed throughout the book, mostly in Chapters 3 and 10.

2.10 SENSOR FUSION AND JDL MODEL

2.10.1 Sensor Fusion and Origins of JDL Model

Research and development laboratories of the Department of Defense, through their arm
called the Joint Directors of Laboratories (JDL), since 1986 sponsored the Data Fusion
Group that was directed to codify and standardize the technology of data fusion. For histor-
ical reasons, fusion technology addresses a number of functions associated with intelligent
systems. This includes combining diverse sources of information into a unified picture of the
world, managing these resources, and reasoning about the importance of various pieces of
information. Fusion technology has evolved in various military applications, such as auto-
matic target recognition, noncooperative identification friend or foe, surveillance. The Data
Fusion Group produced a model of the sensor fusion process, called the JDL sensor fusion
model, which served as a basis for the standardization effort. The JDL model summarized
results of fusion efforts evolving through a number of years and inevitably it has a tilt toward
approaches popular during these years; in particular, its overall architecture is centered
around a symbolic-AI paradigm. Nevertheless, it is intended as a flexible model, and it con-
tinues to evolve, providing room for alternative algorithmic and neural network approaches.
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2.10.2 Definitions, Issues, and Types of Fusion Problems

Fusion of information from multiple sensors and other sources provides more information
than a single source or sensor. Fusion is used to solve problems that cannot be solved by using
individual sensors. Humans and animals routinely fuse data from multiple sources. Among
applications of fusion technology are military as well as commercial problems: Internet
and database searches, data mining, remote sensing for agricultural and environmental
data, cartography, mineral and petroleum exploration, well logging, military surveillance,
automatic target recognition, mine detection, robotics, guidance of autonomous vehicles, se-
curity systems, medical diagnostics, and monitoring of industrial manufacturing processes.
Sensors utilized for multiple sensor systems include passive and active sensors utilizing
various bands of the electromagnetic spectrum, passive and active acoustic sensors, etc.
Other information sources include data and knowledge bases, communication messages, and
human operators. A tremendous need exists for information fusion in computer networks,
especially Internet and accessible from Internet databases.

Various aspects of fusion are summarized in Table 2.10-1. Complexity of a fusion
problem is determined most of all by how difficult it is to associate data and objects. In
a simple case, data are associated with specific objects, and multiple sources are used
to accumulate evidence about a specific object or event. For example, a camera records
intensities of three colors (three spectral bands), red, green, and blue (R, G, B) for every pixel.
So, three color intensities are associated with every pixel. Fusion of this information for pixel
classification can be accomplished by using three-dimensional classifiers, or three-color
models, using classification techniques described in Chapter 5. Similarly, records in different
databases could be referenced to a specific object or event (for example, medical treatment
records are referenced to the patients), so their fusion again is reduced to classification in
multidimensional spaces. More complicated cases require association, when sensors are
located in different places (two cameras observing a factory floor), or when records in

TABLE 2.10-1
Various Aspects and Complexities of Fusion

Simple Complicated Very Complicated

Example Combine data or
measurements for a
given object (pixel, or
event)

Combine data or
measurements when
multiple objects (or
events) are present

Combine data or
measurements when
multiple objects (or
events) are present

Type of information
used as a basis for
fusion

No specific information is
needed for fusion

Geometrical (3-D
location and motion)

World or situational
understanding

Technique Multidimensional
classification (Ch. 5)

Association and
classification (Ch. 7)

The entire field of
computational
intelligence

Additional functions Direct sensors or database
searches

Direct sensors or database
searches (attention,
behavior generation)

Type of internal
model

Statistical Statistical + (dynamic,
geometric, etc.)

Hierarchical,
multiresolutional
“world model”
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various databases have no clear-cut association rule nor index as to which records should
be combined. Complex cases require the development of a unified picture of the world (or
situation) in order to properly associate information from various sources, such as for making
complex business or investment decisions, or even to move successfully around the room,
performing simple everyday tasks. Fusion addresses not only combining readily available
information, but also directing sensors or database searches in an efficient manner, based
on currently available information. Broadly understood fusion encompasses a significant
part of intelligent system functions.

The column “simple” in Table 2.10-1 does include very complicated problems, such as
high-dimensional classification or image recognition discussed in Chapter 5. But their com-
plexity is not related to fusion specifically. The column “complicated” involves problems in
which association of information from various sources is nontrivial; still they could be solved
by using relatively simple object models of the types considered in Chapters 5 through 7.
The last column in this table addresses a major part of the entire field of “intelligence,”
which we discuss in Chapter 10.

Fusion is greatly simplified if a few objects or events of interest can be first detected
using individual sensors/records, and fusion is required only as a last step for improved
identification of objects. The problem becomes more complicated if fusion has to be
performed at an early stage in processing; for example, when not only classification, but also
detection and tracking of objects of interest cannot be accomplished with individual sensors,
or when information of interest can be identified only when several pieces of data from
different databases are brought together. Fusion always improves performance in simple
cases due to additional information available from multiple sources. But in complicated
cases this is not automatically so; this is discussed further in Section 7.4.3.

2.10.3 Sensor Fusion Levels

Fusion is most simple when preliminary decisions can be made using individual sensors, and
decisions from several sensors are fused for confirmation in complicated cases. This is called
decision-level fusion. When individual sensors cannot provide for reliable decisions, more
complex procedures are used. Fusion can be performed at the level of data, or, alternatively,
some degree of information extraction can be first performed for each sensor. Extracting
information from individual sensor data simplifies the fusion, but some information may be
lost in the process. Combining all the data from multiple sources before making a decision
potentially provides more information, but is computationally complex, often leading to
combinatorial explosion. Therefore, data-level fusion is often accomplished by extracting
features from multiple sensor data and designing classifiers in the feature space.

To overcome the high dimensionality of data-level fusion, feature-level fusion is used.
In this approach, features are extracted from individual sensor data and fusion of multi-
sensor data is accomplished by combining features. This is the most common approach
to fusion. The success of this approach depends on feature selection that should be based
on understanding of the physics of the observation process and phenomenology of object
identification as discussed in Section 1.3. In model-based fusion, data-level fusion requires
models of data, which model pixel (or sample) values for individual sensors; feature-level
fusion requires models of features, and decision-level fusion requires models of decisions
for individual sensors.
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Figure 2.10-1 JDL data fusion model.

2.10.4 Hierarchy of JDL Model Organization

The JDL model identifies the most important functions and processes of a multisensor fusion
system and organizes them in a hierarchical system. These include access to data sources,
source preprocessing module, four processing levels, a database management system, and a
user interface as shown in Fig. 2.10-1. This division into a hierarchy of processing modules
or levels is somewhat artificial and is not always easy to accomplish in practice: in real
data-fusion systems, partitioning data among a strict hierarchy often cannot be achieved and
these processes are integrated. A source preprocessing module performs data prescreening
and initial allocation of data to appropriate processes (for example, raw sensory data are
allocated to level one processing, whereas attention-requests or alerts are allocated to level
three processing). Level one processing combines and refines information on individual
objects. At level two, relationships among objects are established in an environmental
context. Level three derives a unified picture of the world, projects the current situation
into the future, and draws inferences utilizing knowledge bases. Level four monitors other
processes and allocates resources. Techniques and examples considered in Chapters 5
through 8 are mostly relevant to the first, second, and fourth levels. Level three deals with
interpretation of information on a higher cognitive level and requires more complex models
of environment, situation, etc. A hierarchical organization that is present in an incipient form
in the JDL model is an important general organizational principle for intelligent systems.
It is considered in the next section.

2.11 HIERARCHICAL ORGANIZATION

A concept of hierarchical organization was proposed to overcome the combinatorial compu-
tational complexity of rule systems and model-based systems. In a hierarchical organization,
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the entire problem is decomposed, first, into multiple resolution levels, and second, each
level is decomposed into limited-scope modules. The rationale is that every module has to
deal with only a limited set of distinguishable objects and alternatives, so that combinatorial
searches even if required do not lead to the prohibitive combinatorial explosion. Also,
combining multiple levels can be used to achieve the required detail of the analysis, plans,
and actions.

A hierarchical architectural model of intelligent systems has been under development by
the National Institute of Standards and Technologies (NIST) since the late 1970s. Currently,
its main developers are Albus and Meystel. This section overviews the NIST architectural
model and summarizes the views on intelligence of the system developers. The NIST model
aims at the general theory of intelligence encompassing biological, machine, and social
intelligence. It incorporates the knowledge gained from many sources, including artificial
and natural systems, brain organization, psychology, psychophysics, neural networks, and
experience accumulated in robotics research, control theory, and industrial automation
development. Intelligence is defined as “the ability of a system to act appropriately in an
uncertain environment.” The appropriate action is that which increases the probability of the
achievement of the system’s goal. The goal is defined external to the intelligent system. For
artificial systems, goals are defined by designers. For biological creatures, it is gene propaga-
tion. Albus and Meystel differentiate between adaptation and learning, using the adaptation
term for intelligent functioning in a changing environment and learning for becoming
more intelligent from experience.12 Learning is consolidating short-term memory into long-
term memory, with subsequently modified behavior. Learning is a mechanism of storing
knowledge about the world, acquiring skills, and knowledge of how to act. They emphasize
that many creatures act intelligently by using instincts, without having learned anything.

Natural intelligence is a result of natural selection. The brain is foremost a control
system with the primary function to produce goal-seeking behavior. Abstract thought
is a relatively recent phenomenon in evolutionary terms. Intelligence is a mechanism
of advantageous behavior generation. Higher levels of intelligence include the ability to
represent knowledge in an elaborate world model, to plan before acting and reason about
possible results, and to act successfully in a complex environment.

The NIST intelligent system is composed of four main elements or subsystems: sensory
processing or perception, world modeling, value judgment, and behavior generation. It also
has two “auxiliary” subsystems for interacting with the outer world: sensors and actuators.
All these subsystems do not function autonomously, but in interaction with each other. The
internal world model supports the functioning of other subsystems and the coherency of
their interaction. The world model is the intelligent system’s estimate of the state of the
world. It includes the database of knowledge and simulation capabilities, which produce
expectations for the perception system and predictions for behavior generation planning.
The world model plays a role similar to the Plato’s Ideas and Aristotelian Forms: it imposes
the forms of perception, cognition, and action onto the outer world.

Perception–sensory processing compares sensory observations with expectations gen-
erated by an internal world model and integrates similarities and differences between
observations and expectations over time and space. On the basis of the world model,
perception recognizes objects and relationships and fuses sensory data into a unified and
consistent perception of the world state. Thus, the world model is responsible for what Kant
called the Unity of Apperception (unity of consciousness).
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The world model also supports the value judgment system, which determines good
and bad, rewards and punishments, important and trivial, certain and improbable. The
value judgment system models emotional biological systems. It computes costs, risks, and
benefits of observed situations and planned actions; it assigns believability or uncertainty
to state variables and attractiveness or repulsiveness to objects and events.

Currently, the value judgment module evaluates objects and concepts that have been
identified by the perception module. Relationships between perception–cognitive and evalu-
ative–emotional functions present one of the fascinating and least understood aspect of
intelligence. The separation of cognitive and emotional functions in the NIST architecture
is similar to the separation existing in Soar (between productions and preferences) and is one
of the primary causes of combinatorial explosion (see relevant discussions in Sections 2.5
and 2.7). Cognitive and emotional processes are more closely integrated in our brain,
where emotions are inseparable from cognitive processes. We, humans and scientists in
particular, are under a strong impression that we can keep our emotions separate from our
thoughts, especially when thinking about scientific problems. But it is well known from
psychology that this impression is false, and the psychological reasons for this misperception
are discussed in Chapter 12. Our ability to perceive the beauty of a scientific theory is due to
this close integration of emotions and thoughts. The roots for this conclusion ascends to the
work of Kant, and its relationships to the architectures of intelligent systems are discussed
in Chapter 10. Close integration with emotions is characteristic of both lower and higher
level cognitive processes. Neural circuits integrating “low-level” cognitive and emotional
processes were investigated by Grossberg, as discussed in Section 2.14.

The behavior generation system selects subgoals, generates plans, decomposes them
into tasks, and monitors their execution. Subgoals and plans are generated by iterative
interactions among the system elements: the behavior generation subsystem hypothesizes
plans, the world model predicts their results, and the value judgment evaluates them. The
best plans are selected for execution. The interaction of the main elements of intelligence
is illustrated in Fig. 2.11-1.

The main elements of intelligence are organized in a hierarchical architecture illustrated
in Fig. 2.11-2. Each node in the organizational hierarchy contains the four element-modules.
There are both vertical, hierarchical, horizontal, and lateral communications among nodes,
which are orders of magnitude less intensive than communications among the modules
within a node. The specific configuration is not necessarily fixed: nodes could be dy-
namically reconfigured among vertical substructures as needed. The main feature of a
hierarchical organization is that every element has multiple hierarchical levels of spatial
and temporal aggregation, or levels of scales and resolutions. Behavior generation hierarchy
defines temporal and spatial decomposition of goals and tasks: temporal historical traces
and planning horizons, and spatial ranges of maps and controls. Similarly, world modeling
and signal processing are aggregated into temporal and spatial aggregation levels, temporal
resolution of events and spatial resolution of objects and maps. It is assumed that at each
higher level, the temporal and spatial resolutions decrease by an order of magnitude;
correspondingly, goals and planning horizons expand in scope by an order of magnitude.

A need for combining the hierarchical structure with resolution levels follows from
several considerations. Hierarchically nested control loops may become unstable unless
their bandwidths differ by an order of magnitude. A hierarchical structure maintains inte-
grated short- and long-term functioning. And let us reiterate that its main aim is to eliminate
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Figure 2.11-1 The elements of intelligence and the functional relationships between them.

combinatorial explosion. Reduced resolution at higher levels results in aggregation of data
and models and is equivalent to employing fuzzy logic with the hierarchical structure of the
degree of fuzziness. Relationships between fuzzy logic and hierarchical organization are
an ongoing area of research. Zadeh proposes a combination of fuzzy logic with granularity.
The concept of granularity suggests that the fuzzy uncertain concepts can be considered
as “indivisible” units at the appropriate level. This implies multiple levels and hierarchical
organization. According to Meystel, fuzzy logic is operational on a subgranular level, but at
a higher level where the granule is considered as a unit, the Aristotelian law of contradiction
(the usual logic) can be used.

This corresponds to our analysis in Section 2.1 of the fundamental role of fuzzy logic
in learning. And our theory developed in Chapter 4 can be viewed as a flexible, adaptive
version of these ideas. Yet we know that the brain is not a strictly hierarchical system, and
it has multiple heterarchically organized modules. Even within relatively hierarchically
organized modules, there are processing loops involving multiple levels. It is clear that we
need to go beyond current approaches to developing hierarchical systems, which employ
predetermined nonfuzzy and nonadaptive definitions of the hierarchical structure itself.
This is inconsistent with the fundamental importance of fuzzy logic and adaptivity and with
existing psychological and neurological data. It is contrary to the ability of our mind to create
flexible adaptive hierarchies as needed, with interactions among several adjacent layers
when required. It seems that the success of the hierarchical method as a general paradigm



104 Mathematical Concepts of Mind

SP DGWM

SP DGWMSP DGWM SP DGWM

S DW S DWS DW S DWS DW S DWS DW S DW

SP DGWM

IndividualObjects,
Sentences

GROUP1Group1

GROUP2Group2

GROUP3Group3

SP

SP

SP

DG

DG

DG

Points,
Tones

Lines,
Phonomes

Surfaces,
Words

LocomotionCommunicationAttention Manipulation

SERVO
Muscle Group
Control

PRIMITIVE
Link, Joint
Dynamics

K-MOVE
Obstacle avoidance

WM

WM

WM

Sensors and Actuators

SP DGWM SP DGWM SP DGWM SP DGWM

Figure 2.11-2 An organization of processing nodes such that the BG modules form a command tree.
On the right are examples of the functional characteristics of the BG modules at each level. On the
left are examples of the type of visual and acoustical entities recognized by the SP modules at each
level. In the center of level 3 are the type of subsystems represented by processing modes at level 3.

of intelligence will require development of adaptive fuzzy methods of hierarchical segmen-
tation. This will lead to the understanding of an emergent heterohierarchical organization.

2.12 SEMIOTICS

Semiotics is the science of signs and symbols, an analysis of languages of all kinds, which are
the meat and bread of intelligence: semiotics studies the sign-nature of mind. Its roots date to
Aristotle, it was formulated as a field of study in the last century by Peirce, and was reshaped
in the second quarter of this century by Morris. The founders of semiotics considered a sign
as an object (called a sign-vehicle or sign), whose purpose is to refer to another object
(designatum). This definition assumes that there is an interpreter: a mind or an intelligent
system (not necessarily human) that interprets a sign-vehicle. In the process of this interpre-
tation, an internal representation of an object is formed, called an interpretant. The process
of interaction within the triadic unity of sign–designatum–interpretant is called semiosis.
Morris decomposed this process into the three dyadic relationships-processes: (1) syntactics
studies relations among signs, (2) semantics studies relations between signs and their
designata, and (3) pragmatics studies relations between sign-vehicles and their interpreters.

Let us illustrate these concepts with a simple example. For a monkey, a red round object
on a tree is a sign for food. The juicy sweet food is a designatum. Its internal representation,
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interpretant, is a concept combining both these aspects; it acquires its full meaning in the
interaction with other concepts and emotions in the monkey’s mind (e.g., hunger, how to
get it). The monkey is an interpreter of this sign. Syntactics includes relationships among
the apple, tree, branches, other monkeys, etc. Semantics includes relationships between the
visual appearance of an apple and its edible properties. Pragmatics includes relationships
between the monkey and “a red round object on a tree.”

Consider the embodiments of these processes. A sign as well as an interpretant ought to
have internal representations. For an external sign, the representations are signals that our
sensory cells receive from the world, a sensible environment. This is the first layer (the signal
or “preperception”) layer of an intelligent system. The structure of our mind responsible
for this bottom layer is (in a gross conceptual way) similar to higher levels in the hierarchy:
it has internal models, which impose structures on the input data. Interpretants formed in
this first layer are internal signs, which are interpreted by the next layer, and over and over
again, leading to the loop of semiosis. For an adaptive system, there are (at least) three type
of loops or iterative processes involved at every layer. One loop involves a functioning of a
particular sign-symbol module, which repeats the interpretation of particular signs, as they
appear, and invokes appropriate actions. Inside this loop, there is an adaptation process in
which a sign is transformed into an interpretant. This second loop is a part of the hierarchical
ascendance loop of semiosis, which involves multiple layers of the system.

According to the basic principles of semiotics, an architecture able to perform semiosis
needs to integrate three types of knowledge: designative, appraisive, and prescriptive.
Every functioning loop of a particular sign-symbol module involves these three types
of knowledge. Designative or conceptual knowledge is contained in the internal models,
appraisive knowledge is emotional evaluative signals, and prescriptive knowledge generates
behavior. The process of interpretation, the adaptation loop, involves the three ways of
reasoning: deduction, induction, and abduction. It utilizes the existing knowledge to extract
specific rules or models (abduction), it learns from experience (induction), and this learning
is constrained by and made possible due to existing knowledge (deduction). A semiotical
architecture performing semiosis is an intelligent system.

Semiotics attained the height of its popularity in the 1960s, when the computer civiliza-
tion was as yet in an early stage and not ready for the complexity of semiotics. So semiotics
turned to art, attempting to explain it through a formal language, which art, by itself, does not
need, because art is a language. Semiotics became entrapped within the figurative metaphors
of art languages; its meaning was lost, and its original appeal withered. Many scientists
worked on bringing semiotics into the domain of science. Sebeok (1972) has shown that the
ability to use signs and symbols is not limited to human beings; he developed Zoosemiotics, a
branch of semiotics studying the role of signs in the animal kingdom. Relationships between
semiotics, symbols, communication, and information were investigated by Sebeok (1977)
and Eco (1976). A role of signs in natural physical systems was discussed by Wheeler
(1988). Today our civilization is getting comfortable in its computer age. This process is
bringing forth an important role of semiotics as a science about the sign-nature of culture,
and the role of signs and symbols in the mind. An irony of the situation is that 30 years ago
semiotics offered too much to the field of “symbolic AI,” a field that ostensibly addressed
the sign-nature and symbol-nature of knowledge, but did not possess the mathematical
techniques to deal with the complexity of the subject. Both fields lost their popularity at
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approximately the same time, but today, computational intelligence is ready for research
into the dynamic nature of signs and symbols as revealed in semiotics.

A particular aspect of semiotics, which “symbolic” rule-based AI was not ready to
address, was the complex and dynamic nature of symbols. In classical mathematics, symbols
are signs or marks denoting specific, well-defined mathematical concepts, such as numbers,
functions, and operations. But in psychology and in the general culture, a symbol is a word
loaded with a lot of meaning. A symbol is often understood not just as a sign13 for a specific
concept, but as a complicated psychological process that involves consciousness and the
unconscious, a process in which new concepts are emerging and new meanings are created.
Symbols understood in this way are adaptive entities, supporting learning. In the 1960s,
according to Minsky, rule-based AI was not supposed to explain learning; this task he
considered at the time to be too complex for existing methods. Concepts in rule systems
were static nonadaptive entities, signs designating predefined events and situations, and
not dynamic symbols. Therefore, “symbolic AI” is a misnomer, a wrong name for the first
attempt to represent the thought process using formal logic.

Mathematical semiotics is an emerging science that develops mathematical methods
describing the processes of sign interpretation and symbol formation. These processes
are closely related to the process of thought and to understanding of mind. Therefore,
mathematical semiotics should bring together concepts in classical semiotics, computational
intelligence, psychology, and philosophy. This task is complicated by the fact that significant
differences exist among the concepts, definitions, and terminology of these disciplines. For
example, the psychological notion of symbol does not correspond to the notion of symbol in
classical semiotics. Instead, classical semiotics uses a word “sign” for both a sign-vehicle
and the process of its interpretation, and uses “symbol” as a particular case of “sign.”
Throughout this book “symbol” is used according to the psychological and general cultural
meaning to denote a psychological process of the interpretation of sign, and “sign” is used
for a sign-vehicle.

The hope is that the mathematical apparatus will help to establish the correspondences
and reconcile the differences. For example, classical semiotics considers the process of
semiosis, the evolving process of the continuous formation of more and more complex signs
and symbols. Meystel relates the process of semiosis evolving in an intelligent system to his
concept of the hierarchical organization of intelligent systems; he concludes that semiosis is
a hierarchical multilevel process, and should involve hierarchical internal representations. A
mathematical theory of the dynamic symbol as a thought process is described in Chapter 10.

2.13 EVOLUTIONARY COMPUTATION, GENETIC ALGORITHMS, AND
CAS

What is the original source of the a priori information? Where are the a priori structures
coming from? In the engineering applications of rule-based and model-based approaches,
the a priori knowledge is specified by the designers. Evolutionary computation (EC) and
genetic algorithms (GA) are mathematical techniques designed according to concepts of
genetic evolution with the goal of explaining the evolution of internal a priori structures
of mind.
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EC is a broad research area developing mathematical methods and algorithms for
intelligent systems and applications in many fields, which are inspired by the concept of
natural evolution. Many EC systems are built of agents and the adaptation is achieved
by (1) generating new agents and (2) selecting good agents and their combinations and
discarding bad agents and their combinations; various appropriate measures of fitness are
used for this step.

An important difference among various directions in the EC field is illustrated by
GA vs. evolutionary algorithms (EA). GA operate on adaptive systems organized in two
levels, genotype (a priori model) and phenotype (individual “acquired features”). Fitness is
measured by the overall phenotype performance, so the performance feedback is available
for the entire set of genes (genotype) for each agent, but not for each gene (allele). Also,
genetic operators do not guarantee the preservation of the genotype of the best individuals.
EA operate on a single-level system of phenotypes. Performance feedback is available for
each feature of the phenotype, and the phenotype is considered as the “genetic information.”
One could say that GA model the evolution process at the individual level, whereas EA
model the effect of evolution at the level of spices. A unifying theme in EC is that these
type algorithms combat combinatorial complexity by accumulating past experience. This
accumulation is not linear, but combinatorial: every generation “tests” not just individual
genes, but, in some indirect way, all combinations of all subsets of alleles (schemata) present
in the population are tested in each generation. On average, the proportion of each schema
that provides for an evolutionary advantage exponentially increases in the population. In
the next section we consider a GA technique developed by Holland.

2.13.1 Complex Adaptive Systems (CAS)

Holland searches for the solution of the issues of adaptivity, apriority, hierarchical organi-
zation, and combinatorial complexity in his theory of intelligent complex adaptive systems
(CAS). This section briefly reviews the concept of CAS organization that includes genetic-
type algorithms for learning and evolution.

CAS are composed of intelligent agents. Each agent is a “simple” if–then rule:

if (a) then (b) (2.13-1)

The if part of an agent tests conditions, and the then part performs actions. In a simple
case, an agent is a Pavlovian stimulus–response arc: a is a signal detected by a sensor,
and b is an action performed in the environment by an actuator. A powerful generalization
proposed by Holland is to consider a and b as general type messages that can be received
and sent by agents (a is an a-message receiver and b is a b-message transmitter). A general
type message can be considered as a string of three types of digits: (0,1,#), where # means
“don’t care,” so that, e.g., a message 011001 can be received by a= #11#0######. Holland
envisions swarms of agents sending and receiving messages: some messages might come
from sensors or could go to actuators, but most devote their activity to internal thinking
process: building and estimating internal models.

For agents to be adaptive, there should be ways (1) to generate new rules (new a- and
b-message receivers and transmitters) and (2) to select good rules and their combinations
and to discard bad rules and their combinations. Holland considers genetic algorithms for
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rule generation and two types of algorithms for rule selection. New rules are generated by
two types of genetic operators, crossover and mutations. Crossover acts in the process of
“mating” of two parental agents: with certain probability, two agents mate and produce an
offspring. An offspring is a new agent with a-message receiver or b-message transmitter
obtained from the parental ones by a crossover operation, an exchange of substrings between
two message strings as illustrated in Fig. 2.13-1a. A crossover point along the strings is se-
lected randomly. A crossover mechanism of the new rule generation provides for utilization
of accumulated experience: new message strings are formed from existing building blocks,
substrings. And, with appropriate rule-selection algorithms, useful substrings propagate
to offspring more often. Mutations act by random replacing of a single character by a
different one, as in Fig. 2.13-1b. Mutations are needed to retain adaptivity even within those
substrings that came to dominate the population genome. In biological systems, mutations
are rare events (and this has to be so, since they effect random deviations from what is
known to be good).

An algorithm considered by Holland for rule selection is a credit assignment algorithm,
which is a variant of Adam Smith’s capitalistic “invisible hand.” According to this algorithm,
agents within a CAS system are in competition for posting their output b-messages on a
“web page.” They “bid” for a limited number of available slots and higher bids win. They
have to pay with available “cash.” Similarly, agents are in competition for using input
information that they have to “buy” from the web page. Cash paid is credited to the posting
agent. Every agent posting a message also posts a bid price for using his message. Price is
recorded within the b-message, so it is also a subject of adaptation. An ultimate source of the
cash floating around the system comes from the outer world, when a system gets “food” or
other vital resource (in an engineering system, it could be any desirable performance goal,
say a stock market gain). I prefer a fuzzy modification of this algorithm, according to which
all agents post their messages with a fuzzy strength (weight or probability) corresponding
to the usage of their messages by other agents, and utilization of messages is proportional to
their relative strengths. This fuzzy modification is preferable on theoretical grounds (it adds
stability and speeds up learning) and is reminiscent of neural connection weights, which are
strengthened when used and weakened from disuse. This algorithm potentially leads to an
evolution of the CAS system (a population of agents). The evolution is not necessarily a very
stable process; there could be strong fluctuations in efficiency (similar to those that occurred
in early capitalistic societies). Still, it might be expected that in competition among agents,
a gradual evolution of a CAS system will occur: those agents that use “good” information
as their input eventually get better rewards from the environment, they can better pay their
“suppliers,” and, accordingly, “good-message suppliers” get paid more and can exert a
stronger influence on the system performance.

Figure 2.13-1 Genetic operations of crossover (a) and mutation (b).
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Another algorithm for rule selection is a genetic selection algorithm. According to this
algorithm, the probability of mating among agents is proportional to their fitness. Fitness
can be determined by direct “survival” in an environment, or by the amount of “cash”
accumulated by each agent according to the credit-assignment algorithm. Thus, offspring
in each generation are expected to outperform the average fitness of the population. To
prevent overpopulation and speed up the adaptation, lower fitness agents can be replaced
randomly by the new (offspring) agents, or the life span of an agent can be limited (and
related to its fitness).

In CAS systems and genetic algorithms, the unit of adaptation is not an individual
agent, but a population or system of agents. Evolutionary “pressure” leads to selection
of “good” building blocks or schemata. Schema is a mathematical notion corresponding
to a generalized concept of a collection of building blocks (or substrings) that coevolves
in the evolution process. A schema may include “ignored” positions (*); for example,
schema 1#**#***** includes all strings beginning with 1# and having # in the fifth place.
Schemata are not used in the algorithms, but for mathematical analysis of genetic algorithms.
Mathematical analysis and computer simulations indicate that genetic algorithms and CAS
system organization lead to exponential growth of the proportion of “good” schemata in
the population, and therefore lead to increased fitness of the population of CAS systems.

Unsolved problems in CAS theory include insufficient understanding of how to make
sure that a population of agents continues efficient evolution in complex systems with long
genetic codes and with significant random deviations of payoffs from average fitness values.
The difficulties are of two types: if evolutionary pressure is strong relative to other factors,
the learning is fast and a system may quickly come to a suboptimal equilibrium point. This
effect is exacerbated for small populations. If evolutionary pressure is weak, for a large
population with randomness in individual payoffs, there might be a tendency to preserve
too much diversity in the population, crossovers might break good schemata faster than
they propagate in the population, and no evolution occurs.

2.13.2 CAS: Complexity vs. Fuzziness

Let us review the conundrum of combinatorial complexity vs. CAS systems. Throughout this
chapter we made the point that fuzzy logic is needed to eliminate combinatorial complexity.
But genetic algorithms and CAS systems, at first glance, do not use fuzzy logic: genetic code
is a nonfuzzy string of characters. So, where does the resolution of combinatorial complexity
come from? To answer this question, let us analyze the potential for combinatorial explosion
of CAS and the means by which it is resolved. We will see that combinatorial explosion is
avoided in CAS by means of fuzzy logic acting at the level of schemata.

We begin this analysis by comparing genetic algorithms to a naive adaptation approach:
by trial and error. Denote the length of a genetic code by L (this is a combined number of
characters in a- and b-messages). The total number of if–then rules with theL-length code is
3L, since any of the three characters, (0,1,#), might occur at any of theL places. For moderate
complexity codes with L = 100, the total number of rules is 3100 ∼ 1048. This very large
number, comparable to the size of the universe, is the very familiar combinatorial explosion.
Although it is good that CAS systems have such a potential for diversity, it is clear that this
large number of rules cannot be evaluated by trial and error. Clearly, even a very small part
of this problem cannot be approached with brute-force trial and error combinatorics. The
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power of genetic algorithms is that they do not search randomly, but use past experience for
directing future searches and build new rules from building blocks identified in the past. The
information about past experience is accumulated in the proportions of various schemata
in the population. A unit of adaptation is a schema rather than an individual agent.

Compare information representation in an agent and in the population genome. An
agent is characterized by its “genetic code,” (a,b), which we will denote g = (a,b) =
(g1, . . . , gL). For the following conceptual analysis it is convenient to consider each gi as
taking one of two values, 0 or 1 (in the Holland’s formulation, gi takes three values, but since
any number can be expressed in binary as well as in ternary code, these representations are
conceptually equivalent). Every g-code defines a crisp logical if–then statement. Consider
now a proportion of each allele (a gi value) in the population. The proportion of gi = 1
is given simply by an average value of gi in the population. Let us denote the average by
ri = gi , so that the average g-code is given by r = (r1, . . . , rL). Now, r is a fuzzy and not
a crisp statement about the allele values. This is even better seen from the fact that there is
uncertainty or fuzziness associated with each ri . This uncertainty can be characterized by
the variance, ci = (gi − ri)2 = ri(1 − ri) (see Problem 2.13-1). If the entire population has
gi = 1, the variance is zero (of course, the same is true if all gi = 0). Thus, schemata can
be viewed as fuzzy submodels with expected values ri and variances ri(1 − ri) represented
by a population of nonfuzzy, nonadaptive individual agents.

I would like to emphasize the relationship between fuzziness and the noncombinatorial
nature of CAS adaptivity. CAS agents are nonfuzzy and nonadaptive. CAS schemata are
fuzzy and adaptive. The genetic mechanism of preferential reproduction for better fitted
agents creates a gradient in the space of parameters of fuzzy schemata leading to schemata
adaptation. This evolutionary gradient is in the direction of increased fitness due to a
mechanism that allocates fitness (or cash) to schemata, as an average fitness (or cash)
of agents belonging to each schema. The very existence of a gradient and possibility for
adaptation is related to the fuzziness of the schemata.

2.14 NEURAL FIELD THEORIES

2.14.1 Grossberg’s Method: Physics of Mind

Deliberative argumentative thinking is a small part of what our mind does. A theory of
intelligence founded on the paradigm of logic, like Soar, is driven by a specific type
of intuition, a mathematical intuition. Mathematical theories are governed by a type of
intuition, which is abstract and related to a sense of beauty of the internal structure of a theory.
Soar was initially developed as an elegant mathematical tool for solving toy problems.
Only much later did a serious effort toward relating Soar to the wealth of experimental
psychological data begin. Scientists are different in the type of intuition that drives the
development of their theories. Physical theories are different from mathematics in that they
are driven by an intuition about the structure of the world. The beauty of a physical theory
is in the sense of relationship between the world and its mathematical description.

The development of the physical theory of mind was initiated by Grossberg in the
late 1950s. His physical intuition approach combines mathematics with the wealth of
psychological and neurophysiological data. In his early work during the 1960s and 1970s,
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Grossberg developed a number of neural mechanisms that later became very popular;
these include additive neural network, instar and outstar architectures, competitive and
cooperative learning, and mechanisms of emotional control in recognition, learning, and
attention. One significant aspect of his work he describes as a progressive “unlumping” of
the lumped mathematical models, leading to ever finer identification of neural processes. But
the very initial mathematical approach corresponds to the physical intuition about working
of the mind.

Grossberg’s method starts by identifying a minimal but fundamental realistic envi-
ronmental constraint, to which a species must adapt for survival. The solution to this
problem dictates a principle of behavioral organization. This principle is then formulated
mathematically, using the simplest mathematical procedure adequate for the task. This
general approach implements a centuries-old paradigm of the general scientific method:
mathematical minimality of the solution is the Occam’s razor that minimizes the number of
independent principles. However, a fundamental question comes up related to the evolution-
ary development of our mind and brain: the prior evolutionary history may prevent the mini-
mal solution. Thus, a mathematical solution to a particular behavioral organization principle
has to be “embedded” into the properties of several principles acting together. The result is
what Grossberg calls the embedding field theory. His theories are field theories in that they
describe the collective or interactive properties of neural networks. Some of the fundamental
principles of neural organization found by Grossberg and his co-workers are outlined below.

2.14.2 ART Neural Network

In the adaptive resonance theory (ART) developed by Grossberg and Carpenter, perception
is a resonance between afferent and efferent signals, that is between signals coming from
the outside, from sensory cells receiving external stimuli, and those coming from the inside,
that is signals generated by a priori models. For example, visual perception is a process of
resonant matching between stimuli and models of elementary objects of visual perception
contained in the retina and visual cortex.

ART is a theoretical principle of the structure of adaptive robust feedback connections
between two different levels of a neural network. One level is cognitively “higher” than the
other. For example, visual cortex vs. thalamus (lateral geniculate body of the thalamus that
preprocesses visual information), or visual association cortex vs. visual primary cortex.
In ART, a single node at the “higher” level encodes patterns of node activities from the
“lower” level. This higher level node is a concept-object: it recognizes an individual object
in the lower level node activities. The lower level input pattern activates higher level nodes,
the synaptic connections of which it matches. The term “resonance” refers to a coherent
dynamic state that arises from matching between an input lower level pattern and a stored
prototype pattern. The stored pattern is represented at the synaptic connections from the
higher to lower level and is activated by a higher level node. Perception corresponds to the
resonant state between the concept and the data. When a resonance occurs, both the bottom-
up filter (recognized object) and the top-down prototype (concept) are updated. Therefore,
the resonance is called adaptive. Also, the resonance takes a sufficiently long time (relative
to the decay rates of individual cell excitation), so that the long-term memory (LTM) can
be updated to store modified short-term memory (STM) patterns. The LTM update is a
long-term learning mechanism in ART.14 In addition to ART being a fundamental principle in
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the perceptive and cognitive neural organization, Grossberg identified adaptive resonances
in nonneural tissues. Adaptive resonance seems to be a basic design principle of the model-
based development. ART is a universal mechanism for perception and cognition. It provides
a mathematical framework for the Aristotelian concept of mind as meeting between the a
priori Forms (internal concept-models) and matter (external stimuli-object).

The ART architecture is illustrated in Fig. 2.14-1. The input signal contains sensory
data or lower level concepts (objects) that already have been recognized at a next lower level
processing. It is temporarily represented at the STM in the F1 field. This representation is
affected by the input signal and by the existing expectations generated by the LTM. The LTM
contains a priori15 concept-models of a higher level. Several concept-models may partially
correspond to the signal representation in F1. This partial correspondence excites the bottom-
up pathways, in which the LTM traces of these concept-models are stored. The result is
an excited temporal (STM) representation of an input signal in F2, a template of the input
signal. This template, therefore, is a result of interaction of the input-signal representation
and a priori internal model-concepts. It matches neither of them perfectly. But it partially
matches some of the a priori concept-models and, therefore, excites top-down pathways, in

Figure 2.14-1 Adaptive Resonance Theory (ART) top-level architecture.
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which the LTM traces of these concept-models are stored. Changes in excitations of top-
down pathways modify the STM representation of the input signal in F1, so that it better
matches a particular a priori model-concept. A loop involving iterative modifications of
F1 and F2 STMs may gradually lead to a high degree match between them, a match that
corresponds to a particular high-level concept, and to a state of resonance between F1 and
F2. Recognition of a higher level concept occurs when there is a match between the top-
down expectations generated by a higher level concept and bottom-up input signals. If the
iterative process does not lead to a match, the orienting system reinitiates the context used
for the search of recognition or generates a new higher level concept. This entire process of
cognition is modulated by affective (emotional) signals related to basic instincts or drives,
as discussed in the next subsection.

The original ART network utilized winner-take-all competition among concept-models
in the F2 field. The winner-take-all mechanism enhances activation of the matched concept-
model and reduces activation of mismatched ones, until a single activated concept remains.
It guarantees stable and fast learning, but may lead to unwarranted multiplication of the
number of concept-models. In distributed ART (dART) networks, matching and learning
alternate between winner-take-all and distributed learning. In distributed learning, multiple
concept-models are active concurrently, and neural connections are strengthened for all
activated concept-models. Also in dART, traditional neural pathweights are replaced with
weights that are functions of the difference between the signal and an adaptive threshold. In
both these aspects, dART is similar to the modeling field theory neural networks described
in this book

An experimental discovery of a resonance recognition process in cortex was made by
Freeman in 1975. He found that when a cat smells an expected scent, its cortical potentials
are amplified until a synchronized oscillation is achieved across the cortical region. The
oscillation becomes a coherent spatiotemporal pattern. A recognized scent (an “olfactory
concept”) is represented as a spatial pattern of activity across cortical cells. By contrast,
when a cat smells an unexpected scent, the cortical activity is suppressed.

In ART neural networks, higher level concepts compete for the evidence in the input data
patterns. Competitive mathematics describes this process analogously to the Bayes equation,
resulting in a probabilistic physics of choice between competing hypothesis. Grossberg
hypothesized that the probabilistic physics of our psyche may explain effectiveness of
probabilistic theories in many of their aspects. Probabilistic physics leads to more powerful
algorithms than the combinatorial search of multiple hypothesis testing (MHT). MHT
algorithms discussed in Chapter 1 were designed to utilize explicit models; they turned
out to be limited by the combinatorial complexity of computations. The original ART
formulation did not combine competitive learning with complex a priori models. ART’s
efferent patterns, generated by higher level concepts, were based on learning by remem-
bering past experiences: by remembering previously encountered patterns or by averaging
several similar patterns. The computational concept of this learning was equivalent to the
nearest neighbor. This led to misunderstanding of ART as a nearest neighbor algorithm. The
power of ART is in providing a general mathematical description for the interaction between
two different levels of a neural network. And ART’s power is fully realized when it is a
part of more complex neural systems so that a higher concept-level encodes complicated
patterns by combining adaptivity with complex a priori structures (models). Such more
complex neural systems are being developed by Grossberg and his co-workers. Modeling
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field theory developed in this book can be viewed as a further development of the theory
of mind in the direction initiated by Grossberg: as a neural field theory, which combines
adaptivity with complex a priori models.

2.14.3 Illusions and A Priori Contents of Vision

In the area of vision, Grossberg discovered neural mechanisms responsible for preattentive
processing of visual information in retina, lateral geniculate, and visual cortex. His research,
in addition to physical intuition, was guided by analysis of visual illusions. Analysis of
illusions was used to deduce a number of specific mechanisms, or a priori models used by
the visual system. In particular, Grossberg’s group discovered a long sought mechanism
of discarding illuminance: how does the visual system achieve a remarkable constancy of
perception, independent from variations in illumination. These mechanisms include models
used by the visual system to enhance contrast and to complete perceptual boundaries.

Analyzing the concrete content of a priori perceptual models, Grossberg methodologi-
cally continues the Kantian approach to elucidating contents of a priori knowledge. Kant’s
investigation of reason included systematic elucidation of contents of a priori knowledge
based on antinomies of reason. Similarly, Grossberg’s physics of mind, when analyzing
the visual perception, included systematic elucidation of the a priori contents of the vision
system based on illusions or antinomies of the visual perception.

Visual measurement is fundamentally limited by being dependent on illuminants, their
spectral content (color) and position relative to a scene, it is affected by shading, by not
having a direct measurement of depth or range to objects, by not knowing what are the
boundaries of objects and what are accidental or shade boundaries, and by the whole
set of other ambiguities. Visual perception has to compensate for this uncertainty. This
compensation is achieved by using a priori knowledge about what elements of the scene
are important and how they should be combined to compensate for the uncertainties. This a
priori content, or models of visual perception, form a heterarchical system, that is a system
that combines parallel and hierarchical processing. Previous analyses of the visual system
assumed existence of independent modules (e.g., for edge detection, segmentation, shape
from shading, estimation, object identification); it led to difficulties related to the basic
uncertainty of the visual measurement: uncertainties at every processing stage led to more
uncertainties at the next stage. Grossberg found that the resolution of these uncertainties
is achieved through parallel interaction among several modules, boundary contour system
(BCS), feature contour system (FCS), and binocular vision.

The BCS controls the emergence of a 3-D segmentation of a scene. It detects, enhances,
and completes boundaries and groups textures. And it performs a matching of the emerging
boundaries between the two eyes; this binocular matching process is sensitive to disparity
and scale. The outcome of the BCS segmentation process is perceptually invisible. Visible
percepts emerge from the FCS. A BCS segmentation regulates the processing of color
and brightness by the FCS. This is a hierarchical process controlled by the segmentation
hierarchy. Signals within the FCS interact with the BCS signals to control a featural filling-
in process, which results in the extraction of color and brightness signals that are relatively
unaffected by illumination. These processes lead to visible percepts of color, form, and
depth. The overall process is mostly automatic and preattentive; still it influences and may
be influenced by attentive object recognition processes.
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2.14.4 Motor Coordination and Sensorimotor Control

One difficulty in studying control structures of motor behavior and their coordination with
sensory systems is that large numbers of brain regions are utilized to control even relatively
simple systems. For example, at least eight different brain regions are involved in a control of
saccadic, or ballistics eye movements, a relatively simple type of motor behavior. Studies
limited to performance characteristics turned out to be inadequate for discovery of the
organization principles coordinating a large number of circuits in a distributed system.
Grossberg and co-workers concentrated on developmental and learning problems that have
to be solved by a brain system in order to form an adaptive relationship with the environment.
This led to a “rapidly expanding understanding of brain mechanisms.” Principles of adap-
tation are fundamental in determining the design of behavioral mechanisms. For example,
adaptation requires error correction, but individual neurons are not able to measure the
accuracy of movements. Self-correcting mechanisms are embodied in the neural network
as a whole.

Consider the problem of learning a coordination between eye–head and hand–arm
movement, which is solved by every infant. Each of these two adaptive systems learns a
representation, or map, of intended target positions and current position. They are matched
in the error-correction process. Coordination between the eye–head and hand–arm systems
involves only the target positions. Therefore, learning of intermodal map coordination is
gated by intramodal matching. This illustrates the involvement of several circuits in the
self-calibrated behavior development. Gated learning is one of the universal principles of
sensorimotor control.

Other universal principles include mechanisms of distinguishing self-movement from
world movement and two types of control mechanisms associated with continuous and bal-
listic movements. Distinguishing between self-movement and world movement is needed so
that the error-correcting mechanism does not destroy its own correct parametric calibration
in response to world motion. Continuous and ballistic motion mechanisms use different
approaches to computing target and present positions and to their comparison through time.
They also use different approaches for distinguishing between self-movement and world
movement.

Among the universal principles is also the need to learn motor synergies, rather than
individual muscle commands. Specialized neural networks are employed for coordinated
control of multiple muscle groups. These control mechanisms can be characterized as
parametric models. In the process of motor behavior, these models are adapted to the
need of a specific task by controlling a few of their parameters. Consider, for example,
handwriting: having once learned to write, one can write very small or large letters without
retraining. And even the individual features of the one’s handwriting are preserved. This is
related to the fact that in handwriting, as well as in other complicated motions, multimuscle
coordination is achieved by changing only few model parameters: the relative motion of
muscles remains invariant.

According to Grossberg’s models, the main principle of motor learning is the negative
feedback and error correction. This is different from the resonant principle of sensory
learning, which involves positive feedback. Grossberg suggested that consciousness is
related to the resonant state in ART neural networks; this explains why motor learning
is usually unconscious.
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2.14.5 Emotions and Learning

The field was pioneered by Grossberg, who was far ahead of his time, when in the 1970s
he began to study emotions as an integral part of learning and behavior. He has shown
that emotional or affective signals act as reinforcers and inhibitors interacting with the
formation of sensory representations. Emotional or affective neural circuits are related to
basic instincts or drives. Their role is to evaluate the sensory signals as indicators of desirable
or undesirable conditions with respect to the satisfaction of the basic needs of the organism.
Signals generated by emotional circuits are intended to produce actions that will satisfy the
basic instincts. Emotional circuits are of a more ancient origin than logical thinking, they
are “more directly” responsible for survival, and therefore they could be expected to effect
an omnipresent influence on the thinking process. This fact is well known in psychology,
and can be observed by everybody in their own day-to-day decision processes.

Despite these known facts about the role and origin of emotions, the logical rule-based
approach of expert and production AI systems does not have evaluative mechanisms similar
to emotions. Just the opposite, as we saw in Soar’s mechanism of preferences, evaluation
is implemented through logical rules. In other words, rule systems attempt to implement
emotional mechanisms through logic; this is contrary to the established biological and
psychological facts about natural intelligence. And we saw that this evaluation mechanism
for competing hypothesis is inefficient; it led to a combinatorial explosion. At the beginning
of the AI era, adequate mathematical ideas of the role and internal representations of
emotions were missing. These mathematical concepts were to a significant extent developed
by Grossberg and his co-workers.

ART Fig. 2.14-1b illustrates (at a conceptual level) the existence of neural connections
between sensory–cognitive processes and internal drives. These circuits are further elab-
orated in Fig. 2.14-2. Let us introduce the terminology used for describing this figure.
A stimulus is a perceived external event that stimulates a reaction. A designation of
“unconditioned stimuli” is used for those stimuli that appeal “directly” to internal drives
and do not need to be learned, such as a smell of meat for a hungry dog (it is possible that
all or many of “unconditioned” stimuli were learned at an early age). All other stimuli have
to be learned, or conditioned by experience, and are called conditioned stimuli (CS). The
top of Fig. 2.14-2 shows processes in the F2 field of an ART circuit. A sensory system
faces a continuous stream of signals, some of which resemble previously learned CS.
During the process of perception, each CS elicits an internal sensory representation (Scs)

in the F2 field. These representations compete for the short-term memory resources in F2

(as described in Section 2.14-2 on ART). The activated Scs produces signals to the drive
representation D. If these signals are strong enough and the drive signal is strong enough,
this combination produces a signal from D to Scs, enhancing this particular representation
in its competition with other sensory representations. In this way, internal drives produce
emotional signals (also called affective or motivational signals), which affect the recognition
process in sensory–cognitive circuits.

Note that there are neural cell populations related to particular drives that are sep-
arate from cells encoding sensory representations. Repeated occurrences of a particular
CS together with activation of a drive representation lead to strengthening synapses of
neural connections between the corresponding Scs and D. This is the process of learning
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Figure 2.14-2 Emotional signal circuit top-level architecture.

the CS. Strengthening of pathways from Scs to D is called the learning of conditioned
reinforcers. Strengthening of pathways from D to Scs is called the learning of motivational
incentives. The conditioned S → D → S pathways shift the attention toward previously
reinforced sensory signals, which corresponds to the drives active at a given moment. Thus,
a potentially desired object is paid more attention and is preferentially recognized in the
continuous stream of signals/stimuli.

A detailed explanation of the temporary dynamics of many conditioning or learning
processes requires an additional circuit embedded in the drive representations called a
gated dipole. A gated dipole is a neural mechanism of psychological opponent processes,
a universal principle shared by perceptive and emotional systems. Dipole fields describe
well-known psychological effects. For example, when a red field is presented to an eye,
and than suddenly changed to a white field, there is a transient aftereffect: for a short time,
the white field is perceived as a little greenish. A similar aftereffect exists in the emotional
circuits: a small constant negative stimulus (a shock) naturally generates negative emotions.
When the negative stimulus is withdrawn, a positive emotion is generated although “nothing
positive” occurred. Grossberg’s gated dipole circuit explains this effect due to the interaction
of three factors. First, both opponent cells reacting to an onset and offset of a stimulus are
constantly in a state of a low-level nonspecific arousal. Second, the opponent cells are
mutually inhibiting each other. Third, when a specific stimulus is presented, it excites the
corresponding onset cell; while this cell is excited, a gradual depletion of neural transmitters
occurs along the excited neural pathways. An offset of the stimulus lead to the offset-cell
pathways overtaking the onset ones, whose neural transmitters have been partially depleted.
This is a universal principle leading to adaptation to the status quo, so that changes are
emphasized over the status quo in perception as well as in emotional states.
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Let us summarize in a simplified way the principal difference between the roles of
emotional and conceptual–cognitive signals: concepts are representations of the world “as
is” (say, “red” or “chair”); emotions are evaluative signals: “good” or “bad.” Grossberg has
shown that perception, attention, and cognition are not just “logical conceptual processes
according to the categories of logic,” but are affected by emotions related to the basic
instincts. In Chapter 10 we will see that even the most refined and abstract thinking processes,
when no basic instinct seems to be involved, are impossible without instincts and emotions.
Our analysis will demonstrate that thinking is related to and is impossible without a basic
instinct to learn. The special types of emotions related to this instinct are responsible for
the higher mental abilities, including perception of beauty.

2.14.6 Quantum Neurodynamics

It is well known that our eyes can register a single quantum of light, a photon. However, we
know much less about quantum-level mechanisms that might be operational in the neural
networks of brain. Are processes at the quantum level important for understanding funda-
mental psychic phenomena of perception, cognition, memory, affect, and consciousness?
An alternative view is that psychic processes occur only as a result of the interaction of
very many ions, electrons, and photons. So that all effects specific to quantum physics
average out and classical physics is sufficient for understanding of the mind. This latter
point of view was prevalent among biologists and neural scientists until recently. But in
the late 1980s and 1990s increased attention was drawn to the possibility that quantum
processes could be essential for the understanding of the mind. Several factors stimulated
this interest. In neurons and synaptic connections there were identified microstructures
related to specific mechanisms of information processing in neural networks, and which
operate at the quantum level. Quantum laws are seen by some researchers as the key to
explaining mysterious properties of the mind. Progress was made in understanding how to
build quantum computers.

A quantum system, while transitioning between observable states, may pass through
a large number of intermediate states “in parallel.” This promises a possibility for the
parallel processing of information at a capacity unimaginable for classical computers. This
quantum behavior is due to the uncertainty principle, which could be described by saying
that a quantum system exists in multiple spatial and temporal locations, and in some sense
could “sense its future.” Among the first quantum physicists studying biological systems
was a founder of quantum mechanics, Schrödinger. His 1944 lectures identified many of
the issues that were later studied in a new field of molecular biology that emerged over
the next decade. A first attempt to develop quantum field principles of brain organization
was made by Umezawa in the late 1960s. This approach was termed quantum brain
dynamics (QBD). The essential idea of QBD is that quantum effects are important in
the brain on macroscopic scales. Quantum fields and their quanta appear in QBD as
collective excitations of a large number of atomic and molecular states, such as the molecular
vibrational states in long biomolecules. Quantum fields interact with a classical dynamic
system of transmembrane ionic diffusions and macroscopic neural networks. Umezawa
and his school developed a mathematical apparatus of quantum field theory applicable
to QBD and suggested identification of several quantum field phenomena with psychic
processes. Among quantum phenomena emerging in QBD are symmetry breaking, leading
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to phase transitions, and emergence of a Goldstone boson, a coherent propagation of a
symmetry-restoring wave. Memory formation is explained as a phase transition process,
from a higher symmetry to a lower symmetry state. Memory recall is explained due to
Goldstone bosons.

Quantum effects on macroscopic scales were observed in laboratory experiments, still
there is no evidence that they take place in the brain. Also, from psychological and engineer-
ing standpoints, QBD is still in an incipient stage: it has not explained any psychological fact
better than theories based on classical physics (like Grossberg’s), nor has it generated new
mathematical insights into engineering problems. Considering applications of quantum
fields to the theory of mind and brain, three directions can be identified: direct use of
quantum theory as the first-principles theory of the physical substrate of neural systems,
direct use of quantum theory to design quantum computers and quantum neurocomputers,
and metaphorical use of quantum theory as a source of mathematical methods for describing
processes of classical systems. The role of QBD as the first-principles quantum theory of
neural processes was not yet proven. But other approaches seems more promising in this
regards, such as analyses of the microstructure of neurons. Also, serious efforts are underway
to design “quantum computers.” Chapter 8 outlines quantum modeling field theory (QMFT),
a description of a quantum device implementing modeling field theory.

2.14.7 Modeling Field Theory

Modeling field theory (MFT) is the main subject of this book. The theory is developed in
Chapter 4, and several of its engineering applications are described in Chapters 5 through
7. As a neural architecture, MFT is similar to ART. It makes a next step in the direction of
the development of the general mathematical technique combining learning and adaptation
with utilization of complicated a priori knowledge (or domain knowledge in engineering
applications). A priori knowledge in MFT is utilized in the form of compositional internal
models: MFT models are composed of multiple submodels, which can interact or be
independent from each other in varying degrees. These submodels correspond to objects or
concepts in the outside world or in the “sub-concept-signals” identified at a lower processing
level. The learning dynamics of MFT is determined by maximization of similarity between
the models and the world.

Philosophically, MFT implements the Aristotelian theory of mind as a priori Forms
(models) interacting with matter (sensory signals). Mathematical analysis of MFT, when
combined with the semiotical analysis of the nature of signs and symbols, leads to the
conclusion that the process of adaptation of an MFT submodel describes a symbol-process.
When the mathematical analysis of MFT is combined with the analysis of the role of
emotions in cognitive processes and with the Kantian analysis of the structure of mind,
it leads to the conclusion that MFT describes a new type of basic instinct or drive, an
instinct for increasing the internal knowledge about the outside world, or, in short, an
instinct for knowledge. This instinct leads to “higher emotions” serving as a foundation
for the ability to perceive beauty. This role of MFT in the total architecture of intelli-
gent systems is described in Chapter 10. It leads to the possibility of the mathematical
understanding of beauty as a property of very complex adaptive systems, a mechanism
of adaptation related to the overall system goal, which might not be entirely specified
a priori.
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2.15 INTELLIGENCE, LEARNING, AND COMPUTABILITY

2.15.1 Computability: Turing vs. Physics

In 1900, Hilbert formulated 23 fundamental mathematical problems, the purpose of which
was to complete the axiomatization of mathematics and to define forever the rules of
mathematical procedures. Hilbert’s tenth problem, Entscheidungsproblem, was to answer
the question if, in principle, there can exist a universal mathematical procedure for solving
any mathematical problem (within a definite but sufficiently reach domain). The answer
was found by Turing, who proved that a universal mathematical procedure does not exist.
In search of the proof, Turing formulated the concept of algorithmic computability as an
existence of a solution to a mathematical problem that can be computed in a finite (unknown
beforehand) number of steps. A step is one of several simple predetermined operations, such
as addition, or a selection of the next operation depending on the result of the previous one
(e.g., a computer language statement).

When analyzing concrete algorithms in connection with the existence of procedures of
the MHT type, which, although finite, may require an unphysically large number of steps,
the Turing formulation of algorithmic computability is insufficient. A physical algorithmic
computability, accounting for computational complexity of algorithms, can be formulated
as a bound on how fast the number of steps or operations grows with the growth in
complexity of the problem. To define the concept of physical computability, let us introduce
a parameter or a set of parameters, D, characterizing the problem complexity; D might
include the dimensionality of the classification space, the number of classes, the number of
measurements, etc. If the number of required operations,N > Dn, for anyn [nonpolynomial
complexity, such as exp(D)], the algorithm is of a physically noncomputable type. If a
number of required operations, N < D· constant for some finite value of the constant, then
an algorithm is physically computable; but if in addition there exist a parallel algorithm
formulation that permits using P parallel processors to solve the problem in N < D/P

steps, then the algorithm is physically computable in real time. That is, by increasing the
number of processors with increases in the complexity of the problem, a solution can be
achieved for the problem of any complexity within a constant (nonincreasing with the
problem complexity) time interval.

There exists a field of mathematics studying computational complexity of algorithms.
A fundamental result obtained in this field states that there are several classes of computa-
tional complexity of problems. Some problems can be solved by algorithms of polynomial
computational complexity, while others are inherently nonpolynomial (e.g., exponential
or combinatorial) in complexity. In other words, there are nonpolynomial problems for
which no polynomial algorithm can be found. These results are now being questioned by
a theoretical possibility of quantum computing. A quantum system may exist at once in
a superposition of multiple states. For example, electron motion can be described as a
concurrent “evaluation” of a large number of combinations of various trajectories. But an
electron moves in finite time; it does not need combinatorial time to figure out how to
move. If a quantum system can be devised, where electron motions are used to “compute”
various parts of a problem along each trajectory segment, such a system would “violate”
the difference in principle between polynomial and nonpolynomial problems. Whether a
general purpose quantum computer with the desired property can be built is still a subject
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of some controversy. But the fact that every quantum system is a “special-purpose” device
that efficiently computes its own states seems to violate the basic tenets of the existing
computational complexity theory.

2.15.2 Computational Methods of Intelligence: Summary

Let us summarize the discussion of the mathematical methods of describing intelligence
reviewed in this chapter. A physical theory of mind ought to satisfy first, apriority (or an
ability to utilize complicated knowledge); second, adaptivity (or an ability to learn from
a limited number of examples in a changing world), and third, physical computability in
real time (or an ability to solve the problems of sufficient complexity within the limited
time interval). Classical mathematical methods, as we have seen, do not satisfy these
requirements and are not appropriate as a foundation for physically acceptable concepts of
intellect. A number of new computational methods emerged during the 1980s and 1990s that
attempt to combine apriority, adaptivity, and physical computability. The most promising
among them include neural fields, hierarchical organization, evolutionary computing, and
fuzzy logic. The remaining part of this book is devoted to the development of the modeling
field theory of mind that promises to fulfill a need for the physical theory. We will also discuss
its relationships to the other emerging computational concepts and ways of combining their
most promising aspects.

NOTES

1. Let us explain again the origin of the term combinatorial. In many algorithms it is needed to
consider combinations ofN points byM groups (forM models). The number of these combina-
tions isNM = exp(N ln M). For medium-sizeN andM this number is very large and it grows
fast withN andM . Fast-growing functions of this type are called combinatorial or exponential.

2. Throughout this book, when referring to Aristotelian logic, I always mean the contemporary
formalized understanding of the logic developed by mathematicians in the eighteenth and nine-
teenth centuries from Boole to Russell. Aristotle considered logical statements to be linguistic
sentences. He was aware of the uncertainties inherent in language and in every statement.
In Metaphysics, he emphasized that it is necessary to use common sense to appreciate these
uncertainties in order to use logic properly. In this way, Aristotelian understanding was closer
to the concepts of fuzzy logic and granulation developed by Zadeh. However, the uncertainty
inherent in the language goes against the “law of contradiction (excluded third).” Aristotle did
not reconcile the uncertainties with his law of contradiction. This reconciliation was achieved by
formal logicians from Boole to Russell, who eliminated linguistic uncertainties. Gödel proved
that this “exactness” is inconsistent. Zadeh achieved the reconciliation by eliminating the law
of contradiction.

3. See the discussion of the segmentation and data association problem in Chapter 1, Section 1.3.3.
4. This is not an exaggeration. Human reaction time is on the order of 500 ms, while neuron firing

time interval is about 5 ms. Therefore, a typical human perception involves about 500 ms/5 ms
= 100 sequential steps. Consider 100 sequential decisions made by using one of R available
rules at each steps (say, R ∼ 10 to 100). All possible combinationsNc of applying these rules is
Nc = R100, or lg Nc = 100 lg R ∼ 100 to 200. The number of all elementary particlesNp in the
universe is on the order of lg Np ∼ 108, and the number of all elementary particle interactions
in the whole history of the universe, Nei, is on the order of lg Nei ∼ 150.



122 Mathematical Concepts of Mind

5. Mathematical theory of symbol is discussed in Sections 2.12 and 10.3.4.
6. See note 4.
7. Bayesian networks are directed acyclic graphs.
8. See note 2.
9. See note 5.

10. This view of Marvin Minsky is shared by many of his colleagues, whose long and productive
careers, nevertheless, did not lead to finding “elements of intelligence.” In the fall of 1997
a pioneer of the area of pattern recognition, Laveen Kanal, retired from his professorship at
the University of Maryland. His colleagues organized in his honor a workshop, “Intelligent
Systems.” The workshop’s opening talk was given by A. Rosenfeld, an influential scientist and
one of the founders of the area of pattern recognition. He pronounced that in the area of artificial
intelligence all the main discoveries have already been made, and what remains is just to apply
them using more and more powerful computers. This reminds me of another story. When Max
Plank, a discoverer of the quantum nature of light, was still in college (in the 1880s), his professor
told him essentially the same things about physics.

11. Researchers in the field of neural networks have long argued for the inadequacy of rule systems
to explain learning. But Minsky should be credited with being the first among “insiders” and
founders of rule-based approach to emphasize that it is fundamentally limited by an inability
to learn.

12. Albus and Meystel’s terminology with regards to differentiating adaptation as a simple behav-
ioral mechanism vs. learning as a more complicated increase of intelligence is not universally
agreed on. For example, Holland uses the term complex adaptive systems, which combines both
types of functioning.

13. In the unabridged Webster’s dictionary, the first meaning of symbol is “a creed of faith,”—
something that has a spiritual power. Jung uses “symbol” in a similar way: it is a psychological
process in which a new meaning is created. Pribram calls signs within the brain the less adaptive
signals and symbols within the brain the more adaptive signals.

14. Thus, learning in ART occurs only in a resonant state corresponding to a high degree match
between an input signal and previously stored models. This sets ART apart from self-organizing
feature maps (Malsburg, 1973; Grossberg, 1976; Kohonen, 1984). In self-organizing feature
maps, learning occurs in all connections whose F2 nodes (feature vector components) win the
competition. This type of learning may lead to forgetting (due to relearning) of the previously
learned patterns. ART avoids this problem, because the resonance requires a high degree match
(Grossberg and Merrill 1992).

15. In this paragraph, as well as in most of this book, “a priori” refers to the state of the internal
model prior to the current learning experience. It contrasts a classical usage of this term, which
refers to “God-given” unmodifiable contents that transcend all experience. The understanding
of “a priori” as nonmodifiable by any experience ascends to Plato’s Eidos; it caused difficulties
for the philosophical understanding of mind as well as for the mathematical methods of AI, in
which a priori representations are not sufficiently adaptive (e.g., crisp rules).

BIBLIOGRAPHICAL NOTES

This section contains additional bibliographical information that was not explicitly referenced in
the text.
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PROBLEMS 2.5–1 Compare the MHT description in Section 2.5.3 with the intelligent tracker description
in Section 1.1.1.4.

2.6–1 Establish a correspondence between the definitions and equations in Section 2.6.2 and
Fig. 2.6-1.

2.7–1 Prove that the nearest neighbor training leads to minRemp(p) = 0.
Hint: Define parameters p∗ = {yn}; predictive models are defined as follows, for each
x, select the closest xn′ among the training set {xn, yn} and M(x, p∗) = yn′ .

2.12–1 Compare contents of this section with the intelligent tracker description in Section 1.1.4.

2.13–1 Verify that ḡi = ri , and ci = (gi − ri)2 = ri(1 − ri).
Hint: Use the definition of the average: ḡi = [sum over population of (1, for gi = 1)
+ sum of (0, for gi = 0)]/N , were N is the total number of agents in the population;
denote Ni0 and Ni1 the numbers of agents with gi = 0 and gi = 1. Then, ḡi = Ni1/N ;
denote this ri . Now, in a similar way compute ci = {sum over population of [(1− ri)

2,

for gi = 1] + sum of [(0 − ri)
2, for gi = 0]}/N .



chapter 3

MATHEMATICAL VERSUS METAPHYSICAL
CONCEPTS OF MIND

The danger is in the fateful “fear of metaphysics” . . . Therefore, I was es-
pecially pleased to find out . . . that, at the end, we can not do without
metaphysics.

—EINSTEIN

Mathematical modeling of intellect, the beginning of which dates to the 1940s and is con-
temporaneous with the computer age, is undergoing today an explosion brought about by
new ideas in the theory of neural networks—a theory modeling the neural architecture of the
brain with the purpose of explaining the mind. Ever since antiquity philosophers, theologists,
and scientists have attempted to uncover the mystery of mind. Could the old philosophical
discussions help with contemporary mathematical development? Is contemporary neural
network research related to eternal philosophical questions? Will it resolve the mystery of
mind like Newtonian physics resolved the mystery of matter?

This chapter traces continuous connections of concepts of mind, in seemingly so com-
pletely different thinkers, separated by time, culture, and geography, as pagan philosophers of
ancient Greece, theologians of monotheistic religions, and scientists of today. Various current
directions in the neural network theory are connected, despite enormous gaps in time, to
various concepts of mind, suggested more than 2000 years ago. Inquiring how the intellect
combines apriority (an ability to utilize a priori, preexperiential knowledge of eternal truths)
and adaptivity (to an ever-changing world), I will attempt to demonstrate that one and the
same problem of how the intellect is being determined by both these factors has ever been
turning at the center of philosophical, theological, and scientific debates on the nature of
mind. The enormous treasure of the world’s knowledge intrigues me with a possibility of
combining remote points of knowledge, of determining main landmarks in the approaches to
pressing problems, and of understanding the significance of various algorithms and paradigms.
Connections between philosophy and mathematics established here clarify relationships of
the mathematical concepts to mind and help in defining promising research directions.

125
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3.1 PROLEGOMENON: PLATO, ANTISTHENES, AND ARTIFICIAL
INTELLIGENCE

In the reflections of ancient philosophers on the nature of the pure spirit, despite the
enormous time gap, I am finding concepts of the intellect that are directly related to
contemporary mathematical ideas on the nature of mind. A picture of our contemporary
world is not at all new, and an understanding of the physics and mathematics of mind
that is emerging today at times happens to be nearer to certain philosophical systems and
concepts created in the course of more than two millennia, than to the concepts of pattern
recognition and artificial intelligence developed only a few years ago. And between Plato
and Minsky, Aristotle and Grossberg, Aquinas and Jung, Kant and Chomsky there is such
a close connection, as if some ideas and concepts belong to each other, and time is only a
cloud interfering with our seeing this cobelonging.

This chapter traces continuous connections of concepts of mind through the time,
cultures, and geography to contemporary mathematical algorithms. The concepts, hypothe-
ses, and controversies of the past considered in terms of today’s research issues open the
tremendous wealth of accumulated knowledge hidden behind a veil of changed meanings
of words and historical events. I will attempt to utilize this rediscovered knowledge to
analyze the perplexing issues of today’s mathematical research of intellect, to outline future
directions of neural network research, and possibly to approach the comprehension of the
mystery of the nature of mind.

The very first question about the intellect is: How is it possible at all? Plato’s answer
was that the concepts of mind must have been put into a human being a priori, that is before
the existence of the individual human being. This philosophical concept was named “the
realism of ideas.” The original, Platonian use of the word realism refers to the reality of
a priori ideas as opposed to the nonreality of experience. In the course of millennia the
word realism has been used in different ways, acquiring sometimes the opposite meaning,
denoting thinking grounded in experience. In this book, realism always has the original
Platonian meaning of the realism of a priori ideas.

Another answer to the first question about intellect was given by Antisthenes. Like
Plato, Antisthenes was Socrates’ pupil. But his answer was contrary to the Platonian one.
According to Antisthenes, Ideas have no real existence independent from individual objects
of experience. Ideas are just words designating classes of similar objects. The philosophical
concept descending from Antisthenes was named nominalism (from Latin nomina = name).
A schism between nominalists and realists determined philosophical debates throughout
the Middle Ages and continues to exert a profound effect on mathematical concepts of
intelligence in our time.

Plato’s principle of apriority was used by Minsky as a basis for creating computer
artificial intelligence. For a computer to operate and make decisions in a complicated
environment, concluded Minsky, knowledge ought to be placed into the computer a priori
(Minsky, 1968a). In Minsky’s method, named the expert or rule systems, a system of logical
rules is put into a computer, containing all possible situations (for example, all possible
readings of sensors of a particular device or system), and expert decisions or rules of
what is to be done in each particular situation. This method, which I call the Plato–Minsky
approach,1 became the foundation for many practical applications of computers from factory
floors to space shuttles.
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Solving the very first problem of intelligence: How is it possible?—the Plato–Minsky
approach does not explain an important aspect of mind—an ability to learn and to adapt,
leaving unanswered the second question about the intelligence: How is learning possible?
In Platonian theory, learning is addressed as an afterthought. The second question about
mind was first addressed by Antisthenes: according to nominalism, we learn concepts and
ideas by “classifying” objects according to their similarities. This learning process leads
to general ideas and concepts. In a different way, this question was addressed by Aristotle,
who combined both properties of mind, apriority and adaptivity.

Although Minsky emphasized that his method does not solve the problem of learning,
attempts to add learning to Minsky’s artificial intelligence continued in various fields
modeling the mind, including linguistics and pattern recognition. In linguistics, Chomsky
proposed building a self-learning system that could learn a language similarly to a human,
using a mathematics of logical rule systems. In Chomsky’s approach, the learning of a
language is based on a language faculty, which is a genetically inherited component of the
mind, containing an a priori knowledge of language. A direction in linguistics, named the
Chomskyan Revolution, was about recognizing the two questions about the intellect (first,
how is intellect possible? and second, how is learning possible?) as the center of linguistic
inquiry and of a mathematical theory of mind.

A different direction of research into the mathematical concepts of the intellect, founded
by McCulloch, is based on modeling the neural structure of the brain. Many cognitive
scientists following this approach have been convinced that the neural brain processes are
of a different nature than symbolic rule systems. And that the problem of learning cannot
be solved by improving the Plato–Minsky method, which is founded on static, nonadaptive
logical rules similar to the ideas of Plato. Aristotle was the first to point out the absence of
learning in Plato’s theory and to begin the quest for combining apriority and adaptivity. The
ways in which the intellect combines apriority with adaptivity has remained at the center
of philosophical, theological, and mathematical debates on the nature of mind.

And which way will the pendulum of contemporary science swing?—toward adaptivity
or apriority? Where will the mystery of mind be hidden—in the infinity of Jung’s subject
or Kant’s object? How will this be reflected in tomorrow’s mathematical concepts of the
intellect, and what will the physical picture of the mind be?

3.2 LEARNING FROM ARISTOTLE TO MAIMONIDES

3.2.1 The Controversy of Aristotle

Aristotle set on to overcome the limitation of Plato’s theory of mind related to the static, non-
adaptive nature of the Ideas or concepts of mind. In Aristotelian theory of mind, the a priori
contents of mind are not the concepts, but Forms having dynamic, adaptive nature. Forms
are, as it were, a bridge between the transcendental world of the a priori spirit and the world of
everyday experience. Forms-as-potentialities belong to the a priori content of mind, whereas
Forms-as-actualities come immediately close to the world of experience. Mind’s adaptation
occurs in the dynamic process of meeting between the a priori Form and matter. Individual
experience is formed by this process. Aristotle illustrated his theory with an example of
learning in an individual person as an actualization of potentiality of the a priori-present
Form. And he placed these Forms-as-potentialities in the intellectual part of the psyche.
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Further, Aristotle reduces the end cause to the formal cause. This can be understood
in contemporary terms by relating the end cause to the intentional psychological states and
relating the formal cause to the a priori content of mind (that is to Forms). The intentional
states present a mystery for the traditional artificial intelligence and their explanation is
considered to be among the most important challenges to the contemporary science of
mind. Reducing the end cause to the formal cause means that the intentional states of mind
should be explained through the a priori contents of mind. The mathematical apparatus
necessary to describe this process is developed throughout this book. Aristotelian concept
of Forms rejects the self-sufficiency of Plato’s Ideas for the more complicated dynamic
concept of the mind combining apriority with adaptivity.

Contrary to this dynamic concept of Forms, which is the foundation of Aristotelian
metaphysics, Aristotelian physics is based on the eternal invariant principles,2 unchanging
circular motion of the celestial spheres—in essence a static philosophical concept, in which
(while matter is moving) the first mover, that is God, does not change in time. The theory
of static eternal rotation has led him to postulate a complicated mechanism of the celestial
spheres, by which the first cause God affects the material world. The mechanism of the
celestial spheres, later developed into the theory of emanation by neoplatonics, was the
most objectionable part of the Aristotelian system to many scientists, including Newton.

Discovering the laws of spirit and the laws of matter, Aristotle outlined the contours of
the future divorce. However, he embraced neither monotheism nor dualism. The Aristotelian
system, a pinnacle of man’s thought, still suffered from the half-hearted dualism of the
heathen religion of ancient Greece. Aristotle, as it were, sanctioned the incomplete dualism
between the causality and eternity of physical sciences on the one hand and the adaptivity
of the intellect on the other. This dualism has pervaded philosophical thinking ever since.
Although the incompleteness of the dualism has been rejected in one way by monotheism
and in another way by Descartes, the nature of the Aristotelian quest is related to the same
problem we are facing today: the inadequacy of our rational and mathematical concepts for
understanding the intellect as a unified system.

One part of the Aristotelian heritage, the one he himself was proud of and cherished the
most, is Aristotelian logic. Aristotelian logic serves as a foundation for many of our algo-
rithms. Concepts of Aristotelian logic are unchanging eternal truths. Similar to Aristotelian
physics, it was halfway divorced from its spiritual basis. Created to provide the mind’s
law, the static nature of Aristotelian logic contradicted the Aristotelian theory of Form.
In the ensuing 2300-year debate about the apriority and adaptivity of mind, Aristotelian
logic supported Platonian Ideas, not Aristotelian Forms. This contradiction was a subject
of detailed discussions in the previous chapter. During the thousand years after Aristotle,
the differences between him and Plato were minimized3 by their followers in order to battle
the nominalistic philosophical idea about the nature of mind. Since antiquity, throughout
the Middle Ages, and until today, the two properties of mind, its apriority and adaptivity,
led to philosophical and scientific schisms.

3.2.2 Finite Angels of Maimonides

The problem of the origin and nature of ideas, or universal concepts, continued to create
controversies during antiquity as well as in the Middle Ages. The philosophical controversy
related to the adaptivity of the fundamental concepts, first recognized by Aristotle with
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regard to Plato’s ideas and unresolved in Aristotelian physics, remained an unresolved riddle
along the way toward a unified physical and metaphysical view of the world, a controversy
manifested in a disconnection between the infinite, invariant Divinity and the changeable,
finite Nature. Creation of the unified system on the foundation of Plato’s and Aristotle’s
teachings, undertaken by the philosophers of the Neoplatonic school and especially by
Plotinus, demanded an analysis that gradually revealed a fundamental incongruity of the
philosophical concepts of unity and adaptivity. In the polarization between monotheistic and
Greek theology, the highest principles of Greek philosophy became ever more transcendent
and removed from the material world. To restore the relevancy of the transcendental
principles for the changing world, additional intermediary disembodied beings were needed
to bring the spiritual emanation of God into the material world of the Greek cosmology.
But the nature of interaction between the a priori spirit and the dynamic material world
could not be understood. For many pagan philosophers of antiquity and the first centuries
AD, the static nature of the first principles related to the static notion of divinity was not
only obvious, but the only possible nature of ideal universal concepts. In addition, it was
perceived to be blessed by the authority of Aristotle. The dynamic, adaptive aspect of
Aristotelian theory of Forms was not noticed. The difficulty of comprehending the dynamic
aspect of the universal concepts had fundamental theological roots. An idea of Creation
that is fundamental to monotheistic religions was perceived as philosophically unsound,
anthropomorphic, and naively primitive. To entertain adaptivity of the universal concepts
of mind for a philosopher of antiquity was even more difficult than for a physicist in the
eighteenth century to consider that Newton’s laws will change with time. However, as a
result of analysis revealing the problems of the philosophical system previously outlined, the
monotheistic tradition appeared less naive to a philosophical mind. This prepared the way
for the nexus between theology and philosophy that flourished throughout the Middle Ages.

The problem of adaptivity of the fundamental concepts in medieval theology—in
essence, the same problem that Aristotle and Plato were solving in the area of the pure
spirit and that we are solving today in the area of the mathematics of intellect—is how to
reconcile the absolute nature of ideas with adaptivity and learning. A link of contemporary
research in mathematics of the intellect to philosophical and theological debates of the past
is possible because the essence of God for the philosophers and philosophical theologists
is intellect. In the sixth century BC, Xenophanes understood God governing the world,
like a thought governing the body. Therefore, the discernment of philosophers into the
nature of the pure spirit as well as the discernment of theologists into the nature of God
are immediately important to the mathematical theory of intellect that is being built today.
A schism between the rational basis of philosophy and irrational basis of religion has
often led to a conflict that is not yet quite resolved today and that counters the nexus of
the rational and irrational understanding of the human nature in the unified science of
intellect. A touching of theology and philosophy during the Middle Ages was prepared
as much by the analysis of philosophical contradictions previously discussed as by the
analysis of contradictions within the monotheistic theologies and by the development of
theological philosophy.

The first systematic philosophy of the monotheistic concept of creation was, possibly,
the Islamic dialectical theology of Kalam. A controversy between the infinite nature and
the immediacy of the Deity was formulated and addressed in Kalam as a problem of the
attributes of God: divine transcendence vs. immanence. (In today’s language, this is the
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same problem of apriority vs. adaptivity.4) Building on this tradition, Avicenna (ibn Sina)
in the eleventh century bridged the philosophical tradition of Plato, Aristotle, and Plotinus
with that of monotheism.

Intellect, on the one hand, is an essence of God, and on the other hand, according to
Avicenna, is a rational faculty. So, the existence of God is connected to the existence of
the self and is proved through the thought (a forerunner of Descartes’ cogito ergo sum).
Thinking that knowledge comes from within, from intuition, in a rational way, Avicenna
introduced the concept of estimative intellectual faculty (a forerunner of the Kantian ability
for judgment and Jungian concept of the rational feeling function). The intellectual faculty
along with imagination is responsible for acquisition of knowledge: knowledge originates
from the meeting between the Universal Forms of the intellect and the particular forms of
matter. This consideration of how the intellect combines a priori knowledge and adaptivity
has further developed the Aristotelian concept of Form.

In the Avicennian concept of material intelligence, resembling the primary matter,
we find a forerunner of the Jungian collective unconscious. Even more so, Avicenna
considered common sense to be a memory rather than a rational faculty. In his analysis
of being, he differentiated being as essence and being as existence, a concept that in
contemporary language is similar to differentiating between meaning and representation, or
between the semantic and syntactic contents, an essential feature of contemporary analysis
of language and intellect. The teachings of Avicenna are perceived today as strikingly
contemporary indeed.

In the next century, mysterious questions of the human mind were studied by Mai-
monides, who undertook to combine philosophy and theology. For Maimonides, absolute
intelligence had a personal nature. A monotheistic God is relevant every moment in the
changing world; in today’s scientific language, this property of modeling intellect is called
adaptivity.5 To restore the philosophical possibility of adaptive intellect he felt it necessary
to reject the Aristotelian physics with its eternity of celestial spheres. Difficulties along
this path involved the authority and popularity of the great philosopher. On the basis of
Aristotelian teachings, during the past centuries, the efforts of many philosophers built a
grandiose system of the unified world view that included Aristotelian physics along with
the eternal emanation of spirit, bringing the intellect of God into the material world.

Maimonides disentangled the Aristotelian concept of intellect, as emanation of Form,
the eternity of Aristotelian physics, the self-sufficiency of Plato’s ideas, and the eternal
emanation of Plotinus. By maintaining that emanation of intellect is consistent with the
finiteness of the world, Maimonides reconciled Aristotelian physics with Aristotelian meta-
physics, and resolved the difficulties of Neoplatonic philosophy involving infiniteness and
adaptivity. Maimonides found the much sought philosophical nexus between the adaptivity
of the intellect and the infinity of its a priori nature. This connection of the a priori spirit and
its adaptive manifestation in the material world was achieved through the analysis of the
finite nature of the Aristotelian disembodied intellects or angels. The conceptual step toward
understanding mind consisted in suggesting the finiteness of certain spiritual entities. Spirit
and matter were brought closer together. Making such a step without sacrificing either matter
or spirit is among the toughest challenges that we still face. Finite angels of Maimonides
that mediate between the absolute and the particular are the forerunners of efferent signals
in Grossberg’s neural networks, mediating between the a priori neural structure and the
individual objects of perception.
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3.2.3 Nexus of Aquinas

A confrontation between philosophical schools and religions that lingered on for millennia
yielded to a convergence of philosophy and religion in Christian scholastic tradition.
Philosophy and religion came to proximity in the study of the nature of universal concepts
of the intellect.6 The influence of Aristotelian physics on medieval scholasts led many to
accept continuous emanation of the intellect into the material world, despite its contradiction
of the concept of Creation. A reconciliation of this difficulty was undertaken by Aquinas,
who continued the tradition of Avicenna and Maimonides.

According to Aquinas, sensation and intellection are structured in a similar way, in that
both have quidditive and existential aspects. Here, quiddity or “somethingness” refers to
what in particular is sensed or intellected, and the existential aspect refers to the inner or
universal content of the experience. Today, Grossberg assigns these aspects of sensation and
intellection to afferent (coming from outside) and efferent (coming from inside) signals.
And, like Aquinas, he considers this to be a universal law of mind. Thus, the concepts
of intellect formulated in the thirteenth century by Aquinas are close to the views of
a contemporary philosopher and originator of neural network theory Grossberg, and are
directly relevant to current neural network research.

Are there uniform laws of mind that operate at every level from simple perception to
cognition of complicated concepts? In the previous chapter we discussed that this is one of
the pressing question of contemporary mathematical research into the nature of intellect.
Many researchers do not believe that this is possible. For some, perception seems too simple
to require the same laws as cognition. For others, cognition seems too personal to ever be
described mathematically. Still others think that there is nothing special about either; neither
perception nor cognition requires specific sophisticated mechanisms; they believe that the
nature of mind is explained by a large number of nonintelligent specialized agents, not
obeying any universal law. Together with Aquinas and Grossberg, we have argued that a two-
level structure that relates internal representations to input data is a universal law of mind.

3.3 HERESY OF OCCAM AND SCIENTIFIC METHOD

3.3.1 Cynics, Occam, and Empiricism

Near the end of the period in which scholastic thought thrived, and foreboding the scientific
era, the views of Aquinas and other followers of the realistic philosophy of Plato and
Aristotle, analyzing the a priori nature of intellect, started losing popularity and were
criticized by philosophers perceiving a limiting, determining influence of the concept
of apriority. Among the most notable critics of the realism was Occam. He lived in the
fourteenth century and is considered one of the last great medieval scholastic thinkers. He
adhered to the philosophy of nominalism that opposes realism. Nominalism was founded
by Antisthenes, a pupil of Socrates, a contemporary of Plato, and the founder of the Cynic
school of philosophy. Nominalism, which considers ideas to be just names for classes or
collections of similar empirical facts, was extensively developed during the scholastic era
in opposition to realism. The opposition of realism and nominalism is not an accidental
dispute among scholastic philosophers, but a fundamental issue of the entire philosophy
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related to the origin of knowledge, and, in particular, to the origin of the universal concepts
of mind and their relationships to individual objects of the empirical world. The schism
between realism and nominalism runs from ancient Greece through the Middle Ages and
through the current mathematical concepts of intellect. This latter connection, however, is
not appreciated within the scientific community; as a result, progress toward understanding
the fundamental limitations of various mathematical concepts is slow. Connecting debates
in mathematical intelligence to the philosophical ones is essential to understanding the mind.

Occam came to believe that only particular experiences have real existence and that
general concepts (universals) are names for similar types of experiences. Assigning univer-
sals to the domain of linguistics, he then argued that linguistic and mental phenomena are of
an individual nature and should not be considered a reality, and he considered thinking to be
ontologically prior to language. It is interesting to note that a similar combination of views
on thinking and language is found in the twentieth century among many psychologists
of the behavioristic school. Analyzing the empirical, experiential origin of knowledge,
Occam developed the basis for the coming philosophy of empiricism. His work indicated
(or initiated?) a shift of interest away from mental processes, away from the question of
the possibility of the intellect, and toward an objectified method of inquiry, which later
became associated inseparably with the scientific method. Occam’s doubts about eternal
apriority got him in trouble with the Church: he was arrested and then lived in exile. But the
nominalistic concept that knowledge originates in experience seems so obvious that many
scientists accept it without doubt.

Time has obscured the influence of Occam on the development of the scientific method,
and his name is hidden behind the figures of great philosophers and scientists that came
after him. However, despite the realism of Descartes, Leibnitz, and Newton, nominalism as
the forerunner of contemporary scientific thinking continues to pervade scientific attitudes
of today. One of the reasons for the influence of nominalism is the unbreakable tie between
the scientific method and objectification of the subject of inquiry.7 In physics, the theoretical
tradition of Newton’s realism counterbalanced the influence of nominalism, but in the area
of empirical sciences, such as psychology, the reality of facts seemed more significant than
the reality of ideas that have not been clad in a mathematical form. Whichever the reasons
for the influence of the nominalistic concept, today it forms the basis for most algorithms
and neural networks designed to model mental processes. Notwithstanding, in the area of
the theory of intellect, the attitude of nominalism diverts the thought from seeking adequate
mathematical concepts—algorithms and neural networks built on the nominalistic concept
that disregard a priori content of the intellect come to impasse. And today, tracing the
relationships between philosophical and mathematical theories of the intellect and outlining
future research directions, we move away from Occam, who stands near the roots of
scientific objectification, toward the idealistic realism of Plato and Aristotle, explaining the
possibility of mind by combining apriority and adaptivity on a realistic basis. Understanding
the relationships among the fundamental philosophical concepts of realism and nominalism
is paramount for the following analysis of psychological and mathematical concepts.

3.3.2 Nominalism, Behaviorism, and Cybernetics

Psychological and philosophical analysis of mind, combining a philosophical tradition with
an empirical aspect of the contemporary scientific method, sparkled at the beginning of the
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twentieth century with the discoveries of Freud and Jung. However, combining philosophy
and science met with difficulties. The success of the mathematical method (in the area of
material substance) had advanced a requirement for objectification of scientific inquiry.
In the empirical sciences, the only criterion of objectivity was seen in the reproducible
experiments. Theoretical deductions and the very possibility of synthetic judgments a priori8

were questioned. A priori concepts started losing ground, became lowered to the level of
(at best) unproved hypotheses, and I would say that in some areas of science the temptation
of objectivity eliminated the possibility for complicated synthetic a priori judgments—the
beauty of the Platonic way of thinking was lost, and the possibility of scientific thinking,
dressed not in the strict language of mathematical computations, seemed compromised.

Near the end of the nineteenth century, psychology started utilizing laboratory exper-
imental procedures trying to approach the rigor of physical sciences. Many psychologists
were impressed by the theory of reflexes rigorously advanced by Pavlov. However, any
hope of utilizing objective scientific methods in the field of mental processes seemed
impossible due to their complexity—a situation that was exacerbated by the discovery
of the unconscious, which complicated the theory of mind. In this atmosphere, to resolve
the dilemma between the objectivity and depth of investigation, behaviorism was born,
a new scientific direction redefining psychology as a science of human behavior and an
accompanying intellectual and philosophical movement.

A concept of behaviorism that attempted to explain the entire human psychology as a
sequence of stimuli and reflexes and denied a need for consciousness in understanding of the
intellect dominated American psychology from about 1920 to 1960. One of the reasons for
the past popularity of behaviorism was a striving toward scientific strictness in the absence of
mathematical methods adequate for the complicated problem of the analysis of mind. Seeing
the only criteria of scientific objectivity in reproducible experimental result, behaviorism
had to forgo considerations of deep mental processes. Behaviorism as a scientific school,
as a temporary idealization of a complicated problem, created a scientific methodology of
experimental psychology. It established the importance of the environment as a determining
factor in human behavior, showed that the role of mental factors is often incorrectly
exaggerated in everyday life, and successfully described multiple aspects of behavior in
terms of external factors alone. However, behaviorism as a philosophy maintaining that the
concepts of consciousness, free will, and idea are not needed in psychology and should be
discarded, exerted an inhibiting influence on the development of concepts of mind.

Today, behaviorism is not popular; however, concepts of consciousness based on a
sequence of inner stimuli and reflexes and concepts of learning based on environmental
manipulation are still being formulated. To the extensive discussion of this topic I allow
myself to add that a determinism by external factors, which is obviously important in human
behavior, is not the most interesting aspect of it—what is most fascinating about human
behavior is its spiritual aspect. Plato did not argue the fact that Socrates was killed in the
material world. The great discovery of Plato was that there is a more important reality of
human psyche, where Socrates exists today.

In the wealth of experimental data, collected by behaviorist scientists, cognitive scien-
tists see confirmations of complex neural structures and of mental processes being important
factors in human behavior, and conclude that the theory and philosophy of behaviorism are
inadequate. However, notwithstanding the seeming arbitrariness and voluntary occurrence
of the philosophy of behaviorism—as an attempt to reduce psychology exclusively to
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external empirical factors—it is a continuation of the ancient philosophical tradition of
nominalism expressed in psychological terms of the twentieth century.9 And the schism
between behaviorism and mentalism10 is but one of many in the 2300-year debate between
nominalists and realists.

Mathematical methods applicable to the field of psychology have been developed in
the twentieth century and applied to modeling behavior and mind of living beings. These
methods for the analysis of complex systems, such as factor analysis and stochastic process
theory, describe much more complex phenomena than classical mathematical methods of
mechanics and electrodynamics.11 Nevertheless, physical systems inspiring the develop-
ment of the new mathematics were very simple as compared with living beings. Factor
analysis, developed by Spearman and Thurstone for the analysis of statistical correlations
in multidimensional spaces, models stochastic or random deviations about the mean value.
The mean value in factor analysis is defined by a single multidimensional deterministic
phenomenon.12 For example, a diversity of human abilities is modeled by many factors
characterizing abilities. But the limitation of factor analysis by a single deterministic
phenomenon is that a distribution of each ability among the population is characterized
by random deviations from a single common mean value of a corresponding factor (that
is, by a single mode).13 Analogously, a theory of stochastic processes developed by Wiener
models a single particle randomlymoving under the bombardment of molecules in a drop of
water—avery simple system comparedwith themind or evenwith amindless living being.14

Notwithstanding, the new mathematics was different in principle from calculus: it
addressed the problem of multiple interacting bodies, and had an applicability far beyond
its origin. Applying a new method to the problem of control in animals and machines,
Wiener created a new science that he called cybernetics.

The emergence of cybernetics proceeded under the influence of the dominating psy-
chological concept of behaviorism, which can be seen from the cybernetics’ program
paper (Rosenblueth et al., 1943). The authors defined teleological behavior as a purposeful
behavior with feedback and emphasized that their understanding of teleology did not
contradict deterministic behavior.Although noticing that the relationship between teleology,
so defined, and a concept of freedom was problematic, they maintained that no qualitative
differences had been found so far between animals and machines.

The influence of behaviorism in cybernetics has been and still remains strong, while
originators of cybernetics have been ambivalent about the importance of mental processes
and complex a priori internal structures. If Wiener’s discussion of the relationships between
his concepts and those of the empiricism of Locke and Hume is followed, it is seen that
Wiener transcends the nominalistic basis of empiricism in relating universals to internal
brain structures. Also, Rosenblueth et al. (1943) suggested that animals utilize predictive
models of low orders, whereas humans, possibly, are capable of utilizing higher order
predictivemodels. Later,Wiener came to appreciate themathematical difficulties behind this
suggestion, and he emphasized that using higher order predictive models is inadequate for
the description of complex nonstationary systems, because of insufficient data for learning
(Wiener, 1948).

Our approach to resolving this difficulty of insufficient data uses complex models with
nontrivial a priori knowledge. The prior knowledge “makes up” for insufficient data and
enables learning from a small amount of data. Wiener could come close to this concept,
but he stopped short of incorporating nontrivial a priori knowledge into the mind’s internal
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models. This requires new, more powerful methods of nonlinear mathematics. Although
the importance of nonlinear interactions for self-organization was clear to Wiener, who
discussed this issue in Cybernetics (1948), nonlinear mathematics for self-organizing be-
havior did not yet exist. The nominalistic direction of thinking, it seems, distracted him
from the systematic investigation of mathematical concepts of internal models. Is it related
to the nominalism of empirical and behaviorist roots of cybernetics, or to the mathematical
complexity of this step requiring new nonlinear mathematical methods?

Cybernetics achieved a combination of adaptivity with a priori knowledge based on
internal adaptive models. By utilizing relatively simple models of stochastic stationary
processes (Wiener filters), cybernetics combined adaptivity (of model parameters) with
apriority (of models). In simple situations, the cybernetic method of system control based
on a model led to optimal speed of adaptation, that is, to learning from a minimum amount
of data. However, these models were too simple for modeling of mind. The simplicity of
these models fitted the behaviorist concepts in psychology, thus reinforcing the two-way
mutual influence of cybernetics and behaviorism and interfering with the development of
complex internal models utilizing nontrivial a priori knowledge.

While discussing the inevitable shortcomings of early cybernetics, we should empha-
size its most important achievement: the shift of emphasis from energetic and metabolic
processes characterizing the material substance toward informational processes, which since
remain the main subject of study for many researchers of the intellect. An informational
theory of the intellect is a mathematical apparatus of the physics of mind, which is being
created today. Among its challenges there is the 2300-year-old problem of combining
adaptivity and apriority of mind.

3.4 MATHEMATICS VS. PHYSICS

3.4.1 Pythagoras, Descartes, Newton

Using mathematics to derive ultimate truths dates back to the Chaldeans and ancient Greeks.
Ancient mathematicians were developing the rational thinking process among a predom-
inantly mystical collective prerational consciousness that colored mathematical concepts.
For pythagoreans, mathematics was not limited to formulating and proving theorems; they
considered it the origin and cause of all beings. For example, they considered the number
one to be also a force of unity, or the number two to be the cause of differentiation and decay.
Prescientific, prerational attitudes ascribe mystical and spiritual properties to numbers—
mathematics was full of mystic significance, connected to all mysteries of the universe.
Pythagoreans, in Jungian words, projected onto mathematical objects contents of their
unconsciousness.

The first person to formulate consciously the thought that mathematics should be used as
a tool for elucidating philosophical truths in a rational way was Descartes (1637).15 Whereas
alchemists of the preceding centuries were seeking explanations of the properties of soul in
matter, Descartes separated matter and spirit. By analyzing the phenomenological world,
Descartes concluded that properties of mind cannot be rationally explained by properties of
matter, and he postulated the existence of two types of substances, material and spiritual.
By excluding all properties of matter except its spatial extent and reducing matter to a
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mathematical expression, to movements governed by mathematical laws, Descartes freed
matter from materialized residues of the idea of emanation—“little spirits flattering through
the air.” This simple geometric model of matter was a crucial step toward creating a condition
in which man was able to foresee. He saw in mathematics an objective unification of a priori
ideas and empirical data. The method of Descartes harmonized the relationship between
the a priori and empirical on the basis of mathematics, in the definition of the subject of
science as a search for a priori laws expressed in a mathematical apparatus combining a
priori knowledge and empirical data.

Descartes did not succeed in his principle of finding in mathematics all philosophical
truths. The scientific method of Descartes, in the area of material substance, was realized in
the discoveries of Newton, who developed calculus, the mathematical apparatus adequate
for combining the a priori and empirical. The Newtonian explanation for the motion of the
Moon and the following successes of the computational (mathematical) approach in the
eighteenth century established mathematical modeling as the ultimate scientific method.
Since Newton, physical theory has been searching for computational (mathematical) models
of nature,16 and computational models became inseparable parts of the physical intuition
of the world. A mathematical apparatus of physics created the possibility for predictions
connecting a priori concepts (the first laws of physics) to empirical data in a way that is
beyond doubt (that is, a priori). In philosophical terminology this is called synthetic a priori
judgments, that is, complicated predictions that validity is of a priori origin (and not entirely
a consequence of experimental measurement).

In the area of the spiritual substance, realization of the scientific method of Descartes,
however, had not succeeded in the eighteenth century because the mathematical apparatus
of calculus could not be used for modeling complex systems—even a three-body problem
was too complex for exact analysis—much less forms of life or an organic function—
the transcendental spirit. Attempts to create a unified theory of physics, biology, and
psychology continued during the nineteenth century, when outstanding scientists conducted
interdisciplinary research. Maxwell created the electromagnetic theory in physics and
developed the trichromatic color theory of vision in psychology. Helmholtz discovered
the law of energy conservation, a concept of free energy, and a theory of vortexes in liquids;
in neurophysiology he measured the speed of electrical signals in axons; and in psychology
he discovered mechanisms of adaptation in visual perception. These mechanisms turned
out to be much more complicated than the laws of classical Newtonian physics. Helmholtz
found that the perception of color at each point in a visual field is determined not only by
the color spectrum at the point, but also by the averaged color of the entire visual field in
a complicated nonlinear fashion. Color perception, in contemporary language, is described
by a nonlinear and nonlocal field theory. Analyzing the process of visual perception as
a whole, Helmholtz concluded that the perception process is unconsciously affected by
previous perceptions. Thus, a nonlinear, nonlocal field of visual perception turns out also to
be nonstationary. A mathematical apparatus of such field theory did not exist at the time. But
for scientists of theoretical predisposition of mind a mathematical apparatus is a language
of physical intuition and the only possibility of synthetic judgments a priori. Consequently,
Helmholtz and other scientists concentrated their interests in those areas of physics in which
existing mathematical methods could be utilized.

Psychological and philosophical analyses of mind continued without mathematical
support until the creation of cybernetics and mathematical methods for analysis of complex
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systems, including methods related to electronic computers. And only today do we see the
beginning of the discovery of mathematics that combines the apriority and the adaptive
empiricism of the spiritual substance.

3.4.2 Computation: Metaphor vs. Physical Model

Time that is intolerant
Of the brave and innocent,
. . . .
Worships language and forgives
Everyone by whom it lives

—AUDEN

A notion of computation is often used today for mental processes, sometimes in a direct sense
and sometimes indirectly, as a metaphor. Metaphors play an important role in extending
our knowledge, in the process of creativity, and it is possible that the most important
discoveries are those in language. Analysis of word etymologies shows that language grows
by metaphors and that this process leads to the growth of consciousness, for language is
our most important tool of conscious understanding of the world.

A review of various metaphors that were used for mind can be found in Daugman
(1988). One of the first to utilize a computational metaphor of the mind was Turing, who
compared mind to a computer. Turing, in his famous test,17 explored a controversial and
provocative idea about the power of computers. Newton, on the contrary, did not suggest
computational metaphors for physics and did not regard movements of celestial bodies to
be similar to a computation. Newton was searching to create a computational method that
would satisfy his intuition about how the world actually is. A principal difference between
the two usages of computation is that Newtonian usage led to a successful description and
prediction of the essential properties of movements of celestial bodies and other phenomena,
but the Turing test did not predict properties of mind. Turing created a foundation for a
theory of computation, and he challenged us to explain mind as a computation, to create a
mathematical theory that could explain the mind. A mathematical apparatus for the physics
of mind has to possess a certain elusive property called physical intuition. Whenever a
mathematical model has been successful in the sense of Newtonian mechanics, it represents
a significant aspect of the picture of the world as a specific physical intuition about Nature.
According to our analysis in this chapter, the minimal ingredient of the physical intuition
of mind is a combination of apriority and adaptivity. Although pure mathematical intuition
seems to represent the aspect of mind that is related to a priori objects in the Platonian
world of ideas, the physical intuition, together with a mathematical model that embodies it,
possesses both aspects of mind; it combines the a priori with the empirical.

Physical intuition changes when new discoveries reveal unforeseen physics. There are
many examples of a combined mathematical model and physical intuition replacing with
time an old one: Gallilean relativity vs. Einstein’s special theory of relativity, Newtonian
mechanics vs. quantum mechanics, Newtonian gravitation vs. Einstein’s general theory of
relativity, thermodynamics vs. statistical physics, chemistry vs. molecular physics, quantum
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electrodynamics vs. string theory, etc. A computational or mathematical model became
an exemplary scientific paradigm, an ultimate, even if not final, physical understanding.
According to this understanding, mathematical models of intellect aim to be not metaphors
but the physical intuition of mind.

3.4.3 Physics of Mind vs. Physics of Brain

A mathematical apparatus of the physics of mind is being created today in parallel with the
development of the physics of brain, or neurophysiology, which studies a material architec-
ture and energetic processes forming the foundation of the mind. Temporary separation of
the two fields is a necessary physical idealization, which is similar to Newton’s creation of
mechanics accounting not for quantum and relativistic properties of space. A peculiarity
of the contemporary situation is our knowledge of the existence of the material structure of
the brain, while our knowledge is insufficient for the creation of a unified theory.

Even if we knew the exact wiring diagram of all neurons in the brain, by itself this
would not bring physical understanding of what is mind. The basic, fundamental principles
of mind would still have to be found. Looking toward the future unified physical theory of
mind and matter, physics of mind is being created today to some extent independently from
physics of brain. The question of where to draw the line between the two areas is a subject of
heated debate and disagreement among various schools studying the processes of cognition.
The followers of strong AI18 believe that the material and energetic structure of the brain
play no principal role in the theory of intellect, but many neural network researchers believe
that the theory of intellect can be developed only by modeling the neural structure of the
brain. A choice of the right level of separation between physics of mind and physics of
brain, the choice of the physical idealization, belongs to physical intuition and might turn
out to be crucial for the creation of the physical theory of mind.

3.5 KANT: PURE SPIRIT AND PSYCHOLOGY

Descartes founded the scientific method on the basis of rational thinking, the possibility
of which was undoubtedly obvious to him. Rejecting Descartes’ views, Kant discovered
limits of rational thinking. By analyzing antinomies of reason, such as between causality and
freedom, he concluded that certain truths are beyond rational understanding. Discovering
antinomies of reason and limits of rational thinking, Kant was the first to use the rational
method for a systematic study of the concrete content of a priori knowledge. Consider-
ing cognition as a meeting of a priori forms and sensory data, he continued the ancient
Aristotelian tradition and specified a number of a priori forms and categories, such as
space, time, unity, and multiplicity. In the critique of rational thinking, Kant reaffirmed the
rational, scientific approach to elucidating the truths: origins of the antinomies of reason,
he suggested, ought to be searched in the complicated nature of our a priori knowledge.

In his investigations of the explicit content of a priori knowledge, Kant systematically
addressed the most perplexing problem of understanding of mind since antiquity, the
problem of the contention between Aristotle and Plato at the philosophical level and be-
tween Chomskyan linguists at the abstract-computational level. Investigation of the explicit
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content of a priori knowledge at the neurocomputational level, initiated by Grossberg, today
draws interest from psychologists, neurobiologists, physicists, and mathematicians.

By overturning the understanding of the relationships between reason and content of
mental processes, the philosophical criticism of Kant brought the abstract philosophical
analysis of pure spirit close to the psychological philosophy coming 100 years later, which
Nietzsche would write about: “Future philosophers . . . will become psychologists.” He
created preconditions for the nexus between the philosophy of pure spirit and the scientific
method. However, Kantian understanding of interactions between reason and the outer
world, including the metaphysics of natural science, contained numerous contradictions19

that limited the influence of Kantian intuitions on the development of science. According
to Kant, pure reason is the faculty of transcendental20 or a priori cognition, and its contents
are the a priori principles of mind. Kant separates the subject-Self that contains reason from
the unknowable substance of the inner being, which he considers inaccessible to cognition
and substantially indistinguishable from the unknowable outward object. By considering
the a priori content of pure reason to be finite and amenable to complete knowledge, while
assigning an infinite, forever impenetrable mystery to the nature of outward objects, to
a thing-in-itself, Kant differs from contemporary psychologists and from contemporary
physicists. Contemporary physics considers outward objects to be amenable to cognition
and penetrable to the scientific method, and psychologists, following Dostoevsky, Nietzsche,
and Jung, assign much more depth to the psyche, the foundation of which is in the collective
unconscious, in the primary matter of Avicenna, and which does not seem to be penetrable
to the scientific method (Chomsky, 1972).

Recall, for example, the way Kant begins his exposition of the concept of time by
denying its empirical origin and affirming its a priori nature; but he then returns empirical
reality to time and denies its transcendental reality. Despite contradictions of Kant’s views
and their opposition to contemporary ones, I think that his intuitions of the physics of mind
not only should not be repudiated, but can and ought to be utilized in future mathematical
concepts of intellect. A key to such understanding is provided by the Jungian theory of
projection. Kant, in Jung’s words, has projected unconscious depths of his psyche into
the outward object, thing-in-itself, accomplishing by this projection, according to Jung’s
theory, the first step toward understanding. Completing the circle of understanding, today we
internalize Kant’s projection by understanding Kant’s thing-in-itself as the primary matter
of our psyche—the collective unconscious. In Jung’s theory, considering the process of
cognition as alternating projections and introjections, I discern the possibility of interpreting
Kant’s views on the nature of space and time. Namely, the a priori intuition of space and
time exists at a definite depth of our psyche—in the region between consciousness and
unconscious. Being an a priori category of the individual conscious mind, time is not
transcendent with respect to the entire depth of our psyche; that is, in our psyche there are
primordial layers of timeless perception that are not touched on by a concept of time, which
does not penetrate the entire depth of the collective unconscious that consists on a larger
part of timeless and spaceless archetypes.21,22

By internalizing the thing-in-itself, tying it up to the material substrate of the psyche,
that is to the brain, the infinity of Kant’s theory is extended in both directions, inside and
outside, elucidating the penetrations of Kant’s intuition: conscious principles of the mind
are but a thin layer covering the impenetrable thing-in-itself of our unconscious. Who may
know if future discoveries in physics would not uncover the infinite nature of the outward
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object-in-itself? And the doubt is due to whether contradictions exist at the level of intuition
and to where the infinity will occur—inside us or outside us.

3.6 FREUD VS. JUNG: PSYCHOLOGY OF PHILOSOPHY

The old philosophical controversy between realism and nominalism, transcendence and
immanence, adaptivity and apriority, was replayed again in the field of psychology during
the age of great psychological discoveries at the end of the nineteenth and beginning of
the twentieth century. By discovering the unconscious using inductive scientific method,
Freud prepared the way for connecting the philosophical realistic concept of mind with the
scientific world of matter. He identified modular structures within the psyche, such as ego,
which includes conscious processes, and id, which includes unconscious processes. In an
early unpublished work, Freud (1895) described psychic structures in terms of a system of
interacting neurons. Three modular neuron systems were identified: the perceptual system
φ, the memory system ψ , and the ω system, related to the consciousness. The properties of
the synaptic connections in φ are genetically determined and contain a priori information,
whereas adaptation occurs in ψ where synaptic properties can be altered by a transmitted
signal. According to this theory, ego is described as a totality of the ψ cathexes or, in
contemporary neural network terminology, by a set of the excited neurons in ψ with strong
synaptic connections. This seems to be the first attempt at a neuronal explanation of the
intentional states.

A number of concepts fundamental to Freud’s theory of psyche have been inspired by
the concept of neuronal organization of the brain. Later Freud uses a concept of cathexis
to denote the investment of libidinal energy. While analyzing neuronal organization of
brain, Freud conceives the concepts of the psychic energy and flight from the stimulus,
the future Eros and Tanatos, the Life and Death instincts. In his published works, Freud
did not refer to his earlier project of neuronal-based psychology: the significance of his
psychological discoveries has surpassed an immature understanding of the organization of
the brain and the physics of neural networks that has inspired his psychological theory. A
similar exchange of ideas between physics of mind and physics of brain is also needed today,
as our understanding is not sufficient for creating a unified theory of the two substances,
matter and spirit.

An interplay of the two factors, apriority and adaptivity, that has been influencing
philosophy for more than 2000 years, can be traced in Freud’s views as well. In relating
psyche to the brain, Freud asserts a reality of psychic processes. He identifies the generation
of hallucinations as a primary psychical process, and processes involving inhibition by the
ego he identifies as secondary. Unconscious processes in the brain, closer to the material
basis of psyche, are given a more fundamental role, comparatively to the conscious pro-
cesses in the ego. Thus on the one hand, Freud begins his analysis from the viewpoint of
materialization of psyche, which seems to be close to philosophical realism, according to
which mind has a real, a priori nature. But on the other hand, the role of the genetic a
priori content of the psyche in his theory is relatively trivial and consists in differentiating
between the afferent (sensory) and efferent (hallucinatory) signals. While discussing the
importance of the match between the afferent signals coming from φ and the efferent
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signals coming from ψ for the elementary cognition process, Freud does not mention any
role of a priori content of the psyche in the shaping of the efferent signals. On the contrary,
Freud emphasizes the role of individual memory, leaving mostly instincts to genetics and
explaining mental processes on empirical grounds, as a suppressed experience, and not on
an a priori basis, Freud moves away from the philosophy of realism toward nominalism
(according to the philosophy of nominalism, concepts of mind are learned by generalizing
individual experience). A salient aspect of Freud’s theory is an attempt to account for the
content of the psychic structures on a nominalistic basis—as a suppressed experience. In
this, some contemporary critics see the root of the psychoanalytic diagnostic deficiency: the
primordial genetic contents of the psyche, the collective unconscious ideas that are common
to all of us and that are made conscious during psychoanalytic treatment, are misidentified
as individual childhood memories.

A concept of unconscious discovered by Freud has been furthered by Jung, who dis-
covered the existence and importance of primordial structures in our psyche, the collective
unconscious. By analyzing types of problems and questions posed by thinkers of all ages
and all peoples, from ancient Greeks to alchemists, from ancient Chinese to contemporary
poets, he found something that unites the search for spiritual meaning. He called these
somethings the archetypes of psyche’s unconscious. Although the contents of archetypes
are not accessible directly to the consciousness, they are manifested as it were by providing
a framework for the consciousness. In the theory of archetypes I see an affinity of the
concepts of psychology and of Aristotelian a priori Forms of the pure spirit—a priori
forms-archetypes, meeting with individual experience, form concrete concepts of mind—
in this way a possibility is created for a scientific approach to mind based on the philosophy
of realism.

The philosophical schism between realism and nominalism, according to Jung (1934),
to a significant degree has been due to the antagonism between two different psychological
types: the introverted and extroverted. Introverted thinkers are more conscious about their
internal thoughts and tend to emphasize a priori internal knowledge, whereas extroverted
thinkers tend to emphasize learning from experience. Every “philosopher is secretly guided
and forced into certain channels by his instincts” (Nietzsche). And to repeat once more,
the scientific investigation is in the search for a synthesis of a priori knowledge with the
adaptive learning from experience, the search started by Aristotle. The synthesis of apriority
and adaptivity should transcend the limitations of attitudes of individual scientists, through
the development of an individual psyche toward being equally conscious about both: the
inside world of a priori concepts and the outside world of empirical events.

3.7 WITHER WE GO FROM HERE?

3.7.1 Apriority and Adaptivity

The problem of combining adaptivity and apriority is fundamental to computational intelli-
gence as well as to understanding human intelligence. There is an interrelationship among
concepts of mind in mathematics, psychology, and philosophy that is much closer than
currently thought among scientists and philosophers of today. From the contemporary point
of view, the questions about mind posed by ancient philosophers are astonishingly scientific.
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A central question to the work of Plato, Aristotle, Avicenna, Maimonides, Aquinas, Occam,
and Kant was the question of the origins of universal concepts. Are we born with a priori
knowledge of concepts or do we acquire this knowledge adaptively by learning from
experience? This question was central to the work of ancient philosophers and medieval
theologists, and it was equally important to theories of Freud, Jung, and Skinner. The
different answers they gave to this question are very similar to the answers given by
McCulloch, Minsky, Chomsky, and Grossberg.

During the 2000 years following Plato and Aristotle, the concept of apriority was
tremendously strengthened by the development of a monotheistic religion in Europe, to
the extent that it interfered with empirical studies. At the end of the scholastic era, human
spirit felt strong enough to question a priori truths on empirical ground. Occam rejected the
concept of apriority; he held nominalistic views that are opposite to realism. Nominalism
considers ideas to be just names for classes of similar empirical facts. Occam prepared the
way for the empiricism of Locke and Hume that is among the foundations of the scientific
method. Jung has explained the schism between philosophies of realism and nominalism
as due to two types of deep-seated psychological attitudes. In particular, nominalism and
empiricism are related to an extroverted psychological attitude, which is at a premium in
our pluralistic society. Thus it is not a coincidence or chance that nominalism continues to
exert a significant influence on present scientific concepts.

The crisis in the field of early neural networks coincided with the contemporaneous
downfall of behavioristic psychology and philosophy. Behaviorism, as a philosophy, impov-
erished the studyofmind andwas rejected in the 1960s. Thedownfall of behaviorismwasbut
a milestone in the age-old debate between realism and nominalism. We saw that emergence
of cybernetics proceeded under the influence of behaviorism. Similarly, behaviorism influ-
enced early neural network research in the 1950s and 1960s. The concept of learning from
examples without a priori knowledge did not follow the realistic philosophical direction
outlined by McCulloch, but pursued the nominalistic philosophy together with behavior-
ism. And the downfall of early neural network research is related to its association with
behaviorism and nominalism, a philosophy untenable any longer as a metaphysics of mind.

Tracing themetaphysical origins of ourmathematical concepts of intellect is helpful for
understanding not only the past of neural network research, but also the future. In particular,
two concepts due to Aristotle have been examined. One is Aristotelian logic conceived to
describe eternal truths. Another is the Aristotelian theory of mind describing adaptive,
changeable Forms. The mathematical difficulties we are facing today can be traced to a
contradiction in the Aristotelian treatment of these concepts. This contradiction is related to
the Aristotelian disagreement with Plato, and to the Aristotelian rejection of Plato’s Ideas
for the new concept of Form. For 2000 years philosophers-realists, followers of Plato and
Aristotle, analyzed ontological differences between Plato’s Ideas and Aristotelian Forms,
but the principled epistemological difference was not noticed. Ontology refers to existence:
whereas Plato assumed that his Ideas exist in a separate world, Aristotle considered Forms
as existing in our mind. Epistemology refers to the ways in which knowledge is acquired:
in Plato’s theory, Ideas are unchangeable eternal truths, whereas Aristotelian Forms are
dynamic entities. Only recently, when Aristotelian logic was applied to mathematical
modeling of mind, the contradiction between Aristotelian logic and theory of mind led
to difficulties, contradictions, and an impasse. Analyzing the original contradiction will
help us understanding future directions in the research of mind.
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Aristotle developed a concept of Forms having, on the one hand, a universal a priori
reality like Plato’s Ideas, and on the other, being adaptive dynamic entities. Forms unite the
worlds of spirit and matter. They exist a priori as potentialities in the world of spirit and they
exist as actualities inseparably from individual objects in the world of matter. Adaptivity
of mind is due to a meeting between the a priori Form and matter, forming an individual
experience. This process explains learning. The major departure of Aristotelian theory from
Plato’s Ideas was that before a Form meets matter it exists as a potentiality; thus, it is not in
its final form of a concept; it becomes a concept in the process of experience. This theory
was further developed by Avicenna (XI AD), Maimonides (1190), Aquinas (XIII), and Kant
(1781), among many other philosophers during the last 2300 years.

But Aristotelian logic is unsuitable for describing Forms, because Aristotelian logic
deals explicitly with the eternal truths in their final crisp forms of concepts. Crisp is the op-
posite of fuzzy,23 as defined by the law of contradiction or “excluded third,” which is a central
law of Aristotelian logic. According to the law of contradiction, every statement is either
true or not true, and there is no third alternative. All statements and concepts of Aristotelian
logic are crisp in that they obey this law. It might be appropriate for the eternally valid truths,
but it is not applicable to our everyday intelligence, nor to fluid and adaptable Aristotelian
Forms describing the process of learning. Since Aristotelian logic is the foundation of
most of our algorithms, including rule-based AI, the difficulties and contradictions of rule-
based systems are traced to Aristotle. We have discussed that the original contradiction of
Aristotelian logic between the law of contradiction and the inherent uncertainty of human
thought was historically resolved in two ways. Formal logicians from Boole to Russell
rejected the uncertainty. The founder of fuzzy logic, Zadeh, rejected the law of contradiction.
Fuzzy logic is needed for the Aristotelian theory of Form—theory of mind. Thus, the 2300-
year-old contradiction between theory of mind and logic is resolved with fuzzy logic.

It is of interest to note that of the two concepts of McCulloch discussed previously, the
one that became widely accepted by the neural network community was the concept of a
neuron as essentially a binary device. This concept is obviously related to the crisp Aris-
totelian logic and its formalized contemporary descendant, Boolean calculus. Fascinated
by the analogy between biological neurons and Boolean formalism, McCulloch and Pitts
(1943) postulated simplified neurons having just two crisp states. McCulloch followed
Aristotle in the two conceptual directions we are concerned with: logic and combining
adaptivity with apriority, and thus inherited the original contradiction. It is instructive to
note that when McCulloch countered the general trend, he foresaw the future direction of
the science of intellect even though it was not pursued by his immediate followers. But
when he followed the trend, his idea enjoyed immediate but relatively short-lived success.
The Boolean property of early “formal” neurons was immediately accepted, but rejected
since: it is now well understood that gradient learning as well as other learning methods in
complicated nonlinear neural networks require smooth transfer functions. Artificial neural
networks utilize smooth, fuzzy transfer functions. However, the nexus between fuzzy logic
and Aristotelian concept of Forms, combining apriority and adaptivity, was not addressed.

3.7.2 Fuzzy Logic, Models, and Neural Fields

Let us summarize the results of our discussion so far. The fundamental issue in pattern
recognition and computational intelligence was and continues to be the relative role of a
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priori knowledge and adaptive learning. Computational intelligence techniques that utilize
only one of these two factors face severe limitations. These limitations have been manifested
in three different ways for the three types of algorithms. For algorithms based on the factor
of adaptivity alone, the limitations have been manifested by the combinatorial training
requirements. And for algorithms based on the factor of apriority alone, the limitations
have been manifested by the combinatorial explosion of the complexity of rule systems. To
overcome these limitations, model-based techniques have been developed for combining
adaptivity and apriority, but they often lead to a combinatorial explosion of computational
complexity.

The human intellect combines the two factors of apriority and adaptivity. According to
the philosophical analysis dating to Aristotle, adaptive learning is based on a priori Forms.
In today’s mathematical language, adaptive parametric models come closest to Aristotelian
Forms. A meeting between the a priori Form and matter can be understood mathematically
as adaptive estimation of model parameters from the data. Thus, a successful approach
to modeling human intellect ought to combine adaptivity and apriority in a model-based
paradigm. However, algorithms that have been used in the past to combine adaptivity and
apriority in a model-based paradigm lead to combinatorial computational complexity and
are not suited for this purpose. The answer to the conundrum of combinatorial complexity
requires understanding of this difficulty.

We saw that the analysis of the contradiction between Aristotelian logic and theory of
Form provided us with the direction to look for a solution to this riddle. The major point
of Aristotelian criticism of Plato’s Ideas was that before a Form meets matter, it has to be
not in its final form of a concept. But Aristotelian logic that underlies our algorithms, the
Boolean calculus, and calculus of predicates that are based on Aristotelian logic operate
with final crisp forms of concepts. The same is true about geometric models of model-based
paradigms. It is the need to consider multiple combinations or associations between the
concepts and the empirical world (signals, images) in the process of recognition that leads
to combinatorial explosion. The answer to the puzzle of combinatorial complexity must be
sought in overcoming Aristotelian logic that underlies our algorithms. Fuzzy logic founded
by Zadeh in 1965 may provide keys to the answer. Intermediate computational steps (before
Forms meet matter) should employ fuzzy representations of concepts. Neural networks with
their inherent capability for fuzzy logic at the intermediate computational steps emerge as
a vehicle for this new computational concept. Existing neural networks, however, lack
the capability for representing complicated a priori knowledge. Current approaches to
combining neural and logical processing do so by eclectic means of combining the old
computational concepts in hybrid systems, while “new computational concepts are needed”
(Sun and Bookman, 1995). Thus, researchers of intellect should be looking for a nexus of
model-based and neural network concepts. How could this Aristotelian mathematics of
mind be achieved? It seems that the future mathematics of mind will utilize complicated
a priori Forms represented as fuzzy, spatiotemporal models in a neural architecture. A
dynamic spatiotemporal model combining spatial information representation and temporal
adaptive processing in a neural architecture is called a neural modeling field. The a priori
neural modeling field is fuzzy. In the process of learning or adaptation it “meets” matter
and becomes a less fuzzy or crisp concept. Such systems described in the second part of
this book evolve by learning from external stimuli based on a priori models; it is an a priori
adaptive fuzzy paradigm of Aristotelian mathematics of mind.
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NOTES

1. Marvin Minsky has contributed to a number of approaches to computational intelligence. He
is most famous for his contribution to rule-based AI or expert systems based on logical rules,
which is referred to in this book’s designation of the Plato–Minsky method.

2. It should be noted that notwithstanding the 2000-year dominating position of the Aristotelian
physics based on eternal principles, Aristotle assumed the eternity of the world as an unresolved
issue: “In areas where we have no proof” (Topics, 104b,15). Also, compare to Note 2 in Chapter 2.

3. Philosophers emphasized ontological differences between Aristotle and Plato, that is the nature
of being of Aristotelian Forms vs. Plato’s Ideas. Whereas Plato placed Ideas in a separately
existing world of Ideas, Aristotle placed Forms into our minds. This ontological difference,
much discussed throughout ages, is unimportant today because of the fundamental widening of
our understanding of the diverse nature of being. Existence of genes, which persists through
millions of years or existence of quantum fields and superpositions of quantum states are very
different from existence of objects of everyday perception. And even our understanding of the
latter was fundamentally changed by Kant. However, the difference in epistemology (the origin
of knowledge, the learning) of Plato and Aristotle escaped philosophical scrutiny. For Plato,
an explanation of learning was an afterthought (much as for the rule system developers). For
Aristotle, the existence and origin of knowledge were equally important and had to be explained
together.

4. The transcendence of God refers to His a priori nature, which transcends all experience. The
immanence of God refers to His immediacy and relevancy at every moment in the ever-changing
world, which in the contemporary language of the mathematical theory of intellect is called
adaptivity.

5. Adaptive nature is a necessary aspect of the personal Deity.
6. Scholastic tradition has explored many concepts important to the understanding of the nature

of intellect, which are too complicated for the analysis by available mathematical concepts.
Notable among them is the concept of Trinity, mathematical analysis of which is beyond the
scope of this book.

7. A scientist is the subject of scientific inquiry. Its object is an object of science. Objectification
of the subject is equivalent to objectification of the object; both assume that subject and object
exist independently from each other in an “objective” way.

8. Synthetic judgments a priori, according to Kant’s terminology, are nontrivial (synthetic, non-
tautological) conclusions derived from fundamental (a priori) truths in such a way that their
validity is undoubted (that is, of a priori origin). According to Kant, mind possesses special
abilities (of inborn, a priori origin) to form synthetic judgments a priori.

9. The psychological and philosophical position of Skinner, one of the leading behaviorist, is
interesting to follow in light of Jung’s theory of psychological roots of contradictions between
realism and nominalism. Denying a nominalistic relationship, Skinner believes that a contra-
diction between nominalism and realism for Ockham has been purely linguistic and can be
resolved by substituting contingencies of behavior for properties (Skinner, 1974, p. 94). In
this denial of a principled (not linguistic) difference between nominalism and realism, one can
trace a psychological attitude analyzed by Jung (see Section 3.6), confirmed by an affinity
of concepts of nominalism and behaviorism as an extroverted attitude toward psychology. A
philosophical affinity of behaviorism and nominalism can be traced in Skinner’s discussions
about “theories . . . supplement facts” (Skinner, 1974; p. x), or from Skinner’s definition of
a concept as a “set . . . which exist in the world” (ibid., p. 95), and from numerous other
discussions in his book. His discussions of free will, mental processes, and many other concepts
contain unproved conclusions and implicit unstated postulates, which is acceptable as a personal
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position, but cannot be accepted as a scientific truth. This reveals that the basis of behaviorism
as intellectual movement is psychological rather than scientific.

10. Mentalism maintains that complicated mental processes are essential for understanding human
behavior and mind. Mentalism, which opposes behaviorism, is accepted by cognitive science.

11. Mathematical models of systems containing large numbers of particles have been created in
classical physics as well, for example, the gaseous state equations, a computation of the speed
of sound, and statistical physics in general. However, successes in these areas have been due
to the fact that modeling of parameters of interest required considerations of statistical average
states of a single particle, or sometimes correlated states of two particles. The problems of
intellect are characterized by inadequacy of considering statistically averaged states and by a
need to consider correlated states of all (or many) neurons in their interactions at every moment.

12. The mathematical foundation of Factor analysis is a linear technique based on a single Gaus-
sian distribution (Thurstone, 1947). Gaussian distributions are adequate for the analysis of
variability in physical systems with a single underlying deterministic phenomenology that is
characterized by the mean values of the observables, while the variability is dominated by
multiple random factors (Cramer, 1946). When the variability is due to multiple deterministic
processes in addition to the random variability, Gaussian distributions are not applicable even
approximately, and multimodal statistical distributions have to be utilized (Perlovsky, 1991a).
Until recently, mathematical methods for using multimodal distributions were not available.
Multimodal statistical distributions are considered in Chapter 4. Combinations of multimodal
distributions and physical or dynamic models are considered throughout the book.

13. Thus, factor analysis is fundamentally limited in modeling diversity of human intellect.
14. The pointed similarity between Factor analysis and the Wiener processes comes from the

underlying physical assumptions of a single deterministic process. The differences are in that
factor analysis addresses a multidimensional structure of a statistical system, whereas Wiener’s
theory describes the system’s dynamics.

15. There is a point of view that between Aristotle and Descartes the philosophical thought was
dormant: “In the Middle Ages, as in childhood, opinions were formed subject to external
authority . . . the motive for independent inquiry was weak” (Dixon, 1943). An opposite point of
view (Jung, 1951) holds that great truths about human nature have been discovered by gnostics,
theologists, alchemists, and philosophers during the time between Aristotle and Descartes, the
key to which has been lost during the Enlightenment, at the beginning of the scientific age.
Only now is our scientific thinking ready to attempt reclaiming this lost knowledge. [The return
of scientific thoughts of today to philosophical concepts of the past, the breaking into today
of the philosophical concepts of the preceding centuries, confirms Hegelian intuition about the
nature of the development process (Hegel, 1807). An understanding of this process of spiral
development in terms of physical–computational properties of mind would be an intriguing
object of future analysis.]

16. An area of computational physics, which emerged recently, is involved in the development of
more efficient computational methods within frameworks of the existent mathematical models.
Computational methods in this book always have as meaning the mathematical principles–
models of Nature. This differentiation is not an essential one—computational methods utilizing
new principles and enabling solutions of qualitatively new types of problems lead to new physical
understanding.

17. The Turing test is a thought experiment: a computer or a human is placed in a closed room and
communications (questions and answers) are transmitted, say by a teletype. If as a result of such
an interaction, it is not possible to determine if there is a human or a computer in the room, then
mind is similar to a computer.

18. Strong AI, a term introduced by Searle (1980), designates a belief that the specific material
structure of the brain is not essential for the understanding of mind.
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19. Solovyov considered Kant’s metaphysical foundations of the natural sciences as having “doubt-
ful philosophical significance” (1885), and Nietzsche considered certain aspects of Kant’s
philosophy greatly confused: “Kant . . . —really lead astray” (1886; 5), “Kant’s famous . . .
error” (1887; III,6).

20. Transcendent and transcendental in this book corresponds to transcendental in the Critique of
Pure Reason (Kant differentiates these notions).

21. The timeless and spaceless nature of archetypes of the collective unconscious is discussed by
Jung (1951), who assumed the primordial origin of archetypes and their uniform nature among
various peoples. A relatively recent origin of our a priori intuitions about ordered time and space
is indicated by observations of psychologists (Lèvy-Bruhl, 1910) and linguists (Whorf, 1936)
concerning different conceptions of time and space in different peoples; in particular, primitive
consciousness perceives time and space as not quite ordered globally with a higher level of the
local orderliness (in the local region of time and space where the tribe currently lives).

22. The epistemological problem of the relationship between the psyche and the outward object has
not been solved. Who is right, Kant or physics? This question is far from being answered. It is
impossible to accept any of the existing theories of the growth of scientific knowledge, or the
received instant rationality of falsificationism, or Kuhn’s irrationalism, or Lakatos’ rationality of
continuous growth (see, e.g., Lakatos and Musgrave, 1970), for none of these theories addresses
the fundamental issue of the relationships between the growth of science and the content of a
priori knowledge.

23. Crisp concepts obey the law of contradiction. Fuzzy logic deals with fuzzy concepts that do not
obey the law of contradiction. An Aristotelian crisp concept is a limiting case of a fuzzy concept
(in the limit of no fuzziness). Mathematical methods of describing adaptive fuzzy concepts are
addressed throughout this book.

BIBLIOGRAPHICAL NOTES

This section lists references that were not identified in the text directly.

Einstein’s quote is from “Remarks on Bertrand Russell’s Theory of Knowledge” in The Philosophy
of Bertrand Russell, P.A. Schillp, ed. Northwestern University Press, 1944, pp. 278–291.

Aristotle: Forms being a formative principle in an individual experience (Metaphysics); Forms-as-
potentialities (On the Soul, III,4); the end cause and the formal cause (Metaphysics, 
,24).

Avicenna on combining philosophy and theology (Avicenna, XI).
Maimonides on combining philosophy and theology (Maimonides, 1190), on finite angels (ibid.,

II:XII).
Aquinas on quidditive and existential aspects of mind (Aquinas, XIII).
Occam on universals, thoughts, and language (Occam, XIV).
History of philosophy (Windelband, 1883; Goodman, 1977).
A priori contents of mind: contents of pure reason (Kant, 1781); contents of the language faculty

(Koster and May, 1981); contents of the visual system (Grossberg, 1976, 1980a,b, 1982, 1983,
1988, 1995).

Kant on the concepts of time and space [Kant, 1781, I(II)].
Nietzsche on unconscious guiding the consciousness (Nietzsche, 1886, 3).
Jung on the rational feeling function (Jung, 1921); on theory of projection (Jung, 1934); on archetypes

of the collective unconscious (Jung, 1934).
Behaviorism: proponents (Watson, 1913; Skinner, 1974); critique (Jaynes, 1976; Grossberg, 1988b).
Factor analysis (Spearman, 1904; Thurstone, 1947).
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Cybernetics (Rosenblueth et al., 1943; Wiener, 1948).
Wiener on empiricism of Locke and Hume (Wiener, 1948, Chapters 5 and 6); on mathematical

difficulties of using higher order predictive models related to our analysis of combinatorial
explosion (Wiener, 1948).

Scientific method and Descartes (Sutcliffe, 1968, in foreword to Descartes, 1637).
Learning with rule systems (Minsky, 1975, Section 6.1.1; Winston, 1984; Koster and May, 1981;

Botha, 1991; Bonnisone et al., 1991; Keshavan et al., 1993); in Chomsky’s linguistics (Botha,
1991).

Neural a priori structures (McCulloch and Pitts, 1943)
Newton’s biography (More, 1934).
Grossberg on afferent and efferent neural signals (Grossberg, 1980a).
Mathematical analysis of difficulties of algorithms and neural networks built on the nominalistic

concept is given in Chapter 2; also see Perlovsky (1994a; 1998a).
On language, metaphors, and consciousness (Jaynes, 1976; Daugman, 1988).
Fuzzy logic (Zadeh, 1962).

PROBLEMS The following problems list topics for oral presentations and papers. Each topic can be addressed
at varying levels of detail and scope of effort. A one-week study should concentrate on one or
two reference sources documenting the proposed points. A semester-level effort may include
a literature survey and result in a conference presentation or a journal paper. Also, a group of
students can be assigned a topic to prepare a group discussion.

3.1–1 Survey Plato’s concept of Ideas as described in Parmenides. (Note that the words
Ideas and Forms are used interchangeably by translators.) List examples and prop-
erties emphasizing the a priori and universal properties of Ideas. Document adaptive
properties of Ideas, if any. Analyze similarly Minsky’s concept of models (Minsky,
1968b: Matter, Mind, and Models). Compare Plato’s and Minsky’s views. Prepare a
journal paper.

3.2–1 Survey Aristotelian concepts of Forms as described in Metaphysics. List separately
examples and properties emphasizing the a priori nature of Forms (Forms-as-potential-
ities, formal causes) and those emphasizing the adaptive, dynamic aspects and the role
of Forms in learning (Forms-as-actualities, end causes). Prepare a journal paper. Extend
this study toward other Aristotelian works, including On the Soul.

3.2–2 Survey the Aristotelian concept of the end cause as described inMetaphysics. Compare
it with the concept of intentionality of mind and intentional states as described by
Brentano and Searle. (See Searle, 1980 for further references.) Prepare a journal paper.

3.2–3 Review Aristotelian books on logic: Analytics and Topics. Document a priori, eternal,
and unchangeable properties of those concepts, towhich the laws of logic are applicable.
DocumentAristotelian opinions on thismatter. Seek evidence for the opposite, adaptive
properties of Aristotelian logic, if any. Prepare a journal paper.

3.2–4 Review Maimonides’ concept of finite angels (1190: The Guide for the Perplexed).
Document a need for this concept as a connection between the a priori spirit and matter.
Compare finite angels to neural signals coming from the brain to the muscles and to the
sensory organs (e.g., eyes). Compare this with Grossberg’s concept of efferent signals
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(1980a: How does a brain build a cognitive code?). Compare this with your favorite
artificial intelligence paradigm if any. Prepare a journal paper.

3.2–5 Review Aquinas’ concepts of sensation and intellection (XIII: Summa contra Gentiles).
Concentrate on his description of an interaction between the a priori, universal and
material, individual. Compare this with Grossberg’s concept of efferent and afferent
signals (1980a: How does a brain build a cognitive code?). Compare this with your
favorite artificial intelligence paradigm if any. Prepare a journal paper.

3.3–1 Review Occam’s concept of terms (XIV: Summa logicae). Concentrate on his de-
scription of the relationships between the universal and individual. Compare this with
(an opposing) Chomsky’s concept of language faculty (Botha, 1991: Challenging
Chomsky). Prepare a journal paper.

3.3–2 Review the influence of behavioristic concepts on the development of early cybernetics
(Rosenblueth et al., 1943; Wiener, 1948; Skinner, 1974). Prepare a journal paper.

3.4–1 Document Kantian views on the a priori knowledge as described in the Introduction to
the Critique of Pure Reason (1781). Compare this with Minsky’s concept of a priori
knowledge (1968b: Matter, Mind, and Models). Prepare a journal paper.
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part two

MODELING FIELD THEORY
New Mathematical Theory of Intelligence with
Engineering Applications

This is the main part of the book. It consists of seven

chapters describing modeling field theory (MFT) and its

engineering applications. Chapter 4 presents the theory

of modeling fields and describes neural networks based

on this theory. Chapter 5 describes the maximum likeli-

hood neural network (MLANS) and its applications to

grouping and recognition. Chapter 6 describes the Ein-

steinian neural network and its applications to signal

and image processing. Chapter 7 describes applications

to prediction, association, tracking, and sensor fusion.

Chapter 8 discusses the possibility that quantum compu-

tations are performed by biological neurons and de-

scribes quantum MFT. Chapter 9 addresses fundamental

mathematical limitations on learning. Chapter 10 estab-

lishes relationships between MFT and Kantian theory of

mind, and describes an organization of Kant–MFT intelli-

gent systems.
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chapter 4

MODELING FIELD THEORY

The challenges of modeling the mind discussed in the previous chapters can be summarized
as follows. The mind is capable of combining complicated a priori knowledge with adaptive
learning in the presence of perpetual uncertainties of a diverse nature. Algorithms and neural
networks designed to model intelligence face a combinatorial computational explosion, indi-
cating that they are not suitable for this purpose. The twomost important concepts of modeling
the mind, complicated a priori internal representations and learning from experience, have
been developed independently of each other. This was emphasized by Minsky: “theories of
learning and theories of representation were developed independently.” And the roots of this
divide have been traced to Aristotle. In his theory of mind, Aristotle rejected the ready-made
eternal Platonian Ideas. However, Aristotelian logic was created for ready-made eternally
valid concepts, not for fluid, fuzzy Forms. Fuzzy logic promises a resolution of this impasse,
if a way to combine it with apriority and adaptivity can be found.

A theory of neural modeling field developed in this chapter accomplishes just that. It
combines complex, structured a priori knowledge of an internal model with adaptivity of the
model parameters. And it avoids combinatorial explosion by using fuzzy logic. In other words,
modeling field theory is a long sought for representation of an a priori model, which supports
both learning and adaptation.

A concept of similarity between the internal model and the world is central to the
mathematical theory of mind based on an internal model. We consider first a general ap-
proach to constructing similarity measures that are suitable for complex models of the world
(composed of multiple local models). Three types of similarity measures are considered:
Aristotelian, Zadeh’s (fuzzy), and adaptive fuzzy. Dynamic equations of modeling field theory
are obtained that maximize the adaptive-fuzzy similarity between the model and the world.
Two instantiations of this general theory are developed using the fundamental principles of
likelihood and information: a Bayesian similarity measure leading to maximum likelihood
learning and Shannon’s similarity measure leading to maximum information or maximum
entropy learning.

Modeling field theory provides a mathematical apparatus of fuzzy adaptive logic for
Aristotelian Forms, which are represented as dynamic neural fields. It is an intelligent system
with an internal instinct or drive to increase the similarity between the internal model and the
world. That is an instinct to learn.
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4.1 INTERNAL MODELS, UNCERTAINTIES, AND SIMILARITIES

4.1.1 Certainty and Uncertainties

Any order that we perceive in the world is incomplete, partial, and interspersed with
uncertainty. It even seems sometimes that any order in the world is imposed by us: early
concepts of beauty in human societies are associated with order and symmetry; we are often
fascinated with order emerging naturally, such as in crystals; and even most abstract works
of art seems to impress us with an order revealed in chaos. Might it be that the appeal
of order is related to our desire and ability to foresee? At the same time, complete order
without variations is often perceived as stale and lifeless. Our ability to perceive both order
and variability seems to be essential. Thus, both ought to be represented in our mind.

An order is a natural property of mathematical models. Simple mathematical functions
whose shapes are determined by few parameters are an epitome of order. More complicated
mathematical constructs are used to represent uncertainty and disorder. A well established
mathematical theory of uncertainty is the theory of probability. Its empirical roots are
related to a specific type of uncertainty, the uncertainty of chance, the uncertainty of events
whose relative frequencies can be predicted. The theory of probability deals with random
variables, whose random properties are essential and inherent to the modeled phenomena.
Other types of uncertainty include unknown, but nonrandom deterministic quantities. Fuzzy
variables and fuzzy logic is a recently emerging mathematical technique for modeling
uncertainties that cannot be characterized by their frequencies of occurrence. (There are
also chaotic processes, which are unpredictable even though they are characterized by
known and nonrandom quantities; their unpredictability is due to exacerbated inaccuracies
inherent in predictions. In this book we will not be much concerned with those.)

4.1.2 Models and Levels

The functioning of mind requires three fundamental abilities: an ability to use concepts of
perception and cognition, which are represented by internal models; an ability to establish
a correspondence between the models and the world; and an ability to generate behavior. A
mathematical description of the first two abilities is the main topic of this section. It seems
natural that behavior is generated after a correspondence is established between the internal
representation and the world. It turns out, however, that there is a specific type of behavior,
which is inseparable from the other two abilities, the behavior of adaptive learning. So,
even an elementary “unit of intelligence” has to combine all three abilities.

Establishing a correspondence between the internal representations and the world is
a nontrivial mathematical issue. For example, consider the following rule: if CHAIR then
SIT. To implement such a rule, a correspondence must be established between CHAIR and a
subset of the sensory data about the world. But, a logical concept CHAIR is incommensurate
with the world. At best you can find a word “chair” in a book page, but you are not
supposed to sit on a book page! It follows that model-concepts should have multiple levels
of representation, including levels corresponding to written signs and to the objects in
the world.

Modeling field theory developed in this chapter describes mathematically neural in-
teractions among three levels: a higher level, in which an individual chair in the world is



4.1 Internal Models, Uncertainties, and Similarities 155

represented internally by an output activation signal from the “concept-CHAIR”; a lower
level, in which the bodily sensory expectations are generated including an expected visual
representation of an image-CHAIR; and an a priori level, in which CHAIR is represented
as a parametric model-CHAIR. The “concept-CHAIR” activation signal is an input data to
other models including higher level models. There, in the interaction with other models, this
signal is interpreted by the rest of the mind as indicating the presence of a chair in the scene
(for example, a model SIT will direct our body to sit on this object). The lower level image-
CHAIR is “matched” to the sensory visual input images. Sensory signals and expected
images are “in the same domain”; they are commensurate, and a similarity measure can
be defined between two commensurate quantities. The a priori parametric model-CHAIR
is a part of the mechanism used in recognition and adaptation, which is responsible for
generating the image-CHAIR. It is interesting to compare the above description to the
intelligent tracker in Section 1.1.4 (Problem 4.1-1).

4.1.3 Lower Level Models

Let us consider internal models that represent “world” in the sensory domain. Could these
models be just pictures or movies of the entire scenes? No, such models would hardly
be useful for recognizing objects of interest within the scene. Instead, the models have to
represent objects of interest. An object of interest could be a significant part of the entire
scene (say, a room), or a small part of the scene (say, a chair). This leads to a need for
multiresolutional models. Let us now concentrate on a single resolution level. To be able
to recognize multiple objects (such as chairs, tables), the model has to be compositional, it
has to contain multiple models of objects. Internal models often used in the model-based
vision are detailed physical models of objects of interest that require no adaptation or
learning. They are suitable in a highly ordered environment without variabilities. When
unpredictable variabilities are expected, adaptive models have to be used. Adaptive models
are parametric functions, with unknown parameters that represent nonrandom deterministic
uncertainty. We say that a deterministic parametric model M(S) with parameters S models
data x, if

x = M(S) (4.1-1)

Boldface is used to emphasize that the corresponding quantities are vectors (or arrays, or
sets of numbers). If the data x are the output of sensory cells, M are perception-concept
models; if the data x are excitations of other models farther along the processing levels, M
are more complicated object models, or cognitive-concept models. To distinguish a number
of different objects or concepts, index k is used: Mk(Sk), k = 1, . . . , K. Pieces of data (input
nodes) are numbered by index n, xn. For a black–white image, the data are pixel intensities;
for a color image, the data xn are a vector or set of intensities in several color bands; at
a higher processing level, xn could be vectors of intensities or features extracted at lower
levels. In neural terminology, xn are activation degrees of a subset of the input nodes (e.g.,
axon rate of firing of retina cells). Model parameters, Sk, may describe position, orientation,
and pose of the object. For speech recognition, xn could be individual signal samples or
a set of signal samples from a small window, or features of phonemes, and Sk describes
articulation of a vocal tract, etc. Or, xn could be a set of features extracted from the data in
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the result of feature extraction or preprocessing: for example, edge detection is performed
by an early visual system, and could be performed by an artificial retina. Complex systems,
in general, have multiple levels, and concepts or classes identified at each level become
input data at the next level.

According to the three levels of models, we use the term model in three ways: the
concept k-model is the activation output signal representing this concept to the rest of
the brain; the a priori Mk(Sk) model is a function of parameters, a process that generates
the image-model-k; and the same notation, Mk(Sk), is used for the image-model, which is
similar to the data for specific values of Sk. The data, xn, evoked by an object or concept
n are activation degrees of a (large) number of input nodes at a given level, a field of
activations. Correspondingly, the image-model is a simulated (predicted) value of this field
and, in general, a model predicts different values for different pixels n, Mk(Sk, n). If input
data xn are due to (evoked by) an object of class k, there are values of parameters Sk such
that the data match the model

xn = Mk(Sk, n) (4.1-2)

The image-model, thus, is a prediction of the data vector. When constructing models
for robots, it is necessary to account for the properties of objects, sensory systems, and
preprocessing (preprocessing is accomplished at the lower levels, between the sensor nodes
and the considered model level). In reality, a perfect match as in Eq. (4.1-2) cannot be
attained because there are multiple sources of uncertainty causing deviations between the
model and the data.

Thus, a measure of similarity has to be introduced.

4.1.4 Similarity Measures

A similarity measure has to accomplish more than just measuring a degree to which
Eq. (4.1-2) holds. It has to measure a similarity between the entire set of data (which
is a continuous stream of overlapping patterns) and a set of models. Thus, a partition
(association, segmentation) of the entire data set and a set of models has to be a part of the
similarity measure. Such a measure is fundamental to model-based recognition based on
internal representations. Before considering explicit functional forms of similarity measures
in the next section, we first go over general approaches to defining such a measure. It has
to account for a distributed representation of an object by a subset in the field of input
nodes (synapses, pixels, or samples). Input data are denoted xn, n = 1, . . . , N. Association
(or segmentation) of the field of input nodes with objects can be described mathematically
as a partition � of pixels {x1, . . . , xn} into subsets ξk corresponding to particular objects,
� = {ξ1, . . . , ξK}. Subsets ξk are characterized by membership functions, ξ(k|n) = 1 if
pixel n belongs to an object k, n ∈ k, or ξ(k|n) = 0 if n /∈ k.

Given a partition � and a set of model parameter values Sk for each object’s model, a
conditional similarity measure between pixel n and model k can be introduced, l

[
xn|�,Mk

(Sk, n)
]
, or for simplicity of notations l(n|k). The role of partition here is to define the pixels

belonging to object k, l(n|k) = 0 for n /∈ k; and, for n ∈ k, l(n|k) could be defined, e.g.,
as a function of

[
xn − Mk (Sk, n)

]
2. On a par with l(n|k) we will consider its logarithm,

ll(n|k) = ln l(n|k) (and we will refer to either of these as a similarity measure). The k-model
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similarity, that is the similarity for all pixels belonging to k-subset (kth model) for a given
segmentation, can be defined as a product (or sum) of conditional pixel similarities

l(k|�) =
∏
n∈k

l(n|k) or ll(k|�) = ln l(k|�) =
∑
n∈k

ll(n|k) (4.1-3)

The reason for using simple product or sum above is in that we are looking for the
simplest expression satisfying an intuitive notion of similarity. This definition assumes
that l(n|k) ≥ 0 [so that ll(n|k) is a real number]. Then, l(k|�) is a positive function, which
is close to zero when a similarity is low, and ll(k|�) takes both positive and negative
values, and it takes large negative values for a low similarity. Given the above definition,
model parameters, conditional on segmentation, can be obtained by maximizing the condi-
tional similarity

maxSk ll(k|�) ⇒ Sk,� (4.1-4)

A total conditional log-similarity for all pixels and all models for a given segmentation can
be defined as a sum of model log-similarities

LL(�) = lnL(�) =
∑
k

ll(k|�) (4.1-5)

And the total unconditional measure of similarity LL is obtained by maximizing the above
over all segmentations; this leads to the best segmentation and the best model parameter
values:

LL = max{�}maxSkLL(�) ⇒ {�,Sk} (4.1-6)

Here, LL is a total measure of similarity between the input data set (a field of input nodes)
and a set of models. And {Sk} is a set of parameters corresponding to the best match. When
it does not introduce confusion, we call any L, LL, l, ll, max L, or max LL a similarity
measure.

Aristotelian Similarity. The above measure of similarity is defined by using crisp partitions
� of the input data. Within each crisp partition, a definite set of pixels corresponds to each
object with no uncertainty. Partitions, thus, obey the Aristotelian logic law of contradiction
(or excluded third): each pixel either belongs to a representation of a particular object, or
does not (there is no third alternative). Near the end of the nineteenth century, Aristotelian
logic was mathematically formalized by effort of a series of outstanding mathematicians,
including Cantor, Frege, and Russell. This work culminated in the famous Gödel theorems
(discussed later in Chapter 11). The formalization of Aristotelian logic was based on
identification of the logic and set theory: logical predicates are identified with subsets.
A partition � is equivalent to a set of predicates or statements of Aristotelian logic of the
sort: pixel-n ∈ object-k. Accordingly, the measure of similarity defined above we call an
Aristotelian similarity, or A-similarity, A-L, or A-LL. Summarizing Eqs. (4.1-3) through
(4.1-6), the A-similarity is defined as

A-LL = max{�}
∑
k

maxSk
∑
n∈k

ll(n|k) (4.1-7)
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Finding parameter values that maximize A-similarity requires two steps: first each
k-model similarity is maximized over the parameters of this model and second, the best
parameters are selected that correspond to the best partition (segmentation). The first step
can be approached by solving the equation

∂/∂Sk ll(k|�) = 0, ⇒ Sk,� (4.1-8)

The second step requires consideration of a combinatorial number of partitions. Thus,
the A-similarity has a high inherent combinatorial computational complexity, which is
determined by multiple partitions (associations/segmentations), �. Since every pixel could
be associated with every object, the total number of partitions is on the order of O

(
KN
)
,

and the total computational complexity of A-similarity, CA is on the order of

CA ∼ O
(
KN
) · Cmax (4.1-9)

where Cmax is a computational complexity of finding conditional maxima.

Fuzzy Similarity. Combinatorial complexity associated with segmentation can be elim-
inated by using fuzzy logic. In honor of Zadeh, the founder of fuzzy logic, we call it
Z-similarity, Z-L. Instead of a crisp partition found by combinatorial search�, Z-similarity
is based on fuzzy class memberships f (k|n), which may take any value within [0,1]
determining a degree of pixel n belonging to an object k, and which are specified a priori
(even if only approximately). How can we transform A-similarity into Z-similarity? Let us
rewrite A-similarity in terms of crisp membership functions ξ(k|n) as follows: rewrite
�n∈k ll(n|k) as �n ξ(k|n)ll(n|k). If we substitute crisp membership functions ξ(k|n)
for fuzzy membership functions, f (k|n), for the k-model similarity measure, in place of
Eqs. (4.1-3) and (4.1-7) we obtain

ll(k) =
∑
n

f (k|n)ll(n|k) (4.1-10)

Z-LL = max{�}
∑
k

maxSk
∑
n

f (k|n)ll(n|k) (4.1-11)

The parameters of each model are obtained by maximizing this model similarity,

maxSk Z-LL or ∂/∂Sk
∑
n

f (k|n)ll(n|k)

=
∑
n

f (k|n) ∂ll(n|k)/∂Sk = 0, ⇒ Sk
(4.1-12)

The Z-similarity has a low inherent computational complexity because of no need to
consider multiple segmentations. The computational complexity of Z-similarity, CZ is on
the order of

CZ ∼ O(N ·K) · Cmax (4.1-13)

A disadvantage of Z-similarity is due to nonadaptive fuzzy class memberships, which could
lead to unduly fuzzy or unduly crisp concepts with class memberships that do not represent
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actual uncertainty and unsuitable for representations of actual objects. This property makes
Z-similarity too restrictive for learning or adaptive systems. (This limitation of fuzzy logic
was emphasized by its founder Zadeh in 1997.)

Adaptive Fuzzy Similarity. We would like to define adaptive fuzzy similarity, or AZ-
similarity, in such a way that it combines advantages of A- and Z-similarities: adaptive
segmentation and low computational complexity. So, let us avoid using any predetermined
segmentation, and define a similarity measure so that associations of data and models
emerge in the process of parameter estimation that maximizes the similarity measure. Thus,
originally every pixel has a chance to be associated with each model. Various models are
possible alternatives for each pixel, therefore, pixel similarity l(n) is defined as a sum over
alternatives, partial similarities l(n|k),

l(n) =
∑
k

l(n|k) or ll(n) = ln

[∑
k

l(n|k)
]

(4.1-14)

Note that here we sum similarities, not their logarithms. Of course, before specific functional
expressions are specified, the difference between l(n|k) and ll(n|k) is just in the notations.
Notations above are selected in such a way that if uncertainties are probabilistic, similarities
can be interpreted as probabilities (or pdf): according to the rule of combining probabilities
of alternative events, the probabilities should be added. According to this definition, the
pixel similarity is large even if just one of the models predicts this pixel well. The total
similarity is defined as

AZ-L = max{Sk}
∏
n

l(n) = max{Sk}
∏
n

{∑
k

l(n|k)
}

or

AZ-LL = max{Sk}
∑
n

ll(n) = max{Sk}
∑
n

{
ln

[∑
k

l(n|k)
]} (4.1-15)

Here, parameters of all models {Sk}have to be estimated simultaneously: values of parameter
for each model affect parameter values for other models. This accords with our desire for
emerging segmentation. To see the emergence of segmentation, let us examine parameter
estimation equations,

∂/∂Sk
∑
n

ll(n) =
∑
n

∂/∂Sk {ln l(n)} =
∑
n

[1/l(n)] ∂/∂Sk

[∑
k′

l(n|k′)

]
= 0 (4.1-16)

Among l(n|k′) only one item for k′ = k depends on Sk : ∂/∂Sk
[∑

k′ l(n|k′)
] = ∂/∂Sk

l(n|k). We rewrite this derivative by using an identity

∂y = y · ∂ ln y (4.1-17)

Using this, we obtain,∑
n

[1/l(n)] ∂/∂Sk l(n|k) =
∑
n

[l(n|k)/l(n)] ∂ll(n|k)/∂Sk = 0 (4.1-18)
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Here, the term l(n|k)/l(n) approaches 1 if model k predicts pixel n much better than any
other model, and it approaches zero, if model k predicts pixel n much worse than some
other model. This term thus has properties suitable for the fuzzy membership function, and
therefore we define

f (k|n,Sk) = l(n|k)/l(n) = l(n|k)/ [l(n|1)+ · · · + l(n|K)] (4.1-19)

This expression is similar to the Bayesian a posteriori probability (1.2-15), and if uncer-
tainties are probabilistic, and pdf are used as similarities, it can be interpreted as such. In
this definition we explicitly emphasized the dependence of the fuzzy membership function
on model parameters. These adaptive fuzzy memberships f (k|n,Sk) are not given a priori,
but are computed from partial similarities, l(n|k). The denominator here normalizes fuzzy
memberships to be between 0 and 1 (partial similarities are positive) and implements a
competition between concepts k for the datum n. The fuzzy memberships can be thought
of as producing partial activations of the concept k (full activation of model k depends on
partial activations of k from all input nodes n). Using this definition, estimation equations
can be written as ∑

n

f (k|n,Sk) ∂ll(n|k)/∂Sk = 0 (4.1-20)

This is similar to nonadaptive similarity [Eq. (4.1-12)], however, here fuzzy class mem-
berships are not defined a priori, they are functions of model parameters and the fuzzy
segmentation emerges in the process of model estimation.

In the definition of AZ-similarity [Eq. (4.1-15)], the sum over k includes all alternative
hypotheses or models k, for each pixel n. If we expand parentheses {·} in the AZ-L definition,
it can be written as a sum of KN items, each item being a conditional likelihood of the type
of Eq. (4.1-5) for A-L defined for a particular segmentation �. Thus, Eq. (4.1-15) contains
all segmentations as alternatives. Still, AZ-similarity is noncombinatorial, as we see from
parameter estimation [Eq. (4.1-20)]. The AZ-similarity measure combines advantages of A-
and Z-similarities: adaptivity and low computational complexity. Similar to the complexity
of Z-similarity [Eq. (4.1-13)],

CAZ ∼ O(N ·K) · Cmax (4.1-21)

The factor Cmax is somewhat larger in this case because fuzzy class memberships have to
be computed.

Equation (4.1-20) leads to a mathematical description of the Aristotelian theory of
mind: it combines apriority and adaptivity. In the next section we define a dynamic procedure
for computing parameters Sk maximizing AZ-similarity, while concurrently leading to the
emergent segmentation f (k|n,Sk) determined in the process of learning. A dynamic system
implementing this procedure is called Modeling Field Theory (MFT).

4.2 MODELING FIELD THEORY DYNAMICS

Modeling Field Theory, or MFT, is a system of dynamic equations maximizing AZ-
similarity. Dynamics of MFT implements the Aristotelian theory of learning in the
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following sense. According to the Aristotelian theory of Forms, learning is based on a
priori adaptive Forms that are given a priori as potentialities and evolve into specific
concepts in the process of learning. In MFT, learning starts from fuzzy Forms, given
by highly fuzzy class memberships f (k|n,Sk) corresponding to a priori models with
uncertain values of parameters Sk , and learning proceeds toward deterministic concepts,
given by low-fuzzy class memberships f (k|n,Sk) and final models with certain values of
parameters Sk .

4.2.1 Overview of the MFT System

Let us summarize the architectural organization of the modeling field theory (MFT). In
a conceptual way, at some general level of approximation, it follows that of the brain.
Brain combines modular heterarchical structure with multilevel hierarchical organization.
Although multiple processing levels in the brain are well established, brain is not a uniform
hierarchy where each level sends its results up to the next one in a final form. Instead, a
significant interaction among many levels takes place during a process of concept formation
and recognition. There is evidence that signal processing in the brain includes iterative loops
encompassing several levels: e.g., word recognition affects phoneme recognition, etc. Thus,
levels of processing can at best be identified only tentatively, and the brain is not a strict
hierarchy, but a heterarchy. We call this heterohierarchical organization.

A single level of MFT is described in detail in this section. Most of the notations has
been already introduced. At every level, input nodes (or pixels) n contain data xn; these
are the degrees of activation of certain concepts at a lower level. At the considered level,
these are input data, a field of activations. Models Mk (Sk, n) predict (or model, simulate)
these data, to the best extent possible, by modifying their parameters, Sk . These adaptive
models are emergent concepts. While adapting to input data, they compete with each other
for evidence in the data. These models-concepts can be viewed as intelligent agents that
often operate with a significant degree of independence.

At every level, a large number of emerging agents–concepts–objects is usually present
and compete for evidence at any moment. So the entire input data set {xn} is associated with
a set of agents (objects or models) in a fuzzy way. A pixel (activation node datum) xn may
provide for a partial activation of the agent k, this partial activation is given by the fuzzy
class membership f (k|n,Sk), or f (k|n) for shortness. It is interpreted as a neural weight
connecting input node n with agent k. And it is determined by a similarity between the
datum xn and its model-k prediction, l(n|k). The model Mk (Sk, n) predicts a large number
(a modeling field) of individual data pieces xn. A similarity between xn and Mk (Sk, n) is
denoted l(n|k), which we call partial or pixel similarity. We freely use abbreviated notations
whenever possible without causing ambiguities, e.g., arguments are omitted and indexes
(n, k, etc.) are used in place of the corresponding quantities (xn,Sk , etc.).

A mathematical apparatus of MFT relates various quantities introduced so far, and gives
the learning/adaptation laws for the model parameters resulting in the maximal similarity.
We will complete the description of MFT in several steps. First, AZ-similarity measure
AZ-LL and the partial activations f (k|n) have been already defined in terms of partial
similarities l(n|k), [Eqs. (4.1-15) and (4.1-19)]. Second, in the next section we formulate
dynamic MFT equations maximizing AZ-LL in terms of l(n|k) and their derivatives with
respect to the modelsMk . Third, l(n|k)will be explicitly specified as functions of the models,
Mk . And fourth, models will be explicitly specified as functions of parameters Sk . The third
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step is considered in Sections 4.3 and 4.4. We define two types of similarity measure, one
based on the concept of probability or likelihood, leading to a Maximum Likelihood neural
network (Section 4.3 and Chapter 5), and another, based on the concepts of information
and entropy, leading to an Einsteinian neural network (Section 4.4 and Chapters 6 and 7).
The fourth step, model specification, is application specific; a number of models will be
introduced throughout the book for various applications.

4.2.2 MFT Dynamic Equations

Now, we derive the MFT system dynamic learning equations for the model parameters
and partial activations (neural weights). These equations are derived by maximizing the
AZ-similarity AZ-LL, using a variation of the gradient ascent method. According to the
gradient ascent, at every moment t, parameters are changed incrementally, ∼ dt , along the
direction of the gradient of AZ-LL,

dSk = dt · (∂ AZ-LL/∂Sk) (4.2-1)

Using Eqs. (4.1-15) through (4.1-19),

dSk/dt = ∂ AZ-LL/∂ Sk =
∑
n

f (k|n) ∂ll(n|k)/∂Sk (4.2-2)

Dependence of ll(n|k) on parameters Sk is only through the models Mk; evaluating the
derivative by the chain rule,

dSk/dt =
∑
n

f (k|n) ∂ll(n|k)/∂Sk =
∑
n

f (k|n) [∂ll(n|k)/∂Mk] [∂Mk/∂Sk] (4.2-3)

f (k|n) = l(n|k)/
[∑

k′
l(n|k′)

]
(4.2-4)

Here model parameter updates are given as a weighted sum over the field of input nodes n.
Considering this as a neuronal equation,f (k|n) are interpreted as neural weights responsible
for partial activation of model k due to input node n. Equations (4.2-3) and (4.2-4) define a
convergent dynamic system of MFT, which always converges in finite time to a maximum
of AZ-similarity, under the assumptions that AZ-LL is differentiable and finite. We consider
the convergence proof in Section 4.6.

Conceptually, it might be more satisfactory to have the neural weights f (k|n) defined
by a dynamic equation, rather than as above. Such a dynamic equation can be obtained by
taking a derivative of the above definition (see Problem 4.2-1)

df (k|n)/dt = f (k|n)
∑
k′

[
δkk′ − f (k′|n)] ll′(n|k′)M′

k′ · dSk′/dt (4.2-5)

Here,

ll′(n|k′) = ∂ ll(n|k′)/∂Mk′ , M′
k′ = ∂Mk′/∂S′

k,

δkk′ is 1 if k = k′, 0 otherwise
(4.2-6)
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This equation also results in a convergent system, maximizing similarity AZ-LL. A conver-
gence proof is considered in Section 4.6. These equations can be implemented by a single
neuron for every k, or by a group of neurons, a subnetwork for each k, if models are complex.

4.2.3 Continuous MFT System

Modeling the mind with a concept of neural networks composed of individual neurons
with isolated nodes is an approximation, which may be valid to varying degrees for various
brain subsystems. There are many mechanisms in the brain that are more continuous than
digital. First, a single synapse is not a mathematical point, but a continuous structure. Then,
a neuron has a complicated tubular structure, within which complex processes are possible,
and some researchers hypothesize that quantum-level computational processes might be
involved. And, of course, there are essentially continuous processes involving changes in
concentrations of certain neurally important chemicals on a scale much larger than a single
neuron. Another motivation for considering continuous MFT is the possibility of engineer-
ing implementations other than digital computer. While quantum MFT is considered in
Chapter 8, here we develop a continuous formulation.

First, let us consider a continuous field of input activations, so instead of n we will use
a continuous index ν, while the index k referring to objects, concepts, and models, will be
considered as discrete, k = 1, . . . , K . Also, the number of parameters Sk for each model is
still considered finite. Later we discuss possible roles for continuous fields of parameters
and models.

Reformulation of the MFT equations for the continuous field of input data is straight-
forward. Equation (4.2-5) is not affected and in place of Eq. (4.2-3), we have

dSk/dt =
∫
dν f (k|ν) [∂ ln[l(ν|k)]/∂Mk] [∂Mk/∂Sk] (4.2-7)

Equations (4.2-5) and (4.2-7) define MFT over the continuous ν-field that converges to a
maximum of the continuous modification of AZ-similarity:

AZ-LL = maxSk

{∫
dν
∑
k

l(ν|k)
}

(4.2-8)

In certain situations, it is advantageous to consider continuous sets of models that de-
pend on continuous sets of parameters. Deformable models of continuous geometric patterns
such as murphs or snakes and appropriate models and measures of similarity can be defined
so that the infinite number of models and parameters can be learned from finite training data.1

4.2.4 Heterarchy, Multiple Scales, and Local Maxima

In a multilevel MFT system, agent-concepts or classes emerging or activated at each
level become input data at the next level. Multilevel, multiscale organization addresses
computational complexity: resolution of each higher level in space–time decreases and
scale increases. Roughly speaking, this results in an exponential savings of processing
and memory requirements. If the resolution of each next higher scale decreases by s

and scale increases by the same amount, then l levels would cover s l larger scale in
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space–time compared to the bottom level, and it would require only l times the processing
and memory requirements compared to the bottom level. This type of multilevel and
multiscale organization corresponds to our intuition about mind: we remember and can
attend to a lot of details in the immediate surrounding, whereas on larger space–time scales
we remember and attend to fewer details. It is also well known that certain events are retained
in the memory with great detail for long time—this is evidence for heterarchy. Multilevel
organization concerns not only memory but the entire conceptual organization of our mind:
certain concepts (internal models) are more general and include a number of subconcepts
(submodels or lower level models). But the same concept (model) can serve as a lower level
or a higher level concept in various situations—again, evidence for heterarchy. A multilevel
system requires a multilevel internal model, composed of a number of submodels operating
at various levels. And mechanisms are needed for heterarchical partitioning-associating
sensory data with various submodels.

Multilevel organization also helps in addressing a problem of local vs. global maxima,
which plagues complicated nonlinear systems that operate on a single level. MFT uses two
mechanisms to help find the global maximum. First is adaptive fuzziness of the models. High
initial fuzziness helps avoid local maxima, by “not seeing” them. Second, in a multilevel
system the problem of local maxima is properly resolved at higher levels. Local maxima
of similarity correspond to misidentified concepts-objects, including missing concepts and
false concepts. Wrong concepts are identified as such at a higher level, and corrective actions
are taken, including resetting or redirecting activities at a lower level. Specific examples of
such systems will be discussed throughout several subsequent chapters.

Let us formulate a mechanism of the agent-concept activation that is necessary for
providing bottom-up input to the next level. The degree of the agent activation used as
input at the next level ought to be determined by a degree of similarity between the agent-
model and data. In other words, an agent activation is the degree of recognition of an object
or concept. A simple mechanism of agent k activation level a(k) is by summing partial
activations f (k|n) over the input data field,

a(k) =
∑
n

f (k|n) (4.2-9)

4.2.5 MFT, Fuzzy Logic, and Aristotelian Forms

Sections 4.1 and 4.2 described the general concepts of MFT, a learning system based on
adaptive internal models of the world. MFT is a dynamic system, and its dynamic evolution
constitutes the learning process. MFT learning is determined by two factors: the a priori
internal models and real-time input data. Therefore, learning is combined with the a priori
knowledge contained in the models. (Here “a priori” refers to all models that have been
acquired before the current experience.)

MFT resolves the problem of the combinatorial complexity explosion faced in the
past: MFT dynamics contains no combinatorics. The key to defining the noncombinatorial
dynamics is the AZ-similarity measure, which combines a priori models with fuzzy logic
and adaptivity. Fuzziness of MFT agent-classes or concepts is determined by the specific
shape of partial similarity measures l(n|k). They should be defined in such a way that at
the beginning of the learning process, when parameter values are uncertain, the fuzziness
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is high. And the fuzziness is reduced during learning, so that when parameter values attain
their accurate values, the classes become crisp or low-fuzzy concepts. The matching of
fuzziness to the uncertainty is important for efficient learning, avoiding local maxima. Let
us repeat that this process implements the Aristotelian conception of learning: uncertain a
priori Forms-as-potentialities become certain concepts in the process of learning.

Specific AZ-similarity measures are defined in Sections 4.3 and 4.4. They lead to
specific types of neural networks. A general neural network architecture based on MFT
dynamics is considered in Section 4.5. We call it MFT or Model-Based Neural Network.
The AZ-similarity measures defined in the following sections lead to two types of neural
networks: Maximum Likelihood (ML) Adaptive Neural System (ANS), or MLANS, and
Shannon–Einsteinian or Maximum Entropy ANS (MEANS). A complete specification of
MFT requires model definition (in addition to a similarity measure). Several types of models
are considered in Chapters 5, 6, 7, and 9.

4.3 BAYESIAN MFT

A general theory of MFT developed in the previous section requires an explicit specification
of a partial similarity measure, l(n|k) in terms of models and data, and specification of mod-
els Mk (Sk) in terms of parameters. In this section we develop a partial similarity measure
using a fundamental concept of statistics, the Bayesian likelihood, and subsequent chapters
will consider specific models. This similarity measure combines probabilistic aspects of
similarity together with deterministic and fuzzy ones. Specific expressions for Bayesian
A-similarity and AZ-similarity are obtained along with learning equations, maximizing the
similarities. We call the MFT system of learning equations based on Bayesian AZ-similarity
the Maximum Likelihood Adaptive Neural System (MLANS).

The maximum likelihood, or ML, is a fundamental statistical principle. In addition to
the intuitively appealing notion of “the most likely,” it has certain fundamental mathematical
advantages. If the model accurately models the expected data, so that the deviations are ran-
dom, the ML estimation is “the best” or close to the best one in the following mathematical
sense: the ML estimation is asymptotically unbiased and efficient. The meaning of these
words is as follows. Asymptotically means that the amount of data (training labeled data, or
otherwise) is sufficiently large; sufficiently large means the limit of infinity, but often, this
limit is closely approached (or exactly attained) for just a few data points per every model
parameter. Unbiased means that on average, estimated parameters attain their true values.
Efficient means that the average errors (standard deviations) of estimated parameters attain
the lowest possible values. These lowest possible errors, as functions of the available data,
can be estimated by using the Cramer–Rao lower bound, which is discussed in Chapter 9.
Thus, the ML estimation leads (asymptotically, and often practically as well) to the fastest
possible learning.

4.3.1 Bayesian A-Similarity Measure and the Principle of Maximum
Likelihood

When all deterministic variabilities in the data are accounted for in the model Mk (Sk, n),
the deviations of data Xn from the model can be treated statistically. For each class, the
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model should be developed so that it gives a statistical expectation (average value) of the
data conditional on the class-hypothesis Hk ,

Mk (Sk, n) = E {xn|Hk} =
∫

xnpdf (xn|Hk) dxn (4.3-1)

Here, Hk includes class k, segmentation �, model prediction Mk (Sk, n), and model pa-
rameters Sk , Hk = [�,Mk (Sk, n)], and the expectation E{·} is taken with respect to the
Hk-conditional probability density function, pdf(xn|Hk).

A pdf is called likelihood when considered at a given data value xn as a function of
model parameters. A concept of likelihood, as a measure of similarity between a model and
data, is due to Bayes, therefore we will refer to similarity measures developed in this section
as Bayesian similarities. We define a conditional partial similarity measure l(n|k) as a joint
likelihood of the data xn and model Hk; the joint likelihood, pdf(xn,Hk), accounts for the
conditional likelihood of the data xn given that we are observing class k, pdf(xn|Hk), and
for the likelihood of observing class k, P(k):

l(n|k) = pdf (xn,Hk) = P(k)pdf (xn|Hk) (4.3-2)

The second equality here is obtained by using the law of conditional probability, pdf(a, b) =
P(a)pdf(b|a), where a and b stand for the hypothesis and data, respectively. The probability
of the hypothesis P(k) is called in statistics a prior probability because in classical statistics
it is considered known prior to data xn observation. In our approach, P(k) is a part of the
model and can be adaptively learned similarly to other model parameters. Usually we model
P(k) with just one parameter, that is, we consider P(k) a constant for each class or model.
Because P(k) is a proportion of observations (pixels) from class k, we call it class rate.

Combining the above equation with A-L definition [Eq. (4.1-7)], we obtain the Bayesian
A-similarity

A-L = max{�}
∏
k

l(k|�) = max{�}
∏
k

maxSk
∏
n∈k

P (k) pdf (xn|Hk) (4.3-3)

Let us discuss when the total A-L similarity and �-conditional similarities for classes
l(k|�) above can be interpreted as the corresponding likelihoods. In particular, under what
conditions the joint pdf of all pixels belonging to the concept k, pdf({xn, n ∈ k} , Hk|�),
factors into the product as above,

∏
n∈k P (k) pdf (Xn|Hk) and the joint pdf of all data and

models conditional on the segmentation also factor into
∏

k l(k|�). First, this factoring
of the joint pdfs into products occurs when deterministic models Mk (Sk, n) accurately
account for all sources of deterministic variabilities and remaining variabilities are random
and uncorrelated among pixels. Thus, while modeling deterministic relationships among
pixels, we assume their statistical independence. For uncorrelated data, joint pdfs factor
into products of individual pdfs. Second, this factoring of the joint pdfs into products can
be understood as follows: let parameters Sk include other pixels xn′ that may be correlated
with xn; and let the model be given by the linear regression of xn on xn′ and the deviations
(xn −Mk) are uncorrelated with xn′ (see Problem 4.3-1). In this second case, we do not
assume statistical independence among pixels. Therefore, the pdf of all the data {xn} and
models {Hk} for a given segmentation (�-conditional) can always be written as a product
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over data n by designing proper models. The only assumption that we need to make is that
the prior probabilities of models (class rates) are uncorrelated, that is

P(k = 1, . . . k = K) =
∏
k

P (k) (4.3-4)

Then, the �-conditional likelihoods (pdfs) are given by the above expressions:

l(n|k,�) = pdf ({Xn} , {Hk} |�) =
∏
k

∏
n∈k

P (k)pdf (xn|Hk) (4.3-5)

so that the A-L similarity is the likelihood, and the parameter estimation procedure defined
by the Bayesian A-L similarity maximizes the likelihood. The best parameters for each
object are determined by maximizing the�-conditional similarities for classes, l(k|�) over
the parameters, and then selecting parameters corresponding to the best segmentation �.
Estimation of parameters by maximizing the likelihood is called the maximum likelihood
(ML) parameter estimation.

The deterministic models Mk (Sk, n) that accurately account for all sources of de-
terministic variability often lead to Gaussian class-conditional densities. If the deviations
between the model and data are caused by multiple random effects, then, according to the
Central Limit theorem,2 the pdf often can be approximated by a Gaussian density:

pdf (Xn|Hk) = G [Xn|Mk (Sk, n) ,Ck (Sk)]

G(xn|Mk,Ck) = (2π)−d/2 (det Ck)
−1/2 exp

(−0.5 DT
nkC

−1
k Dnk

)
Dnk = xn −Mk

(4.3-6)

where G is a Gaussian density with the mean given by the deterministic model Mk and
the covariance Ck , which is either directly estimated from the data or modeled. In certain
cases, variabilities in the data are caused by specific physical mechanisms that do not satisfy
conditions of the Central Limit theorem and Gaussian densities might not be appropriate;
in these cases appropriate densities should be used. One general way to model deviations
between the data and models, which is suitable for any statistical density of the deviations,
is by utilizing mixture densities as considered in the next section. In this section, in
addition to the general MLANS formulation, we also consider Gaussian densities for class-
conditioned pdfs.

Let us summarize the various sources of variabilities and their modeling in MLANS.
The models Mk (Sk, n) describe deterministic relationships among data xn. Statistical de-
pendencies, or correlations, are described by the covariance matrixes Ck . Random prob-
abilistic variabilities are represented by the pdf. Unknown deterministic variabilities are
represented by the adaptivity of parameters Sk . Fuzzy uncertainty about values of these
parameters also can be represented using the covariance matrices. A simple way of accom-
plishing this is to specify large covariance matrixes at the beginning of learning process and
let them be gradually reduced in the process of learning. More sophisticated techniques will
be discussed throughout the book. (Note that strictly speaking, the enlarged covariances
and resulting pdf are not statistical quantities as defined in Chapter 1; instead, they should
be considered as fuzzy class memberships parameterized by Ck .)
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The above formulation of the Aristotelian similarity based on likelihood is a fairly
broad approach to model-based pattern recognition. It addresses the top level of the problem,
while it omits details important for specific application areas and for specific approaches
to controlling the combinatorial explosion inherent in A-similarity. Most of techniques that
have been discussed in the literature (such as multiple hypothesis testing algorithms) can
be formulated within this framework. The need to consider all or many of the partitions or
segmentations, �, is the main source of the combinatorial complexity of the model-based
pattern recognition based on A-similarity.

4.3.2 Bayesian AZ-Similarity Measure

Here we develop a Maximum Likelihood Adaptive Neural System (MLANS), an MFT
paradigm using Bayesian likelihood for AZ-similarity measure. MLANS, like general MFT,
considers a joint problem of concurrent segmentation, model estimation, and similarity max-
imization and solves this problem without combinatorial complexity. The joint likelihood is
obtained by considering segmentation as a part of the model, which has to be estimated from
data. So, segmentation emerges in the process of model estimation. A joint likelihood is
built from individual pixel likelihoods, similar to the general MFT method: unlike what was
found in the previous section, here the individual pixel likelihood, l(n), is not conditioned
on a segmentation and considers various classes as probabilistic alternatives. Therefore, the
likelihood for each pixel is a sum of pdf of alternative model hypotheses:

l(n) = pdf (xn) =
∑
k

pdf (xn,Hk) =
∑
k

P (k)pdf (xn|Hk) (4.3-7)

Hypotheses Hk here include the object-class k, models Mk , and parameters Sk , but do
not include segmentation, which emerges in the process of model estimation. In some
applications it is convenient to consider each object as a class (of pixels), and in other
applications, multiple objects form a class; the following chapters consider both cases. The
densities, pdf(xn) and pdf(xn,Hk), are the likelihood counterparts of the general concepts of
partial pixel similarity l(n|k) and total pixel similarity l(n) considered in Section 4.1.3. Class
rates, P(k), are the probabilities, or expected relative frequencies of pixels “belonging” to
various objects. Usually, they are not known a priori and should be estimated together with
other parameters of the model. Class rates satisfy the constraint (see Problem 4.3-2):∑

k

P (k) = 1 (4.3-8)

The meaning of this constraint is that some object(s) among k = 1, . . . , K will definitely
be encountered (with probability 1), or in other words, a signal in every pixel definitely
originates from some of these objects. It follows that the set of K object models has
to encompass all possible objects. In many practical cases this requires that we include
among K a class of “other” or “unknown” objects with the appropriate uncertainty of their
properties. In the following chapters we will discuss ways to accomplish this.

As discussed in the previous section, the total likelihood can be written as a product
of pixel likelihoods. This is a general property of the model-based likelihood with properly
selected models, and it does not assume independence among pixels. Let us repeat this
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argument again, because of its importance: the factoring is due to relationships among
pixels being included into the models [that is, pdf(xn|Hk) may depend on xn+1 etc., which
are included into a set of Sk , if needed]. Thus, total likelihood is given by

L = pdf {x1, . . . , xn, . . . , xN } =
∏
n

pdf (xn) =
∏
n

{∑
k

P (k) pdf (xn|Hk)

}
(4.3-9)

The Bayesian AZ-similarity is defined as a maximum of the total likelihood,

AZ-L = maxSk

{∏
n

∑
k

P (k) pdf (xn|Hk)

}
⇒ {Sk} (4.3-10)

so that the model parameters are obtained in the process of ML estimation.
As in the case of general AZ-similarity, sum over k in the above expression includes

all alternative hypotheses or models k = 1, . . . , K . If we expand the parentheses {·} in this
expression, it can be written as a sum ofKN items, each item being a conditional likelihood
of the type of l(k|�) in Eq. (4.3-3) defined for a particular segmentation �. Thus, Eq. (4.3-
9) contains all segmentations as alternatives. Probabilistic segmentation given by partial
similarities emerges from Eq. (4.3-10) in the process of parameter estimation as discussed
in the next section.

4.3.3 MLANS Learning Equations

Maximization of the likelihood [Eq. (4.3-10)] is achieved in MLANS in a similar way to
the general MFT. One difference here is that we need to account for the normalization
constraint for class rates (4.3-9). This is accomplished by the Lagrange multiplier method:
instead of the likelihood, (4.3-10), or its logarithm, AZ-LL, we have to maximize3

AZ-LL′ = maxSk

{∑
n

ln

[∑
k

P (k) pdf (xn|Hk)

]
+ λ

(∑
k

P (k)− 1

)}
(4.3-11)

and to find λ to satisfy the constraint. If the class rates are known a priori, the additional
item above is identically zero and does not affect estimation of other parameters. Using the
gradient ascent method, similar to Eqs. (4.2-1) through (4.2-4), we obtain

dSk/dt =
∑
n

f (k|n) [∂ ln
[
pdf (xn|Hk)

]
/∂Mk

]
[∂Mk/∂Sk] (4.3-12)

Here, the fuzzy membership of datum n in concept k or, alternatively, partial activations of
concept-agent k by datum n, f (k|n), are determined by partial similarities, as in Section 4.1,

f (k|n) = P(k)pdf (xn|Hk) /pdf (xn) (4.3-13)

If the rates are not known, they are included into a set of parameters Sk , and their estimation
equation is derived similarly to the above (see Problem 4.3-3):

λ = −N and P(k) =
∑
n

f (k|n)/N (4.3-14)
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where N is the total number of pixels, N = �n1. Because P(k) is a relative number of
pixels belonging to object k (or originating from source k),

Nk =
∑
n

f (k|n) (4.3-15)

is a number of pixels on the object k, which is intuitively an appealing interpretation.
Expression (4.3-13) for the fuzzy class memberships is the famous Bayesian expression

for the a posteriori probability of class k. It is called a posteriori because it is computed after
the datumXn observation. As mentioned in Chapter 1, this Bayes expression was, probably,
the first mathematical tool of combining a priori knowledge with data in presence of uncer-
tainty. In our case, (4.3-13) can be interpreted as a probability only after the convergence of
the MLANS estimation process. Before MLANS converges and parameters are estimated,
these quantities contain additional uncertainty due to unknown values of parameters Sk ,
and, thus, cannot be considered as probabilities; instead, they can be considered as fuzzy
memberships.

Similar to Eq. (4.2-4), a dynamic equation can be used in place of Eq. (4.3-13),

df (k|n)/dt = f (k|n)
∑
k′

[
δkk′ − f (k′|n)] ll′(n|k′)M′

k′ · dSk′/dt (4.3-16)

where

ll′(n|k′) = ∂ ln pdf (Xn|Hk′) /∂Mk′ ; M′
k′ = ∂Mk′/∂Sk′ (4.3-17)

If the Gaussian densities are used for conditional pdfs, Eq. (4.3-6), the above equations
can be written more explicitly. To simplify the following derivation, we consider covariances
Ck in Eq. (4.3-6) as known and only expected valuesMk to be functions of model parameters
Sk . In this case (see Problem 4.3-1 for further details),

ll′(n|k′) = ∂ ln pdf (Xn|Hk′) /∂Mk′ = (Xn − Mk′)T C−1
k′ (4.3-18)

and the MLANS learning equations are as follows,

dSk/dt =
∑
n

f (k|n) [(Xn −Mk)
T C−1

k

]
M′

k (4.3-19)

df (k|n)/dt = f (k|n)
∑
k′

[
δkk′ − f (k′|n)] [(Xn −Mk′)T C−1

k′
]
M′

k′ · dSk′/dt (4.3-20)

Specifying all the vector and matrix indexes explicitly, these equations are written as

dSak /dt =
∑
n

f (k|n)
[(
Xi,n −Mik

)
C−1
ijkM

;a
jk

]
(4.3-21)

df (k|n)/dt = f (k|n)
∑
k′

[
δkk′ − f (k′|n)] [(Xi,n −Mik′

)
C−1
ijk′M

;a
jk′
]

· dSak′/dt (4.3-22)

here, index a refers to the components of the vector of model parameters, and indexes i, j
refer to the components of the data vectors; summation is assumed over repeated indexes
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a, i, j ; and (;) denotes partial derivatives with respect to parametersSwith the corresponding
index:

M
;a
ik ≡ ∂Mik/∂S

a
k (4.3-23)

Equations (4.3-19) through (4.3-22) have a property that could be undesirable: their
stationary points (dSk/dt = 0) include the points where the model is insensitive to param-
eter variations, ∂Mk/∂Sk = 0, even if the model does not match the data. This could be
mitigated by the following modification,

dSak /dt =
[∑

n

f (k|n) M ;a
ik C

−1
ijkM

;b
jk

]−1 [∑
n

f (k|n) (xi,n −Mik

)
C−1
ijkM

;b
jk

]
(4.3-24)

where a summation is assumed over repeated indexesb, i, j . Here, the denominator becomes
small near the points of insensitivity, and a stationary point (dSk/dt = 0) is attained only
if the model, on average, matches the data. An appropriateness of the normalization of
Eq. (4.3-24) is seen also from the fact that the iteration increment factor dt is dimensionless.
Equation (4.3-24) can be viewed as a modification of the Newton gradient method, which
generally leads to a faster convergence. (Issues of this paragraph are further addressed in
Problems 4.3-6 through 4.3-8.) To summarize, MLANS learning equations (4.3-19, 4.3-21
or 4.3-24) and (4.3-13, 4.3-20, or 4.3-22) define a convergent dynamic system. A proof of
convergence is considered in Section 4.6.

Fuzziness of MFT agent-classes is controlled by the covariance matrixes, Ck; a large
covariance corresponds to a high degree of fuzziness and vice versa. During learning,
fuzziness should be matched to the parameter uncertainty. This can be achieved by the
following equation, combining estimated and controlled covariances:

Ck = C0,k exp(−ct)+
∑
n

f (k|n) [(Xn −Mk) (Xn −Mk)
T
]
/
∑
n

f (k|n) (4.3-25)

Here, C0,k is a large covariance corresponding to the initial uncertainty of the model Mk .
During learning, the internal MFT time parameter t grows and the contribution of this fuzzy
uncertainty into the covariance Ck diminishes. Therefore, Ck is gradually reduced to the
second item, which gives the ML covariance estimation (see Problem 4.3-9). Parameter
c in the exponent controls the speed of learning and convergence: convergence can be
attained only when the first item is much smaller than the second one. Selection of the
c value is a matter of tradeoff: if c is large, the convergence is fast, however, there is
a chance that the covariance will be reduced to a small value prematurely, before the
parameters reach their true values (or the best estimated values corresponding to the global
maximum of the likelihood). If c is small, convergence is long, but there is a better chance of
attaining accurate parameter values in complicated cases. Not only the MFT agents, but also
living beings face this dilemma: some creatures mature fast and cannot adapt thereafter.
A similar effect exists on a much shorter time scale within a single act of recognition:
before an object or concept is recognized, the fuzziness of its internal agent-model should
correspond to the uncertainty about what is being recognized. This is the mathematical
expression of Aristotelian Forms-as-potentialities that evolve into concepts in the process
of learning.
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4.4 SHANNON–EINSTEINIAN MFT

Whereas Bayesian likelihood similarity measures a degree of stochastic deviations of data
from its mean value given by the model, a different concept of similarity is introduced
here that measures the amount of information in the model about the world. Information
was defined by Shannon as a measure of certainty of choice among the finite number of
alternatives. Thus, to define an information measure, we need to define alternative states of
the world and compute their number. Quantum physics provides the definition of the states
of any system and rules for their computation. But before turning to quantum theory, we
begin with a simple idea due to Einstein about the nature of the electromagnetic spectrum,
which precedes quantum theory and which lets us relate information to likelihood and derive
information-based similarity in a simple and straightforward way. This similarity measure
is extended to vision in general, since the visual system senses electromagnetic spectra; and
we mention its applicability to acoustic signals as well. Then we discuss basic definitions of
information theory and related issues of quantifying states of the world. We conclude this
section with a brief overview of the history of and relationships among various methods
based on information and entropy maximization.

4.4.1 Einstein, Likelihood, and Electromagnetic Spectrum

Einstein interpreted the electromagnetic spectrum as a probability density function (pdf)
of photon frequency (Einstein and Hopf, 1910). This is a different type of pdf than usually
considered in statistical estimation. Because the concept of pdf is a basis for statistical
estimation, likelihood, and information measures, “Einsteinian” pdf leads to different results
than the classical ML estimation considered in the previous section. A specific point of
difference is the attribution of randomness. Usually, in statistical estimation, randomness
is attributed to measured quantities as follows: if an image is produced by light intensity,
an intensity of the pixel is considered as a random quantity and pdf models are designed
to model this randomness. Or, if a radar measures Doppler spectra, a signal intensity or
power in a Doppler cell (a sample) is considered a random quantity, and pdf models are
constructed accordingly (say, for an image pixel intensity it could be a Gaussian density, for
the spectrum it could be aχ2 density, etc.). Contrary to this, Einstein interpreted the spectrum
as a pdf of photon frequency. That is, the Doppler cell frequency is to be considered random,
rather than the signal intensity or power. A similar interpretation is valid for phonons of
acoustic spectra (speech, seismic signals, etc.) and for any signal field obeying Bose–
Einstein statistics (bosons); and it could be extended to any classical field, when quantum
effects are not important.

At first, the Einsteinian idea may seem bizarre: a radar measures signals at a set of
frequency values predetermined by the radar operational parameters. However, consider a
measurement process as detecting individual photons. Every classical or quantum measure-
ment of electromagnetic fields can be described in this way. For an individual photon, there
is no “intensity” but only frequency and polarization. Therefore, from the first principles of
physics, the frequency can be a random quantity.

According to this idea, the models of pdf, to be developed in this section, are the models
of spectra. To emphasize the difference between conventional statistical pdf and Einsteinian
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pdf, we denote pdf in this section by F(ω). The Einsteinian interpretation requires proper
normalization; since spectrum S(ω) is measured in units of energy, its interpretation as a
pdf requires normalization on a photon energy in order to obtain a measure of the number
of photons. A photon energy ε is related to its frequency ω,

ε = h̄ω (4.4-1)

where h̄ is the Plank constant. Therefore, the number of measured photons

Nω = S(ω)/h̄ω (4.4-2)

and F(ω)/h̄ω is a model pdf for a single photon with frequency ω, normalized in a
standard way ∑

ω

F (ω)/h̄ω = 1 (4.4-3)

In macroscopic systems, photons are statistically uncorrelated (most often, this is also true
for microscopic systems as well).4 Therefore, for an ensemble of photons n = 1, . . . , N ,
the joint pdf or likelihood L is a product over individual photons

L =
∏
n

F (ωn) /h̄ωn =
∏
ω

[F(ω)/h̄ω]Nω =
∏
ω

[F(ω)/h̄ω]S(ω)/h̄ω (4.4-4)

The second equation here is obtained as follows. The product over individual photons, n,
is split into two terms: a product over photons with a fixed frequency ω and a product
over various frequencies ω. There are Nω photons with a fixed frequency ω, all distributed
according to the identical pdf models [F(ω)/h̄ω]; this leads to the above equation.

As in previous sections, the overall model F(ω) is composed of multiple agents or
submodels F(ω|k), modeling alternative signal sources, or objects of recognition,

F(ω) =
∑
k

F (ω|k), k = 1, . . . , K (4.4-5)

Often, signals can be considered as being produced by incoherent contributions from
several sources; the above equation then models signals according to the first principles,
otherwise it is an approximation (several F(ω|k)-models might be needed to model indi-
vidual sources). Combining the above equations we obtain the Einsteinian likelihood or
AZ-similarity as

AZ-L = maxSk



∏
ω

[∑
k

F (ω|k)/h̄ω
]S(ω)/h̄ω

 or

AZ-LL = maxSk

{∑
ω

[S(ω)/h̄ω] ln

[∑
k

F (ω|k)/h̄ω
]}

⇒ {Sk}
(4.4-6)

Maximization of the Einsteinian likelihood [Eq. (4.4-6)] is achieved in a manner similar
to the corresponding equations of the general MFT and MLANS. Again, we have to account
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for the normalization constraint (4.4-3), which can be done by the Lagrangian multiplier
method. Using the gradient ascent, similar to Eqs. (4.2-1) through (4.2-4), we obtain

dSk/dt =
∑
ω

[S(ω)/h̄ω] f (k|ω) [∂ ln(F (ω|k)/∂Sk]

+ λ (∂/∂Sk)

[∑
ω

F (ω)/h̄ω − 1

] (4.4-7)

Here, the fuzzy membership of the frequency ω in concept-model k or, alternatively, partial
activations of concept-agent k by ω, f (k|ω), are determined by partial similarities, as in
Section 4.1,

f (k|ω) = F(ω|k)/F (ω) (4.4-8)

The following sections will relate the Einsteinian likelihood to the entropy of the photon
ensemble and to Shannon’s information, but first, let us consider specific types of spectrum
models related to Gaussian mixtures used for MLANS.

4.4.2 Einsteinian Gaussian Mixture Model

Specific shapes of the parametric models for F(ω|k) can be determined based on the
physics or phenomenology of the process under consideration, or a general type of flexible
parametric model can be selected. Here we consider a general type model suitable for
modeling a variety of signals as a superposition of Gaussian functions. Superposition
models of the type (4.4-5) are called in statistics mixture models, and we call each mixture
componentF(ω|k) a conditional model, submodel, or agent-model corresponding to source
k. According to our normalization (4.4-3), the Gaussian agent-model is given by

F(ω|k) = h̄ω Ak G(ω|k), k = 1, . . . , K

G(ω|k) = (2π)−1/2 (σk)
−1 exp

{−0.5 (ω − ωk)
2 /σ 2

k

} (4.4-9)

Here, Ak is a submodel amplitude, ωk is the submodel mean frequency, and σk is the
submodel frequency standard deviation. A multiplicative term h̄ω is introduced according
to our normalization, so that [Ak G(ω|k)] is measured in units of a photon number, and
G(ω|k) is interpreted as the conditional pdf of photons from source k.

Because of the h̄ω factor, the above model is different from Gaussian mixture models
considered previously, and we call it an Einsteinian Gaussian mixture. These models do
not form a complete set of basis functions, since all F(ω|k) are 0 at ω = 0. This is
related to the well-known “infrared catastrophe” in quantum electrodynamics: the number
of photons might go to infinity at zero frequency. This would prevent normalization of
the pdf, and, in order to maintain the Einsteinian interpretation of the spectrum as a pdf,
the power at zero frequency should be zero. However, in most practical cases this does
not represent a modeling problem: most electromagnetic signals are carried by a high-
frequency carrier field, so changes in frequency are very small in relative terms, the h̄ω
factor is nearly constant, so that F(ω|k) form a complete set of functions and any function
Nω can be modeled using the above models. When low frequencies are included in the data,
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as might be the case with acoustic signals, the actual zero frequency is never measured and
the numerical problem at zero frequency is avoided by using mid-sample frequency for a
sampling interval including zero. Therefore, the Einsteinian Gaussian mixture model is a
general type of model that can be used for a variety of signals.

The normalization constraint (4.4-3) affects only the amplitude parameters, Ak , of the
Einsteinian Gaussian mixture model. This can be seen as follows. Substitute (4.4-9) into
(4.4-3): ∑

ω

∑
k

AkG(ω|k) = 1 (4.4-10)

For simplicity of notations, let us use a frequency sampling interval as the unit of frequency,

ω = 1, then

∑
ω

G(ω|k) ≈
∫
G(ω|k) dω ≡ 1 (4.4-11)

By exchanging the order of summation in (4.4-10) and combining with (4.4-11), the
constraint can be written as ∑

k

Ak = 1 (4.4-12)

The approximation in considering the discrete Gaussian densities to be normalized (4.4-11)
is accurate within a few percent forG(ω|k)-models that are wider than few samples (σk > 1
in units of sample numbers), so the approximation is accurate.

The above model is characterized by three parameters per Gaussian submodel: the
amplitude, the mean, and the standard deviation. The ML estimation equations for these
parameters are derived from the general MFT Eq. (4.4-7). In case of Gaussian models, they
can be simplified as discussed in Problem 4.4-1. These equations can also be derived by
using the Estimation-Maximization algorithm (EM); because EM is a powerful and useful
tool, we consider it in Problem 4.4-3. The result is the following MFT equations5:

Ak = Nk/N, Nk =
∑
ω

f (k|ω) Nω, N =
∑
ω

Nω, Nω = S(ω)/h̄ω (4.4-13)

ωk =
∑
ω

f (k|ω) Nω ω/Nk (4.4-14)

σ 2
k =

∑
ω

f (k|ω) Nω (ω − ωk)
2 /Nk (4.4-15)

In these equations, f (k|ω) in the right-hand side are evaluated using parameters estimated at
the previous iteration, and the left-hand side yields the current-iteration parameter value. The
new parameter values are used in the right-hand side for the next iteration, etc. In this way, the
equations define an iterative system: beginning with some values of parameters, the agent-
submodels F(ω|k) are computed according to Eqs. (4.4-9), followed by the computation
of f (k|ω) according to (4.4-8); on the next iterations, the parameter values are recomputed
according to Eqs. (4.4-13), (4.4-14), (4.4-15), etc., until convergence. The convergence is
determined by requiring that parameter changes are small from iteration to iteration. The
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convergence is always attained, as proved in Section 4.6. On convergence of the estimation
process, f (k|ω) can be interpreted as the a posteriori Bayes probability that a photon at
frequency ω has originated from the source (or submodel) k. Correspondingly, Nk is the
number of photons from the source k, and N is the total number of photons.

4.4.3 Equilibrium of the Photon Ensemble

This section relates the Einsteinian likelihood to the entropy of the photon ensemble. We
will see that the ML Eqs. (4.4-7) and (4.4-8) describe an equilibrium state of a “universe”
consisting of the estimation system and the outer world, containing the physical ensemble
of photons. In the process of equilibration, the estimation system models itself and the outer
world in such a way that the observed photon ensemble is in equilibrium. An equilibrium
state of a physical system is determined by its entropy. Thus, we need to compute the
entropy of the “universe,” modeled by the estimation system. In this section we consider
an estimation system whose internal entropy is not a function of the model parameters, so
we need only consider the estimated entropy of the photon ensemble.

Entropy of a physical system is related to its physical states. The expected number
of observations of a photon is proportional to the number of the photon physical states
compatible with the observations. And the expected number of observations is proportional
to a pdf. Therefore, according to Einstein’s interpretation, a spectrum model F(ω) is
proportional to a number of physical states, �ω, for a single photon at each frequency,

F(ω) = const · h̄ω ·�ω (4.4-16)

The equations of physical equilibrium can be derived by using a standard textbook pro-
cedure, which is now briefly described. Since our estimation procedure deals with fixed
observation data, the total number and energy of photons are fixed. In statistical physics,
a system with fixed energy and number of particles is called a canonical ensemble. The
equilibrium of a canonical ensemble is obtained by maximizing the entropy of the ensemble,
E, subject to the constraints of conservation of energy ε and photon numberN . According to
Eqs. (4.4-1), (4.4-2), and (4.4-3), this results in the following constraints on our modelF(ω),

ε =
∑
ω

S(ω) = N
∑
ω

F (ω); N =
∑
ω

S(ω)/h̄ω = N
∑
ω

F (ω)/h̄ω (4.4-17)

The ensemble entropy, E, is a logarithm of the number of states available to the system,
� (gamma). It is a product of the number of states available at each frequency, �ω, and it
is computed as follows.6 Of Nω photons with frequency ω, every one can be in any of �ω

states, giving (�ω)
Nω combinations. Photons with the same frequency are indistinguishable,

therefore, permutations among photons correspond to the same states. The number of
permutations is (Nω!). Thus, the number of states for Nω photons, �ω is

�ω = (�ω)
Nω / (Nω!) (4.4-18)

where the numerator is the total number of all combinations and the denominator accounts
for the permutations of the equivalent photons. Taking the logarithm of the above, and
approximating ln(N !) ≈ N lnN , we obtain the entropy of the photon ensemble,
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E = ln� = ln
∏
ω

�ω ≈
∑
ω

Nω ln [�ω/Nω] (4.4-19)

Maximization of this expression subject to constraints (4.4-17) is considered in Problem 4.4-
4. In particular, it is shown in Problem 4.4-4 that the constraint on the number of particles is
equivalent to the normalization of the modelF(ω) in the previous section. For a fairly broad
set of conditions, entropy maximization is equivalent to Eqs. (4.4-7) and (4.4-8). Thus, the
ML estimation using “Einsteinian likelihood” is equivalent to finding an equilibrium of the
photon ensemble.

4.4.4 Einsteinian Likelihood and Shannon’s Mutual Information

The Einsteinian likelihood will be related now to information. This section summarizes the
relationship; the next three sections will review the fundamental concepts of information
theory and derive the relationship stated here.

In his classical work published in 1948 in the Bell Laboratory journal, Shannon intro-
duced a concept of information and a related concept of the mutual information contained
in the receiver (received message) about the source (sent message). For our purpose, this
concept can be formulated as follows. We identify the source with the measured data S(ω)
and the receiver with the internal model, F(ω). Then, the mutual information in the model
about the data is given by

I =
∑
ω

[S(ω)/h̄ω] ln [F(ω)/h̄ω] (4.4-20)

This expression is identical to the Einsteinian likelihood (4.4-6); for estimation purposes,
it is equivalent to the entropy (4.4-19), and maximization of any of these expressions
leads to the same set of parameter values. The next section reviews Shannon’s definition of
information and arguments of why (4.4-20) is a measure of mutual information. We will also
consider in detail a potential source of confusion: if entropy and information are “opposite”
quantities,7 how come the maximization of information is equivalent to maximization of
entropy? The answer is in that the entropy (4.4-19) is defined for a different system than
information (4.4-20). In the process of learning, the entropy of the “universe” consisting
of the data and internal model increases, while the total amount of information contained
in the universe decreases. This decrease of information in the universe corresponds to the
correlation between states of the internal model and the data and to an increase of the mutual
information, that is to learning.

4.4.5 Information and Alternative Choice States

Information, as defined by Shannon, is a measure of certainty of choice among a finite
number of alternatives. Thus, to define an information measure, it is necessary to define a
number of alternative choice states. Consider the universe (U) as consisting of two systems:
one, an intelligent system (IS), and the other, the outer world (W). Denote the data about
the world available to IS as X (in the previous sections, the data are the set of spectral
values, X = {S(ω)}). We are interested in the best modeling or representation of X within
IS, and we would like to develop a measure of “the best” based on information in IS about
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X. Therefore, we need to know the numbers of state in each system. The number of states
we denote by �. We use indexes to denote particular systems: �W and �IS are the total
numbers of states in W and in IS. DataX, in general, does not specify the state of the world
unambiguously; the number of states in W compatible with dataXwe denote as�W|X (read:
gamma W given X).

Information and entropy are a pair of opposites (see Note 7). Entropy (E) is a measure
of uncertainty and is given by a logarithm of the number of choices. Thus, the amount of
information needed to identify the state of the world without uncertainty is IW = ln �W,
alternatively, EW = ln �W is a measure of the maximal uncertainty about the state of the
world. (Being concerned with coding and transmission of information, Shannon would also
say that ln �W is the total amount of information that could be “recorded” in W.) When
discussing entropy and information, we must be careful about which states and systems are
considered: IW is information about the world contained in the unambiguous knowledge
of the world state, whereas EW is uncertainty about the world state when nothing is known
about it. The amount of uncertainty about W, when X is known, is EW|X = ln�W|X. The
amount of information contained in X about the state of the world is measured by a reduction
of uncertainty about W due to X:

IW|X = EW − EW|X (4.4-21)

Thus, IW|X and EW|X are opposite quantities: an increase of one is equal to a decrease
in the other.

If the system and world are not interacting, the states of the system are independent of
the states of the world, the total number of states in the universe is a product of two terms,
�U,0 = �IS · �W. And the total amount of information needed to identify unambiguously
a state of the universe is a sum, IU,0 = ln �U,0 = ln �IS + ln �W. But, if there is no
interaction, there is no learning, and since we are interested in learning, we would like
to consider a case, when IS and W interact. In the case of interacting IS and W, states of
IS are to some extent determined by states of W and vice versa, and the total amount of
information needed to describe U unambiguously is reduced, IU ≤ IU,0. This reduction
of the total information in U is due to an increase of information in IS about W, which is
learning. Thus, the measure of the information in IS about the world is

IW|IS = IU,0 − IU (4.4-22)

This information gives a measure of similarity between the world W (as represented by the
available data X) and the intelligent system IS (as contained in the IS’ internal model or
representation of the world). To define this information-based similarity between the model
and the data, we need to compute the numbers of states for the considered systems.

Computation of the numbers of states of various systems depends on the goal: which
variations in system parameters are of interest or importance and should be counted as
different states, and which should be ignored? Such a general formulation could lead
to a definition of information contingent on meaning of various states and on defining
intelligence. Of course, understanding of intelligence is an ultimate goal of our study,
however, a complete solution of this problem is still far away, if ever achievable. To
progress toward understanding of intelligence, we need simpler basic definitions that are
not contingent on the solution of the entire problem. And should not scientists assume
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that the evolution of natural intelligence has to be possible before the final goal is reached
(whichever this goal might be)?

Shannon approached this conundrum by suggesting that an engineering problem should
be limited to counting the numbers of well-defined states, such as letters in the alphabet,
or decisions in a control system. The problem of defining “choice” states is supposed
to be solved by general culture (alphabet) or by an engineering design based on human
intellectual analysis. Thus, the definition of information is not related to the meaning that
could be eventually associated with states in the process of learning, but is rather related
to probabilities of predefined states and, ultimately, to a notion of equiprobable outcomes,
which has been at the foundation of the probability theory since its inception.

This contingency of the information measure on the definition of choice states can be
illustrated by considering information contained in a piece of text. If alphabet characters
are used as choice states, the information is determined by a set of used characters and
their probabilities in the language; this might be a useful measure for a teletype device
transmitting text character by character. If individual words are used as choice states, the
information is determined by a set of used words and their probabilities in the language; this
might be a useful measure for a recognition device that recognizes words one by one. The
two measures of information will be very different, and neither is related to the information
extracted from the text by a human reader, whose information measure is related to personal
mental states.

In our case of modeling “the world,” the step of defining states is naturally accomplished
due to the quantum nature of the world: according to principles of quantum physics, any
physical system is characterized by a finite number of quantum states and techniques for
counting these states are well developed in quantum statistical physics. For microscopic
systems, including various microscopic imagery devices, counting the actual number of
quantum states emitting the detected photons could be adequate. For macroscopic systems,
such as photons emitted by a part of a scene that are measured by a detector in a CCD camera,
the actual number of quantum states is usually unknown and difficult to model from the first
principles. For these problems, “counting states” is to a certain extent a metaphor, instead
of actual quantum states, we will use approximate models, and success of such modeling
depends on adequacy of the models. As is usually the case, making these models flexible
and adaptive to the data is an essential step toward robustness of the modeling procedure.

To summarize this discussion, the fundamental limitation of the concept of information
is its contingency on the definition of “choice” states. Because the states of the world of
importance to us are those that affect our internal mental states, emotions, and behavior, their
definition is contingent on the solution of the entire problem of intelligence. Information
theory does not attempt to solve this problem. Nevertheless, the concept of information is one
of the most fundamental and useful notions developed in this century, and the information-
based measure of similarity that we develop below is a fundamental and useful measure.
And could it be that our “freedom of choice” is related to our ability to learn about the world
according to information measures, which are “objective” and independent of our ultimate
“subjective” choices?

4.4.6 Mutual Model-Data Information

To count numbers of states using quantum concepts we would not need any knowledge
of quantum theory, a few necessary concepts and terminology are introduced as needed,
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and the procedure is essentially the same as we have already encountered in Section 4.4.3.
A standard terminology used in physics is to call a state of the world described by X a
macrostate, to distinguish it from a quantum or microstate that gives a complete exhaustive
description of the physical state of a system. According to the first principles of statistical
physics, every microstate accessible to a statistical system in a state of equilibrium is
equiprobable. Thus, we have approached the problem of defining “choice” states by taking
a “physicist’s” point of view: our internal model ought to represent the world “as it actually
is” according to the first laws of physics.

If one considers an “ensemble of the worlds,” the proportion of the worlds in a
macrostate X is simply �W|X/�W. Equivalently, �W|X/�W is the probability of finding
the world in a macrostate X. In case of X having continuous values, �W|X is a number of
states corresponding to an interval between X and X + dX, and

pdf(X) = �W|X/�W (4.4-23)

Along with the definitions of entropy and information, this establishes relationships between
pdf and entropy or information. Using (4.4-21), we obtain the information about the world
contained in data X as a reduction of uncertainty from EW to EW|X,

IW|X = EW − EW|X = − ln
(
�W|X/�W

) = − ln pdf(X) (4.4-24)

To analyze change of information and entropy in the process of learning, we need to
consider states of the “universe” consisting of the intelligent system and the world. In the
process of learning, internal variables of the intelligent system, Y , become correlated with
the data about the world, X, and the total number of states in the universe is reduced from
�U,0 to �U|X,Y . The joint density pdf(X, Y ) is determined by the number of states of the
universe consisting of IS and W, similar to (4.4-23),

pdf(X, Y ) = �U|X,Y /�U,0 (4.4-25)

And, the total information that is given about the universe by (X, Y ) is the reduction of
uncertainty from EU,0 to EU|X,Y :

IU|X,Y = EU,0 − EU|X,Y = ln�U,0 − ln�U|X,Y = − ln
[
�U|X,Y /�U,0

]
= − ln pdf(X, Y )

(4.4-26)

Using the rule of conditional probabilities, pdf(X, Y ) = pdf(X|Y )pdf(Y ), and combining
Eqs. (4.4-23) through (4.4-26), we obtain (see Problem 4.4-2),

IU|X,Y = − ln pdf(X, Y ) = − ln{[pdf(X)pdf(Y )][pdf(X|Y )/pdf(X)]}
= IU,0|X,Y − ln[pdf(X|Y )/pdf(X)]

(4.4-27)

Comparing this to (4.4-22), the mutual information in IS about the world is given by

IW|IS = IU,0 − IU = ln[pdf(X|Y )/pdf(X)] = ln pdf(X|Y )− ln pdf(X) (4.4-28)

The mutual information is defined here according to the discussion in the previous section,
which we repeat again because of its importance: the total information that could be stored



4.4 Shannon–Einsteinian MFT 181

in the universe is reduced by the amount of the mutual information in the intelligent system
about the world. The amount of information that (X, Y ) gives about the universe depends on
the total amount that could be stored. The universe stores more information when IS and W
are independent andX and Y are not correlated, because whenX and Y are correlated, some
of the information (namely, mutual information in Y about X) is redundant. Thus, when X
and Y are correlated, the information is reduced by IW|IS. It follows, that IW|IS is a positive
quantity. When the intelligent system learns, the mutual information IW|IS increases.

We define Shannon’s similarity as mutual information MI between the world and the
intelligent system, or to be more specific, between the data X and the internal model or
internal representation of the world within the intelligent system,

LLShannon = IW|IS (4.4-29)

According to (4.4-28), Shannon’s similarity consists of two items. The first one, ln pdf
(X|Y ), depends on the internal model and it parameters, Y . The second item ln pdf(X)
depends on the unknown number of states of the world, but it does not depend on the
model parameters and therefore does not affect the estimation procedure. Therefore, for the
estimation purpose, it is sufficient to consider only the first item. This first item is related
to the Einsteinian likelihood in the next section.

4.4.7 Shannon–Einsteinian Similarity

Here we obtain expressions for the numbers of states that determine mutual information and
relate it to the Einsteinian likelihood derived in Sections 4.4.1 and 4.4.2. The Einsteinian
interpretation of spectrum does not have to be limited to the frequency-domain spectra,
but is naturally extended to intensity or power densities in any coordinates, e.g., two-
dimensional domains of time-frequency spectra, regular angle–angle intensity imagery, or
higher dimensional domains such as time–frequency–range–angle imagery. The extension
is a straightforward one. Let us denote the general multidimensional image coordinates as
x, image intensity data, S(x), and the model of the number of states, �(S, x), where S are
model parameters. The model �(S, x) gives the number of microstates for a single photon
in a macrostate x. And, the number of photons in pixel x is

Nx = S(x)/h̄ωx (4.4-30)

where ωx is a frequency of pixel x; it may be included in x as for time-frequency data,
x = (t, ω), or multiband (color) imagery, x = (x, y, ω), or ωx may be a constant,
playing no important role as in black–white imagery, x = (x, y). Image intensity (or
signal power) is given by S(x), so the world data X = {S(x)} and the internal variables
of the intelligent system specify the model and model parameters, Y = {�(S, x),S}. For
acoustic signals we should be talking about phonons rather then photons, but this does not
alter the general argument presented here, which is applicable to various types of signal or
image data. The Shannon’s similarity part that depends on the model parameters is given
by ln pdf(X|Y ), which is computed by counting the number of states of the world given
the model,

pdf(X|Y ) = �W|X,Y /�W|Y (4.4-31)
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The numerator here is the number of states of the world, given the data and model. Its
computation is similar to that in Section 4.4.3 (see Problem 4.4-3),

ln �W|X,Y =
∑
x

Nx ln [�(S, x)/Nx] (4.4-32)

or, if the photons in x-macrostate are not equivalent,8

ln �W|X,Y =
∑
x

Nx ln�(S, x) (4.4-33)

From previous derivations, we know that the above two expressions lead to the same estima-
tion equations (because the only difference is an item

∑
Nx ln Nx, which is not a function

of parameters S). We would prefer to use this latter expression because it is a little simpler.
The denominator in (4.4-31) accounts for the a priori information. The a priori world

state could be specified only by the invariant properties (that are not changed during
estimation). If nothing is known about the state of the world a priori, the denominator
does not affect the estimation process. This type of unconstrained estimation might be
unsatisfactory, e.g., if the model �(S, x) may reach infinite values (we know a priori
that this is not appropriate). In our original Einsteinian model in Section 4.4.1, this was
prevented by a proper choice of the�(S, x)model (namely, that the model is normalizable,
independent of the parameter values). As we have seen in Section 4.4.2, this was equivalent
to the conservation of the number of particles during the estimation process, or in other
words, the number of particles constituted the a priori information. To repeat again: for
parameter estimation purposes, a constraint on the model,

� =
∑
x

�(S, x) (4.4-34)

is equivalent to a constraint on the number of particles (particle conservation),

N =
∑
x

Nx (4.4-35)

So it would not surprise us that using the a priori number of states of the world corresponding
to the above constraints, �W|Y = �W|N,�, we obtain the Einsteinian likelihood from the
above equations. The total number of states of N particles distributed among � single-
particle states is

�W|N,� = �N or ln �W|N,� = N ln � =
∑
x

Nx ln � (4.4-36)

Combining the above with (4.4-31) and (4.4-33), we obtain

ln pdf(X|Y ) = ln �W|XY − ln �W|N,� =
∑
x

Nx[ln �(S, x)− ln �]

=
∑
x

Nx ln[�(S, x)/�]
(4.4-37)

Due to (4.4-34), the term in brackets is normalized like a pdf,
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∑
x

[�(S, x)/�] = 1 (4.4-38)

Comparing this with (4.4-3) and (4.4-16), we identify [�(S, x)/�] with [F(ω)/h̄ω] so that
we define,

F(S, x)/h̄ωx = �(S, x)/� (4.4-39)

Although previously, F(ω)/h̄ωwas defined as a frequency pdf for spectrum modeling,
F(S, x)/h̄ωx is a more general model suitable for modeling various types of signals and
images. Now, comparing Shannon’s similarity measure (4.4-37) with Einsteinian likelihood
(4.4-4), we identify the two and call it the Shannon–Einsteinian similarity

L = pdf(X|Y ) = �W|XY /�W|N,� =
∏
x

[F(S, x)/h̄ωx]Nx or

LL = ln pdf(X|Y ) =
∑
x

Nx ln[F(S, x)/h̄ωx]
(4.4-40)

The above equations give the mathematical description of the Einsteinian intuition
about the spectrum being a probability density of the frequency. The Einsteinian idea is
extended here to a general intensity or power model being a pdf of the image or signal
coordinates. The probability density referred to by Einstein is defined in the space of physical
states of the world: it is the density of microstates, corresponding to a macrostate of the
measured data {S(x)}, among all possible microstates of the world (compatible with our a
priori knowledge about the world). (It is remarkable that Einstein proposed this idea about
20 years before the birth of quantum mechanics!) In addition to formalizing the concept
of the Einsteinian likelihood, the above equations relate it to Shannon’s concept of mutual
information: the logarithm of the Einsteinian likelihood is a measure of mutual information
in the model about the data.

4.4.8 Shannon–Einsteinian MFT Dynamics

Shannon–Einsteinian AZ-similarity is defined from (4.4-40) similar to the general AZ-
similarity, by using a compositional model for F(S, x),

F(S, x) =
∑
k

F (x|k), k = 1, . . . , K (4.4-41)

where each agent-modelF(x|k) depends on model parameters of kth class,Sk , and the entire
vector of all model parameters is a set of all submodel parameters, S = {Sk}. According to
(4.4-40), the partial similarity

l(x|k) = F(x|k)/h̄ωx (4.4-42)

and the pixel similarity

l(x) =
[∑

k

l(x|k)
]Nx

or ll(x) = Nx ln

[∑
k

l(x|k)
]

(4.4-43)
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Comparing the pixel similarity ll(x) to the one used previously in Section 4.3, ll(n), we can
interpret ln

[∑
k l(x|k)] as a single-photon similarity, ll(n), and ll(x) being a similarity for

pixel x containing Nx photons. The Shannon–Einsteinian AZ-similarity between the data
set {S(x)} and a set of models {F(x|k)} is given by

AZ-LL =
∑
x

Nx ln

[∑
k

l(x|k)
]

=
∑
x

Nx ln

[∑
k

F (x|k)/h̄ωx

]
(4.4-44)

An intuitively appealing interpretation of the above is that the sum over pixels (�x Nx), can
be replaced by the sum over individual photons, (�n); then the above similarity “looks”
exactly the same as the general AZ-similarity introduced in Section 4.2. And the dynamics
maximizing the similarity is just like the general case derived in Section 4.2,

dSk/dt =
∑
x

Nxf (k|x) ∂ll(x|k)/∂Sk

= (1/h̄ωx)
∑
x

Nx f (k|x) ∂ ln F(x|k)/∂Sk
(4.4-45)

f (k|x) = l(x|k)/
[∑

k′
l(x|k′)

]
= F(x|k)/

[∑
k′

F(x|k′)

]
(4.4-46)

with the only difference here being that �n is replaced with �xNx.
If the Einsteinian Gaussian mixture model is used, as in Section 4.4.3, for the signal-

source models,

F(x|k) = h̄ω Ak G(x|k)
G(x|k) = (2π)−D/2 (det Ck)

−1/2 exp
{−0.5 (x − xk)T C−1

k (x − xk)
} (4.4-47)

Again, Ak is a submodel amplitude, xk is the submodel mean position vector, and Ck

is the submodel covariance, determining the shape of the submodel in D-dimensional x-
space. Term [Ak G(x|k)] is measured in units of photon number, and G(x|k) is interpreted
as the conditional pdf of photons from source k. The estimation equations for the model
parameters are

Ak = Nk/N, Nk =
∑
x

f (k|x) [S(x)/h̄ω], N =
∑
x

[S(x)/h̄ω]

xk =
∑
x

f (k|x) [S(x)/h̄ω] x/Nk

Ck =
∑
x

f (k|x) [S(x)/h̄ω] (x − xk) (x − xk)T /Nk

f (k|x) = F(x|k)/
[∑

x

F(x|k′)

]
(4.4-48)

where f (k|x) has the meaning of the a posteriori Bayes probability that a photon with
coordinates x has originated from the source (or submodel) k. Thus, Nk is the number



4.4 Shannon–Einsteinian MFT 185

of photons from the source k, and N is the total number of photons. As in the previous
sections, this set of equations defines a convergent iterative system. Although the Gaussian
mixture model described above can model any intensity image, usually, it is practically
useful for images composed of relatively few Gaussian “blobs.” More complex models that
are required for more complicated images are discussed in Chapters 6 and 7.

A model-based neural network architecture implementing the above equations is similar
to MLANS (at the top-level); it is considered in Section 4.5. We call it an Einsteinian or
Shannon–Einsteinian neural network, or a Maximum Entropy Adaptive Neural System,
MEANS.

4.4.9 Historical Roots of Maximum Information and Maximum
Entropy Estimation

The information or entropy maximization principle that we used to derive Shannon–Ein-
steinian similarity is connected to the maximum entropy estimation principle that has being
used since the 1950s. There are significant similarities and differences between various
approaches and methods under similar names, so it is useful to provide a brief overview of the
history and literature concerning the roots of the maximum entropy estimation in statistics.
Kullback and Leibler (1951), following Khinchin, developed a measure of information
distance that was used to develop Khinchin–Kullback–Leibler estimation approaches, also
known as maximum entropy (ME) (Jaynes, 1957), minimum cross-entropy (MCE), and
minimum discrimination information (MDI). The ME philosophy was formulated by Jaynes
(1957) as “maximally noncommittal with regards to missing information.” In ME estima-
tion, the problem is formulated as follows. Estimate a pdf, q(n), given a set of linear
constraints on q. Constraints are given in terms of expected values, i.e., of the form∑

n

q(n) a(k, n) = 0 (or ≥ 0), for k = 1, . . . , K (4.4-49)

Estimation shall also account for a normalization constraint,∑
n

q(n) = 1 (4.4-50)

The ME estimation consists in maximizing the entropy defined as

max E; E = −
∑
n

q(n) ln q(n) (4.4-51)

According to the ME philosophy, ME estimates a function q(n) by maximizing its random-
ness, while satisfying constraints (4.4-49) and (4.4-50). When a prior guess p(n) estimating
q(n) is known in addition to the above constraints, MCE is used, which minimizes cross-
entropy CE,

min CE; CE =
∑
n

q(n) ln[q(n)/p(n)] (4.4-52)

subject to constraints (4.4-49) and (4.4-50). MCE minimizes “information measure nec-
essary to change p(n) into q(n)” subject to the constraints. Note the differences between
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Eq. (4.4-52) and our Eqs. (4.4-19) and (4.4-50): in MCE like in ME, the sum is weighted
with the sought function q(n), whereas in our definition, the sum is weighted with the
measured numbers of photons. Also, a weak point of MCE is that constraints that are used
in MCE are of an approximate nature, but they are required to be exactly satisfied. Our
approach avoids this undesirable property. But the main difference is in the basic principle:
our approach maximizes information in the estimation system about the world.

Shore and Johnson (1980) provided an axiomatic foundation for MCE. They developed
requirements for consistent inferences. Their main requirement for consistency is that for
statistically independent systems, estimates have to be statistically independent. Classical
MCE as well as our definition of the mutual entropy satisfy these conditions (Problem 4.4-
7). Shore (1984) has shown that classical ML estimation is equivalent to MCE estimation.
He made an important point that the ML estimation is justified from the basic principles
only if a model is exactly correct (for some set of parameters), whereas MCE does not rely
on this. Thus, he argued that MCE is a more general approach than ML. This is also true
for Shannon–Einsteinian similarity described in this chapter.

4.4.10 Likelihood, Information, Ergodicity, and Uncertainty

Information and entropy as well as likelihood are defined in terms of pdfs. The relationship
between statistical likelihood on the one hand and information and physical entropy on the
other has been addressed throughout this chapter and here we summarize these discussions.
First, let us analyze definitions of pdfs considered in statistics, information theory, and
physics. In particular, what is the source of uncertainty, pdf of what is considered? In
statistics, pdf(X) characterizes deviations of the dataX from its predictions specified by the
model. In information theory and in statistical physics, pdf(X) characterizes the relative
frequency of a macrostate X among all macrostates, whereas the model specifies the
numbers of microstates. One may wonder if specifying the number of microstates provides
an adequate description of a physical system? How does it correspond to considering photon
emission and absorption processes? For example, a model for the pdf of pixel intensity could
be derived by analyzing the random process of photon emission and absorption in a unit of
time within the spherical angle of a pixel. This would require knowledge of the emission
and absorption properties of materials, etc.; however, after a relatively long derivation,9

the procedure will lead to the above equations, which depend only on the numbers of
states. In the derivation of the above expressions (4.4-22) for Shannon’s similarity (mutual
information) we had no need to account for the temporal randomness of the photon emission
process. The results are the same, and this is called a principle of ergodicity in statistical
physics: in many aspects, temporal randomness and ensemble randomness are equivalent.

The difference between statistical likelihood and Einsteinian likelihood (or equiva-
lently, physical entropy) is not due to considering different physical processes, but to
attribution of uncertainty: in statistics—to the unknown variabilities in the data, and in
physics—to the unknown microstate of the world.

4.4.11 Forward and Inverse Problems

In statistical physics, a classical paradigm is to find the density of particles by maximizing en-
tropy, given the physical model (a forward problem). MFT solves an inverse problem: given
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the observed density of particles (photons), find parameters of the model. The paradigm of
an inverse problem is central in statistical estimation, and a natural problem for an intelligent
system. A rich body of estimation theory is available for simple inverse problems, when there
is just one unstructured source of the data. Complicated inverse problems are characterized
by unknown structure (multiple sources) and unknown parameters of models. In the past,
solutions of complex inverse problems with multiple sources were approached by variations
of the previously mentioned Multiple Hypothesis Testing (MHT) algorithm. MHT combines
forward modeling with statistical estimation: (1) postulate an association between data and
their sources (a hypothesis); (2) estimate parameters of the source model conditional on the
association hypothesis; (3) solve the forward problem; (4) by comparing this solution with
the data, estimate an improved association between data and their sources; this is usually
accomplished by methods of statistics such as the nearest neighbor; (5) iterate steps 2, 3,
and 4 until the solution matches the data. MHT solutions are often prohibitively expensive
due to the inherent combinatorial complexity of MHT. Contrary to this, MFT solves an
inverse problem without combinatorial complexity by using fuzzy associations between
data and their sources. Therefore, statistical estimation performed by Shannon–Einsteinian
MFT efficiently solves the physical problem of inverse modeling by combining statistical
physics with information theory.

4.5 MODELING FIELD THEORY NEURAL ARCHITECTURE

Learning in MFT is determined by a concurrent evolution or adaptation of model parameters
Sk and fuzzy class memberships f (k|n) associating data (input nodes) nwith agent-models
k. This evolution is given by the dynamic equations for Sk and f (k|n). Correspondingly,
a top level neural architecture consists of two subsystems, an association subsystem and a
modeling subsystem (Fig. 4.5-1). An association subsystem implements f (k|n) dynamics
given either directly, according to its definition equations [(4.1-19), (4.2-4), (4.3-13), (4.4-
8), (4.4-46), and (4.4-48)], or according to the corresponding dynamic equations [(4.2-5),
(4.3-26), or (4.3-32)]. Modeling subsystem implements Sk dynamics given by any of the
following equations [(4.2-3), (4.2-7), (4.3-12), (4.3-19), (4.3-21), (4.3-24), (4.4-7), (4.4-13),
(4.4-14), (4.4-15), (4.4-45), and (4.4-48)].

The following chapters consider a number of specific MFT models and variations of
the above equations, implemented for various applications. General characteristics of these
implementations follow from the general MFT equations derived in this chapter and are
summarized here. In a digital implementation on a general purpose computer, the continuous
dynamic equations are implemented in finite steps, according to the following algorithm:

1. at t = 0, initialize parameter values {Sk(t = 0)} according to available a priori
knowledge of the problem;

2. using these parameter values, compute models Mk(Sk);
3. compute partial similarities l(n|k) and fuzzy memberships f (k|n);
4. compute derivatives of models and partial similarities;
5. compute [dSk/dt] according to the corresponding dynamic equation; then compute

parameter values at the next iteration time t + dt , according to
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Figure 4.5-1 Modeling field theory neural network architecture; top level. An association subsystem
computes weights that associate data with models. Modeling subsystem estimate parameters of the
models.
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Figure 4.5-2 MFT algorithm.

Sk(t + dt) = Sk(t)+ [dSk/dt]

6. at t > 0, verify convergence according to a predetermined criterion, e.g., compute
the log-similarity, LL, and check if its change is below threshold

LL(t)− LL(t − dt) < threshold

if the convergence criterion is not satisfied, continue iterative estimation: go to step
2; if the convergence criterion is satisfied, stop iterative estimation: go to the next
level of decision making.

This iterative algorithm is illustrated in Fig. 4.5-2. Figures 4.5-1 and 4.5-2 show
alternative views on the MFT operations. The mapping between these two views is straight-
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forward: steps 1 and 6 are implemented by separate initiation and termination subsystems,
not shown in Fig. 4.5-1; steps 2, 4, and 5 are implemented in the modeling subsystem;
step 3 is implemented in the association subsystem. For complicated models involving
spatiotemporal model propagation, separate subsystems might be used for steps 2 and 4.

The neural architecture and learning dynamics described here are related to the MFT
models in an essential way: they are based on these models. For this reason, the architecture
of Fig. 4.5-1 is called Model-Based Neural Network (MBNN). The terms MFT and MBNN
are used interchangeably, whereas the terms MLANS, MEANS, ENN, etc. are reserved for
specific implementations using likelihood or information similarities.

4.6 CONVERGENCE

4.6.1 Aspects of Convergence

MFT is a convergent dynamic system whose stationary points correspond to the maximal
values of AZ-similarity. This means that in finite time the MFT model parameters come
arbitrarily close to the stationary point (dS/dt = 0), and AZ-L similarity comes arbitrarily
close to its maximum. To establish convergence, a convergence criterion should be defined.
This can be done by monitoring the rate of change of the similarity measure: when this rate
falls below a threshold, a convergence is declared. Sometimes monitoring model-parameter
rate of change is more convenient, because these are physical quantities, and thresholds
for their rates of change could be more easily determined for specific applications. Each
parameter rate of change could be monitored separately; alternatively, a single function of
model parameters could be defined determining an average convergence. These various
techniques will be illustrated in the following chapters.

In general, MFT dynamics guarantees attaining a local maximal value. AZ-L is a
complex nonlinear function with a large number of maxima. The main way MFT looks
for the global maximum is selecting initial parameters in such a way that the MFT models
Mk are very fuzzy initially and their degree of fuzziness is reduced during convergence to
an appropriate degree. This is achieved by selecting large initial values of covariances. In
many cases this is sufficient for finding either the global maximum or a sufficiently good
solution. When it is not sufficient, it can be supplemented by running the MFT system
multiple times with different initial states (parameter values) and then selecting the result
with the highest similarity.

A more general way of finding the global maximum (or a sufficiently good one) is to
consider a single-level MFT system as a part of a multilevel hierarchical system. A higher
level interprets convergence results of a lower level. This interpretation accounts for the
nature and meaning of the MFT models: each of the kth class models corresponds to an
object or process recognized within the broader context of multiple models continually
adapting to the continuous stream of data. So the problem of global vs. local maxima is
related to finding objects present in the data without errors, and, therefore, is related to
the problem of the true number of objects (or classes). When the number of object-classes
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varies in the estimation process, the AZ-similarities defined in previous sections should be
modified as discussed in Section 4.7.

Continuous operation alters the definition of convergence. We should account for two
time scales: an internal time scale determined by the parameter dt in MFT equations
and an external, real time. When internal MFT evolution is much faster than real-time
changes, the conventional convergence criteria are useful, but when the two time scales
are commensurate, only local measures of convergence could be defined. The higher level
makes decisions concerning validity of correspondence between the data and a set of active
class-models that is being estimated at a given moment in real time. A decision could be
that there is no correspondence between a particular model and the data, and this model
should be eliminated from the processing stream, or that a particular model matches the
data well so that conclusions should be drawn from the presence of this particular object, or
that another model should be activated for modeling a particular piece of data. All of these
cases are considered in the following chapters.

4.6.2 Proof of Convergence

We will discuss here two proofs, first related to the gradient ascent and second, applicable to
the system of parallel dynamic equations for parameters and neural weights. The gradient
ascent leads to a continuous monotone increase of the similarity. This can be shown as
follows. Consider change in similarity LL during time dt due to adaptation of a set of
parameters {Sk}:

dLL =
∑
k

[∂LL/∂Sk] [dSk/dt] dt (4.6-1)

where

dSk/dt = ∂LL/∂Sk (4.6-2)

Substituting the second into the first, we obtain,

dLL/dt =
∑
k

[∂LL/∂Sk]
2 ≥ 0 (4.6-3)

If the similarity is finite for all values of Sk , then, within a finite number of steps dSk , the
MFT system will come to a point where dLL increases are arbitrarily small. Such a point is
either a maximum or a point of inflection, and dSk approaches zero near such a point, thus it
is a stationary point. It remains to analyze conditions under which a similarity is finite. It is
sufficient to consider partial pixel similarities, l(n|k). For parametric models considered in
this book, l(n|k) could become infinite only if its covariance goes to zero (detC → 0). This
is equivalent to l(n|k), for object-class k, concentrating on a single data point n, or l(n|k)
being nonzero in the infinitely small vicinity of the data point n. These infinities of similarity
can be prevented by forcing covariances to be larger than some small predetermined amount.
Thus, the similarity is finite and convergence is always attained in a finite number of steps.
This proof is applicable to a “straightforward” gradient ascent given by any of the dynamic
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equation for the model parameters [Eqs. (4.2-3), (4.2-7), (4.3-12), (4.3-19), (4.3-21), (4.3-
24), or (4.4-7), (4.4-45)], while the neural weights f (k|n) are computed according to either
equations [(4.1-19), (4.2-4), (4.3-13), or (4.4-8), (4.4-46), (4.4-48)].

Consider now a convergence proof suitable for the pair of dynamic equations determin-
ing the evolution of both parameters and neuronal weights [Eqs. (4.2-3), (4.2-4), (4.2-7),
(4.3-21), (4.3-22), (4.3-24), or (4.4-48)]. As in the pervious proof, it is sufficient to show that
the MFT dynamics leads to increasing (nondecreasing) similarity. We modify the notations
by adding a parameter t describing the dynamic evolution of corresponding quantities in
the process of convergence, e.g., l(n|k, t) is a partial similarity l(n|k), computed with the
parameter values Sk(t) , estimated at time t , and ll(n|k, t) = ln l(n|k, t), etc. First, let us
prove the following two lemmas.

LEMMA 4.6.1. Given �k qk = 1, �k pk = 1. The minpk [�k qk ln (qk/pk)] = 0, and it
is attained at pk = qk .

Proof. Using the method of Lagrange multipliers, the minimum, given the constraint, is
found by

∂/∂pk

[∑
k

qk ln (qk/pk)+ λ (pk − 1)

]
= 0 (4.6-4)

This leads to −qk/pk+λ = 0, or qk = λpk . Summing up this expression over k = 1, . . . , K ,
and using the constraint, we get λ = 1, which proves the lemma.

LEMMA 4.6.2. Dynamic equations [(4.2-5),(4.3-20), and (4.3-22)] for the neural weights
(fuzzy class memberships) preserve the definition

f (k|n, t) = l(n|k, t)/[l(n|1, t)+ · · · + l(n|K, t)] ≡ l(n|k, t)/l(n|t) (4.6-5)

at all times t .

Proof. This follows from the dynamic equation for f (k|n, t) being the time derivative of
the right-hand side of Eq. (4.6-5) and the initial condition given by this equation at t = 0.
It also follows that

∑
k

f (k|n, t) = 1 (4.6-6)

at all times, t .

THEOREM 4.6.3. A system of dynamic equations for dSk/dt and df (k|n)/dt of the
type (4.2-3), (4.2-4), (4.3-21), (4.3-22), (4.3-24), or (4.4-48) is a converging system; it
converges to a stationary point of log-similarity AZ-LL (that is, to a point, where dAZ-LL/
dSk = 0).

Proof. Examine a change of log-similarity from t to t + dt :
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AZ-LL(t + dt)− AZ-LL(t) =
N∑
n=1

[ll(n|t + dt)− ll(n|t)]

=
N∑
n=1

{
K∑
k=1

f (k|n, t)
}

[ll(n|t + dt)− ll(n|t)]

=
N∑
n=1

K∑
k=1

f (k|n, t) [ll(n|k, t + dt)

− ln f (k|n, t + dt)− ll(n|k, t)+ ln f (k|n, t)]

=
N∑
n=1

K∑
k=1

f (k|n, t)[ln f (k|n, t)− ln f (k|n, t + dt)]

+
N∑
n=1

K∑
k=1

f (k|n, t)[ll(n|k, t + dt)− ll(n|k, t)]

(4.6-7)

In the first line here we used an identity Eq. (4.6-6); in the second line we used the logarithm
of Eq. (4.6-5). The third line is nonnegative because of Lemma 4.6.1 (its min value is 0).
The last line is also nonnegative (see Problem 4.6-1). Thus, dLL/dt is nonnegative. This
completes the proof of the MFT convergence at least to a local maximum (or inflection
point) of the similarity.

A modification of the expectation-maximization (EM) algorithm used in several prob-
lems in this chapter to obtain the estimation equations can be formulated as follows. An
iterative maximization of AZ-similarity can be achieved by maximizing at every iteration,
t + dt , the following expression:

maxSk(t+dt)

{∑
n

f [k|n,S(t)] ll[n|k,S(t + dt)]

}
(4.6-8)

Here, fuzzy memberships f (k|n,S(t)) are evaluated using the parameter values S(t) esti-
mated at the previous iteration, t .

COROLLARY 4.6.4. The EM procedure converges to a maximum of log-similarity
AZ-LL.

Proof. The EM procedure ensures that the last line in (4.6-7) is nonnegative, and since the
previous line is nonnegative, then dLL is nonnegative as well.

4.7 LEARNING OF STRUCTURES, AIC, AND SLT

Learning structural characteristics of the internal model often is considered a different
problem from parameter adaptation. This is not so in MFT: a structure of the internal model
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is determined by the number and interaction of submodels (which we also call object-
models, components, or agents). Therefore, learning of a structure is an integral part of
the MFT learning. Estimating the number of agents or submodels from the data requires
modifications of the procedures discussed in previous sections. These modifications are
discussed here.

There are two basic procedures for estimating the number of agents, depending on
the role of agents and their fidelity. First, each agent submodel can be used to model a
distinct object or physical source of signals. This is appropriate when the submodel fidelity
is adequate for the purpose. Second, several agents can be used for a single object or
signal source. This is appropriate when the a priori knowledge is insufficient for accurate
modeling, and several submodels are used to account for expected variabilities. In the first
case, the actual presence or absence of the object can be decided by computing an agent
activation, a(k) = ∑n f (k|n), and comparing it against a decision threshold. The agent-
concept activation is the degree of recognition of the object or concept by the MFT system
(see a related discussion in Section 4.2.4). In the second case, the decision is more subtle:
how many sub-models should be used for accurate modeling? And what does constitute an
accurate modeling? The difficulty is related to the fact that with a sufficiently large number
of parameters, any data can be fit very closely, so that the partial similarities and activations
can become very large, even if the modeled objects are not present. Therefore, it is necessary
to balance maximization of similarity against the number of parameters in the model.

Mathematically, the above problem can be formulated as follows. Let us consider
the maximal value of likelihood attained in the process of parameter estimation (which
maximizes the similarity). This estimated maximal likelihood value is a random quantity,
depending on the available data. How well does this estimated value represent the true
maximal value of the likelihood? The maximum likelihood estimation is asymptotically
unbiased, that is, for a sufficiently large amount of data, the estimated value, on average,
is close to the true value. The “sufficiently large amount of data” supposes a large amount
of data compared to the number of parameters. If the number of parameters varies it might
grow indefinitely, so that no amount of data is “sufficiently large.” Thus, the asymptotically
unbiased property of the ML has to be reexamined. It turns out that the estimated maximal
loglikelihood value is biased upward: its expectation E{LL} is above the true value, LL0,
and this bias is proportional to the number of parameters, Npar,

E{LL} = LL0 +Npar/2 (4.7-1)

Therefore, if the number of parameters varies in the estimation process, the proper quantity
to be maximized is not the log likelihood, but the log likelihood corrected for the bias. This
quantity is called the Akaike Information Criterion, AIC,

AIC = LL −Npar/2 (4.7-2)

This correction is equally applicable to Bayesian and Einsteinian likelihoods. (And it is
related to a well-known fact in statistical physics that every degree of freedom, on average,
consumes kT /2 energy, where k is the Boltzmann constant and T is temperature; the
AIC states that every parameter that is a degree of freedom in an estimation system has
to be attributed one-half of the log-likelihood value.) It follows, that if the number of
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parameters varies in the estimation process, similarity measures introduced in this chapter
should be corrected,

AZ-LL → AZ-LL −Npar/2 (4.7-3)

Throughout the book we will assume this correction, when appropriate.
AIC criterion “penalizes” likelihood proportionately to the number of adaptive model

parameters. The penalty is relative to the number of observations or data vectors, N , used
for parameter estimation (training), because AZ-LL is proportional to N . This procedure
is appropriate for a relatively large number of training observations (N � Npar), because
it is based on an asymptotic estimation of the likelihood bias. For learning from small
samples (N > Npar, but not “�”), it has been empirically observed that AIC does not
sufficiently “penalize” the likelihood function. In simple cases, such as linear classification
(and linear regression), it is possible to derive a more accurate “penalty” procedures for
learning from small samples. This is a subject of statistical learning theory, SLT (Section
2.7). The MFT learning developed in this book is based on utilizing complex a priori models
with small number of parameters (Npar � N). This usually results in complicated nonlinear
problems, so that SLT penalization procedures are not applicable. Combining SLT and MFT
is a challenging problem for future research.

4.8 INSTINCT OF WORLD MODELING: KNOWLEDGE INSTINCT

It is an intriguing possibility to consider a biological interpretation of the MFT dynamics,
maximizing the similarity between the internal model and the outer world data. Mathemat-
ical, psychological, and philosophical considerations suggest that the mind does not simply
react to sensory data by acting out in the outer world. Complex internal representations
(models) are utilized in order to understand the world: to recognize objects, their relation-
ships, and possible interactions with them. Knowledge is represented by internal models.
Acting out in the world is often very indirectly related to sensory stimuli, and the internal
model often takes on a “life” of its own. Knowledge, or a good correspondence between the
model and the world, is so important that there have to be very basic biological mechanisms
driving toward regular or even constant improvements of this model. For example, dolphins
placed in a new environment first map it out acoustically with specific sound signals; then
they can easily find a new object placed in the water. Many other forms of exploratory
behavior of animals can be explained by assuming a basic instinct or drive to improve the
internal model. The MFT similarity maximization mechanism is a possible mathematical
description of that instinct or drive to improve the world model, the instinct for knowledge.
This discussion is continued in Chapter 10, where the functioning of the mind is analyzed
on a system level, combining mathematical and philosophical inquiry.

4.9 SUMMARY

This chapter described the modeling field theory (MFT), a dynamic learning system, whose
adaptation or learning is based on a priori models as well as on empirical data. The MFT
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combines internal models with similarity measures utilizing available knowledge with
various degrees and types of uncertainty and variability: deterministic, stochastic, and fuzzy.
In MFT, concepts or classes emerge in the process of learning; the initial state of MFT models
can be characterized as fuzzy concepts; during MFT learning, the degree of fuzziness is
reduced and crisp (or less fuzzy) concepts emerge. MFT is an organization of intelligent
agents. Every agent has its own internal model and the MFT system maximizes the similarity
between all the models and the input data. In the process of similarity maximization, agents
compete for the evidence in the data, which supports their models, while adapting their
models to the data. The learning process therefore includes segmentation or association
of data with various agent-models. Models are the internal representations of structures or
patterns in the data and are the mathematical descriptions of concepts of mind. Similarity
measures are the evaluative signals and are the mathematical descriptions of emotions;
these emotions correspond to satisfaction of the instinct for knowledge.

Utilization of a priori models solves the problem of learning from a limited amount of
data. Models for particular applications are to be designed to strike a balance between the
available a priori knowledge and available training data. The mathematical apparatus of
MFT combining fuzzy logic with adaptivity and apriority resolves the long-standing issue
of seemingly inescapable combinatorial complexity of the past approaches to modeling
the intellect, discussed in Chapter 2. The concept of the model-based neural network
corresponds to the Aristotelian theory of mind and fulfills the McCulloch vision of learning
based on complex a priori neural structures.

We discussed a correspondence between MFT and the Aristotelian theory of mind
(theory of Forms). According to Aristotle, the a priori contents of mind are Forms, which
contain concepts as potentialities, and which become concepts in the process of learning
when meeting the matter. MFT describes Forms mathematically as fuzzy agent-concepts,
which emerge as crisp concepts in the process of learning through interaction with empirical
data. In his theory of Forms, Aristotle criticized Plato’s theory of mind based on eternally
true, ready-made Ideas (crisp concepts). But we discussed that the Aristotelian theory of
logic was more suitable for eternal Ideas of Plato than for fluid adaptive Aristotelian Forms.
Reliance on Aristotelian logic caused difficulties in past mathematical attempts to model
the intellect. This difficulty is resolved in MFT by using adaptive model-based fuzzy logic.
Thus, 2300 years since Aristotle, the logical foundation for the Aristotelian theory of mind
is provided by the fuzzy logic originated by Zadeh.

The dynamics of MFT, determining the learning equations, is obtained by maximizing
the AZ-L similarity between the input data and a set of models. This similarity measure
includes all segmentations/associations. Thus, MFT accomplishes concurrently the model
estimation and segmentation (concept formation). We considered two types of similarities
based on maximization of likelihood (ML) and mutual information (MMI). The ML is a
fundamental statistical principle. In addition to the intuitively appealing notion of “the
most likely,” it has advantages of being asymptotically unbiased and efficient. Often,
the ML estimation leads to the fastest possible learning. Nonasymptotically, when the
amount of data is small, or when the environment changes so fast that there are not
enough data to attain asymptotic accuracy, the ML principle is not guaranteed to be “the
best.” For some problems, in a nonasymptotic region, there are better estimation tech-
niques than the ML. For example, in Chapter 6 Einsteinian likelihood results in a better
spectrum estimation than the ML, even with exact models. However, such techniques
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are “rarities”; there is no general estimation technique better than the ML when models
are accurate.

The model accuracy requirement could be an important limitation to the ML estimation.
This requirement is not a trivial one: for example, it is often possible to specify a very
flexible model with a very large number of parameters, so that it can fit the data perfectly.
Nonparametric techniques, such as feedforward or nearest neighbor neural networks, can
be used for this approach. Perfect fitting of available data by using unrestrictive models with
an excessive number of parameters often leads to no valid generalization: results of learning
are not applicable to new data. The model accuracy requirement for the ML estimation is
a requirement of the true model: the model should be the true representation of the reality.
This is rarely achievable in practice: our models are always only approximations to the real
world. Note a subtlety here: the ML allows for and assumes the deviations of data from
models, but these deviations should be random. Quite often deviations of data from models
can be considered random, even if not really so. Therefore, the ML estimation often is quite
appropriate even for approximate models.

Another estimation principle introduced in this chapter is based on the maximum
mutual information (MMI) between the model and the data. When the model is an accurate
physical model of the world, the mutual information can be interpreted as a likelihood.
This is a different type of likelihood than is usually considered in statistics, and we call it
the Einsteinian likelihood. Although classical statistical likelihood attributes uncertainty to
the unknown causes of deviations between the model and the data, Einsteinian likelihood
attributes uncertainty to the unknown microstate of the world. The MMI principle, equiv-
alent to Einsteinian likelihood, is founded on extracting maximum information from the
data based on the available a priori knowledge (good or bad) captured in the adaptive a
priori models, even if models are approximate. Therefore, MMI can be better suitable for
approximate models than the ML.

Finally, we touched on a possible biological interpretation of the MFT internal dynamics
based on similarity maximization, as an instinct or internal drive for learning.

The following chapters consider further development and applications of the two ver-
sions of the general MFT theory. Chapter 5 considers Maximum Likelihood Adaptive Neural
System (MLANS) utilizing the Bayesian likelihood similarity and the maximum likelihood
estimation principle. Chapter 6 considers the Shannon–Einsteinian Neural Network (ENN),
utilizing Shannon’s information similarity and the maximum mutual information estima-
tion principle.

NOTES

1. Examples of deformable models of continuous geometric patterns were discussed in Terzopoulos
et al., (1988). It is a straightforward exercise to rewrite formally the above equations for the
continuous index k, by substituting all sums with integrals, similar to what we did in Eqs. (4.2-9)
and (4.2-10). It is also possible to define appropriate models and measures of similarity so that
the infinite number of models and parameters can be learned from finite training data (Perlovsky,
1996b; Perlovsky et al., 1997b).

2. Central limit theorem states that under a wide range of conditions, a sum of random variable
has a Gaussian pdf. This theorem establishes a dominant position of the Gaussian distribution
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in probability and statistics. The conditions of this theorem do not hold if several deterministic
processes are present, e.g., if measured values are random deviations from two deterministically
different values.

3. A pdf normalization, ∫ pdf(xn|Hk)dxn = 1, usually is accounted for in the definition of the
parametric shape of the pdf. It is an identity, satisfied for any parameter values, and we do not
need to account for this constraint with Lagrange multipliers. A similar procedure can be used
for P(k), e.g., by defining P(k) = P ′

k/(�k′P ′
k′), and treating P ′

k as independent parameters.
4. Direct interaction among photons is very weak and is not perceptible except by using specialized

equipment designed for this purpose. Therefore, photons produced by most objects or systems
reflecting or emitting light are not correlated. In lasers, photon states are correlated due to
interaction between photons and electronic states. But even in lasers, after being emitted, photons
do not correlate. Most of the observed dependencies among properties of photons are due to
deterministic relationships, which we intend to model with our F(ω) models.

5. Again, as in Section 4.3 on MLANS, fuzziness of the models is controlled by the variance, σ 2
k .

Initial fuzziness has to correspond to uncertainty in ωk . This can be achieved by modifying (4.4-
15) as follows: σ 2

k = σ02
k exp(−ct)+ σ12

k , where σ02
k is the initial large variance, σ12

k is the ML
variance estimation given by (4.4-15), t is the iteration number (internal MFT time), and c is a
parameter controlling the convergence of fuzziness.

6. The following computation is performed for a “classical” limit, when�ω � Nω. Therefore, it may
be inaccurate for lasers, still, it would be applicable to most of the images formed using scattered
laser light. Also, considering photons with a given frequency as indistinguishable may not be
correct if their polarization is also measured. But, as seen from the following, the denominator
(Nω!) does not affect the MFT estimation equations. So, the indistinguishability considerations
do not affect the estimation equations.

7. This needs clarification for those familiar with Shannon’s definition of information I = H(x)

H(y)−H(x, y), where entropy H(x) = − ln P(x), and P(x) is the probability of x. The prob-
ability P(x) can be interpreted as follows. Denote �(X|x) the number of states (or equiprobable
outcomes) in system X compatible with data x (given data x), and �(X|o) the total number of
states in system X (given no information on X). Then, P(x) = �(X|x)/�(X|o), P (x, y) =
P(x|y)P (y) = �(X|x, y)�(Y |y)/[�(X|o)�(Y |o)], H(x) = ln[�(X|o)/�(X|x)], and I = ln
[�(X|o)�(Y |o)�(X|x, y)�(Y |y)/(�(X|x)�(Y |y)�(X|o)�(Y |o)] = ln[�(X|x, y)/(�(X|x)].
Thus, Shannon’s information I is the information in data y on systemX given data x. Comparing
the last expressions for entropy and information, we conclude that entropy H(x) is the negative
information in data x on system X. The following sections elaborate on this line of argument
in detail.

8. When counting states in quantum mechanics, indistinguishable states that are characterized by
the same set of quantum numbers are treated differently from distinguishable states. If an index
x refers to a complete set of the photon quantum numbers, so that photons within each “pixel” x
are indistinguishable, the number of photon states is reduced by the number of permutations of
indistinguishable photons.

9. An approach could be to model the photon emission as a random process, leading to Poisson
density, pdf(Nω) = λ exp(−λNω), for the number of photons emitted in a unit time. Note that
this expression is a falling function of Nω and, thus, it is qualitatively different from Eq. (4.4-9).
To properly account for the dependence on the number of photons, the above Poisson density has
to be multiplied by the phase space associated with Nω photons, which is proportional to a Nω-
dimensional integral over individual-photon degrees of freedom. The resulting density, in case of
classical systems with many photons, will have an extremely sharp peak at the mean value ofNω.
Because of the sharpness of this peak, it is sufficient to consider only the mean valueNω. Therefore,
a standard statistical approach attributing randomness to Nω values cannot be justified based on
a Poisson randomness of the physical process of photon emission. Therefore, any uncertainty in
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Nω value is not due to a Poisson randomness, but to uncertainty about the physical properties of
objects and numbers of the photon states. Our approach based on Einsteinian likelihood models
the distribution of Nω (as a function of ω), and is related to varying λ and the number of states
as a function of frequency.
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This section contains additional bibliographical information that was not explicitly referenced in
the text.
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Dolphin behavior (Greineder, 1995).

PROBLEMS Section 4.1

4.1–1 Compare the description of the levels of model representation to the description of the
intelligent tracker in Section 1.1.4.

Section 4.2

4.2–1 Derive Eq. (4.2-5). Hints: Use (4.1-17); show that δkk′ comes from the derivative of the
numerator in (4.2-4) and the rest comes from the denominator.

4.2–2 Evaluate the derivative ∂ ln
[
pdf (xn|Hk)

]
/∂Mk for Gaussian pdf, Eq. (4.3-6). Show that

∂ ln
[
pdf (xn|Hk)

]
/∂Mk = DT

nk C
−1
k , whereDnk = xn−Mk . Use symmetry of the matrix

C−1
k .

Section 4.3

4.3–1 Let xn and xn−1 be correlated with a correlation coefficient r . Consider model Mk =
E {xn|xn−1}, that is, given by the linear regression of xn on xn−1, Eq. (1.4-21). Show that
(xn −Mk) is uncorrelated with xn−1. Hints:
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1. According to (1.4-14), Mk = x̄n + (xn−1 − x̄n−1) r σn/σn−1, where σn and σn−1 are
standard deviations.

2. Compute the correlation between xn−1 and (xn −Mk) : E {(xn−1 − x̄n−1) (xn −Mk)}
by opening parentheses inside { }.

3. Recollect definitions of standard deviations and correlations from Chapter 1, and
show that all items in E{ } cancel each other.

4.3–2 Prove that class rates satisfy the constraint (4.3-8). Hint: Take ∫ dxn from each side
of (4.3-7). Recollect the pdf normalization from Chapter 1:

∫
dxn pdf (xn) = 1 and

∫ dxn pdf (xn|Hk) = 1.

4.3–3 Derive the rate estimation Eq. (4.3-14). Hints:

1. Follow the derivation of (4.3-12), compute ∂AZ-LL′/∂P (k) and obtain

dP (k)/dt = ∂AZ-LL′/∂P (k) =
∑
n

f (k|n) ∂ lnP(k)/∂P (k)+ λ

=
∑
n

f (k|n)/P (k)+ λ

2. At the maximum, ∂AZ-LL′/∂P (k) = 0 and dP (k)/dt = 0, therefore,∑
n

f (k|n)/P (k)+ λ = 0 or P(k) = −
∑
n

f (k|n)/λ

3. Take a sum of this over k, use the constraint (4.3-8), use �k f (k|n) = 1, and denote
the total number of pixels N = �n 1. Obtain,

1 = −N/λ or λ = −N, and P(k) =
∑
n

f (k|n)/N

Section 4.6 contains a proof that using this equation in place of the gradient ascent
also leads to a convergent procedure.

4.3–4 Rewrite Eq. (4.3-21) for a case of Cijk = c1 · δij and M ;a
ik = c2 · δai .

4.3–5 Analyze the above result for c2 = 1, and f (k|n) = (0 or 1) for some k. Show that
Sk = Mk leads to M ;a

ik = δai . Show that the stationary point (dSk/dt = 0) corresponds
to the standard estimation for Mk as an average of those Xn for which f (k|n) = 1.

4.3–6 Derive the modification of the Newton gradient equations as follows. Find an extremum
of f (s) by taking at each iteration an extremum of the second-order Taylor expansion
of this function: f (s) = f0 + (s − s0)f

′
0 + 0.5(s − s0)

2f ′′
0 (s − s0).

4.3–7 Verify that the two Eqs. (4.3-21) and (4.3-24) determine incremental changes of the
vector Sk in an approximately same direction. [Hint: using positive definiteness of C−1,
show that the dot-product [(dSk/dt)4.3−21 · (dSk/dt)4.3−24] > 0; a matrix C is called
positive definite if xTCx > 0 for any x.]

4.3–8 Verify that in Eq. (4.3-24), dt is dimensionless.

4.3–9 Show that the second item in Eq. (4.3-25) gives the ML estimation of the covariance
matrix. Hints.
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1. Derive estimation equations forC−1
k , because they are somewhat simpler than forCk .

The ML estimation is given by ∂AZ-LL′/∂C−1
k = 0.

2. Compute ∂AZ-LL′/∂C−1
k [by following the derivation of (4.3-12)]. Additional com-

plications are caused by the constraints that the covariance matrixes are symmetrical.
But, first, let us ignore this fact. Use the identities (which are not correct for sym-
metrical matrixes) ∂

(
ln detC−1

k

)
/∂C−1

k = Ck, ∂
(
DT
nkC

−1
k Dnk

)
/∂C−1

k = DT
nkDnk ,

and obtain

∂AZ-LL′/∂C−1
k =

∑
n

f (k|n) [0.5Ck − 0.5DT
nk Dnk

] = 0 (P1)

where Dnk = Xn − Mk . This gives the second item in Eq. (4.3-25).

3. Repeat the above using the correct equations accounting for the symmetry of C:

∂
(
ln detC−1

k

)
/∂C−1

k = 2Ck − diagCk, ∂
(
DT
nkC

−1
k Dnk

)
/∂C−1

k

= 2DT
nkDnk − diag

(
DT
nkDnk

)
where diagC−1

k is a diagonal matrix equal to the main diagonal of C−1
k :

∂AZ-LL′/∂C−1
k =

∑
n

f (k|n) [Ck − 0.5diagCk − DT
nkDnk

+ 0.5diag
(
DT
nkDnk

)] = 0

4. Prove that the solution obtained above (P1) solves this equation as well: take diag of
(P1) and add to (P1). Thus, it turns out that ignoring the symmetry constraint forC did
not change the result. But beware: in more complicated cases, this is not necessarily
true. The identities for matrix derivatives used above can be found in Searle (1982).

Section 4.4

4.4–1 Derive Eqs. (4.4-13), (4.4-14), and (4.4-15) from MFT Eq. (4.4-7).

1. Ak estimation. Derive (4.4-7) for Ak ,

dAk/dt =
∑
ω

Nω f (k|ω)/Ak + λ

Consider this as an iterative discrete equation, so that dAk = Ait
k − Ait−1

k , where
Ait
k is a value of Ak at the iteration number it , and (it − 1) is the previous iteration.

The right-hand side is evaluated at the (it −1) iteration. DefineNk = �ω Nωf (k|ω).
Choose dt = Ait−1

k /Nit−1
k and λ = −N and derive (4.4-13). Verify that the constraint

on Ak is satisfied.

2. ωk estimation. Derive (4.4-7) for ωk ,

dωk/dt =
∑
ω

Nω f (k|ω) (ω − ωk)

Show that this equation leads to (4.4-14), if you choose dt = 1/Nit−1
k . Write dωk =

ωitk − ωit−1
k and evaluate the right-hand side at (it − 1).

3. σ 2
k estimation. Derive (4.4-7) for σ 2

k ,

dσ 2
k /dt =

∑
ω

Nωf (k|ω)
[−0.5σ−2

k + 0.5σ−4
k (ω − ωk)

2
]
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Show that this equation leads to (4.4-15), if you choose dt = 2
(
σ it−1
k

)4
/Nit−1

k .

4.4–2 Demonstrate that at the maximum, dSk/dt = 0, (4.4-7) satisfies Eqs. (4.4-13), (4.4-14),
and (4.4-15).

4.4–3 Derive Eqs. (4.4-13), (4.4-14), and (4.4-15) using a modification of the expectation-
maximization (EM) algorithm. It is formulated as follows: an iterative maximization of
AZ-similarity (4.4-6) can be achieved by maximizing at every iteration, it , the following
expression:

maxSit
k

{∑
ω

Nωf
(
k|ω,Sit−1

)
ln
[
F
(
ω|k,Sit) /h̄ω]

}
, Nω = S(ω)/h̄ω (P2)

Here, fuzzy memberships f (k,Sit−1
k |ω) are evaluated using the parameter values Sit−1

estimated at the previous iteration, (it−1). (A proof that this procedure always converges
to max AZ-LL is considered in Section 4.6.)

1. Derive the Ak estimation equation. Account for the constraint (4.4-3) by using the
method of Lagrange multipliers as in Problem 4.3-3.

1.1. Maximization in (P2) leads to

∑
ω

Nωf
(
k|ω,Sit−1

)
∂/∂Sitk ln

[
F
(
ω|k,Sit) /h̄ω]

}
= 0 (P3)

1.2. Evaluate the above for Ak (that is, substitute ∂/∂Sitk → ∂/∂Ait
k ). Obtain the

following: ∑
ω

Nωf
(
k|ω,Sit−1

)
/Ait

k + λ = 0 (P4)

1.3. Multiply the above byAit
k and sum over k. Obtainλ = −�ω Nω = −N (compare

to Problem 4.4-1).

1.4. Combine this with (P4) and obtain

Ait
k =

∑
ω

Nωf
(
k|ω,Sit−1

)
/N = Nit−1

k /N

This leads to (4.4-13).

2. Derive the ωk estimation equation using (P3). Evaluate (P3) for ωk and obtain∑
ω

Nωf (k|ω,Sit−1)(ω − ωitk ) = 0

This leads to (4.4-14).

3. Derive the σk estimation equation using (P3). Evaluate (P3) for σk and obtain∑
ω

Nωf
(
k|ω,Sit−1

) [−σ it−1
k + σ it−3

k

(
ω − ωitk

)2] = 0

This leads to (4.4-15).

4.4–4 Analyze conditions under which the ML equations maximizing the Einsteinian likelihood
(4.4-7, 8) are equivalent to ME equations maximizing the entropy (4.4-29) subject to
constraints (4.4-17).
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1. Consider the Einsteinian Gaussian mixture models.

1.1. Derive the ME equations for the model parameters maximizing entropy (4.4-19)
subject to constraints (4.4-17). According to the method of Lagrange multipliers,
maximization under the constraints is achieved by considering ∂E′/∂Sk = 0,
instead of ∂E/∂Sk = 0, where E′ = {E + λ[ε −N�ω F(ω)] + µ[(N −N�ω

F(ω)/h̄ω]}, and finding (λ,µ) that satisfy the constraints:

∂E′/∂Sk =
∑
ω

[S(ω)/h̄ω] f (k|ω) [∂ ln(F (ω|k)/∂Sk]

− λN∂/∂Sk
∑
ω

F (ω)− µN∂/∂Sk
∑
ω

F (ω)/h̄ω = 0

1.2. Simplify constraints (4.4-17); substitute there the Einsteinian Gaussian mixture
model, (4.4-9), and derive

N = N
∑
ω

F (ω)/h̄ω = N
∑
ω

∑
k

AkG(ω|k) = N
∑
k

Ak = N

so this constraint is identically satisfied.

ε = N
∑
ω

F (ω) = N
∑
ω

∑
k

h̄ωAkG(ω|k) = N
∑
k

h̄ωkAk

This constraint needs to be satisfied.

1.3. Substitute 1.2 and the Einsteinian Gaussian mixture model, (4.4-9), into 1.1, and
obtain the following equations for Ak and ωk and σ 2

k :∑
ω

f (k|ω)Nω/Ak − λNh̄ωk − µN = 0

∑
ω

f (k|ω)Nω (ω − ωk) /σ
2
k + λN = 0

σ 2
k =

∑
ω

f (k|ω)Nω (ω − ωk)
2 /Nk

The equation for σ 2
k is exactly same as (4.4-15); the equations for Ak and ωk

matches (4.4-13), and (4.4-14), if we use λ = 0 and µ = 1.

1.4. It is only left to verify the constraint of energy conservation. Substitute the
obtained expression for ωk into the constraint and verify that it is satisfied
identically.

2. Consider a general type model for G(ω|k) (non-Gaussian).

2.1. Consider two model parameters Ak and ωk (as a part of the set Sk) defined as
follows: F(ω|k) = h̄ωAkG(ω|k), where G is an arbitrary function satisfying
�ω G(ω|k) = 1; then, from �ω F(ω)/h̄ω = 1, it follows that �ω Ak = 1.
And define ωk = �ω ωG(ω|k). This parameterization is consistent with the
Einsteinian likelihood definition and does not impose any new restriction on
F(ω|k) [which only have to satisfy the F(ω) normalization: 1 = �ω F(ω) =
�ω�k F(ω|k)]. Therefore, the generality of our consideration is not limited
by this parameterization. The purpose of these parameters is to capture the
constraints (4.4-17) independently of any other parameters on which F(ω|k)
might depend.
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2.2. Rewrite the constraints (4.4-17) in terms of Ak and ωk:

N = N
∑
ω

F (ω)/h̄ω = N
∑
ω

∑
k

AkG(ω|k) = N
∑
k

Ak = N

so this constraint is identically satisfied due to the normalization;

ε = N
∑
ω

F (ω) = N
∑
ω

∑
k

h̄ωAkG(ω|k) = N
∑
k

h̄ωkAk

We need to verify that this constraint is satisfied without changing the ML
equations. The constraints (4.4-17) are entirely expressed in terms of parameters
ωk,Ak . Therefore, we need to verify the ML equations only for these two
parameters. Equations for other parameters will match the maximum likelihood
equations, similar to σk above.

2.3. Use the estimation equation derived above in 1.1 to estimate ωk and Ak param-
eters:

∂E′/∂Ak =
∑
ω

Nωf (k|ω) [1/Ak] − λN
∑
k

h̄ωk − µN = 0

∂E′/∂ωk =
∑
ω

Nωf (k|ω) (∂/∂ωk) [lnG(ω|k)] − λNh̄Ak = 0

2.4. If we set λ = 0, and µ = 1, then parameters satisfy the ML equations. It only
remains to verify the energy constraint. Let us write

(∂/∂ωk) [lnG(ω|k)] = (ω − ωk)G
′(ω|k)

where G′ is an arbitrary function; substitute this, along with λ = 0, into the
equation for ωk , and take a sum over k,∑

k

∑
ω

Nωf (k|ω) (ω − ωk)G
′(ω|k) = 0

2.5. If G′ = G′(k), it depends only on parameters Sk and does not depend on ω, the
above equation is equivalent to

0 =
∑
k

∑
ω

Nωf (k|ω) (ω − ωk) =
∑
ω

Nωω −
∑
k

N Akωk

And this is equivalent to the energy constraint.

3. Consider an example of non-Gaussian G(ω|k) = (1/ωk) exp (−ω/ωk) , ω > 0;
G(ω|k) = 0, ω < 0. Verify that this model is of the type 2.5 above, therefore, for this
type of model, the likelihood and entropy maximizations are equivalent.

4.4–5 Obtain Eq. (4.4-27). Hints: In the first line, inside { }: multiply and divide by pdf(X).
In the second line, IU,0|X,Y by definition is the information about the universe given by
(X, Y ), when the IS and W are not interacting; in a noninteracting universe, pdf is a
product of IS and W pdfs.

4.4–6 Compute �W|X,Y (4.4-32). Hints: follow Section 4.4.2.

1. Compute the number of microstates in a macrostate x, �x. Consider Nx photons in a
macrostate x; every one can be in �(S, x) microstates; account for permutations of
identical photons:
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�x = �(S, x)Nx/Nx!

2. The total number of microstates compatible with the data and model, �W|X,Y =∏
x �x.

4.4–7 Prove that Eqs. (4.4-40) have the property that estimates are independent for statistically
independent systems. Hints:

1. Consider two independent systems

x = x1, Nx = Nx1, F (S, x) = F(S1, x1),
∑
x1

F(S1, x1) = 1

and

x = x2, Nx = Nx2, F (S, x) = F(S2, x2),
∑
x2

F(S2, x2) = 1

and a joint system

x = (x1, x2), S = (S1,S2), Nx = (Nx1, Nx2),

F (S, x) = F(S1, x1)F (S2, x2)
∑
x1

F(S1, x1) = 1,
∑
x2

F(S2, x2) = 1

2. Show that Eq. (4.4-40) leads to the same estimated values S1, S2 for the joint system
as for each system considered separately.

2.1. Write the estimation equation for the x1 system,

maxS1

{∑
x1

Nx1 ln F(S1, x1)+ λ

[∑
x1

F(S1, x1)− 1

]}

Take ∂/∂S1 and obtain∑
x1

Nx1(∂/∂S1) ln F(S1, x1)+ λ (∂/∂S1)F (S1, x1) = 0 (P5)

2.2. Write the estimation equation for the joint system,

maxS

{∑
x2

Nx2

∑
x1

Nx1 ln [F(S1, x1)F (S2, x2)]

+λ1

[∑
x1

F(S1, x1)− 1

]
+ λ2

[∑
x2

F(S2, x2)− 1

]}

The gradient vector ∂/∂S has two vector components, ∂/∂S = (∂/∂S1, ∂/∂S2);
taking the first component, ∂/∂S1, leads to∑

x2

Nx2

∑
x1

Nx1(∂/∂S1) ln F(S1, x1)+ λ1 (∂/∂S1)
∑
x1

F(S1, x1) = 0

This equation for S1 is equivalent to (P5) with λ1 = λ�x2 Nx2.

2.3. Apply similar considerations to S2. Show that using the similarity for equivalent
photons leads to the same conclusion.
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Section 4.6

4.6–1 Show that the last line in Eq. (4.6-7) is nonnegative. Hint: rewrite this line as∑
n

∑
k

f (k|n, t) [ll(k, n|t + dt)− ll(k, n|t)] =
∑
k

∑
n

f (k|n, t)

[d ll(k, n|t)/dSk] dSk
Use Eq. (4.6-2) and obtain dSk/dt = �k �n f (k|n, t) [d ll(k, n|t)/dSk]. Substitute this
into the above expression and rewrite it as a sum (over k) of squares.

Section 4.7

4.7–1 Combine SLT and MFT: derive an SLT-like accurate “penalty” procedure for learning
from small samples, which is applicable to compicated estimation problem characteristic
of MFT. This is a complicated problem, appropriate for a doctoral thesis (or several).



chapter 5

MLANS: MAXIMUM LIKELIHOOD ADAPTIVE
NEURAL SYSTEM FOR GROUPING AND
RECOGNITION

MLANS is a neural network implementing MFT based on Bayesian similarity or likelihood,
which was developed in the previous chapter. This chapter describes the development of
statistical models for MLANS with relatively simple deterministic properties. These models
characterize deterministic properties of every type of object or signal source by its mean value.
Statistical properties are characterized by a probability distribution function (pdf). A class of
objects may contain several types of objects, so the class pdf is a weighted sum of object-type
pdfs. In statistics, such models are called mixtures. For example, when each object type is
characterized by Gaussian pdf, the model is called a Gaussian mixture. Gaussian mixtures can
model pdf of any shape, thus, statistical properties of mixture models are quite sophisticated.
In addition to Gaussian mixtures, this chapter considers Wishart and Rician mixtures, which
are appropriate for radar images. Architectures, neuronal equations, and learning procedures
are described.

A number of issues are considered: grouping, clustering, and classification; supervised,
unsupervised, and partially supervised learning; automatic learning of structure and com-
plexity of MLANS, convergence properties, and various types of performance sensitivities. A
large number of examples is considered, using real and synthetic data. This chapter discusses
fundamental issues as well as details of implementation and application development.

5.1 GROUPING, CLASSIFICATION, AND MODELS

Classification and recognition refer to finding classes of data with a priori specified proper-
ties; grouping or clustering refers to finding natural regularities in data. Even so called natural
regularities depend on measures of similarity, and every procedure for grouping or clustering
specifies such measures explicitly or implicitly. In MLANS, measures of similarity are
defined as likelihood, which is mathematically equivalent to distance measures in metric
space that are adaptive and constrained by the structure of likelihood models. Similarity
between MLANS models and data is adaptive and flexible; every MLANS agent-model

206
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and the corresponding type of objects has its own adaptive metric, so that the overall metric
is nonlinear and object-type dependent.

When detailed knowledge of the structure or dynamics of the observed objects is
not available, recognition, classification, or grouping has to rely entirely on statistical
properties of the data. MLANS original development was based on statistical models.
Statistical models are designed to be flexible, adaptive, robust, and capable of accounting
for various types of the available information. Flexibility means that any shape of the data
probability distribution function (pdf) can be modeled resulting in a classifier of arbitrary
complicated shape, as required by data. Efficient adaptivity means learning from a small
amount of data. Robustness means that the performance is not too sensitive to the model
assumptions. Available information may include labeled training data, unlabeled real-time
data, real-time planned interactive sensing of the environment that might provide additional
labeled or unlabeled data, knowledge of the pdf functional parametric form, some of the
parameter values, or hints about object and data properties.

MLANS statistical models described in this chapter achieve these properties in the
following way. Flexibility is achieved by modeling the data pdf as a superposition of basis
functions forming a complete set in a functional pdf space. This ensures that any shape of pdf
can be modeled. Adaptivity is achieved by modifying adaptive model parameters, and its ef-
ficiency is achieved by proper selection of the set of the basis pdfs, resulting in parsimonious
utilization of model parameters and reduced neural network complexity. The maximum like-
lihood (ML) dynamics leads to fast learning from relatively few samples, reaching the fun-
damental mathematical performance bounds on speed of learning. Robustness is achieved
by fusing all available sources of information within a hierarchical structure that combines
adaptivity with real-time interactive environment sensing. These concepts are considered in
this chapter in detail. We discuss theoretical and empirical issues of MLANS performance
as well as practical issues of achieving adaptivity and robustness in applications.

Pdf models that use superpositions of several basis functions are called in statistical
literature mixture models. These basis functions are also called components of a mixture;
they may correspond to modes (local maxima) of the distribution functions, or to different
types of objects within a class. If mixture components use a complete set of basis functions,
any pdf can be expanded as a sum of these components. We refer to mixture components
as types of objects or modes, or, in order to emphasize their adaptive dynamic nature, we
call them agents.

Selection of appropriate functional forms for the individual components of a mixture,
such as Gaussian, exponential, or uniform, is one way to account for a priori information.
In addition to these general functional forms, a priori information can be used to increase
efficiency of parameterization by imposing restrictions on model parameters. Some of the
model parameters might be learned adaptively, while other parameters are fixed to a priori
known values. In particular, specific structures can be imposed on covariance matrices.
It is also important to utilize an appropriate number of mixture components and we will
describe several approaches to accomplishing this. The MLANS architecture and learning
rules for several types of mixture models are described. We consider Gaussian mixtures that
are appropriate for most cases, when data contain random variabilities and when specific
information on data properties is unavailable. We also describe MLANS utilizing mixtures
of Wishart and Rician components that are appropriate for radar images due to specific
physical mechanisms of scattering of electromagnetic waves at radar frequencies.
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We first describe the MLANS statistical models for grouping or clustering. This is
also called unsupervised classification, because no class labels are provided to the neural
network. It is followed by a description of the traditional supervised classification, which
assumes that a neural network first undergoes a training learning process, during which
class labels are perfectly known. Then we consider more complex models for real-world
applications, which often include imperfectly known class labels and a need to combine
information from many observations without class labels with a few labeled observations.
This comprises Sections 5.2 and 5.3.

Estimation of the optimal number of mixture components (or types of objects) within
each class is but one aspect of finding the optimal complexity of the neural network. Section
5.4 discusses two approaches that MLANS utilizes for estimation of its optimal complexity:
the maximum likelihood (ML) approach that optimizes the overall data characterization and
the minimum classification entropy (MCE) approach that minimizes classification errors.

Several examples of MLANS classification are presented utilizing real sensory data as
well as simulated data. While describing examples, we emphasize the fact that for many
applications where systematic a priori information is not available, there are hints containing
little bits and pieces of a priori information, which can be beneficial; in other cases, there
are operational opportunities to acquire additional information in real time. We discuss such
opportunities and the ways to utilize such additional information within MLANS.

5.2 GAUSSIAN MIXTURE MODEL: UNSUPERVISED LEARNING OR

GROUPING

5.2.1 Architecture and Parameters

The architecture of MLANS based on a Gaussian mixture model is shown in Figs. 5.2-1
and 5.2-2. Figure 5.2-1 shows details of the parameter estimation subsystem, and Fig. 5.2-2
shows details of the data association subsystem. MLANS has as its input all the available
data. These may include the data vectors of observations or features, {xn, n = 1, . . . , N},
training information (labeled data set), and the results of interactive environment inspection.
In case of unsupervised learning considered in this section, the available data are the
observation vectors. Unsupervised learning is also called grouping or clustering, because
we are looking for natural grouping of objects in the classification space. The components
of the observation vectors xn = {xin, i = 1, . . . , D

}
depend on the application: xin could be

a set of sensor measurements on an individual object such as intensities in various spectral
bands, a set of pixel values within a certain region in an image, or a set of features extracted
from measured data. The number of components, D, is called the dimensionality of the
classification space. The output nodes of the parameter estimation subsystem contain the
parameters of all classes and types of objects; we use indexes k and m to refer to classes
and types. The output nodes of the association subsystem contain the weights associating
each observation or input data sample with all classes and types of objects (agents).

We begin with a Gaussian mixture model, describing the probability distribution of
each object-type by a Gaussian distribution. The architecture shown in Fig. 5.2-1 is suitable
for such model. Parameters of Gaussian distributions are the mean vectors and covariance
matrixes. The deterministic aspect of a Gaussian agent models the mean vector of the
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Figure 5.2-1 The MLANS modeling subsystem architecture.

object-type distribution, Mkm. The models are defined so that for some values of their
parameters they match the expected values of the observations of this class and type objects,

Mkm = E {xn|k,m} (5.2-1)

A statistical aspect of the agent is represented by the deviations of each observation Xn

from the mean,

Dnkm = xn −Mkm (5.2-2)

The means describe predictable variability in the data, while the deviations are due to
random causes, independent from one observation to another, such as most causes of sensor
errors. The deviations are characterized by the covariance matrix:

Ckm = E
{
DnkmDT

nkm|k,m} (5.2-3)

hereDT
nkm is a transposed vector-row, so thatDnkmDT

nkm is an outer vector product, a matrix.
Using vector component indexes explicitly, Eq. (5.2-3) is written as

C
ij

km = E
{
Di
nkmD

j

nkm|k,m
}

(5.2-4)

In addition to the mean and covariance parameters, a Gaussian mixture model is
characterized by relative frequencies or rates of each object type:

rkm = Nkm/N (5.2-5)

where Nkm is an expected number of (k,m)-type observations among the total number of
N observations. In the statistical literature rkm are often called priors; to avoid confusion
with prior or a priori information, we usually call rkm rates.
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Figure 5.2-2 The MLANS association subsystem architecture.

5.2.2 Likelihood Structure and Learning Algorithm

5.2.2.1 Likelihood Structure
According to the above discussion of a Gaussian mixture model, the likelihood, L, or the
total probability distribution function (pdf) for all observations {xn, n = 1, . . . , N} is a
product of individual pdf (Xn), which are modeled as sums of Gaussian functions:

AZ–L = pdf {xn, n = 1, . . . , N} =
N∏
n=1

pdf (xn)

pdf (Xn) =
K∑
k=1

M∑
m=1

rkm pdf (xn|k,m)

pdf (xn|k,m) = (2π)−D/2 (detCkm)
−1/2 exp

(
0.5DT

nkmC
−1
km Dnkm

)
(5.2-6)

where detCkm is the determinant of the matrix Ckm. The above model is a particular case
of the general MLANS formulation given in Chapter 4 (Section 4.3). In the general case,
the means, covariances, and rates are functions of model parameters; here, {Mkm,Ckm} are
the parameters of the model.
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This model is appropriate for a wide variety of applications for the following reasons.
Gaussian functions form a complete set of functions (this is easily proved by noticing
that in the limit of C → 0, a Gaussian is a δ-function, see Problem 5.2-3). Therefore,
a sum of Gaussians can model any pdf. This model is parsimonious, because the obser-
vations, xn, often include Gaussian noise, which tends to make each object-type nearly
Gaussian. MLANS is robust with respect to small deviations of class distributions from
Gaussian distributions, and large deviations from Gaussian shape are handled by addi-
tional object types. MLANS models deterministic variability by means of multiple object
types, so that the remaining variability within each type is completely random and, thus,
usually Gaussian.

Learning consists in estimating parameters of the model, the means, covariances, and
rates of all modes, as well as computing association weights that associate data vectors
with agent-modes, which accomplishes grouping or clustering of data. MLANS learning
equations are designed to maximize the likelihood (5.2-6). The likelihood function (5.2-6)
accounts for two sources of information: the structure of the probabilistic model and the
data {xn}. In unsupervised learning, there is no distinction between classes and modes. We
still will keep two indexes k and m, for later usage.

5.2.2.2 Modeling Subsystem
The output nodes of the modeling subsystem contain the estimated model parameters
of all MLANS agents (classes and types of objects). Parameters are estimated by the
corresponding ML neurons in Fig. 5.2-1, using the following neuronal equations (Problem
5.2-4 discusses the relationship of these equations to the general MLANS equations derived
in Chapter 4). The estimated number of objects of each type

Nkm =
N∑
n=1

f (k,m|n) (5.2-7)

the estimated mean vector of each type

Mkm =
N∑
n=1

f (k,m|n) xn/Nkm (5.2-8)

and the covariance matrix of each type

Ckm =
N∑
n=1

f (k,m|n) (xn −Mkm)
T (xn −Mkm) /Nkm (5.2-9)

Equations (5.2-7) through (5.2-9) implement the ML estimation of the parameters of
the MLANS Gaussian mixture model, Eq. (5.2-6).

5.2.2.3 Association Subsystem
The MLANS association weights f (k,m|n)were defined in Chapter 4 similar to the Bayes
expression for a posteriori probabilities for an object n to belong to class k and type m:

f (k,m|n) = pdf (xn|k,m) /
∑
k′m′

pdf
(
xn|k′,m′) (5.2-10)
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This expression specifies the weight update at MLANS internal iterations, which is ac-
complished by an association-weight estimation subsystem shown in Fig. 5.2-2. Due to the
normalizing denominator in (5.2-10), the weights update is a competitive learning: classes
and modes “compete” for evidence to be associated with the object (or observation) n, while
the total evidence for a given piece of data n to be in any class or mode is 1 (as given by
the sum of all weights for a given datum).

Learning is accomplished by an iterative estimation of parameters and computation of
weights. At the beginning of this iterative estimation, parameters are not equal to their true
values and the weights f (k,m|n) cannot be interpreted as a posteriori Bayes probabilities.
The uncertainty of the object associations with classes and modes, which is represented in
the weights, is of a more general nature than probability; weights also contain uncertainty
due to unknown values of model parameters. The weights are fuzzy variables or membership
functions.

In the process of learning, MLANS concurrently estimates parameters and weights,
thus concurrently accomplishing association, while estimating model parameters. On con-
vergence of this iterative learning procedure, the association weights become a posteriori
Bayes probabilities and accomplish the optimal Bayes classification. Being probabilistic or
fuzzy variables, weights accomplish fuzzy classification; the crisp, nonfuzzy classification
can be obtained by classifying each object to the most probable class, or according to a
suitable threshold determined by needs of specific applications.

Let us repeat that in the considered unsupervised classification, assignment of objects to
the types is done on the basis of statistical properties of the data and statistical models. The
classification of object types into classes requires additional information. Various examples
of classification are discussed later.

5.2.2.4 Iterations and Convergence
During MLANS operations the weights are iteratively estimated according to (5.2-6) using
the values of pdf model parameters estimated in the previous iteration, whereas the pa-
rameters are estimated according to (5.2-7) through (5.2-8) using the values of association
weights estimated in the previous iteration. These internal iterations of MLANS continue
until convergence.

The convergence is achieved when change between MLANS successive iterations
becomes negligible. A natural definition of convergence for the ML estimation performed
by MLANS could be in terms of the likelihood. However, testing likelihood changes for
convergence is inconvenient, because the likelihood is a dimensioned value, depending
on units used for feature measurements. Likelihood values change drastically between
applications, and it is difficult to determine a priori the level of significant vs. insignificant
changes. Alternatively, MLANS convergence can be defined in terms of probabilities or in
terms of model parameters.

Our experience has shown that convergence in terms of MLANS model parameters
leads to robust results: small variations in probabilities do not affect parameters significantly.
(Small variations in parameters may affect probabilities for data close to a classifier bound-
ary, therefore, convergence definition in terms of probabilities is less robust.) There are
many possible ways to measure changes between two successive iterations of the MLANS
models. We utilize the Bhattacharyya distance between pdfs at successive iterations for each
mode, for the following reasons. The Bhattacharyya distance is a measure of dissimilarity
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between two pdfs defined in terms of the overlap between the distributions and it is sensitive
to differences in both the means (the centers of the distributions) and the covariances
(the shapes of the distributions). The Bhattacharyya distance, B, between two Gaussian
distributions can be expressed as a simple combination of their means and covariances:

B = 
M C
−1

M/8 + 0.5 ln

[
C/
√

det (C1C2)
]


M = (M2 −M1) ; C = (C1 + C2) / 2
(5.2-11)

and therefore it is easy to implement in MLANS. The Bhattacharyya distance Bkm is
computed between two successive iterations for each mode (k,m) and compared with a
threshold. The convergence is defined as Bhattacharyya distances for all (k,m) being less
than a threshold. Setting this threshold requires a little experience: too small a threshold
will result in more iterations. To start, try threshold = 0.001.

The above equations completely specify the MLANS learning with two exceptions:
first, MLANS initiation and second, determination of the number of MLANS agents or
class types. MLANS initiation procedures will be discussed along with examples below.
Determination of the number of MLANS modes or class types is related to the optimal
complexity of the neural network and is discussed in Section 5.5.

5.2.3 Examples of MLANS Unsupervised Classification

5.2.3.1 Example 1: Real-World Application

Problem Description. In this example a quality control system has to identify a few de-
fective parts among hundreds of perfect parts and other objects. It is expected that the
approximate ratio of the numbers of (defective parts):(other objects):(perfect parts) would
be on the order of 1:10:100 with significant variations. The specification was to reduce
the necessary manual inspection rate to below 100 per 1000 objects. The classification
has to be performed in a two-dimensional classification space of feature 1 and feature 2
extracted by a preprocessor from sensory data. These two features were the only sensory
data available (sensor design and feature extraction, the two important aspects of the design
of any recognition system, are not discussed here).

The actual data for a typical case are shown in Fig. 5.2-3 in the classification feature
space. For the purpose of evaluation, the three classes of objects are shown here using
three different symbols. The scatter in the distributions of each class in Fig. 5.2-3 is due to
variations in aspect angles of the parts relative to the sensor and due to sensor errors.

Gaussian Data Characterization. In general, there is no reason to assume that the distri-
butions for each class are Gaussian. It is still useful for an educational purpose, as a first
step, to analyze class distributions under the Gaussian assumption. Gaussian distributions
for each class can be estimated using standard estimation techniques, or equivalently, using
MLANS with perfect supervision as described later in Section 5.3. We have estimated these
Gaussian distributions using MLANS in a supervisory mode. For the increased statistical
significance, additional measurements of class-1 and class-2 objects (the defective parts
and the other objects) have been made, so that the Gaussian distributions were estimated
using at least 100 objects from each class. We refer to these distributions as Gaussian-truth.
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Figure 5.2-3 The distribution of measurements in the classification space, Example 1.

These distributions are shown in Fig. 5.2-4a. In this figure solid lines illustrate 2–σ
concentration ellipses for each class; a 2–σ concentration ellipse is a standard convenient
way of illustrating distributions; it is defined as a set of {xn} at two standard deviations from
the k,m-type mean according to

DT
nkmC

−1
km Dnkm = 4 (5.2-12)

The quantities in the left-hand side of this equation are deviations from class-type means and
covariances as defined in Eqs. (5.2-6); considered geometrically, along any line crossing
the center of the ellipse Mkm, the left-hand side quantity is a squared ratio of the distance
between the center and the ellipse to the standard deviation along this line; correspondingly,
the right-hand side is 2 squared.

Figure 5.2-4a also shows in a dotted line the Gaussian-truth-classifier boundary for
the defected-parts-class 1 vs. the other two classes. This is calculated using the estimated
Gaussian-truth distributions according to the standard definition of a likelihood ratio (LR)
classifier given in Chapter 1:

LR = Likelihood(class1)/[Likelihood(class2) + Likelihood(class3)]

= pdf (xn|k = 1,m = 1) /
[
pdf (xn|k = 2,m = 1)

+ pdf (xn|k = 3,m = 1)
] = th

(5.2-13)
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Figure5.2-4 Example 1. (a) Gaussian-truth distributions corresponding to the data in Figure 5.2-3 and
a classifier boundary; (b) initial guess distributions have no resemblance to the true ones; (c) MLANS
estimated distrubtions are very similar to the true ones; (d) operating characteristic using adaptive
classification is very similar to the one obtained with the Gaussian-truth distributions.

Here th is a threshold value; if LR > th, the nth object is classified to class 1. In Fig. 5.2-4a
the classifier line was calculated for th = 1. An importance of the LR classifier is that
when the distributions are accurately estimated, the LR classifier results in the minimal
classification errors. The LR classifier can also be written in terms of a posteriori Bayes
probabilities, Eq. (5.2-10); combining Eqs. (5.2-10) and (5.2-13):

P(k = 1,m = 1|n) = LR/(1 + LR) = th/(1 + th) (5.2-14)

This equation is implemented in MLANS with ease, since the MLANS association weights,
Eq. (5.2-10), are a posteriori Bayes probabilities, so that the LR classifier (5.2-13) with
th = 1 is given by
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Wn11 = 0.5 (5.2-15)

Unsupervised Learning. Let us remember that in this application unsupervised learning is
required without the use of supervisory information on class assignments. Supervisory
information is discussed above for evaluation and education purposes only and is not
available for the actual MLANS learning. In our example, a typical case requires learning of
class parameters and of recognition from a batch of approximately 1000 objects. A typical
case data shown in Fig. 5.2-3 contain 816 objects. The 12 defective parts, if not marked,
would be impossible to identify by eye as a separate cluster. Nevertheless, MLANS has
been able to find the cluster of 12 defective parts; below we discuss the procedure, results,
and an intuitive explanation for the internal working of MLANS.

Initiation of MLANS requires initial values of model parameters. If no information is
available for an educated initial guess, it can be generated randomly. Robust initialization
procedures are discussed later. Our experience has shown that usually MLANS is not
sensitive to the initial guess, however, in some cases an educated guess results in faster
convergence. We first discuss the MLANS learning using an educated initial guess. In this
case, such a guess includes (1) using three MLANS modes, that is using one MLANS type
for each class of objects, (2) using fixed (nonadaptive) class rates,

r1 = 0.01, r2 = 0.1, r3 = 0.89 (5.2-16)

and (3) using specific values of means and covariances for each class type as illustrated in
Fig. 5.2-4b.

Comparing Fig. 5.2-4a and b, one can see that this educated guess is not a particularly
good one: there are significant differences between the distributions in these figures. The a
priori distributions for unsupervised learning are shown in Fig. 5.2-4b (the dotted line shows
the corresponding classifier); they have been selected based on general considerations and
they are far from the truth (3a). Nevertheless, the network has been able to find the cluster
of 12 defective parts among 816 objects as well as the two other clusters. Classification of
the three estimated clusters was based on the values of class rates fixed according to a priori
information [Eq. (5.2-16)]. The results of unsupervised learning are shown in Fig. 5.2-4c.
They are seen to be very close to the Gaussian-truth distributions in Fig. 5.2-4a.

The operating characteristics (OCs) are shown in Fig. 5.2-4d. An operating charac-
teristic is a plot of the two types of errors as a function of the threshold in (5.2-13). The
two types of errors in this case are probabilities of leakage and false alarm: Pl and Pfa. The
probability of leakage is defined as the ratio of the missed defective parts to the total number
of the defective parts, and it is related to another frequently used measure of performance,
the probability of detection, Pd:

Pl = 1 − Pd (5.2-17)

The probability of false alarm is defined as the ratio of the class-2 and class-3 objects
misidentified as defective parts to the total number of the class-2 and class-3 objects. The
OCs are obtained by counting leakages and false alarms for various values of the threshold th
in Eq. (5.2-13). If only 12 defective parts were utilized for these computations, the resulting
OCs would be very coarsely defined. Therefore, for the purpose of evaluation a larger
number of objects was utilized. The axes in Fig. 5.2-4d are in the inverse-Gaussian scale.
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Four OCs shown in Fig. 5.2-4d correspond to the following cases: random classification
(coin toss), initial guess classifier (Fig. 5.2-4b), Gaussian-truth classifier (Fig. 5.2-4a), and
adaptively learned classifier (Fig. 5.2-4c). If the initial guess classifier is used, the results are
even worse than a random classification, indicating again that the guess was not a good one.
Nevertheless, the adaptively estimated classification obtained with learned distributions is
very similar to the Gaussian-truth classification obtained with perfect training. That these
two curves are very similar indicates that MLANS in this case, without supervision and
with only 12 samples from class 1, performs as well as if the perfectly labeled data in large
numbers were available for training.

Because there are overlaps between the distributions, the defective parts cannot be
identified without errors as indicated by OCs. The OCs are often characterized by the
“diagonal” equal error point, at which leakage equals false alarm. In our case of the Bayesian
LR classifier, the equal error is called the Bayes risk. It characterizes the inherent overlap
of the distributions. As seen in Fig. 5.2-4d, the Bayes risk is about 5%. Based on the results
of unsupervised learning, 80 objects were then selected for inspection and all 12 defective
parts were correctly identified.

Discussion of Convergence Sensitivities. In this example, MLANS found a cluster of only
12 defective parts in the middle of 816 objects, while an eyeball examination of the
object distribution in Fig. 5.2-3 does not indicate such clustering. Is it a lucky chance?
How sensitive is this solution to various aspects of the initial guess and particular obser-
vation condition? To answer the first question, let us examine in detail the distribution
in Fig. 5.2-3.

Fig. 5.2-5a shows a three-dimensional plot of the pdf estimated using the Parzen
method. (The Parzen pdf estimation uses a sum of Gaussian components: one Gaussian
component per observation, with the mean equals to the observation vector and with the
same covariances selected to be somewhat smaller than the desired resolution, in our case it
should be smaller than the covariance of class 1.) A little wiggle on the slope of the overall
distribution in Fig. 5.2-5a corresponds to the class-1 cluster. This can be better seen in the
bottom row, where 40 objects in class 1 are used for the illustration. Next, we subtract from
this distribution the combined estimated distribution of classes 2 and 3. Figure 5.2-5b shows
the remainder; now, the largest cluster corresponds to the class 1. Although this process is
not a one-to-one description of the MLANS iterative estimation, it gives some intuitive idea
of the information that is available for the estimation of the class-1 distribution. It can be
seen that the successful result of the MLANS estimation is not a mere chance; on the other
hand, the performance is close to a some sort of a fundamental limit: if there were fewer
objects in class 1, the corresponding cluster would be indistinguishable from the ripples in
Fig. 5.2-5b due to remaining random variabilities in class-2 and class-3 pdfs.

It would be useful to derive theoretically the probability that the ripples in Fig. 5.2-5b
exceed the size of class-1 cluster (see Problem 5.2-12). Instead of an analytical solution, an
alternative, numerical approach to this problem is described below.

Sensitivity to the Number of Class 1 Objects. We have varied the actual number of class-
1 objects, without changes in the fixed rates [Eq. (5.2-16)]. The convergence was not
significantly affected within the range between 8 and 20 objects in class 1. The effect of
the increased number of objects in class 1 is illustrated in Fig. 5.2-5c and d. For 40 objects
in class 1 and without changing numbers of objects in the other two classes, these figures
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Figure 5.2-5 Robustness of learning in Example 1. The top row illustrates Example 1 (12 objects in class 1); the bottom
row illustrates an effect of increased number of class-1 objects to 40; (a) and (c) Parzen estimation of the distribution; (b)
and (d) the estimated class-2 and class-3 distrubtion is subtracted from (a) and (b), respectively.

show total pdf of all objects and the result of the subtraction of estimated class-2 and class-3
pdfs, similar to Fig. 5.2-5a and b: the corresponding class-1 cluster is more visible.

Sensitivity to the Initial Guess: Rates. One piece of prior information utilized in this
example is an approximate ratio of class populations, or rates, fixed at 0.01, 0.1, 0.89
[Eq. (5.2-16)]. We found that the convergence is robust as long as the approximate ratio
between classes is maintained. We varied class-1 rates between 0.005 and 0.04 and class-2
rates between 0.06 and 0.25 without much effect on the resulting classification. However,
an attempt to estimate rates for all three classes led to an inaccurate estimation of the class-1
mean and covariance, and to an inaccurate classification. The bottom line here appears to
be that in order to find a small class among classes with much higher populations, it is
important to utilize the prior knowledge of the existence of a small class, even though the
exact relative number of objects (the rate) in this small class is not known.

Sensitivity to the Initial Guess: Means and Covariances. Another piece of prior knowledge
utilized was the initial guess for the means and covariances of the classes. As we have seen
in the previous subsections, this initial guess was not a particularly good one. However,
it did not prevent MLANS from converging to the correct distributions. The convergence
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was not sensitive to the initial guess: we generated 10 random initial guesses and only
once MLANS failed to converge to the same answer. In 9 of 10 cases, the number of
internal iterations somewhat depended on the initial guess, varying between a few and a
few tens; still the convergence results were insensitive to the initial guess. The case in
which MLANS did not converge to the correct answer is studied further in Section 5.3.
The approach in Section 5.3 is to combine unsupervised learning with real-time object
inspection; this combined approach will be shown to result in a significant reduction of the
number of required inspections: with a few additional inspections, correct convergence is
obtained independent of the initial guess.

Conclusion and Further Exploration. The analysis of this example is still incomplete in that
the estimation of the numbers of object-types or modes within each class was not addressed.
In this example, one Gaussian mode has been used for each class of objects. We successfully
identified the defective parts, and achieved an adaptive classifier performance similar to
that of the classifier based on supervised training under Gaussian assumption. This is not a
small achievement; however, the question remains if these results can be further improved
by using more than three class types. How can the number of types to use be determined?
From the point of view of the requirement to identify the defective parts, this problem could
be considered as a two-class problem with unknown numbers of types within each class,
which should be estimated from the data. This will be considered in Section 5.5.

5.2.3.2 Example 2: Parametric Characterization of
MLANS Performance
Complicated classification problems are characterized by overlapping classes, large di-
mensionality, a large number of unknown parameters, and a small amount of data. In
this example we evaluate the MLANS performance in 300 separate cases, characterized
by different combinations of these complexity factors. We consider two unimodal classes
with equal covariances in order to limit the number of different cases. MLANS, however,
does not know that covariances are equal and estimates covariances for each class. When
generalizing results of this example keep the following in mind. The performance in cases
of multiple classes is usually limited by the two least separable ones. When separability is
mostly due to the mean difference, the equal-covariance cases considered here give a good
qualitative idea about achievable performance in case of unequal covariances.

The true overlap or separability between the classes we characterize by a k-factor:

k = [(M2 −M1)
T C−1 (M2 −M1)

]−1/2
(5.2-18)

where M1 and M2 are the means of two unimodal classes with equal covariances C. In a
case of classes with equal covariances a k-factor is an appropriate measure of separability;
it is simply related to the Bhattacharyya distance (5.2-11),

k = [8B]−1/2 (5.2-19)

and in a one-dimensional case, it measures the mean separability in units of the standard
deviation, σ

k = (M2 −M1)/σ (5.2-20)
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The number of parameters per mode Npar is determined by the dimensionality D and
by the parameters of the distribution that have to be learned. These parameters, defined
in Eqs. (5.2-1) through (5.2-5), include rates r (one parameter per mode), means M (D
parameters per mode), and covariances C [D(D + 1)/2 parameters per mode]. Thus the
total number of parameters per mode is

Npar = (D + 1)(D + 2)/2 (5.2-21)

If rates are known a priori and means and covariances are to be estimated

Npar = D(D + 3)/2 (5.2-22)

If means are to be estimated alone

Npar = D (5.2-23)

When the number of samples is too small,N < Npar, the problem is ill defined; on the other
hand, when the number of samples is large, N � Npar, the problem is too easy. Also, low-
dimensional highly separable problems are simple, but high-dimensional problems with low
separability are complex. We evaluated the MLANS performance between these extreme
conditions by selecting the combinations of parameters specified in Tables 5.2-1 and 5.2-2.
Considered combinations of parameters result in (5 · 5 · 3 · 4) = 300 cases. For each of
the 300 cases, N data points per class have been generated using Gaussian distributions
specified in Table 5.2-2.

The MLANS performance for these 300 cases is summarized in Fig. 5.2-6. In this figure
MLANS performance is characterized by the Bhattacharyya distance, Eq. (5.2-11), between
the estimated and the true distributions, averaged over the two classes in each case. This

TABLE 5.2-1
Values of Complexity Factors for Example 2

Complexity Factor Values

k = 0.5 1.0 1.5 2.0 3.0
D = 2x , x = 0 1 2 3 4
D = 1 2 4 8 16
parameters M M,C M,C, r

Npar = D D(D + 3)/2 (D + 1)(D + 2)/2

N = 3y ·Npar, y = 0 1 2 3
N = Npar 3 ·Npar 9 ·Npar 27 ·Npar

TABLE 5.2-2
True Values of Gaussian Distribution Parameters for the Two Classes of Example 2

Rates r1 = r2 = 0.5

Means M1 = (10, . . . , 10); M2 = (10 + k/D1/2, . . . , 10 + k/D1/2)

Covariances C1 = C2 = 1
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Bhattacharyya distance is shown using gray scale; B < 0.1 represents a very good perfor-
mance andB ≥ 0.5 is a poor performance. Results in Fig. 5.2-6 are arranged in 15 cells by k-
factor and parameters learned; within each cell, 20 cases are arranged by the dimensionality
and the number of data samples. Since the number of data samples N is defined propor-
tionately to the number of adaptive parameters Npar, the number of samples per parameter
N/Npar is constant along each row and also for different rows with the same value of y.

Within each cell from top to bottom, there is a systematic improvement in performance
due to increase in N/Npar. Within cells, horizontally, there is a tendency toward improve-
ment in performance from left to right: although N/Npar stays constant, the total amount
of available data, N ·D, grows with the dimensionality, so that N ·D/Npar increases.

From cell to cell in the horizontal direction, one can see an improvement of performance
for larger k-factors (larger separabilities). In the vertical direction, from cell to cell, both
N/Npar and N · D/Npar stay constant, still there is some perceptible degradation with
an increase in the number of unknown parameters: from M , to M,C, to M,C, r . This
indicates that the increase in the number of adaptive parameters Npar is not completely
counterbalanced by the proportional increase in the number of data samples available for
learning N (and N ·D).

This example quantifies effects of complexity factors listed in Table 5.2-1 on the
classification or clustering performance in terms of the accuracy of estimated pdfs. The
MLANS performance is evaluated within a broad range of the complexity factors: k-factor
= 0.5 to 3, D = 1 to 16, Npar = 1 to 136 per mode, and N = 1 to 3672 per mode.
In addition to class separability measured by k-factor, the amount of data per unknown
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Figure 5.2-6 Example 2. Parametric characterization of the MLANS performance. Inherent sep-
arability is characterized by k-factor. MLANS performance is characterized by the Bhattacharyya
distance between true and estimated distributions shown as gray scale.
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parameterN ·D/Npar is an important factor characterizing an overall complexity or difficulty
of clustering. Still it does not capture all the aspects of complexity: the cases with the same
values of N · D/Npar still show some degradation in the performance as the number of
unknown parameters increases from M , to (M,C), to (M,C, r).

Characterization of all aspects of the classification complexity and of the MLANS per-
formance does not seem feasible. The 300 cases considered in this example is a step toward
characterizing some important aspects of this problem. Another approach to characterizing
classification complexity is by studying fundamental bounds on performance, such as the
Cramer–Rao bound. This is considered in Chapter 9.

5.2.3.3 Example 3: MLANS vs. Nearest Neighbor
Comparison
This third classification example illustrates the MLANS performance using a standard
data set studied in detail by Fukunaga (1972), and provides a comparison of the MLANS
performance to ISODATA, a classical clustering algorithm based on the nearest neighbor
concept (Fukunaga, 1972). As discussed in Chapter 2, most of classification algorithms and
neural networks utilize the nearest neighbor concept, and their performances are expected
to be similar to that of ISODATA.

In this example, unsupervised learning, or clustering is performed in eight-dimensional
classification space. We consider cases with two and three classes. To facilitate evaluation,
the data are simulated, so the data properties are exactly known. The true distribution of
each class is Gaussian. These distributions are different in their means and covariances.
Separability between classes is good but not perfect: the true Bayesian risk between each
pair of the classes is about 2%. In Table 5.2-3 we summarize the results of clustering of
two-class data for 100 objects in each class. MLANS significantly outperforms ISODATA:
the misclassification errors obtained with MLANS are close to the Bayes risk, while the
results obtained by Fukunaga with the ISODATA algorithm are significantly worse.

The fact that the classification errors are close to the Bayes risk, which is the minimal
possible error if all parameters of class distributions are exactly known, suggests that
MLANS yields an accurate estimation of all parameters of the distributions. This is further
confirmed in Fig. 5.2-7, where some two-dimensional projections of the eight-dimensional
distributions are shown: the estimated concentration ellipses are very close to the true ones,
illustrating that the means and covariances are estimated very close to the true values.

Another way to quantify these results is by using the Bhattacharyya distances between
the estimated and the true distributions. These distances are shown in Fig. 5.2-8 for each

TABLE 5.2-3
Comparison of the MLANS Neural Network and ISODATA Algorithm Using Standard Data
Set; Two Classes, Eight-Dimensional Data

MLANS ISODATA Algorithm

Actual
Assigned Class Assigned Class

Class 1 2 1 2

1 98 2 100 0
2 3 97 19 81
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Figure 5.2-7 Examples of two-dimensional projections of eight-dimensional, two-class data, Exam-
ple 3. Distributions are shown by illustrating 2−σ boundaries; solid lines are used for true distributions
and symbols are used for the distributions estimated using the MLANS neural network.

Figure 5.2-8 Bhattacharyya distances between the true and the estimated distributions for each class;
unsupervised learning of two classes, Example 3. The initial guesses are very far from the true distri-
butions; after adaptation a very close estimate is achieved with as little as 50 objects from each class.

class as a function of the number of objects in each class available for the MLANS learning
process. In this figure, the initial Bhattacharyya distances between the true distribution
and the initial guess for each class are quite large (about 4) due to the absence of prior
knowledge of distributions. (In fact the “worst” initial guess was obtained by dividing the
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entire region of the classification space occupied by all the data in halves along each axis,
and by alternating the class assignments of these halves in such a way that the initial guesses
are in themost distant eight-dimensional quadrants from the true distributions.) AsMLANS
starts learning, the Bhattacharyya distance is reduced to a very small numberB ∼ 0.1 to 0.2,
with only 50 observations per class. In this eight-dimensional case, there are 45 independent
parameters per class; so there are about nine scalar measurements per parameter, which is
sufficient for an accurate estimation.

It is interesting to compare Example 3 with the previous Example 2 (Fig. 5.2-6). Exam-
ple 3 for N = 50 objects per class is approximately comparable in difficulty of clustering
to the rightmost bottom cell in Fig. 5.2-6, the case of [k = 3; (M,C, r); x = 3; y = 0];
see Problem 4.2–13 for details. Using the gray scale corresponding to this case, one can see
in Fig. 5.2-6 that the Bhattacharyya is B ∼ 0.15. Approximately the same Bhattacharyya
is attained in Fig. 5.2-8 for N = 50. This illustrates that Example 2 results can be used for
a general characterization of performance of the ML clustering.

There is always some difference between the estimated distribution and the true one,
therefore theBhattacharyya distance never equals zero, whichwould correspond to a perfect
estimation. In other words, the Bhattacharyya distance is positively biased (in this specific
sense), and this bias is a function of the number of observations available for learning.
It follows from this discussion that there ought to be a fundamental limit to the minimal
bias achievable with any algorithm or neural network, related to the limited amount of
information contained in the finite number of observations. It turns out that such a limit
indeed can be computed from information-theoretic considerations. This concept is further
pursued in Chapter 9, where it is shown that theMLANS performance illustrated in Fig. 5.2-
8 achieves this fundamental performance limit.

The internal convergence properties of MLANS learning process are illustrated in
Fig. 5.2-9 by plotting the number of internal MLANS iteration cycles as a function of the
number of objects. The initial number of iterations is small,∼ 10. Subsequent iterations are
initialized when new objects become available to the network. These iterations provide only
minor refinements to the previously obtained solutions so that one iteration is sufficient. The
relatively large number of iterations in the beginning can be interpreted as a long relaxation
time near the point of the phase transition (Kryukov, 1988); this interpretation is discussed
later in Section 5.7.

Similarly good results are obtained with three classes. These results are summarized in
Table 5.2-4. Again, classification errors obtained with MLANS are close to the Bayes risk,
which is significantly better than the performance of the ISODATA algorithm. Some of the
two-dimensional projections of these eight-dimensional results are shown in Fig. 5.2-10,
and the Bhattacharyya distances between the estimated and the true distributions are shown
in Fig. 5.2-11. Again, 50 observations per class are sufficient to obtain accurate estimates
in this case.

As mentioned above, ISODATA is based on the nearest neighbor concept. This com-
putational concept is utilized by most classification neural networks, therefore, as discussed
in Chapter 2, their performances can be expected to be comparable to that of ISODATA.
This was actually confirmed by testing other neural networks based on the nearest neighbor
concept with this data set (Perlovsky, 1994a).
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Figure 5.2-9 Number of internal iterations vs. number of objects per class (in Example 3). The
network quickly converges with just one iteration for N ≥ 45. For a small number of objects, which
is insufficient for an accurate estimation of the eight-dimensional covariance matrices, transitions
between maxima are evident, leading to metastable memory states, with the life-time an order of
magnitude larger then the neuron-cylce time (∼one iteration).

TABLE 5.2-4
Comparison of the MLANS Neural Network and ISODATA Algorithm Using Standard Data
Set; Three Classes, Eight-Dimensional Data, Example 3

MLANS ISODATA Algorithm

Actual
Assigned Class Assigned Class

Class 1 2 3 1 2 3

1 98 2 0 98 2 0
2 2 97 1 27 73 0
3 1 1 98 18 0 82

5.3 COMBINED SUPERVISED AND UNSUPERVISED LEARNING

5.3.1 Supervised and Unsupervised Learning

Learning is called supervised when first, a neural network or an algorithm is trained using
datawith perfect classification labels, which are said to be provided by a teacher. Subsequent
applications or tests are performed using a different data set without further adaptation or
learning. We will call supervision perfect if during the training, correct labels are provided
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Figure 5.2-10 Examples of two-dimensional projections of eight-dimensional, three-class data,
Example 3. Distributions are shown by illustrating 2 − σ boundaries; solid lines are used for
true distributions and symbols are used for the distributions estimated using the MLANS neural
network.
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Figure 5.2-11 Bhattacharyya distances between the true and the estimated distributions for each
class; unsupervised learning of three classes, Example 3. The initial guesses are very far from the
true distributions; after adaptation very close estimates are achieved with as little as 50 objects from
each class.
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assigning all objects to both classes and type-modes. Other types of mixed unsupervised–
supervised training include class supervision, when perfect class labels are provided for all
objects without any type assignments; partial supervision, when only part of the objects
are provided with class labels; and imperfect supervision when labels may be inaccurate.
Partial or imperfect supervision often occurs in real-time applications. The term “real
time” here refers not to any specific hardware implementation of MLANS, but is used
in a sense similar to Carpenter (1989): the supervision in MLANS is accounted for via
internal network dynamics.

5.3.2 Perfect Teacher

Perfect training is no different from the traditional Gaussian classifiers. In an important
case of each type-mode distribution being truly Gaussian, such a process yields the optimal
Bayesian classification, so it is desirable for a neural network to be able to reproduce
such training. In MLANS this is achieved by supplying the teacher’s labels directly to the
output of the data association subsystem (Fig. 5.2-2) where the associating probabilistic
weights are fixed to ones or zeroes according to the teacher’s information. In this case, the
entire data association subsystem is bypassed, and just single MLANS iteration is required
for convergence. This type of MLANS operation was utilized for data characterization in
Example 1 for computing the Gaussian-truth distributions.

5.3.3 Probabilistic or Fuzzy Teacher

The learning process of MLANS can be supervised, unsupervised, or a combination of
unsupervised learning with partial or imperfect supervision. To achieve this flexibility the
weights are modified to account for any available information concerning class or type
assignments. If this information is probabilistic, association weights (on convergence) are a
posteriori Bayesian probabilities, otherwise the weights are fuzzy variables approximating
probabilities to some unknown degree. A teacher’s assignment of a target n to a class k,
type m will be denoted using a subscript T:

PT(k,m|n) (5.3-1)

If a teacher provides perfect classification label, this value is 1 for a particular class and
type, and zero for all the rest. In the case for which a teacher provides only probabilistic
or fuzzy (or tentative) assignments, these values normally range between 0 and 1. This is
not an essential requirement (though teacher’s assignments have to be positive), because
MLANS automatically normalizes teacher’s assignments according to

PT(k,m|n) → PT(k,m|n)/
∑
k′m′

PT(k
′,m′|n) (5.3-2)

so that they satisfy the constraint ∑
km

PT(k,m|n) = 1 (5.3-3)
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This is convenient in order to maintain a probabilistic interpretation of weights, which are
modified according to

f (k,m|n) → f (k,m|n) · PT(k,m|n) (5.3-4)

This modification results in the ML solution to the classification problem, which optimally
fuses all the information from sensors and teachers (see Problem 5.3-1). The probabilistic
interpretation of modified weights (5.3-4) also implies that teacher’s information is statis-
tically independent from the previously defined a posteriori probabilities P(k,m|n), as is
usually the case when a teacher “just knows” the class and type of an object, or derives its
information from another sensor. In this case the modification (5.3-4) corresponds to the
classical formula for combining independent probabilities.

5.3.4 Partial Supervision

A teacher’s information may be incomplete, for example, when only a few objects are
examined by a teacher. In this case of partial supervision, it is sufficient to modify weights
F(k,m|n) only for those objectsn for which a teacher’s information is available. This proce-
dure results in an optimal (ML) fusion of all the available teacher’s and sensory information;
often a teacher’s information on only a few objects leads to an improvement of classification
of all objects resulting in a high learning efficiency, as illustrated in Section 5.3.5.1.

In an important case of partial supervision, a teacher provides information on class
assignments only, PT(k|n), and no information on the type. For example, when a neural
network is trained to recognize several different objects viewed from different angles, the
class of each object is known during training, however, it is desirable that the neural network
determines on its own how many types it needs to represent each object adequately for robust
and accurate classification, and also estimates parameters for each of these types. This type
of training, with deterministic class assignmentsPT(k|n) = {1 or 0}, supplied for all objects
is the most widely used class-supervisory training. In a more general case, deterministic or
probabilistic class assignments are available for only a few objects.

It turns out that for these cases, the weight modification formula (5.3-4) still provides
an optimal solution that maximizes the likelihood of all the available information. This can
be proven by appropriately modifying likelihood function and rederiving the ML estimation
equations (see Problem 5.3-1). Below, we show this in a more illustrative way using
probabilistic interpretation of weights. According to the rule of conditional probabilities,
P(k,m|n) can be represented as a product of two terms, the object’s class probabilityP(k|n)
and the probability of an object’s type, conditioned on an object’s class:

P(k,m|n) = P(k|n) · P(m|k, n) (5.3-5)

A class probability, P(k|n) is defined as

P(k|n) =
M∑
m=1

P(k,m|n) (5.3-6)

It is modified using a probability supplied by a teacher, PT(k|n), according to the rule of
combining independent probabilities:
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P(k|n) → P(k|n) · PT(k|n) (5.3-7)

which yields the weight modification (5.3-4).
Weight modification [Eq. (5.3-4)] thus provides the ability to combine unsupervised

and supervised learning. This is important in many practical cases, when large databases
of unlabeled samples are available for training, while relatively few samples are labeled,
because of time-consuming or expensive labeling procedures.

In many applications, environment can be interactively inspected during learning in
real-time, by manual inspection or by an additional sensor. Often a few interactions during
learning can significantly improve classification in complicated cases, when unsupervised
classification is inadequate. Decisions as to which objects to inspect should be optimized in
order to save the resources (e.g., time and sensor resources). Several ways to achieve this
objective are discussed in Chapter 7, along with other issues concerning attention, multi-
sensor fusion, and resource management. The partially supervised learning discussed in this
section provides an efficient solution to one aspect of this problem, the evidence combining.
As already mentioned, when teacher’s assignments are deterministic or probabilistic, (5.3-4)
leads to the optimal solution.

5.3.5 Examples

5.3.5.1 Example 1 Continuation: Combined
Unsupervised and Interactive Learning
Here we continue consideration of Example 1 from Section 5.2.3, in particular, an unlucky
initial guess, that converged to a wrong class-1 cluster (a local maximum of the likelihood).
In such a case, when objects classified by MLANS as class 1 are inspected, the error becomes
clear. At this point, the quality control system has an alternative: to proceed with the manual
inspection of all the objects, or to reclassify all objects after the manual inspection of a few.
This example demonstrates that there is much to be gained from the second approach of
continuous adaptation. This can be done by using the partial supervision model described
in the previous section.

In our experience, MLANS often found the cluster of defective parts right away; if it
failed in the first attempt, it usually found the class-1 cluster after one or two inspections.
Below, in order to construct a more complicated example requiring several inspection–
reclassification cycles, we combine an unlucky initial guess with not using the a priori
information about an approximate number of defective parts [Eq. (5.2-16)]. Still, the goal
is to find all defective parts with fewer than 100 manual inspections, that is, by inspecting
only about 10% of all the objects.

In this example, we inspect several most likely class-1 objects after every reclassifica-
tion cycle. Two parameters should be defined to specify the procedure: how many objects
are to be manually inspected in each inspection cycle, and when to stop. Both of these
depend on operational aspects of specific applications: how expensive are the inspections,
how long do they take, can they be performed in parallel, can errors be tolerated, etc.
Therefore, an overall operation optimization is application specific. In addition, selecting
the most likely class-1 objects is not necessarily optimal; this is discussed further in Chap-
ter 7. Because of these difficulties, the optimal selection of objects for inspection (optimal
attention mechanism) remains an unsolved problem. Nevertheless, efficient approaches can
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be developed by combining ad-hoc practical considerations and simulations as discussed
in this example.

Figure 5.3-1 illustrates the partially supervised procedure with 10 objects inspected
at each cycle. We stop after 100 total inspections. It shows the numbers of defective parts
(class-1 objects) identified in each cycle. There is significant improvement of performance
due to continued learning with partial supervision vs. random search through the entire set
of objects.

Example 4: Class Supervision
Here we illustrate a most widely used type of training: class-only supervision available
for all objects. Two-dimensional feature distributions were simulated for two classes of
objects, with three Gaussian types for each class. Parameters of these distributions are
shown in Table 5.3-1. Figure 5.3-2a illustrates these distributions for all six types of objects,
with vertical and horizontal axes corresponding to the two classification features; the true
classifier boundary is shown by a dotted line. Figure 5.3-2b shows the results: distributions
estimated from 50 observed objects.

Of these 50 observations there are only two objects of the third type of class 1;
therefore, the covariance matrix for this object-type distribution, as estimated from the
data, is numerically singular. To prevent such problems, MLANS tests determinants of
covariances on each iteration. When a determinant falls below a predetermined threshold,
several approaches can be utilized to remedy the situation. In this example, the sensor
characteristics were known, and MLANS was instructed in such a case to set the covariance
equal to the sensor noise covariance matrix. Despite this difficulty due to insufficient data,

Figure 5.3-1 The number of defective parts found is shown as a function of the number of inspected
parts for the modified Example 1. Adaptive learning with partial supervision results in significant
improvement as compared with the random inspection.
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TABLE 5.3-1
Parameters of Example 4 Distributions

Class Type Rates Means Covariances

r M1 M2 σ1 σ2 ρ

1 1 0.25 3 9 0.5 1 0
1 2 0.20 10 6 0.5 1 0
1 3 0.05 17 16 0.5 1 0
2 1 0.20 3 12 1 0.5 0
2 2 0.20 12 6 1 0.5 0
2 3 0.10 17 13 1 0.5 0
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Figure 5.3-2 Learning a complicated shape of a classifier boundary (multiple modes) with class-only
supervision, Example 4; (a) true distributions of the six types of objects of two classes; (b) MLANS
estimated distrubtion after 50 observations.

the estimated classifier boundary is close to the true one and classification errors are close
to the true minimum Bayesian errors.

5.4 STRUCTURE ESTIMATION

5.4.1 Goals and Approaches of Structural Optimization: Models vs.
Decisions

Examples considered above illustrate the neural network’s ability to conceptualize, or to
learn concepts: MLANS learns the concepts of object-types on its own. This learning is
based on the a priori existence of these concepts as agents, which are built into MLANS’
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statistical model. In previous examples, MLANS also knew the number of concepts to
be learned. The conceptualizing ability is further enhanced in this section by learning the
number of object-types or agent-concepts. The number of concepts is related to the neural
network structure and complexity, because every agent-concept requires a dedicated set of
neurons computing its model parameters.

An efficient (or optimal) structure of a neural network has to be learned from the avail-
able data. As more data become available, a more complicated architecture can be estimated.
A most important parameter determining the structural complexity is the number of object
types. Other complexity issues considered in this section include the structure of covariance
matrixes for each type of objects, learning all parameters of the model vs. fixing some of
them using a priori information, and restrictions imposed on adaptively learned parameters.

Estimation of the number of object-types for each class is similar to estimating the
number of clusters in a clustering problem. This has been somewhat controversial in past
clustering research. Many approaches have been suggested, which are useful for specific
problems or rely on a priori experience or knowledge. For example, the vigilance parameter
that controls formation of new clusters in the ART neural network is not determined by inter-
nal dynamics of the ART neural network and should be specified based on prior experience.

When determining the best number of clusters or object-types, it is important to
keep in mind the goal, because the overall goal of the effort determines what is best.
We have identified two general types of goals when solving classification and clustering
problems. The first goal is to achieve the best characterization of the data for each class.
The second goal is to make the best classification decision, or to achieve the smallest
possible classification error. In a broader cognitive framework, the first goal is to improve
the internal representation of the world, whereas the second one is to make the best decision
concerning the real-world problem at hand. These two goals do not necessarily contradict
each other: improving knowledge of the world in general leads to improved decisions and
vice versa; solution of a particular recognition problem adds to the general knowledge of the
world. However, these two goals do not coincide, first because of a competition for limited
resources (such as sensors), and second, which is more subtle, a competition for interpreting
(allocating, associating) evidence: the best characterization of the overall data may lead to
different results than the best recognition of a single class. This is illustrated below.

5.4.1.1 Example 1: Continuation
In this example the number of object-types is not known a priori. In Section 5.2.3 we utilized
three object-types: one type per class. However, since class distributions are not Gaussian,
this choice is not necessarily optimal. Figure 5.4-1 illustrates results of using four and five
modes for characterizing these data. We have kept the rate for one of the modes small,
r1 = 0.01, according to the discussion in Section 5.2.3 and Eq. (5.2-16), while other modes
have adaptive rates estimated by Nkm neurons according to Eqs. (5.2-7) and (5.2-5).

As could be expected, the additional modes in this figure concentrate around the center
of the most populated class 2. Examination of MLANS weights [Eq. (5.2-10)] shows that
these modes are mostly associated with class-2 objects. As discussed in the next section,
these additional modes actually improved characterization of class 2 as compared to Fig. 5.2-
2. Classes 1 and 3 are still characterized by a single Gaussian mode per class. But what is
important for the classification decisions about class-1 objects, the characterization of class 1
was not improved: the estimated class-1 distributions in Fig. 5.4-1 are not as accurate as in
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Figure 5.4-1 Example 1. Estimated distributions using four modes (a) and five modes (b). General
learning can be in competition with solving a particular problem in hand.

Fig. 5.2-4c, when compared with the Gaussian truth of Fig. 5.2-4a. Similarly, classification
performance of class-1 objects shown in Fig. 5.4-1 is not as good as in Fig. 5.2-4d. This
example serves as a mathematical illustration of a well-known psychological phenomenon:
learning in general and solving a particular problem could be in competition with each
other. At the same time, some degree of general learning is necessary even to approach a
solution of a particular problem at hand (in our example, estimation of class-2 and class-3
distributions is needed to find class 1).

The following sections discuss complexity estimation as reconciling the goals of
general learning about the world and of decision making in a particular problem. We consider
two fundamental quantities: likelihood and entropy. Maximization of likelihood is a data
characterization method (the general learning about the world). Classification entropy is
introduced to measure classification information, which is related to class separability.
Minimization of classification entropy leads to improved classification decisions.

5.4.2 Maximum Likelihood Estimation of Structure

The ML approach is the most general and widely used approach to parameter estimation for
the reasons discussed in Chapter 4, namely, the ML estimation is asymptotically unbiased
and efficient. The ML approach, by definition, provides for a most likely characterization of
all the available data. Utilization of the ML principle for the estimation of neural complexity
including estimation of the number of object-types requires caution, because the likelihood
itself is a biased estimator of the true likelihood value, when considered as a function
of the variable number of parameters. Intuitively, this should be expected, because as
more parameters are utilized in the model, a better fit might be expected. As discussed
in Chapter 4, (4.7-1),

E
{
LL
(
N,Npar

)} = LL0(N)+Npar/2 (5.4-1)
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where LL is a log likelihood,N is a number of observations,Npar is a number of parameters,
and LL0(N) is the expected value of the log likelihood for the true (not estimated) values
of parameters, and Npar/2 is the bias. The log likelihood is proportional to the number of
observations, so per observation

E
{
LL
(
N,Npar

)}
/N = LL0(N)/N +Npar/(2N) (5.4-2)

and the bias per observation, Npar/(2N), asymptotically vanishes (at N → ∞). However,
for a finite number of observations, the bias in the likelihood often introduces significant
bias into the estimated number of parameters. Therefore, we maximize the log likeli-
hood corrected for the bias, which is called the Akaike Information Criterion, AIC, given
by (4.7-2),

AIC/N = LL
(
N,Npar

)
/N −Npar/(2N) (5.4-3)

For a clustering problem with M agents, the total number of parameters [Eqs. (5.2-1),
(5.2-3), and (5.2-5)] is

Npar = M∗(D + 1)(D + 2)/2 (5.4-4)

And an extension of the Akaike-type modification of the ML principle for clustering is

AIC = LL
(
N,Npar

)
/N −M∗(D + 1)(D + 2)/(4N) (5.4-5)

Maximizing this expression has the attraction of providing an asymptotically unbiased and
efficient estimate of a number of object-types, which entirely relies on the internal dynamics
of the MLANS and does not need any prior knowledge or experience. We would refer to
this modification of the ML as AIC, or simply the ML.

An application of AIC to the Example 1 problem is illustrated in Fig. 5.4-2. In this
figure AIC is shown for M = 3, 4, and 5, and it peaks at M = 4, so that the ML chooses
four object-types as the best characterization of the distribution of these data. This four-
mode distribution characterization has been shown in Fig. 5.4-1. This example illustrates
the point that learning the best overall model of the world does not necessarily lead to the
best solution of a particular problem at hand: classification of a small class.

Mathematically, this result is explained as follows. AIC (as well as a likelihood function)
is a homogeneous quantity that is maximized in a uniform way over all observations.
Maximizing AIC is not satisfactory in cases in which there is particular interest in finding
(with minimal error) a class containing a small number of objects among other classes
containing large numbers of objects. The ML and AIC approaches could be, so to speak,
“biased” toward a general learning of the world (an accurate description of large classes)
at the expense of solving the problem in hand (finding the small class). A mitigation of this
circumstance is discussed in the next section.

5.4.3 Minimum Classification Entropy

The ML approach to structural optimization considered above as well as other data char-
acterization methods used to find the number of cluster do not address directly a goal of
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Figure 5.4-2 Learning the number
of object types using the maximum
likelihood (AIC). The best overall
model of the world does not neces-
sarily lead to the best solution of a
particular problem at hand: classifi-
cation of a small class.

minimizing classification errors, which is the specific problem to be solved. This section
discusses a method that is more directly related to the minimization of classification errors. A
straightforward minimization of a classification error for finding the best neural complexity,
including the best number of object-types or clusters, is a possible approach for supervised
learning, although a cumbersome one due to the complicated procedures required to estimate
classification errors. In case of unsupervised distribution, the error is unknown, and the
decision should be based on other principles. Such a principle is described in this section,
based on minimization of classification entropy. The intuitive basis for this procedure is
in maximizing the crispness of fuzzy classification, or equivalently, in maximizing class
separability, and it closely approximates minimization of classification errors.

For the purpose of minimizing classification errors, a classification entropy (CE) of the
data set {xn} with regard to a set of a posteriori Bayes classification probabilities {P(k|n)}
(5.2-10) is defined as a mean value of the logarithm of the classification probability averaged
over all classes, and it is estimated as follows:

CE = −
N∑
n=1

K∑
k=1

P(k|n) ln P(k|n) (5.4-6)

Classification entropy is a negative measure of classification information contained in a set
of probabilities {P(k|n)}. CE is a nonnegative quantity that reaches its minimum E = 0
when classification is nonfuzzy, that is, when each object is assigned to a single class
with a probability 1, so that all P(k|n) = 0 or 1. Because weights f (k,m|n) estimate
a posteriori Bayes probabilities P(k,m|n), the Minimum Classification Entropy (MCE)
neuron computes CE as follows:

CE = −
N∑
n=1

K∑
k=1

[
M∑
m=1

f (k,m|n)
]

ln

[
M∑
m=1

f (k,m|n)
]

(5.4-7)
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Beginning with preset values of number of classes K and number of types for each class
Mk , the MCE neuron calculates CE (5.4-7), then it resets values ofK andMk and reinitiates
MLANS. The resulting new value of CE is compared with the previous one and iterations
continue until the minimum value of CE is found. In many applications, the number of
classes K is predetermined by the problem formulation, and only the numbers of types
for each class (Mk) should be learned from data. When the number of different Mk to be
considered is small, an exhaustive search is appropriate, otherwise gradient descent can be
used (that is, the search continues only in the direction of the gradient).

5.4.3.1 Example 1: Continuation
An application of the MCE principle in this example is illustrated in Fig. 5.4-3, were the
CE values are shown forM = 3, 4, and 5 (since this is unsupervised learning, only the total
number of object types, M , is defined). It reaches minimum at 3, indicating that the MCE
results in choosing three object-types as the best for these data. As previously discussed,
this choice results in the minimal classification error. Thus, MCE results in a better solution
of the problem of finding a small class, as compared to the ML principle that resulted in a
better overall internal “world” representation. The number of types in this problem should
be selected using the MCE principle.

5.4.4 Other Structural Issues

This section considers several techniques for limiting the complexity of the adaptive struc-
ture of MLANS by restricting the number of independent adaptive parameters in the
MLANS statistical model. This keeps up with the general model-based approach of utilizing
known phenomenology to construct adequately flexible models without excessive numbers
of adaptive parameters.
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Figure 5.4-3 Learning the number of object
types or MLANS agents using minimum
classification entropy results in a better solu-
tion than AIC ML criterion for the particular
problem of finding a small class.
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5.4.4.1 Fixed Parameters
A straightforward and simple technique is to make an a priori decision as to which parameters
should be adaptively learned and which should be fixed using a priori knowledge of the
problem phenomenology. We used this technique already in Example 1, where object-type
rates have been fixed using a priori knowledge. Similarly, any component of the mean
vectors for some modes can be fixed. In Example 4, Section 5.3.5, the covariance matrix
was fixed for a mode with fewer than a predetermined number of data points. Imposing more
complicated constraints on covariance matrices is nontrivial and some of the techniques are
considered below.

Constraining covariance matrices can be desirable, especially in high-dimensional
cases, because the number of parameters in a covariance matrix grows as the second
power of the dimensionality. This can be done either based on a priori knowledge of
the phenomenology of the process, or in order to improve robustness if the number of
observations is insufficient to estimate a covariance matrix of a particular object-type.
Several simple alternatives are possible. The covariance matrix can be set to a prede-
termined (small) value, such as an observation or sensor noise covariance matrix, or to
a large value, such as the overall covariance matrix of all the objects, depending on
the objective and prior knowledge. Or a sensor noise covariance can be added to the
estimated covariance.

5.4.4.2 Structured Covariances
Imposing a structure on a covariance matrix should not be done in an ad-hoc way: for
example, restricting a covariance matrix to a desired structure by setting to zero nondesirable
matrix components may lead to a nonpositive definite matrix, which is not suitable as a
covariance estimate and may be noninvertible. Instead, the simplest approach is to use a
diagonal covariance matrix. With a diagonal covariance, it is only necessary to make sure
that the diagonal elements are not too small numerically. This can be achieved by setting a
predetermined threshold, C0:

Cii → max [Cii, C0] (5.4-8)

or by adding a small diagonal matrix:

Cii → Cii + C0 (5.4-9)

Both these procedures are always numerically safe.
However, a simple diagonal covariance does not account for correlations between

features and may be inadequate in that important classification information, if contained in
the correlations, will be missed. A band-limited covariance structure,

Cij = 0, for |i − j | ≤ b (5.4-10)

can be used to account for some of the correlations. As mentioned, a band-limited covariance
matrix should not be estimated by fixing out-of-band elements to zero; this may result in a
nonpositive definite matrix. A simple approach, however, can be used to properly condition
such an estimation. A matrix is called diagonally dominant, if for each row i
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C2
ii ≥

J∑
j �=1

C2
ij (5.4-11)

Further, a diagonally dominant matrix with positive diagonal elements is positive definite.
Therefore, to ensure positive definiteness of an estimated structured covariance, estimated
covariance in-band components can be modified in such a way that the condition (5.4-11)
is satisfied. For example, off-diagonal elements can be modified as follows:

Cij → Cij · exp{−α · |i − j |}, α > ln 2 (5.4-12)

Another appropriate modification is

Cij → Cij/|i − j | (5.4-13)

Similar types of modification can be used to condition not only band-limited matrices,
but any type of imposed structure. A disadvantage of these ad-hoc techniques is that
some information contained in the correlations is lost. A more advantageous approach to
estimating structured covariances while preserving important information can be based on
the estimation of Choleski factors of covariance matrices (Perlovsky and Marzetta, 1992).

5.5 WISHART AND RICIAN MIXTURE MODELS FOR RADAR IMAGE
CLASSIFICATION

In some applications non-Gaussian mixture models are more appropriate than Gaussian
ones because of the nature or the physical sources of signals. This section considers radar
measurements containing phase as well as amplitude. The characterization of radar signals
is accomplished using mixture models of complex Gaussians, Wishart, and Rician density
functions.

5.5.1 Synthetic Aperture Radar

A typical operation of a synthetic aperture radar (SAR) mounted on an aircraft can be
described in a simplified way as follows. The radar transmits electromagnetic wave pulses
that are relatively short and wide-angle (∼ a few tens of degrees), perpendicular to the line
of flight:

Re
[
a(t) exp (−2πif0t)

]
(5.5-1)

where a(t) and f0 are the known modulation amplitude and carrier frequency. A reflector,
such as a feature on the ground, a tree, or a searched object, returns a reflected pulse

Re {kn · a (t − τn) exp [−2πifn (t − τn)]} (5.5-2)

Here kn is the reflection coefficient and fn and τn are the frequency and time delay of the
returned pulse. The frequency fn is different from f0 due to the Doppler shift determined
by the relative reflector-to-radar velocity along the line of sight v,
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fn = f0 (1 + 2v/c) (5.5-3)

where c is the speed of light. The time delay τn is determined by the range Rn to the
reflector n:

τn = 2Rn/c (5.5-4)

Usually there are thousands of reflectors contributing to each return pulse, S(t):

S(t) = Re
N∑
n=1

{kn · a (t − τn) exp [−2πifn (t − τn)]} (5.5-5)

Reflectors at different ranges are resolved by removing the known shape of the modu-
lation signal a(t) from the returned pulse. The accuracy of this is determined by the radar
bandwidth which is very high, permitting the resolution to a few feet or better. The resolution
along the line of flight, called the cross-range resolution, is accomplished by utilizing the
Doppler frequency shift in the returned pulse. To achieve high resolution and unambiguous
resolution of range and cross-range reflectors, many hundreds to thousands of SAR pulses
are coherently processed. Coherent processing implies that the relative phases of the pulses
are accurately accounted for as if the pulses are transmitted and received by a very large
aperture antenna, hence the name synthetic aperture.

During processing of the received pulse, the carrier frequency is removed by the
following operations:

I (t) = S(t) · cos (2πif0t)

Q(t) = S(t) · sin (2πif0t)
(5.5-6)

This defines an in-phase I and quadrature Q components of the signal; both are needed to
preserve the amplitude and the phase of the return signal S(t). These two components form
a complex processed signal

I (t)+ iQ(t) (5.5-7)

After processing, the data obtained from an SAR may be displayed as a two-dimensional
image of the area being illuminated by the radar beam. To preserve all the information
contained in the radar return, every pixel must be characterized by a complex value.

5.5.2 Data Description

Most of examples illustrated in this section are taken from the analysis of data obtained from
a polarimetric SAR, employed by NASA in its search and rescue mission, when looking
for small downed aircraft. It transmits two different polarizations of electromagnetic waves
and for each transmitted polarization the two polarizations are received. Altogether, four
signals are received, so that four complex images are available for performing detection
and identification, svv, svh, shv, shh. Here svv and shh are the two copolarized returns (vertical
or horizontal transmitted and the same received) and svh and shv are the cross-polarized
returns. It is usually assumed that svh = shv. In the examples considered below, the
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cross-polarized return is actually computed using both the svh and the shv returns and
performing phase equalization to account for the fact that the phase in the SAR images
might not be properly calibrated. The radar return of the nth pixel, sn, may therefore be
written as a three-dimensional complex vector

sn = [svv, svh, shh]T (5.5-8)

The data provided by the NASA Goddard Space Flight Center have been recorded as a
pixel covariance Kn averaged over four higher resolution SAR subpixels:

Kn =
4∑
s=1

Kns, Kns = sns s+ns (5.5-9)

Here, subpixels are indexed by two indexes, a pixel index n and a subpixel index s. The
imaged areas contained simulated aircraft wrecks placed in forest and snow environments
under foliage canopies.

The approaches to the NASA/JPL data study were dictated by the nature of the SAR
data, in particular by its resolution and by the occurrence of phase miscalibration. The pixel
size of the SAR imagery is 12.0 m in azimuth and 6.67 m in range. Since the wavelength of
the radar is roughly 0.75 m, the resolution pixel spans many wavelengths. A large, man-made
object, such as a metal plane or a corner reflector of several meters in size, can dominate
scattering from a pixel. In many applications, large man-made structures produce a strong
specular reflection, a large amplitude glint associated with the scattering of electromagnetic
energy when the wavelength and pixel size are small compared to the characteristic length
of the scatterer. These type specular returns are often used as a key for detecting targets.
In the example considered, however, the area subsumed by a downed destroyed aircraft is
considerably less than the area of a resolution cell so that the typical wreck of a small plane
occupies only a fraction of a pixel. Due to the small size, most pieces of aircraft wreckage
do not produce strong specular returns. As a result, “bright spots” in SAR imagery are not
very useful for detection, resulting in a need to exploit polarimetric differences between the
wreckage and the background.

Another complication in using the NASA/JPL SAR data is that it is not phase calibrated
so the phase relationships between the scattered returns at the different polarizations are
not consistent from image to image. The approach taken to circumvent the phase mis-
calibration problem is to perform adaptive target detection in each image independent of
the other images. This also simplifies the problem in that we do not have to compensate
for image-to-image variations arising from different depression angles, weather, and other
measurement conditions.

This approach does result in one serious limitation, however, in that it is no longer
possible to use the data from previously obtained images to train a neural network for
application to new images. Since there are many clutter pixels on each image, the clutter
model adaptation can be performed using a single image, but target models cannot be
estimated, since there is only one target pixel on each image. In the approach taken
the clutter is characterized independently on each image with the target being treated as
an anomaly, being chosen as the pixel with the smallest likelihood of belonging to the
clutter class.
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Altogether, the NASA data set contained nine images containing one target each. Target
positions were unknown. Clutter was strong relatively to signals, due to targets being under
a heavy foliage and also due to the presence of ice in many of the images. The image size
varied from 30 × 50 = 1500 pixels to 100 × 100 = 10,000 pixels. Two images from the
NASA data set, the Michigan data and the North Carolina data, are considered in detail in
Sections 5.5.3.1 and 5.5.3.2.

Another data set analyzed below was acquired using a Lincoln Laboratory 1-ft res-
olution polarimetric SAR. Records of the radar complex returns were available and the
polarization measurements were calibrated. The data set was acquired near Stockbridge
Massachusetts. We analyzed three strip maps (3 × 512 × 2048 pixels = 1/6 km2 at
0.75 ft per pixel sampling) of this data set. Available ground truth for this scene shows
that within the range coverage of the SAR, there were nine military vehicle targets and
nine corner reflectors (all but one of which were pointing within 90° of the SAR line of
sight). The groundcover truth was available, indicating five types of groundcover clutter
present in the scene: “treelines,” “forest,” “hedges,” “roads,” “fields,” and the sixth type
of clutter due to radar “shadows.” Analyses of Stockbridge data are provided in Section
5.5.4. The discussion below begins with relatively simple models and evolves toward more
complex models.

5.5.3 Physically Based Clutter and Target Models

5.5.3.1 Background Clutter Model
This section describes the background clutter model in a case in which there is no specific
physical mechanism for a single or a few dominant scatterers in the pixel, so that a
clutter pixel return is composed of multiple scatterers in that pixel, with random relative
phases of the scatterers. Therefore, both I and Q components of the signal are sums
of multiple positive and negative values, so that their distributions across similar types
of pixels (same type of terrain) can be modeled as a Gaussian with zero mean. The
phase of the return from the pixel, thus, may be considered to be uniformly distributed
between zero and 2π , which is called a circularly symmetric distribution. Different types of
terrain are described by Gaussian distributions with different covariances. Multiple types
of terrain that might be present in an image are alternative sources of a signal, thus a
probability distribution of signals in an image is modeled as a superposition of alternatives.
We consider the complex scattering amplitudes to be statistically independent from pixel
to pixel. This assumption is not necessarily valid, because nearby clutter pixels might
contain contributions from the same scatterers. It is used here because the pixels subsume
many clutter returns so that the assumption of clutter pixel independence may be used as
an approximation.

According to these considerations, the clutter model assumes that the three complex
scattering amplitudes sn associated with a particular pixel n have a zero-mean, circularly
symmetric, multivariate, complex Gaussian mixture density:

pdf (sn) =
M∑
m=1

rm pdf (sn|m) (5.5-10)

pdf (sn|m) = (π)−3 (det Cm)
−1 exp

(−s+n C−1
m sn

)
(5.5-11)
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where s+n is the Hermitian conjugate vector (this is complex conjugate and transposed),
Cm are the complex covariances for the mode m, describing different types of terrain
present in an image, and rm are the priors or relative occurrences of the types of terrain.
Adaptation of this model is achieved by estimation of the parameters rm and Cm. The
circular symmetry property implies that the complex covariance matrices have a specific
relationship between the real and imaginary parts of the elements, corresponding to the
definition of these matrices:

Cm = E
{
sns+n

}
(5.5-12)

The exponent in expression (5.5-10) can be written as

s+n C−1
m sn = Tr

(
sn s+n C−1

m

) = Tr
(
Kn C−1

m

)
(5.5-13)

According to Eqs. (5.5-10), (5.5-11), and (5.5-12),Kn is a sufficient statistic for the complex
scattering amplitudes distributed according to the circularly symmetric complex Gaussian
mixture distribution (5.5-10). An equivalent interpretation of this model is that Kn is
distributed according to a mixture distribution of complex Wishart density functions:

pdf (Kn) =
M∑
m=1

rm Wi (Kn|Cm) (5.5-14)

Wi (Kn|Cm) = (π)−3 (det Cm)
−1 exp

[−Tr
(
Kn C−1

m

)]
(5.5-15)

In fact, in this example, data provided by JPL have been recorded as Kn averaged over four
higher resolution SAR subpixels (5.5-9). Except for the lost resolution, this procedure is
adequate, since several adjacent subpixels in most cases belong to the same type of clutter
and are distributed according to a single mixture component (5.5-14).

The MLANS weights are computed as previously (5.2-10), with Wishart pdfs used
instead of Gaussian ones. The estimation equations for rates (5.2-5) and (5.2-7) do not
change. And the estimation (5.2-9) for covariances is replaced with

Cm =
∑
n

f (m|n) Kn/Nm (5.5-16)

5.5.3.2 Outlier Models
In some cases, relatively few Wishart components were sufficient to accurately model
the clutter distribution, resulting in a few outliers of which one was the target. However,
there were cases in which the outliers could not be unambiguously selected and additional
processing had to be performed. Since these outliers are located in the tails of the likelihood
distribution, an appropriate procedure must be brought to bear to obtain a more accurate
representation of these tails. The application of Wishart mixture model provides the best
representation of the central portion of the likelihood distribution because the majority of
the observations are associated with that part of the distribution.

For the Wishart mixture model to provide a characterization of similar fidelity to the
tails, a large number of components might be required. However, if the outlier observations
could be separated from the remainder of the observations and the density function of the
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outliers estimated in the absence of the central portion of the likelihood distribution then the
distribution of the tails would be accomplished with a much smaller number of components.
In removing the central portion of the likelihood distribution, it is apparent that although
the total distribution may have zero mean, the outlier distribution will have nonzero mean,
because outliers are displaced from the central portion of the zero-mean distribution. It is
also possible that outliers are caused by large objects such as cliffs or by man-made objects
such as cars or high power line towers. Thus, it is important that the likelihood function of
the outliers be characterized by a mixture of components with nonzero means. Two models
chosen for this purpose of a parsimonious representation of the tails of the distributions of
the likelihood function are described in the next section.

Pixel Eigenvalue Model (PEM). The PEM model uses a multivariate Gaussian mixture
density for the three eigenvalues λn = (

λn,1, λn,2, λn,3
)

of the pixel covariance matrix,
Kn (5.5-9). The pixel covariance matrix is Hermitian and its eigenvalues are realvalued
and nonnegative; these considerations, on the one hand permit using real-valued mixture
models given by Eqs. (5.2-7) through (5.2-9) and, on the other hand, indicate that Gaussian
components may not be the best since they do not account for nonnegativeness. The PEM
model does not convey all the information in the data because the eigenvalues provide only
a portion of the available information in the data.

An important difference between the PEM model and Wishart mixture model is that the
PEM components form a complete set of functions in the functional space of all possible pdfs
of the eigenvalues, whereas Wishart components do not form a complete set of functions,
because they are based on a zero-mean amplitude model (5.5-9). This issue of completeness
is important if assumptions leading to the Wishart mixture are not exactly satisfied. Also,
the PEM can be used in a supervised target detection approach, because the eigenvalues are
unaffected by phase miscalibration.

Covariance Matrix Real Gaussian Mixture Model (CMM). The pixel covariance matrix
Kn, being a Hermitian matrix contains nine nonredundant real components: three diagonal
components (Kn11,Kn22,Kn33), and real and imaginary parts of the three independent off-
diagonal components (Kn12,Kn13,Kn23). The CMM model considers a pdf of a real-valued
vector formed by these nine nonredundant components of the pixel covariance matrix
KRn = (Kn11,Kn22,Kn33,ReKn12,ReKn13,ReKn23, ImKn12, ImKn13, ImKn23). The Co-
variance Matrix Real Gaussian Mixture (CMM) models the pdf of this vector as a multi-
variate Gaussian mixture. Parameters of this model are the rates, means, and covariances
of the mixture components. The MLANS equations for this model are exactly the same as
those considered above, Eqs. (5.2-7) through (5.2-9), with dimensionality d = 9, and KRn

used in place of λn. The components of CMM form a complete set of functions, this model
does not utilize any specific a priori knowledge of scattering mechanism, and CMM utilizes
all the information present in the pixel covariance data.

5.5.3.3 Rician Model
Models developed above are suitable for detecting a single target pixel in an SAR image as a
least likely clutter pixel. If several target measurements are available, a two-class classifier
can be developed that utilizes available information for each class. In case of a target
present in an SAR pixel, the assumptions that led to the zero-mean circularly symmetric
hypothesis for the clutter model may no longer be valid. Also, the Wishart mixture model is
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not appropriate for clutter, if large clutter scatterers are present, such as cliffs or mountain
ridges. A more appropriate distribution for target plus clutter is derived now following
Marzetta (1995). In this case the radar pixel amplitude, sn, for the mth type scatterer can be
written as a sum of the random clutter scatterers and a nonrandom one:

sn = xn + am exp (iφn) (5.5-17)

where xn, as in Eq. (5.5-9), is a circularly symmetric zero-mean complex Gaussian vector
with covariance matrix Cm, am is a complex deterministic but unknown three-dimensional
scattering amplitude vector, and φn is the phase of this scatterer. The phase φn is related to
the range from the radar to the pixel; it is very sensitive to the radar aircraft altitude and
should be modeled as uniformly distributed over 0 to 2π and independent of xn. Therefore,
the probability density of sn, conditioned on the mode m and on φn is

pdf (sn|φn,m) = (π)−3 (detCm)
−1 exp

{− [s+n − a+
m e

−iφn] C−1
m

[
sn − ameiφn

]}
(5.5-18)

Because the phase φn is random, the interest is in the probability density of sn conditioned
only on its mode membership

pdf (sn|m) =
∫

pdf (sn|φn,m) dφn

= (π)−3 (detCm)
−1 exp

{−s+n C
−1
m sn − a+

m C
−1
m am

}
I0
(
2 · ∣∣a+

m C
−1
m sn

∣∣)(5.5-19)

where I0 is the zero-order modified Bessel function. It is seen that if am is phase shifted,
the probability density is unchanged so that only the magnitudes and the relative phases
of the components of am are important. A distribution (5.5-19) is called the Rice pdf.
The parameters of the Rician mixture include rates, rm, covariances Cm, and scattering
amplitudes am. These parameters are estimated by the MLANS modeling subsystem. The
ML neuronal estimation equations for the rates are the same as before:

rm =
N∑
n=1

f (m|n)/N (5.5-20)

The neuronal equations for the estimation of the covariance, Cm, and scattering amplitude,
am, become

Cm =
N∑
n=1

f (m|n) [s+n sn − a+
m am

]
/N (5.5-21)

am =
N∑
n=1

f (m|n)Vnm sn/N (5.5-22)

Here, the weights f (m|n) and Vnm are computed by the association subsystem. The weights
f (m|n) are computed as previously (5.2-10) using the Rice pdf (5.5-19), and Vnm are
additional Rician weights that are the complex numbers with the amplitude

|Vnm| = [I1
(
2 · ∣∣a+

m C−1
m sn

∣∣) /I0
(
2 · ∣∣a+

m C−1
m sn

∣∣)] (5.5-23)
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and the phase factor

eiφmn = (a+
m C−1

m sn
)∗ / ∣∣a+

m C−1
m sn

∣∣ (5.5-24)

where (. . .)∗ denotes the complex conjugate.

5.5.4 NASA Data Examples

The NASA data set was processed using the Wishart mixture model [(5.5-13) and (5.5-14)].
Rememeber that the NASA data set is comprised of nine images containing one target each
with unknown target positions. All nine images were processed. In all cases the targets
were identified without a single false alarm. In five cases the Wishart model processing
results were deemed sufficient for target identification. In four other cases, we determined
that additional processing was required using outlier models. Subsection 5.5.3.1 describes
a typical example of the five cases using the Wishart model alone and how we determined
that additional processing was not needed in this case. Additional processing for the other
four cases is discussed in Subsection 5.5.3.2.

5.5.4.1 Michigan Data and Other Similar Cases
The upper row in Fig. 5.5-1 shows the results of applying the Wishart mixture model to SAR
data taken in a heavily wooded area in Michigan. The first three images display the diagonal
components of the pixel-covariance matrix data, Kn (these are the power in the two copo-
larized and in the cross-polarized signals). The likelihood function was computed from the
entire complex pixel-covariance matrix data according to the Wishart model. The negative
log-likelihood function image is shown next. The right-most image shows the thresholded
negative log-likelihood function, which indicates that there are two outliers that may be
considered as possible targets and in fact the most negative log-likelihood pixel was indeed
the pixel containing the target. Thus, the target was detected without a single false alarm.

The number of mixture components (clutter types) was estimated as follows. The data
were processed with four components. The estimated expected covariances Cm for each
component were manually examined to detect any unexpected phenomenology. This was
repeated using four, five, and six components. Nothing unusual was detected, but in the
case of six components, two were very similar to each other. So it was decided to use
five components in this example. A similar procedure was repeated for every image. From
three to five components were required for different images. The process of the number of
component selection can be easily automated.

Detection thresholds were selected as follows. A negative log-likelihood (NLL) his-
togram was plotted for each image (that is, the number of pixels vs. binned NLL values).
Each histogram was manually examined. For five of nine images, the histograms could
be divided into two nonoverlapping parts: most of pixels on the left (low NLL) and one
to three pixels on the right. The detection threshold was selected to separate these few
outlier pixels. For the other four images the histograms showed continuous distributions,
where outliers could not be unambiguously detected. These four images were subjected to
additional processing described in the next subsection.

5.5.4.2 North Carolina Data and Other Similar Cases
The first four images in the lower row of Fig. 5.5-1 show the North Carolina data set
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Figure 5.5-1 Identification of the downed aircraft wreckage under a heavy foliage canopy for two examples from the NASA
data set. The upper row illustrates an application of the Wishart mixture model to the Michigan data setp; P-band SAR,
50 × 30 pixel image part is shown. The Wishart mixture model results in target detection without false alarms (e). The
lower row illustrates the North Carolina data set; P-band SAR 50×50 pixel image part is shown. The first five images show
the same type of data as the upper row. In this case, the Wishart mixture model does not lead to a reliable detection (j).
The outlier model is used to reduce the potential number of false alarms, resulting in a successful target detection without
false alarms (k).

processed using the Wishart model in a manner similar to the Michigan data set in the upper
row. A threshold could not be selected to yield few outliers unambiguously. The fourth image
illustrates results of this processing with a threshold being selected to yield 20 outliers. The
PEM model with just a single component is applied to these outlier pixels. The right-most
image illustrates the results: the characterization of the tails of the likelihood function
distribution by estimating the distribution of the outlier pixels results in few “outliers of the
outlier distribution.” There were three obvious outliers, and the target is located in the pixel
with the lowest likelihood. The target is detected without a single false alarm. Altogether,
we have applied the outlier model processing to four data sets. In each case, we choose
between the PEM or CMM models based on which one resulted in fewer remaining outliers.
In every case, the least likely clutter point happened to be the target, so, all the targets were
detected with zero false alarms.

5.5.5 Stockbridge Data Examples

5.5.5.1 Stockbridge Clutter Scene Segmentation
In the Stockbridge data case, clutter scene segmentation was of interest, as well as target de-
tection, and a detailed characterization of the clutter types was performed using the Wishart
mixture model. Wishart mixture model estimation automatically produces probabilistic
image segmentation according to (5.2-10). (For the previous NASA data set, segmentation
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is not discussed, because little is known about the image-truth clutter types.) An example
of the Stockbridge scene segmentation is shown in Fig. 5.5-2. The minimum number of the
required clutter-model mixture components was six, because there were six classes of clutter
given by the image truth. Six components were determined to be sufficient to characterize
clutter. This determination was based on comparing six-component segmentation results
vs. image truth. An examination of the a posteriori probability plots for these components in
Fig. 5.5-2 indicates that components 1 through 6 correspond to the various types of clutter
present in the scene: “tree lines,” “forest,” “hedges,” “roads,” “fields,” and “shadows.” The
components in this list are ordered according to the decreasing value of the estimated hh
variance [σhh(m)]

2 = C33(m) (5.5-16).

5.5.5.2 Stockbridge Target Detection
A much larger image area was processed in this example as compared to Section 5.5.3.
Correspondingly, our approach to target detection in this case is more complicated than
the one used there and is more representative of a real-time operation, when it is not
feasible to process all data at once, but the data should be processed as they are acquired. A
natural technique often used for this type of processing employs a sliding window. Within
a sliding window, we estimate parameters of models for both the local clutter and target.
Targets can be identified by thresholding the likelihood of the clutter mixture probability
or by performing a likelihood ratio test. Whenever one implements a strategy that requires
adapting to local clutter regions, some difficult issues must be addressed: (1) How is the
clutter type estimated? and (2) How can we avoid biasing this estimate when the target
is present but has not yet been detected? A conventional approach uses a sliding window
with a guard region in the center (to avoid the target). This, however, creates a whole set
of additional issues that must be addressed concerning the size of the window and the
guard region (and their shapes and relative positions). Also, how, for example, are tree
lines handled when the window overlaps two quite distinct regions of clutter? Then there
are tradeoffs that must be made in choosing a window size that is large enough to collect
meaningful statistics but small enough so that only one clutter type is present. It seems
that more issues are brought up than resolved. Using MLANS permits us to avoid nearly
all of these problems. A MLANS-based approach is compared to the traditional one in
Fig. 5.5-3.

The recognition process uses a sliding window within which MLANS estimates both
the clutter and target modes simultaneously. This solves the problem of biases that could be
introduced by estimating only the clutter statistics when the target is present. Starting with
initial estimates of the statistics of the potential clutter and target types, MLANS iteratively
learns and adapts to provide a local estimate of the clutter types present and determines
their relative proportions. Potential target pixels are identified as outliers by thresholding
the likelihood of the clutter mixture probability. Alternatively, a two-class classifier can be
invoked since MLANS has estimated the target statistics as well. In addition to providing the
desired adaptation to clutter regions, our procedure also circumvents the problems attendant
with using a guard region inasmuch as the target pixels are “captured” by the target modes
of MLANS (which can be thought of as adaptive, complex-shaped guard regions).

We processed three strip maps of the Stockbridge data set containing 3 × 512 × 2048
pixels. The sliding window size was chosen as 20 × 20 = 400 pixels, so that it covers a
target plus sufficient number of pixels to estimate the clutter model. Available ground truth
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Figure 5.5-2 Wishart mixture model scene segmentation. The top image is the gray-scale composite
of the a posteriori probabilities (shown below) for the six clutter modes that were automatically
segmented by MLANS. The mean RCS values of the modes (bottom figures) show that the clutter
requires a multimodal model.

for this scene shows that within the range coverage of the SAR, there were nine military
vehicle targets and nine corner reflectors (all but one of which were pointing within 90° of
the SAR line of sight).

MLANS detected seven of the nine targets (the two that were not detected were behind
a tree line, hidden in shadows). In addition, MLANS detected two targets of which we
had no previous knowledge and which were later confirmed to be actually present in the
scene. All eight corner reflectors were also detected and identified as distinct from the
targets. There was one not very credible false alarm (that is, just a few pixels were detected,
while in each case of a true target a number of pixels were detected indicating a target-like
shape). Detection was performed by thresholding the clutter likelihood, that is, by detecting
the clutter-model outliers, similar to the discussion in Section 5.5.3. Using likelihood
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Figure 5.5-3 Simultaneous estimation of the clutter and target distributions as a mixture model solves
the problem of biasing class statistics. Clutter and target pixels are associated with appropriate classes,
thus the presence of targets within the “sliding window” does not bias estimation of clutter statistics and
vice versa. A much smaller window size can be used than in the “guard-region” approach, providing
for better adaptation to the local scene characteristics.

ratio resulted in the same performance. Simultaneous with target detection, MLANS also
segmented the scene into the clutter types that were consistent with the known ground truth.

The detection approach described in this section can also be used to collect data on
targets in SAR images to facilitate the development of target models. As data are collected,
the target model can be updated to improve the likelihood-ratio detection performance. The
multipixel target data can then be related to physical scattering mechanisms to obtain a better
understanding of the similarities and differences between target types, leading naturally to
the development of multiple-pixel target models.

The development of multiple-pixel models could proceed in the same manner as the
single-pixel models described above—with the exception that multiple pixels are used. That
is, MLANS would operate in a higher dimensional space—the dimensionality being higher
in proportion to the number of pixels being considered. In this way all pixel-to-pixel,
polarization-to-polarization, and polarization-to-pixel correlations can be accounted for.
This approach, however, leads very quickly to prohibitively high dimensional classification
space. To avoid the “curse of dimensionality,” a general model-based neural network
approach described in Chapter 4 can be used. This will require the development of physically
based multipixel models.

5.5.5.3 Stockbridge Data Analysis vs. Rician and
Wishart Mixture Models
An assessment of the validity of the Rician model for man-made targets and a comparison
with clutter models was performed using a subset of Stockbridge data. The results are shown
in Fig. 5.5-4. The upper row of Fig. 5.5-4 illustrates clutter distributions estimated using
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the Parzen method1 (solid line), which in this case accurately represents the data, and using
the two-component Wishart mixture models (dotted line). The first three plots (a, b, and
c) show distributions of amplitude absolute values for three polarizations: |shh| , |svh| , |svv|
along the abscissa (Wishart components appear as Rayleigh in these axes). The last plot
(d) shows similar distributions using Real(shh) abscissa (Wishart components appear as
Gaussian). The natural clutter is well characterized by the Wishart model and requires
two modes, one for the small cross section type clutter and one for the large cross section
type clutter. The target data are shown in the lower row, plots (e, f, g, and h). The first
three plots (e, f, and g) compare Parzen estimates of distributions for clutter and targets.
The target data clearly show evidence of multimodal behavior that appears to be Rician
rather than Wishart (as evidenced by the presence of peaks in the Parzen density estimates
that are far from the origin). Some target data are shown in plot (h) using Real(shh) as an
abscissa. A mixture of one Wishart component and three Rician components models this
target data well.

5.5.6 Summary of SAR Models

Although Gaussian models are widely applicable, they are not suitable for modeling radar
signals because of their specific physical phenomenology. Several types of non-Gaussian
mixtures have been derived in this section from the basic physical properties of SAR signals.
These include complex Wishart and Rician mixture models that are appropriate for modeling
individual pixel distributions in SAR data. More complicated models accounting for detailed
deterministic information about objects, such as target shapes, can be developed using the
general model-based neural network described in Chapter 4. More complicated models will
be considered in the following chapters.

5.6 CONVERGENCE

In this section we derive the MLANS equations for the Gaussian mixture model and
demonstrate that Eqs. (5.2-5) and (5.2-7) through (5.2-9) yield the ML estimation of the
mixture parameters, while the MLANS weights are the a posteriori probabilities given by
(5.2-10). These equations, of course, can be derived from the general model-based neural
network equations in Chapter 4, Problem 5.2-4. Here, they are derived in a different way,
providing a somewhat different angle on MLANS iterations. Then we consider convergence
properties including the proof of the MLANS convergence.

5.6.1 Convergence and Learning

Convergence properties, discussed in this section, should not be mixed up with a related
topic of learning abilities. Learning is an ability to extract maximum useful information
from a given amount of data. More broadly, learning also includes an ability to find useful
data. But what is useful information? Information has a precise mathematical definition
discussed in Chapter 4; it is related to differentiating among alternatives. Differentiat-
ing more complicated choices requires more information. From this information-theoretic
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Figure 5.5-4 Comparison of clutter and target data and their models. The upper row illustrates clutter distributions and Wishart models; (a, b, c) comparison of Wishart
models (Rayleigh in these axes) and Parzen density estimates of the individual clutter components demonstrates the multicomponent Wishart nature of clutter (two
components with a possible third component evident in the L-clutter distribution); (d) distributions of pixels classified by MLANS as vegetation and shadows; Wishart
mixture model (Gaussian in this axis) fits data well. The lower row illustrates target data. Target and clutter distributions are compared (e, f, g); Parzen density estimates
of the hh, hv and vv RCS magnitudes of the clutter and target single pixel data for the example scene clearly show the structural differences between the target and
clutter distributions; it is clear that the target distributions cannot be modeled as Wishart mixtures, whereas Rician mixtures could be a plausible alternative; (h) target
data distributions are plotted along with a mixture model utilizing one Wishart and three Rician modes.
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view, “useful information” is a tautology. However, information as knowledge in general
is not exhaustively characterized by mathematical Shannon information. For example,
development of an accurate internal model of the world is useful, even though it may
not be related to immediately important alternatives. But then, how do we know what
is useful?—for example, by relying on a priori information. Thus, an accurate estima-
tion of the parameters of a priori model can be viewed as extracting information from
the world. We came to two types of ability to extract information: first, differentiating
among alternatives and second, model parameter estimation. Theoretical tools for char-
acterization of the information extracted for the parameter estimation are discussed in
Chapter 9.

This section discusses a more preliminary and basic property of learning algorithms,
convergence. A learning algorithm, given a finite amount of data, has to be able to come
to an end of the learning process, or to converge. Is MLANS learning convergent? In
Chapter 4, general MFT convergence was proved for incremental parameter changes during
iterations (∼ dt). Here, we prove that Eqs. (5.2-5) through (5.2-10) are also convergent.
How fast does it converge (in terms of the number of internal iterations or the number
of elementary computational operations)? Does it always converge to the best possible
solution or to a reasonable one? How often does it converge to a bad solution, under which
circumstances, and how could this be mitigated? These questions were illustrated with
examples throughout this chapter. Here we discuss some theoretical aspects of the MLANS
convergence properties.

5.6.2 The ML Equations

The Maximum Likelihood (ML) estimation of parameters of Gaussian mixtures entails
maximizing the likelihoodL of all the observations in Eq. (5.2-6) over the set of parameters
{rk,Mk,Ck}. The derivation here is given only for an unsupervised case; because there
is no formal difference between classes and modes, instead of two indexes k,m, only
one index k is used for brevity. We maximize the loglikelihood LL = ln L, which is
equivalent to maximizing the likelihood L. A constraint on the priors rk should be taken
into account:

K∑
k=1

rk = 1 (5.6-1)

This is a fundamental constraint, which says that the probability of all possible outcomes
of any measurement xn is 1. Constraint (5.6-1) can be accounted for by using a Lagrangian
multiplier method. According to this method, the ML equations are derived by maximizing

LL′ = ln L+ λ

(
K∑
k=1

rk − 1

)
(5.6-2)

over the set of parameters {rk,Mk,Ck} and a Lagrangian multiplier λ. This results in the
following ML equations in addition to constraint (5.6-1):

∂LL/∂rk + λ = 0; ∂LL/∂Mk = 0; ∂LL/∂Ck = 0 (5.6-3)
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Here, the unknowns are values of the parameters {rk,Mk,Ck} for a given set of data {xn}.
Using the parametric expression for the likelihood in (5.2-2) and (5.2-6), the derivatives in
(5.6-3) are calculated as follows:

N∑
n=1

[
rk pdf (xn|k) /pdf (xn)

]
r−1
k + λ = 0

N∑
n=1

[
rk pdf (xn|k) /pdf (xn)

] (
C−1
k Dnk

) = 0

N∑
n=1

[
rk pdf (xn|k) /pdf (xn)

] {(
C−1
k Dnk

)∗ (
C−1
k Dnk

)

−1/2 diag
[(
C−1
k Dnk

)∗ (
C−1
k Dnk

)]− C−1
k + 1/2 diag

[
C−1
k

]} = 0

(5.6-4)

In these equations, all vector and matrix indices are omitted for brevity: to avoid confusion all
the vector-matrix dot products are included in parentheses, and ∗ is used for outer products;
in the last equation the derivatives with respect to the symmetrical matrix Ck are calculated
according to Searle (1982).

The quantities

P(k|n) = [rkpdf (xn|k) /pdf (xn)
]

(5.6-5)

which appear in each of the above Eqs. (5.6-4) are the Bayesian probabilities of the nth
observation to belong to the kth class, for every n = 1, . . . , N , and k = 1, . . . , K .
In MLANS, these probabilities are association weights (5.2-10). The probability of an
observation belonging to any ofK classes equals 1 by the definition ofP(k|n) in Eq. (5.6-5):

K∑
k=1

P(k|n) = 1, n = 1, . . . , N (5.6-6)

It can be verified by direct substitution and using (5.2-10) and (5.6-6) that the MLANS
Eqs. (5.2-5) and (5.2-7) through (5.2-9) are equivalent to Eqs. (5.6-4), satisfying constraint
(5.6-1), with λ = −N , and keeping in mind that in this section k is equivalent to (k,m)
in Section 5.2. But, it is also instructive to “derive” Eqs. (5.2-7), (5.2-8), and (5.2-9) from
(5.6-4). For example, the first of Eqs. (5.6-4) can be rewritten as

N∑
n=1

P(k|n) = λ rk (5.6-7)

Taking sums of each side of this equation over k = 1, . . . , K , and using (5.6-1) and (5.6-6),
we obtain λ = N , and (5.2-5). To obtain (5.2-6), let us rewrite the second of Eqs. (5.6-4) as

N∑
n=1

P(k|n)C−1
k (xn −Mk) = 0
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After multiplying by matrix Ck , this equation can be rewritten as

N∑
n=1

P(k|n)Mk =
N∑
n=1

P(k|n) xn

which is equivalent to (5.2-6). Equation (5.2-7) can be derived similarly, by noting that
instead of the last of Eqs. (5.6-4) it is sufficient to consider a simpler equation,

N∑
n=1

P(k|n)
{(
C−1
k Dnk

)∗ (
C−1
k Dnk

)− C−1
k

}
= 0

or

N∑
n=1

P(k|n)Ck =
N∑
n=1

P(k|n)Dnk
∗ Dnk (5.6-8)

5.6.3 Local Convergence and EM Algorithm

MLANS unsupervised or partially supervised learning is an iterative process. Each iteration
consists of the estimation of the parameters of object-type models followed by (or in parallel
with) the computation of the association weights. Convergence means accomplishing learn-
ing in a final number of iterations. When parameters do not change much from iteration
to iteration, this indicates convergence, as discussed in detail in Section 5.2.2.5. In our
experience, MLANS usually quickly converges to a solution of the ML equations, within
an order of 10 iterations after initiation and then one or two iterations thereafter, when
pieces of new data become available. We prove now that MLANS learning is guaranteed
to converge to a maximum of the estimated likelihood. This proof is related to the EM
algorithm discussed in Chapter 4. The proof below uses Lemma 4.5.1, which was proved
in Chapter 4. Recall,

LEMMA 4.5.1: Given
∑I

i=1 qi = 1,
∑I

i=1 pi = 1. The maxpj
[∑I

i=1 qi ln (pi/qi)
]

is attained at pi = qi .

We use the following abbreviated notations: l(x|it) = ln pdf (x|Sit ), where x is a set
of observations, xn, n = 1, . . . , N ; Sit is a set of model parameter estimates at MLANS
iteration number it ; l(n|it) = pdf (xn|Sit ); l (k, n|it) = rkpdf (xn|k,Sit ); and we use
P(k|n, it) for a posteriori probabilities P(k|n) computed at it-iteration. According to the
definition of a posteriori probabilities (5.6-5), at every iteration,

ln P(k|n, it) = l(k, n|it)− l(n|it) and
K∑
k=1

P(k|n, it) = 1 (5.6-9)

Before proceeding with the proof of MLANS convergence, let us note that the estimated
likelihood is finite. This follows from the fact that estimated covariance matrixes have to be
invertible. (Such a constraint has to be imposed anyway for numerical reasons; see further
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discussion in the next section.) To prove MLANS convergence, it is sufficient to show that
the estimated likelihood or its logarithm increases from iteration to iteration. Because of
the finiteness of the estimated likelihood, it follows that within a finite number of iterations,
the estimated likelihood either stops changing or changes as little as desired (this is defined
as convergence: the likelihood approaches a local maximum as close as desired). Now,
examine a change of log likelihood between iterations:

l(x|it)− l(x|it − 1) =
N∑
n=1

[l(n|it)− l(n|it − 1)]

=
N∑
n=1

{
k∑

k=1

P(k|n, it − 1)

}
[l(n|it)− l(n|it − 1)]

=
N∑
n=1

K∑
k=1

P(k|n, it − 1) [l(k, n|it)− lnP(k|n, it)− l(k, n|it − 1)

+ ln P(k|n, it − 1)]

=
N∑
n=1

K∑
k=1

P(k|n, it − 1) [ln P(k|n, it − 1)− ln P(k|n, it)]

+
N∑
n=1

K∑
k=1

P(k|n, it − 1) [l(k, n|it)− l(k, n|it − 1)]

Here, in the second and third lines we used (5.6-9); the fifth line is nonnegative because
of Lemma 4.5.1. The last line is also nonnegative, because of the following. Note that if
Sit = Sit−1, the first item equals the second one so that this line is zero; but (5.2-7), (5.2-8),
and (5.2-9) maximize the first item over Sit , thus this line can only increase from zero up.
This completes the proof of MLANS convergence at least to the local maximum of the
likelihood function.

5.6.3.1 Monotone Likelihood Increase Example
The MLANS convergence and a monotone increase of the likelihood are illustrated in Fig.
5.6-1. In this example MLANS estimates parameters of a mixture of two one-dimensional
Gaussian modes with parameters shown in Table 5.6-1. In Fig. 5.6-1 a contour plot (map)
shows the LL = ln L values [Eq. (5.2-6)]. This plot was computed by using 200 data
samples, xnn = 1, . . . , 200; 100 samples per mode were simulated according to the
distributions in Table 5.6-1, and the LL value was computed for the model parameters values
M1 and M2 varying between −200 and +500. The plot is symmetrical in M1 and M2 due
to the symmetry of the Gaussian mixture in Table 5.6-1. The two maxima of LL correspond
to the correct values of M1 = 200 and M2 = 100 and vice versa. The connected dots in
this plot indicate the process of MLANS convergence from a difficult initial point along a
valley right between the true distributions. We have started with a very bad, symmetrical
initial guess,M1 = M2 = 0; because of the symmetry, after the first iteration, the estimated
means are right at the center of the distribution: M1 ∼ M2 ∼ 150; then, in seven iterations,
MLANS converges to the correct M1 and M2 values. In Fig. 5.6-2 the loglikelihood LL is
plotted as a function of the iteration number, illustrating the monotone LL increase.
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Figure 5.6-1 Illustration of MLANS convergence.

TABLE 5.6-1
Parameters of the Distributions in Figure 5.6-1

Class Means Rates

1 M1 = 100 0.5
2 M2 = 200 0.5

5.6.4 Global Convergence

A guaranteed convergence to a global maximum in a nonlinear estimation problem gen-
erally requires an exponentially large number of computations as a function of problem
complexity. For example, a global search through all possible parameter combinations
guarantees the convergence to a global maximum. More efficient search strategies have
been designed, such as the thermal annealing algorithm. However, such computationally
intensive procedures are not needed in practice. Within a hierarchical intelligence system,
recognition is performed in a constant loop together with actions based on recognition
results. Therefore, if at some moment an object or a set of objects is misidentified, either
due to insufficient information or to convergence to a local maximum, the error will be found
during the next action, and recognition results will be improved at the next recognition-
action cycle. An example of such a MLANS operation was illustrated in Section 5.3.5.1.
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Figure 5.6-2 Illustration of the montone likelihood increase.

To improve finding the global maximum, two conditions should be verified on conver-
gence. First, that there is no mode converging to a single data point, or, more generally, to a
degenerate covariance matrix. A degenerate covariance corresponds to zero volume in the
classification space, to infinite likelihood, and therefore to a maximum. A degenerate mode
should be examined and either accepted as corresponding to a real object or rejected as a local
maximum. A mode with nearly degenerate covariance has all its a posteriori probabilities
either one or zero, and, therefore, these mode parameters do not change in subsequent
iterations. Such a mode can be excluded from subsequent iterations to avoid numerical
difficulties. Second, if two or more modes converge to the same mean and covariance
values, they should be combined, their rates should be added, and MLANS should be let
to reconverge.

5.7 MLANS, PHYSICS, BIOLOGY, AND OTHER NEURAL NETWORKS

Let us look at MLANS as a simulation or model of a physical system. The basis for this is
in a fundamental relationship between mathematical statistics and statistical physics. The
log-likelihood function is analogous to −H/T , where H is the Helmholtz function (free
energy) of the system and T is the temperature. The degrees of freedom identified with
molecules in a physical system are identified here with parameters and neurons that estimate
them. Some other types of neural networks have been identified with physical systems.
For example, the dynamics of the Additive neural network (Grossberg, 1976; Hopfield,
1982) is similar to spin-glass systems. Spin-glass systems are governed by relatively simple
Hamiltonians with local spin–spin interaction. Local interactions of spins correspond to
the nearest neighbor classification computations in Additive neural networks. Complex
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behavior in such systems is related to symmetry-breaking states. MLANS’ more complex
computational principles require analogies with correspondingly complex physical systems.
Utilization of complicated a priori information in MLANS models corresponds to spatially
noninvariant or nonsymmetrical Hamiltonians.

Temporal dynamics of the learning process in MLANS exhibits the existence of meta-
stable states with long lifetimes, such as the initial large number of internal cycles shown
in Fig. 5.2-9. From the physical point of view, this phenomenon is explained as a long
relaxation-time process near a critical point of phase transitions. In MLANS, these phase
transitions occur when the likelihood function has more than one maximum of approxi-
mately the same value. Phase transitions are related to establishing new concepts, and they
are likely to occur when the number of objects available to the MLANS learning is small. In
the case of nonstationary data, when new concepts should be constantly formed, MLANS
can often be in a state close to a phase transition. Similar mechanisms have been postulated
in the brain (Kryukov, 1988).

Such a situation is illustrated in Fig. 5.2-9, where the transitions between maxima
evoke long-living metastable states. The learning process corresponding to Fig. 5.2-9 can
be described psychologically as follows: as more information is acquired by the neural
network, its initial internal representation of the “world” needs to be adjusted. This need
for adjustment is an attentional mechanism that evokes short-term memory (STM, here
is the metastable state), which is necessary for the modification of the long-term memory
(LTM) containing the representation of the “world.” Similar mechanisms for STM and
LTM interactions exist in the ART neural network. This temporal dynamics of MLANS is
intriguing from the biological point of view: would phase transitions in this neural network
be helpful for understanding phenomena such as short-term memory and attention?

The nature of spatial symmetry and invariance violating Hamiltonians for modeling
MLANS can be analyzed from the relationship between the geometry of a physical in-
teraction and MLANS classification learning process. Interactions among molecules in a
physical system are determined by their spatial proximity and correspond to inseparable
terms in the Hamiltonian and Helmholtz functions. Analogously, parameters of classes,
which are inseparable in the classification space, contribute to inseparable terms in the
likelihood function corresponding to the overlapping distributions. Therefore, the closeness
of the parameters of the classes and types of objects is determined by the overlap between
classes in the classification space. MLANS weights form patterns of excitations in the
classification space corresponding to the models. If classification models are combined
with geometric models, as in image analysis, these patterns form dynamic spatiotemporal
fields. This physical analogy can be used for designing physical devices implementing
MLANS computations as a system of interacting fields. Particularly intriguing are quantum
implementations of MLANS-like learning. Such quantum systems can be viewed as special-
purpose quantum computers for pattern recognition.

The origin of the stochastic properties in MLANS is not in the stochastic properties of
individual neurons, as the individual neurons do not possess any noisy quality in current im-
plementations of MLANS. Stochastic properties of data are modeled explicitly in MLANS
statistical models. In this respect MLANS is different from the Boltzmann machine neural
network (Ackley et al., 1985). More similar to MLANS in this regard is the Mean Field
Annealing neural network (Bilbro and Snyder, 1988). The role of temperature in MLANS
is assumed by the covariance matrices; large a priori covariance matrices ensure initial
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randomness or uniform probabilities of objects belonging to each class, analogous to a
high initial temperature in an annealing process. Such a fuzzy initial state can be compared
to Aristotelian Forms-as-potentialities, which are transformed into crisp concepts in the
process of learning.

When comparisons are made to biological neural networks, it is necessary to consider
if it is plausible that the brain performs complicated mathematical computations as does
MLANS? The ML neurons perform complex computations such as matrix estimation
and inversion, etc. These complicated ML neurons could be replaced by subnetworks of
neurons each performing a simple operation. For example, a direct estimation of Choleski
decompositions of inverse covariance matrixes can be obtained by a linear estimation
procedure similar to the orthogonalization process, which is well suited for biological neural
networks and which has been postulated by many researchers to take place in the brain
(e.g., Grossberg, 1983). Thus, neurobiological analogies of MLANS ought to be sought on
a higher, functional level, rather than on the level of individual neurons. For example, by
estimating covariance matrixes of classes and types of objects, MLANS achieves an adaptive
estimation of local metrics in classification spaces, allowing an adaptive enhancement of
even minor differences between the objects, which are important for the classification, and
an adaptive suppression of differences that are irrelevant for classification. It is clear that the
brain performs similar functions. The following chapters consider even more sophisticated
models built into the architecture of the model-based neural networks. These models along
with estimation of covariance matrixes provide for a mathematical mechanism of adaptive
metrics for matching models and data and for achieving subtle invariances that are problem
dependent and adaptive in nature.

Learning mechanisms of neural networks include feedforward, feedback, cooperative,
and competitive. The learning mechanism specified by Eqs. (5.2-5) through (5.2-10) is
a feedback competitive learning. Feedback learning means that results of learning are
used for future learning. Competitive learning means that neural weights “compete” with
each other. Because MLANS weights are probabilities, class and type weights compete for
probability of each observation. The architecture and temporal dynamics of MLANS can be
compared with that of the Adaptive Resonance Theory (ART) neural network (Carpenter
and Grossberg, 1987) in that MLANS is converging to a solution by “resonating” between
input data and internal representations (models). This process accounts for the correlation
of a current input with the neuron output at the previous cycle. Such correlations with delay
have been considered for a long time as a more realistic replacement of the Hebbian learning
rule. Adaptively building internal representations of the world based on a priori knowledge
are a characteristic feature of both ART and MLANS. This combining of apriority and
adaptivity was discussed in Chapters 2 and 4 as being important for establishing direct
parallels between neural networks and philosophical concepts of mind.

MLANS models estimate spatially varying metrics in classification spaces, leading to
classifiers of complicated shapes, which include multiple isolated regions. Isolated regions
often correspond to different types of objects. The ability to learn the types on its own and
to estimate a proper number of types for classification is referred to as the ability of a neural
network to “conceptualize.” MLANS learning can be compared with Aristotelian theory
of Forms. According to Aristotle, Forms represent the a priori contents of mind, which
have a potential for becoming concepts or categories of mind. This potential is realized
in the learning process. MLANS implements a first step (albeit, in a simple way) toward
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such interaction between a priori knowledge, learning, and concepts of mind: fuzzy a priori
models become concepts or object-types in the process of learning.

MLANS is an efficiently learning network: as discussed in Section 5.7 and in Chapter 9,
MLANS learning speed comes close to the theoretical limits of Cramer–Rao bounds for any
learning algorithm. This results in a very good performance, close to the Bayes risk, with
a much smaller number of training samples than is usually required by other algorithms or
neural networks. An issue that is not resolved in MLANS models discussed in this chapter
is recognition and intelligent processing of data in very-high-dimensional spaces, such as
signals and images of resolved objects containing hundreds and thousands of samples,
when the number of training samples is not sufficient for a reliable estimation of covariance
matrices. This is related to the old unresolved problem of pattern recognition: how to
extract classification features in an optimal way with insufficient information about class
distributions. The general approach of a model-based neural network is to utilize more
sophisticated a priori models combining adaptation with a priori information about physics,
geometry, dynamics, and other properties of the objects. This development is continued in
the following chapters.

NOTE

1. Parzen density estimation was briefly described in Chapter 1, Section 1.2. Recall, this is a nonpar-
ametric method of a nearest neighbor type, which does not require any assumption about data
distribution. The Parzen method is suitable for data characterization in low-dimensional cases
with sufficient data for accurate estimation.

BIBLIOGRAPHICAL NOTES

MLANS original development (Perlovsky, 1987b, 1988a; Perlovsky and McManus, 1991).
Statistical mixture models (Titterington et al., 1985).
Standard estimation techniques for Gaussian distributions (e.g., Fukunaga, 1972).
Inverse-Gaussian scale is also called Burdick plot (see Fukunaga, 1991).
Parzen pdf estimation; for further practical details see Fukunaga (1972).
Estimation of the number of agents, object-types, or clusters (see, for example, Anderberg, 1973;

Fukunaga, 1988). For the ART neural network (Carpenter and Grossberg, 1987). For improving
the internal representation of the world vs. making the best classification decision (Perlovsky
and McManus, 1991).

Thermal annealing algorithm (Metropolis, 1980).
Number of clusters estimation (Yarman-Vural and Ataman, 1987; Fukunaga, 1988; Burdick and

Perlovsky, 1991). Minimization of classification entropy (Perlovsky, 1987a; Perlovsky and
McManus, 1991).
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et al., 1997c; Marzetta, 1995; Schoendorf et al., 1994).

SAR operation, general (Goj, 1993); NASA SAR (Zebker et al., 1987).
Rice model (Rice, 1944, 1945).
MLANS vs. other neural networks: STM and LTM interactions in ART neural network (Carpenter
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correlations with delay as a replacement of the Hebbian learning (see Klopf, 1987; Grossberg
and Schmajuk, 1989).

Quantum implementations of MLANS (Chapter 8; Perlovsky, 1997c; Garvin and Perlovsky, 1995).

PROBLEMS 5.2–1 Write (5.2-1), (5.2-2), and the exponent in (5.2-6) in component notations similar to
(5.2-4).

5.2–2 Write a computer code to plot a two-dimensional “2 − σ concentration ellipse,” which
is defined by Xn satisfying the equation

0.5DT
nkmC

−1
nkm = 2 (compare (5.2-6))

Plot a few examples, e.g. (1) M = (0, 2),C =
[

10 0
0 1

]
; (2) M = (0, 0),C =[

1 0
0 1

]
; etc.

5.2–3 Show that a Gaussian function is a δ-function in the limit of C → 0. Use the defi-
nition of a Gaussian function, the last row in (5.2-6), and a definition of δ-function,
∫ δ(x)f (x)dx = f (0) for any (differentiable) function f .

5.2–4 Derive (5.2-7), (5.2-8), and (5.2-9) from general learning equations, Chapter 4 (take
dt = 1). Compare to the derivation in Section 5.6.

5.2–5 Show that
∑

k;m f (k,m|n) = 1. [Use f (k,m|n) definition (5.2-10).]

5.2–6 Consider a one-class, one-mode problem. Show that (5.2-7) and (5.2-8) are reduced to
the classical expressions for estimating means and covariances (compare to Anderson,
1984). Interpret (5.2-9).

5.2–7 Write a computer code to compute the Bhattacharyya distance (5.2-11). Compute the
Bhattacharyya distance for several pairs of distributions; see Problem 5.2-2.

5.2–8 Write a computer code to compute Gaussian distribution values according to (5.2-6).
Validate the code by comparing with a calculator computation for few values of x in
one and two dimensions; use a distribution from example 2 of Problem 5.2-2.

5.2–9 For two Gaussian distributions G(x|1) and G(x|2) with means M1 = (0, 0), M2 =
(0, σ ), and covariances C1 = C2 =

[
σ 2 0
0 σ 2

]
, compute likelihood ratios LRn =

G(xn|1) /G (xn|2) for three data vectors, LR1 for x1 = (0, 0), LR2 for x2 = (−σ, 0),
and LR3 for x3 = (0.5σ, 0). Use the code of the previous Problem 5.2–8.

5.2–10 Compute P(1, 1|n) for xn, n = 1, 2, 3 from the previous Problem 5.2-9.

5.2–11 Write a code to compute OCs for two Gaussian classes of the previous problem: Step (1):
simulate 100 samples xn, n = 1, . . . , 100, for each of the two classes (use a standard
routine to simulate Gaussian data). Step (2): for each xn compute LR using the code of
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Problem 5.2–9.; Step (3): sort LR values for each class (use a standard sorting routine).
Step (4): vary threshold from min LR value to max LR value; for every threshold value,
th, compute the number of class-1 data points classified as class-2 err1(th) and the
number of class-2 data points classified as class-1 err2(th). Step (5): plot err1(th) vs.
err2(th).

5.2–12 (Graduate level). Consider two Gaussian classes with distributions such that the first
class is contained within the second class (in terms of their 2 − σ concentration
ellipses). Depending on the parameters of distributions (means, covariances, numbers
of samples), the first class may form the largest cluster within the second class or may
not. In other words, the ML clustering of the joint two-class distribution may result in
an approximately correct solution: the smaller cluster to be close (within 1 σ ) of the true
mean of the first class, or may not. What is the probability of an approximately correct
solution? See Fig. 5.2-5 and the related discussion. As a simpler problem, consider
uniform distributions instead of Gaussian ones. Write a journal paper, for example, for
Pattern Recognition Letters.

5.2–13 Verify the correspondence between Examples 2 and 3. Use (5.2-11), Table 5.2-1, Fig.
5.2-6, and an approximate correspondence of equal error rate of 2% and k-factor = 3.

5.3–1 Prove that (5.3-4) accomplishes the ML estimation in the case in which the teacher’s
information (PT) is supplied as true probabilities independent from other data. Hint:
consider modifications to likelihood (5.2-6) due to teacher’s information.

5.3–2 Prove the first paragraph of Section 5.3.4. Hint: see Problem 5.3-1.

5.7–1 (Graduate level). Analyze a possibility of analog MLANS implementation by numerical
simulation. Write a MLANS code and simulate a data set (e.g., use Problem 5.2-9
data set). Study MLANS performance for several levels of numerical accuracy (use
declaration statements to modify numerical accuracy of all MLANS variables; explore
REAL and INTEGER types for all MLANS variables). Identify “numerical accuracy
bottlenecks” and develop workarounds, such as variable rescaling, local within each
neuron, etc. Identify the most viable approaches. Write a journal paper, for example,
for Neural Network journal.

5.7–2 (Graduate level). Study the effects of stochastic, noisy neurons on MLANS conver-
gence in terms of the number of iterations and the attained maximal value of the
likelihood. A first step here is to find a problem in which nonnoisy MLANS does not
converge to the global maximum: consider an example of Problem 5.2-11; increase
dimensionality; consider a more complicated example of Section 5.3.5.2. Consider
an effect of mismatch between the data and models: simulate data using multimodal
distributions. Consider complex real-world data. Write a journal paper, for example,
for Neural Network journal.



chapter 6

EINSTEINIAN NEURAL NETWORK

This chapter describes the Einsteinian Neural Network (ENN) and its applications. ENN
was introduced in Chapter 4. It is a model-based neural network, an instantiation of MFT.
Its learning dynamics is determined by Shannon–Einsteinian similarity, which maximizes
mutual information between the data and model. ENN models are inspired by the Einsteinian
interpretation of the spectrum as a frequency density. This Einsteinian concept was extended
in Chapter 4 to multidimensional spectra by considering them as densities of corresponding
coordinates (frequency, time, space). Here this concept is applied to two-dimensional time–
frequency spectra and images. We develop flexible compositional models of photon (or
phonon) densities, suitable for solving inverse problems of identifying and estimating multiple
overlapping signal sources.

We discuss ENN applications to classical spectrum estimation and to more complex
transient phoneme-like spectra, to radar spectra, and to modeling ionospheric propagation of
electromagnetic waves.

6.1 IMAGES, SIGNALS, AND SPECTRA

6.1.1 Definitions, Notations, and Simple Signal Models

Usually, image is a two-dimensional spatial density of brightness or the number of photons,
S(x, y). Here, S is brightness or a number of photons and (x, y) are spatial coordinates.
Color images can be characterized by one additional dimension, the frequency ω of each
spatial pixel; thus, a color image is a three-dimensional density of the number of pho-
tons S(x, y, ω).1 Signals are more simple objects than images; usually a signal is a one-
dimensional time-dependent quantity, s(t). An image brightness S is measured by an energy
in a pixel, which is a positive number. Signal s(t) could take positive and negative values.
In signal analysis, it is often convenient to consider s(t) as a complex number, characterized
by two real quantities, amplitude a and phase φ,

s(t) = a(t) exp[iφ(t)]; i = √(−1) is an imaginary unit (6.1-1)

The reason for this is that often a(t) and φ(t) vary much simpler than signal s(t): signal
amplitude a(t) varies slowly and φ(t) is a linear function, φ(t) = φ0 +ωt . In such a case,ω
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is called an angular frequency (or just a frequency) of a signal s(t);ω is measured in radians
per second. For a pure-tone signal, a(t) = const. A signal representation given by Eq. (6.1-1)
is convenient to use even if the measured signal is a single-component real quantity; in such
cases complex numbers are used for convenience of analysis, and real signals are related to
their complex counterparts through the relationship exp[iφ(t)] = cos[φ(t)] + i sin[φ(t)],

s(t) = a(t)Re exp[iφ(t)] = a(t) cos[φ(t)] (6.1-2)

In other cases, such as radar signals considered in Section 5.5, a measurement device
measures two components of a signal, which are conveniently represented by a real and
imaginary part of a complex signal. In the case of acoustic signals, s(t) usually is given
by pressure of the acoustic field, and an energy of a signal sample S(t) is measured by (or
proportional to) |s(t)|2. Similar to light being composed of the quanta of electromagnetic
field, photons, sound is composed of the quanta of acoustic field or phonons. In this book we
will not be concerned with quantum properties of light or sound, but it will be convenient
sometimes to refer to the numbers of photons or phonons. For acoustic signals, S(t) is
proportional to the number of phonons.

In a simple case of deterministic signals, s(t) is described by a function, or by a
differential equation with known deterministic parameters. An important class of signals is
a superposition of several sinusoids, or more general, complex exponents

s(t) =
∑
k

ak exp [i (φk + ωkt)] (6.1-3)

For example, simple musical sounds (say, of a single chord) can be well approximated by
this type of model.

However, real world signals are often affected by noise and various other random
effects. So, sometimes for practical reasons and sometimes because of fundamental prop-
erties of signal sources, signals are characterized statistically, by pdf({s}). Here {s} refers
collectively to a set of continuous or sampled signal values over a time window. When
parameters of this pdf do not change over time (from window to window), signal s(t) is
called stationary. An important example is sinusoids in white noise,

s(t) =
∑
k

ak exp [i (φk + ωkt)] + wn(t) (6.1-4)

where wn(t) is white noise. White noise is defined by statistically independent variabilities
at different time points: pdf [n (t1)] and pdf [n (t2)] are independent if t1 �= t2, in other
words, pdf [n (t1), n (t2)] = pdf [n (t1)] pdf [n (t2)]. When parameters of these pdfs are
independent of time, the signal is stationary.

Another important class of stationary signals that received wide consideration includes
signals generated by a random noise input into a linear system. We briefly consider three
types of signals from this class: autoregressive (AR), moving average (MA), and autoregres-
sive moving average (ARMA). AR signals are given by a differential or difference equations∑
k

αk (d/dt)
ks(t) = wn(t), for continuous case (6.1-5)

∑
k

ak s (tn−k) = wn (tn) , for discrete case; k = 0, . . . , K;αo = ao = 1 (6.1-6)
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Here, αk or ak are constant coefficients of an autoregressive process, s (tn−k) are sampled
signal values, and K is called an order of the process. AR processes are also called Wiener
filters, or Markov processes. They model deterministic linear systems, which parameters
determine values of coefficients (αk or ak), driven by a random force, wn(t). AR processes
can model oscillations, which are not as deterministic as sinusoids and exhibit random
variations in periodicity. They have been used to model a large number of various systems
and processes, including sunspot numbers and Brownian motion, and they continue to be
used in modeling of economic trends, speech signals, and in many other fields.

Discrete moving-average (MA) signals are defined by

s(tn) =
∑
k

bk wn (tn−k) (6.1-7)

and ARMA signals are defined by combining AR and MA properties:∑
k

ak s (tn−k) =
∑
l

bl wn (tn−l) ; k = 0, . . . , K; l = 0, . . . , L; a0 = b0 = 1 (6.1-8)

Stochastic stationary signals describe an important class of processes that was a subject
of classical signal analysis. Virtually any book on signal analysis discusses properties
of such signals and applicable estimation and modeling techniques in detail. Still, this
is a restricted class: for many processes, including speech, statistical characteristics of
signal pdfs change rapidly. Such signals are called nonstationary, or transient. Intensive
development of mathematical techniques specifically for these more complicated processes
is a relatively recent phenomenon. And ENN is developed for these more complicated
nonstationary, transient processes. We will begin first with simpler, stationary signals, then
extend our models toward nonstationary ones.

6.1.2 Frequency Components, Spectrum, and Spectral Models

Spectrum S(ω) is a density of signal energy in frequency. For stochastic signals, spectrum
is given by an expected value of the square of the frequency component of the signal,2

S(ω) = E
{|s(ω)|2} (6.1-9)

Periodicities in a signal are manifested as peaks in the spectrum. Spectrum estimation
has been used for establishing periodicities since the nineteenth century, including period-
icities in natural phenomena, economic indicators, etc. It is also important for analysis of
various physical processes and in speech recognition. The most widely known and used
method of spectrum analysis is Fourier transform (FT). Keep in mind that FT, in general,
does not give a correct estimation of signals’ frequency components (even though it is
often thought that way). FT is a general nonparametric method that is suitable for signal
analysis in nonstressing situations. However, it is not appropriate in stressing cases, for
example, when one looks for separation of closely spaced frequency peaks, or for signals
buried in noise or clutter, or for the analysis of nonstationary signals, whose frequency
content (periodicities) quickly change over time. Examples of the latter include speech and
financial market indicators. In stressing cases, parametric methods are more appropriate
as they allow for utilization of a priori information about signal properties. Classical,
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model-based methods are suitable for several relatively simple types of signals. The model-
based spectrum estimation method discussed in this chapter utilizes flexible compositional
models suitable for analysis of signals composed of multiple subunits, or multiple physical
sources, overlapping in time and frequency (and also, if applicable, in space and propagation
direction). These multiple signal sources could be the concepts that we attempt to recognize,
such as objects in radar signals, or phonemes in speech recognition. A mathematical
apparatus of modeling field theory for spectrum estimation is developed in this chapter
using the mutual information similarity measure.

A most widely used method of spectrum estimation is based on Fourier transform (FT).
FT represents a time signal s(t) (see Note 2) as a weighted sum of sin(ωt) and cos(ωt)
functions, or equivalently, by using complex exponents, exp(iωt),

s(t) =
∑
ω

s(ω) exp(iωt) (6.1-10)

For sampled signals of finite length, time t and frequency ω span finite sets of values.
Frequency spans a set of values determined by the sampling interval 
 and extent of time
window T used for analysis. When a signal is sampled at time points given by

t = {n ·
,n = 1, . . . , N}, N = T/
 (6.1-11)

frequency values are

ω = {n ·
ω, n = −N/2 + 1, . . . , N/2}; 
ω = 2π/T (6.1-12)

when T → ∞, ω spans the continuous spectrum. We would like to avoid using double
indexes, so we would write s(t) or s(ω) for s (tn) or s (ωn).

An equation for computing FT from given signal values s(t) is obtained from the
definition (6.1-10), by using the following orthogonality property of the complex exponents
(for the sets of t and ω values as given above):∑

t

exp[i(ω − ω′)t] = N · δω,ω′ = (N for ω = ω′, 0 otherwise) (6.1-13)

Multiplying each side of Eq. (6.1-10) by exp(−iω′t), taking a sum over t , using the above
equation, and changing ω′ → ω, we obtain

s(ω) = (1/N)
∑
t

s(t) exp(−iωt) (6.1-14)

A simple spectrum estimation technique, by taking a magnitude square of the FT, is
called a periodogram,

Ŝ(ω) = |s(ω)|2 (6.1-15)

This estimate is appropriate for a limited case of the signal s(t) being a sum of sin or complex
exp functions with frequencies exactly matching some of the set (6.1-12). In this case a
periodogram will be nonzero only for the correct frequencies represented in the signal. In
general, periodogram Eq. (6.1-15) has a number of limitations related to the properties of
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stochastic signals as well as to the general limitations of nonparametric techniques. Let us
briefly discuss some of these limitations. In a simple case of a signal being a single isolated
sin (or exp) function with a frequency not matching any of the set (6.1-12), the periodogram
will be nonzero for a range of frequency values around the frequency of the signal. When
two or several closely spaced peaks are present in the true spectrum S(ω), they may not be
resolved in the periodogram Ŝ(ω). If there is a random component present in a signal s(t),
the periodogram does not converge to S(ω) even if the length of a signal goes to infinity.

Model-based spectrum estimation methods have been developed to surpass many of
the limitations of the periodogram and many contemporary spectrum estimation methods
are based on parametric spectrum models. Model-based methods enable utilization of
a priori information about signal phenomenology and improve accuracy and resolution
of spectrum estimation. Widely used models for spectrum estimation include spectral
models for signals considered above: complex exponents in noise, AR, MA, and ARMA.
Often, these models are successfully used for broad categories of signals deviating from
these models.

To illustrate spectral properties of AR, MA, and ARMA signals, let us compute a
theoretical spectrum of an ARMA signal. Substitute FT definition Eq. (6.1-10) into Eq. (6.1-
8) defining an ARMA process:∑

k

ak
∑
ω

s(ω) exp (−iωtn−k) =
∑
l

bl
∑
ω

wn(ω) exp (−iωtn−l) (6.1-16)

By exchanging here orders of summation, using (6.1-10) and an orthogonality of an FT
(6.1-13), the above equation can be rewritten as (see Problem 6.1-1 for details):

S(ω)
∑
k

ak exp(iωk ·
) = wn(ω)
∑
l

bl exp(iωl ·
) (6.1-17)

From this, FT of an ARMA signal, s(ω), can be expressed through a white noise FT, wn(ω),

s(ω) = wn(ω)

[∑
l

bl exp(iωl ·
)
]/[∑

k

ak exp(iωk ·
)
]

(6.1-18)

The true (theoretical) value of a spectrum for white noise is constant, E
{|wn(ω)|2} = WN

(this is the reason that the random uncorrelated noise is called white: like white light,
it contains all frequencies with equal weighting). The true (theoretical) spectrum of an
ARMA process is obtained by squaring the absolute value of Eq. (6.1-18) and taking an
expected value,

SARMA(ω) = WN

∣∣∣∣∑
l

bl exp(iωl ·
)
∣∣∣∣
2/∣∣∣∣∑

k

ak exp(iωk ·
)
∣∣∣∣
2

(6.1-19)

This expression is often written by using z-variable

z = exp(iω
) (6.1-20)

SARMA(z) = WN

∣∣∣∣∑
l

blz
l

∣∣∣∣
2/∣∣∣∣∑

k

ak z
k

∣∣∣∣
2

(6.1-21)
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Thus, an ARMA spectrum is a ratio of two polynomials in z. A polynomial of Kth order
has exactly K roots in a complex z-plane. Let us denote zeroes in the numerator as z0,l and
in the denominator, as zp,k . Equation (6.1-21) can be written as

SARMA(z) = WN · const ·
∣∣∣∣∏

l

(
z− z0,l

) ∣∣∣∣
2/∣∣∣∣∏

k

(
z− zp,k

) ∣∣∣∣
2

(6.1-22)

Let us briefly summarize properties of an ARMA spectrum. Zeroes in the denominator
at z = zp,k are called poles of the spectrum; in general poles are complex values. If a pole
zp,k value is real, the signal has a sinusoidal component; if a pole is inside the unit circle in
complex z-plane, the signal has an exponentially damped sinusoidal component; if a pole
is outside the unit circle, the signal has an exponentially growing sinusoidal component. If
there are poles close to a unit circle, they define the gross characteristics of the signal and
the spectrum. Since positions of poles are defined by an AR part of the signal model; the
AR part is often a “more important” one. An MA part of the signal model is practically
useful in providing extra degrees of freedom to the model: in a pure AR model, the ratio
of amplitudes of various poles (residuals) is determined by positions of the poles. Thus, if
an exact model of the signal is not known, AR could be too restrictive. AR and ARMA
parameter estimation is practically important and theoretically intriguing, because there is
no sufficient statistics for AR parameters and the Cramer–Rao bound for the accuracy of
AR parameter estimation cannot be achieved for short-term windows. The meaning of this
statement about the Cramer–Rao bound is discussed in detail in Chapter 9, but here it is
sufficient to mention that any estimation of AR or ARMA parameters can be improved.

For nonstationary signals, spectra are changing with time, S(t, ω) and they are rep-
resented as two-dimensional images in (t, ω)-coordinates with brightness given by the
spectrum S. A simple practical way to compute S(t, ω) is by subdividing signal s(t) into
short windows (t to t + T ) and estimating the usual one-dimensional spectra for each
window. The window length, T , should be selected so that signal spectrum does not change
much over T . An elegant and general way of representing this process is given by the
following expression for the (t, ω)-component of the signal:

s(t, ω) =
∑
t ′

s(t ′)w(t − t ′) exp(−iωt ′) (6.1-23)

where w(t − t ′) is a smooth window function that is concentrated within time interval
t ′ ∼ (t ± T/2) and is zero (or very small) outside of this interval. A periodogram-like
estimate of the two-dimensional time–frequency spectrum is given by

S(t, ω) = |s(t, ω)|2 (6.1-24)

Images of the two-dimensional spectra S(t, ω) are also called spectrograms. They form the
foundation for signal analysis in many areas dealing with nonstationary signals, for example,
in speech recognition. Efficient modeling and estimation procedures for spectrograms did
not exist until recently. This is the main subject of this chapter. In the following sections,
we often consider data as given by S(ω) or S(t, ω), rather than by time signal s(t). In
some cases, measurement devices actually measure spectra3; in other cases, we assume that
spectrum data are given by a procedure specified in Eqs. (6.1-23) and (6.1-24). Considering a
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periodogram [rather than s(t)] as data does not change the conceptual nature of the spectrum
estimation problem. Model-based spectrum estimation still consists in finding parameters
of spectral models. These parameters could be used for finding specific events in spectral
data, and spectral models could more accurately estimate the true spectra of signals.

6.1.3 Model-Based Spectrum Estimation

Model-based spectrum estimation consists in estimating parameters of spectral models. For
an example of an ARMA process considered above, estimate parameters of Eq. (6.1-8) or
(6.1-22): {WN, bl, ak}, or

{
WN, const, z0,l , zp,k

}
. The first model-based neural network for

signal processing was Widrow’s Adaline, which estimated parameters of an AR model.
A number of parametric spectrum estimation methods have been developed, many of
which are based on a fundamental statistical principle of the maximum likelihood (ML)
for deriving parameter estimators. A maximum entropy spectrum estimation method was
developed by Burg (1967). In this chapter we use an estimation approach based on Shannon’s
similarity, introduced in Chapter 4, where we discussed its relationships to other entropy
maximization methods.

Our approach to the spectrum estimation as a pdf(ω) estimation is inspired by the
Einsteinian interpretation of the electromagnetic spectrum as proportional to a pdf of
the photon frequency. A similar interpretation is valid for phonons of acoustic spectra
(speech, seismic signals, etc.) and for any signal field obeying Bose–Einstein’s statistics
(bosons). This chapter applies the Shannon–Einsteinian similarity developed in Chapter 4.
The following sections introduce flexible models for pdf(ω) and pdf(t, ω).

6.2 SPECTRAL MODELS

Einsteinian spectral models F(ω) were introduced in Chapter 4, Section 4.4. In general,
they are superpositions of submodels, F(ω|k).

F(ω) =
∑
k

F (ω|k), k = 1, . . . , K (6.2-1)

Here, we consider several types of parametric expressions for the submodels F(ω|k). A
most simple, uniform model is given simply by a normalization constant

F(ω|k) = h̄ω Ak/N (6.2-2)

A Gaussian model is given by Gaussian densityG(ω). For continuous spectra, standard
normalization is appropriate, ∫G(ω) dω = 1. For sampled spectra, models F(ω|k) are
normalized appropriately, similar to Eqs. (4.4-3) and (4.4-10). The correspondence between
the two normalizations is established by remembering that

∫ dω(·) ≈
∑
ω


ω(·); 
ω = 2π/T (6.2-3)

Combining this with the Gaussian function (4.4-9),



270 Einsteinian Neural Network

F(ω|k) = h̄ω Ak 2π/T G(ω|k) = h̄ω Ak (2π)
1/2 (1/T σk)

exp
{−0.5 (ω − ωk)

2 /σ 2
k

} (6.2-4)

In this equation,ωk is the mean (center) frequency and σk is the frequency standard deviation
for the source-model k. We will illustrate the use of Gaussian models in application examples
discussed in Section 6.4, where these models are based on the physics of the considered
spectra. Note that Gaussian functions form a complete set (in the space of positive functions),
so that any spectrum S(ω) can be modeled as a superposition of Gaussian functions, using
Eqs. (6.2-1) and (6.2-7).

We also consider spectral-pole models motivated by ARMA process. A prominent
feature of these models is that their spectra contain poles in the complex frequency domain,
determined by an AR part of the process. For a continuous-time process, a spectral-pole
model in the complex frequency domain, corresponding to a first-order AR process, is a
function of the type

φ(ω|k) = |ω − ωk − iαk|−2 (6.2-5)

Here, (ωk ± iαk) is a pair of spectral poles in the complex frequency plane, ωk is their real
part determining the frequency of an oscillatory process and a position of spectral peak
along real frequency coordinate ω, and αk is a damping factor, related to the width of the
peak; vertical bars denote an absolute value (magnitude) of a complex number. To obtain
an oscillatory process in a linear system with a real (not complex) coefficient, at least the
second-order AR process has to be considered. It leads to a more complicated pole model
containing two pairs of poles,

φ(ω|k) = ∣∣ω2 − iαkω − ω2
k

∣∣−2
(6.2-6)/$

For a discrete-time process, sampled at the time interval 
, a spectral pole model corre-
sponding to the second-order AR process is a function of the type

φ(ω|k) = 
4 · |1 + ak exp(−iω
)+ bk exp(−2iω
)|−2 (6.2-7)

Parameters ak , bk of Eq. (6.2-7) can be related to parametersωk , αk of Eq. (6.2-6) as follows
(Perlovsky, 1988c):

ak = −2 exp (−0.5αk
) cos
[(
ω2
k − α2

k

/
4
)1/2



]
, bk = exp (−αk
) (6.2-8)

Using the above expressions, the pole models are defined as

F(ω|k) = h̄ω Ak const · φ(ω|k) (6.2-9)

where const is determined so as to ensure normalization of the type (4.4-11): ∫ const ·
φ(ω|k) dω = 1. It can be computed either numerically, or by using analytic expressions
obtained in Perlovsky, (1988c):

first-order pole model, Eq. (6.2-5), const = 2 αk/T (6.2-10)

second-order pole model, Eqs. (6.2-6) and (6.2-7), const = 2ω2
k αk/T (6.2-11)
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For the discrete sampled process, the above expressions are approximations, valid for αk �
ωk � 
−1.

Gaussian and pole models given by Eqs. (6.2-8), (6.2-9), and (6.2-10), have a certain
degree of similarity: when considered only over a set of positive frequencies ω = {n ·
2π/T , n = 0, . . . , N/2}, all functions have a single symmetrical peak, located at ω = ωk ,
and all are characterized by two parameters, the mean position and the standard deviation
or width of the peak. The second-order models are symmetrical about ω = 0, but the first-
order and Gaussian models are asymmetrical, indicating that they do not correspond to a
linear system with real coefficients. Still, these models can be used as approximations for
more complex systems.

6.3 NEURAL DYNAMICS OF ENN

6.3.1 Shannon’s Similarity Dynamics of Einsteinian Spectral Models

Spectral models introduced in the previous section are parametric models and their pa-
rameters are to be determined by maximizing Shannon–Einsteinian similarity between the
models and data as described in Chapter 4. These models and the corresponding estimation
equations define the Einsteinian Neural Network (ENN). The number of photons we denote
Nω. Its definition in Chapter 4 may present a difficulty at ω → 0, Nω → ∞. This should
be corrected as follows (see Note 3): in sampled spectra, frequency is defined within the
sampling interval, ±π/T . Thus, the smallest absolute value of ω is about π/T , and we
substitute (4.4-2) with

Nω = S(ω)/h̄ω′; ω′ = max(|ω|, π/T ) (6.3-1)

Substituting Eq. (6.3-1) and any of Eqs. (6.2-4) or (6.2-12) into Eqs. (4.4-45) and (4.4-
46), we obtain the dynamic equations of ENN for any of the above models. Fuzzy “class”
memberships are given by

f (k|ω) = F(ω|k)/F (ω); F(ω) =
∑
k

F (ω|k) (6.3-2)

“Class” k here refers to a signal source submodel F(ω|k) of the overall model F(ω).
And fuzzy class memberships f (k|ω) are interpreted as probabilities that a photon with
frequency ω originates from source k. When deriving equations for amplitude parameters
Ak , a constraint (4.4-12) should be accounted for. For all other parameters, Sk ,

dSk/dt =
∑
ω

Nωf (k|ω) [∂ lnF(ω|k)/∂Sk] (6.3-3)

In the case of Gaussian models, it is possible to derive more convenient iterative equations
(4.4-13), (4.4-14), and (4.4-15). We also use approximations for the pole models described
in the Appendix (Section 6.7), while here we summarize the results. Amplitude parameter
estimation equations for all models are as follows:

Ak = Nk/N, Nk =
∑
ω

Nωf (k|ω), N =
∑
ω

Nω (6.3-4)



272 Einsteinian Neural Network

Here, N is the total number of observed (measured) photons, and Nk is interpreted as the
number of photons coming from the source k. Equations for Gaussian model parameters
ωk and σk were derived in (4.4-14), and (4.4-15),

ωk =
∑
ω

Nωf (k|ω)ω/Nk (6.3-5)

σ 2
k =

∑
ω

Nωf (k|ω) (ω − ωk)
2 /Nk (6.3-6)

Equations for the first-order pole model parameters ωk and αk are

ωk =
∑
ω

Nωf (k|ω)
[
(ω − ωk)

2 + α2
k

]−1
ω
/∑

ω

Nωf (k|ω)
[
(ω − ωk)

2 + α2
k

]−1
(6.3-7)

α2
k =

∑
ω

Nωf (k|ω)
/∑

ω

Nωf (k|ω)
[
(ω − ωk)

2 + α2
k

]−1
(6.3-8)

Equations for the second-order pole model parameters ωk and αk are

ω2
k =

∑
ω

Nωf (k|ω)ω2/Nk (6.3-9)

αk = π
∑
ω>0

Nωf (k|ω) (ω − ωk)
2 /Nk (6.3-10)

The above Eqs. (6.3-2) through (6.3-10) define the dynamics of ENN with one exception:
it is necessary to specify how many source models of each type F(k|ω) are included
in F(ω), Eq. (6.2-8). This problem of determining numbers and types of model sources
will be considered later. ENN consists of two subsystems, the association subsystem that
computes fuzzy class memberships f (k|ω) according to Eq. (6.3-2) and the modeling
subsystem that estimates model parameters according to Eqs. (6.3-3) through (6.3-10).
ENN’s architecture is similar to the general MFT architecture considered in Chapter 4 and
to MLANS architecture considered in Chapter 5.

6.3.2 Two-Dimensional Time–Frequency ENN

Einstein’s interpretation of the spectrum is extended in this section to the two-dimensional
time–frequency spectra following Section (4.4–7) and applied to the time–frequency spec-
tral model,F(t, ω). We interpretF(t, ω) as a pdf for a single photon with frequencyω at time
t , which is proportional to a number of single-photon states at time–frequency (t, ω). A num-
ber of observed photons at each time and frequencyNt,ω is computed similarly to Eq. (6.3-1),

Nt,ω = S(t, ω)/h̄ω′ (6.3-11)

Let us specify several parametric models for signal sources. A uniform model, which
could be appropriate for background noise, is given by a normalization constant,

F(x|k) = h̄ω Ak/NCT� (6.3-12)

where vector x = (t, ω) and NCT� is the number of cells (or pixels) in the x-domain. For
a rectangular (t, ω)-domain, NCT� = NCT · NC�, where NCT and NC� are numbers of
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cells (or pixels) along t and ω (in the one-dimensional case of the previous section we used
simpler notations, N = NC�). Nonrectangular domains can be described by NC�(t). A
single cell size in two-dimensions is (
ω ·
T ).

A two-dimensional Gaussian model is appropriate for signal sources localized in time
and frequency. It is given by (see Problem 6.3-1)

F(x|k) = h̄ω Ak (
ω) (
T )G(x|k) =
h̄ω Ak (
ω) (
T ) (2π)

−1 (det Ck)
−1/2 exp

{−0.5 (x − xk)T C−1
k (x − xk)

} (6.3-13)

In this equation, Ck is the source model k frequency–time covariance matrix, and xk is
the source model mean vector, xk = (tk, ωk). Please note that the two-dimensional time
sample 
T here is a time duration between two short-term frequency spectra; if F(t, ω) is
computed via short-term FT, each FT is typically computed over
T , so that
ω = 2π/
T
and the original time sampling for the FT computation is 
T/NC�.

Four combinations of Gaussian and uniform shapes can be constructed in two di-
mensions of (t, ω): GU for Gaussian-time Uniform-frequency and, UG for Uniform-time
Gaussian-frequency; the Gaussian parts of the models can be either with constant or varying
parameters. For example, a varying-parameter UG model is given by

F(x|k) = h̄ω Ak NCT−1(2π)−1/2 [
ω/σk(t)]

exp
{−0.5 [ω − ωk(t)]

T σk(t)
−2 [ω − ωk(t)]

} (6.3-14)

Such a model is appropriate for a source with localized frequency characteristics that vary
with time. For certain sources, it is appropriate to consider combinations of Gaussian or
uniform time models with pole frequency models.

Dynamic ENN equations are derived as in the previous section. Fuzzy class member-
ships are given by

f (k|x) = F(x|k)/F (x) (6.3-15)

They can be interpreted as probabilities that a photon at time t with frequencyω [x = (t, ω)]
originates from source k. Equations for amplitude parameters Ak do not change; for all
models they are estimated by

Ak = Nk/N, Nk =
∑
x

Nxf (k|x), N =
∑
x

Nx (6.3-16)

For all other parameters, Sk ,

dSk/dt =
∑
x

Nxf (k|x) [∂ lnF(x|k)/∂Sk] (6.3-17)

Again, for the considered models, it is possible to derive more convenient iterative equations.
For example, two-dimensional Gaussian model estimation equations are given by

xk =
∑
x

Nxf (k|x)x/Nk (6.3-18)

Ck =
∑
x

Nxf (k|x) (x − xk) (x − xk)T /Nk (6.3-19)
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6.4 APPLICATIONS TO ACOUSTIC TRANSIENT SIGNALS AND SPEECH
RECOGNITION

6.4.1 Transient Signals

Transient signals are encountered in many applications; a widely known one is speech
recognition. Recognition of speech usually begins with recognition of phonemes, transient
signals with duration about 0.1 to 1 s. A time-domain signal is sampled at a rate up to
20 kHz, producing thousands of samples per signal. A sampled signal is broken into
windows of 10 to 20 ms duration, and for each window a fast Fourier transform (FFT)
is computed, resulting in a (t, ω)-image of a speech sound. Then three problems should be
solved: (1) determine the beginning and end of phonemes or other meaningful elements
of speech (segmentation), (2) represent each phoneme with a small set of classification
features (feature extraction), and (3) recognize phonemes. These three problems cannot be
solved independently from each other; an iterative loop is required. Such an iterative loop
often cannot be limited to a single phoneme: recognition of sequences of phonemes and
words is used to refine phonemes. A comprehensive solution of speech recognition requires
a hierarchical multilevel processing system with multiple loops of iterative processing:
phoneme recognition is refined through recognition of words, and word recognition is
refined through recognition of phrases and sentences, and so on. A vast literature is available
on speech recognition. In this chapter, we concentrate on using ENN to improve solutions
of the problems listed above: (1) segmentation and (2) feature extraction.

FFT of a signal is a set of complex amplitudes (alternatively, of pairs of real-valued sin
and cos coefficients) for each frequency. Although some useful information is contained in
the phase of the complex amplitudes, most of speech can be recognized from the absolute
values or their squares. Such two-dimensional periodograms are often called Short-Term
Spectra (STS).

Examples presented below illustrate the ENN concurrently solving problems (1) and
(2). ENN segments STS and estimates parameters of the models. These parameters are
used as classification features in subsequent processing. We first consider one-dimensional
spectrum estimation for short signals, then we turn to two-dimensional spectra. At the end,
we discuss a hierarchical architecture addressing problem (3), recognition.

6.4.2 Examples of One-Dimensional Spectrum Estimation

An important, fundamental issue in learning efficiency is how accurately model parameters
are estimated from short-time windows. In the terminology of estimation theory, the question
is: what is the efficiency of ENN as a parameter estimator? This question can be thoroughly
studied when signals are generated according to a known model. The following examples
demonstrate the efficiency and accuracy of ENN for AR parameter estimation and compare
it with the performance of the best available classical estimators. AR model estimation is
practically important and theoretically intriguing, because the Cramer–Rao bound for the
accuracy of AR parameter estimation cannot be achieved for short-term windows and, thus,
any existing estimator can be improved. In this well-studied area, where much progress has
been achieved during more than 50 years of continuous development, the ENN efficiency
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exceeds that of any other known estimator including the classical ones: the ML (Yule–
Walker estimator, often known as the Levinson–Durbin algorithm) and the Maximum
Entropy (ME) algorithm due to Burg.

To evaluate the ENN performance we have generated numerically a large number of
AR signals of various orders with various parameter values. Typical results are shown in
Fig. 6.4-1 presenting results of ENN spectrum estimation along with classical ML and
ME techniques. The true signal is a sixth-order AR process with 10% additive noise. In
this case ENN resolves all three spectral peaks, accurately estimating their positions and
width, while classical techniques fail. It is known from experience that when using the
classical ML or ME methods, it is necessary to utilize models of higher orders than the
true order of the process. In the above example of a six-order process, the ML and ME
methods resolved all three spectral peaks when 12 or higher order models have been used,
while the ENN results have been accurate with three modes. Accurate estimation with fewer
parameters is important for several reasons: first, it is more elegant, second, it requires fewer
data, and third, it improves recognition when signal parameters are intended to be used as
classification features, since it is desirable to reduce the number of features.

Similar spectrum estimation results are shown in Fig. 6.4-2 for the second-order AR
process. In this case as well as in Figs. 6.4-3 and 6.4-4 a single-mode ENN model is
compared with the second-order AR models estimated using classical techniques.

To systematically evaluate accuracy, efficiency, and robustness of ENN performance
vs. classical techniques, we simulated thousands of signals for different values of modal
parameters. Some of these results are shown in Fig. 6.4-3 summarizing results of 900
numerical examples evaluating the accuracy and precision of estimations of the frequency
parameter of a second-order AR process [ωk , Eq. (6.2-10) and (6.2-11)]. We used 100
independent realizations of the AR process of varying length from 16 to 4096 samples. In

Figure 6.4-1 Spectrum estimation of a sixth-
order AR signal. The known theoretical spectrum
is shown as a solid line along with a periodogram
(squared absolute value of a Fourier transform
of a signal) shown as a shaded area. The ENN
model utilizes three ARMA pole modes and sixth-
order AR models are used for the ME and ML
estimation. Results of the ENN estimation are
clearly superior to the classical techniques (the
ML estimation in this case was exactly same as
the ME one).
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Figure 6.4-2 Spectrum estimation of a second-
order AR signal is shown similar to Fig. 6.4-1. A
unimodal ARMA model is used in ENN estima-
tion and a second-order AR model is used for the
ME and ML estimation.

Figure 6.4-3 Numerical results of the estimation of the pole frequency ω0 averaged over ensembles
of 100 arrays. The true pole frequency ω0 = 1 kHz and the width of the pole (the imaginary part of
the pole or a damping factor) α0 = 10 Hz; the sampling interval 
 = 10−4 s, and array lengths are
from 16 to 4096 samples. A unimodal ARMA model is used in ENN and a second-order AR model
is used for the ME and ML estimation. The ENN estimator is shown using dashed lines. It is clearly
superior to the classical ML and ME estimators shown using solid lines.

this figure, the performance of the ENN is compared with that of the ME estimator for AR
parameters. The Yule–Walker ML estimator in these cases yields the same results as the ME
one. It is seen in Fig. 6.4-3a that the ENN estimator is more accurate than other available
estimators. Its variance shown in Fig. 6.4-3b quickly tends to the Cramer–Rao bound, so
that the MLANS performance is close to the bound on learning efficiency for any algorithm
or neural network.

The ENN performance is also robust with respect to noise. When various types of noise
have been added to the AR signals the ENN performance has been virtually unchanged,



6.4 Applications to Acoustic Transient Signals and Speech Recognition 277

1000 1000

100 100

100 100

10 10

10 10

1 1

1 1

0.1 0.1

�
(k

H
z)

�
(k

H
z)

�
(k

H
z)

�
(k

H
z)

� �= 1; = 10
Noise = 0%

0

� �= 1; = 10
Noise = 0%

0

� �= 1; = 10
Noise = 100%

0

� �= 1; = 10
Noise = 100%

0

0.0016 0.0016

0.0016 0.0016

ENN

ENN

ENN ENN

ME

ME

ME
ME

BT

BT

BT

BT

0.2

0.2

0.2

0.2

0.5

0.5

0.5

0.5

Time (sec) Time (sec)

Time (sec) Time (sec)

(a) (b)

(c) (d)

0.0256 0.0256

0.0256 0.0256

0.4096 0.4096

0.4096 0.4096

Figure 6.4-4 Numerical results of estimations of pole frequencies ω0 and damping factors α0 from AR signals
corrupted with additive white noise. The true parameter values are: frequency ω0 = 10 kHz, damping factor α0 =
1 kHz, sampling interval 
 = 10−4 sec, and array lengths are from 8 to 4096 samples; (a) and (b) show results of
frequency estimation, (c) and (d) show results of damping factor estimation; in (b) and (d) a white noise is added
to the signal as described in the text. The ENN estimator is shown using dashed lines. It is clearly superior to the
classical estimators shown using solid lines: the ML and ME estimators yield similar results in this case, BT denotes
an estimator due to Bartlett (1946).

while classical ML and ME estimators have completely failed. We have studied additive
and multiplicative types of noise with signal-to-noise ratios down to 1. Some of these results
are shown in Fig. 6.4-4. The signal in Fig. 6.4-4a and c is a second-order AR process with
the frequency ω0 = 10 kHz and the damping factor (the imaginary part of the spectral pole)
α0 = 1 kHz. In Fig. 6.4-4b and d a white noise is added to the AR signal with the standard
deviation equal to that of the AR signal (100% noise). Figure 6.4-4a and b shows estimation
results for the frequency ω0 and Fig. 6.4-4c and d shows estimation results for the damping
factor α0. In addition to the ME and ENN estimates, this figure shows the Bartlett (BT)
estimates, which are modifications of the ML described in Bartlett (1946). Two curves shown
for ENN correspond to different settings of an internal ENN threshold defined as follows. In
Eqs. (6.3-9) and (6.3-10), Nω is substituted with max {[Nω − threshold] , 0}; the threshold
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was defined either as a minimum or average value of Nω, which did not significantly affect
the results. It is seen that the ENN performance significantly exceeds that of the classical
estimation procedures: it is quickly converging and it is virtually unaffected by noise.

6.4.3 Two-Dimensional Time–Frequency Models

An example of a transient signal is shown in Fig. 6.4-5. This 1-s duration signal is sampled
at 12.8 kHz rate and it contains 12,800 samples. Figure 6.4-6 shows the three-dimensional
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Figure 6.4-5 Example of a transient signal.

Figure 6.4-6 Short-term spectrum of the signal.
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plot of the STS of this signal: a Fourier transform has been calculated for each 10-ms
window and its amplitude squared is plotted along the vertical axis. The same data are
shown as a contour plot in Fig. 6.4-7a. It is seen that there is a relatively short high-
frequency component in the signal and a longer, low-frequency one with changing fre-
quency. A random noise is scattered around the plot; the signal-to-noise ratio in this case
is about one.

We modeled this STS data as a mixture of one uniform and several two-dimensional
Gaussian models [Eq. (6.3-13)]. Results are illustrated in Fig. 6.4-7b and c, which shows
estimated models with three and five Gaussian modes, respectively. Each Gaussian mode
is illustrated by its 2 − σ ellipse. (The number of ellipses in Fig. 6.4-7b and c is one less
than the number of modes, since there is the uniform mode whose boundaries coincide
with the plot boundaries.) Each Gaussian mode is characterized by six parameters: two
components of the mean, two standard deviations, a correlation coefficient, and the energy
in the mode. The energy in modes 4 and 5 is orders of magnitude smaller than in the first
three modes, therefore the Fig. 6.4-7c model represents a small correction to the three-
mode model in Fig. 6.4-7b in terms of signal energy. However, the importance of these
modes for classification is not due to their share of the total energy, but to their effect on
classification. Therefore, an optimal number of modes for classification can be determined
only in a hierarchical system that consists of the signal-modeling layer considered here, and
the top classification layer.

6.4.4 Hierarchical ENN + MLANS Architecture for Signal
Recognition

A hierarchical system for signal recognition can be built from the bottom signal-modeling
ENN layer considered above and the top recognition MLANS layer considered in Chapter 5.
Such a hierarchical ENN + MLANS structure is shown in Fig. 6.4-8. The bottom ENN
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Figure 6.4-7 Transient signal model estimation. Contour plot of a short-term spectrum (a) and its modeling using three
modes (b) and five modes (c).
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Figure 6.4-8 Schematics of a hierarchical ENN + MLANS architecture for transient signal modeling
and classification.

layer estimates signal model parameters, which are used as classification features in the top
MLANS layer. The top layer estimates feature pdfs and performs Bayes classification as
discussed in Chapter 5.

6.5 APPLICATIONS TO ELECTROMAGNETIC WAVE PROPAGATION IN

THE IONOSPHERE

This section describes an application of ENN to characterizing a recently observed phe-
nomenon known as equatorial ionospheric clutter that significantly affects propagation
of high-frequency electromagnetic waves through the ionosphere and interferes with op-
erations of over-the-horizon (OTH) radars and communication links using high-frequency
radiowaves. Estimation of model parameters characterizing this phenomenon is complicated
by the presence of multiple interfering signal sources. The data are affected by multipath
propagation and scattering phenomena acting concurrently, each characterized by unknown
parameters that vary in time and space. Therefore, the model of the data should be composed
of multiple adaptive submodels, characterizing individual phenomena. This condition is
not uncommon in science; data often are affected by multiple phenomena with unknown
characteristics that cannot be isolated in scientific experiments. ENN resolves this complex
estimation problem by probabilistic association of signal energy with submodels of various
signal sources, while estimating model parameters.

6.5.1 Over-the-Horizon Radar Spectra

OTH radars operate in the high-frequency (HF) band between 5 and 30 MHz and are used
to detect and track targets at distances up to 4000 km beyond the maximum line-of-sight
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range of conventional ground-based microwave radars. To achieve these distances the HF
signals propagate obliquely, reaching maximum altitudes ranging from 90 to 400 km in the
ionosphere, and then reflect to the earth in what is called a bounce, or “hop.” An illustration
of OTH radar operations is shown in Fig. 6.5-1. Objects along the raypath scatter part of
the radar signal energy back to the radar receive antenna. A “footprint” on the ground of a
single radar resolution cell is approximately 10×10 km2. This is much larger than objects of
interest, such as airplanes, thus most of the return signal is due to the ground clutter reflection.
Relatively small returns from airplanes can be observed due to Doppler processing of the
radar signal, which separates moving targets from the enormous ground clutter reflection.
Doppler processing consists in computing short-term spectra: the ground return frequency
is near the frequency of the transmitted signal (zero Doppler) while frequency of signals
reflected by moving targets is shifted by Doppler frequency

ω = (2v/c)ω0 (6.5-1)

Here, v is the target velocity toward or away from radar, c is the speed of light, and ω0 is the
radar frequency. Equatorial clutter spreads over a number of Doppler cells and significantly
degrades the OTH radar performance. For the basic studies of ionosphere, estimation of the
parameters characterizing clutter is of interest.

Example of typical OTH radar Doppler spectra are shown in Fig. 6.5-2 for several time
points, along with the processing results discussed later. Figure 6.5-3a shows same data for
the entire data set containing 150 time spectra. The amplitude of returns is plotted using gray
scale, as a function of Doppler frequency (horizontal axis) and time (or “spectrum number,”
vertical axis). Every horizontal line in this plot contains a 64-point Doppler spectrum.

Figure 6.5-1 Artist’s sketch of the OTH radar beam propagation with multiple hops.
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Figure 6.5-2 Comparison of estimated spectra vs. data for spectrum numbers 91–94, B34, RB1 data
set. Individual modes are shown using dashed lines.

There are 150 spectra shown, numbered 0 to 149, all corresponding to the same range of
2856 km and collected from 21:07:44 UT to 23:04:58 UT. Each spectrum is determined by
contributions from several major sources of signals. The main peak contains contributions
first, from energy directly reflected back from the ground (or ocean) through the ionosphere
to the receive antenna and second, from a “two-hop” mode that corresponds to a signal
energy that bounces twice between the ground and the ionosphere (in one of the directions:
away or toward the radar). The two-hop mode has lower energy and is slightly offset in
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Figure 6.5-3 Comparison of estimated spectra vs. data for B34, RB1 data set; (a) data, (b) estimated ENN
model, (c) mode-center frequencies superimposed on the raw data.

Doppler. [Similarly, there is signal energy that bounces several times (multihope modes)
and has lower energy.] The vertical dark line corresponds to this ground return energy near
zero Doppler; the Doppler is not exactly zero because of ionosphere motion. The spread-
Doppler clutter structure, which is of main interest for our analysis, can be seen to the right
of the ground return peak. This is caused by turbulent variations in the electron density
in the region of the ionosphere from which the radar beam is being refracted. At time
21:07:44 UT the equatorial (also called spread-Doppler) clutter is barely discernible from
the ground clutter and over the next one and one-half hours (toward the top of the figure,
spectrum number 125, recorded at 22:42:26 UT) it evolves into a large structure spread over
many Doppler values. (This severely impairs radar functioning; in fact, the radar operator
actually changed the operating parameters of the radar for the time frames corresponding
to spectrum numbers 58–65 and > 125 in an attempt to locate a better operating regime
to improve the radar performance; however, this resulted in a significant loss of received
energy.) The clutter also changes in range and azimuth (not shown), depending on the spatial
variations in the ionosphere causing the spread-Doppler clutter. Another source of energy
in these spectra is the noise “floor.”
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6.5.2 Spectral Models

For a long time, the origin of equatorial clutter in OTH radar spectra that spreads over
significant Doppler interval remained a mystery. Early studies attributing these effects to the
interaction of HF signals with either meteor trails or auroral irregularities could not account
for the properties of clutter observed around the globe. Recently, Franchi and Tichovolsky
(1989) obtained the Phase Screen Ground Modulation (PSGM) model, demonstrating how
ionospheric turbulence can produce phase fluctuations in HF signals. They showed that the
resulting effect can be modeled as a Gaussian-shaped spectral broadening, the parameters of
which are related to a number of physically significant characteristics of electron distribution
in ionosphere. Accurate estimates of the temporal and spatial characteristics of clutter
spectra are needed for two purposes: first, for improved clutter rejection in normal radar and
communication operations, and second to establish the quantitative connection between the
observed clutter and ionospheric properties, for the basic scientific studies of the ionosphere.
As mentioned, the necessary spectral clutter properties are difficult to estimate, because there
are multiple sources of radar signals interfering with accurate estimation of properties of
spread-Doppler clutter.

We model OTH Doppler spectra as a superposition of four major sources: (1) one-
hop ground return, (2) two-hop ground return, (3) equatorial spread-Doppler clutter, and
(4) noise floor. According to the PSGM model (Franchi and Tichovolsky, 1989), we use the
Gaussian model Eq. (6.2-8) for the equatorial-clutter structure and for each ground-return
mode. The noise floor is modeled using a uniform density [Eq. (6.2-10)].

Figure 6.5-2 shows the results of the ENN-estimated spectral model for these data.
Four spectra and modeling results are shown for different time points. Estimated models
for individual signal sources are shown using dotted lines. The total model is shown using
a thin line and the data are in bold. There are almost no deviations between the data and the
model. Figure 6.5-3 shows the same data and results for the entire RB1 data set containing
150 time spectra. Each one of the 150 horizontal lines in these plots is processed separately,
so for every 64-point spectrum, ENN iterated until convergence, resulting in a set of model
parameters (150 sets of parameters for 150 spectra). We illustrate the results by using these
parameters to compute the estimated spectra models according to Eqs. (6.2-5), (6.2-7), and
(6.2-8). The estimated models are shown in Fig. 6.5-3b. They are remarkably similar to
the data, considering a relatively simplistic form of the model used. The model is seen to
correspond to the overall data structure as it changes over time for both the ground-clutter
and the spread-clutter structures. A comparison of the model parameters to the data is shown
in Fig. 6.5-3c for the mean frequency parameters for each mode ωk . The mean frequencies
are seen to correspond to peaks in data for most of the 150 spectra for the ground-return
clutter structure (m = 2, 3) and for the observed equatorial clutter event (m = 4). Model
parameters can be related to ionospheric properties using the PSGM model and also can be
used for developing of clutter rejection techniques as discussed in the next chapter.

6.6 SUMMARY

This chapter described a new approach to spectrum modeling and estimation based on
the Einsteinian interpretation of the spectrum as a pdf of frequency. The new estimation
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principle is based on maximization of the Einsteinian likelihood. In Chapter 4 it was shown
to be equivalent to the maximization of physical entropy of the ensemble of photons, and
to maximization of mutual information in the model about the data. Also, in Chapter 4 we
discussed the relationship of this estimation procedure to the classical maximum likelihood
(ML) statistical estimation. The spectrum is modeled as a mixture of a set of basis functions.
This estimation approach serves as a foundation for ENN, which is an MFT-type neural
network based on Shannon–Einsteinian similarity.

The model-based neural network utilizes available prior information about signal
properties. The ENN models are general and flexible; they are specific as little or as
much as is warranted by available prior information. For example, Gaussian mixture
models can be used to approximate any spectral shape. A practical utility of the model
is high when relatively few submodels are sufficient for signal modeling. ENN learning
is fast and efficient: for AR signal processing ENN estimation efficiency exceeds the best
classical algorithms, the ME (Burg) and the ML (Yule–Walker) estimators even within
the area of their applicability (AR signals). For two-dimensional time–frequency spec-
tral modeling, ENN is efficient due to utilizing two-dimensional models with relatively
few parameters.

An intriguing view of the ENN estimation process is that it corresponds to the quantum
nature of the electromagnetic or acoustic field. Although signals considered in this chapter
are due to acoustic and electromagnetic waves that can be considered as classical phenom-
ena, the quantum nature of the fields determines statistical properties of a photon or phonon
ensemble and the estimation procedure, in the same way as the Plank density is determined
by the quantum structure of blackbody radiation.

6.7 APPENDIX

Shannon–Einsteinian similarity or mutual information [Eq. (4.4-44) is exactly similar to the
Bayesian similarity (4.3–10), with the sum over pixels�n(·) being replaced by the sum over
photons �ω Nω(·). The Einsteinian models in this chapter can be considered as likelihood
models for the frequency,ω, while every photon is considered as an independent observation
of frequency. Thus, maximization of Shannon–Einsteinian similarity for the uniform and
Gaussian model can be achieved by using the same equations as used in Chapter 5 [with the
substitution of �n(·) → �ω Nω(·)], leading to Eqs. (6.3-5) and (6.3-6). Equations for the
pole models are derived by a procedure similar to Chapter 5, Section 5.6. It was shown
there that iterative maximization of Shannon–Einsteinian similarity

maxS

{∑
ω

Nω ln F(ω)

}
(A6-1)

over the entire set of model parameters {Sk} can be achieved by maximizing∑
ω

Nω f (k|ω)maxSk [ln F(ω|k)] (A6-2)

at each iteration over the parameters of the kth source, Sk , within the square brackets
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[ln F(ω|k)], while considering f (k|ω) known from the previous iteration. Thus it is suffi-
cient to consider the following equations:∑

ω

Nω f (k|ω) (∂/∂Sk) [ln F(ω|k)] = 0 (A6-3)

For the first-order pole model, the derivatives with respect to parameters ωk and αk are as
follows:

(∂/∂ωk) ln F(ω|k) = 2 (ω − ωk)
[
(ω − ωk)

2 + α2
k

]−1
(A6-4)

(∂/∂αk) ln F(ω|k) = α−1
k + 2 αk

[
(ω − ωk)

2 + α2
k

]−1
(A6-5)

The procedure in Section 5.6 calls for solving this joint system of equations for ωk and
αk at every iteration. Instead, Eqs. (6.3-7) and (6.3-8) are derived by approximating this
procedure: by considering the term

[
(ω − ωk)

2 + α2
k

]
to be known from the previous

iteration. Equations for the second-order pole model parameters ωk and αk are derived
by relating these parameters to the first two moments of the F(ω|k), leading to Eqs. (6.3-9)
and (6.3-10). I did not prove that these modified procedures always converge; however, in
my experience they did. If convergence problems are experienced, it is always possible to
revert to the general Eq. (6.3-3).

NOTES

1. It is important not to confuse spatial, temporal, and frequency dimensions with the dimensions
of a decision space, which was a subject of many examples in Chapter 5. For example, if an
object occupies N color pixels, the decision space characterizing this object may include 4N
dimensions: four measurements for each pixel (two spatial positions, one frequency, and one
brightness). Psychological perception of color uses a nonlinear map from a continuous frequency
into three basic colors. We will not be concerned in this book with psychological color perception.

2. For simplicity of notations, we use same letters to denote signals and their spectral components,
while indicating the time or frequency domain by the coordinate t or ω; e.g., s(t) and S(ω). This
is especially convenient later, when we consider two-dimensional representations S(t, ω). Also,
we use the same notation S(ω) for the true signal frequency components and for various ways
in which they could be estimated. Usually, the context is sufficient to eliminate any ambiguity,
otherwise, an explanation is added.

3. A similar effect is known in quantum electrodynamics (QED) under the name of the infrared
catastrophe. It is known from QED that there is no “true” infinity of the number of emitted
photons at ω → 0. This is because the lowest photon frequency is not zero, but is limited by the
spatiotemporal extent of the emitting and measurement systems. Exact treatment of this issue in
QED leads to logarithmic corrections ∼ ln (ωmin). This logarithmic dependence is weak, and our
approximate treatment of this problem should be sufficient.

BIBLIOGRAPHICAL NOTES

Sunspot number modeling (Yule, 1927).
Brownian motion (Einstein; Wiener, 1948).
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Stochastic stationary signals and classical spectrum estimation methods (Kay and Marple, 1981;
Priestley, 1981; Proakis et al., 1992).

The first model-based neural network for signal processing was Widrow’s Adaline (1959).
Parametric spectrum estimation methods (Kay and Marple, 1981; Proakis et al., 1992).
Einsteinian interpretation of the electromagnetic spectrum as proportional to a pdf of the photon

frequency (Einstein and Hopf, 1910).
Efficient modeling and estimation procedures for spectrograms in this chapter (Perlovsky, 1994b,

1996b; Perlovsky et al., 1995b; 1997a,b).
Efficiency of adaptive algorithms (Widrow, 1988).
Classical AR estimators: the maximum likelihood (Yule, 1927; Walker, 1964; Levinson, 1947; Durbin,

1960)) and the Burg’s maximum entropy (Burg, 1967).
Section 6.4 follows the development in Perlovsky (1994b).
Speech recognition reviews and further references (Zue, 1996; Olive et al., 1993).
HF clutter physical models: meteor and auroral causes of HF clutter (Vandrak et al., 1977) could not

account for the properties of clutter observed around the globe. Phase Screen Ground Modulation
(PSGM) model (Franchi and Tichovolsky, 1989). PSGM is based on the phase-screen model of
Booker et al., (1987).

Previous approaches to clutter characterization were of a rather approximate nature, because of the
difficulties related to multiple sources of radar signals interfering with estimation of properties
of spread-Doppler clutter (Thomas, 1995).

PROBLEMS 6.1–1 Verify all steps leading from Eq. (6.1-17) to Eq. (6.1-17).

Step 1: By using a simple example (say k = 1, 2;ω = 1, 2, 3), verify that the order of
summation can be exchanged as follows [for any values of ak , s(ω), f (ω, k)]:∑

k

ak
∑
ω

s(ω) f (ω, k) =
∑
ω

s(ω)
∑
k

ak f (ω, k)

Hint: list all items in the double sums on each side. Thus, Eq. (6.1-16) can be rewritten
as ∑

ω

s(ω)
∑
k

ak exp (−iωtn−k) =
∑
ω

wn(ω)
∑
l

bl exp (−iωtn−l )

Step 2: By using (6.1-10), rewrite the above as∑
ω

s(ω) exp (−iωtn)
∑
k

ak exp (iωk ·
)

=
∑
ω

wn(ω) exp (−iωtn)
∑
l

bl exp (iωl ·
)
Step 3: Both sides of the above equation are signals of tn, which are defined as FTs.
An FT is an orthogonal transformation: if signals are equal [x(t) = y(t)], their FTs
are also equal [x(ω) = y(ω)]. Compare each side of the above equation with the FT
definition [Eq. (6.1-10)] and identify FTs on each side. These FTs are equal, yielding
Eq. (6.1-17)

6.3–1 Verify normalization of Eq. (6.3-13). Hint: start with two-dimensional Gaussian pdf,
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G(x|k) = (2π)−1 (detCk)
−1/2 exp

{−0.5 (x − xk)T C−1
k (x − xk)

}
and use Eqs. (6.2-7) and (6.2-11).

6.3–2 Define two-dimensional generalizations of ARMA models and derive estimation equa-
tions. First, consider a simple case of ARMA-frequency and uniform-time model. Then,
consider ARMA-frequency and Gaussian-time model.



chapter 7

PREDICTION, TRACKING, AND DYNAMIC
MODELS

In the beginning of every mythology, theology, or cosmogony there is a concept of the
original chaos. An emergence of ordered cosmos is equated with the divine act of creation,
which psychologically is equivalent to an emergence of consciousness. Thus, an ability to
order and to predict is considered fundamental to consciousness. Originally, mathematical
concepts of order were deterministic arithmetical and geometric ones. They have been seen as
counteracting the mystery of chaos. Beginning with the sixteenth century, more sophisticated
mathematical methods emerge, rationalizing the chaos itself. Prediction of outcomes in card
games and gambling stimulated the development of probability theory. Early model-based
approaches to prediction using linear regression and autoregressive modeling were used for
more sophisticated, time-series prediction. Prediction methods got a significant boost on the
one hand from the development of stochastic process theory, and on the other, from the
need to solve the problem of target tracking that was first recognized during World War II,
when radar was used to track aircraft. Today target tracking applications are numerous in
both military and civilian areas of surveillance, navigation, guidance, air traffic control, and
robotics. Sophisticated tracking methods are utilized for prediction, in particular, of stock
markets. Stock market prediction replaced card games as a favorite breeding ground for new
mathematical prediction methods: it serves to optimize worldwide investment and provides
personal riches for those who can identify market inefficiencies. This section completes the
overview of basic definitions, classical approaches, and relationships among prediction,
tracking, and pattern recognition that began in Chapter 1, Section 1.3. New techniques
are described for prediction and tracking in complicated situations of multiple concurrent
processes, nonlinear relationships between variables, and when observations, in addition to
signals of interest, contain noise and clutter (distracting signals). These new techniques are
based on the modeling field theory and are extensions of MLANS and ENN model-based
neural networks considered in the previous chapters.

289
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7.1 PREDICTION, ASSOCIATION, AND NONLINEAR REGRESSION

7.1.1 Multidimensional Linear Regression

In this section we formulate the classical linear regression technique for a case of mul-
tidimensional variables. We follow Sections 1.3.1 and 1.3.2, which considered a case
of one-dimensional variables. Regression treats prediction as an estimation of unknown
values of variables y from known values of variables x. Linear regression estimates a
linear relationship between x and y from available past observations of pairs (x,y). A linear
relationship between x and y can be estimated using two different approaches. The first
approach starts with a model

y(x) = Ax + b (7.1-1)

where the matrix A and vector b are the parameters of the regression model that should be
estimated from available data

{(xn, yn) , n = 1, . . . , N} (7.1-2)

This problem is solved as the ML estimation, by considering the likelihood function of the
deviations of the model from the data

εn = yn − (Axn + b) (7.1-3)

and by modeling the probability density of the deviations εn as a Gaussian function. The
mathematical details of this approach are considered in Problem 7.1–1.

The second approach to estimating linear regression starts with a Gaussian model of
the joint pdf(x, y) = G(x, y|M,C) and defines the regression of y on x as a conditional
expected value of y given x,

y(x) = E{y|x} ≡
∫

y pdf(y|x) dy, pdf(y|x) = G(x, y)/pdf(x) (7.1-4)

Here, pdf(y|x) is a conditional density of y, given x. Mathematical details of this approach
are given in Problem 7.1–2. The two approaches to the linear regression are equivalent
for the following reason. A conditional probability above has a specific simple form for
Gaussian densities: pdf(x) and pdf(y|x) are Gaussian densities,

pdf(y|x) = G(x, y|M,C)/G (x|Mx,Cxx) = G
[
y|M′

y(x),C
′
yy

]
(7.1-5)

Substituting this into Eq. (7.1-4), we obtain, y(x) = M′
y(x).

Thus, both approaches to the linear regression yield the same result. Parameters of the
regression Eq. (1.7-1) are given by

A = Cyx (Cxx)
−1 , b = y − Cyx (Cxx)

−1 x (7.1-6)

Here, mean values x, y and covariances Cxx , Cyx are estimated from the data:

x = (1/N)
∑
n

xn, y = (1/N)
∑
n

yn (7.1-7)
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Cxx = (1/N)
∑
n

(xn − x)2 , Cyx = (1/N)
∑
n

(yn − y) (xn − x)T (7.1-8)

These parameters are related in a simple way to the parameters of joint pdf(x, y), the mean,
M, and covariance, C,

M = (x, y), C =
{
Cxx Cxy

Cyx Cyy

}
(7.1-9)

where Cxy = CT
yx . It is more accurate to refer to M and C above as estimates of the

parameters of pdf(x, y), obtained from data {(xn, yn)}.
Combining Eqs. (7.1-1) and (7.1-6), the regression is written by

y(x) = y + Cyx (Cxx)
−1 (x − x) (7.1-10)

This expression can be interpreted as follows: y(x) equals y-average plus rescaled deviation
of x from x-average; the rescaling factor,Cyx (Cxx)

−1, accounts for the correlation between
x and y and for the difference in scales between x and y.

7.1.2 Multidimensional Autoregression

Autoregression is an application of the linear regression method to time-series prediction.
One-dimensional autoregression was introduced in Chapter 1, Section 1.3.3. Here we
describe multidimensional autoregression. Also, in Section 1.3.3 the autoregressive model
“memory” was limited to just one time-step back: xt was predicted from xt−1. Here, we
derive equations for predicting xt from xt−p, for p = 1, . . . , P . At each time point t , the
observation xt is a D-dimensional vector, xt = {

xit , i = 1, . . . , D
}
. And we consider a

time series {xt , t = 1, . . . , N}; for simplicity we use integer time values, but we use index
t instead of our usual n, to emphasize the nature of the data as a time series. We also
consider the data having zero-mean value; this can always be assured by subtracting the
estimated mean, or by considering the differences of the original data, xt → (xt − xt−1).
The multidimensional autoregressive prediction model is

xt (xt−1, . . . , xt−P ) =
∑
p

Apxt−p (7.1-11)

Parameters of this model are P matrixes, Ap, each of D × D dimensions, Ap =
{
A
ij
p

}
.

These parameters can be estimated following the linear regression estimation procedure
in the previous section. In this section, we should be a little careful with indexes i, j , and
p (see Problem 7.1–3). The result of the estimation can be conveniently formulated by

considering
{
A
ij
p

}
as a set of vectors ai ,

ai = {ail } , ail = Aij
p , l = j + (p − 1) ·D (7.1-12)

and by using a set of estimated correlation matrixes with different time lags p:

Cij
p = (1/N)

∑
t

xit x
j
t−p, C

ij

pp′ = (1/N)
∑
t

xit−p′ x
j
t−p (7.1-13)

Using index l, we denote these matrixes as a set of vectors ci and a matrix C:
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ci = {cil} = {Cij
p

}
, C = {Cll′ } =

{
C
jj ′
pp′
}
, l = j + (p − 1) ·D,

l′ = j ′ + (p′ − 1) ·D (7.1-14)

With these notations, the parameters of the autoregressive model are given by

ai = C−1 ci =
∑
l′

C−1
ll′ c

i
l (7.1-15)

Autoregression is a useful technique, when statistics of the process, that is matrixes
C, do not change with time, or change slowly (stationarity assumption). Also, the classical
autoregressive model, as well as the classical regression model in general, assumes that there
is a single deterministic process determining the future mean value of the data (say, future
prices), given by Eq. (7.1-1) or (7.1-11), and that other effects are random deviations from
the mean. Assumption of the Gaussian density of the deviations further restricts adaptivity
to linear combinations of inputs. But the stock market is not linear, and it is affected by a
number of dynamic processes or forces acting concurrently. These limitations are overcome
in the next section.

7.1.3 Nonlinear General Fuzzy Regression ANS (GFRANS)

Consider data {xn, yn, n = 1, . . . , N} as coming from multiple sources, m = 1, . . . ,M .
For each source, assume a linear model relating x and y,

ym(x) = Amx + bm (7.1-16)

and the deviations from this model being random and Gaussian,

pdf(y|x,m) = G
[
y|My = ym(x),Cym

]
(7.1-17)

The likelihood of a data point (x, y) conditional on source m (that is, if we knew it came
from source m), is the joint pdf(x, y|m) = pdf(x|m)pdf(y|x,m). Assuming a Gaussian
density for pdf(x|m),

pdf(x, y|m) = G(x|Mx,Cxm) G
[
y|My = ym(x),Cym

]
(7.1-18)

According to Section 7.1.1, this pdf is a Gaussian density, pdf(x, y|m) = G(x, y|m), and
every Gaussian density can be written in this form. Therefore, assumptions (7.1-16), (7.1-
17), and (7.1-18) are equivalent to assuming a Gaussian joint pdf(x, y|m) for each source.

In reality, we do not know which source is responsible for which observation, therefore,
the probabilistic model for a data point is a combination of the alternatives,

pdf(x, y) =
∑
m

rm G(x, y|m) (7.1-19)

The total log likelihood of the observed data, {xn, yn, n = 1, . . . , N} is given by

LL =
∑
n

ln pdf (xn, yn) =
∑
n

ln

{∑
m

rm G (xn, yn|m)
}

(7.1-20)
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This is a particular case of the general expression for AZ-similarity, Eq. (4.1-15), in which
partial similarities l(n|m) corresponding to alternative sources of data are given by Gaussian
densities, l(n|m) = rm pdf (xn, yn|m). The estimation of the parameters of these models is
equivalent to estimating parameters of the mixture model {rm,Mm,Cm}, which is performed
by MLANS and was considered in detail in Chapter 5.

Let us derive the regression of y on x, that is, the expected value of y given x, for the
above model. By combining Eqs. (7.1-4), (7.1-15), and (7.1-18),

y(x) = E{y|x} ≡
∫

y pdf(y|x) dy =
∑
m

rm

∫
y [pdf(x, y|m)/pdf(x)] dy (7.1-21)

Substitute, pdf(x, y|m) = pdf(x|m) pdf(y|x,m):

y(x) =
∑
m

rm pdf(x|m)/pdf(x)
∫

y pdf(y|x,m) dy (7.1-22)

The integral here is just a definition of the mean value of y for pdf(y|x,m), which is, accord-
ing to Eq. (7.1-17), ym(x). The term in front of the integral, P(m|x) = rmpdf(x|m)/pdf(x)
is the a posteriori Bayes probability of the process m, given data x. We obtain

y(x) =
∑
m

P (m|x) ym(x) (7.1-23)

The a posteriori probabilities, P(m|x), are simply expressed in terms of the parameters
of the joint density pdf(x, y|m). This is considered in Problem (7.1–6); the result is given
simply by using the x-component means and covariances of the joint density, (Mmx,Cmxx),

pdf(x|m) = G(x|Mmx,Cmxx) , pdf(x) =
∑
m

rmG (x|Mmx,Cmxx) and

P(m|x) = rmG (x|Mmx,Cmxx) /
∑
m′

rm′G(x|Mm′x,Cm′xx)
(7.1-24)

So the nonlinear regression is obtained as a weighted sum of linear conditional regressions
corresponding to various processes. And the weights are the a posteriori probabilities of the
corresponding processes. In a part of x-space, where one of the processes, m′, is isolated
from others [their pdfs do not overlap, pdf(x) ≈ rm′G(x|Mm′x,Cm′xx)], P(m′|x) = 1,
and in this region, the regression is a linear function, the mth source conditional regression
y(x) = ym(x). But in general, the probabilities depend on x, and the overall expression is
a nonlinear function of x.

For a practical utilization of the above nonlinear regression equation, it is necessary
to estimate parameters of the joint density pdf(x, y) from available data {(xn, yn) , n =
1, . . . , N }, using the Gaussian mixture model. This estimation problem was considered
in details in Chapter 5, Eqs. (5.2-7) through (5.2-10). As was discussed several times
before, the Gaussian mixture can model any probability density. Therefore, the nonlinear
regression model derived in this section is the general model, suitable for modeling any
relationships among data. A neural network implementation of this model is similar to
MLANS considered in Chapter 5. Because of the fuzzy combination of multiple linear
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regression models in Eq. (7.1-23), we call this neural network General Fuzzy Regression
ANS, or GFRANS.

7.1.4 Nonlinear Autoregression

A regression model, when applied to modeling time-series data, results in an autoregressive
model. Here, we derive the general nonlinear autoregressive model by combining results of
two previous Sections 7.1.2 and 7.1.3. Again, this model can be interpreted as considering
time-series data, {xt , t = 1, . . . , N}, governed by several linear autoregressive processes,
m = 1, . . . ,M . We would like to predict Y = xt from X = (xt−1, . . . , xt−P ), therefore,
similar to the regression model, we consider a joint density of (Y,X) = (xt , xt−1, . . . , xt−P ),
and we model it using a Gaussian mixture density. Each component of the mixture describes
the mth data source,

G(X,Y|m) = G(X,Y|Mm,Cm) , Mm = (Mmx,Mmy

)
,

Mmy =
∑
p

Ampxt−p (7.1-25)

The meanMmy is time dependent, so we will denote itMmyt . CovariancesCm are considered
to be constant parameters. Thus, the parameters of the model, Sm, are

Sm = {rm,Mmx,Amp,Cm

}
(7.1-26)

These parameters should be estimated from the available past data {xt , t = 1, . . . , N}. The
estimation equations are derived from the general MFT equations of Chapter 4 or by combin-
ing the derivations in Chapter 5 and Section 7.1.2. This derivation is considered in Problem
7.1–8, and here we summarize the results. [For simplicity, we consider the case ofMmx = 0;
this is usually applicable for the difference time series, (xt − xt−1), even if not applicable for
the original data xt . Modifications of this result for the case of Mmx �= 0 are considered in
Problem 7.1–9.] The results are intuitively appealing; they consist of a simple modification
of the equations in Section 7.1-7: sums over data are changed into weighted sums with
weights being the a posteriori probabilities for each source. Equation (7.1-13) is changed into

Cij
p,m = (1/Nm)

∑
t

P (m|t)xit xjt−p, C
ij

pp′,m = (1/Nm)
∑
t

P (m|t)xit−p′ x
j
t−p (7.1-27)

where

P(m|t) = rmG (X,Y|Mm,Cm) /
∑
m′

rm′G(X,Y|Mm′ ,Cm′) (7.1-28)

and

Nm =
∑
t

P (m|t) (7.1-29)

Equation (7.1-27) describes Cmxx and Cmxy components of matrixes Cm. The complete
matrixes Cm dimensions (P + 1) × (P + 1) are given by the second part of Eq. (7.1-27)
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considered for p, p′ = 0, . . . , P . Similar to Eq. (7.1-14), we use index l to denote C-
matrixes as a set of vectors cim and matrixes Cmxx :

cim = {cil,m} = {Cij
p,m

}
, Cmxx = {Cll′,m} =

{
C
jj ′
pp′,m

}
i, j, j ′ = 1, . . . , D; p, p′ = 1, . . . , P ; l = j + (p − 1) ·D, l′ = j ′ + (p′ − 1) ·D

(7.1-30)

With these notations, the parameters of the nonlinear autoregressive model are estimated
using the following equations:

aim = C−1
mxxc

i
m =

∑
l′

C−1
ll′,m c

i
l,m, rm = Nm/N

Cm =
{
C
jj ′
pp′,m

}
, p, p′ = 0, . . . , P

(7.1-31)

Similar to the general MFT considered in Chapter 4 and to MLANS considered in Chapter 5,
these equations are iterative estimation equations, since the a posteriori probabilities in
the right-hand sides of these equations are functions of the parameters. In each iteration,
parameter estimation is improved, followed by improved probability estimation.

The general nonlinear autoregressive equation is derived following the previous section
(see Problem 7.1–10). It is a weighted sum of the linear autoregressive models for each
source, with weights being the a posteriori probabilities of sources, given the available data
Xt−1 = (xt−1, . . . , xt−P ),

xt (Xt−1) =
∑
m

P (m|Xt−1) Mmyt =
∑
m

P (m|Xt−1)
∑
p

Ampxt−p

P (m|Xt−1) = rmG (Xt−1|Mmx,Cmxx) /
∑
m′

rm′G(Xt−1|Mm′x,Cm′xx)

(7.1-32)

Similar to the general nonlinear regression, the nonlinear autoregression is obtained as
a weighted sum of linear conditional autoregressions corresponding to various processes.
And the weights are the a posteriori probabilities of the corresponding processes. In a part
of (xt−1, . . . , xt−P )-space, where one of the processes, m′, is isolated from others (their
pdfs do not overlap), P

(
m′|Xt−1

) = 1, and in this region, the autoregression is a linear
function, the mth source conditional autoregression Mmyt . But in general, the probabilities
depend on Xt−1, and the overall expression is a nonlinear function of Xt−1. Since the
Gaussian mixture can model any probability density, the nonlinear autoregressive model
derived in this section is the general model, suitable for modeling any relationships among
time-series data.

7.1.5 Example: Data Mining and Revenue Prediction

Let us illustrate the developed theory with an application example. In this application, it
was necessary to identify various factors and drivers that determine hospital revenues. To
accomplish this it was necessary to develop a predictive model relating revenues at the
patient level to the demographic, clinical, and other factors that are present in publicly
available databases. The difficulty of the problem was due to the existence of multiple
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“forces” determining the relationships between the revenue and other data. Because of
this, the relationships are nonlinear: the same factors are related in a different way for
different patients. The complicated nonlinear relationship makes classical linear regression
inapplicable to this problem. The GFRANS technique described in Section 7.1.3 was
utilized. GFRANS establishes groupings among patients, corresponding to the “forces,”
while determining the relationships among various factors and the revenue. The predicted
variable y was the revenue, and the data characterizing the patient, x, was selected from
the databases. This selection was a result of preliminary analysis using GFRANS, with
an in-depth examination of the different groups into which the data were segmented and
comparison of various revenue prediction performance results. This analysis indicated that
eight factors or features were the dominant ones for estimating the revenues; these features
were combined into the eight-dimensional data vector x used for the final analysis.

The analyzed databases contained more than 100,000 cases from more than 50 hospitals
in the state of Florida. GFRANS identified 16 groups of cases corresponding to 16 “forces”
determining the relationships between the revenues and other factors. These groups indi-
cated geographic differences as well as differences due to varying arrangements between
hospitals and payors (payors are insurance companies, HMOs, and Government organiza-
tions that make payments on behalf of individual patients). The results are illustrated in
Figure 7.1-1 by showing the histograms of deviations between the predictive model and the
actual data. Figure 7.1-1a shows results of linear regression and Fig. 7.1-1b shows results
of GFRANS. A dramatic improvement in accuracy is obvious.

7.1.6 Summary of Section 7.1

Powerful nonlinear prediction models have been derived in this section, which are closely
related to the MLANS estimation technique. The general nonlinear regression and autore-
gressive models are applicable to characterizing any types of data, due to the fact that
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Figure 7.1-1 Performance of linear regression model vs. GFRANS is illustrated by using error histograms, which show
the deviations between the model and actual revenues; (a) linear regression model, (b) GFRANS.
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Gaussian mixtures can model any pdf. Their practical utility is greatest when data are
characterized by several sources or processes, and each source is Gaussian, that is, each
source can be characterized by a linear model. While estimating models, the developed
technique performs two functions concurrently: it associates data with each source and
estimates parameters of the sources. The association is fuzzy; each data sample is partitioned
in a fuzzy way among all sources. At the beginning of MLANS iterations, the associations
are highly fuzzy; in the process of learning, the fuzziness is reduced and converges to
probabilistic or crisp association. Thus, MLANS “recognition” of signal sources resembles
Aristotelian Forms converging to definite concepts.

7.2 ASSOCIATION AND TRACKING USING BAYESIAN MFT

Object tracking concerns detection of moving objects and estimation of their trajectories in
sensory data. Data originate from multiple sources: objects of interest called targets, objects
of no interest called background or clutter, and sensor noise. Presence of multiple sources
makes tracking similar to nonlinear regression considered above: sources of signals have
to be separated, while parameters of each source are being estimated. The tracking problem
has been traditionally approached by subdividing it into several simpler steps, also called
surveillance functions: detection, association, and track estimation. Detection refers to the
process of determining samples or pixels of data containing target signals while rejecting
clutter and noise. Association refers to grouping of data from multiple frames into subsets
corresponding to a single object. And track estimation refers to estimating parameters of
the models of object motion (position, velocity, etc.). When surveillance functions can
be performed sequentially, that is, detection first, association second, and track estimation
third, classical approaches to tracking are efficient. These approaches were overviewed in
Chapter 1, Section 1.3.

But when target signals are of the same order of magnitude as clutter signals, target
detection cannot be performed on a single frame or scan. Multiple time measurements have
to be utilized for target detection, which requires knowledge of tracks. Thus the problems of
detection, association, and track estimation have to be solved concurrently. Such a capability
is referred to as track-before-detect or, more accurately, as Concurrent Association and
Tracking (CAT). Classical approaches to CAT require associating multiple subsets of data
with multiple possible track models, which often leads to a combinatorial explosion of
complexity. Mathematical formulation of this general tracking problem resembles that of
model-based vision. And this is not surprising; CAT approaches tracking as recognition
of spatiotemporal patterns. This section describes an approach to CAT based on MFT
that solves the problem of combinatorial complexity. We describe both variants of MFT,
Bayesian MLANS and Shannon’s ENN, and present application examples.

7.2.1 Concurrent Association and Tracking (CAT)

Consider a sequence of visual images I (x, t), where I is image intensity, and (x, t) des-
ignates spatial and temporal coordinates: x = (x, y) are pixels, corresponding to the two
angular coordinates and t are time frames. For color images, intensity is a vector of red,
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green, and blue signals, I. Often, we will number pixels by index n = 1, . . . , N, (xn, tn) =
(xn, yn, tn) , I(x, t) = In; this will remind us that (x, t) are not just pixel indexes, but
also physical coordinates of sources of signals, so that pixel n is characterized by a set of
measurements zn = (xn, yn, tn, In). Most often we will consider coordinates and intensities
as functions of time, so it will be convenient to denote nth pixel measurements as

zn = z (tn) = (xn, yn, In) (7.2-1)

Each pixel measurement is produced by an object, or, possibly by multiple objects (in a
case of unresolved objects), numbered k = 1, . . . , K . First, we consider the Bayesian-MFT
approach to tracking; Shannon–Einsteinian formulation is considered later. In Bayesian-
MFT, the deterministic part of a model describes the predicted expected value of the
measurements, conditional on a particular type of object, k:

Mnk (Sk, tn) = E {zn|Hk} (7.2-2)

Here, Sk are model parameters that in tracking applications are usually called state param-
eters, and Hk are hypotheses of the type of object, its motion model, and parameters, etc.
For example, an unresolved object with a constant intensity, Ik , moving with a constant
velocity1 Vk , is modeled as

Mnk (Sk, tn) = E {(xn, In) |Hk} = (Rk + Vk tn, Ik) (7.2-3)

State parameters Sk = (Rk,Vk, Ik), where Rk is object position at time tn = 0.
Random uncertainty about target position, such as due to sensor errors, is modeled

probabilistically, by considering pdf (zn|Hk). Let us first consider Gaussian densities to
model conditional pdfs:

pdf (zn|k) ≡ pdf (zn|Hk) = G [zn|Mnk (Sk, tn) ,Cnk (Sk, tn)] (7.2-4)

and, for simplicity, we consider covariance matrixes to be constant for every type of track
Cnk (Sk, tn) = Ck . Since we do not know which object produces the pixel-n signal, the
probabilistic model of the signal is a sum over alternative sources/objects

pdf (zn) =
∑
k

rk G (zn|k) =
∑
k

rk G (zn|Mnk (Sk, tn) ,Ck) (7.2-5)

The total log likelihood of the observed data, {zn, n = 1, . . . , N} is given by

LL =
∑
n

ln pdf (zn) =
∑
n

ln

{∑
k

rk G (zn|k)
}

(7.2-6)

This is a particular case of the general expression for AZ-similarity, Eq. (4.1-15), in which
partial similarities l(n|k) corresponding to alternative sources of data (objects) are given
by Gaussian densities, l(n|k) = rk G (zn|k). The estimation of the state parameters can be
performed using the general MFT equations for complex models, or MLANS-type equations
for more simple models. MFT and MLANS perform concurrent association of data with
object tracks (zn with k) and estimation of model parameters, Sk .
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Below, we consider several models useful for tracking and derive MLANS-type CAT
estimation equations.

7.2.2 Linear Model for Tracking

Consider an unresolved object with a constant intensity, Ik , moving with a constant velocity
Vk (see Note 1). It is modeled as

Mnk (Sk, tn) = (Xkn, Ik) , Xkn = Xk (tn) = Rk + Vk tn (7.2-7)

where Rk is the object position at time tn = 0. [If a reference point of t0 is desirable, it is
sufficient to substitute in the above equation tn → (tn − t0).]. Consider random deviations
of the measured intensity from its mean value to be independent from random deviations
in the object position.2 Then, the object’s pdf is modeled as a product of intensity and
dynamic-model pdfs. This results in the object-k conditional pdf given by

pdf (zn|Hk) = G(In|k)G (xn|k) = G(In|Ik,CIk)G (xn|Xkn,CXk) (7.2-8)

In this section on tracking, we often use the same variable names with different indexes
to denote data, xn, In, and their models, xk, Ik . State parameters of this model include rk ,
the object-rate (that is, the proportion of object pixels among the total number of pixels),
Sk = (rk,Rk,Vk, Ik,CIk,CXk). The CAT estimation equations for rk, Ik,CIk,CXk , are
similar to those derived previously for Gaussian mixtures (see Problem 7.2–1). We write
these equations here, using bracket notations for neuronal operations; for any quantity fn,
its weighted sum

〈fn〉 =
∑
n

Wnkfn, Wnk = P(k|n) = rkpdf (zn|k) /
∑
k′

rk′pdf
(
zn|k′) (7.2-9)

With these notations,

rk = Nk/N,Nk = 〈1〉
Ik = 〈In〉 / 〈1〉

CIk = 〈(In − Ik) (In − Ik)T
〉
/ 〈1〉

CXk = 〈(xn − Xkn) (xn − Xkn)
T
〉
/ 〈1〉

(7.2-10)

The CAT estimation equations for Rk , Vk , are derived in Problem 7.2–1. It is a system of
two linear equations for the parameters of each object-track:

〈xn〉 − Rk 〈1〉 − Vk 〈tn〉 = 0

〈xntn〉 − Rk 〈tn〉 − Vk

〈
t2n
〉 = 0

(7.2-11)

From here,

Rk = [〈xn〉 〈t2n 〉− 〈xntn〉 〈tn〉
]
/ det

Vk = [〈xntn〉 〈1〉 − 〈xn〉 〈tn〉] / det

det = [〈1〉 〈t2n 〉− 〈tn〉 〈tn〉
] (7.2-12)
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where det is a determinant of the system of Eqs. (7.2-11). Equations (7.2-9) through
(7.2-12) define an iterative procedure for concurrent association and estimation of the
model parameters.

7.2.3 Second-Order Model for Tracking

For turning or accelerating objects, the second-order track models, which account for
acceleration, could be more appropriate. The state parameters for the second-order model
include acceleration, Ak , and the dynamic part of the model is given by

Xkn = Xk(tn) = Rk + Vktn + 0.5Ak t
2
n (7.2-13)

The MLANS CAT equations for the state parameters of the second-order track model
are derived in a manner similar to the above (see Problem 7.2–2). Equations (7.2-10) for
rk, Ik,CIk,CXk do not change. Equations (7.2-11) become a system of three linear equations
for the parameters of each class:

〈xn〉 − Rk 〈1〉 − Vk 〈tn〉 − 0.5Ak

〈
t2n
〉 = 0

〈xntn〉 − Rk 〈tn〉 − Vk

〈
t2n
〉− 0.5Ak

〈
t3n
〉 = 0〈

xnt2n
〉− Rk

〈
t2n
〉− Vk

〈
t3n
〉− 0.5Ak

〈
t4n
〉 = 0

(7.2-14)

leading to the following CAT equations:

Rk = det1/ det, Vk = det2/ det, Ak = det3/ det (7.2-15)

where det, det1, det2, and det3 are the corresponding determinants of the system of Eqs. (7.2-
14). Instead of Eq. (7.2-15), one can use a standard subroutine to solve the system of
Eqs. (7.2-14) at each iteration.

7.2.4 Link-Track Model

The link-track model is designed to model maneuvering objects. It is a piecewise linear
track, composed of linear links. It differs from consecutive applications of the linear track
model in two aspects: (1) links are constrained by the requirement of a connected track
without jumps or gaps (that is, the last position of each link is the first position of the next
link) and (2) as more data are acquired previous links can be reestimated if this results in a
more likely overall track.

Individual links are numbered l = 1, . . . , L, and link parameters of the object (track) k
are numbered by two indexes (k, l). The link starting time is denoted as tkl . The time extent
of all links is identical and currently is specified by the operator. The model equation for
each link is similar to the linear model Eq. (7.2-7)

Xkl (tn) = Rkl + Vkl

(
tn − tk,l

)
(7.2-16)

The connectivity constraint is expressed mathematically as

Xk,l

(
tk,l+1

) = Xk,l+1
(
tk,l+1

)
, l = 1, . . . , L− 1 (7.2-17)
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or, in terms of the model parameters,

Rk,l + Vk,l ·
(
tk,l+1 − tk,l

) = Rk,l+1, l = 1, . . . , L− 1 (7.2-18)

When deriving MLANS CAT equations, these constraints are accounted for by the
method of Lagrange multipliers, which introduces (L− 1) Lagrange coefficients for every
track, λkl, l = 2, . . . , L (see Problem 7.2–3). The angular bracket notations for the link-
track model below are modified by explicitly specifying the class and link for which they
are computed, so we use 〈tn|kl〉 instead of 〈tn〉. With these notations, CAT equations for the
parameters Rk,l and Vk,l are

〈xn|kl〉 − Rk,l 〈1|kl〉 − Vk,l

〈
tn − tk,l|kl

〉+ λkl − λk,l+1 = 0

〈
xn
(
tn − tk,l

) |kl〉− Rk,l

〈
tn − tk,l|kl

〉− Vk,l

〈(
tn − tk,l

)2 |kl
〉
− (tn − tk,l

)
λk,l+1 = 0

(7.2-19)

Here, l = 1, . . . , L, and λkl = 0 for l = 1 or L + 1. Together, Eqs. (7.2-18) and (7.2-19)
comprise a system of 3L− 1 linear equations for 3L− 1 unknowns

(
Rk,l,Vk,l,λk,l

)
. For a

given MLANS iteration, the solution of these equations yields an estimate of parameters
of the link-track model. Together, Eqs. (7.2-9), (7.2-10), (7.2-18), and (7.2-19) define an
iterative procedure for estimation of model parameters. A standard subroutine can be used
to solve the system of Eqs. (7.2-19) at each CAT MLANS iteration.3

7.2.5 Random Noise and Clutter Model

Localized and moving clutter objects are tracked using the same track models as targets that
are described above. In addition, for distributed random clutter and noise signal sources that
do not correspond to localized objects, it is often convenient to use a simple noise/clutter
track model with a uniform density of the position vectors xn,

pdf (xn|H = clutter) = {[xmax − xmin] [ymax − ymin]}−1 = 
−1 (7.2-20)

The estimation Eqs. (7.2-10) for parameters rk, Ik,CIk,CXk do not change.

7.2.6 Active Sensor and Doppler Track Models

Track models considered above are suitable for sensors measuring positional coordinates
of objects in their field of view. Passive sensors, such as a TV camera, measure two-
dimensional angular positions of objects. Active sensors, such as radars, ladars, and sonars,
usually measure range and one or two angular coordinates. Tracking in range and azimuth,
or in three dimensions, requires very little modifications to the above models and estimation
equations. In fact, the only modification required is to Eq. (7.2-20), when tracking in three
dimensions. But in addition to positional coordinates, some active sensors also measure
radial velocities, by using the Doppler effect. The Doppler effect is a change in frequency
of reflected waves due to the relative radial motion of the sensor and reflecting object.
Doppler measurements of velocity are usually much more accurate than estimation of
velocity from positional measurements, using track models. When Doppler measurements
are available, the above models should be modified. The modification is discussed here only
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for the linear track model, and following this example, the reader can derive modifications
to other models as needed.

Required modifications involve the model and estimation of radial object position and
velocity, while angular motion models and estimation equations remain unchanged. We
denote the range measurements rn and Doppler velocity measurements vn. The vector of
these radial coordinate and velocity measurements (rn, vn)we denote by xrn, and its model
by XRkn. The model for rn is given by the radial component of Eq. (7.2-7),

Xkn = Xk (tn) = Rk + Vk tn (7.2-21)

and the model for vn is given by the radial component of the velocity model, Vk , so in the
linear model, the range is a linear function of time, and velocity is a constant:

XRkn = XRk (tn) = (Rk + Vk tn, Vk) (7.2-22)

The object-k conditional pdf is modeled as a Gaussian. For simplicity, we assume uncorre-
lated errors in rn, vn, and angular coordinates, then

pdf (xrn|Hk) = G(xrn|k) = G(rn| (Rk + Vk tn) , CRk) G (vn|Vk, CVk) (7.2-23)

Following the previous derivations, the CAT estimation equations forRk and Vk are derived
in Problem 7.2–4. For all parameters except Rk and Vk , the equations are the same as in
Section 7.2.2. For Rk and Vk we obtain a system of two linear equations for the parameters
of each object-track:

〈rn〉 − Rk 〈1〉 − Vk 〈tn〉 = 0

(〈rntn〉 + α 〈vn〉)− Rk 〈tn〉 − Vk
(〈
t2n
〉+ α 〈1〉) = 0

(7.2-24)

Here, α = CRk/CVk . Terms proportional to α are large, so approximately, Vk = 〈vn〉 / 〈1〉.

7.2.7 Autoregressive Model for Tracking

In many cases, object motion can be modeled by autoregressive models. A second-order
autoregressive model can be viewed as a motion with constant velocity between time t
and t + 1, with random maneuvers (velocity changes) at each t . Similarly, a third-order
autoregressive model can be viewed as a motion with constant acceleration between time t
and t + 1, with random maneuvers (acceleration changes) at each t . There is a considerable
degree of similarity between tracking and the nonlinear autoregression considered in Section
7.1.4, with each conditional autoregressive model corresponding to an object-track. Still,
one cannot simply use the nonlinear autoregression estimation equations for tracking. The
reason is that in Section 7.1.4, we considered the model at time t as a function of previous
observations

{
xt−1, . . . , xt−p

}
, but in case of tracking, the autoregressive model should be

applied to the previous estimated model values of the object position:

xkn = xk (tn) =
∑
p

Akpxk (tn − p) (7.2-25)

Since xk (tn − p) is a function ofAkp′xk
(
tn − p − p′), and xk

(
tn − p − p′) is a function of

Akp′′xk
(
tn − p − p′ − p′′), etc., the derivative expands into a chain of expressions going
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to t = 0. The derivation of neural equations is getting involved and is not considered here.
Interested readers can derive these equations on their own; recursive neural equations for
this type of problem are considered in Perlovsky and Jaskolski (1994).

7.2.8 Models for Tracking Resolved Objects

When tracking resolved objects, the only modifications that are needed involve accounting
for the models of spatial distribution of object intensity. We consider here a simple case of
tracking a circular object with constant intensity, using a linear track model. The geometric
model is characterized by three parameters, object center xck (tn), radius ak , and intensity Ik .
The track model,Xkn, describes the motion of the object center. It turns out that equations are
much simplified if a slightly different geometric model is considered: instead of a circle,
consider a geometrically fuzzy object, with the pixel-object membership function given
by a Gaussian centered at xck (tn) with standard deviation of ak,G

[
xn|xck (tn) , a2

k

]
. The

conditional pdf, instead of Eq. (7.2-8), is given by

pdf (zn|Hk) = G
[
xn|xck (tn) , a2

k

]
G(In|Ik,CIk) G [xck (tn) |Xkn,CXk] (7.2-26)

The estimation equations are derived in Problem 7.2–5; in place of Eq. (7.2-11), we obtain〈〈
xn′δtn,tn′

〉′ / 〈
δtn,tn′

〉′〉− Rk 〈1〉 − Vk 〈tn〉 = 0

〈
tn
〈
xn′δtn,tn′

〉′ / 〈
δtn,tn′

〉′〉− Rk 〈tn〉 − Vk

〈
t2n
〉 = 0

(7.2-27)

Here, 〈fn′ 〉′ = �n′ P(k|n′) (fn′), for any fn′ , so that Nk (tn) = 〈
δtn,tn′

〉′
is an estimated

number of pixels in frame tn, associated with object k, xk (tn) = 〈xn′δtn,tn′
〉′ / 〈

δtn,tn′
〉′

is an

estimated average position of these pixels,
〈〈
xn′δtn,tn′

〉′ / 〈
δtn,tn′

〉′〉
is xk (tn) averaged over

all n, etc. The estimated position of the object center, is

xck (tn) = [xk (tn)+ Rkβk + Vktnβk] (1+ βk)
−1 (7.2-28)

where βk = CX−1
k a2

k . This expression has an intuitive interpretation as a weighted average
of two contributions (one, an estimated average position of pixels associated with object k
in tn-frame and another, an estimated track position in tn-frame); and the weights are the
inverse uncertainty measures associated with each piece of information: the size of object
a−2
k and the covariance of track CX−1

k .

7.2.9 Object-Track Declaration

Upon convergence of the iterative association–estimation procedure using any mixture of
models described above, a decision should be made as to the actual presence of a target.
This decision can be made by evaluating the target-to-clutter log-likelihood ratio (LLR)
and comparing it to a threshold. A standard way of computing LLR is by estimating two
models, a target model and a clutter one, computing their likelihoods, and taking the ratios.
In our case containing multiple adaptive submodels (modes), this approach is not feasible.
Instead, we compute a “local” LLR using the fact that each pixel has a certain pdf of being a
target and being a clutter. In each frame we take the most likely target pixel and we compute
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an LLR for this pixel. Then we average this number along the track. Here is the algorithm.
First, compute the log-likelihood ratios for the k-target candidate pixel n, LLRnk ,

LLRnk = log pdf (zn|Hk)− log pdf (zn|H = clutter) (7.2-29)

It is sufficient to consider few pixels on every frame around the candidate target position
Xkn. Second, select the maximum of LLRnk on every frame,

LLRtn,k = max (LLRnk) over n ∈ tn − frame (7.2-30)

Third, compute the average log-likelihood ratio for the target-candidate k

LLRk =
∑
tn

LLRtn,k

/∑
tn

1 (7.2-31)

Fourth, ifLLRk exceeds the threshold, the candidate track is declared a target. The threshold
selection is based on the operational requirements, such as the acceptable detection and false
alarm rate.

7.3 ASSOCIATION AND TRACKING USING SHANNON–EINSTEINIAN
MFT (SE-CAT)

Often, signal strength, or brightness of an image cannot be accurately modeled, whereas
object motion models are more reliable. In those cases Shannon–Einsteinian MFT devel-
oped in Chapters 4 and 6 is more appropriate than the Bayesian MFT considered above.
Remember that the Bayesian theory assumes that among considered adaptation models
there is an exact model (in probabilistic sense), whereas Shannon–Einsteinian MFT does
not make such an assumption and, instead, extracts as much information from the data as
possible, using the given adaptive model. A neural implementation of concurrent association
and tracking using Shannon–Einsteinian MFT is called SE-CAT (read: sea-cat).

7.3.1 Association and Tracking in Radar Spectral Data

In Chapter 6 we described the Einsteinian Neural Network (ENN) for modeling radar
Doppler spectral data. Here, we modify ENN for concurrent association and tracking of
objects in radar data. Typical data consist of the radar return signal S as a function of
Doppler frequency ω, range R, azimuth θ , and time t . Doppler frequency is proportional to
the radial velocity, v

v = −0.5cω/� (7.3-1)

where c is speed of light (c ≈ 3 × 108 m/s) and � is the frequency of the emitted radar
signal. Most often we consider measurements as functions of time. It will be convenient to
denote nth cell (pixel) measurements as

(Sn, zn) , Sn = S (tn) , zn = z (tn) = (rn, θn, vn) (7.3-2)
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Shannon–Einsteinian adaptive similarity AZ-LL is given by

AZ-LL = maxS

{∑
n

Nn lnF(n)

}
= maxS

{∑
n

Nn ln
∑
k

rkF (n|k)
}

(7.3-3)

Here F(n|k) are conditional object models, S is a set of model parameters, Nn is a number
of photons in cell n,

Nn = Sn/h̄ω
′
n; ω′

n = max (|ωn| ,
ω) (7.3-4)

and
ω is a sampling interval (
ω = π/T , T is a time interval over which a single Doppler
spectrum is computed, it is called coherent integration time; 
ω and T are determined by
radar operations). Objects usually appear in these data as unresolved “blobs,” therefore we
model them by using Gaussian functions in range, azimuth, and Doppler velocity,

F(n|k) = Norm G(zn|k) = Norm G(zn|Zkn,Ck) (7.3-5)

Norm is a normalization constant defined so that �n F(n|k) = 1 [compare to Chapter 6,
e.g., Eq. (6.2-7)]. Gaussian densities are defined so that ∫G(x)dx = 1, also ∫G(x)dx ≈
�x G(x)
x, therefore

Norm = (
r ·
θ ·
v) (7.3-6)

Sampling intervals 
R,
θ , and 
v are determined by the radar operational parameters.
The model of object motion is given by time dependence of Zk (tn). Radial velocity

estimated from Doppler measurements is much more accurate than estimated azimuthal
velocity. Therefore, we model object motion as second order in range and first order
in azimuth:

Zk (tn) = (Rk + Vktn + 0.5Akt
2
n ,�k + �̇ktn, Vk + Aktn

)
(7.3-7)

The k-object azimuthal velocity model is denoted by �̇k . Parameters of this model are
Sk = (

rk, Rk, Vk, Ak,�k, �̇k,Ck

)
. For simplicity, we consider a diagonal covariance

matrix, Ck = diag (CRk, C�k, CVk). Combining these models with general Shannon’s
MFT [Eqs. (4.6-18) and (4.6-19)] we obtain dynamic equations of ENN CAT. (This is
considered in Problem 7.3–1, following Sections 7.2-3 and 7.2-6.) Fuzzy object-track
memberships are defined similarly to Chapter 6,

f (k|n) = rkF (n|k)/F (n); F(n) =
∑
k

rkF (n|k) (7.3-8)

Angular brackets are defined as follows; for any function fn,

〈fn〉 =
∑
n

Nnf (k|n) (fn) (7.3-9)

For Rk, Vk , and Ak we obtain a system of three linear equations for the parameters of each
object-track:
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〈rn〉 − Rk 〈1〉 − Vk 〈tn〉 = 0

〈rntn〉 + α 〈vn〉 − Rk 〈tn〉 − Vk
(〈
t2n
〉+ α 〈1〉)− Ak

(
0.5
〈
t3n
〉+ α 〈tn〉

) = 0〈
rnt

2
n

〉+ α 〈vntn〉 − Rk

〈
t2n
〉− Vk

(〈
t3n
〉+ α 〈tn〉

)− Ak

(
0.5
〈
t4n
〉+ α

〈
t2n
〉) = 0

(7.3-10)

Here, α = CRk/CVk . Terms proportional to α are large. Equations for �k, �̇k are similar
to Section 7.2.2, Eq. (7.2-11):

〈θn〉 −�k 〈1〉 − �̇k 〈tn〉 = 0

〈θntn〉 −�k 〈tn〉 − �̇k

〈
t2n
〉 = 0

(7.3-11)

And equations for other parameters, rk and Ck , are similar to those obtained previously in
Chapter 6 or in Section 7.2.2:

rk = Nk/N, Nk = 〈1〉
Ck = 〈(zn − Zkn) (zn − Zkn)T

〉
/ 〈1〉

(7.3-12)

7.3.2 Association and Tracking of Spatiotemporal Patterns

Here we derive ENN CAT equations for estimation and tracking spatiotemporal patterns,
such as hurricane and other weather patterns and whirly patterns. Consider image sequence
data, such as satellite movies of whirly hurricane motion, with intensity In = I (xn, tn).
Describing the dynamics of intensity I (x, t) from the first principles is an extremely
complicated problem, however, local properties of image flow satisfy relatively simple laws
related to the first principles. Image flow velocities, vn, often satisfy equations of the type

vn = �k (Sk, xn) (7.3-13)

Here, Sk are model parameters and�k is a function determined by a physical law governing
the image flow in the vicinity of the nth pixel in the image sequence. For example, a whirly
motion of air or fluid in (x, y)-plane around Rk = (xk, yk, 0) can be described by

�k (Sk, xn) = [ck × Rkn] /R2
kn = ck (−ykn, xkn) /R2

kn

where

Rkn = xn − Rk, ck = (0, 0, ck) , xkn = xn − xk, ykn = yn − yk (7.3-14)

To use Eq. (7.3-13), we have to estimate velocity vn from the data. We consider several
approaches to do this.

7.3.2.1 Simplified Image Flow Estimation
The image flow velocity can be estimated as follows. Assuming that in a small portion of
an image all pixels move with the same velocity, v, this local image flow is described by
I (x, t) = I (x + vt), which satisfies the following equations:
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It = vIx; It = (∂/∂t)I (x + vt); Ix = (∂/∂x)I (x + vt) (7.3-15)

The local image flow velocity v can be estimated from this equation using the least mean
square procedure in the vicinity of (xn, tn); see Problem 7.3–2. The result is

vn = (� IxIT
x

)−1
(� ItIx) (7.3-16)

The sum here is taken over pixels in the vicinity of (xn, tn).
The Shannon–Einsteinian similarity for the model (7.3-13),

AZ-LL = maxS

{∑
n

In ln
∑
k

rkF (n|k)
}
, F (n|k) = G [vn|�k (Sk, xn) ,Ck] (7.3-17)

can be maximized over the parameters Sk using the general MFT iterative Eq. (4.6-19),

Sk = Sk +
∑
n

Inf (k|n)[∂ ln�k(Sk, xn)/∂Sk}, f (k|n) = rkF (n|k)/F (n) (7.3-18)

7.3.2.2 General Image Flow Model
The least mean square estimation (7.3-16) of the image flow velocity Eq. (7.3-15) assumes a
Gaussian density of the deviations from this equation. A general Gaussian mixture density
of the deviations accounts for the multiple physical processes and noise that might be
responsible for the image flow. Shannon–Einsteinian similarity for the multiprocess model
of the type (7.3-15) is given by

AZ-LL = maxS

{∑
n

In ln
∑
k

rkF (n|k)
}
, F (n|k) = G(Itn| (vkIxn) ,Ck) (7.3-19)

Solution of this problem results in a modification of (7.3-16):

vk = 〈� IxIT
x

〉−1 〈� ItIx〉 , where 〈. . .〉 =
∑
n

In f (k|n)(. . .) (7.3-20)

This approach gives the velocities of several “competing” or overlapping image flow
processes. It can be used over a portion of an image, where all velocities vk are constant.

7.3.3 CAT of Spatiotemporal Patterns Described by General PDE
Models

In the general case, when image flow is determined by multiple processes, each controlled
by a partial differential equation (PDE), the general ENN CAT approach is formulated as
follows. Consider a k-process conditional PDE of the form

It (n) = �k (Sk, xn, ∂/∂xn) I (n) (7.3-21)

Here, It = (∂/∂t)I (n) is a temporal derivative and �kn = �k (Sk, xn, ∂/∂xn) is a general
spatial partial derivative operator. Shannon–Einsteinian similarity is given by
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AZ-LL = maxS

{∑
n

In ln
∑
k

rkF (n|k)
}
,

F (n|k) = G [It (n)|�knI (n), Ck]

(7.3-22)

This expression can be maximized over the parameters Sk using the general MFT Eq. (4.6-
19). This gives the following iterative equation for the concurrent association and estimation
of the parameters of the differential operator:

Sk = Sk +
∑
n

Inf (k|n)∂ {ln [rkG [It (n)|�knI (n), Ck]]} /∂Sk

= Sk +
∑
n

Inf (k|n) [It (n)−�knI (n)] /Ck [∂�knI (n)/∂Sk] ,

f (k|n) = rkF (n|k)/F (n)

(7.3-23)

The ENN CAT method formulated here is suitable for complex situations, when image flow
is determined by several spatiotemporal dynamic processes and each process is described by
PD equations with unknown parameters. ENN CAT concurrently associates image pixels
with processes by fuzzy variables f (k|n) while estimating the unknown parameters of
the processes.

7.3.4 Examples of Concurrent Association and Tracking in Radar Data

7.3.4.1 Example of Simulated Low-Signal Target
We illustrate application of the ENN CAT method using radar spectral data similar to those
considered in Chapter 6. Figure 7.3-1 shows concurrent association and tracking of a low-
signal target using OTH radar. One scan of data is shown in Fig. 7.3-1a; range is shown
along the vertical axis; it contains 500 range bins (intervals) and covers 500 to 1400 km; the
horizontal axis contains 128 Doppler velocity bins and covers an interval of ±140 m/s. The
main feature in data is the central clutter peak near zero Doppler, the dominating feature at
all ranges: this is a ground/sea return. On each side of this peak there are nonzero Doppler
returns due to ionospheric fluctuations and radar noise. There is about 100 dB between
the ground peak and the noise floor, and there is a large number of smaller clutter peaks
exceeding the noise floor by about 20 to 30 dB. A simulated target was inserted in this data
in the upper-right corner moving with a velocity of about 90 m/s. The average strength of
the target return is only about 5 dB (above the local noise level around the target) and it
cannot be seen by the naked eye. The extent of the target return in range and Doppler is
determined by the radar resolution (called ambiguity function) and is slightly larger than
one range-Doppler cell. The target is moving with a constant velocity and its amplitude
randomly fluctuates from scan to scan with a standard deviation of ±6 dB (this is expected
from a real target). Thus, the target returns are different from the model described in Section
7.3.1, which was used to track the target. The scan shown in Fig. 7.3-1 is one of 10 scans
used for CAT.

The target cannot be detected on a single scan in Fig. 7.3-1a with any reliability. There-
fore classical techniques that first detect targets and then estimate tracks are inapplicable.
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It is necessary to perform concurrent association and tracking on multiple scans. Results of
CAT processing are shown in Fig. 7.3-1b. This shows the estimated ENN CAT model that
was described in Section 7.3.1, for the same scan as in Fig. 7.3-1a. Similar to Chapter 6, we
used one uniform model for modeling the noise floor and two Gaussian models to model the
central peak. These models are estimated for each of 500 range bins and each of 12 scans,
so that there are 5000 clutter models estimated. In addition, we used four target models that
were initiated symmetrically about the image with large covariances, so that initially, every
cell in the image sequence had a nonzero probability to be a target cell. The target models
are estimated from all 10 scans. On convergence, estimated models are shown in Fig. 7.3-1b
for one of the scans. The declared target is shown in Fig. 7.3-1c. We used the declaration
algorithm described in Section 7.2.9 with modified log likelihood computed according to
Eq. (7.3-3). Only the target-type models are subject to a log-likelihood declaration test; the
central ground peak in Fig. 7.3-1c is shown for reference purpose only.

A threshold value in the declaration algorithm is selected based on a tradeoff between
detection probability and false alarm rate. Detailed procedures for threshold selection are
not discussed here. Instead, a simple illustration of the issues involved is shown in Fig. 7.3-
2. In this figure we show results of performing CAT for four different target signal strengths:
we used target-to-clutter ratio values of 5, 8, 10, and 15 dB. The 5-dB case was illustrated
in Fig. 7.3-1; the other three cases were different only in the strength of the target signal;
clutter was exactly same. The vertical axis shows the number of occurrences of each of the
log-likelihood values; in this example, it is trivial because we have only few data points:
there are four different target log-likelihood values and three clutter values; each value
occurred just once. All three clutter log-likelihood values are below 700 and all four target
log-likelihood values are above 800, so selecting the threshold at 750 we rejected all clutter
(zero false alarms) and detected all targets (100% detection).
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Figure 7.3-1 Concurrent association and tracking in OTH radar (t, ω, R) spectra; target signal-to-clutter ratio is 5 db; (a) data;
(b) estimated model; (c) declared targets.
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Figure 7.3-3 Cumulative log-likelihood values increase with time along the tracks; separability
between the target and clutter increases as well.

The time dependence of the log-likelihood values is illustrated in Fig. 7.3-3 for the case
of the 10-dB target. The vertical axis here shows cumulative log-likelihood values along
the track, computed after 2, 4, 6, and 8 min of track (4, 8, 12, and 16 scans). For clutter,
we show the maximum and minimum log-likelihood values at each time. Theoretically, the
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target cumulative log-likelihood value is expected to be proportional to time, therefore, in
addition to the data, we show fitted lines. As expected, separability between the target and
clutter increases with the tracking time.

7.3.4.2 Example of Real Target with High
Signal-to-Clutter Ratio
Figure 7.3-4a shows a similar data set containing a real target. This target signal is relatively
high, about 25 to 30 dB, and it does not present a difficulty for any detection and tracking
method. The target is clearly seen in the left part of an image. The estimated model is shown
in Fig. 7.3-4b; the target likelihood is much higher than the clutter ones, so the declaration is
easy. The details of the data and modeling are illustrated in Fig. 7.3-4c for a single range-bin
spectrum containing the target.
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Figure 7.3-4 Cumulative association and tracking of a high signal-to-clutter target; (a) one scan of
data; (b) estimated model of one scan; (c) estimated model of one range-bin spectrum containing target
signal (at range R = 1003 km); the target was declared without false alarms (not shown).
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7.4 SENSOR FUSION MFT

An intelligent system has to be able to combine or “fuse” information from multiple sources,
like sensors and databases. Fusion often improves performance; also training of adaptive
systems and neural networks is enhanced by fusing teacher’s information with self-learning.
In this section MFT is extended to handle multiple information sources.

7.4.1 Information Fusion Problem

Fusion of information from multiple sources provides more information than a single source.
Humans and animals routinely fuse data from multiple sources. Among applications of
fusion technology are military as well as commercial problems, such as recognition of
camouflaged targets using multiple sensors or “data mining” that is looking for useful
patterns of information in multiple databases. A tremendous need for information fusion
exists in computer networks, especially Internet and accessible from Internet databases.
Fusion includes first, associating data from various sensors or databases with objects, second
identifying objects using this information, and third, directing further searches based on
available information and new incoming requests. This latter function is related to attention
and it is considered in the next section. In this section we provide a unified mathematical
formulation of a fusion problem and outline a general approach to extending MFT models
considered in Chapters 5 and 7 to fusion.

7.4.2 Mathematical Formulation

Various sources of data or sensors are labeled using index s = 1, . . . , S, and each data
vector has this additional sensor index, xn,s . For different sensors, these vectors might have
different dimensions and their components might have entirely different physical meanings
(such as angle coordinates and intensity for a visual sensor or range and cross section for
a radar). Also, the measurements by individual sensors are not necessarily synchronized in
time or in space, so index n is a different index for each sensor, n(s) = 1, . . . , N(s); this
complication of notations will be usually omitted unless required for clarity. Accordingly,
a model under each hypothesis is a multisensor model that predicts observables for each of
the sensors, Mnks (Sk, tn). Note that model parameters Sk describe the state of the object
and do not necessarily depend on which sensor observes the object. With these changes,
partial similarities l(n, s|k) corresponding to alternative sources of data are given by pdf,
l(n, s|k) = rk pdf

(
xn,s |k

)
, and the AZ-similarity, which is the total likelihood, is written

in a manner similar to Eq. (7.2-6),

LL =
∑
n;s

ln pdf
(
xn,s
) =

∑
n;s

ln

{∑
k

rk pdf
(
xn,s |k

)}
(7.4-1)

The only change here from the previous notations in this chapter is that index n is replaced
with two indexes (n, s). Let us remember that in Section 7.2 we considered association
of data with objects; the data were coming from multiple frames of a single sensor. Here,
the data are coming from multiple frames of multiple sensors, or multiple databases. This
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does not change the mathematical formulation except for an additional index s. All the
association, tracking, estimation, and classification equations derived in Section 7.2 are
directly applicable here. In particular, associations of data (indexed by n, s) and objects
(indexed by k) are given by fuzzy memberships,

f (k|n, s) = P(k|n, s) = rk pdf
(
xn,s |k

)
/
∑
k′

rk′ pdf
(
xn,s |k′) (7.4-2)

Again, the fuzzy memberships converge in the process of learning to the a posteriori
Bayesian probabilities.

MFT fusion described here is a general method applicable to fusion problems of various
types and complexities summarized in Table 2.10-1. For “simple” fusion problems, statis-
tical models are used for defining pdf and probabilities. For complicated fusion problems,
statistical models are augmented with dynamic or geometric models of the type considered
in previous sections, or appropriate models should be developed as needed. For very
complicated fusion problems, hierarchical models are needed that in addition to statistical,
geometric, and dynamic information contain databases and knowledge bases representing
the context, situations, or “entire world,” within which the fusion is being performed.

7.4.3 Can Sensor Fusion Degrade Performance?

Making decisions with more information is better than otherwise. Still sensor fusion does
not always guarantee improved performance (more data do not necessarily mean more
information). In simple cases fusion always improves performance. These include cases
in which data already have been associated with objects and when learning is not needed
(so that pdfs can be estimated off line, e.g., because they do not change in real time). But
in complicated adaptive cases, fusion could lead to degradation of performance due to
two types of errors: association errors and classifier–estimation errors. The model-based
approach to fusion provides a systematic foundation for association and fusion of data from
any kind of diverse source. However, when adaptive models are used, the unknown model
parameters have to be estimated from data. Estimation inherently involves errors, therefore
the benefits of using additional information potentially contained in the data should be
evaluated vs. a need for estimation of additional parameters and potential errors involved in
the process. It is desirable to minimize the number of additional adaptive parameters used
for fusion, especially when utilizing marginally useful data.

For example, when fusing based on the geographic location of the object, no additional
parameters are needed to utilize additional sources of information: the only adaptive pa-
rameters are the coordinates of the object, the same parameters common for all sources. But
when every source of information is characterized by its own set of adaptive parameters,
the potential benefits have to be evaluated vs. potential error increase. This problem is not
new for us: it is a particular case of the general problem of the model selection and a need
to choose the optimal number of adaptive parameters.

Decisions about whether to use fusion or not, when based on experience, could be costly.
Alternatively, they can be made with the help of simulations or by studying the mathematical
performance bounds (Chapter 9), which account for the additional information in the data
vs. a need for estimation of additional model parameters. Performance bounds or computer
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simulation can be used to optimize fusion systems. Biological solutions have been optimized
for billions of years. In biological systems there are “prewired” fusion levels. And, also,
there are adaptive fusion decisions. When are they used? Likely, there are a priori models
that guide decisions about adaptive fusion. Complex artificial systems also need these types
of models. Their functional shapes can be determined by studying information-related
performance bounds discussed in Chapter 9.

7.5 ATTENTION

Here, we discuss a close relationship between information fusion and attention, and the role
of attention is analyzed as a mechanism of efficient utilization of sensory resources in the
process of adaptation and learning.

Attention directs limited sensory and processing resources to the objects of importance.
In a hierarchical system, objects of importance are input signals at a given level. Note
that unlimited resources, exceeding requirements of input signals, do not need a separate
attention function. Criteria of importance depend on the goals of tasks being performed and
usually multiple goals and multiple input signals compete for attention. The mathematics of
this process has to account for diverse and competing criteria. Some of these are summarized
in Table 7.5-1. At the top level in this table we differentiate two types of tasks: specific
learning and general learning. Specific learning refers to the highest priority task at hand
and is directed at maximizing certain specific values. General learning refers to updating
and improving the internal model and acquiring knowledge (this includes maintaining the
situational awareness). Within general learning, attention is subdivided among learning
novel objects, discerning confusing objects, confirming well-recognized objects, and main-
taining general awareness. Table 7.5-1 gives examples of attentional functions and identifies
specific measures that can be used as attentional cues. Some of these cues originate within
the same level in a hierarchy, and some are supplied by higher levels. Diverse functions
and cues listed in Table 7.5-1 are combined by an intelligent system, e.g., by allocating a
certain percentage of resources to each function.

TABLE 7.5-1
Attention Mechanisms and Cues

Specific General Learning

Learning, Confirmation Maintaining
Recognition (of Recognized Resolution of Situational

Task Task Related (Novel Object) Objects) Difficulties Awareness

Cue/measure Object-value
(V )f (k|n)-
weighted
V ∗f (k|n) >
th1

Probability of
detection
f (k|n) >
th2

f (k|n) > th3 f (k|n) < th4
for all
classes k

Random
objects n

Origin of a cue in
a hierarchy

Higher level
(V ), same
level f (k|n)

Same level
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For example, consider development of a sensor fusion system for detecting intruders.
At the bottom level of a hierarchy several acoustic sensors for detecting novel objects
could be used; these sensors operate continuously and require no attention mechanism.
A simple internal model can be used with just two classes: noise and signal; and a low
threshold th2 will ensure that all intruders will be detected at this level. When a signal
exceeds the threshold, attention issues a request for an additional surveillance, and the next
hierarchical level will issue a message directing a CCD camera toward the signal area. A
relatively simple spatiotemporal internal model will be used to process a sequence of images,
identify the size and motion speed of present objects, and estimate their class-membership
functions. If any class-membership function f (k|n) for potential-intruder class (k) exceeds
the threshold (th3), a human operator might be called on. More levels of processing with
more complex internal models can be used to reduce false alarms and enhance detection. A
similar approach can be used for database searches. First, simple screening models can be
employed to detect records of potential value. Then, more complex, multirecord models can
be used to associate records among databases, etc. Activation of a concept by an intelligent
agent (a submodel) also serves a role of an attention request to other agents, as illustrated
in Fig. 7.5-1.

A specific application of fusion and attentional mechanisms is encountered in training
neural networks and other learning algorithms and systems. Usually, developing training
data is a time-consuming task. It could be significantly speeded up if supervised and
unsupervised training is combined. In this application, a system first automatically clusters
unlabeled objects into groups, then it requests a human teacher to provide labels (class
names) for several well-recognized objects from each cluster [f (k|n) > th3]. Using this
information, the objects are reclassified, and the procedure is repeated until there are no
more errors among well-recognized objects. Then a system may ask a teacher for the class
labels for the most confusing objects [f (k|n) < th4]; this will result in improving the
details of the classifier boundaries. This kind of interactive operation of a human–machine
system results in the gradual improvement of performance and fewer errors, while reducing
demands for human intervention. Aided by such an intelligent system, a critical military

Attention requests

Similarity
measure

Attention

Adaptation Action

Internal
model

Data Effectors/sensorsWorld

Figure 7.5-1 An MFT agent issuing and processing attention requests.
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mission can be performed with reduced personnel. Or financial advisers can expand the
diversity of the financial instruments they are tracking, while improving the timing of
their decisions.

NOTES

1. If an object moves with a constant velocity in Cartesian coordinates, its velocity is not constant
in angular coordinates of a typical visual camera. It is approximately constant, if an object is far
away. Also, intensity is a function of range. If range can be estimated, a coordinate transformation
to Cartesian coordinates can be performed, and a deterministic modeling of the intensity–range
relationship can be used. Otherwise, a constant velocity and intensity model can be used as an
approximation. Another approach is to estimate time-dependence adaptively. Decisions concerning
fidelity and adaptivity of models ought to account for the available a priori knowledge, its reliability,
and amount of data available for adaptation/estimation vs. the number of adaptive parameters (see
also discussion in Section 7.4.3).

2. Deviations of the measured intensity from its mean value can be considered to be independent of
deviations in object position, if these deviations are random, such as due to sensor errors or other
random causes. However, when probabilistic densities are used to model nonrandom effects, this
assumption is not necessarily valid. For example, flickering of object intensity can be caused by its
jerky random movements about an approximately linear overall trajectory. In such a case, intensity
and position variations are correlated and not independent.

3. When using a model with many links, a speed up of computations can be achieved by noticing
that the system of Eqs. (7.2-19) is band limited. There are standard subroutines for fast solutions
of band-limited systems.

BIBLIOGRAPHICAL NOTES

The contents of this chapter follow Perlovsky (1990b, 1991a, 1995), Perlovsky and Jaskolski (1994),
and Perlovsky et al. (1995a,b, 1997a).

Data mining and revenue prediction example described in Section 7.1.5 (Muratet et al., 1998).
Additional reading on diverse neural attentional mechanisms (Grossberg, 1975, 1995; Grossberg and

Schmajuk, 1987; Grossberg and Merrill, 1992).

PROBLEMS 7.1–1 Derive multivariable linear regression by estimating parameters of the linear model
y(x) = Ax + b. Hints: (1) Consider linear transformations, x′ = Lx(x − x), y′ =
Ly(y − y). Define matrixes Lx and Ly so that C′

xx = LxCxxLT
x = (1/N) �n x′x′T =

1, and C′
yy = LyCyyLT

y = (1/N) �n y′y′T = 1, (here 1 stands for the diagonal
unit matrix).

1.1. Note: this can always be accomplished by using the Gramm–Schmidt orthog-
onalization procedure, in which case matrixes Lx and Ly are called Choleski
factors of the matrixes Cxx and Cyy .

1.2. Note: Cxx = L−1
x L−1T

x ,Cyy = L−1
y L−1T

y ;C′
yx = (1/N) �n y

′x′T = L−1
y L−1T

x
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2. Verify that
{
min �n

[
yn − Axn − b

]2}
is equivalent to

{
min �n

[
y′
n − A′x′

n−
b′]2}, where A′ = LyAL−1

x and b′ = Ly(b − y + Ax). The latter minimization is
accomplished by solving two equations: ∂/∂A′{. . .} = 0 and ∂/∂b′{. . .} = 0. Show
that b′ = 0,A′ = C′

yx

(
C′

xx

)−1
. From this, derive the linear regression Eq. (7.1-6).

7.1–2 Derive multivariable linear regression as conditional expectationy(x) = E{y|x}, assum-
ing the Gaussian joint pdf for z = (x, y), pdf(z) = G(z|M,C), where M = (Mx,My

)
,

and C =
{
Cxx Cxy

Cyx Cyy

}
. Hints:

1. Perform a linear transformation as above, (x, y) → (x′, y′).

2. Perform a second linear transformation; define y′′ = y′ − A′x′ and x′′ = x′ so that

C′′
xy = C′′

yx = 0 : E
{
y′′x′′T} = E

{(
y′ − A′x′) x′T} = E

{
y′x′T

}
− A′E

{
x′x′T

}
=

C′
yx − A′C′

xx = 0. It follows that A′ = C′
yx

(
C′
xx

)−1
.

3. Consider pdf(y′′, x′′), since these variables are uncorrelated, pdf(y′′, x′′) = pdf(y′′)
pdf(x′′). It follows that pdf(y′′|x′′) = pdf(y′′).

4. Prove that any linear transformation preserves the Gaussian shape of a pdf, while
changing the means and covariances. In particular, substitute y′′ and x′′ intoG(z|M,

C), and prove the 3 above. Show that the conditional mean of y′′, given x′,M′′
y|x =

M′
y−A′x′. Transform back from (x′′, y′′) to (x, y) and derive the regression equation.

7.1–3 Derive the estimation equation for multivariable linear autoregression, Eq. (7.1-15).
Express all vector and matrix multiplications explicitly by using indexes. Hints:

1. Consider min
{
�t

[
xt −�p Apxt−p

]2}
;

2. Rewrite using indexes explicitly:

∑
t

[
xt −

∑
p

Apxt−p

]2

 =



∑
t

∑
i


xit −

∑
pj

Aij
p x

j
t−p





xit −

∑
p′j ′

A
ij ′
p′ x

j ′
t−p′






3. Show that ∂/∂Aij
p {. . .} = 0, leads to

{
�t

[
xit −�p′j ′ A

ij ′
p′ x

j ′
t−p′
]
x
j
t−p
}

= 0

4. Rewrite this as Cij
p −�p′j ′ C

jj ′
pp′A

ij ′
p′ = 0

5. Show that index l = j + (p−1) ·D has a unique value for each j = 1, . . . , D, p =
1, . . . , P ; and therefore in every instance, (j, p) can be substituted by l; obtain
Eq. (7.1-15).

7.1–4 Apply the derived multidimensional autoregression to stock market prediction. Follow
Chapter 1 Problems 1.3–7 through 1.3-11.

1. Add other indexes to your database, such as T-bills (or any other measure of interest
rates), gold price, or foreign market indicators. Select an autoregressive model:
which variables are you going to use (x), how many of them (D), and how long back
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are you going to look (P ). Estimate an autoregressive model and predict next day
values from several previous day values. Determine how many past days you need
for training/estimation: compute the number of parameters in all your C-matrixes
that you need to estimate from data; multiply by 10 (that many data points are
needed to accurately estimate a single parameter) and divide by dimensionality (the
number of variables you use every day: that many independent measurements);
Npar ∼ P ∗D2/2; days = N∗

par 10/D ∼ P ∗D/2.

2. Modify our autoregressive model by considering a prediction of a single variable
(say DJ) from multiple variables. This changes the number of parameters and the
required training interval. Did the result improve?

3. Play with your model, trying to improve it. Try different features/indicators. Op-
timize the training interval by verifying the stationarity assumption. Most mutual
funds are happy when making a 15% profit per year (over several years). If you can
do better, you are a pro! Even if you are doing much worse, do not get discouraged:
professional traders are using leveraging techniques, which we did not discuss.
Before investing your own money, make sure to try “paper trading” for few months
and account for the brokerage fees. Continue reading the book.

7.1–5 Derive P(m|x) in terms of the parameters of the joint density pdf(x, y). Hints:

1. Use the definitions, P(m|x) = pdf(x|m)/�m′ rm′ pdf(x|m′), pdf(x|m) = ∫ pdf
(x, y|m) dy;

2. Using results of Problem 7.1–2, show that for a Gaussian pdf(x, y|m) ≡ G(x,
y|Mm,Cm), with (Mm,Cm) partitioned into x and y components as in Eq. (7.1-9),

pdf(x|m) = G(x|Mmx,Cmxx)

3. It follows that

pdf(x) =
∑
m

rm pdf(x|m)
7.1–6 Apply the derived nonlinear regression to a next-day stock market prediction. Follow

Problem 7.1–4. Hint: Identify y with xt and x with xt−1.

7.1–7 Derive nonlinear autoregression estimation Eqs. (7.1-27) through (7.1-31). Combine
derivations in Sections 5.6 and 7.1.2. Hints:

1. Write the log likelihood as

LL =
∑
t

ln

{∑
m

rm G (xt , . . . xt−P |Mm,Cm)

}
=

∑
t

ln

{∑
m

rm G (xt−1, . . . , xt−P |Mmx,Cmxx)G
[
xt |Mmy (xt−1, . . . , xt−P ) ,C′

myy

]}

where

Mmy (xt−1, . . . , xt−P ) =
∑
p

Ampxt−p

2. Take a derivative ∂LL/∂Aij
mp, as follows; first
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∂LL/∂Aij
mp =

∑
t

P (m|xt , . . . , xt−P )

∂/∂Aij
mp lnG

(
xt |Mmy (xt−1, . . . , xt−P ) ,C′

myy

)
second, compute the remaining derivative by using index notations, see Problem
7.1–3;

third, equate the result to 0, and multiply it by C′
myy (this will make the result

independent of C′
myy).

3. Compare the above equation with Problem 7.1–3 and derive Eqs. (7.1-31) for aim;

4. Derive Eqs. (7.1-31) for rm and Cm similar to Section 5.6.

7.1–8 Consider modifications of the nonlinear autoregressive model for the case of Mmx �= 0.
Hints:

1. Follow Section 5.6;

2. Show that Mmx is estimated in a similar way to the regular estimation of the mean
in a Gaussian mixture model

Mmx =
∑
t

P (m|xt−1, . . . , xt−P ) xt

3. Show that all covariances Cm are estimated in a similar way to the given equations
by changing every xt into (xt −Mmx).

7.1–9 Derive Eq. (7.1-32) following the derivation of Eqs. (7.1-23) and (7.1-24).

7.1–10 Apply nonlinear autoregression to modeling stock market data.

7.2–1 Derive MLANS CAT estimation equations for the linear-track model. Hints:

1. Write the log likelihood LL = �n ln {�k rk pdf (zn|k)} ;

2. Following Section 5.6, maximization of this log-likelihood expression can be
achieved iteratively, by maximizing at each step �n P (k|n) ln {rk pdf (zn|k)} over
the parameters Sk of {rkpdf (zn|k)} : �n P (k|n) (∂/∂Sk) ln {rk pdf (zn|k)} = 0

3. Substitute here Eqs. (7.2-7) and (7.2-8) and derive Eqs. (7.2-10) and (7.2-11).

7.2–2 Derive MLANS CAT estimation equations for the second-order track model. Hints:
Repeat step 3 of Problem 7.2-1, replacing Eq. (7.2-13) instead of Eq. (7.2-7).

7.2–3 Derive MLANS CAT estimation equations for the link-track model. Hints: Repeat step 3
of Problem 7.2-1, replacing Eq. (7.2-16) with constraints (7.2-18) instead of Eq. (7.2-7).
Use the method of Lagrange multipliers as described in Section 4.3-3.

7.2–4 Derive MLANS CAT estimation equations for the case of Doppler measurements. Hints:

1. Follow Problem 7.2–1.

2. Consider �n P (k|n) (∂/∂Sk) ln {rk pdf (zn|k)} = 0, for Sk = (Rk, Vk)

3. Evaluate the derivatives with respect to Rk and Vk:
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(∂/∂Rk) ln {rk pdf (zn|k)} = (∂/∂Rk) ln {rk G [rn| (Rk + Vk tn) , CRk]}
= (rn − Rk − Vk tn) /CRk

(∂/∂Vk) ln {rk pdf (zn|k)} = (∂/∂Vk) ln {rk G [rn| (Rk + Vk tn) , CRk]G(vn|Vk, CVk)}
= (rn − Rk − Vk tn) tn/CRk + (vn − Vk) /CVk

4. Combine 2 and 3:

〈rn〉 − Rk 〈1〉 − Vk 〈tn〉 = 0(〈rntn〉 − Rk 〈tn〉 − Vk
〈
t2
n

〉)
/CRk + (〈vn〉 − Vk 〈1〉) /CVk = 0

5. From here, derive Eqs. (7.2-24).

7.2–5 Derive MLANS CAT estimation Eqs. (7.2-23) for tracking fuzzy circle. Hints:

1. Follow Problem 7.2–1.

2. Consider �n′ P(k|n′) (∂/∂Sk) ln {rk pdf (zn′ |k)} = 0;

3. Evaluate the derivatives for Sk = [Rk,Vk, xck (tn)]; account for ∂xck (tn′) /∂xck (tn)
= δtn,tn′ ;

(∂/∂Rk) ln {rk pdf (zn′ |k)} = (∂/∂Rk) ln {G [xck (tn′) |Xkn′ ,CXk]}
= [xck (tn′)− Rk − Vktn′ ]CX−1

k

(∂/∂Vk) ln {rk pdf (zn′ |k)} = (∂/∂Rk) ln {G [xck (tn′) |Xkn′ ,CXk]}
= [xck (tn′)− Rk − Vktn′ ] tn′CX−1

k

[∂/∂xck (tn)] ln {rk pdf (zn′ |k)} = [∂/∂xck (tn)] ln
{
G
[
xn′ |xck (tn′) , a2

k

]
G [xck (tn′) |Xkn′ ,CXk]} = {[xn′ − xck (tn′)] a−2

k − [xck (tn′)− Rk − Vktn′ ]CX−1
k

}
δtn,tn′

4. Substitute 3 into 2; from the last equation derive

xck (tn) =
[〈
xn′δtn,tn′

〉′ / 〈
δtn,tn′

〉′ + Rkβk + Vktnβk

]
(1+ βk)

−1

Here, βk = CX−1
k a2

k , and 〈fn′ 〉′ = �n′ P(k|n′)(fn′), for any fn′ .

5. Substitute xck (tn) into the previous two equations for Rk and Vk , and derive
Eq. (7.2-26).

7.3–1 Derive ENN CAT estimation Eqs. (7.3-8) and (7.3-9). Hints:

1. Follow Problems 7.2–1 and 7.2-4. Maximization of the Shannon–Einsteinian AZ-LL
can be achieved iteratively, by maximizing at each step�n Nnf (k|n) ln {AkF(n|k)}
over the parameters Sk of {AkF(n|k)} : �n Nnf (k|n) (∂/∂Sk) ln {AkF(n|k)} = 0;

2. Substitute here Eqs. (7.3-5) and (7.3-7) and derive Eqs. (7.3-8) and (7.3-9).

7.3–2 Derive image flow velocity estimation Eq. (7.3-16). Hint: Minimize the mean square
difference between the left and right sides of Eq. (7.3-15) in the vicinity of x : minv{
� [It − vIx]2

}
. The sum here is taken over pixels in the vicinity of (xn, tn).



chapter 8

QUANTUMMODELING FIELD THEORY (QMFT)

This chapter describes a quantum system implementing MFT. It is interesting from three
standpoints, physical, engineering, and biological. From the point of view of physics, this
chapter demonstrates that a quantum device can implement MFT. The engineering aspect is
that quantum computers potentially offer a tremendous computational speedup. QMFT is a
special purpose quantumcomputer. Even so it is not a general purpose computer, it implements
a paradigm with wide application potential. The biological aspect is related to the possibility
that microstructures of biological neurons are computational quantum devices, which play
important role in neural information processing.

A note for the reader. The mathematical apparatus of quantum physics used is the familiar
vector and matrix algebra. Peculiar notations used in physics are introduced as needed. This
chapter does not contain any detailed exposition of quantum physics. For a reader not familiar
with quantum physics, it might be difficult to comprehend relationships of the mathematical
notations to physics. This chapter is not needed for an understanding of the rest of the book
and could be skipped if difficult to understand.

8.1 QUANTUM COMPUTING AND QUANTUM PHYSICS NOTATIONS

8.1.1 Quantum vs. Classical Computers

Quantum computing is a potential method of breaking through the limitations of the classical
computing machines. It generated significant interest since Feynman draw attention to this
area of research in 1972. The following two limitations of classical computational systems
are expected to be surpassed. First, classical systems dissipate a finite amount of energy
(∼ kT ) per 1 bit for every operation. Second, a number of important problems in classical
computational intelligence, in the number theory, and in other fields are very hard in that their
solutions require a combinatorially large amount of computational steps as a function of the
problem complexity. For example, a computation describing an electron transitioning from
one state to another state requires taking integrals over all possible paths, which includes all
combinations of path segments. Feynman turned this difficulty upside down: let the electron
“compute” something of interest to us on every one of its paths. Then, in a single transition,
this electron will accomplish a combinatorial number of computations.
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We have discussed the conundrum of combinatorial complexity facing intelligent
algorithms in Chapter 2; and classical MFT was designed as a solution to this problem.
Quantum computing naturally performs “combinatorial speed-up” similar to MLANS. So
let us combine the two concepts. It promises a tremendous speed-up in computations.
Quantum systems do not dissipate energy (dissipation is a classical phenomenon). Quantum
computation is expected to proceed without energy dissipation until the process of quantum
measurement, which potentially can be postponed until the end of the computation process.
And a quantum system can exist in a superposition of multiple states, so that multiple
computational paths (including all possible combinations of path segments) can potentially
be performed in parallel, within a single process of quantum interference between the quan-
tum system states. In QMFT an internal dynamics of the model adaptation and association
occurs as a process of quantum interference [in place of Eqs. (4.2-4) and (4.2-5)], and the
final partition (segmentation, hypotheses choice, or classification, � discussed in Section
4.1.3) is obtained in the process of quantum measurement.

8.1.2 Quantum Physics Notations and the QMF System

Let us introduce the necessary quantum physics notations and outline the main characteris-
tics of QMFT. States of quantum systems are vectors in a Hilbert space. We use Dirac or bra-
ket notations, in which states are denoted as “bra” < . . . | and “ket” | . . . >. Ket is a vector
and bra a transposed vector (and complex conjugated). QMFT describes a system that is
characterized by quantum states |k > and that interacts with the external world characterized
by quantum states |n >. As in previous chapters, k numbers internal models and n numbers
input data. The entire “universe” including the QMF system and the external world, in the
general case, is described by a quantum state that is a superposition of states (|k > |n >),

|�(t) > =
∫
N∗

K∑
k=1

Ckn|k > |n > (8.1-1)

Here integration over n ∈ N∗ includes spatial (and possibly other quantum coordinates of
the external world) but excludes time, t . Quantum amplitudes Ckn are complex numbers
related to fuzzy associations f (k|n) according to the rules of quantum theory

f (k|n) = |Ckn|2 (8.1-2)

Generally, the QMF system is in a mixed state and is described by the density matrix,

ρk1,k2(t) =
∫
N∗

Ck1,n C
∗
k2,n (8.1-3)

or, equivalently, by the density operator

ρ(t) =
K∑

k1;k2=1

∣∣k1 > ρk1,k2 < k2
∣∣ (8.1-4)

QMFT is designed to solve the same problem as solved by classical MFT. The states of
the world |n > correspond to the sensor dataXn and internal states of QMFT |k > correspond
to the concept-models Mk . Consider a projection of the “universe” state (8.1-1) on the
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specific world state |n >. This vector defines a state of the QMFT system corresponding to
the world state |n >. We call it the encoding vector for the world state |n >, and denote it
|x(n) >,

|x(n) >=< n|�(t) >=
K∑
k=1

Ckn|k > (8.1-5)

Identification of QMF and classical MF systems requires that fuzzy associations f (k|n)
have functional shape similar to that of the classical ones. This can be obtained as follows.
Let us consider a wavefunction representation of the states of interest, |k > and |x(n) >. A
wavefunction in quantum mechanics is an alternative description of states defined as a set
of projections of a state vector on a basis vector set corresponding to some coordinate space.
For example, if z is a usual 3-D coordinate space and |z > is a Hilbert-space description of
a state localized at point z, the z-space wavefunction of a state |k > is given by

ψk(z) = 〈z|k〉 (8.1-6)

According to the definition, a wavefunction for the state localized at z1, |z1 >, is a delta
function,

ψk(z) = δ(z1− z) (8.1-7)

Let us introduce a space of j-coordinates, which we will call the encoding space. Coordi-
nates j have the same dimension as our signal dataXn and modelsMk . (A multidimensional
j -space can be realized by a multiparticle system.) The j-space is defined so that the j-space
wavefunctions for the vectors of interest, |k > and |x(n) >, have a “natural” shape typical
of many quantum-mechanical systems,

ψn(j) = 〈j |x(n)〉 ∼ exp[ijX(n)]; ψk(j) = 〈j |k〉 ∼ exp
(
ijMk

)
(8.1-8)

Note (1) that this shape of wavefunctions can occur only locally, around some values
of j,X(n),Mk , and (2) in most quantum-mechanical systems, wavefunctions have this
local shape; and this is how we will understand these definitions, as approximate local
relationships. Then,

Ckn =
∫ +J

−J
ψ∗
k ψndj ∼

∫ +J

−J
exp
[
ij (X(n)−Mk)

]
dj ∼ 2 sinc {J [X(n)−Mk]} (8.1-9)

Again, the integral here extends only over some locality where ψn(j) and ψk(j) overlap.
A shape of the sinc-function here, when absolute value square is taken, is similar to the
Gaussian functions used for conditional pdfs in Chapter 4. Note also thatCkn are normalized
according to

K∑
k=1

|Ckn|2 = 1 (8.1-10)

Let us analyze now the shape of |Ckn|2 as a function of [X(n)−Mk]. NearX(n) = Mk , it is
close to the Gaussian shape pdfs used in the numerator of f (k|n) in Chapter 4, and globally,
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it is normalized similar to f (k|n). Thus, we conclude that with the above definition of the
encoding states, the quantum probabilities, |Ckn|2, have a functional form similar to that
of classical MFT. This should not surprise us: a quantum system’s fundamental property
is that it is probabilistically distributed among several states, similar to the MF system,
which attains the probabilistic distribution as a result of competition among alternative
concept-models. If a specific parametric shape is important, it can be controlled by selecting
appropriately shaped ψ-wavefunctions.

The proper encoding of the world state in terms of the QMFT states assumed above
should be obtained as the result of the quantum dynamics of interaction between the QMF
system and external world, the interaction that encodes the external information in the QMF
system. The equations of motion of quantum dynamics are given by a Hamiltonian operator
(a matrix in Hilbert space). Therefore, the next step is to define the Hamiltonian in such
a way that the dynamics of a QMF system would lead to a solution of the same problem
solved by classical MFT. Two types of quantum systems are considered below, first, a
nonequilibrium quantum statistical system evolving to Gibbs distribution and second, a
deterministic Hamiltonian quantum dynamic system.

8.2 GIBBS QUANTUM MODELING FIELD SYSTEM

Here we define Hamiltonian so that the QMFT dynamics would lead to a Gibbs distribution
with probabilities defined in a manner similar to fuzzy associations in (4.1-14) and (4.1-15)
or to pdfs in (4.3-7) and (4.3-9). Following well-known principles of quantum statistical
physics, we define the Hamiltonian through its relationship to the pdf. The dynamic variables
of this system are unknown parameters

{
Sak
}
, while the data values X(n), n = 1, . . . , N ,

are fixed, therefore

H = − ln pdf
[{
Sak
} |X(1), . . . ,X(n)] (8.2-1)

Using Bayes’ theorem,

pdf
[{
Sak
} |X(1), . . . ,X(N)] = pdf

[{
Sak
}
,X(1), . . . ,X(N)

] /
pdf [X(1), . . . ,X(N)]

= pdf
[
X(1), . . . ,X(N)| {Sak }] pdf

({
Sak
}) /

pdf [X(1), . . . ,X(N)]

(8.2-2)

Here pdf
({
Sak
})

can be considered constant in the absence of prior information concerning
values of these parameters. In this case, pdf [X(1), . . . ,X(N)] is also constant, because in
the absence of a priori values of these parameters it has to be invariant. Thus the Hamiltonian,
Eq. (8.1-1), can be written as

H = − ln pdf
[
X(1), . . . ,X(N)| {Sak }]+ const. (8.2-3)

Comparing Eq. (8.2-3) with Eqs. (4.3-7) and (4.3-9) and (4.2-8), we conclude that in the
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absence of a priori information on the parameter values, the Hamiltonian is local and the
Hamiltonian density H can be introduced

H = − ln{pdf[X(n)]}, H =
∫
N(t)

H + const. (8.2-4)

Here N(t) stands for a set of observations available at time t . This emphasizes the fact
that the Hamiltonian is defined using past data only (in case when n includes time). It is a
nontrivial fact that availability of a priori values for the parameters may result in a nonlocal
Hamiltonian.

The Hamiltonian Eq. (8.2-4) defines the dynamics of the density operator,

ρ(t) = exp

(
−i
∫
t

H

)
ρ(0) exp

(
i

∫
t

H

)
(8.2-5)

To complete a correspondence between Gibbs QMF (GQMF) and classical MF, we define
an operator of internal model parameters S as follows:

S =
∑
k∈K

|k > Sak < k| (8.2-6)

Thus, the association–segmentation given by fuzzy associations f (k|n) and the values of
internal model parameters

{
Sak
}

at time t can be obtained in the quantum measurement
process,

f (k|n) = Tr[|k >< k|ρ(t)], Sak (t) = Tr[Sρ(t)] (8.2-7)

An initial state of a GQMF system is specified according to the initial state of the MF:
one can choose initial values of Sak based on a priori phenomenological considerations; this
leads to initial values f (k|n) defined according to Eq. (4.2-4) and to initial values of the
density matrix ρ(0) defined according to Eq. (8.1-3) and (8.1-4),

ρk1,k2(0) =
∫
N∗

e−iφ(k1|n)+iφ(k2|n)[f (k1|n)f (k2|n)]1/2 (8.2-8)

The phasesφ in this expression are left undefined and can be chosen to suit concrete problems
at hand. One way to avoid a need to choose phases is to use an alternative initialization
procedure: define a nonfuzzy initial association leading to a diagonal density matrix and
compute initial values of the model parameters Sak from Eq. (8.2-6).

In a GQMF system described above, the finite temperature of the system (and, therefore,
the finite accuracy of the computation) is an essential part of the system dynamics. On the
one hand, this is a highly desirable property for any practical implementation of a quantum
computing system. On the other, interaction with a thermal reservoir leads to irreversible
energy dissipation processes involving quantum measurements. A desirable compromise
is to reduce interactions with a thermal reservoir to a relatively rare occasion, which will
ensure Gibbs distribution and will correct accumulating phase errors, while in between
these interactions a GQMF system will evolve according to the Schrödinger equation (8.2-
5) without energy dissipation.
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8.3 HAMILTONIAN QUANTUM MODELING FIELD SYSTEM

We define the Hamiltonian so that the Hamiltonian–QMF (HQMF) dynamics leads to a so-
lution of the considered MFT problem. We will do this for a simplified case of MF, when the
model valuesMk are the model parameters, and we will consider all the covariancesCk equal
to 1. In this case, the ML estimation equations for the parameters Mk are given by (5.2-8)

Mk =
∑
n

f (k|n)X(n)/
∑
n

f (k|n) (8.3-1)

where the denominator has the meaning of the average number of observations classified
to hypothesis k,

Nk =
∑
n

f (k|n) (8.3-2)

Correspondingly, in place of Eq. (8.2-6) we have

M =
K∑
k=1

|k >Mk < k| (8.3-3)

An internal HQMF encoding |x(n) > of the external patterns X(n) (equivalently, of the
states |n > of the external world) is defined according to (8.1-5). Combining (8.1-3), (8.1-4),
and (8.1-5),

ρ(t) =
∑
n

|x(n) >< x(n)| (8.3-4)

Let us also introduce an observation operator X,

X =
∑
n=1

|x(n) > X(n) < x(n)| (8.3-5)

Consider eigenstates |λ > of this operator,

X|λ > = λ|λ >, or < λ|X|λ > = λ (8.3-6)

Substituting Eq. (8.3-5) into Eq. (8.3-6),

λ =
∑
n=1

| < λ|x(n) > |2 X(n) (8.3-7)

Comparing this to Eqs. (8.1-2), (8.3-1), (8.3-2), and (8.3-3), we see that λ is identified with
Mk ·Nk , and |λ > is identified with |k >. Introducing an operator

M =
∑
k∈K

|k >Mk ·Nk < k| (8.3-8)

we have the following identity for the quantum operators

M = X (8.3-9)
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This identity should be attained in the result of an internal QMF dynamics. States |k >, which
are the eigenstates of the operator M, should evolve from their initial states (according to
the Schrödinger equation) into the eigenstates of X, and the considered problem of MFT is
defined as the problem of finding eigenstates of the operator X, or, more accurately, finding
a procedure that will evolve initial states into the eigenstates of X. A number of algorithms
exist that can be used for this purpose. These algorithms utilize unitary transformations and
can serve as a basis for the design of a quantum system. Let us define the HamiltonianH as

H(t) = i[M,X] (8.3-10)

This Hamiltonian defines a dynamics that evolves eigenstates |k > of an operator M into
the eigenstates of operator X. It might be noted that a dynamic diagonalization of an operator
naturally occurs in many quantum systems, therefore we have a wide choice of a specific
physical realization that will determine the specific realization of the Hamiltonian.

If X(n) are vector quantities (as they usually are), then |x(n) > are defined with a
corresponding vector index, so that X is a vector operator and various components of X
operate on the corresponding components of |x(n) >. Thus components of X commute (and
similarly, components of M commute). If values of Nk are known, then Mk can be directly
obtained from M. When Nk values are not known a priori, Eq. (8.3-2) cannot serve as a
definition of the operator N , and Nk have to be obtained similarly to Mk , in the process of
internal HQMF dynamics. By comparing Eqs. (8.1-2), (8.1-3), (8.1-4), (8.1-5), (8.3-2), and
(8.3-4), the N operator is identified with the density operator. Its eigenstates are different
from |k >, N and M do not commute, and expected values of N in M-eigenstates |k >
are given by the diagonal elements of the density matrix,

Nk =< k|ρ|k > (8.3-11)

The HQMF system defined above evolves according to Schrödinger (Hamiltonian)
dynamics without energy dissipation. We would also note that this algorithm does not
require an exponential number of interfering quantum states; an exponential “speed-up”
relative to the classical computation occurs in the result of interference between a number
of states, which is only a linear function of the complexity of the system. Intuitively, it
seems, however, that a required coherency (accuracy of computation) is a constant number
that does not grow with the complexity of the problem. This is because, for every state
|x(n) >, an accurate computation is required of only few amplitudes < k|x(n) > with the
highest probabilities | < k|x(n) > |2. In addition, the HQMF system has the advantage of a
relatively simple formulation, providing a foundation for a physical realization of an MFT
quantum computer.
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PROBLEM Design a quantum device implemeting QMFT. (This is a complicated problem good for a
doctoral thesis. Its solution will lead to a breakthrough in computational devices.)



chapter 9

FUNDAMENTAL LIMITATIONS ON LEARNING

This chapter is concerned with the fundamental, mathematical limit on speed of learning. It
is related to the limited amount of information present in data and a priori models, and it is
measured by how many examples are needed to learn model parameters (e.g., a classifier or
track parameters). This limit is established by the Cramer–Rao theorem,which is a fundamental
result of mathematical statistics. The chapter discusses measures of speed of learning, the
theoretical basis for the limit, and relationships between the theoretical limit and MLANS
performance. At the end, I briefly discuss the possibility of extending the Cramer–Rao theory
to the entire evolution and learning process of any population of intelligent systems.

9.1 THE CRAMER–RAO BOUND ON SPEED OF LEARNING

The Cramer–Rao bound (CRB) establishes fundamental mathematical limits on speed of
learning. These limits are inherent to the available information in the data and models, and
are independent of the approach to using that information, based on algorithms or neural
networks. The CRB has been used for a long time in signal processing and other relatively
simple estimation problems, such as tracking a single target without noise or clutter. In
addition to discussing some of these classical CRB, this chapter describes CRB for more
complicated problems, such as classification, or tracking multiple targets, or tracking in
clutter, involving segmentation of data among alternatives.

9.1.1 CRB, Neural Networks, and Learning

Adaptivity and learning are primary features of neural networks. It is not surprising therefore
that the problem of fast learning is among the most important problems in the area of neural
networks. But what is a fast learning? How one can quantify and compare learning in
different neural paradigms applied to diverse problems? The CRB provides a theoretical
framework for the analysis of this problem.

The Cramer–Rao (CR) theorem establishes lower bounds for the statistical errors of
estimated quantities, irregardless of the estimation process. In conventional nonparametric
neural networks the weights are the quantities that are estimated from the data. In MFT,
model parameters are the estimated quantities. In tracking a single target, the accuracy of the

329
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track parameters is of primary interest and CRB are widely used in tracking applications.
But when tracking in clutter, the ability to associate data and to establish track is even
more important. In classification, the accuracy of classification is of primary interest as
a measure of performance. In prediction, especially financial market prediction, timing is
often more important than other characteristics. Although performance characteristics of
primary interest are not necessarily the model parameter values, errors in model parameters
can be related to other performance measures. The CRB accounts for the probabilistic uncer-
tainty and does not directly address other issues such as fuzzy uncertainties of deterministic
models related to the approximate nature of models and the related issue of robustness.
Notwithstanding this limitation, the CRB is a powerful tool that helps quantify and compare
performances of various techniques. It is also used for the diagnostics of existing algorithms
to identify research areas in which algorithmic improvements are possible. We first derive
CRB for model parameters, and then relate CRB to the performance characteristics of
interests in specific applications. Several well-known classical CRB results are discussed
as well as recently derived CRB for more complex MLANS models involving concurrent
association/segmentation and parameter estimation.

9.1.2 Classical CRB for the Gaussian Means

A well-known example of a CRB is an accuracy of average value. Consider estimation of a
one-dimensional meanM of a Gaussian distribution fromN one-dimensional measurements
xn; all xn are coming from a single class, which has a Gaussian distribution with the standard
deviation σ . Sometimes we will denote σ as σ {x}, to show explicitly that σ is the standard
deviation of the random variable x. In this chapter we differentiate between the true value
of a parameter and its estimated value, by putting a ˆ (hat) over the estimated values. An
often used estimate of M , M̂ (read M-hat) is given by an average value,

M̂ =
∑
n

xn/N (9.1-1)

The statistical variance of the average value is well known to be

var{M̂} = E
{
(M̂ −M)2

}
= σ 2/N or σ {M̂} =

√
var{M̂} = σ/

√
N (9.1-2)

This value turns out to be the CRB for the estimation of the mean M; we will prove it
in the following sections. A neural network or algorithm implementing this estimation is
called an efficiently learning one, because no other approach can yield a more accurate mean
value with the same numberN of learning samples. In a multidimensional case, the CRB for
estimating the meanM of a multidimensional Gaussian distributionG(x|M,C), is given by

cov{M̂, M̂} = C/N (9.1-3)

Geometrically, one can think about this bound as an ellipsoid in x-space given by

E
{
(M̂−M)TC−1(M̂−M)

}
= 1/N (9.1-4)

The shape of this CRB ellipsoid is determined by the covariance matrix C, and its size is
determined also by the number of objects N .
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An estimation of the mean given by the average value attains the CRB if the covariance
matrix is known. If the covariance matrix is unknown and is to be estimated from the data,
no estimation process can reach the accuracy of the CRB even in this relatively simple case.
However, the standard average estimation above is asymptotically efficient, that is, it tends
quickly to the CRB with increasing number of observations N .

9.1.3 CR Theorem

An accuracy of an estimated scalar parameter Ŝ is conventionally measured by its standard
deviation σ {Ŝ}, or by variance that is the square of the standard deviation var{Ŝ} = σ 2{Ŝ}.
In case of a set of parameters, S = {Sa, a = 1, . . . , A}, its estimation accuracy is measured
by the covariance matrix, cov{Ŝa, Ŝb}. This discussion implies that we observe a random
quantity (or a set of random quantities) x, and there is a pdf(x) that depends on a set of
parameters S. The values of S are unknown and we consider estimate Ŝ(x) to be a function
depending only on x (and not on unknown S). An estimate approximates S in some way.
Parameters S are nonrandom, but their estimate Ŝ(x) is random, since it is a function of
random variables x. Now we obtain a general expression for the CRB, which gives the
lower bound for an average error in Ŝ.

Definition. Estimation is called unbiased if its expected value equals the exact value of the
parameter

E{Ŝ} = S or
∫

Ŝ pdf(x) dx = S (9.1-5)

Let us take a derivative of both sides of this expression with respect to S. Since, Ŝ is not a
function of S, ∫

Ŝ (∂/∂S) pdf(x) dx = 1 (9.1-6)

This can be rewritten as

1 =
∫

Ŝ [(∂/∂S) ln pdf(x)] pdf(x) dx = E{Ŝ[(∂/∂S) ln pdf(x)]}

= E
{
Ŝ · (LL;S)T

} (9.1-7)

Here, LL = ln pdf(x); (∂/∂S) is denoted using a (;S) subscript,

(∂/∂S) ln pdf(x) = (LL;S)T (9.1-8)

and superscript T denotes a transposed vector [(∂/∂S) is a transposed vector, this can be
verified by using indexes, and it is shown later in Problem 9.1-3]. According to the pdf
normalization, ∫ pdf(x) dx = 1, so

(∂/∂S)
∫

pdf(x) dx = 0

This can be rewritten as
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(∂/∂S)
∫

pdf(x) dx =
∫
(∂/∂S) pdf(x) dx

=
∫

[(∂/∂S) ln pdf(x)] pdf(x) dx = 0

(9.1-9)

or

E
{
(LL;S)T

} = E{LL;S} = 0 (9.1-10)

Combining this with (9.1-7), we obtain (see Problem 9.1–1),

cov
{
Ŝ, (LL;S)T

}
= 1 (9.1-11)

A product of two variances is no smaller than the covariance square, var{a} · var{b} ≥
cov{a, b}, therefore

var{Ŝ} · var{LL;S} ≥ 1 (9.1-12)

This gives the Cramer–Rao bound for the lowest value of expected error
√

var{Ŝ},
var{Ŝ} ≥ IM−1, IM = var{LL;S} (9.1-13)

where IM is called an information matrix. Using indexes, this can be written in the com-
ponent form,1

IMab = cov{LL;a, LL;b}, cov
{
Ŝa, Ŝb

}
≥ (IM−1

)ab
(9.1-14)

Consider a set of statistically independent observations, {xn, n = 1, . . . , N}. Its log likeli-
hood is given by a sum of individual loglikelihoods:

LL =
∑
n

LLn =
∑
n

ln pdf(xn) (9.1-15)

Therefore, when Ŝ is estimated from a set of independent observations, {xn}, see Problem
9.1–2,

IM = var{LL;S} = var

{∑
n

LLn;S

}
= N var

{
LL1;S

} = N IM1 (9.1-16)

where LL1 and IM1 are a log-likelihood and information matrix for an individual observa-
tion, and

var{Ŝ} = var1{Ŝ}/N ≥ IM−1
1

/
N (9.1-17)

Let us emphasize that all parameter values in CRB expressions [(9.1-14), (9.1-15), (9.1-
17)] are the true (not estimated) quantities. A numerical evaluation of a CRB involves
taking expected values (integration) over only D dimensions of x, even when estimation is
performed using D ·N scalar measurements contained in {xn, n = 1, . . . , N}.
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For the estimation of the mean of a Gaussian distribution, S = M. Evaluation of IM1

yields (see Problem 9.1–3)

IM1 = var{LL1;M} = C−1 (9.1-18)

This leads to the CRB expression for the mean, given in the previous section Eq. (9.1-3).
Consider perfectly supervised learning with Gaussian class-conditional distributions.

Perfect supervision assigns every pixel n to its class without an error, so that the problem
of mean estimation is solved for each class separately, in isolation from the association
problem. Therefore, perfectly supervised multiclass learning is no different than a single
class problem as far as the learning efficiency is concerned.

Unsupervised or imperfectly supervised learning is essentially different from a single-
class problem in that the class associations have to be estimated concurrently with the
parameters of the distributions, and the errors in association and parameter estimation
contribute to each other. This results in more complicated expressions, which are derived
in the following sections.

9.1.4 CRB for General MLANS Concurrent Association and
Estimation

In case of multiple modes and classes we number parameters using two indexes, Sk =
{Sak , a = 1, . . . , A; k = 1, . . . , K}, a numbers components of observations, and k numbers
classes (and modes). The accuracy of estimated parameters Ŝak is measured by the covariance

matrix, cov
{
Ŝak , Ŝ

b
k′
}

. Below, for simplicity of notation, we derive explicit expressions for

covariances among parameters of a single class, k′ = k, cov
{
Ŝak , Ŝ

b
k

}
. A full covariance

including k �= k′ can be computed using the same technique. For the general MLANS
model, LL is the logarithm of the AZ-likelihood, AZ-LL, given by Eq. (4-34), and Sak
include parameters of the model, Mk(n,Sk), rk , and Ck . Using indexes explicitly, Mk =
{Mi

k, i = 1, . . . , I }. The derivative LL;a is computed from Eq. (4.3-12) using an identity
Eq. (4.2-3),

LL;a = (∂/∂Sak )∑
n

ln

{∑
k

rk pdf(xn|k)
}

=
∑
n

f (k|n) ll;i (n|k)Mi;a
k (9.1-19)

here and below, a sum over the repeated indexes i is assumed, and

f (k|n) = rk pdf(xn|k)/
∑
k′

rk′ pdf(xn|k′)

ll;i (n|k) = (∂/∂Mi
k

)
ln {rk pdf(xn|k)} , M

i;a
k = ∂Mi

k

/
∂Sak

(9.1-20)

In MLANS models, deterministic relationships among various data measurements
xn are given by modelsMk , however, the deviations of dataxn from the model predictionsMk

are random and uncorrelated. It follows that functions of n, including f (k|n) and ll;i (n|k),
are uncorrelated for different n. Therefore, the covariance in Eq. (9.1-14) is computed
as follows:
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IMab =
∑
n

E
{
f 2(k|n) ll;i (n|k) ll;j (n|k)}Mi;a

k M
j ;b
k (9.1-21)

Here, sums over the repeated indexes i, j are assumed, and derivatives of means are
taken outside the expectation parentheses E{·} since they are not random quantities. This
expression gives the CRB for the general MLANS model, including MLANS CAT. Let us
emphasize that all parameter values in this expression are the true (not estimated) quantities,
in particular, f (k|n) are the a posteriori Bayes probabilities.

Let us derive a more specific expression for the CRB, in case of Gaussian class-
conditional pdfs, with constant prior rates rk covariances, Ck , and means Mk depending on
the parameters Sk . Then, the derivatives ll;i (n|k) can be computed as follows:

ll;i (n|k) = (∂/∂Mi
k

)
ln{rk pdf(xn|k)} = (∂/∂Mi

k

)
ln G[xn|Mk(n,Sk),Ck]

= (∂/∂Mi
k

) (−0.5DT
nk C

−1
k Dnk

) = Di′
nk

(
C−1
k

)i′i (9.1-22)

Here, Dnk = xn − Mk(n,Sk), or using indexes, Di′
nk = xi

′
n − Mi′

k (n,Sk); a superscript T
denotes the transposed vector-column, and a sum over the repeated index i ′ is assumed.
Substituting this into Eq. (9.1-21), we obtain

IMab =
∑
n

E
{
f 2(k|n)Di′

nk

(
C−1
k

)i′i
D
j ′
nk

(
C−1
k

)j ′j}
M

i;a
k M

j ;b
k

=
∑
n

E
{
f 2(k|n)Di′

nkD
j ′
nk

} (
C−1
k

)i′i (
C−1
k

)j ′j
M

i;a
k M

j ;b
k

(9.1-23)

Here, sums over the repeated indexes i, j, i ′, j ′ are assumed. This expression can be written
in a matrix form:

IM =
∑
n

(∂Mk/∂S)T C−1
k E

{
f 2(k|n) DT

nkDnk

}
C−1
k (∂Mk/∂S) (9.1-24)

Equation (9.1-23) or (9.1-24) together with Eq. (9.1-13) give the CRB bound for the case of
Gaussian conditional pdfs. More specific, intuitively interpretable expressions are obtained
in the following sections.

It is of interest to note that the problem of determining performance limits for concurrent
estimation and association (assignment) problems has been a long-standing puzzle.2 Doubts
have been expressed that such bounds could be derived in principle. The confusion has been
caused by formulations of the association problem in terms of crisp concepts of Aristotelian
logic, while the successful and relatively simple derivation above is due to our reformulation
of the association problem in terms of fuzzy adaptive AZ-logic. Although in prediction and
tracking, parameters are estimated from multiple time points, numerical evaluation of CRB
involves taking only single-pixel expected values and requires integration just over the
D-dimensions of single-pixel measurements. The obtained CRB expression can be easily
evaluated numerically for any specific functional form of the pdfs and models. In addition to
general expressions suitable for numerical evaluation derived above, we will develop in the
following sections simplified expressions amenable to intuitive interpretation and suitable
for qualitative analysis. In particular, we will analyze in detail the CRB for the statistical
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Gaussian mixture model of Chapter 5 (MLANS) and for the dynamic model of concurrent
association and tracking of Chapter 7 (MLANS CAT).

9.2 OVERLAP BETWEEN CLASSES

Here we introduce a formalism for the description of overlaps between classes in terms of
overlapping and nonoverlapping parts of class populations, means, and covariances. This
theory of overlaps is useful for an intuitive interpretation of CRB obtained later.

As discussed previously, the CRB for the means of classes during supervised classi-
fication are ellipsoids. We show below that the same is true for the case of unsupervised
learning. However, shapes and sizes of the CRB ellipsoids depend on the geometry of the
overlap between classes. This result is intuitively clear. Larger overlaps between classes
lead to larger association errors and to larger CRB. If a particular class does not overlap
with any other class, the CRB for this class is reduced to that of a single-class or a
perfectly supervised case. These results are discussed in the following subsections that
formally introduce a notion of the distribution overlap, and use it to formulate unsupervised
multiclass CRB.

The purpose of this section is to introduce a notion and a quantitative treatment of
the overlap between classes. To simplify notations and the discussion, in this section
we do not make any distinction between classes and types and we use a single index
k to denote classes/types; we also use the same notations {rk,Mk,Ck} for the expected
and estimated values of these parameters (as long as this does not result in ambiguities).
The formalism developed below characterizes overlaps by tensor-like quantities of various
orders. A detailed description of the overlap geometry may require the use of high-order
quantities. Few lower order quantities of overlapping and nonoverlapping parts of the class
populations, means, and covariances introduced here provide approximate description of
class overlaps and are useful for the intuitive interpretation of CRB in the next section.

9.2.1 Overlap Matrix

An overlap matrix Okk′ is defined as an expected value of the product of fuzzy associations
(Bayesian probabilities) for an observation xn to belong to each of the classes k and k′:

Okk′ ≡ E{f (k|n) · f (k′|n)} (9.2-1)

Let us remember that f (k|n) is a probability that datum n belongs to class k, so that∑
k

f (k|n) = 1 (9.2-2)

For the case of nonoverlapping classes, Okk′ is a diagonal matrix:

Okk′ |NO = δkk′rk for nonoverlapping case (9.2-3)

This follows from the fact that in a nonoverlapping case f (k|n) equals 0 or 1, therefore
f (k|n)2 = f (k|n), and
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E{f (k|n)} ≡ ∫ f (k|n) pdf(xn) dxn = ∫ rk · pdf(xn|k) dxn = rk (9.2-4)

An overlap matrix has the property that the sum of row or column elements is equal to the
corresponding rate: ∑

k′
Okk′ = rk (9.2-5)

which is a consequence of Eqs. (9.2-2) and (9.2-4). We interpret this equation as an expansion
of a rate rk into its overlapping and nonoverlapping parts. We callOkk′ for k �= k′ overlapping
parts of rk . And we call the diagonal element of an overlap matrix, corresponding to the
overlap of a class with itself, a nonoverlapping part of a rate:

rNO
k ≡ Okk = rk −

∑
k′ �=k

Okk′ (9.2-6)

A similar expansion for a class population is

Nk =
∑
kk′

≡ Nkk′ ≡ N
∑
k′

Okk′ ; NNO
k = N Okk (9.2-7)

9.2.2 Overlapping Parts of Means

An expansion of a class mean in its overlapping and nonoverlapping parts can be obtained
in much the same way using Eqs. (9.2-2) and (5.2-8):

Nk ·Mk = E

{∑
n

f (k|n)
[∑

k′
f (k′|n)

]
xn

}

=
∑
k′

E

{∑
n

f (k|n) f (k′|n) xn
}

=
∑
k′

Nkk′ ·Mkk′

(9.2-8)

Here, overlapping parts of the mean are defined as

Mkk′ = E

{∑
n

f (k|n) f (k′|n) xn
}/

Nkk′ (9.2-9)

and a nonoverlapping part of the mean

MNO
k = E

{∑
n

f (k|n)2 xn

}/
NNO
k (9.2-10)

9.2.3 Overlapping Parts of Covariance Matrices

Expansion of a covariance matrix in its overlapping parts is a bit more complicated since
such an expansion contains in addition to the covariances of the overlapping parts of a class
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also a part due to the scatter of the means of the overlapping parts of a class. The deviations
of the means are denoted as


Mkk′ = Mkk′ −Mk, 
MNO
k = MNO

k −Mk (9.2-11)

and the deviations of the observationsXn from the overlap meansMkk′ are denoted asDnkk′ :

Dnkk′ ≡ Xn − Mkk′ (9.2-12)

Dnk = Dnkk′ +
Mkk′ (9.2-13)

Proceeding now as in Eqs. (9.2-8), the following expansion for the covariance matrix is
obtained:

Nk · Ck = E

{∑
n

f (k|n) Dnk DT
nk

}
= E

{∑
n

f (k|n)
[∑

k′
f (k′|n)

]
Dnk DT

nk

}

=
∑
k′

E

{∑
n

f (k|n) f (k′|n) Dnk DT
nk

}

=
∑
k′

E

{∑
n

f (k|n) f (k′|n) (Dnkk′ +
Mkk′) (Dnkk′ +
Mkk′)T

}
(9.2-14)

The last line here is obtained by using Eq. (9.2-13). Expanding parentheses in the last
line, four items are obtained; of these items, the two cross-items ∼ Dnkk′
MT

kk′ and
∼ 
Mkk′DT

nkk′ are identically zero according to the definitions in Eqs. (9.2-7), (9.2-8),
and (9.2-9). Thus,

Nk · Ck =
∑
k′

Nkk′ · Ckk′ +Nk · CM
k (9.2-15)

where the overlap-mean covariance is defined as

CM
k ≡

∑
k′

Nkk′ ·
Mkk′
MT
kk′/Nk (9.2-16)

and the covariances of the overlapping and nonoverlapping parts of class k are defined as

Ckk′ = E

{∑
n

f (k|n) f (k′|n) Dnkk′ DT
nkk′

}
/Nkk′ ; CNO

k = Ckk (9.2-17)

These definitions are consistent with definitions (9.2-9), (9.2-10), and (9.2-11), so that
each of these covariance matrixes can be interpreted as a distribution scatter about the
corresponding mean.

A geometric interpretation of the developed formalism is illustrated in Figs. 9.2-1 and
9.2-2, where two-dimensional examples are shown of the distributions of three classes and of
their overlapping and nonoverlapping parts. They are plotted here using 2 − σ boundaries
of the distributions. The values of parameters of these distributions are summarized in
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(1a ) (1b) (1c)

(2a) (2b) (2c)

2 13

13

2

225

5

7

7

3

3

1 12

12

1

11

3 23

23

3

33

5 5 57 7 73 3 3

Figure 9.2-1 and 9.2-2 Two sets of distributions for three overlapping classes (a), their overlapping
parts (b), and nonoverlapping parts (c) are defined by overlapping and nonoverlapping parts of the
means and covariances. They are plotted here using 2 − σ boundaries of the distributions.

the Table 9.2-1. Overlapping parts of the distributions in Figs. 9.2-1b and 9.2-2b and
nonoverlapping parts of distributions in Figs. 9.2-1c and 9.2-2c are characterized by their
means and covariances. They do not follow exactly the distribution boundaries in Figs.
9.2-1a and 9.2-2a; a more accurate description would require higher order tensors. Note
that classes 1 and 3, which are shown separated in Figs. 9.2-1a and 9.2-2a, have small
overlapping population. In Figs. 9.2-1b and 9.2-2b, however, the overlapping covariances
are relatively large.

Two more quantities useful in the next section are introduced now: second-order
statistics:

SNO
k = E

{∑
n

f (k|n)2 Dnk DT
nk

}/
NNO
k = CNO

k +
MNO
k

(

MNO

k

)T
(9.2-18)

TABLE 9.2-1
Parameters of Class Distributions

Horizontal Component Vertical Componet
Prior

Example Class Probability Mean SD Mean SD Correlation

Fig. 9.2-1 1 0.267 3 0.5 5 0.5 0
2 0.333 5 1.5 5 0.5 0
3 0.400 7 0.5 5 0.5 0

Fig. 9.2-2 1 0.267 5 0.5 6 0.5 0
2 0.333 5 1.5 5 0.5 0
3 0.400 5 0.5 4 0.5 0



9.3 CRB for MLANS 339

and fourth-order statistics:

TNO
k = E

{∑
n

f (k|n)2 Dnk ∗ Dnk ∗ Dnk ∗ Dnk

}/
NNO
k (9.2-19)

An expansion for TNO
k similar to the one obtained for SNO

k can be developed. However,
an intuitive appeal driving the development in this section is decreasing when dealing with
a fourth-order tensor. The definition (9.2-19) can be used for numerical calculations of the
CRB for covariance estimation obtained in the next section.

9.3 CRB FOR MLANS

Lower bounds for the variances of the estimated parameters of a mixture are evaluated in this
section according to the CR theorem, and expressed in terms of overlaps between classes.
These expressions are intuitively appealing and also can be easily evaluated numerically for
any given probability distribution. It is necessary to distinguish in this section parameters
of distributions from their estimated values, which are denoted by a “hat.”

9.3.1 CRB for Prior Rates

The derivation of the CRB for prior rates is complicated by interdependence between rates
due to the normalization constraint rk = 1. A derivative ∂/∂rk can be evaluated along
different paths in {rk} space satisfying this constraint. To obtain a correct definition of
this derivative for our purpose, it should be remembered that the CRB is given by the
inverse variance of the log-likelihood, derivative. The CRB is the tightest bound (that is
the uppermost lower bound) among various bounds associated with different definitions of
∂/∂rk derivative. Thus, the CRB corresponds to the minimal variation in ∂LL/∂rk and the
derivative should be defined as to minimize var(∂LL/∂rk).

A general definition of this derivative can be obtained by varying all the rk′ , k′ =
1, . . . , K independently under the normalization constraint:

rk′ → rk′ + αk′
rk, k′ = 1, . . . , K,
∑
k′

αk′ = 0, αk = 1 (9.3-1)

The last constraint here is added for convenience and does not reduce the generality of this
definition. The corresponding variation in LL is


LL = ∂LL/∂rk ·
rk =
∑
n

∑
k′

f (k′|n) [αk′/rk′ ]
rk (9.3-2)

which yields the derivative

∂LL/∂rk ≡ 
LL/
rk =
∑
n

∑
k′

f (k′|n) [αk′/rk′ ] (9.3-3)

The variance of this expression can be evaluated as follows [remember that the expected
value of (9.3-3) is zero and for different n, f (k|n) are independent]:
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var{∂LL/∂rk} =
∑
n

var

{∑
k′

f (k′|n) [αk′/rk′ ]

}

= N · E


∑
k′;k′′

f (k′|n)f (k′′|n) [αk′αk′′/rk′rk′′ ]




= N
∑
k′;k′′

Ok′k′′ [αk′αk′′/rk′rk′′ ]

(9.3-4)

An appropriate definition of the derivative ∂/∂rk leading to the CRB is obtained now by
minimizing this expression over the set of {αk} under the constraints (9.3-1). A Lagrangian
multiplier method results in the following set of equations:

2
∑
k′;k′′

Ok′k′′ (αk′/rk′rk′′)+ λ0 + λkδkk′′ = 0, k′′ = 1, . . . , K;

∑
k′

αk′ = 0; αk = 1
(9.3-5)

This set ofK+2 linear equations forK+2 variables {αk, λ0, λk} can be solved numerically
for any given model. Numerical evaluation of an overlap matrix Ok′k′′ involves just one
D-dimensional integration. Resulting values of αk should be substituted into Eq. (9.3-4)
yielding the CRB for the MLANS rk estimator:

var
{
r̂k
} ≥


N ∑

k′;k′′
Ok′k′′ (αk′αk′′/rk′rk′′)




−1

(9.3-6)

A simple solution of (9.3-6) can be obtained in the case when class k overlaps with a
single class k′, much stronger than with any other class. It is sufficient then to consider just
these two classes, αk′ = −αk = −1, leading to the CRB:

var
{
r̂k
} ≥ N−1 E

{[
f (k|n)/rk − f (k′|n)/rk′

]2}−1

= N−1
[
Okk/r

2
k +Ok′k′/r2

k′ − 2Okk′/rkrk′
]−1

(9.3-7)

The maximum variance here corresponds to two identical classes k and k′ (maximum
overlap); if the overlap is insignificant this expression is reduced to

var
{
r̂k
} ≥ N−1 [1/rk + 1/rk′ ]−1 = N−1 [(rk + rk′)/(rkrk′)]−1 (9.3-8)

For the two-class case, rk + rk′ = 1, and for a nonoverlapping class:

var
{
r̂k
} ≥ N−1 rk (1 − rk) (9.3-9)

The same expression can be obtained in a case of no overlap between all classes. In
this case the overlap matrix is given by Eq. (9.2-3), and it can be verified by the substitution
that the following is a solution of Eqs. (9.3-5):
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αk′ = (δkk′ − rk′)/(1 − rk) (9.3-10)

This leads to the following CRB for the no-overlap case:

var
{
r̂k
} ≥ N−1 rk(1 − rk) (9.3-11)

It is interesting to note, that in nonoverlapping cases the CRB does not go to 0, as in a single
class case; the reason is that in a multiclass case there remains a randomness of rk .

9.3.2 CRB for Means

The CRB for means is obtained directly from (9.1-23). In this case, a set of Sa is identical
to a set of Mi , therefore, Mi;a

k = δi;a , and IMab = IMij ,

IMij =
∑
n

E
{
f (k|n)2 Di′

nk D
j ′
nk

} (
C−1
k

)i′i (
C−1
k

)j ′j ; or

IM = NNO
k C−1

k SNO
k C−1

k

(9.3-12)

where SNO
k has been defined in Eq. (9.2-18). This yields the following CRB for the mean

components of the kth class,

cov
{
M̂k, M̂k

}
≥ (NNO

k

)−1
Ck

(
SNO
k

)−1
Ck (9.3-13)

This result is intuitively appealing: a large CRB and large errors correspond to a large
overlap (small nonoverlapping part of a class). If class k does not overlap with any other
class, this expression is reduced to the usual covariance of the mean estimator.

Figures 9.3-1 and 9.3-2 show CRB for means for the examples considered above
in Figs. 9.2-1 and 9.2-2, respectively. Here the CRB are multiplied by 2 in order to be
comparable with 2 − σ distributions in Figs. 9.2-1 and 9.2-2. In addition, the CRB in
Figs. 9.3-1a and 9.3-2a are multiplied by the number of observations in order to remove
this dependence. Their shape is different from that in Figs. 9.2-1a and 9.2-2a due to the
nonoverlapping parts of covariances shown in Figs. 9.2-1c and 9.2-2c, and their size is
determined by nonoverlapping parts of the class populations. In Figs. 9.2-1b and 9.2-2b the
same CRB are shown multiplied by the corresponding number of observations in each class;
this removes the effects of rates and these ellipses, when compared with the distributions
in Figs. 9.2-1a and 9.2-2a, show the CRB increase due to classification errors.

9.3.3 CRB for Covariances

The CRB for an inverse covariance C−1
k is obtained below, because it has a somewhat

simpler form than the one for Ck . The derivatives are calculated as

∂LL/∂C−1
kab =

∑
n

f (k|n) (−DnkaDnkb + 1/2 δabDnkaDnka

+ Ckab − 1/2 δabCkaa)

(9.3-14)

Using definitions (9.2-18) and (9.2-19), the fourth-order tensor of covariances of these
derivatives is evaluated as follows:
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Figure 9.3-1 and 9.3-2 Cramer–Rao bounds for means of overlapping classes shown in Figs. 9.2-1
and 9.2-2.

cov
{
∂LL/∂C−1

kii′ ∂LL/∂C
−1
kjj ′
}

= NNO
k

(
TNO
kii′jj ′ − 1/2 δii′TNO

kiijj ′ − 1/2 δjj ′TNO
kii′jj + 1/4 δii′δjj ′TNO

kiijj

− SNO
kii′ Ckjj ′ − SNO

kjj ′ Ckii′ + 1/2 δjj ′SNO
kii′ Ckjj + 1/2 δii′SNO

kjj ′ Ckii

+ Ckii′Ckjj ′ − 1/2 δii′CkiiCkjj ′ − 1/2 δjj ′Ckii′Ckjj + 1/4 δii′djj ′CkiiCkjj

)
(9.3-15)

A summation over repeated indices is not assumed here. The inverse of this expression
yields the CRB for the estimated components of the covariance matrix of class k. This
expression is too complicated for an intuitive appeal; still it is suitable for a numerical
evaluation.

9.3.4 MLANS Performance vs. CRB: Example 3 Continuation

In Section 5.2.3 we compared the classification performance of the MLANS and ISODATA
algorithm using a standard data set. Here, continuing this example, we compare the MLANS
performance vs. CRB. In Section 5.2.3, we used the Bhattacharyya distance to characterize
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the difference between the true and estimated distributions (the Bhattacharyya distance,
in turn, is related to classification errors). We discussed that Bhattacharyya goes to zero
when a number of data samples available for the estimation goes to infinity. For the finite
number of samples, the estimation error is finite and the Bhattacharyya is nonzero, positive.
The minimal expected deviation of Bhattacharyya from zero, or its minimal bias, can
be computed from the CRB for the parameters of the distribution. Fukunaga and Hayes
(1988) have computed this minimal bias for the case of a single Gaussian distribution, or
equivalently, for the case of perfect supervision.

This minimal bias is shown in Fig. 9.3-3 using the dashed line; the MLANS perfor-
mance is shown using solid lines. The MLANS performance in this case is as good as
the Fukunaga–Hayes bound. Two points should be further clarified. First, the MLANS
performance is sometimes better than the bound (below the dashed line). This does not
contradict the nature of the bound: the dashed line is the bound for the best average
performance of any algorithm or neural network. Second, MLANS reaches this bound
without any knowledge of class assignments, although the bound is derived given the perfect
knowledge of class assignments. Although this fact is remarkable, it can be explained as
follows. From the previous section, Eqs. (9.3-6), (9.3-13), and (9.3-15), it follows that
the CRB for the parameters of mixture components are affected by the overlap between
components; in a case of no overlap, f (k|n) = 1 or 0, f (k|n)2 = f (k|n) = 1 or 0,
and the CRB are no different from the perfectly supervised case. Since in the considered
example the overlap is small (the Bayes error is = 1.9%), the CRB are close to the perfectly
supervised case.
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Figure 9.3-3 Comparison of the MLANS performance vs. the information-theoretic bound. Example
3 continuation, same as in Fig. 5.2-8; a blow up of the region N ≥ 50. The dashed line shows the
theoretical bound for an average performance of any algorithm calculated for the perfectly supervised
case (same for each class).
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One of the consequences of the CR theorem, mentioned in Chapter 4, is that the ML
estimation asymptotically achieves the CRB. The above example demonstrates that, in
agreement with this general statement, the actual learning efficiency of the MLANS in this
case has achieved the theoretical limit of the CRB.

9.4 CRB FOR CONCURRENT ASSOCIATION AND TRACKING (CAT)

Performance limits for tracking in clutter, previously an unsolved problem, were derived
only recently (see Note 2). In this section we obtain the CRB for tracking as a consequence
of the general CRB for model-based association and estimation. Then we derive simplified
rule-of-thumb expressions for qualitative analysis and discuss their intuitive interpretation.

9.4.1 CRB for Linear Tracks

The CRB for the CAT problem is given by Eqs. (9.1-13), (9.1-21), and (9.1-23), when track
models are substituted in these expressions. The track models were discussed in Chapter 7.
Now consider the CR bound for a case when (1) the distributions of classification features
are independent of the position and motion of objects, and (2) the object of interest is on
a linear track and there is no Doppler measurements. So the measurement vector for each
pixel or sample consists of coordinates and classification features, Xn = (Yn,Rn). And the
conditional pdf of the nth measurement, under the hypothesis that it came from an object
on track k, factors into a product of the positional and classification parts:

pdf(Yn,Rn|Hk) = pdf(Rn|Hk, tracking) · pdf(Yn|Hk, classification) (9.4-1)

The expected value of the position of object k, at time tn,Mk(tn) is given by the linear
track model, Mk = Rk +Vktn. Parameters of this model are Sk = (Rk,Vk). The deviations
of pixel positions from the model predictions are Dnk = Rn − Mk(tn). And pdf of these
deviations are modeled using Gaussian distributions

pdf(Rn|Hk, tracking) = G [Rn|Mk(tn),Ck] (9.4-2)

The model derivatives are computed in Problem 9.4–1 (which also contains the details of
the following derivations). Substituting these derivatives into Eqs. (9.1-19) and (9.1-21)
we obtain

∂LL/∂Sk =
∑
n

f 2(k|n) Dnk C−1
k (1, tn)

T

IM =
∑
n

[
1 tn

tn t2n

]
C−1
k E

{
f 2(k|n) DT

nkDnk

}
C−1
k

(9.4-3)

The inverse of this expression gives the CRB for concurrent association and tracking of
multiple targets on linear trajectories in clutter. It is a 4×4 matrix corresponding to the four
track model parameters: positions and velocities for each of the two coordinates. This 4×4
matrix is written here as a cross product of two 2 × 2 matrixes. The first 2 × 2 matrix under
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the sum in the square brackets corresponds to position and velocity parameters. The 1 in the
upper diagonal element in the matrix gives the error bound for the target position estimation,
Rk . The lower diagonal element t2n gives the error bound for the target velocity estimation,
Vk . The off-diagonal element in this matrix gives the covariances between errors in position
and velocity. The rest of this expression is a 2 × 2 matrix of coordinates (range and angle).
Expression (9.4-3) can be numerically evaluated for any specific target motion, clutter, and
classification feature distributions to obtain the fundamental limitations on the accuracy
of tracking. This expression can also be interpreted in terms of class overlap similar to
Eq. (9.3-13).

When Doppler measurements of the radial velocity are available, the data for each
sample n contain the Doppler velocity Vn in addition to the radial position Rn and angle
position, R�n : (R�n, Rn, Vn). The CRB for the angular components are not affected, but
the CRB for the radial velocity Vk is different from Eq. (9.4-3) and is obtained from the
general CR bound Eq. (9.1-21) as follows. The radial component model is given by Mk =
(Rk + Vktn, Vk). The radial (position and velocity) components of the model derivatives
Mk;v and deviations of the data from model Dnk are

Mk;v = (tn, 1)

Dnk = (DRnk,DVnk),DRnk = Rn − Rk − Vktn, DVnk = Vn − Vk

(9.4-4)

The CR bound is obtained by substituting this into Eq. (9.1-21). If the measurement errors
in the radial position and velocity are independent,

C−1
k =

[
σ−2
R 0

0 σ−2
V

]
(9.4-5)

the CR bound for the velocity is

σ−2
V,CR =

∑
n

E
{
f 2(k|n) [tn DRnk σ

−2
R +DVnk σ

−2
V

]2}
(9.4-6)

Usually, Doppler measurements are much more accurate than range measurements, so

tn DRnk σ
−2
R � DVnk σ

−2
V

σ−2
V,CR ≈

∑
n

E
{
f 2(k|n)DV 2

nk σ
−4
V

} = σ−4
V

∑
n

E
{
f 2(k|n) DV 2

nk

} (9.4-7)

This expression can be interpreted in terms of class overlap similar to Eq. (9.3-13).

9.4.2 Rule-of-Thumb CRB for CAT

Now, we obtain and analyze a simplified expression from Eq. (9.4-3), that will give a
“rule of thumb” for the accuracy of tracking in clutter. Summary results are discussed
below; a complete derivation is presented in the Appendix (Section 9.6). For this simplified
analysis, we consider the CR bound for the position parameter (range or angle) of the object-
track model, σ 2

CR. In terms of the matrix elements of Eq. (9.4-3), this bound corresponds
to the upper diagonal element of the first matrix in Eq. (9.4-3), which equals 1, and the
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upper diagonal element of matrix C−1
k , denoted σ−2, which is the standard deviation of the

sensor position measurement determined by the sensor accuracy, pointing precision, object
apparent size (e.g., length of the return signal), signal propagation environment, etc.

The “rule of thumb” simplified expression is obtained in terms of several parameters
that include the number of observations over time used to initiate or estimate track Nt (this
is the number of scans, or frames, or pings), the number of pixels per track accuracy Np

(Np ∼ 2στ−1, where τ is a pixel size), signal-to-clutter ratio S/C, and “detectability” (or
“classifiability”) of a single pixel: an average likelihood ratio of classification features of
a single object pixel, LRCFO (exact definitions are given in the Appendix). The CR bound
intuitive interpretation is discussed below in terms of the S/C ratio, even though neither
the CR bound nor rules of thumb derived below depend on any kind of signal thresholding
procedure.

In a case of no clutter (perfect object-pixel detection/classification), tracking accuracy
improves with the number of frames Nt used for track estimation,

σCR ∼ σN
−1/2
t , no clutter (9.4-8)

This is a familiar
√
Nt law for the accuracy of repeated measurements, as should be expected.

In a case of very strong clutter, (signal-to-clutter ratio, S/C → 0),

σCR ∼ σN
−1/2
t N1/2

p , for very strong clutter (9.4-9)

This expression can be used for a qualitative analysis of tracking requirements. Successful
tracking requires that the accuracy of the track improves (does not degrade) comparatively to
the accuracy of a single position measurement. Thus for a successful tracking, σ 2

CR < σ 2, or

N−1
t Np < 1 or Nt > Np, for very strong clutter (9.4-10)

For a typical example characterized by Np ∼ 100, to satisfy Eq. (9.4-10), the number of
frames used to initiate tracks should be Nt > 100 for very strong clutter. This is often
prohibitive. Still, using high frame-rate sensors, satisfying this requirement, it is possible to
initiate tracks for S/C< 1 by using CAT procedure with more than 100 frames. As expected,
tracking in very strong clutter can be accomplished either by initiating tracks on a very
large number of frames, or by concurrent utilization of classification features. Utilization
of classification features is equivalent to S/C reduction; this is explicitly shown below.

Let us derive the CRB rule of thumb in a case of strong clutter, but not very strong S/C
>∼1 (or less if classification features are used). To obtain expressions amenable to intuitive
interpretation, we separate classification features into a signal-to-clutter ratio, S/C, and other
features as might be available. The rule of thumb below is obtained assuming that a signal
coming from an object has a constant amplitude S and, in addition, there is an additive
random clutter; clutter is characterized by its standard deviation,C. The CRB rule of thumb
is obtained in terms of the distribution parameters of average and peak clutter. The reason for
this is that in a pixel (or sample) containing signal and clutter, the signal + clutter distribution
is determined by statistical properties of an average clutter pixel, but the distribution of
clutter alone is determined by statistical properties of a peak clutter pixel within the sensor
accuracy windowNp. Therefore, the rule-of-thumb expression below is derived in terms of
the means and standard deviations of an average clutter sample, mc and σc, and of a peak



9.4 CRB for Concurrent Association and Tracking (CAT) 347

clutter pixel within a sensor accuracy window Np,mp, and σp. In addition to S/C, other
available classification features can be used for association and tracking; these features are
accounted for by using LRCFO: an average likelihood ratio of classification features of a
single object pixel, excluding an S/C feature (exact definition is given in the Appendix):

σCR ∼ σN
−1/2
t

{
1 +Np exp

[−(S + B)/σp
] · LRCFO

−1
}

B = mc −mp + σp − σc

(9.4-11)

In the above equation, the likelihood ratio LRCFO is multiplied by exp(S/σp). This illus-
trates an intuitively obvious point that classification features can be used to “improve” the
S/C ratio. In fact, an “effective S/C” can be defined as

“effective S/C” = S/C + (σp/C) ln LRCFO (9.4-12)

(this expression is valid for any definition of a clutter measure for C, not just the standard
deviation). Equation (9.4-12) is applicable in case of weak clutter as well. By comparing
Eqs. (9.4-12) and (9.4-8), we obtain a definition of what is a weak clutter [in the context of
Eq. (9.4-8)]:

exp
[
(S + B)/σp

] · LRCFO > Np (9.4-13)

Let us require, as before, that for a successful tracking, σCR < σ . Then, the requirement on
S/C for tracking follows from Eq. (9.4-12):

exp
[
(S + B)/σp

] · LRCFO >
∼ N

−1/2
t Np or

S + σp ln LRCFO >
∼ − B + σp ln

(
Np/N

1/2
t

) (9.4-14)

This can be rewritten so that any favorite definitions of clutter measure C can be used:

S/C + (σp/C) ln LRCFO >
∼ − B/C + (σp/C) ln

(
Np/N

1/2
t

)
(9.4-15)

This gives a rule of thumb for tracking in clutter.
Let us explore some typical numerical values of the parameters in Eqs. (9.4-12) and

(9.4-15). Parameters of distributions of clutter peak can be derived, assuming particular
pdf for average clutter. For exponential and uniform distributions results are summarized in
Table 9.4-1. Table 9.4-1 also contains parameters estimated from some typical real sensory
data. These are shown for illustrative purpose only; of course, properties of real data vary
from case to case and from sensor to sensor.

For the example of our sensor data, Np = 100, without using any other classification
features, the requirement for track initiation with four frames, Nt = 4,

S/σc >
∼ 3.0 (∼ 5 db, or less if classification features are used) (9.4-16)

This is a moderate S/C requirement. If other classification features are used, LRCFO > 1
and S/C requirements are even lower.

Expressions (9.4-10), (9.4-11), (9.4-12), and (9.4-15) give surprisingly simple rules of
thumb for the possibility of tracking in clutter in terms of the number of frames, S/C ratio,
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TABLE 9.4-1
Parameters of Distributions

Distribution mc/σc σc mp/σc σp/σc B/σc

exp(−x/σc)/σc Np = 10, 50, 100, 200, 300, 5000 Np = 100
1 σc mp = 3, 4.6, 5.2, 5.9, 6.3, 9 1.3 −3.9

U
[
0, 2

√
3 · σc

] √
3 σc 2

√
3
(
1 −N−1

p

)
N−1
p Np = 100

≈ 3.4 −2.7
Sensor data 0.57 1.75 1.71 0.29 −1.85

sensor accuracy, and single-frame classification likelihood. Using this result, the possibility
of tracking in clutter can be evaluated by studying statistical distributions of single pixel
measurements of single-frame features.

9.5 SUMMARY: CRB FOR INTELLECT AND EVOLUTION?

Let us summarize this chapter. The CRB is a fundamental mathematical limit for learning
of any adaptive or learning algorithm or neural network. This limit is inherent to the limited
amount of information present in data and a priori models. We derived the CRB for the prob-
lem of concurrent association and estimation. In particular, two problems were considered
in detail: estimation of the normal mixture pdf (clustering, or concurrent association and
estimation) and concurrent association, detection, and tracking for targets in clutter. The
Cramer–Rao bounds were formulated and closed-form expressions were derived suitable
for numeric evaluation. We obtained intuitively interpretable expressions for CRB using the
developed formalism of class overlaps and rule-of-thumb approximate CRB expressions
were obtained that provide for a qualitative, intuitively appealing characterization of the
possibility of tracking in clutter. The developed technique can easily be extended to obtain
more general results such as CRB for partial or imperfect supervision.

We derived intuitively interpretable expressions and rules of thumb. The CRB for the
means of the mixture components has a simple intuitive interpretation. The shape of the
bound is ellipsoidal, the same as in the case of a single Gaussian distribution. The size of this
ellipse, as expected, is increased by overlaps between mixture components. In case of no
overlap, the bound is exactly same as for a single Gaussian distribution. Rules of thumb for
tracking in clutter turned out to be surprisingly simple expressions in terms of the number of
frames (or scans), S/C ratio, and single-pixel classification likelihood. The derived rules of
thumb indicate that it should be possible to track objects in a relatively low signal-to-clutter
environment (∼ 5 db for unresolved objects in random clutter), and even this moderate
requirement can be significantly relaxed if classification features are used while performing
concurrent association, classification, and tracking, or when positional errors of measure-
ments are small. Using these results, the possibility of tracking in clutter can be evaluated
by studying statistical distributions of single-pixel signals or single-frame features.

For a long time CRB has been available for relatively simple problems in signal process-
ing and other areas of statistical estimation. It has been used for levying sensor requirements,
for the diagnostics of algorithms that potentially can be improved, and for determination of
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how many data are needed to obtain an estimation of parameters in particular problems. In
the same way the CRB described here can be used for the diagnostics of learning systems
performing concurrent classification, association, and tracking. We illustrated use of the
CRB for performance evaluation. Other uses of the CRB in neural network development
may include the following. The CRB depends on various problem parameters, such as the
number of classes and types and the dimension of the classification space. Therefore, it can
be used for estimating the best possible scaling properties of neural networks and intelligent
systems, when projecting the requirements for large-scale systems. It will be important to
understand what can be deduced from the CRB for complicated very high-dimensional
problems such as image understanding, where the number of training samples is smaller
than the number of pixels, and therefore a meaningful estimation is possible only with the
help of additional, model-based information. Which additional information is important,
and what should be the properties of efficient a priori models?

Are CRB applicable to the intellect in general? Given an important role of internal
models within intelligent systems, could CRB be used for establishing limits on speed of
learning and evolution of any intelligent system, such as humankind? There seems to be
one main difficulty for such a project: a CR’s assumption that the structure and functional
shape of the internal model is available a priori so that the learning and evolution can be
described as a parameter estimation. To overcome this difficulty, let us consider the genetic
information determining the internal model as a part of the model. And consider the genetic
evolution as a part of the model estimation. Thus, the structure and functional shape of
the internal model are parameterized (in terms of the genetic information), and the entire
evolution can be viewed as an adaptation–estimation of the internal model. Applying the CR
theory to this evolution-learning process involves another difficulty: the genetic information
is discrete, whereas the CR theory requires continuous parametric model and evaluation of
the derivatives. Could this be resolved by considering the internal model of the entire human
genome and its parameters to be average characteristics of the population? In Chapter 10
we make a step toward mathematical formulation of the notion of evolutionary gradient
acting on the genome. So the Cramer–Rao bound for the entire process of evolution seems
to be an interesting problem for future research.

9.6 APPENDIX: CRB RULE OF THUMB FOR TRACKING

Details of the derivation of the rule of thumb for tracking in clutter are discussed here.
The rule of thumb is derived from the exact CR bounds, Eq. (9.4-3), for a case of a single
moving object in random clutter. The expected value in Eq. (9.4-3) can be approximately
evaluated as

E
{
f 2(k|n) DT

nkDnk

} ∼ E
{
f 2(k|n)} E {DT

nkDnk

}
(A9-1)

The probabilities f (k|n) and deviationsD are not statistically independent and this approxi-
mation is valid only as an order-of-magnitude estimate. The second term here, by definition,
is the covariance matrix,

E
{
DT
nkDnk

} = Ck (A9-2)
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Thus, we obtain

IM =
∑
n

[
1 tn

tn t2n

]
C−1
k E

{
f 2(k|n)} (A9-3)

Consider the CR bound for the position parameter of the object-track model, σ 2
CR. This

bound is given by the upper diagonal element of the matrix in brackets, which equals 1, and
the upper diagonal element of matrix C−1

k , denoted σ−2, which is the standard deviation of
the sensor position measurement,

σ−2
CR ∼ σ−2

∑
n

E
{
f 2(k|n)} (A9-4)

The expected value here can be approximated as follows. For computation of the proba-
bilities, we simplify expressions for classification and tracking pdfs for two classes: object
and clutter. We substitute the Gaussian distribution of object tracking errors with a uniform
distribution centered at the expected object position and having a width determined by the
track model error, σ . So, the object-track pdf is given by

pdf(Rn|H = object, tracking) = 1/(2σ), if|Mk(tn)− Rn| < σ ;
otherwise = 0

(A9-5)

We consider random clutter, uniformly distributed in range, so clutter-track pdf is given by

pdf(Rn|H = clutter, tracking) = [Rmax − Rmin]−1 = 
R−1 (A9-6)

For classification pdfs, we denote their average values as pdf(O|O), pdf(O|C), pdf(C|C),
and pdf(C|O), where O stands for the object, C stands for clutter, pdf(O|O) stands for
an average value of pdf of an object given object statistics, pdf(O|O) = E{pdf(Yn|H =
object, classification)|O}, and so forth. Combining these average classification pdfs with
Eqs. (A9-5) and (A9-6) we define object and clutter average likelihood ratios per pixel,
LRO and LRC,

LRO = rO pdf(object|object)/rC pdf(object|clutter)

= rO (2σ)−1 pdf(O|O)/rC 
R
−1 pdf(O|C)

LRC = rC pdf(clutter|clutter)/rO pdf(clutter|object)

= rC 
R
−1 pdf(C|C)/rO (2σ)−1 pdf(C|O)

(A9-7)

Expected values of probabilities in Eq. (A9-4) can be expressed in terms of these quantities.
According to probability definition, for k = object and n = object,

f (k|n) = rO pdf(object|object)/[rO pdf(object|object)+ rC pdf(object|clutter)]

= 1/
(
1 + LR−1

O

) (A9-8)

And for k = object and n = clutter,
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f (k|n) = rO pdf(clutter|object)/[rO pdf(clutter|object)

+ rC pdf(clutter|clutter)] = 1/(1 + LRC)
(A9-9)

The sum in Eq. (A9-4) extends in each frame over the pixels determined by the width
of track pdf in the numerators of Eqs. (A9-8) and (A9-9), which is 2σ . The number of
items in Eq. (A9-4) for each frame, Np, is determined by the number of pixels within 2σ ,
determined by the sampling rate, Np = 2σ/τ , where τ is the size of a pixel. Within these
Np items, there is one containing the object and (Np − 1) items containing clutter. Thus,
the CR bound can be written as

σ 2
CR ∼ σ 2 N−1

t

{(
1 + LRO

−1
)−2 + (Np − 1

) · (1 + LRC)
−2
}−1

(A9-10)

Let us evaluate this expression for a case of a very high signal-to-clutter ratio, S/C → ∞,
LRO = ∞, LRC = ∞. In this case the expression in parentheses equals 1, leading to
Eq. (9.4-8):

σCR ∼ σ N
−1/2
t , no clutter (A9-11)

Let us evaluate expression (A9-10) for a case of strong clutter. Consider a very strong
clutter case first. Then, statistical distributions of clutter signals are indistinguishable from
those of clutter + object signals, therefore, classification pdfs are approximately the same
for clutter and clutter + object pixels:

pdf(O|O) ∼ pdf(C|O) ∼ pdf(O|C) ∼ pdf(C|C), very strong clutter (A9-12)

Rates rO and rC are determined as follows. One object per ping is expected, NO = 1 for the
total pixels per frame N = 
R/τ , thus, rO = NO/N ∼ τ/
R. Clutter is expected with
high probability in every pixel, hence rC ∼ 1,

LRO ∼ (2σ)−1 (τ/
R)/
R−1 = (2σ)−1 τ = N−1
p

LRC ∼ 
R−1/(2σ)−1 (τ/
R) ∼ LRO
−1

(A9-13)

Combining Eqs. (A9-10), (A9-12), and (A9-13),

σ 2
CR ∼ σ 2 N−1

t N−1
p (1 +Np)

2 (A9-14)

Since Np � 1, we obtain Eq. (9.4-9),

σ 2
CR ∼ σ 2 N−1

t Np, for very strong clutter (A9-15)

The possibility of tracking in strong clutter without additional classification features rests
on the fact that clutter is random, while the object is on a track (for linear track say, three
or more detections on a straight line would indicate the presence of an object); thus, the
CR bound in the limit of very strong clutter is proportional to an error of measuring object
position in a single frame, Np. Hence, the last multiplier in Eq. (A9-15) determines the
maximal clutter effect of increasing σ 2

CR by a factor of Np relative to the no clutter case
Eq. (A9-11).
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Let us consider now finite clutter and utilization of classification features to improve
the possible association and tracking performance. Again, one object is expected per frame
and clutter is expected in every pixel with some probability, so rO ∼ τ/
R, rC ∼ 1, and
from Eq. (A9-7) we obtain

LRO ∼ (2σ)−1 pdf(O|O)/τ−1 pdf(O|C) ∼ N−1
p LRCO

LRC ∼ τ−1 pdf(C|C)/(2σ)−1 pdf(C|O) ∼ Np LRCC

(A9-16)

Here, we introduced LRCO and LRCC, the parts of single pixel likelihoods, which are
determined by classification features alone.

To obtain qualitative expressions that can be intuitively interpreted in terms of standard
detection and tracking procedures, we now split classification feature vectors, Y, into a
“detection feature” A, and other classification features, F;Y = (A,F). (Of course, the CR
bound does not depend on any detection procedure; it accounts for concurrent estimation
of tracks and association of all pixels with all tracks using all the available information.)
For the detection feature, we consider the maximal pixel signal A within Np pixels (since
the object’s position on every frame is known at best within Np pixels). According to the
rule of conditional probabilities, single pixel pdfs in Eq. (A9-16) can be written as products
of two terms: the pdfs of A and conditional pdfs of other features F:

pdf(O|O) = pdf(AO|O) pdf(FO|O,A); pdf(O|C) = pdf(AO|C) pdf(FO|C, A)
pdf(C|C) = pdf(AC|C) pdf(FC|C, A); pdf(C|O) = pdf(AC|O) pdf(FC|O, A)

(A9-17)

Here, pdf(AO|O) is an average value of the object pdf for A distributed according to the
object pdf, pdf(AO|O) = E{pdf(A|O)|O}, etc.

Let us evaluate the above quantities for a case of an exponentially distributed clutter,
that is, an average clutter pixel signal has an exponential pdf with variance σC ,

pdf(A|average clutter pixel) = 1/σC exp(−A/σC), A > 0 (A9-18)

A maximal object signal is a constant S, so that an object pixel contains object + clutter
signal A = (Aclutter + S), distributed according to

pdf(A|O) = 1/σC exp[−(A− S)/σC], A > S (A9-19)

The peak clutter pdf can be computed from Eq. (A9-18). We have used the exact distribution
for numerical computation of the mean and standard deviation of the peak clutter shown in
Table 9.4-1.

For deriving rule-of-thumb expressions, we model the peak clutter distribution with an
exponential distribution having same mean and standard deviation,

pdf(A|C) = 1/σp exp
[− (A−mp + σp

)
/σp
]
, A > mp − σp (A9-20)

Average values of these pdfs given object or clutter signals are computed as follows:

pdf(AC|C) = E{pdf(A|C)|C}

=
∫ ∞

mp−σp

{
1/σp exp

[− (A−mp + σp
)
/σp
]}2

dA = 1/2σp
(A9-21)
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Similarly,

pdf(AO|O) = 1/2σp, pdf(AO|C) = pdf(AC|O)
= 1/(σp + σc) exp[−(S + B)/σp]

B = mc −mp + σp − σc

(A9-22)

Combining Eq. (A9-16) through (A9-22),

LRCO = (σp + σc)/2σc exp[(S + B)/σp] · LRCFO

LRCC = (σp + σc)/2σp exp[(S + B)/σp] · LRCFC

(A9-23)

Combining Eqs. (A9-10), and (A9-16) through (A9-23),

σ 2
CR ∼ σ 2 N−1

t

{[
1 +Np

[(
σp + σc

)
/2σc

]−1

exp
[−(S + B)/σp

] · LRCFO
−1
]−2

+ (Np − 1) · [1 +Np

(
σp + σc

)
/2σp

exp
[
(S + B)/σp

] · LRCFC
]−2
}−1

(A9-24)

The above expression can be simplified for S/σc >∼ 2, and accounting for Np � 1, leads to
Eq. (9.4–14).

NOTES

1. Note a subtlety in notations: boldface is used to denote vectors and matrices (e.g., IM); their
components are denoted without bold (e.g., IMab); but, in (IM−1)ab, the boldface is used
to emphasize that the matrix IM is inverted and indexes a, b refer to the elements of the
inverted matrix.

2. The difficulty of obtaining CR bounds for tracking in clutter is due to a need for performing
association between sensor measurements and objects. When tracking multiple objects, or track-
ing in clutter, the task is usually divided into two subtasks or functions: of associating sensor
measurements with individual objects (or other signal sources, such as noise and clutter; the
association function) and another one of estimating tracks (positions, velocities, etc.) of the
objects (tracking function). Doubts have been expressed that CR bounds accounting for both
functions could be derived in principle (Daum, 1990). In Daum (1990), an approach to quantifying
performance bounds was derived assuming multiple hypothesis tracking (MHT) association.
Formulation of bounds independent of the association algorithm was considered in Graham and
Streit (1994). Explicit expressions, however, were not obtained, and the difficulty of the problem
of formulating the bounds was analyzed. Streit (1995) obtained performance bounds in terms
of accuracy of an initiated track assuming the nearest neighbor association. Assumptions of a
particular association algorithm had to be made in these publications in order to make the problem
amenable to the analysis. The nearest neighbor association assumption is appropriate for a case
of weak clutter. The number of hypotheses that should be evaluated in MHT association grows
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exponentially in heavy clutter, thus practical utility of bounds based on MHT association should
also be expected within the area of relatively weak clutter. The general association and estimation
CRB are described in this chapter following Perlovsky (1989a, 1992a, 1997a). These derivations
were made possible by the development of adaptive fuzzy AZ-logic described in this book.

BIBLIOGRAPHICAL NOTES

The Cramer–Rao bound (CRB), and CR theory (Cramer, 1946).
The general association and estimation CRB are described in this chapter following Perlovsky (1988c,

1989a, 1992a, 1997a).
Discussions of the Cramer–Rao bound for tracking (Daum, 1990; Graham and Streit, 1994; Streit,

1995).

PROBLEMS 9.1–1 Prove Eq. (9.1-11): cov{Ŝ, (LL;S)T} = 1. Hints:

1. Consider the definition, cov{Ŝ, (∂/∂S) ln pdf(x)} = E{[Ŝ − E{Ŝ}] · [(∂/∂S) ln
pdf(x)− E{(∂/∂S) ln pdf(x)}]}.

2. Note that E{E{Ŝ}(∂/∂S) ln pdf(x)} = E{Ŝ}E{(∂/∂S) ln pdf(x)}, and use (9.1-9).

3. Obtain cov{Ŝ, (∂/∂S) ln pdf(x)} = E{Ŝ (∂/∂S) ln pdf(x)}, and use (9.1-7).

9.1–2 Prove Eq. (9.1-16). Hints: Prove that the variance of a sum of independent variables
equals a sum of individual variances. Then notice that expected values of all LLn are
the same.

9.1–3 Prove Eq. (9.1-18) and obtain CRB for the mean of a Gaussian distribution. Hints:

1. Take the derivative of the Gaussian distribution Eq. (1.3-9),

LL1;M = (∂/∂M) ln G(x|M,C) = (∂/∂M)(−0.5 DT C−1D) = (x − M)T C−1

2. Evaluate var{LL1;M} = E{LL1;M · (LL1;M)T} = E{C−1(x − M)(x − M)T C−1} =
C−1E{(x − M)T(x −M)}C−1 = C−1CC−1 = C−1.

9.3–1 Derive Eq. (9.1-3) from Eq. (9.3-13).

9.4–1 Derive Eq. (9.4-3). Hints:

1. Use index notations for the modelMi
k = Ri

k+V i
k tn, where index i = 1, 2 corresponds

to the coordinates (range and angles, or two angles), and for deviations, Di
nk =(

xin − Ri
k − V i

k tn
)
.

2. Use mixed index-vector notations for the parameters, a = i, Sak = (Ra
k , V

a
k

)
.

3. Derive the model derivatives

M
i;a
k = ∂Mi

k/∂S
a
k = δi,a

(
∂/∂Sik

) (
Ri
k + V i

k tn
) = δi,a(1, tn)

where δi,a = 1 for a = i, and 0 otherwise.
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4. Substitute these derivatives into (9.1-23), and obtain the information matrix in mixed
index-matrix notations [verify by components that position-velocity components are
given by the matrix (1, tn) (1, tn)T]:

IMab =
∑
n

E
{
f 2(k|n) Di′

nkD
j ′
nk

} (
C−1
k

)i′i (
C−1
k

)j ′j
δi,a(1, tn)δ

i,b(1, tn)
T

=
∑
n

E
{
f 2(k|n) Di′

nkD
j ′
nk

} (
C−1
k

)i′a (
C−1
k

)j ′b
(1, tn)(1, tn)

T

In matrix notations, this expression is written in Eq. (9.4-3).



chapter 10

INTELLIGENT SYSTEM ORGANIZATION
MFT, GENETIC ALGORITHMS, AND KANT

The first philosophical system embracing multiple aspects of human mind in their interaction
was developed by Kant. His philosophy was a turning point in the entire history of human
thought and is considered a beginning of scientific psychology. Kant developed a rational
theory of intelligence by establishing that the world of phenomena depends on mind. We
overview the main components of intelligence identified by Kant: Understanding, Judgment,
and Reason, and relate them to the basic MFT components: internal models, similarity mea-
sures, and adaptation. It turns out that the intelligent agents of MFT implement the process of
thought described by Kant. We discuss the heterohierarchical organization of the mind and
relate it to the Kantian problem of synthetic judgments a priori.

Emotions and perception of beauty are fundamental to the human mind, alike in every-
day life, arts, and sciences. Still, the concept of beauty is mystifying. The first step toward
mathematics of beauty is made in this chapter. It is founded on the relationship between MFT
and the Kantian theory of mind. MFT’s instinct-will for learning, according to Kant, is a basis
for emotional intellectual abilities, for the beautiful and sublime. Future development of MFT
will include complex internal models addressing conscious and unconscious aspects of mind.
We overview the mathematics of learning complicated structural models: genetic algorithms,
complex adaptive systems, and semiotics, and relate them to MFT. The MFT intelligent agents
are shown to implement mathematically the dynamic loops of semiosis; they are “vortexes”
of symbol formation, vortexes of thought.

Kant overturned the understanding of the relationship between the mind and the world by
considering the specific a priori contents of mind that enable its functioning. The philosophy
of Pure Spirit came close to the scientific method. He developed a rational explanation of
mind as a system, if not in its entirety, still in its most interesting “higher” intellectual
abilities. Many aspects of Kant’s theory were further developed by a number of philoso-
phers and psychologists, including Schopenhauer, Hegel, Nietzsche, Freud, Jung, Bergson,
and Jaspers. Still, the original theory of Kant remains unsurpassed in its comprehensive
treatment of mind as a system. And mathematical theories of intellect have remained far
removed from the penetrating depth of his understanding and are inadequate for coming
even close to the width of his analysis. This does not have to be so, for Kant’s analysis is
rational and therefore can perfectly serve as a foundation for developing the mathematical

356
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theory of mind. A first step toward rectifying this deficiency of the mathematical theories
of intellect is undertaken in this chapter.

10.1 KANT, MFT, AND INTELLIGENT SYSTEMS

What is intelligence? It is still shrouded in mystery. A lot is understood, but much still is
unknown and, most likely, will remain unknown for a while. Intelligence is attributed to
natural and artificial systems and some of these systems are very simple, whereas others
are very complex. At lower levels, intelligence is an ability to sense the environment and to
control the body (machinery) toward achieving a few predetermined goals. At higher levels
intelligence includes abilities of thinking, including recognition and formation of concepts,
developing complicated internal representations of the outer world and self, understanding,
and language ability; planning behavior, including direction of attention, definition of goals
and subgoals, and the ways to achieve them; acting within itself and in the outer world;
an ability of judgment, including feeling and emotions; and abilities of intuition, learning,
consciousness, creativity, and a mysterious feeling of freedom of will.

In three volumes on the Critique of Pure Reason, Critique of Judgment, and Critique
of Practical Reason, Kant explained a wide variety of intellectual experiences based on
three fundamental abilities or faculties of mind: Understanding, Judgment, and Reason.
Each is based on specific a priori principles or instincts contained in the mind: concepts,
correspondence between concepts and manifold of sensory data, and will or desire. Un-
derstanding is a faculty of concepts, a source of general notions. Judgment is an ability to
see that a particular case comes under the general rule. And Reason is an ability to draw
conclusions in terms of generating behavior. (The most intellectually important type of
behavior, interwoven with higher intellectual abilities and emotions, Kant considered to
be the behavior of learning.) In this chapter, Understanding, Judgment, and Reason are
capitalized when they refer to the fundamental abilities of the mind, or, alternatively, to
modules of an intelligent system. These three abilities correspond to the three aspects of
consciousness: knowledge (of concepts), feeling (of correspondence between concepts and
outer world), and desire (to act).

Even though Kant devoted a separate book to each ability, they should be combined
within a dynamic system constantly exercising all three abilities in their interaction. This
chapter takes a step toward considering intelligence as an interacting system. We will see
that even relatively simple MFT paradigms considered in previous chapters contain seeds
of mathematical modeling of the three main elements of intelligence identified by Kant.
MFT carries Kantian analysis further: it is a dynamic system in which the three abilities
identified by Kant exist in the process of constant interaction, as it were in a “vortex.” This
vortex describes learning of a concept as a dynamic formation of a symbol. We overview
some of the higher intellectual abilities, along with attempts at their rational explanation
and mathematical description.

10.1.1 Understanding Is Based on Internal Models

An internal model is a basis of intelligence. Even at the lower levels, say, of a lobster sensing
and grabbing food, with the axons of sensing cells “wired” directly into the neurons that
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control muscles, we can talk about internal model. Because the signal that a “food-sensing”
neuron sends to a “muscle-neuron” indicates an internal lobster’s representation of food.
There is no such thing as “food” in the ocean; “food” is a dynamic process of interaction
between an object in the ocean, sensing neuron (that forms an internal representation-signal),
grabbing neuron, and other relevant neural aspects of the lobster’s experience. A lobster’s
mind has literally few neurons, and if our final goal would be modeling of a lobster’s mind,
we will directly proceed to studying its wiring diagram without such nebulous and not
obviously useful concepts as a lobster’s internal models.

Our aim, however, is to understand and model higher levels of intelligence. At higher
levels, a complete “wiring diagram” of a neural system, even if available, would be so
complicated that it does not furnish an understanding of the basic principles of mind. A
significant part of the brain is involved with internal models (storing, updating, and using
them). Our ability to recognize concepts, even simple ones, such as objects, is due to
internal models or representations of concepts. Understanding, first, consists of concepts
in our mind along with their interrelationships. Higher levels of understanding, such as
understanding of meaning, involve a complex internal model composed of a large number of
submodels-concepts with multiple interconnections among them. Possibly, every particular
phenomenon of understanding–meaning exists only within a limited domain, within a
certain situation, or with regard to a certain goal. Meaning of a concept is then modeled
by including this concept within a set of situationally relevant other concepts and goals.
Meaning requires a hierarchical system: the understanding of the meaning of a concept
requires a point of view from the next levels in a hierarchy, above the level of the concept’s
inner model and its recognition. Thus, the meaning of a lower level concept is included into a
higher level concept. However, relationships among levels are not rigidly fixed: formation of
certain concepts involves multiple hierarchical levels, and the relative position of concepts
in the hierarchical levels might be situationally dependent. Thus, heterarchical hierarchy
might be a better term. Explanation of mind as based on a priori inner models ascends
to Plato and Aristotle. Kant identified a priori inner models as a separate faculty of mind
that he called Understanding. The mind’s operations with a priori concepts Kant calls the
domain of Pure Reason.

The main question that the analysis of Pure Reason shall answer, according to Kant, is
“How are synthetic judgments a priori possible?” Here, synthetic judgments are conclusions
or statements that derive a new meaning by combining several concepts. For example, “a
horse has four legs” is not a synthetic statement, because the concept “horse” assumes
four legs (it is an analytic statement, a consequence of the definition of “horse”). Another
example: “a car has four wheels.” This is a synthetic statement, because four wheels are not
a necessary part of the definition of “car” (one can build a three-wheel car); however, this is
not an a priori statement, because the truth of this statement depends on experience (with
particular cars) and is not a universal truth. The first laws of physics and most theorems of
mathematics, according to Kant, are synthetic judgments a priori. They are not tautologies,
because they contain new information. They are a priori, because their universal validity
cannot be based merely on experience, but requires something else. This “something else”
Kant identified as a specific a priori faculty of pure reason. In our theory of mind, this
specific faculty is represented in hierarchical models: next levels in a hierarchy contain
synthesis of the lower level concepts. This synthesis is of an a priori nature, because the
hierarchical structure of the internal model is of an a priori origin. Thus, development of
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hierarchical models is a key to mathematical modeling of Understanding and Pure Reason.
Making this hierarchy adaptable and situationally dependent is an additional challenge.

For example, in a tracking MFT system considered in Chapter 7, concepts or categories
are given by a priori models of moving objects of interest (targets), noise, and other objects
of no interest (clutter). Moving objects are characterized by velocity, which is an integral
part of their model; so a statement that moving objects have a property of velocity, according
to Kant, is an analytic judgment (not a synthetic one). But when we make a decision that
a certain object is a target, this decision is based on comparing the target-clutter likelihood
ratio to a threshold; this procedure is not an integral part of the moving-object concept,
thus, it is not a tautology, it is a synthetic judgment. Because this procedure is universal (it
is always used for this purpose), it is an a priori judgment. This procedure is an example
of a synthetic judgment a priori. Mathematically, this procedure is contained in the next
hierarchical level of MFT (above the level of individual objects). This example illustrates
that an ability for synthetic judgments a priori is due to a hierarchical organization of an
intelligent system.

Explanation and modeling of the phenomena of meaning and understanding require also
including them within behavior generation and acting of an intelligent system. The acting
could be inside, within an intelligent system, or outside of the intelligent system, into the
outer world. Actions, corresponding to the goal or situation (internal or external), constitute
a part of meaning. There is also another aspect of acting out in the external world noted by
Freeman, who introduced a concept of external representations in the world. Our external
acts and their results (being perceived by ourselves and others) from gestures and utterances
to our entire culture, as it exists in the outside world, are external representations. To the
extent that external representations are included in the Kantian cycle of concept formation,
they can be viewed as parts or extensions of our internal models. Computer simulations are
a perfect example of such extensions of internal models. The entire culture is an external
representation of concepts of mind.

According to Kant, logic gives laws of understanding, or laws of relationships among
a priori concepts. Here, in the world of Ideas, there is a significant domain of applicability
of Aristotelian logic. For example, an internal model-concept of an object is either that of
target or not, according to the Aristotelian logic law of excluded third (and this logic is
different from fuzzy logic of judging which real signal belongs to which concept). This
domain of Aristotelian logic encompasses nonadaptive aspects of the a priori models. Kant
missed a need for adaptation and he did not notice the Aristotelian emphasis on the changing
nature of Forms in the process of transformation from potentiality to actuality. To the extent
that the a priori models can adapt, they are fluid, noncrisp, fuzzy. Development of adaptive
hierarchies of models is a challenge for future research.

To summarize the MFT relationship to Kant’s Understanding: MFT ability for Under-
standing or forming concepts is due to a priori internal models, and an ability for synthetic
judgments a priori is due to an a priori hierarchy of models and relationships among them.

10.1.2 Judgment Is Based on Similarity Measures

For internal models or concepts to be useful, there should be a way of relating them to
experience. In other words, we should be able to recognize individual phenomena according
to general concepts and to decide which aspect of the empirical world corresponds to which
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concept. Kant called this ability Judgment and considered it one of the three main abilities
of the mind. Judgment is an ability to see that a particular case comes under the general
rule. In our MFT theory, Judgment is mathematically represented by similarity measures.
MFT contains a measure of similarity between the internal model and the world, as well
as between each submodel-concept and a particular subset of sensory data. This is an a
priori property of MFT and, according to Kantian analysis it is an a priori property of
our mind.

Kant differentiates determinant and reflective aspects of Judgment. Finding particular
subsets of sensory data corresponding to a specified concept-submodel is the determinant
Judgment. And finding the concept corresponding to the data is the reflective Judgment.
MFT contains mechanisms of both, determinant and reflective Judgment. Within the it-
erative loop of MFT adaptation, determinant Judgment is given by the association (seg-
mentation) of data with concept-submodels, and reflective Judgment is given by selecting
the concept-submodel most similar to a particular subset of the data. In MFT the deter-
minant Judgment is given by the fuzzy associations, f (k|n), with n designating data and
k designating the concept-submodels; and the reflective Judgment is given by the fuzzy
associations, f (k|n) and adaptation laws. These relationships can be summarized as

Kant’s determinant Judgment: M → X, MFT: l(X|M)

Kant’s reflective Judgment: X → M, MFT: l(X|M)+ adaptation

Why is Nature in its manifold knowable to our mind? Is it due to a specific property
of Nature or to a specific property of mind? In other words, what makes it possible for
our Understanding and Judgment to function in the way described above? Kant’s answer
is that this possibility is due to a special a priori property of our mind. This property is the
purposiveness of our internal representations (models). Understanding and Judgment are
so constructed that internal representations of empirical events and objects appear to us as
purposive (the purpose includes first, a correspondence between our internal representations
and the world, and second, an ability to learn or to improve this correspondence). This
purposiveness provides a foundation for the development of higher faculties of mind
including higher emotions, and the notions of the beautiful and sublime.

A reader might wonder if this discussion is too philosophical and irrelevant to a
mathematical theory of mind? The relevancy of this discussion is in that it guides us in
constructing internal models, measures of similarity, and in developing evolutionary theories
explaining these abilities. The models and similarities are constructed so that they have a
purpose or meaning within the intelligent system, which is the mathematical description
of the intentionality of the intellect. This intentionality includes the correspondence to the
world and adaptivity that provides for learning. And it is needed so that the “lower level”
instincts for survival, for performing specific tasks, etc. can be more efficiently satisfied
(by a living being or a robot). Intentionality provides a background for a mathematical
theory of higher faculties of mind, including the possibility for mathematical treatment of
the beautiful and sublime. And an evolutionary theory must lead to these abilities.

To summarize the MFT relationship to Kant’s Judgment: MFT ability for Judgment is
due to similarity measures and fuzzy concept memberships, which select data corresponding
to the concepts of Understanding and select concepts corresponding to the data, in every
cycle of the iterative MFT loops.



10.1 Kant, MFT, and Intelligent Systems 361

10.1.3 Reason Is Based on Similarity Maximization

Judgment mediates between concepts of Understanding and concepts of Reason (will, and
freedom). In particular, reflective Judgment ascends from the particular to the universal,
from sensory data to concepts. Its principle is an ability to learn, which Kant called the
purposiveness of intellect toward the object. This ascendance from data to concepts is
practically realized by Reason. In MFT functioning, finding a submodel corresponding to
a piece of data (Judgment) is followed by adaptive modification of the model, which is the
act of will according to the learning principle (law) of Reason. Reason provides laws for
behavior, and MFT paradigms considered in previous chapters were concerned with one
type of behavior: learning behavior as adaptation of the internal model. Modification of
models in MFT is governed by the principle of maximum similarity between the model and
data. The MFT parameter-adaptation equations maximizing the similarity give the laws of
Reason. Thus, MFT provides for a mathematical description of a will for learning, a will for
improvement of its internal representations of the world and the laws of Reason governing
this will.

Kant emphasized a fundamental nature of the antinomy between causality and freedom
and severely criticized philosophers, who underestimated the difficulty of the causality–
freedom antinomy. And, his criticism still applies to a researcher who is too cavalier
about resolving this antinomy.1 The fundamental source of difficulty is in that freedom
is an opposite of randomness. Freedom supposes causality. If there is no causality, there
could be no freedom. But if the world’s laws are causal, how could freedom be explained?
Kant made a step toward resolving this antinomy. He assigned the concept of causality
to Understanding, where causality is an a priori concept of understanding the nature, the
world of phenomena. And he assigned the concept of freedom to Reason, where it is an a
priori concept governing human desire and will. According to Kant, freedom belongs to
a noumenal world; it originates from the unknowable nature of a human-in-itself. A next
step toward resolving this antinomy should be attempted by identifying the unknowable
human-in-itself with our unconscious and developing a physical theory of conscious and
unconscious aspects of mind.

10.1.4 Hierarchical Organization of Intelligent Systems

Let us summarize the discussion of the previous three sections. The three Kantian abilities
are organized in a dynamic loop of MFT as illustrated in Fig. 10.1-1. The MFT loop
maintains the current situational awareness that is the correspondence between the internal
model and the world. This includes updating the parameters of a large number of learned
concepts (or recognized objects), recognizing new objects-concepts that might appear in
the input data, terminating old concepts that are not relevant any longer, and searching in
the data for particular concepts or objects of interest (say, food). Association and parameter
estimation for each submodel (corresponding to an object-concept) is computed in parallel
with other submodels. Therefore, the MFT association–adaptation loop consists of a large
number of individual concept-loops, or intelligent agents.

Each concept-loop is an “agent”: it has its own rules for activation, performance,
interaction with other concept-loops, and termination. Some concept-agents may interact
with each other [if for some data n, f (k|n) are nonzero for several k-models], and many
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Figure 10.1-1 Internal cycle of intelligent system operation. Kant vs. MFT.

are independent from each other to a significant extent. The concept-agents for learned
concepts, the parameters of which are not expected to change too fast, might be updated
sparingly, less often than newly activated agents. Agents might be initiated by a bottom-
up message (new data input from sensors, or lower levels of data processing), top-down
message (upper level activating a new submodel-agent, if it is decided that the currently
active submodels are inadequate, or if the system goal is changed), or heterarchical type
message [when two agents of a similar type are competing for the explanation of the same
piece of data, one agent might send a terminating (apaptosis) message to another]. Both,
bottom-up and top-down flow of signals may continue all the time, so that the loop is
permanently active.

Each active agent continuously exercises a sequence of the three Kantian faculties: com-
putes a submodel (Understanding), evaluates a similarity measure and fuzzy membership
(Judgment), and acts by changing model parameters, or by sending behavior signals to the
actuators acting in the outer world or to a lower processing level (Reason). Actions lead to
changes in the input data by producing changes observed by sensors and by redirecting sen-
sors. This reinitiates the loop of MFT. Specific motor mechanisms are used by animals and
humans for efficient movements of various parts of the body by coherent control of multiple
groups of muscles. Motor mechanisms are a subject of specialized literature, and in this book
we do not discuss them. Although it is worth emphasizing that the mechanisms of bodily
motions are an integral part of our perceptions. We perceive with all our body, therefore
motor mechanisms are parts of the Forms of mind (Lakoff and Johnson, 1983). Intellectually,
the most important types of actions, according to Kant, are those related to learning, and in
Chapter 7, we touched on attention mechanism related to the action of learning.

An intelligent system contains hierarchies and heterarchies of multiple levels of the
Kant–MFT loops discussed above. Within a hierarchy, every next level exercises syntheses
of lower level concepts based on synthetic a priori models at each level. A hierarchical
MFT structure is illustrated in Fig. 10.1-2. At the lower level, the input data are provided
by sensors and acting is exercised in the world. At higher levels, the input data are provided
by the concepts activated at lower levels and actions are signals sent to a lower level. In
addition, every agent exercises actions of learning by adapting its own models.
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Figure 10.1-2 Hierarchical organization of Kant–MFT intelligent system.

More flexible heterohierarchies are organized as follows. Agents post their output
messages on a “web page” or bus-type connections, where it is available to those other
agents, who have learned (evolved) to use this type of information. The messages contain,
in addition to the activation degree, an identifier information (which agent, or what type of
agent sends the message, and estimated parameters of models). Of course, every agent also
learns by adapting its own models.

Neural connections in the brain indicate the existence of both types of architectures:
vertically connected hierarchies and horizontally connected bus-type heterarchies (Fig.
10.1-3). Horizontal interactions are an important part of the functioning of MFT agents
(submodels); see, for example, a competition layer of MLANS architecture in Fig. 4.3-2.
This architecture was also essential in Chapter 7 for object-search agents: these agents are
activated by incoming data and have a significant intralevel interaction, including exchange
of apaptosis (termination)-type messages, in a case in which two agents are tracking the
same object.

10.1.5 Aristotle, Kant, Zadeh, MFT, Anaconda, and Frog

There is a folktale about an Anaconda that can hypnotize a Frog so that it jumps into
the Anaconda’s mouth. Let us analyze this tale within the context of philosophical and
mathematical concepts of mind. The Frog’s mind is very simple (and we will even further
simplify it for our conceptual analysis). There are hardwired connections between the
receptive cells in the Frog’s eyes and certain muscle groups in its legs. These connections
form the Frog’s mind internal model, illustrated in Fig. 10.1-4. When there is a small moving
object nearby, the Frog jumps toward it and eats it. When there is a big moving object nearby,
the Frog jumps away and flees. The Frog’s faculty of Understanding is given by three a
priori concepts: moving, big, small. There is very limited fuzziness and adaptivity to these
concepts, just an estimation of the exact position and speed of moving objects. But the
Frog does not analyze in great detail the entire scene in front of him. The Anaconda’s mind
coevolved with the Frog’s mind, so that its predatory concepts of Understanding match the
deficiency of the Frog’s. The Anaconda can stay still for hours, so that the Frog does not
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Figure 10.1-3 Heterohierarchical organization; (a) Kant–MFT intelligent system; (b) systems of the
cerebellar cortex.

recognize it as a threat. When the Frog is nearby, the Anaconda just moves its eye, and the
Frog perceives the eye as a small moving object, so it jumps right at it.

Now, let us compare the Frog’s internal model in Fig. 10.1-5a to the concepts of
philosophers and mathematicians about the mind. At the top of the hierarchy of the Frog’s
mind, there is a most general concept available to it: the totality of the universe. It is
composed of two concepts: desirable and nondesirable. This is the dichotomy of Aristotelian
logic. This dichotomy is a synthetic judgment a priori: it is synthetic in that it is composed
of the two concepts (prey, predator), and it is a priori, because it is a universal truth for the
Frog’s mind (and all Frogs always use it). The concepts of prey and predator, again, are
the a priori concepts of the Frog’s Understanding faculty. And, again, they are synthetic
judgments a priori: each is an a priori synthesis of the two a priori concepts that are lower
in the hierarchy. A lower hierarchical level of the Frog’s mind internal model is similarly
organized; it is composed of nonfuzzy, Aristotelian logic type a priori concepts (small, big,
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Figure 10.1-4 An artist’s illustration of the frog’s faculty of understanding and its interaction
with anaconda.

moving), which are synthetic judgments a priori. At the very bottom of the hierarchy,
there are the receptive fields of the Frog’s eyes. These have some degree of adaptivity
and a necessary degree of fuzziness: at least, they can adapt to the actual position and
speed of the moving objects. But, they are not fuzzy enough and adaptive enough to
adapt to the Anaconda’s trick. Figure 10.1-5b illustrates the Kant–MFT loop of the Frog’s
mind.

There is a necessary connection between fuzziness and adaptivity. Crisp, nonfuzzy
concepts of understanding do not “see” anything that does not fit them perfectly. There-
fore, they cannot learn through gradual adaptation. Adaptation requires fuzzy concepts
of understanding, that can be associated (by Judgment) with a variety of conditions so
that adaptation to varying conditions is possible. Aristotelian logic-concepts cannot learn
gradually, but can possibly evolve due to evolution, if a majority of nonadaptive Aristotelian
logic frogs will be eaten up by anacondas. Maybe something like this happened in some
isolated frog communities several hundred millions years ago, leading to the evolution of
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more complicated animals, whose understanding uses adaptive Aristotelian Forms governed
by nonAristotelian fuzzy logic.

10.2 EMOTIONAL MACHINE (TOWARD MATHEMATICS OF BEAUTY)

10.2.1 Cyberaesthetics or Intellectual Emotions

If you pinch your finger, it hurts, and an ability to feel the pain is obviously an a priori
faculty, which is necessary for survival to such an extent that it is shared within the entire
animal kingdom. This “lower” origin of feelings separates them from our higher cognitive
abilities. And there is a long-standing line of thought that separates and contraposes feelings
and thinking, emotions and intellect. But in 1787 in a letter to his friend, Kant wrote that
he had discovered a new type of a priori principle, the feelings of pleasure and pain, which
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he found to be a necessary part of our intellect. Kant came to the conclusion that Judgment
is based on the feeling of pleasure caused by the harmony or correspondence between our
internal representations-concepts and empirical phenomena. The new principle governs
“intellectual emotions.” These “higher” emotions are not separated from thoughts, but
they are combined together in a dynamic process of Kant–MFT agent-loops. Mathematical
apparatus describing higher emotions in MFT is given by similarity measures. And a thought
process is a loop, a vortex of concepts, emotions, and adaptation-learning actions.

Related to higher emotions is an ability to perceive beauty, which is a universal and
fundamental property of the human mind. It is important not only in the field of fine art,
but it pervades human experience. Ancient pottery and cave-wall paintings demonstrate
the primordial origin of aesthetic emotions. There are well-known statements by famous
scientists explaining that the first and foremost test of a scientific theory is its beauty. But
mathematical attempts to model mind, so far, have not touched the subject of beauty, and
the directions along which this could be attempted seem to be hidden in mystery and not
accessible to scientific investigations. Here, I attempt a first step in this direction.2 On the
road to the future science of cyberaesthetics, I have found that I am primarily assisted by
Kant, who with scrupulous detail analyzed the rational mechanisms of beauty and other
higher emotional faculties.

10.2.2 Purposiveness, Beauty, and Mathematics

When designing an intelligent system, for example, a robot, we decide what kinds of objects
the robot should be able to recognize and we supply the robot with the internal models of
these objects. From the robot’s perspective, only those objects exist that it can recognize.
Every object has a purpose of being recognized (in addition to any other purpose the robot
may put this object for). A universal purpose of any object is its concept; for an object to
have any purpose for a particular intelligent system, the object’s concept has to exist in
the system. This is a design principle of any intelligent system. This design principle is
applicable to us: evolution (or God) designed us so that we can find our way around those
objects that we recognize in nature. The basic principle of design is that nature appears to us
as having a purpose. The purposiveness of nature is the a priori part of our representations
and it harmonizes nature with our desire for knowledge and produces the feeling of pleasure
(or pain, if chaos is encountered3).

Knowledge about objects comes from experience and from the a priori concepts
(Understanding). The role of Judgment in this process was discussed in the previous section:
it is an objective, or cognitive aspect of Judgment. In this section, we concentrate on the
subjective aspect of Judgment, which relates to the subject and not to the object. This
subjective aspect is the satisfaction and feeling of pleasure that is bound with the harmony
between our internal representations and an object. Kant calls this the aesthetic aspect
of Judgment; it relates more to emotions than to cognition (even though all aspects are
combined in every act of perception and cognition). This aesthetic aspect of Judgment
is related to the “pure” purposiveness of our representations, which is separate from any
specific purpose that an object can be used for, and includes only the knowledge itself. Thus,
android-robots capable of learning have to be designed so that they have an aesthetic affinity
to knowledge. In MFT this is given by the similarity, l(X|M), that relates a particular caseX
to the general concept M, without any further specific purpose the object-X can be used for.
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To the extent that the purposiveness is felt in its pure form and is bound to its a
priori nature, the object is called beautiful. The nature of beauty is related to an interest
not in the object, but in the subject: what I make out of this representation in myself.
Beautiful is what coincides with the purpose of acquiring more knowledge and improving
the harmony between the internal representations and Nature. Kant discusses two higher
intellectual aesthetic abilities: feelings of the beautiful and the sublime. Beautiful involves
the relationship between Judgment and Understanding and sublime involves the relationship
between Judgment and Reason. The feeling of the sublime moves the Reason to act toward
improvements of internal representations. In other words, the beautiful involves the aesthetic
emotion and a concept, the sublime involves the aesthetic emotion and behavior. MFT
provides a foundation for the mathematical description of these abilities: similarity performs
both of these functions; it establishes relationships among data and models (concepts
of Understanding), and it activates actions of adaptation toward improving the harmony
between the models and nature.

At this point, a reader might exclaim: you dragged me through four paragraphs of high-
flying notions, but surely, your MFT examples in Chapters 5, 6, and 7 do not explain what
is beautiful, there is no equation that can tell the difference between Rembrandt, Warhol,
and a causal recreational artist. Of course not. The purpose here is to demonstrate that there
is a possibility for “cyberaesthetics”: a mathematical theory of mind in which concepts
of emotion and beauty have a place. But then, why not proceed directly to producing by
means of MFT even a simple example of something beautiful? Where is the difficulty that
precludes this? The difficulty is in the adaptive nature of beauty. Kant got himself in trouble
with later readers and admirers, by his attempts to provide examples of what is beautiful
and what is not. His examples (such as, e.g., that drawings could attain pure beauty and
paintings could not) were immediately criticized and he was branded as having undeveloped
aesthetic taste and worse. One of the reasons is that what was beautiful thousands years ago
is not necessarily beautiful today. Concepts of Understanding evolve, and those concepts
that were useful some time ago, in that they captured important aspects of nature and
provided an evolutional advantage to those who possess them, are not necessarily useful
any longer. Within our evolving internal models, some concepts may become commonplace,
outdated, empty of useful contents, and contrary to newer, better adapted concepts. Because
mathematically, beauty is related to the harmony between the internal model and nature, it
is changing with time. What is an excellent harmony between an adaptive model and data in
an engineering system considered in Chapter 7 is a very simple construct, unworthy of the
word “beauty” in the context of our mind. To design android-robots capable of human-level
perception of beauty, even at a rudimentary level, their internal models have to be much
more complicated than examples in this book. And, possibly, they would have to learn for
many years, as humans do, to acquire an individual’s subjective experience, and then their
perception of beauty will acquire human-like, individual features. Section 10.3 considers
directions for developing capabilities for the learning of complex internal models.

10.2.3 Instincts, “Lower Emotions,” and Psychological Types

The mathematics of instincts and lower emotions is essentially the same as for the “higher”
intellectual processes. And the reason is simple: the latter capability evolved on top of the
former. Instincts and lower emotions operate with simpler models than thinking, but the
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basic mechanism is the same. The Judgment faculty, first, must be able to identify sensory
signals corresponding to desired objects, therefore, a similarity measure is a basis for the
Judgment. Second, “lower” Judgment is fused with instinctual values. Recognition of food,
sex, or danger objects leads to affect states characterized by the fused operation of the
appropriate control systems and Kant–MFT system in a vortex of reciprocal connections,
leading to a fusion of similarity with other instinctual values.

Fusion of “lower” level functions (instincts) and “higher” level functions (pure knowl-
edge) is of a basic origin, and therefore persists in our psyche. Often, it is quite difficult
to separate “pure” thinking from “lower” emotions. Varying degrees of fusion of various
functions is responsible for varying individual characters or psychological types. According
to Jung, there are several psychological types of mind, including a predominantly thinking
type and another predominantly emotional type. Could these types of mind be explained
by varying degrees of fusion among lower (instinctual) and higher (knowledge-related)
judgment functions within MFT? Such an explanation might often be implied in a condec-
sending attitude of a scientist to an emotional-type person. Yet, many a scientist might have
recognized a peculiarly rational and often superior adaptation potential of the emotional
intellect. I think the above explanation does not fully account for the complexity of emotional
intelect. A subtle variation of the above mechanisms is needed to account for the highly
adaptive and rational nature of emotions in individuals of emotional psychological types.

The Jungian thinking-type mind has an a priori model oriented more toward nature.
This “orientation” of the internal model corresponds to the original Kantian conception of
the Understanding faculty. The Jungian emotional-type mind has an a priori model oriented
more toward relationships with people. An internal model with this orientation, possibly,
emphasizes certain a priori models of relating to other people and models of morals, which
Kant conceived as a part of Reason. Models of each type can be of introverted or extroverted
types. So “nature” includes external nature (physics) and internal nature (psychology and
physics of mind). “Other”-people include oneself as well. (This is related to an ability to
“see oneself from the outside.”)

Emotional intellect if often oriented to relations among humans; it requires inter-
nal representations of another human being. At least, two semiindependent models or
“archetypes” are needed, Self and Other. The Other serves for the internal projection of Self
(emotional introverted experience), or for introjection of other human beings (emotional
extroverted experience). Compared to thinking-type models (concepts of natural objects),
the emotional-type models involve concepts of human relationships that are more directly
related to instinctual emotions. Emotional intellect is related to our ability to endow certain
concepts with high values, so that these concepts “act” as sources of emotional signals,
similar to instinctual drives. These “emotional concepts” assume the role of differentiated
adaptive instincts; they affect recognition and learning of other concepts. And they affect
these thinking processes through the faculty of Judgment, which becomes integrated with
“emotional concepts.” Thus, “high emotional intellect” is based on emotions that are
detached from the basic instincts and attached to certain concepts. These emotions, therefore,
acquire highly differentiated and adaptive status, and are subject to will and adaptation.
Yet, they are capable of immediately affecting judgment, like “lower” emotions related to
basic instincts.

Modeling the complexity of the human psyche would require considering a complicated
set of intricately interrelated models and emotions corresponding to various archetypes, and
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modeling them on various levels of consciousness (from unconscious collective archetypes
to individual unconscious, to threshold of awareness, to differentiated consciousness). This
is a task for a future project. It could be compared in complexity to the human genome
project; and if the current human genome project is to embark on mapping genes determining
psychic human makeup, it would inevitably lead to such a task.

Future mathematical descriptions of complicated emotions will have to account for the
lessons of the past. The main lesson is that the nature of emotions is fundamentally different
from that of concepts. Attempts to describe emotions mathematically in a way similar to
concepts lead to combinatorial explosion. The role of emotional signals in neural networks
is to carry instinctual needs to the modules that control recognition and action. Recognition
and understanding are not “disinterested,” but are influenced by instinctual needs. “Higher”
emotional intellect is related to high-value concepts that are capable of generating emotonal
signals, and, like instinct, can affect Judgment. The emotional mechansim is implemented
in MFT through the measures of similarity. Thus, it seems that complicated, structured
measures of similarity, involving emotional models, will have to be developed to describe
emotional intellect.

10.3 LEARNING: GENETIC ALGORITHMS, MFT, AND SEMIOSIS

10.3.1 The Origin of A Priori Models

Throughout the book, we have argued that learning is based on a priori internal models.
But where the models came from? Do they include everything learned so far, or only what
is learned in early childhood? Are they genetically inherited? Should we also consider
genetic evolution as part of the learning process? The answer to all these questions seems
to be yes, depending on the level of analysis. Classical philosophers from Aristotle to Kant
considered “a priori” as prior to and transcendent to any experience. Today, being aware of
genetic evolution, early childhood development, and the adaptive-evolutionary character
of the very notion of truth, we are more careful about the definition of “a priori.” Given the
complexity of the problem, we should consider separately the nature of the a priori models
and adaptation mechanisms at various time scales: individual neural firings, individual brain
development, and genetic evolution. A current state of the internal model determines the
behavior and the adaptation of a system over the next few moments, and, thus, plays the
role of an a priori model at this time scale. The development of an individual mind is based
on genetic information, which is an a priori model in this process. And genetic evolution
proceeds from simpler life forms, or possibly from before life began and any a priori models
were available.

Some researchers would argue that a priori models of living beings evolved from
similar mechanisms found in inorganic matter: when two molecules interact and form a
chemical bond, they “can do” it because each of them has a “model” of the other in the
shape and structure of its electron wavefunctions. It might even make sense to say that
the two molecules forming a bond “recognize” each other. This leads to a more profound
discussion relating evolution and natural selection to unknown yet fundamental laws of
physics. Internal models of living beings evolved in the process of evolution, guided by the
law of natural selection. Should we conclude that in the evolution of our universe from the
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Big Bang, the fundamental laws of physics, as we know them, are evolving guided by a yet
unknown physical law? And does this more fundamental law of the general evolution of
nature somehow “favor” selection of more complicated forms of matter? This discussion
can also go in the other direction: the laws of evolution of living matter might be more
intimately connected to the laws of physics than currently appreciated. Newton, were he
alive, would love to ponder this!

In engineering applications we often start with fairly sophisticated models, trying
to incorporate into the a priori model an expert-level knowledge, while providing for
an adaptivity to unknown or unpredictable variabilities. Engineered intelligent systems
with adaptive models attempt a mathematical description of intelligence operating with
complicated a priori concepts and having a limited degree of adaptability. For example,
prediction and tracking models described in Chapter 7 start with a few types of a priori
models; they can learn to identify and track hundreds of objects in variable noise and clutter
conditions; still, their adaptivity is limited to tracking specific types of objects.

Adaptivity of “engineering” models is limited: on their own, they cannot learn some-
thing entirely different from what they are designed for, such as riding bicycles or cooking
meals. It would be quite desirable to be able to build “android” systems that can learn, like
ourselves, various types of domain knowledge and appropriate behavior. Keep in mind that
reaching an expert level of performance requires many years of schooling and experience
in interaction with human experts. But even allowing for a long learning period, we do not
know yet how to build mathematical systems with these “android” capabilities. And the
big unknown is: what content of our a priori models enables this type of general learning?
An ability to learn a human-type language seems to be crucial, because we think, to a
significant extent, in terms of concepts contained in our languages (words, sentences, etc.).
These concepts combine the necessary degree of specificity and fuzziness, and provide for
both apriority and adaptivity. Beginning in the 1950s, a massive effort has been devoted
in linguistic research to identifying the a priori models of language (linguistic faculty of
mind). So far, this goal has not been achieved. A specific difficulty was in combining
apriority and adaptivity; therefore, it is possible that MFT might facilitate the progress
in linguistics.

Toward the development of “android” systems, remaining challenges include learning
or “evolving” complex hierarchical structures from simpler ones. Previous chapters have
considered the first steps toward this goal, in particular, identifying the number of submodels
and combining submodels of several types. The next three subsections explore possible
future directions of combining MFT, CAS, and semiotics.

10.3.2 Genetic Algorithms of Structural Evolution

Holland (1995) explores an explanation for evolution of complex models from simple ones
based on the concept of genetic algorithms. In Chapter 2 (Section 2.13) we reviewed his
concept of intelligent agents and their organization into complex adaptive systems (CAS) as
well as genetic-type algorithms for learning and evolution. Here we briefly recall the main
definitions, then discuss relationships between MFT and CAS, and directions for further
development. In CAS, each agent is a “simple” if–then rule: if (a) then (b). The if-part
of an agent tests conditions, and the then-part performs actions. A large number of agents
are sending and receiving messages: some messages might come from sensors or can go
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to actuators, but most devote their activity to an internal thinking process: building and
estimating internal models.

Adaptation is achieved by (1) generating new rules and (2) selecting good rules and their
combinations and discarding bad rules and their combinations. Genetic algorithms are used
for rule generation; two types of algorithms have being considered for rule selection. New
rules are generated by two types of genetic operators, crossover and mutations. Crossover
acts in the process of “mating” of two parental agents: with certain probability, two agents
mate and produce an offspring. An offspring is a new agent with a-message-receiver or b-
message-transmitter obtained from the parental ones by a crossover operation, an exchange
of substrings between two message-strings. Mutations act by a random replacing of a single
character by a different one. Mutations are needed to retain adaptivity even within those
substrings that came to dominate the population genome.

A first algorithm for the rule selection is a credit assignment algorithm, which is a
variant of Adam Smith’s capitalistic “invisible hand.” According to this algorithm, agents
within a CAS system are in competition for posting their output b-messages on a web page.
They “bid” for a limited number of available slots and higher bids win. They have to pay
with available “cash.” Similarly, agents are in competition for using input information that
they have to “buy” from the web page. Cash paid is credited to the posting agent. A second
algorithm for rule selection is a genetic selection algorithm. According to this algorithm, the
probability of mating among agents is proportional to their fitness. Fitness can be determined
by direct “survival” in an environment, or by the amount of “cash” accumulated by each
agent according to the first credit-assignment algorithm. Thus, offspring in each generation
are expected to outperform the average fitness of the population.

In CAS systems and genetic algorithms, the unit of adaptation is not an individual
agent, but a population or system of agents. The evolutionary “pressure” leads to the
selection of “good” building blocks or schemata. Schema is a mathematical notion cor-
responding to a generalized concept of a collection of building blocks (or substrings) that
coevolves in the process of evolution. A schema may include “ignored” positions (*); for
example, schema 1#**#***** includes all strings beginning with 1# and having # in the
fifth position. Schemata are not used in the algorithms, but for a mathematical analysis of
genetic algorithms.

10.3.3 MFT, CAS, and Evolution of Complex Structures

Here we discuss relationships between CAS and MFT and outline future directions toward
the development of complicated heterohierarchical intelligent systems. Let us compare the
MFT partial conditional similarity measure ll(Xn|Mk) that determines a similarity between
an nth piece of data and kth model, to CAS a-string defining a condition for the kth agent. A
CAS agent is activated if data stringXn matchesak , so that in non-#-positions,Xn = ak . Note
that this is a simplified nonadaptive version of the MFT similarity. For example, consider
Bayesian MFT with Gaussian pdfs, with the means, Mk = ak , and diagonal covariance
matrixes,Ck = diag(ck1 . . . ckD); then, ll(Xn|Mk) = −0.5 �i (Xni−Mki)

2/cki+const(k).
If we define cki to be very large for positions i for which aki = #, and very small for all
other positions, the MFT similarity ll(Xn|Mk) acts exactly like the CAS a-condition. Let us
also define the MFT model parameters Sk to match the CAS b-message for the kth agent,
Sk = bk , and MFT model Mk to be nonadaptive, nondependent on parameters bk . Then



10.3 Learning: Genetic Algorithms, MFT, and Semiosis 373

the effect of data Xn is the same in MFT and CAS systems: the condition (class, concept,
model) k is activated and the message bk is generated. (To emulate #-characters in an MFT-
transmitted b-message, the transmitted message can also include b-covariance, defined in
a manner similar to the covariance above, with large values in #-places.)

The above discussion illustrates that MFT agents can perform all the functions of CAS
agents. On the one hand, the MFT agents, in general, are more adaptive and more powerful,
are capable of adaptation at an individual level, and have a capability of aggregating
(associating, segmenting) the input data-messages according to geometric, dynamic, and
other type models. On the other hand, CAS possesses evolutionary capabilities and CAS
agents have aggregational capabilities that can be used to build hierarchical models. The
previous analysis shows that all the additional capabilities of CAS and genetic algorithms
are applicable to MFT. So the two powerful techniques of parametric and structural adap-
tation can be naturally combined together. In particular, the evolutionary development of
complex a priori models by structural aggregations of agents is being studied extensively
for CAS systems.

Lets us compare in more details the adaptation and role of fuzzy logic in MFT and CAS.
In Chapter 2 we analyzed the conundrum of combinatorial complexity vs. CAS systems
and came to a conclusion that a unit of adaptation is not an individual agent, but a schema.
We saw that combinatorial explosion is avoided in CAS by means of fuzzy logic acting
at the level of schemata. Recall that combinatorial explosion is avoided in MFT by using
fuzzy logic and fuzzy internal models. The evolution of schemata is more similar to MFT
adaptation than learning at an individual agent level. An information representation in an
agent is characterized by its “genetic code,” which we denote g = (a,b) = (g1, . . . , gL).
(We consider each gi as taking one of two values, 0 or 1.) Every g-code defines a crisp logical
if–then statement. Consider now a proportion of each allele (a gi value) in the population.
It is given by an average value of gi in the population, ri = ḡi , and the average g-code
is given by r = (r1, . . . , rL). The population-average g-code, r, is a fuzzy and not a crisp
statement about the allele values. The uncertainty or fuzziness associated with each ri is
characterized by its variance, ci = ri(1−ri). If the entire population has gi = 1, then ri = 1,
and the variance is zero (of course, the same is true if all gi = 0). Thus, schemata can be
viewed as fuzzy submodels obtained by averaging nonfuzzy individual-agent models over
a population.

Similarly to MFT, this fuzziness has a dual role in CAS systems; first, it impacts an
uncertainty of the system response to any message a with 0 or 1 in the ith position. And
second, only fuzzy parameters can adapt. Positions i with nonzero variance has a chance to
vary in the normal reproductive process (selection of the best fitted agents + crossover), if
parents have different alleles in the ith position. Positions i with the variance of zero do not
vary in the normal reproductive process and do not adapt, except by mutations. Recall that
similarly in MFT, a zero (or very small) variance Cki for feature i leads to zero association
between a concept-model k and data that do not match the k-model perfectly (for i-feature).
First, such a k-agent cannot be activated by nonperfectly matching data and second, such
an agent loses its adaptivity, because it cannot react to new data (see Problem 10.3–1). So,
as in CAS and MFT, the variance controls both the uncertainty about the data and fuzziness
about the model parameter uncertainty (and their adaptivity).

There are more detailed similarities among CAS and MFT mechanisms. In MFT, a
model is prevented from concentrating on a single piece of data and from loss of adaptivity
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by preventing covariance from going to zero. CAS has two mechanisms to deal with these
two problems. First, a model is prevented from concentrating on a single piece of data
because the data and models are discrete (continuous variables are discretized to 0 or 1, so
their uncertainty is not smaller than a discretization interval of 0.5). And second, adaptivity
is maintained by mutations. Both systems allow for a stable learning of “good” models:
mutations in CAS are rare, and an agent’s variance in MFT may attain a small value, making
further adaptation of this agent unlikely.

We would like to emphasize the relationship between fuzziness and the noncombina-
torial nature of CAS adaptivity. CAS agents are nonfuzzy and nonadaptive. CAS schemata
are fuzzy and adaptive. The genetic mechanism of preferential reproduction for better fitted
agents creates a gradient in the space of parameters of fuzzy schemata leading to schemata
adaptation. This gradient is in the direction of increased fitness, or increased cash (when
a credit assignment algorithm is used). Fitness or cash can be thought of as allocated to
schemata, by taking the average fitness (or cash) of agents belonging to each schema. There
is a certain similarity between the cash–credit assigned to schemata and MFT similarity
measure: cash is credited according to utility, and utility requires a match between the data
and the model [data are X, or b-messages and the model is M , or a-message; similarity in
CAS is of the form if(X = M) and in MFT, ll(X|M)]. Therefore, similarity governs credit
assignment and is playing the role of “universal currency” among agents. Thus we came to
a concept of a parametric adaptive evolving model of structure.

Comparing what is known today about the brain and chromosomes, it seems, on the
one hand, that MFT is a more plausible mechanism of mind than genetic algorithms. It
will be interesting to obtain direct psychoneurological evidence for each type of adaptation
mechanism of mind: for genetic-type recombination learning and for MFT-type gradient-
and-association learning. On the other hand, in the area of genetics proper, genetic al-
gorithms seem to be more plausible. There is no evidence for feedback from phenotype
to genotype at the level of an individual organism (i.e., genetic inheritance of acquired
features), which is necessary for gradient learning. In fact, it is a sacrilege to raise such
an issue among geneticists. However, gradient learning provides such a huge advantage
in adaptivity that it is difficult to believe that nature does not use this mechanism at all
in genetic evolution. (And how much, often in vain, would we like our children to inherit
what we learned so hard.) It is clear that such mechanisms, if they exist, should be very
(very!) subtle and could act on our genes only with extreme caution. Otherwise, too much
feedback would quickly modify the genetic information accumulated over billions of years
and would lead to overspecialization to a particular environment. Then a sudden change
in that environment (physical, chemical, or bacteriological) could lead to extinction. Did
not something of this sort happen during the Cretaceous period leading to an extremely
fast adaptivity and proliferation of a tremendous number of species of dinosaurs and other
creatures, most of which could not adapt to a sudden change in environment? Could it
be that the adaptation mechanisms of survival became more cautious since? Still, subtle
feedback mechanisms cannot be ruled out and geneticists are waking up to such a possibility.
One indirect mechanism of this type, gene mutators, was discovered recently: there are
specific mutator genes that can tremendously speed up adaptation by increasing mutation
rates of certain other genes. Nonrandom mutations directed toward better adaptation to the
environment have been observed over one generation. The genetic adaptation, therefore,
can occur without selection mechanisms acting at the phenotype level. The mechanism
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for such adaptation can be described as “genetic cell selection.” If this can occur due to
environmental influences, the possibility that genetic modifications can occur under the
influence of the organism cannot be excluded.

There are many unknowns in the actual operations of genetic mechanisms in nature.
For example, a large part of DNA is inactive; it does not participate in protein synthesis
and it does not affect the phenotype. Mutations that accumulate in this part of DNA do
not affect the fitness of organisms, and it seems to be free from normal evolutionary
pressures. Could this be a laboratory in which the models of our future internal models
are being developed with some subtle feedback mechanisms? We will be better able to
answer these complicated questions about adaptivity of internal models in the genes and in
the mind once we better understand the mathematics of combining structural and parametric
dependencies: parametric structures. Some of the directions for such future research are
outlined in this section.

The above comparison of CAS and MFT accentuates a philosophical difference be-
tween the two systems. CAS systems and genetic algorithms are not “nice”: individual
agents do not learn, they die with the same internal models as they are born with, only
the population learns and evolves. The nature of learning is antipersonal with regard to
individual agents. MFT agents are much more “personalistic,” there is a personal learning
at the level of individual agents. This learning is possible due to a concept of similarity,
which Kant called Judgment and considered as a foundation for higher intellectual abilities,
including higher emotions and beauty. Beauty, according to Kant, is an ability to perceive
purposiveness (of our internal representations in their relationships to the outside world)
as divorced from a specific fitness-type goal. In MFT, similarity is an ability of this type.
It would be very interesting to demonstrate the evolution of simple CAS agents toward the
concept of similarity (say along the lines of our previous discussion), and then toward the
concept of beauty.

10.3.4 Semiosis: Dynamic Symbol

The popularity and subsequent fall out of favor of “Symbolic AI” left many researchers
antagonistic toward the word “symbol.” But an impression that “Symbolic AI” represented
the mathematics of symbols is very wrong. A symbol is not a monumental piece of bronze
sitting on a foundation of stone. A symbol is a fleeting vortex of an interacting perception,
feeling, a priori model, adaptation, attention, behavior, and concept formation. In other
words, a symbol is a process. It is a process of thought.

At the beginning of this chapter (in Section 10.1.1) we considered an example of a
lobster finding food in the ocean. Let us repeat: there is no such thing as “food” in the
ocean, “food” is a dynamic process of interaction between an object in the ocean, sensing
neuron (that forms an internal representation-signal), grabbing neuron, etc. For a lobster,
“food” is a symbol including the whole process of sensing, recognizing, grabbing, and
eating. A complex psychological notion of symbol was discussed by Carl Jung; the Jungian
symbol is a thought process connecting consciousness with unconscious archetypes.

Semiotics is a science devoted to studying signs and symbols that was overviewed
in Section 2.12. Let us briefly summarize. The founders of semiotics, Peirce and Morris,4

introduced the notion of a sign as a trilateral unity of sign-vehicle (the media used as a sign),
designatum (the object that the sign refers to), and interpretant (an internal representation of
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the interpreted or recognized sign). The intelligent system or mind interpreting the sign is
called an interpreter. We use a slightly different terminology: sign is used for sign-vehicle,
and symbol is used for the trilateral process of sign interpretation. Morris decomposed this
process into the three dyadic relationships-processes: syntactics (relations among signs),
semantics (relations between signs and their designata), and pragmatics (relations between
signs and their interpreters). The symbol-process of interaction within the triadic unity is a
part of semiosis, the learning (adaptation, evolutionary) process at a system level involving
multiple triadic symbol-processes.

We use sign for nonadaptive entities and symbol for an adaptive process of sign
interpretation. This corresponds to Pribram’s designation of “signs” within the brain as acts
of communication that are invariant to the context, while “symbols” are context dependent.
He understands signs as the results of the associative cortex affecting the input sensory
systems; that is, a process of perception. These are the a priori, less-adaptive aspects of the
internal models, which nevertheless are affected by past experience, thus having a degree
of adaptivity. Symbols, according to Pribram, are the results of interaction between the
frontal lobes (concepts) and limbic system (emotions); they are stimulants to actions and
are sensitive to context. Frontal lobes are responsible for conceptual understanding and the
limbic system is involved in emotions. Therefore, Pribram’s analysis of symbol processing
in the brain corresponds to our definition of symbols as processes involving emotions
and concept formation. Our definitions, corresponding to the mathematical apparatus of
MFT, emphasize the common nature of perception and cognition, and more consistently
differentiate signs and symbols. Our definition emphasizes an important role that is allocated
to symbols by the general culture and by psychology: symbols are creative processes,
bringing into consciousness the unconscious fuzzy a priori models. Symbols expand the
conscious aspect of the internal models.

MFT agents give the mathematical description of the dynamic symbol-formation pro-
cess. The symbol process is equivalent to a loop of the Kantian triadic-mind process of
Understanding–Judgment–Reason. In relating our analysis to psychology, we call these
loops “vortexes,” vortexes of thought. The relationships between the semiotic description
of the symbol-semiosis and mathematical description of the Kant–MFT agent-loop are
illustrated in Fig. 10.3-1 and Table 10.3-1. A sign is a subset of input data, a structure in
the data. It refers to a designatum, an object in the world (or a signal from another agent).
An interpretant is an internal representation, an output signal from the Judgment module
indicating that a unity (high degree of similarity) was established among a sign, object, and
model. An interpretant is sent to the Will–Reason module within the same agent, where it is
used to sustain the loop of adaptation of the model to the sign and object. An interpretant is
also sent to other agents as an input data. The interaction with other agents establishes the
meaning of the interpretant and its object-designatum. The interpreter is the entire intelligent
system, including multiple agents.

In interaction with Reason and, even more important, with other agents, an interpretant
acquires meaning; thus, both Judgment and Reason are within the domain of semantics.
Reason produces actions of two types: within the agent and outside of it. Within the agent,
Reason modifies the internal model, and adapts the model to improve its correspondence
to the sign. Outside the agent, Reason acts on the world (or other agents), possibly leading
to changes in the data and in signs. Reason and the actions it generates are the domain
of pragmatics. Syntactics refers to relationships among signs. Interpretant-output from a
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particular agent serves as input data to other agents. From the point of view of these other
agents, interpretants are signs, and there are syntactic relationships among them.

There is a correspondence between internal models and signs in the input data. There-
fore, structures and relationships among the internal models to some extent parallel those
of signs and syntactic relationships among them.5 Relationships among individual-agent
models are what Kant called Understanding. Models include a priori, fuzzy models with
low similarity to the data, and crisp models, which have already been adapted to the data and
whose correspondence to specific data-structures has been established with a high measure
of similarity. Crisp models are the concepts of Aristotelian logic. Fuzzy models are fuzzy
concepts, and a large number of models with varying degrees of fuzziness are always present
in the mind. A priori, highly fuzzy models of primordial origin are the Jungian archetypes.
They are not directly accessible to consciousness; conscious contents include mostly crisp
and low-fuzzy models.

TABLE 10.3-1
Relationships among Semiotics, MFT, and Kantian Theory of Mind

Semiotics MFT Kantian Theory of Mind

Sign-vehicle (sign) Subset-structure in input data (Kant did not analyze structures
within the world-manifold)

Designatum Associated model and data subset Phenomenon
Interpretant The output signal indicating a recognized

concept (high similarity measure)
Judgment result

Syntactics Structures/relationships in the data (Kant did not analyze structures
within the world-manifold)

Relationships among models Understanding
Semantics Relationships among agents, similarity

measures, and behavior generation (including
adaptation laws)

Judgment + Reason

Pragmatics Behavior generation (including model
adaptation) and dependence of similarity on
models

Reason

Interpreter Intelligent system Mind
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NOTES

1. Some researchers think that the antinomy is resolved by “talking it away.”They consider gradually
increasing levels of complexity of mind, behavior, and adaptivity, and think that in this way they
can talk about gradually increasing levels of freedom. But this is a misunderstanding. A door
on hinges can be considered more “free” than a concrete wall, but this has nothing to do with
the concept of freedom as a fundamental concept of our existence. Causal explanation at every
level eliminates the possibility of freedom, as perceived by every human being. Kant assigned
causation to the domain of Understanding and freedom to the domain of Reason, so that one does
not have to be related to the other. The problem is in actually explaining what happens at a high
level of complexity, so that our notion of freedom can be reconciled with a “complex” causal
explanation. Currently this does not seem possible.

2. Neural and cognitive sciences have been concerned with relating emotions to material neural
and bodily physiological functions. For example, neural pathways have been found from the
hypothalamus (brain areas associated with emotions) to viscera. The popular known connection
between fear and an upset stomach could possibly be understood as a survival mechanism
regulating interactions between fear and hunger (this connection has been observed in primitive
animals as well, e.g., such fierce predators as Commodo Dragon lizards). This is an example of
the “lower” aspect of emotions. Brain research relating emotions to higher intellectual functions
is yet in the incipient stage. Interactions between cortical systems (associated with high cognitive
functions) and the hypothalamus are hypothesized to be mediated through the amygdala. The
high degree of reciprocal anatomical connections found among these neural structures in the
human brain suggests the existence of information-processing loops involving emotional and
cognitive functions (such as our MFT–Kantian loops). Our knowledge of the structure of the
brain is insufficient for deducing the mathematical theory of high emotional functions, and many
believe that even if the entire wiring diagram of the brain were available, it still would not be
possible to deduce its main mathematical concepts. Neural and psychological data have to be
combined with philosophical analysis and physical intuition to develop a mathematical theory of
higher emotions.

3. This is why discovering harmony within the chaos, such as fractal theory, is especially pleasing.
4. Concepts of semiotics date to Ancient Greece, so calling Peirce and Morris the founders of
semiotics may not be accurate.

5. Let us remember that an “internal model” has three aspects: the concept-model, the meaning of
which is established by its structural relationships with other models, the image-model, which is
similar to the data subset, and the process-model, which generates the image-model. In the present
discussion we refer to the first aspect, the concept-model. The concept-model is closely related
to the interpretant: the interpretant indicates that an object corresponding to the concept-model
is recognized.
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Dynamic symbol as a vortex of concept, feeling, and action (Dmitriev and Perlovsky, 1996, 1997).

PROBLEMS 10.3–1 Show that in MFT, an agent that loses its nonfuzziness (variance goes to zero) loses
its adaptivity. Hints: Consider fuzzy association definition (4.3-13) for Gaussian pdfs
(4.3-6). Show that for Ck → 0, f (k|n) → 0 or δkn if there is Xn = Mk (that is, this
agent concentrates on a single piece of data n). Consider MFT adaptation Eq. (4.2-3).
Show that if f (k|n) = 0, dSk/dt = 0; and if Mk = Xn, consequently ∂Mk/∂Sk = 0,
and dSk/dt = 0.

10.3–2 Relate discussions in Section 10.3 to the intelligent tracker discussed in Section 1.1.4.
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part three

FUTURISTIC DIRECTIONS
Fun Stuff: Mind—Physics + Mathematics +
Conjectures

This last part of the book explores future research direc-

tions toward a physical theory of mind. Is there a funda-

mental difference between human and machine? What

is consciousness? Is a physical theory of consciousness

possible?What are the limits? Is physics ofmind related to

yet undiscovered mysteries of material substance? Chap-

ter 11 considers Gödel’s theory and Penrose’s arguments

and discusses their relevance to a physical theory of

mind. Chapter 12 discusses consciousness and the pos-

sibility of a physical theory of consciousness based on

modeling field theory. I attempt to delineate the current

limits of the scientific method. The Epilogue presents

still a fresh view on the contents of the book and future

directions.
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chapter 11

GÖDEL THEOREMS, MIND, AND MACHINE

Gödel proved that formal systems related to Aristotelian logic or logic of predicates are
fundamentally limited. Turing has reformulated this result for computational systems. There
have been several attempts to use these results to prove the principled difference between the
mind and machine. A recent one by Penrose, who believes that the Gödel–Turing limitations
have to be surpassed tomodel themind. But Penrose’smathematical arguments are considered
fallacious by many mathematicians. Is this discussion relevant to the philosophy of mind? Is
it relevant to building practical intelligent systems? This chapter briefly reviews Gödel–Turing
results, Penrose’s arguments, and some counterarguments. We analyze the combinatorial
nature of Aristotelian logic as revealed by the arguments of Gödel and Turing and compare it
with the combinatorial explosion of complexity of intelligent algorithms and neural networks.
Our conclusion is that Gödel–Turing results establish limitations to Aristotelian logic, but are
not necessarily relevant to the theory of mind.

11.1 PENROSE AND COMPUTABILITY OF MATHEMATICAL

UNDERSTANDING

Penrose came to the conclusion that conscious understanding cannot be explained as a
feature of a computational system. Consciousness could not have arisen as a result of
computations, nor can computation ever simulate consciousness. Although considering
mathematical understanding, he believes that any understanding and consciousness in
general cannot be explained as a computational activity. The brain activity responsible
for conscious understanding, according to Penrose, “must depend upon a physics that lies
beyond computational simulation.”

Wigner once delivered a lecture entitled “The unreasonable effectiveness of mathe-
matics in the physical sciences.” This theme represents one side of Penrose’s arguments.
Why should the physical world be describable by an abstract mathematical construct?
And why could such an abstract mathematical construct be knowable to the human mind?
Let us take a view that our mind has evolved from unorganized matter in the process
of genetic evolution, for the purpose of controlling our body and our behavior, guiding
it toward improved survival. This point of view explains a tremendous number of facts

383
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in paleontology, anthropology, and psychology. It explains, in particular, why our mind
evolved toward physical understanding of the world: because an ability to predict events
and their interrelationships is beneficial for survival. But if we take this view consistently,
we have to acknowledge that an approximate understanding, say at the level of one-tenth or
one-hundredth, of what actually occurs should suffice for most survival-related activities,
such as hunting, home building, etc. Why should our mind be able to generate physical
theories accurate to one in a millionth of a millionth part? This seems impossible to explain
by an evolution postulate. Nor does it seem possible to explain why the physical world ought
to follow precise mathematical relationships. Penrose feels compelled to accept a modified
Platonic view in which there are three interrelated worlds: the world of consciousness, the
world of matter, and the world of ideas, including mathematical objects and constructs.

The other side of Penrose’s arguments is based on the mysteries of the physical world
of matter. Even though quantum theory and the general theory of relativity are capable
of explaining and predicting physical phenomena with tremendous accuracy, there are
unexplained and inconsistent aspects of these theories. In particular, the nature of the process
of quantum measurement remains unexplained despite the concerted efforts of several
generations of physicists. Quantum measurement refers to a process of relating a state of a
quantum system to the macroscopic classical world accessible to our conscious perception.
A quantum system is described by a wavefunction, which is a superposition of multiple
states. For example, an electron traveling from one place to another can be described as a
superposition of multiple trajectories. During a “macroscopic observation,” these multiple
states “collapse” to a single macroscopic classical state. Existing quantum theory provides us
with a mathematical technique leading to an extremely accurate description of the observed
physical world. But conceptual difficulties remain. One such conceptual difficulty was
discussed by Schrödinger and goes under the name of Schrödinger’s cat. Say that one of
many electronic trajectories goes near a loaded gun and triggers a shot that kills a cat.
Then, before a measurement, the system will be in a superposition of a dead cat and alive
cat. Physicists do not believe that such states are possible. Somewhere on an intermediate
scale between the quantum microworld and observable macroworld, wavefunctions should
collapse, but nobody knows yet how to describe this mathematically.

Combined effects of quantum and relativistic theories could get even more strange,
leading to the possibility of back-and-forth time travel. In the classical theory of relativity,
properties of space–time, such as its curvature, vary depending on its physical state. Since a
quantum system normally is in a superposition of multiple states, the space–time also is in a
superposition of multiple states. In particular, there is a nonzero probability of a space–time
state that curves so much that a closed time-like line appears. A closed time-like line means a
possibility of traveling back and forth in time. Even if this effect occurs only at microscopic
distances, it might still influence macroscopic systems. If closed time-like lines could be
exploited in a computer, there is the possibility that the computer has at its disposal the
results of computations before the computation began. According to Penrose this opens the
possibility for noncomputable physics.

Penrose believes that new undiscovered yet physical principles of the material world
are needed for the description of consciousness. A discovery of these new principles will
constitute a theory that he calls Correct Quantum Gravitation (Penrose, 1989). This future
theory will unify quantum theory and the general theory of relativity and will explain the
nature of quantum measurement as a nonlocal, nonalgorithmic process. The nonalgorithmic
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nature of the future physics, according to Penrose, will resolve the mysteries of creativity
and free will, related to the exit out of the finite world of events into the infinite world
of ideas.

11.2 LOGIC AND MIND

One of the roots of contemporary approaches to modeling intelligence is logic. It used
to be considered equivalent to intelligence. Logic is at the basis of most of algorithms of
artificial intelligence. It dates to Aristotle, and its mathematical foundations were developed
at the end of the nineteenth and the beginning of the twentieth century. This development
revealed a fundamental limitation that was first seen by Cantor, then formulated in a famous
Russell paradox, and finally was proved in several theorems by Gödel. Let us overview this
development in which philosophy was interwoven with mathematics.

According to Kant, the a priori concepts of mind are purposive, in that they contain an
intuition about the world. In the previous chapter, we saw that this purposiveness is related
to adaptivity and requires fuzziness of the a priori concepts. This understanding did not exist
in the nineteenth century and the mathematical formalization of the Kantian intuition met
with difficulties. These difficulties were related to verification of the truth of mathematical
statements concerning infinite objects. Hilbert thought to resolve these difficulties on a
nominalistic basis. He developed an approach named formalism, which rejected the intuition
as a matter of scientific investigation and formally defined scientific objects in terms of
axioms or rules. Weyl argued that “A science can only determine its domain of investigation
up to an isomorphic mapping. . . . The idea of isomorphism demarcates the self-evident
insurmountable boundary of cognition.” Isomorphism here refers to the multiple “real-
world” objects that satisfy the same mathematical axioms and therefore are equivalent from
the point of view of mathematical formalism. As summarized by Webb, formalism consists
in that “being unable to intuit or know the objects of science in themselves, we must settle
for the formal laws they satisfy.” This is opposite to the position of Newton, who relied
on his intuition about the world. On the one hand, formalization of mathematics divorced
mathematics from physics, which relies essentially on physical intuition about the world
of matter. But, on the other hand, it stimulated the development of sophisticated abstract
mathematical methods that promised to solve forever the issue of mathematical truth.

Hilbert distinguished three stages in the development of any mathematical theory:
(1) an informal theory, (2) a strictly formalized theory, and (3) a metatheory proving the
consistency of (2). From the point of view of Kant–MFT theory stage 1 is the dynamic
process of symbol formation, the process of adaptive differentiation of concepts; stage
2 is elaboration of Aristotelian logic in the transcendental domain of Understanding; but
Hilbert’s stage 3 is an attempt to prove the transcendental by using Aristotelian logic,
which was later proved impossible by Gödel. In Kant–MFT theory, I replaced it with
a new stage 3, a synthesis through continuous adaptation of differentiated concepts in
an evolving heterohierarchical system. Whereas formalism wanted to save mathematical
“infinite” arguments by formalizing them, an opposite approach to the foundations of
mathematics, intuitivism, attempted to resolve mathematical difficulties involving infinite
objects by ruling out infinities and requesting explicit definitions of mathematical objects
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in terms of finite Aristotelian logic. In spite of prominent mathematicians contributing
to intuitivist foundations of mathematics, it never quite succeeded. The limitation of the
intuitivist approach seems to be related to its philosophical inconsistency: an attempt to
utilize Aristotelian logic belonging to the domain of Understanding in the domain of
Judgment that requires adaptivity and fuzziness.

In 1884, Frege introduced a procedure for defining numbers in terms of sets. First,
consider all equivalent sets1 (whose elements can be one-to-one paired). Then, consider
sets2 containing all equivalent sets1. An integer number n is a set2 of all sets1 containing
n elements. This is the mathematical expression of formalistic isomorphism in which the
number is formally defined in a most abstract way. In 1902 Russell exposed an inconsistency
of this procedure by introducing a set R as follows:

R is a set of all sets that are not members of themselves (11.2-1)

IsR a member ofR? If it is not, then it should belong toR according to definition (11.2-1), but
ifR is a member ofR, this contradicts the definition. Thus, either way we get a contradiction.
This became known as Russell’s paradox. For the next 25 years mathematicians where trying
to develop a self-consistent mathematical logic, free from the paradoxes of the type noted
above. But, in 1931, Gödel proved that it is not possible.

In 1937, Turing, developing a mathematical theory of computation, established a
fundamental correspondence between computation and logic, formalized the definition
of our understanding of algorithmic computation, and proved fundamental limitations of
algorithmic computations similar to the Gödelian limitations on logic. These series of results
by Gödel and Turing I will refer to as GT results, proofs, etc. In a simplified form these
results are summarized in the next section.

Note that the idea of defining concepts (numbers in this case) in terms of sets is
related to nominalistic philosophy, in which concepts are learned by noticing similarities
among objects and defining concepts as sets of similar objects. In Chapter 2 we related
this philosophy to specific computational concepts of intelligence and analyzed in detail
the resulting combinatorial explosion of computational complexity. Throughout this book
we have developed a different mathematical concept of intelligence, modeling field theory,
based on the a priori origin of concepts and their adaptive relationship to the real world.

There have been several attempts to use GT results for establishing a fundamental
difference between a computing machine and the human mind. A recent one is by Pen-
rose, who presents “compelling arguments” based on GT results that mathematical and
physical understanding could not be explained through computation. Penrose considers our
consciousness or awareness of the properties of natural numbers, our ability to mentally
visualize solutions to complex problems to be noncomputational, and this noncomputabil-
ity to be demonstrably related to GT results. Penrose believes that the mysteries of the
mind would be eventually understood through yet unknown physical theory, which will
explain consciousness, creativity, and free will along with yet unexplained properties of the
phenomenon of quantum measurement.

Penrose’s arguments are considered fallacious by many mathematicians. I summarize
Penrose’s arguments and counterarguments by Putnam, which are related to the plausi-
bility that an idealized mathematician’s mind may not attain a thorough understanding of
mathematical arguments in a perfectly conscious way.
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11.3 GÖDEL, TURING, PENROSE, AND PUTNAM

Gödel’s incompleteness theorems state that consistency cannot be proved within a formal
mathematical system (powerful enough to include arithmetic).1 “Formal” here means that
the axioms and rules of inference are precisely described, so that they can be coded into a
computer algorithm. This notion of coding mathematical rules into a computer was explicitly
developed by Turing (1937).

Now I briefly summarize a Turing version of Gödel’s theorem following Penrose.
Consider a list of all algorithms Cq, q = 1,. . . . An algorithm is a computer code (valid or
not), which we assume can do the following: (1) given an input n(n = 1, . . .), an algorithm
acts on it, that is performs a computationCq(n), and if this computation successfully stops,
the algorithm writes out an answer, (2) otherwise an algorithm either never stops or fails to
stop properly; in all these cases we say that the algorithm does not stop.

The above scheme is fairly general: it includes all possible algorithms, including
learning or adaptive algorithms, and all possible input data. All algorithms can be ordered
in a single list as above, because any algorithm can be coded as a finite computer code, and
all such codes can be ordered, say in an alphanumeric order. This list is infinite, because
algorithms of any finite length are allowed. Also, the above scheme accounts for algorithmic
actions on any (finite) data, because any possible set of input data of any finite length can
be enumerated by a single number, n.

Turing formulated a Gödel-type theorem in terms of a universal procedure A, that
could decide if a particular computation, Cq(n), never terminates. His conclusion was that
there is no such procedure. The proof goes as follows. Assume there is such a procedure A
that can act on Cq(n), and A stops only when Cq(n) does not stop (otherwise A does not
stop). Since there is a list of all Cq(n),A acting on Cq(n) is an algorithm specified by two
numbers (q, n), A(q, n). Thus, the assumption is

if A(q, n) stops, then Cq(n) does not stop (11.3-1)

Consider A(n, n); this is an algorithm acting on a single number n, thus it is one of
the original list of Cq(n), for some q = k,A(n, n) = Ck(n). Examine n = k : A(k, k) =
Ck(k). Substituting this into (11.3-1) we obtain

if Ck(k) stops, then Ck(k) does not stop (11.3-2)

if A(k, k) stops, then A(k, k) does not stop (11.3-3)

From (11.3-2) we conclude that Ck(k) does not stop. But A fails to ascertain this because
from (11.3-3) A(k, k) does not stop.

Thus, we know that Ck(k) does not stop, but there is no universal procedure A that
would ascertain this. From this, Penrose concludes that human capacity for mathemat-
ical thinking is beyond any formal system or any algorithm whatsoever. Our capacity
to conclude that Ck(k) does not stop, according to Penrose, is due to a special mental
representation, called mathematical understanding, which was shown to be of a noncom-
putational nature.

Let me briefly summarize the counterargument by Putnam (1995), who considers Pen-
rose’s argument fallacious. To complete Penrose’s argument it is necessary to assume that
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we know that A is a sound (valid) mathematical procedure (11.3-4)

Moreover, to compare an algorithm A to a human mathematician, we consider A encom-
passing the entire human knowledge relevant to this area of mathematics. There is no
disagreement about this statement between Penrose and Putnam. But whereas Penrose
believes that the nature of mathematical understanding is such that (11.3-4) is highly
plausible, Putnam, insists that this is not necessarily so:

A program which simulated the brain of an idealized mathematician . . . we might not
be able to appreciate it in a perfectly conscious way, in the sense of understanding it or
of being able to say whether it is plausible or implausible that it should output correct
mathematical proofs and only correct mathematical proofs.

What is missing in Putnam’s argument is an explanation of the nature of mathematical
and physical intuition.

11.4 GÖDEL THEOREM VS. PHYSICS OF MIND

Penrose develops a specification for a Gödelizing Turing machine, which is an explicit
procedure that, given any algorithm A, constructs a computation C that we know does
not terminate, but on which A fails. He shows that the number of binary digits in explicit
specification of C is such that it exceeds this number for A by not more than


 ∼ 527 + 210 log2(N + 55) (11.4-1)

where N is the number of internal states of the Turing machine implementing algorithm A.
Penrose’s specification and expression (11.4-1) suggest the following interpretation. In

a complete list of algorithms (Turing machines) needed for the formulation of the GT proof
discussed in the previous section, there should be on the order of 2
 algorithms specified
between the algorithmA and the computationC. Since
 ∼ 1700, the explicit construction
of GT proofs is possible in systems containing on the order of 21700 ∼ 10500 algorithms.
This number exceeds all elementary particle interactions in the entire history of the universe
(∼ 10400). Thus it seems clear that GT limitations are not applicable to a human mind or
to artificial intelligent systems.

The huge, inconceivable number of logical predicates that appears in the construction
of GT proofs seems to be due to the inherently combinatorial nature of the constructs of
formal systems, which consider a large number of possible combinations of predicates.
It is interesting to compare this combinatorial explosion to a similar phenomenon in the
design of algorithms of intelligent systems. In Chapter 2 we discussed in detail that the
problem of seemingly inexorable combinatorial complexity plagued designers of intelligent
algorithms for many years. We related this problem to the factors of adaptivity (an ability of
an intelligent system to adapt to an ever-changing world) and apriority (an ability to utilize
complicated a priori knowledge). And we traced it to a contradiction between Aristotelian
logic and Aristotelian conception of mind (theory of Forms).
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Consider the list of all algorithms Cq, that appears in GT theorems as containing an
algorithmic representation of the internal model of an intelligent system, with various Cq
being submodels, and consider each row,Cq(n), as a result of actions or matches of internal
submodels to the outside world, whose states are enumerated byn. This two-dimensional list
is combinatorially long in both directions q, n. This can be viewed as a result of Aristotelian
logic being inherently combinatorial, unsuitable for an efficient representation of the world,
and lacking a capability for learning and efficient matching to the world.

In multilevel hierarchical intelligent systems, a procedure at a particular level in the
hierarchy has a meaning at the next level. GT theory argues along the same direction,
as follows. Our conclusion that Ck(k) does not stop rests on our understanding of the
meaning of how this procedure was constructed. When we encounter a particular Ck(k)
type statement (algorithm), let us explicitly include in the list of Cq the fact that it does not
stop. This is similar to including the next level of the hierarchy. The new expanded (infinite)
system of algorithms has its own Gödel-type Ck′(k′) statement, and our conclusion that it
does not stop again comes from the understanding, which is outside of the systems. The
procedure of expanding the system by including Gödel-type statements can be continued
infinitely, leading to an ever-expanding hierarchical system.

Let us summarize the discussion of GT results as they are related to the combinatorial
explosion of Aristotelian logic. GT reveals that the difficulties of Aristotelian logic are
related to its excessive precision: any two concepts are either different or both are the
exactly the same single concept. No matter how “small” the difference is between any
two concepts, they are different. And an infinite number of concepts with even “smaller”
differences can be “inserted” between them. I used quotation marks in these sentences,
because there is no measure of difference within the standard Aristotelian logic. Fuzzy
logic eliminates excessive precision inherent in Aristotelian logic.

Penrose expressed a deep-seated intuition that the human mind cannot be modeled
by a computer in its entirety. This intuition is shared by many philosophers. But where
is the border separating science from mystery, the forefront that challenges our rational
understanding, physical intuition, and mathematical methods? We hope that with the devel-
opment of the science of the mind, this border will continue moving. The discussion in the
preceding chapters touched on a 2300-year controversy surrounding the issue of realism
and nominalism, apriority and adaptivity of mind, which is being resolved by mathematical
concepts combining an a priori adaptive internal model. Resolution of this long-standing
controversy will affect our understanding of many phenomena considered until recently
beyond computational modeling and physical intuition, such as meaning, qualia, the nature
of understanding, and consciousness.

The nature of understanding in Penrose’s sense of a specific awareness of the entire
mathematical or physical theory ought to be analyzed as a differentiated set of phenomena,
some aspects of which can be understood due to complicated properties of the internal
representation or model, and other aspects of which are related to the expansion of the
internal model and represent a challenge to our contemporary rational understanding.
Further analysis requires that we consider consciousness as a differentiated set of phenomena
in their interactions with unconscious. Within the concept of an internal model, we should
consider the model of the outer world as well as the model of the intelligent system’s self.
On every level, the model of self contains a submodel of the previous level model-of-self,
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resulting in a pyramid of self-reflections (Meystel, 1995). This pyramid of self-reflections
as well as the pyramid of the outer-world model includes conscious and unconscious aspects
at every level. What is the nature of creativity that expands the a priori model, not only its
conscious content? What is free will, that strange feeling of purposeful indeterminacy that
defeats any rational attempt at defining it? Would we find its explanation in new physical
phenomena of a noncomputable nature postulated by Penrose? We continue this discussion
in the next chapter.

NOTE

1. A conclusion is that within any such mathematical system there are undecidable statements, so
that the statement (S) and its negation (−S) are both provable or true. It follows that any statement
whatsoever (S1) is true. Here is the proof: if S is true then (S or S1) is true. If (S or S1) and (−S)
are both true, it follows that S1 is true. This formulation emphasizes the dramatic consequences
of Gödel’s theorems.
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chapter 12

TOWARD PHYSICS OF CONSCIOUSNESS

What is consciousness? Why is it needed in biological or artificial systems? Can it be under-
stood as a physical phenomenon? Can it be described mathematically? I outline a future mod-
eling field theory of consciousness. In this theory, consciousness is due to an internal model.
The specific internal model responsible for consciousness is what psychologists call Ego. The
Chapter overviews the phenomenology of consciousness and Ego. It begins with popular
conceptions and misconceptions and then continues the analysis, relating phenomenology to
the modeling field theory. Even though our direct and naive perception of consciousness
emphasizes its unity, wholeness, and predominance within psyche, consciousness is not
a simple phenomenon. It is a complicated differentiated phenomenon, which cannot be
described in isolation from the rest of the psyche. The phenomenology of consciousness
is described in its intimate connection to the rest of the psyche, including the unconscious
and emotions. Hypotheses and historical evidence concerning the origins and evolution of
consciousness are summarized. Properties of consciousness are related to and explained
within the modeling field theory. We overview neural structures involved in consciousness
and emotions and identify candidate neural correlates for the modeling field theory modules
and for Kantian theory of mind.

The discussion continues toward more complex aspects of consciousness, including the
nature of creativity and free will. I analyze the differentiated nature of the process in which
consciousness analyzes itself. This process is related to the nature of symbol in Jungian psy-
chology and in the modeling field theory. I identify an essential connection among creativity,
consciousness, the unconscious, and fuzziness, and attempt to delineate the boundaries of
what is accessible today to the scientific method. Is it possible that mysteries of consciousness
that are beyond rational understanding today are related to new physical phenomena, whose
discovery will resolve the mysteries of matter related to the yet unexplained nature of quantum
measurement and quantum gravity?

391
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12.1 PHENOMENOLOGY OF CONSCIOUSNESS

12.1.1 Popular Conceptions and Misconceptions about Consciousness

Consciousness is an awareness or perception of inward psychological facts, a subjective
experience of sensing, feelings or thoughts. This definition is taken from Webster’s Dictio-
nary. But a more detailed, rational analysis of consciousness has proven to be difficult. For a
long time it seemed obvious that consciousness completely pervades our entire mental life,
or at least its main aspects. Now we know that this idea is wrong, and the main reason for
this misconception has been analyzed and understood: we are conscious only about what
we are conscious of, and it is extremely difficult to notice anything else. In the beginning of
his book on the historical evidence for the emergence of consciousness, Jaynes summarized
eight popular concepts about consciousness, which he thought inadequate and useless. It
is worth repeating them here briefly, because their popularity still has not vanished. Here
they are. Consciousness is nothing but (1) a property of matter, (2) a property of living
things, (3) a property of neural systems. These three “explanations” attempt to dismiss
consciousness as an epiphenomenon, an unimportant quality of something else. They are
useless because the problem is in explaining the relationships of consciousness to matter,
to life, and to neural systems. Consciousness is not a simple correlate of any of these other
“things,” but has complicated relationships with them. These dismissals of consciousness
are not very different from the behavioristic postulate that (4) there is no consciousness. But,
of course, this conscious statement of behaviorists refutes itself. (5) A dualistic position is
that consciousness belongs to the world of ideas and has nothing to do with the world of
matter. But the scientific problem is in explaining the consciousness as a natural-science
phenomenon, that is to relate consciousness and the material world. (6) Consciousness is
learning. This was a position of associationism, popular among some scientists in the 1950s
and 1960s. Associationism bounded consciousness together with experience and learning,
but we know today that these are all different properties of mind. (7) Consciousness emerges
in evolution. This is acceptable as a doctrine, but a lot of work is needed to find out what
exactly emerged, when, and how it did. (8) Consciousness is a neural mechanism. Again,
as a starting point it might be acceptable. But what is the mechanism, and the mechanism
of what? Let us say we obtained the entire wiring diagram of all neurons in the brain, plus
chemical properties of neurotransmitters, etc.; this still would not explain consciousness.
Together with Jaynes we conclude that we need first to examine what consciousness is and
what it is not. And I will add that a physical theory of consciousness would tie together the
most important facts, with intuition and with mathematics.

Searle, in his book on mind (1982), begins the chapter on the structure of consciousness
by mentioning subjects that he believes are crucial to consciousness, but are the least under-
stood. The first subject is the relationship between consciousness and time: consciousness
is not experienced as spatially extended, but is extended in time. The systematic differences
between the phenomenological (perceived) time and real time are unexplained. The second
subject is the relationships between the social and individual elements of consciousness,
including the role of “other people” in the structure of our consciousness.

Then Searle lists 12 important properties of consciousness requiring scientific expla-
nation: (1) finite modalities: consciousness is manifested in a strictly limited number of



12.1 Phenomenology of Consciousness 393

modalities; these include the five senses, bodily sensations, thinking, and feelings (emo-
tions); (2) unity: conscious states are parts of a unified sequence; Searle differentiates
horizontal unity of a temporary sequence of events and vertical unity of simultaneous
events; (3) intentionality: most conscious states are directed at something; we are conscious
of something, and this “of” points to its intentionality; (4) subjective feelings: “what it
feels like” more than anything else is responsible for the philosophical puzzlement of
consciousness; (5) the connection between consciousness and intentionality: only conscious
beings could be intentional; (6) structuredness of conscious experience: we are conscious of
specific objects, events, concepts, and not of undifferentiated shapes etc.; (7) familiarity: we
are conscious of objects (events, etc.) as specific types of familiar concepts; consciousness
of something is consciousness of it as something; (8) overflow: conscious states refer beyond
their immediate content; (9) center and periphery: consciousness is closely related to atten-
tion, a lot of things are at the periphery of consciousness and relatively few are at the center;
(10) boundary conditions: the periphery of consciousness is located within boundaries of
the situation; the boundaries (such as date, year, your name, country, when and what you
will have for dinner) are important for the overall situatedness of consciousness, even
though we are not necessarily conscious at every moment; (11) moods: are conscious, also
not necessarily intentional; moods are pervasive “tones” or “colorings” of consciousness;
(12) pleasure/unpleasure: is always a part of conscious states.

For one of these properties, (7) familiarity, Searle offers an explanation: “the categories
have to exist prior to the experience, because they are the conditions of possibilities of
having just these experiences.” This becomes mathematically “obvious” when considering
the mind as based on internal models: all our perceptions are possible only because of a priori
model-categories. So we can neither perceive nor conceive, or be conscious of anything
that is totally unfamiliar. In the following we will analyze the structure of consciousness
and explain its many properties due to the internal model.

12.1.2 What Is Consciousness?

Our knowledge of consciousness is primarily of introspective origin. Understanding of
consciousness requires differentiating conscious and unconscious psychic processes, so
we need to understand what is psychic, what is unconscious, and what is consciousness.
Our experiences can be divided into somatic and psychic. A will modifying instinctual
reflexes indicates the presence of psyche, but not necessarily consciousness. Often we
associate consciousness with a subjective perception of free will. Consciousness about
somatic experiences comes against limits of unknown in the outer world; similarly, limits
of consciousness about psychic experiences come against limits of unknown in the psyche,
or unconscious. Roughly speaking, there are three conscious/unconscious levels of psychic
contents: (1) contents that can be recalled and made conscious voluntarily (memories);
(2) contents that are not under voluntary control, we know about them because they
spontaneously irrupt into consciousness; and (3) contents inaccessible to consciousness.
We know about the latter through scientific deductions.

Consciousness is not a simple phenomenon, but a complicated differentiated process.
Jung differentiated four types of consciousness related to experiences of sensations, feelings,
thoughts, and intuitions. In addition to these four psychic functions, consciousness is
characterized by an attitude: introverted, concentrated mainly on the inner experience, or
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extroverted, concentrated mainly on the outer experience. The interplay of various conscious
and unconscious levels of psychic functions and attitudes results in a number of types
of consciousness; interactions of these types with individual memories and experiences
make consciousness dependent on the entire individual experience that makes an individual
consciousness. An individual consciousness has a high degree of continuity and identity.

Consciousness is about something. In our theory of mind based on internal models,
consciousness is about the internal model (of the environment, self, past, present, future
plans and alternatives). Over the internal model, consciousness can direct attention at
will. This conscious control of will is called free will. A subjective feeling of free will
is a most cherished property of our psyche. Most of us feel that this is what makes us
different from inanimate objects and simple forms of life. And this property is a most
difficult one to explain rationally or to describe mathematically.1 But let us see how far
can we go toward understanding this phenomenon. We know that often raw percepts
are not conscious. For example, in the visual system, we are conscious about the final
processing stage, the integrated model, and unconscious about intermediate processing. We
are unconscious about eye receptive fields; about details of visual perception of motion
and color as far as it takes place in our brain separately from the main visual cortex, etc.
These unconscious perceptions are illustrated in blindsight: a visual perception occurs, but
a person is not conscious about it. In most cases, we are conscious only about the integrated
scene, objects, etc.

It follows that internal models have conscious and unconscious parts that are accessible
and inaccessible to consciousness. But what is responsible for the continuity and identity of
consciousness? I propose a hypothesis that there is an internal model of the conscious parts
of all other internal models. This a priori adaptive model is responsible for consciousness
and the phenomenological properties of consciousness are due to properties of this model.
Let us discuss what is known about the phenomenology of this internal model. Since Freud,
a complex of psychological functions associated with this internal model is called Ego.
Jung considered Ego to be based on a more general model or archetype of Self. Jungian
archetypes are psychic structures (models) of a primordial origin, which are not accessible
to consciousness in their entirety, but determine the structure of our psyche. In this way,
archetypes are similar to other models, e.g., receptive fields of the retina are not consciously
perceived, but determine the structure of visual perception. The Self archetype determines
our phenomenological subjective perception of ourselves, and, in addition, structures our
psyche in many different ways, which are yet far from completely understood. One of
the most important phenomenological properties of Self is the perception of uniqueness
and indivisibility.

Consciousness, to a significant extent, coincides with the conscious part of the archetype
(internal model) of Self. A conscious part of Self belongs to Ego. Individuality as a total
character distinguishing an individual from others is a main characteristics of Ego. Not all
aspects of individuality are conscious, so, the relationships among the discussed models
can be summarized to some extent, as

Consciousness ∈ Individuality ∈ Ego ∈ Self ∈ Psyche

Ego is a subject of free will. It possesses a free will inside consciousness. Free will is limited
by laws of nature in the outer world and in the inner world by the unconscious aspects of
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Self. Free will and intellectual aspects of Reason belong to consciousness, but not to the
conscious and unconscious totality of the psyche.

Contemporary philosophers consider subjective nature of consciousness to be an im-
penetrable barrier to scientific investigation. Chalmers differentiated hard and easy ques-
tions about consciousness (Chalmers, 1994) as follows. Easy questions, which will be
answered better and better, are concerned with brain mechanisms: which brain structures
are responsible for consciousness? Hard questions, about which no progress can be expected,
are concerned with the subjective nature of consciousness and qualia, subjective feelings
associated with every conscious perception. Nagel described it dramatically with a question:
“What it is like to be a bat?” (Nagel, 1974).2 In the modeling field theory, the subjective
nature of consciousness is not a mystery. It is explained due to the subjective nature of
the internal model of which we are conscious. The subjectivity is the result of the MFT
combining apriority and adaptivity, the unique genetic a priori structures of our psyche with
our unique individual experiences. I consider the only hard questions about consciousness
to be free will and the nature of creativity.

12.1.3 Consciousness of Bodhisattvas

The notion of emptiness takes a central and fundamental role in Buddhism. The emptiness
of an object, in the terminology of MFT, means that its value for satisfaction of lower, bodily
instincts is much smaller than its value for satisfaction of the higher instinct for learning.
The consciousness of bodhisattva, writes Dalai Lama (1993), wonders at the emptiness
of any object. This means that for bodhisattva any object is first of all a phenomenon
available for our comprehension, its correspondence to our internal models excites the
feeling of harmony, and its deviation from the models, its “disharmony,” stimulates the
process of adaptation, improving the internal models, and satisfying the learning instinct.
In every moment of perception, bodhisattva consciousness is governed first of all by the
learning instinct. The nature of emptiness in Buddhism is that the highest intention of every
phenomenon is in its concept.

Reconciliation between the existential feeling of mystery and eternity and a practical
need to live in the world of matter as a finite material being is a major purpose of all
religions. In Buddhism, this reconciliation is achieved through the concept of emptiness.
Boddhisattva consciousness that combines the concept and the will for improvement im-
pressed Schopenhauer (1819) and stimulated his philosophical unification of the internal
representation and will.

The affirmation that “Buddhas are always concentrated on emptiness” should not be
confused with the emotional emptiness. The emotions that subsist in the flow of con-
sciousness of bodhisattvas are related to the “higher” instinct for learning, and are not the
“lower” emotions satisfying bodily instincts. Among lower “afflicting” emotions, according
to Buddhists teachings, are attachment, aversion, and ignorance; these emotions are poisons
of the mind causing mental and sometimes bodily illness. Contrary to the negative role of
lower emotions, higher emotions are the neuronal mechanisms of will to perfect self. MFT
offers a scientific way of understanding the Buddhists belief that when Buddhas meditate
on the direct comprehension of emptiness, the higher emotions emanate from their minds:
the consciousness of concepts, as the primary content of phenomena, leads to emotions
satisfying the higher instinct.
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12.1.4 Consciousness versus Unconscious

We know about psychic contents inaccessible to consciousness through scientific deduc-
tions. These deductions are of several origins: psychic, evolutionary, and neural. Deductive
scientific analysis of the unconscious was initiated by Freud and Jung, who demonstrated the
existence of the unconscious, examined its influence on mind, behavior, and consciousness,
and investigated the nature of unconscious psychic processes. According to evolutionary
arguments, our psyche has evolved from simpler organisms without consciousness and,
possibly, from inanimate matter. Therefore we deduce that there have to be unconscious
psychic structures, from which consciousness has evolved, and there have to be material
structures in the brain supporting the process of the evolution of consciousness. Neural
sciences discovered a number of neural structures supporting the consciousness, which
are not accessible to consciousness directly. Nor are all the psychic processes supported
by these structures conscious; during the past decades we have learned a great deal about
relationships among neural structures and the conscious and unconscious psychic processes
associated with them.

Unconscious contents can be classified into two general groups: personal and imper-
sonal. Personal unconscious comprises life experiences that were forgotten or subliminally
perceived, thought, or felt. Impersonal unconscious contents originate in the inherited possi-
bilities of the psychic functioning in general. A significant part of these contents is common
to all of humankind; Jung called these the collective unconscious. Deducing specific contents
of and identifying archetypes or models in the collective unconscious is a difficult task. It
is approached through analyses of dreams, myths, fairytales, and behavior of people. These
analyses show that unconscious contents are not differentiated: archetypes of collective
unconscious are models of psychic situations as a whole; they manifest as “fantasy-images”
that are not related to visual perceptions and they are not differentiated into thoughts,
sensings, or feelings. As we better understand the nature of archetypes in the human psyche,
we should be able to develop similar type mathematical models for MFT-type systems.

Evolution of consciousness proceeds through differentiation of psychic functions and
their contents. It seems that originally, at the dawn of consciousness, thoughts were no
different than internal sensings or feelings. The original archaic state of consciousness is
an undifferentiated identity. And only gradually, psychic functions differentiate and the
faculty of Understanding acquires a large number of highly differentiated internal models-
concepts, which make possible differentiated thinking. As far as categories of Understanding
are concerned, we have made a good first step toward a mathematical description of the
process of differentiation. MFT techniques for adapting a priori models to new objects and
structures in the world and for estimating and increasing, as needed, the numbers of models
describe the mathematics of this process.

In the process of differentiation, unconscious (or less-conscious) fuzzy concepts are
adapted to the new data and become conscious low-fuzzy or crisp concepts. This process
occurs every day, and may only take a moment of time when we perceive new objects
and recognize new situations that are similar to those seen and recognized in the past. And
this process may take days, years, or even many generations, when new concepts emerge,
which make a profound impact on our consciousness. In the processes of perception, fuzzy
a priori concept-models are usually unconscious, and only crisp concept-objects reach con-
sciousness. In the processes of everyday conscious cognition, usually the concept-models
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that are in our consciousness from past experience are modified to suit new situations. And
when profoundly new concepts emerge, it might involve highly fuzzy primordial models-
archetypes, that are made less fuzzy as they are brought into the consciousness in the process
of adaptation.

Conscious models can be more easily communicated to other people than unconscious
ones. And they can be adapted more quickly to the new circumstances as long as they
retain a degree of fuzziness. These are the advantages of conscious models vs. unconscious
ones, which determine their importance for the advancement of culture. The drawback of
conscious models is that they gradually become crisp, and nonadaptive, and may lose their
touch with the unconscious contents of the psyche. They might become shallow label-signs,
a matter of seemingly arbitrary convention, designating nothing of importance to our lives,
and they should be replaced by new, more meaningful concepts. This is the process of the
cultural and conscious evolution.

12.1.5 Consciousness versus Emotions

Undifferentiated thinking is incapable of thinking apart from sensations, feelings, and
intuitions. Similarly, undifferentiated feelings are mixed up with thoughts, sensations,
and fantasies. For example, in neurosis, according to Freud, thinking and feelings are
mixed up with sexual desires. Undifferentiated processes may “grab our guts,” so that
we are very well aware of them. Yet we have very little consciousness of what exactly
goes on; our conscious self is not in control. On the contrary, in the case of differentiated
thinking, we are conscious of many aspects of the situation, we are conscious of potential
conflicts, and we can better adapt to the situation. Not only thoughts, but also other psychic
functions acquire differentiated status. Jung considers four main psychic functions: thinking,
feeling (emotion), intuition, and sensing. Thinking and feeling are rational and more easily
accessible to consciousness and more easily attain highly differentiated status. Intuition and
sensing are irrational and less accessible to consciousness and differentiation.

Emotions originate from evolutionary-old brain systems that control behavior essential
for survival and reproduction. Therefore, emotional control of consciousness and undiffer-
entiated, unconscious emotional influences on behavior are well known and documented.
The opposite, conscious control of emotions, seems to be of relatively recent origins and is
less understood. Have you ever fed seagulls on the beach? When a seagull sees a piece of
bread thrown in his direction, he “cries wolf” in the seagull language. He fakes a danger-cry
that was originally intended to warn a flock from danger, and he uses it intentionally and
rationally (consciously?) to scare other birds, so that they do not compete for the piece of
bread. Is this a rational fake of emotions? Is it a conscious one? If we do not acknowledge
consciousness in a seagull, then we have to acknowledge that faking emotions is even older
than consciousness.

Jung described an emotional type of psyche, in which highly rational intelligence is
based on conscious differentiated emotions. The mathematical nature of the differentiation
of emotions, however, is less understood than that of the differentiation of concepts. Let us
remember the discussions in Chapters 2 and 10. Attempts to model emotions similarly to
modeling concepts lead to a combinatorial explosion. This difficulty is avoided by using the
mathematical desciption of emotions and concepts that follows the mechanisms elucidated
in neural, psychological, and philosophical analyses; concepts are described by models,
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and emotions are signals affecting the similarity measures (between the concept-models
and structures in the input data). A mathematical description of the differentiated emotions
is based on complicated structural similarity measures. Its highly differentiated develop-
ment is based on the “emotional concepts.” These high-value internal model-concepts are
similar to instincts in that they affect similarity measures (between many other concept-
models and input data). The differentiated similarity measures are affected not only by
“lower” instinctual emotions, but also by “higher” intellectual emotions related to high-
value “emotional” concepts. The high-value “emotional” concepts generate differentiated,
conscious emotional signals and become as if differentiated instincts, subject to conscious
control, learning, and will.

Unconscious undifferentiated emotions that are not under the control of free will are
called affects. Affects can excersise powerful control over our psyche. But it would be
wrong to assume that only undifferentiated unconscious emotions can be very strong. Very
strong emotions can be highly differentiated, complicated, completely conscious, and under
the control of free will. For example, Mazo (1994) describes lamenting, a custom observed
in many areas of rural Russia, which consits of crying with words and melody on specific
highly emotional occasions in personal life, such as marriage or a death in the family. It
is not only a ritual, but also a conventional form of expressing certain affective, highly
emotional states. Usually, people cannot lament at will so that a researcher can tape their
laments. But there are professional lamenters, who are willing to lament on request; “they
can even be interrupted in the middle of a lament and then carry on lamenting without
discontinuity in the verbal content, mood, or emotional involvement.” Of course, all of us
are familiar with more refined versions of this type of behavior by actors in the movies or
on stage, but the conscious, free will-controlled aspect is usually hidden.

Conscious parts of internal models are more differentiated, more adaptive, more ac-
cessible to will and Reason, and more amenable to future differentiation and adaptation.
A predominant mode of consciousness determines the type of personality. Individuals of
the thinking type (most of scientists) are most conscious of their faculty of Understanding,
which operates with a large number of highly differentiated concepts. People of the thinking
type could be relatively unconscious about their other psychic functions, and may not
clearly differentiate among sensing, feeling, and intuition (say, internal feelings, as different
from internal sensings and internal intuitions). Correspondingly, these less differentiated
functions will operate with fewer differentiated models. The psychic significance of undif-
ferentiated unconscious functions could be very high. Because they are fused with ancient
affective mechanisms, they might exercise a strong control over the psyche, overpowering
differentiated functions of recent origin. Most of the readers of this book, as well as
scientists in general, are of thinking psychological types, consciously differentiating among
a tremendous number of concepts and the relationships among them. We are much less
conscious about our emotions. This does not mean emotions have less influence over us,
just the opposite: less differentiated functions could be perceived as more “deep” and more
“genuine.” Jung goes to great length to demonstrate that the least differentiated experiences,
by being involved with ancient affective psychic structures, could have the greatest grip
over a person. This may lead to underappreciation of the most differentiated function and to
overappreciation of a more primitive one. This phenomenon complicates scientific studies
of consciousness, and, possibly, the lesser development of the science of emotions relative to
conceptual thinking might be related to scientists being more conscious about their thinking.
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Psychic experience has an especially high value if its conscious and unconscious aspects
are in agreement with each other. A mathematical description of this fact in MFT is given
as follows. A psychic experience is an excitation of an MFT–Kantian vortex involving
models-concepts of Understanding and emotional similarity-Judgment. Consider now an
incompletely differentiated model-concept, which is strongly connected to unconscious
affective systems, e.g., it models highly desirable objects (say, sex partners). Judgment
is responsible for recognizing objects that correspond to the model. Judgment is not an
“impartial” similarity measure, but is affected by the value of the object, especially for
poorly differentiated, highly desirable objects. Possibly two parallel aspects of Judgment
are involved: one differentiated and conscious, which measures the similarity between
the model and the object, and the other, less differentiated and unconscious, which is
affected mostly by the desirability of the object. When both aspects of Judgment are in
concert, the experience has a high value. An alternative situation, in which the uncon-
scious aspect overpowers the conscious one, is colloquially called “loss of judgment due
to affect.”

An ability to coordinate and harmonize the conscious and unconscious aspects of Judg-
ment is the essence of the emotional intellect. What are its mechanisms? The mechanisms of
the emotional intellect seem to be in differentiation and bringing closer to the consciousness
the affective, instinctual aspects of Judgment. Both Judgment and Understanding then
become more adaptive. On the one hand, the affective aspects of Judgment are modified
and harmonized with conscious and cultural aspects of models (instinctual desires are
made more conscious and more cultural). And on the other hand, conscious and cultural
requirements incorporated in the model-concept of the desired object are modified toward
better correspondence to the instinctive desires (cultural and conscious requirements are
modified to better meet our instinctual needs). In this process both our feelings and our
internal representations are adapted and become more adequate.

Compared to differentiated thinking (Understanding), we understand much less about
the processes of differentiation of other modalities of consciousness, such as intuition.
Hopefully, the mathematics of emotional intellect described in Chapter 10 will lead to
progress in this direction. I see ways toward developing mathematical methods of modeling
the higher emotions in Kantian philosophy, in particular, in the Kantian discovery of the
indirect nature of the aesthetical perception. Before Kant, beauty had been considered to be
directly given to our feelings through a special gift of aesthetic sensitivity. Kant discovered
the complex nature of aesthetic sensitivity and related it to the perception of potential
for increasing knowledge. Sometimes enjoyment of beauty requires time and preparatory
intellectual effort. For example, beauty of a scientific theory requires knowledge of the
specific area of science. Yet even colloquial beauty or aesthetic judgment, according to Kant,
is intimately related to an ability for learning. A mathematical theory of higher emotions
can be discovered only by analyzing their specific a priori nature within the overall structure
of the intelligence. Following Kant, beautiful is truth, perceived in estimative categories of
the emotional. Or, in other words, beauty is an axiological existence of the category “truth.”
Truth here refers to the adequacy of internal representations.

Perception of beauty is a mechanism of evolution, adaptation, and survival. As with
any other survival mechanism, there are mechanisms of camouflage, counterfeiting, and
countercounterfeiting. This is especially true in sexual relationships (which is reflected in
proverbs like this one: “the light is on, but nobody is home”).
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12.1.6 Why Is Consciousness Needed?

Why is there consciousness? Why would a feature such as consciousness appear in the
process of evolution? The answer to this question seems clear: consciousness directs the
will and results in a better adaptation. In simple situations, when only minimal adaptation
is required, instinct alone is sufficient, and unconscious processes can efficiently allocate
resources and will. However, in complex situations, when adaptation is complicated, various
instincts might come to contradictions. Undifferentiated functions result in ambivalence
and ambitendency; every position entails its own negation, leading to an inhibition. This
inhibition cannot be resolved by an unconscious that does not differentiate among alterna-
tives. Direction is impossible without differentiation. Consciousness is needed to resolve
an instinctual impasse by suppressing some processes and allocating power to others. By
differentiating alternatives, consciousness can direct a psychological function to a goal.

Totality and undividedness of consciousness are its most important adaptive properties
needed to concentrate power on the most important goal at every moment. This is illustrated
by clinical cases of divided consciousness and multiple personalities, resulting in maladap-
tation up to a complete loss of functionality. Simple consciousness needs only to operate
with relatively few concepts. More and more differentiation is needed to be able to select
more and more specific goals (by selective inhibition and excitation). The scientific quest
is to explain the emergence of consciousness from unconscious in the process of evolution.
Consciousness has emerged, driven by unconscious urges for improved adaptation. And
the goal of consciousness is to improve understanding of what is not conscious, inside and
outside of the psyche. Thus, the cause and the end of consciousness are to be found in the
unconscious; it contains the causal mechanisms and goals of consciousness.

The above analysis of causes and goals of consciousness leads to an opposing question:
why is unconscious needed? In case of living beings, including humans, it seems, the answer
is simple: the unconscious is a product of our development from lower organizational
forms of life and inanimate matter. And our evolution and personal goals are to increase
consciousness. But is there a value of the unconscious for artificial systems?

12.1.7 Collective and Individual Consciousness

Conscious aspects of internal models are more adaptive than unconscious ones and they are
more affected by personal experience, upbringing, and culture. In particular, consciousness
leads to the development of the individual personality, that is, to the development and
adaptation of internal models that differentiate people from their environment in many
different ways, while preserving the personal identity by a synthesis of differentiated
models into a coherent conscious whole. Jung called this process the individuation and
considered it to be the most important task of personal spiritual development. Most of
our conscious models are collective in nature in that they are conditioned by culture and
only their relatively minor aspects are adaptive objects of the free will. I have long been
puzzled by Descartes’ error, by his denial of the soul to animals. Possibly, he had in mind
the individual consciousness. In this, he would seem to be correct: individual consciousness
is a human achievement; it is a historically new and still rare phenomenon among humans.

All of us believe that we have individual consciousness. To what extent is this the
truth and to what extent is this our fancy? Before answering these questions we should



12.1 Phenomenology of Consciousness 401

evaluate the diverse nature of collective or cultural types of consciousness. In particular,
the culture promotes both individualistic and communal aspects of consciousness. There
are significant differences among national and ethnic cultures in this regard. For example,
North American culture promotes individualistic values to a larger extent than many other
cultures. Latino-American or Russian cultures emphasize communal values to a much
greater extent. Differences among cultures lead to differences in the predominant types of
collective models of consciousness. Still, the development of the individual consciousness
is a personal task.

The individualistic type of the North American collective consciousness should not be
mistaken for the individual consciousness. And, it is not obvious which type of collective
consciousness better prepares individuals for the development of the individual conscious-
ness. Many immigrants find that American individualism exerts a tremendously liberating
effect on the development of individual consciousness. But many Americans find the very
same individualism to be tremendously stifling and feel liberated when abroad in a country
with a predominantly communal consciousness. When the culture “imposes” a demand to
be “an individual” on a child or a young person who is not ready yet for the task or who
does not yet have individual consciousness, the result is often psychological compensation.
The psychic energy is withdrawn from the too difficult task of building the individual
consciousness and instead is redirected at finding communal values within the individualistic
collective consciousness. Contrary to this, communal collective consciousness and closely
knit extended families provide a nurturing element much needed for the development of
individual consciousness, even while the communal values strongly discourage its devel-
opment. Therefore, the development of individual consciousness remains a daring task in
any society, and could be performed only by an individual.

Jaynes analyzed historical evidence for the emergence of individual consciousness.
By studying historical events, Vedaic, Greek, and Babylonian epics, and the Bible, he
came to the conclusion that the individual consciousness is a recent phenomenon, the
emergence of which can be dated approximately around the second millennium BC. In-
dividual consciousness is a learning process, the emergence of which paralleled cataclysms
and catastrophes that interrupted a “hallucinatory mentality,” or what I call early forms
of collective consciousness. Archeological evidence suggests that about 9000 BC, rather
abruptly, agriculture appeared in several places throughout the Near East, and during the
next several thousand years, agriculture spread throughout the Near East, Anatolia, and
Egypt. The great kingdoms of Ur and Egypt and their complex agricultural civilizations
were based, according to Jaynes, on the “hallucinatory mentality” of the “bicameral mind,”
which perceived a priori collective concepts as direct communications from gods (Jaynes
hypothesis of the “bicameral mind” refers to the concepts and thoughts generated in one
hemisphere being perceived as god-given imperatives by the other). The stability of great
kingdoms was supported by and was adequate for this type of consciousness. It is exempli-
fied in the carving on the stele dated about 1750 BC that shows Hammurabi, a great king of
Babylon, staying next to his god Marduk and attentively listening. The stele contains 282
god pronouncements or laws.

A stone altar of Tukulti-Ninurta I, king of Assyria, built just a few centuries later,
about 1230 BC, shows a dramatically different picture. Tukulti is shown twice, first as he
approaches the throne of his god, and second, as he kneels before the god’s throne. No
king before in history was ever shown kneeling. But what is even more remarkable, the
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throne of god is empty. Jaynes’ interpretation is that although the collective consciousness
of Hammurabi reliably took the images and thoughts in its mind as communications from his
god, the emerging subjectivity of Tukulti’s consciousness destroyed this absolute belief in
god, and “emptied” the god’s throne. I would add that although Hammurabi’s achievement
was to formulate clearly and consciously what was previously unconscious and fuzzy in
the collective consciousness, the more differentiated consciousness of Tukulti offers him
more choices, so that he is uncertain, and he has to choose among his options.

Apparently, what happened in the mind of Tukulti became a collective condition:
individuals in the society became conscious about multiple choices in their consciousness,
and no longer obeyed the ancient traditions automatically. The law and order dwindled,
and old methods of governing people became inadequate. Tukulti is the first of the cruel
Assyrian tyrants, who conquered and ruled with unprecedented terror. His soldiers also had
no taboos in their consciousness against massive cruelty. About the same time, between
1470 and 1230 BC, a volcanic eruption or a series of eruptions destroyed a large part of
Aegean culture, possibly affecting the whole of the Mediterranean, Cyprus, the Nile delta,
and the coast of Israel. This set off mass migrations and invasions destroying Hittite and
Mycenean empires, and sending secondary waves of refugees and invaders throughout the
Near East. The cause and effect relationship between geological cataclysms and emergence
of consciousness, according to Jaynes, is not simple: some global cataclysms may speed up
a need for the adaptation of consciousness; at the same time, changes in the paradigm of
consciousness led to catastrophes destroying cultures and causing dislocations of peoples.
Similar effects are known to have occured in America. Mayan civilizations periodically
broke down, when quite abruptly the population left cities and went back into tribal living
in jungles, sometimes with no trace of destruction or wars. In this century, an abrupt change
of the consciousness paradigm occurred in Germany between 1933 and 1945 and, possibly,
a change of consciousness paradigm is now occurring in Russia.

Maimonides, in his Guide for the Perplexed, analyzes the relationship between col-
lective and individual consciousness. He was asked by his student, why did God, on the
one hand, give Adam mind and free will, and on the other hand, forbid him to eat of
the tree of knowledge? Did not God want Adam to use his mind? Before answering this
question, Maimonides goes through three pages, denouncing his student for asking the
most complex question of all, the question over which all the best minds of the entire
humankind were raking their brains from time immemorial. And you dare to ask this
question, between sex and morning coffee, without being prepared or being ready to
comprehend the answer, continues the great theologist, to dissuade an unprepared one
from reading the answer. And then he gives the answer for the one who is ready for it. God,
according to Maimonides, gave Adam mind and free will to determine for himself what is
good and what is bad. Instead, Adam took a “shortcut,” he ate from the tree of knowledge of
good and evil, and got ready-made rules of morals; he acquired collective consciousness. In
conclusion, Maimonides explains that Adam’s story describes our predicament. Although
God expects us to think for ourselves, we cannot fulfill this expectation just by throwing
away the rules of morals. Being the descendants of Adam, we acquired the collective
consciousness, and our ability to “think for ourselves” rather than following moral rules
is limited; developing individual consciousness is very difficult. The relationship between
individual and collective consciousness as explained by Maimonides is essentially the same
as the one given by Nietzsche.
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What is the relationship between free will and the individual consciousness? Even if
Ego is a product of culture and upbringing to a larger extent than of a personal free choice,
it seems that free will exists within the conscious part of Ego. The individual consciousness
is an ability to modify the structure of Ego by expanding the conscious parts of the internal
models. It is “the icing on the cake,” the highest achievement of human creativity.

12.1.8 Consciousness, Time, and Space

Consciousness if often described as inseparable from the perception of time. James (1890)
described consciousness as “a stream flowing smoothly along, now eddying around, then
flowing smoothly again.” But this smoothness of flow might not always have been there.
Contemporary perception of time as ordered and a smooth flow is an evolved feature of our
psyche and, more specifically, consciousness. Various evidence points toward contempora-
neous evolution of consciousness and time perception.

According to Jungian analysis, at the depth of unconscious are timeless archetypes.3

Although figuratively calling them primordial “images,” he emphasizes that they have
no spatial structure either. Ancient archetype-models are atemporaneous and nonspatial;
they possess no temporal or spatial characteristics, which possibly indicates that they
have appeared before the perception of time and space. This corresponds to the Kantian
conclusion that the perception of time and space cannot be a priori still a condition of
any experience. Although at first the Kantian statement seems contradictory, the con-
tradiction is resolved by considering the emergence of consciousness and perception of
time as historically contemporaneous. The emergence of ordered time–space perception
might possibly be described mathematically by the emergent locally linear behavior in
globally nonlinear neural systems with competitive organization found by Grossberg. The
emergence of conceptions of time and space was studied by psychologists (Lèvy-Bruhl,
1910) and linguists (Whorf, 1936), who indicated that some primitive tribes perceive
time and space as locally ordered and unordered globally. In the region of space and
time where the tribe lives today, events are ordered in space and time; the notions of
today and tomorrow, up to the river and beyond the river, are clearly perceived and are
not mixed up; however events separated by several generations or occurring beyond far
mountains are not related by a continuous chain of causes and consequences, and their
interrelations in time and space are broken and unordered. The perception of space and
time characteristic of the primordial psyche, according to this interpretation, emerged
from the continuous flow of stimuli, first as locally ordered and locally linear, and later
as developed into globally ordered conceptions of time and space characteristic of the
historic consciousness. Such an interpretation assumes a relatively modern origin of our
contemporary a priori intuition of the globally ordered space and time, corresponding to a
gradual emergence of neural structures. This is consistent with Jaynes’ hypothesis of the
recent origin of consciousness.

A relationship between consciousness and space–time perception is also indicated by an
analysis of psychic processes during sleep. During rapid eye movement (REM) sleep eyes
move, indicating spatial perceptions, and dreams during REM sleep contain significant
conscious elements. During “deeper” non-REM sleep there are no eye movements (no
spatial perception) and much less conscious content is remembered when awakened during
non-REM sleep.
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Internal subjective time could be very different from external “real-time.” Especially
interesting is that when solving scientific problems the mind is conscious, but not necessarily
in space–time. Abstract scientific concepts are timeless and spaceless in their content (even
if about space and time). This points toward creativity being related to an interaction between
consciousness and the unconscious.

12.1.9 MFT and Searle Revisited

Let us summarize our discussion of the phenomenology of consciousness. Consciousness is
an awareness or perception of inward psychological facts, a subjective experience of sens-
ing, feelings, or thoughts. Consciousness directs the will and results in a better adaptation.
In complicated situations, various instincts might encounter contradictions. Consciousness
can resolve an instinctual impasse by suppressing some processes and allocating power to
others. By differentiating alternatives, consciousness can direct a psychological function
to a goal. Consciousness is a complicated differentiated phenomenon that is characterized
(very roughly) by three levels: undifferentiated awareness, collective consciousness, and
individual consciousness. Both collective and individual consciousness are characterized by
multiple modalities or types of consciousness, that at the top level includes sensing, feeling,
thinking, and intuition. Conscious parts of internal models are more differentiated, more
adaptive, more accessible to will and reason, and more amenable to future differentiation
and adaptation.

The following discussion is structured around questions and issues, which are empha-
sized by Searle in his books on mind (1980, 1992, 1997), as properties of consciousness
requiring scientific explanation. According to Searle, the crucial but least understood proper-
ties of consciousness include the relationships between consciousness and time and between
the social and individual elements of consciousness. According to our theory, consciousness
is due to a specific internal model called Ego, and properties of consciousness are to be
explained mathematically due to the properties of this model. Historical, linearly ordered
conscious time is a relatively recent property of the Ego-model. Older time-perception
mechanisms are related to various biological clocks (related, in turn, to metabolic rates of
various bodily systems) that influence time perception on a short scale of minutes, hours,
and days. On longer scales, especially on scales longer than an individual human life, the
original time perception was not ordered.

The relationship between collective and individual consciousness, according to Searle,
is the most neglected and puzzling topic. According to our analysis, the key toward under-
standing the roles of both types of consciousness is the differentiation between individual
consciousness and individualistic values in collective consciousness. Even though most of
us believe in possessing individual consciousness, the fact is that individual consciousness
is a very recent achievement historically and still a very rare phenomenon. Most of our
conscious models are collective in nature in that they are conditioned by culture and only
their relatively minor aspects are adaptive subjects of the free will. The development of
individual consciousness or individual personality is the result of adaptation of the conscious
aspects of collective internal models. This process combines differentiation of a person
from its environment in many different ways, while preserving the personal identity by
a synthesis of differentiated models into a coherent conscious whole. Jung called this
process individuation and considered it to be the most important task of personal spiritual
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development. Individual consciousness is the ability to modify the structure of Ego by
expanding the conscious parts of the internal models. It is related to free will and it is at the
frontline of what can be rationally explained and mathematically modeled today.

Let us discuss other properties of consciousness, which according to Searle have not
found scientific explanations in the past.

Unity. Conscious states are parts of a unified sequence and simultaneous events are per-
ceived as unified into a coherent picture.

Finite Modalities. Consciousness is manifested in a strictly limited number of modalities;
these include the five senses, bodily sensations, thinking, and feelings (emotions). These
two properties are related and I discuss them together. Searle’s unity is close to what Kant
called “the transcendental unity of apperception.” Again, this property is to be explained
by the structural properties of the Ego-model and the process of its adaptation to the
constantly changing world, in particular, the hierarchical organization and competition
among submodels.

Let us begin the analysis of the relevant structures of the Ego-model from its preceding
simpler forms. What is the initial state of consciousness: an undifferentiated unity (Jung)
or a “booming, buzzing confusion” (James)? Or let us take a step back in evolutionary
development and ask, what is the initial state of the preconscious psyche? Or let us move
back even further toward the evolution of sensory systems and perception. When building a
robot for a factory floor, why provide it with a sensor? Obviously, such an expensive thing
as a sensor is needed to achieve specific goals: to sense the environment with the purpose of
accomplishing specific tasks. Providing a robot with a sensor goes with an ability to utilize
sensory data. (Why have sensors otherwise? I’ll disregard a large number of expensive
government programs building sensors without provisions for processing data. General
Motors’ factory floor robots are built more sensibly.) Similarly, in the process of evolution,
sensory abilities emerge together with perception abilities. A natural evolution of sensory
abilities cannot result in a “booming, buzzing confusion,” but has to result in evolutionary
advantageous abilities for avoiding danger, attaining food, etc. Initial perception abilities
are limited to a few types of concept-objects (light–dark, warm–cold, edible–nonedible,
dangerous–attractive, etc.) and are directly “wired” to proper actions. When perception
functions evolve further, beyond immediate actions, it is through the development of
complex internal models that unify individual object-models into a unified and flexible
model of the world. Only at this point of possessing relatively complicated differentiated
internal models composed of a large number of submodels, can an intelligent system
experience a “booming, buzzing confusion,” if it faces an entirely new type of environment.
A primitive system is simply incapable of perceiving confusion: if its perceptions do not
correspond to reality, it just does not survive without experiencing confusion. When a baby
is born, it undergoes tremendous changes of environment, most likely without any conscious
confusion. The original state of consciousness is undifferentiated unity. It possesses a single
modality of primordial Self.

The initial unity of psyche limits the capabilities of an intelligent system, and further
development proceeds through differentiation of psychic functions or modalities. This is
true for robots as well as for biological systems, and this occurs in the process of evolution
as well as in the process of individual growth. Not only do the internal models acquire more
submodel-concepts, but the very nature of psychic functions differentiates. In particular,
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differentiation between Understanding and Judgment or between thinking and feeling
seems to be an important feature in the evolution of the animal kingdom and is crucial
for the development of the human mind. With the development of consciousness, it also
acquires this functional differentiation. About 2000 years ago humans became conscious
of this differentiation. Bringing multiple psychic modalities into consciousness promises
acceleration of the differentiation process and expansion of consciousness. Yet, 2000 years
is but a moment in the genetic evolution, and we should not be surprised that we are still
barely capable of consciously differentiating our own thoughts and feelings (if at all), and
that we rarely use this differentiation for the betterment of our lives.

It is clear now that finite modalities of consciousness are determined by those psychic
functions that reached consciousness. Consciousness is a recent phenomenon and many
different psychical functions have not yet reached the level of consciousness. Jung differ-
entiated four major modalities or functions of consciousness: thinking, feeling, intuition,
and sensing. I challenge the readers to analyze their consciousness and identify these four
modalities. It is a daring task! MFT provides the mathematical description of thinking and
feeling (as it relates to consciousness and higher mental abilities). There are no conceptual
difficulties in developing mathematical descriptions of “lower” feelings. But what is the
mathematics of intuition?

Intentionality. Intentionality is a property of referring to something else. Most conscious
states are directed at something; we are conscious of something, and this “of” points to the
intentionality of consciousness. In everyday life, when we hear an opinion we do not just
collate it in our memory and relate it to other opinions (like a pseudoscientist in a comedy);
this would not lead very far. We wish to know what the aims and intentions associated with
this opinion are. Often, we perceive the intent of what is said better then specific words,
even if the words are chosen to disguise the intent behind causal reasoning. The desire to
know and the ability to perceive the goal indicate that in psyche, the final standpoint is
more important than the causal one. This intentionality of psyche was emphasized even by
Aristotle in his discussions of the end cause of the Forms of mind. The consciousness is
fundamentally intentional.

The intentional property of consciousness led many philosophers during the past
decades to believe that intentionality is a unique and most important characteristic of
consciousness: according to Searle (1992), only conscious beings could be intentional.
These recent attempts to interpret intentionality as uniquely characteristic of consciousness
seem misdirected. Intentionality is a fundamental property of our internal models: every
one of our internal models has evolved with the intent or purpose of recognizing a particular
type of signal (events, messages, concepts) and act accordingly (e.g., send a recognition
message to other parts of brain and other models, including motor-control models). The
first one to offer this explanation of the intentionality of mind was Aristotle, who argued
that intentional states should be explained through the a priori contents of mind. [He called
intentional states the “end causes of Forms” and he called a priori contents of mind the
“Formal causes,” that is the a priori properties of Forms (Metaphysics).]

Within a living system everything is intentional; intentionality is the property of life.
Also, every concept or object that could be recognized by an artificial intelligence system
is intentional: if it is recognized, it is always with the intent to accomplish something
(otherwise, the very concept of recognition is meaningless4). General concepts belong to



12.1 Phenomenology of Consciousness 407

the realm of pure spirit, a part of mind that is mathematically described in MFT by internal
models. Specific individual objects belong not to the outer world of matter or manifold,
but to the phenomenal world, the realm of interaction between the mind and matter. Thus,
every object is intentional. It is important to differentiate this statement from a philosophical
position of pan-psychism, which assumes that the matter itself, in all its forms, has a degree
of psyche or spirit as its fundamental property. Pan-psychism does not really explain matter
or psyche. This is why Descartes exorcised spirit from the world of matter. To a significant
degree, pan-psychism is a result of failure to recognize the difference between the world of
matter (manifold) and the world of phenomena.

This analysis of intentionality of the phenomenal world is applicable to cultural phe-
nomena as well. Every cultural concept and every man-made object are intentional because
they emerged, or were created (consciously or otherwise) with a specific intent (or pur-
pose). The intentionality of objects has two aspects: their “high intellectual intention” is to
correspond to the world (to be efficient for the analysis of the manifold and ultimately for
survival) and their “low intellectual intention” is to be used for the intended utilitarian or
instinctive purposes [e.g., a table in my kitchen is not just a thing in itself, but an intentional
concept-object; its “high intellectual intention” is to recognize the table as a part of material
world and use it for building a coherent picture of the world in my mind (my internal model);
and its “low intellectual intention” is to use the table-matter appropriately for sitting and
eating, etc.; in this regard the table is an external representation of the concept “table”].

Is there any specific relationship between consciousness and intentionality? If anything,
it is just the opposite of Searle’s hypothesis of one implying the other. Affective, subcon-
scious, “low-intellectual-level” emotional responses are concerned with immediate survival
and utilitarian goals, and therefore are intentional in a most straightforward way. A high-
level consciousness is not concerned with immediate survival, but with the overall picture
of the world, with knowledge and beauty; it can afford to be “impartial,” abstract, and less
intentional than the rest of the psyche. A mathematical description of this aspect of inten-
tionality is given in MFT by the structure of purposes of its submodels, the intent of which
is learning and adaptivity toward maximizing the total similarity between the world and its
model. The highest creative aspect of individual consciousness and the ability to perceive
the beautiful and sublime are intentional without any specific, lower level utilitarian goal;
they are intentional toward self-realization, toward the future self beyond the current self.

Subjective Feelings. Subjective feelings, or what philosophers call qualia, “what it feels
like,” according to Searle are more than anything else responsible for the philosophical
puzzlement of consciousness. Subjective feelings accompanying perception should be
analyzed within a context of a two-way interaction between individual sensations and
the internal models. The model, due to its adaptive property, includes inherited structures,
individual development, and the remains of the entire accumulated experience up to the
moment of a particular individual perception. The properties of qualia become even more
complicated when one accounts for conscious as well as unconscious aspects of the internal
model. The subjectivity of qualia thus does not seem to be a mystery beyond mathematical
description, just the opposite; within the theory of consciousness based on adaptive internal
model, subjectivity is a natural property within the mathematical theory.

Structuredness of Conscious Experience. We are conscious of specific objects, events, and
concepts, and not of undifferentiated shapes etc. We are conscious of our internal model (or
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more accurately of a portion of it). We are conscious of the manifold of the outer world only
through the corresponding concept (model) in our mind. But we are not conscious of the
outer world in any “direct” way. The subjects of our perceptions are phenomena, which are
our submodels in their interaction with the world. And our consciousness is even removed
from the “raw perceptions”: we are conscious most of the time only of the “high-level”
submodels, when they are combined in our mind into a unified model of the world after
several layers of processing. This is best illustrated in the so-called “blind vision,” when
a person sees without being conscious of it. Complicated multilevel processing of visual
perceptions before they reach consciousness is well documented (Zeki, 1996).

The structure of consciousness determined by the internal model explains several
features discussed by Searle.

Familiarity. We are conscious of objects (events, etc.) as specific types of familiar cat-
egories. Consciousness of something is consciousness of it as something familiar: “the
categories have to exist prior to the experience, because they are the conditions of possibil-
ities of having just these experiences.” Since we are conscious of the internal model, which
is in our mind in some a priori form before perception, we cannot perceive or be conscious
of “complete novelty.”

Overflow. Conscious states refer beyond their immediate content. This is because the
submodels used to perceive the immediate contents are interrelated with a large number of
other submodels of the internal model. And the submodels reach consciousness only within
the unified internal model, which always refers beyond the immediate content. This property
is related to the functioning of attention, presence of the center, periphery, and boundary con-
ditions of consciousness. A lot of things are at the periphery of consciousness and relatively
few are at the center. The very periphery of consciousness is situated within the boundaries
(such as date, year, your name, country, etc.), which are important and easily accessible to
consciousness, even though they are not necessarily conscious at every moment.

We have discussed a number of properties of consciousness that were identified by
Searle as requiring scientific explanation, and we discussed the explanation of these prop-
erties within the modeling field theory. This discussion is a step toward a future detailed
mathematical description of consciousness, toward creating robots with the elements of
consciousness. I would like to conclude this discussion by commenting on what Searle
calls the pleasure/unpleasure dimension of conscious states. A mathematical explanation
for the most of the above properties of consciousness is due to the properties of the internal
models. The pleasure/unpleasure dimension (as far as it refers to something beyond the
“lower emotions” and satisfaction of physiologically related instincts) is due to the faculty
of judgment. Every minute conscious perception of the objects in the outer world as well as
internal thoughts is due to the ability of judgment to recognize that a subset of the manifold
corresponds to a particular concept-submodel. This correspondence causes the pleasure
dimension of consciousness, and absence of the correspondence causes unpleasure or pain.
In a hierarchically organized consciousness, thoughts and concepts of mind at every level
are “perceived” by the next higher level in a similar way: through the judgment that a lower
level concept is an instant of a higher level concept. To the extent that our consciousness
is not hierarchical but also heterarchical, our discussion equally refers to parallel modules
of the internal model as well as to the lower higher levels. This provides a mathematical
foundation for describing pleasure/unpleasure as a ubiquitous part of conscious states.
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12.1.10 Neural Structures of Consciousness

12.1.10.1 Higher Brain Functions
The anatomy of the brain reveals a mechanism of tremendous complexity. An architectural
organization of the brain is not very ordered: it is a heterarchy of various modules, evolved
through hundreds of millions of years from disparate sources and for disparate purposes.
Within some specialized areas or modules of the brain there is a significant degree of order,
e.g., the retina or primary visual cortex exhibits significant architectural coherency. Many
individual brain modules exhibit ordered hierarchical organization. But even within such
hierarchically organized modules, information processing is not strictly hierarchical; loops
of feedback connections are often present and are important for information processing, as
revealed by psychological experiments. Therefore, ordered perception is not entirely due
to ordered architecture, but to internal models, organizing the information. Even more so,
higher psychic functions of more recent origins, such as differentiated consciousness and
conscious control of emotions, might not necessarily be due to a highly ordered architecture,
but rather to the remarkable adaptation capabilities of the mind. The adaptation capabilities
are due to specific properties of a priori models. The a priori models are encoded in the brain
(some are hardwired, others are learned), but this encoding is not necessarily related to the
global brain architecture in a straightforward way. So the order of our mind processes could
have more of a psychological nature, related to fine details of adaptive neural connections,
rather than to the global architecture of the brain.

The cerebral cortex is a most distinctively human part of the brain, in that the area
and complexity of the cerebral cortex progress from lower to higher animals. The area of
a human cortex is about 2500 cm2; its volume is about 300 cm3 and it contains about 109

neurons. Individual neurons may have up to hundreds of thousands synapses. The cerebral
cortex of humans is exceeded by that of the whales,5 but the human cortex is probably the
most differentiated in terms of the number of distinct subareas. The most recent evolutionary
part of the cortex is called the neocortex, and it is present in all mammals. In submammalian
brains, some parts of the cortex are present, but neocortex is very small if present at all.
The human neocortex is responsible for higher brain functions. This is known from large
amounts of various types of data, such as electroencephalograms and magnetic resonance
imaging data collected in conjunction with psychological experiments, studies of patients
with damaged brains, etc. Specific functions have been identified with specific areas of the
cortex, such as several functionally different areas of visual cortex, speech production and
speech understanding areas, etc.

12.1.10.2 Seat of Consciousness
Where in the brain is the seat of consciousness? Is there a specific single module responsible
for consciousness? A candidate area often considered in this regard is the nucleus reticularis
thalami (NRT), a thin layer of cells lying around the thalamus along its surface. The NRT
and thalamus are ancient parts of the brain, located next to the brainstem. The thalamus is
interposed between the brainstem and forebrain; it is a “relay station” that relays sensory and
motor information to the cortex. In the waking state, it transmits incoming messages with
high fidelity. In deep sleep, the transmission is blocked. NRT neurons do not directly send
their axons to the cortex, but virtually all connections between the thalamus and cortex
pass through the NRT and have synaptic contacts with it. In this way the NRT controls
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interactions between sensory systems and cerebral cortex. The NRT is the major site of
attentional control over cortical activity. Damage to NRT leads to loss of consciousness.
These as well as other more detailed considerations led many researchers to implicate NRT
in consciousness.

Involvement of ancient parts of the brain in consciousness supports the hypothesis that
consciousness is of an ancient origin. This corresponds to a layperson’s perception that
among mammals and possibly even lower animals we can easily observe the difference
between conscious and unconscious states. In the past, our humanness was often identified
with consciousness without differentiated analysis of what it is, and the issue of the recent or
ancient origin of consciousness was a subject of many erroneous opinions and conclusions.
In view of the preceding discussion in this chapter of the various levels of consciousness,
it should be clear that human consciousness is very different from the simple awareness
that we perceive in lower animals. According to the modeling field theory, consciousness is
the consciousness about the internal model, so the difference in levels of consciousness is
explained mathematically, in part, by differences in the complexity of internal models.

Taylor (1994a,b) explains consciousness as a winner-takes-all competition among
cortical centers. The mechanism is the inhibitory connections in NRT. According to Tay-
lor, consciousness resides in an NRT–thalamus–cortex system of neuronal connections.
Episodic memories may affect consciousness through connections between hippocampus
(containing memories) and thalamus. Taylor postulates a winner-takes-all mechanism in
order to explain uniqueness, indivisibility, and concentration of consciousness. Although
winner-takes-all explains conscious allocation of attention, it does not explain the mainte-
nance of the coherent picture of the world and self characteristic of consciousness. A more
complicated mechanism is needed, such as competition within a heterohierarchical model
structure of MFT.

Other brain regions involved in consciousness include the hippocampus, which is
responsible for memory formation and processes all inputs from sensory and association
cortex for memory storage, and the amygdala, which is involved in emotions (feelings of
rewards and punishments) and is responsible for affective evaluation of sensory stimuli.
The frontal lobes coordinate selective attention activation of the hippocampal and amyg-
dalar systems.

The amygdala has an important role in integration and control of emotional behavior.
It receives multimodal sensory inputs from both external and internal environments and
is involved with integrating them together with previous experience and proper emo-
tional response. Through extensive axonal projections to many brain parts the amygdala
controls emotional behavior. The amygdaloid complex is a specialized cortical region
located in the temporal lobe. It is closely related to the olfactory complex and receives
substantial inputs from all sensory system. It has extensive axonal projections to many
brain parts, including the thalamus, brainstem, hippocampal formation, prefrontal cortex,
and several other cortical areas. It is involved in cognitive functions, including mem-
ory processing.

The hippocampal formation plays an important role in formation and storage of mem-
ory, most likely together with several other brain regions. Together with the amygdala, it
may be involved in storing memories with emotional content. It receives input from all
major sensory areas of the neocortex through the entorhinal cortex, which can be thought
of as a summary of the environmental information.
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The amygdala and hippocampus are parts of the limbic system, which is involved
in elaboration and expression of emotions. It is a phylogenetically ancient ring of medial
cortex, including olfactory cortex, hippocampal formation, and several subcortical regions,
which share direct cortical connections, including the amygdala and parts of the thalamus.
The limbic system forms a highly interconnected structure, lying between the neocortical
association region and hypothalamus (an ancient part of thalamus). It may serve as the
gateway for neocortical cognitive influences on hypothalamic mechanisms of motivation
and emotion.

Levine places the executive function associated with high-level consciousness in the
prefrontal cortex. The executive function coordinates and integrates plans of actions, sensory
signals from the environment, and motivational signals from the organism. It performs
cognitive–emotional integration, links events through time, and joins working memory
representations. It is not needed for routine sensorimotor tasks or ordinary memory (e.g.,
conscious perceptions take longer than automatic reaction time). With unambiguous signals
to perform specific actions, the executive is inactive. When signals are weak or ambiguous,
the executive coordinates lower level systems. Current internal states, mediated in part by
the amygdala (that adds emotional coloring), are combined in the executive with the current
environment, mediated in part by the hippocampus (memories), in order to guide actions. In
patients with prefrontal damage, affect could be as strong as in a normal person, while not
guiding actions. Also, normal restraints on emotional expression could be impaired. This
indicates that the prefrontal cortex is involved in higher level, possibly conscious control
over emotions. Damage to the prefrontal cortex impairs flexibility of adaptation, even though
patients with such damage perform some specific learning tasks as well as normals.

12.1.10.3 Kant–MFT Neural Circuits
Let us consider candidate brain areas containing Kant–MFT-type neural circuits. A detailed
investigation of this topic would be a subject of future research and a separate book. Here, I
just briefly list candidate areas without going into detail. It is important to keep in mind dur-
ing the following discussion that cortex, possibly, contains “copies” of subcortical regions,
so that functions of ancient brain areas can be modified and influenced by higher brain
functions located in the cortex. Internal models (Understanding) are first associated with
memories. There are several types of memories: episodic, short-term memory, long-term
memory, working memory, explicit declarative memory, and implicit procedural memory.
The structures involved in memory formation are the cerebellum, hippocampus, amygdala,
and cerebral cortex. The cerebellum is involved in learning and storing motor-control
memories. These memories are considered to be implicit, procedural, and nonaccessible
to consciousness directly. Also, skill memories are located in the frontal lobe/basal ganglia.
Explicit, accessible to consciousness long-term memories are associated with the hippocam-
pal complex. Language production and understanding models are located correspondingly
in Broca’s and Wernicke’s areas of the cortex (both are in the left hemisphere in most people).
It is interesting that these areas affect both spoken and written language in a similar way,
so that the models are linguistic, rather than speech models.

Similarity measures (Judgment) seem first associated with the amygdalar and other
limbic systems responsible for emotions, and possibly with other cortical regions. Kant–
MFT adaptive symbol-formation processes related to visual recognition, learning, and
eye movements (visually initiated motor sequences) are located in frontal eye fields and
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supplementary eye fields that are located in proximity to the supplementary motor cor-
tex. According to Levine (1996), in making choices, “both rational biases through the
hippocampal-dorsolateral system (models, memories, Understanding) and emotional biases
through the orbital-amygdalar system (similarity, Judgment) are more likely to operate
simultaneously in real time, and both have conscious and unconscious components. Also,
unconscious effects can influence the processing done by the conscious system, and vice
versa.” It is interesting to mention that there is a synchrony of neural firing associated with
conscious perceptions; it might indicate that similarity measures of the conscious aspects
of models, ll(n|k) and f (k|n), are encoded in the brain by the degree of synchronicity of
the n-signals (data, input) and k-signals (internal models).

12.1.10.4 Emotions and Consciousness
Conscious control over emotions is limited by the architecture of the brain structures
implicated in emotions and consciousness. NRT is the major site of attentional control
over cortical activity implicated in high-level consciousness. But NRT does not have a
similar influence over the limbic system, which is implicated in emotions. The limbic
structures (amygdala and Papez circuit) project their axons on the thalamus, which in turn
projects on NRT, giving an “emotional color” to consciousness. But there is no direct return
connections from the NRT to the limbic system. High-level conscious control over emotions
may be effected in the prefrontal cortex, which integrates lower level systems and seems to
contain “copies” of subcortical circuits. There are strong reciprocal connections between
the orbital region of the prefrontal cortex and amygdala. Functions of the prefrontal circuits
and connections are not sufficiently known and remain the subject of speculation. The fact
that high-level conscious control over emotions is difficult for many people and that it could
be learned supports the hypothesis that it is of a relatively recent origin and, thus, located
in recent regions of the brain, that is in the cortex.

12.2 PHYSICS OF SPIRITUAL SUBSTANCE: FUTURE DIRECTIONS

12.2.1 Path to Understanding

The way toward understanding, in general, is through the cycles of differentiation and
synthesis. Differentiation of our psychic processes into thinking and feeling, in particular,
is a great discovery facilitating understanding of mind. Origins of this differentiation could
be traced back more than 1800 years. One of the first descriptions of human psychological
types was given by Galen (II AD). He described the famous classification of human
psychological types in four temperaments: the sanguine, the phlegmatic, the choleric, and
the melancholic. Using a more standard psychological terminology of today, temperament is
a degree of affectivity or emotionality. This classification, which does not recognize thinking
as different from emotions, has persisted for almost 2000 years, despite the fact that the
differentiation between thinking and emotional types can be traced to Gnostic psychology
contemporary to Galen. Gnostic psychology described three psychic types: pneumatikoi,
psychikoi, and hylikoi, which could be related to thinking, feeling, and sensing. Affectivity
is a psychological characteristics, which is most easily perceived from the outside. Other
psychological functions are more difficult to perceive and for many, they are still barely
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perceived subtleties. Notwithstanding, the affective side of the personality is considered
today as secondary, as in: “I can not be held responsible for YY, because I did YY in a state
of affect.” Thus, even though not without ambivalence, we identify ourselves primarily
with consciousness and free will, which are mostly associated with thinking.

On the one hand the process of differentiation between thinking and emotion is still
in progress and not quite completed at the individual level. On the other hand, at the
level of collective consciousness, in the western cultural tradition, this differentiation for
a long time was perceived as an opposition between thinking and feeling. Often, we tend
to forget that this opposition is a highly abstract, refined, top-level view of our psyche.
Actual human processes of intellection are complicated interwoven interactions, vortices
of multiple neural processes, involving various parts of the brain and various conscious,
unconscious, and instinctual levels. Synthesis of differentiated psychic functions with the
goal to understand our psyche as a whole is of a relatively recent origin.

The path of differentiation and synthesis is followed by philosophers and researchers
of the mind. Aristotle, Kant, Jung, and other philosophers analyzed our intellectual and
psychic processes by differentiating them into a number of differentiated concepts. And
their attempts to understand the intellect in its wholeness is a process of synthesis following
the differentiation. In particular, Aristotelian logic is one highly differentiated aspect of
our mind. But a historic view of rationality as limited to Aristotelian–Gödelian logic is
too narrow and is being rejected today. In the process of synthesis, a new understanding
of rationality emerges as a hierarchical goal-directed functioning, which involves internal
and external actions: actions within the mind of an intelligent system and into the outside
world. And actions require an estimative functions, that is emotions. Thus, rationality has to
include emotions. This understanding, initiated by Kant, reemerges today concurrently in
multiple fields dealing with phenomena of intelligence: in philosophy, cognitive sciences,
art and art criticism, education, mathematics, and engineering. Chapter 10 described the
mathematical theory of MFT combining understanding with emotions.

Physical understanding is a specific intuition about the world. Possibly, this is what
Newton meant when he said that he does not invent hypothesis about the world, but
he knows how the world is made up. Contemporary physics is mostly concerned with
the external world. But it was not always this way. Newton biographers indicate that he
was disappointed that his physics was limited only to the external material world. During
the nineteenth century, great physicists (including Humboldt and Maxwell) explored the
physics of the inner world, however, the necessary mathematics of nonlinear, nonlocal
field theory did not exist (Grossberg). Ours is a fascinating time of making of the physics
of the inner world, and more generally, the physics of spiritual substance. A step toward
physical understanding of the intellect including its conscious and emotional aspects is
attempted in this book. Needless to say, only a preliminary sketch of some aspects of a
future theory is possible at this time. Difficulties along this way are not less than those
faced by Newton, who needed to develop both physical intuition and the mathematical
apparatus to explain the data collected by Copernicus and other astronomers. The physical
theory of spiritual substance, which encompasses consciousness and emotions, has to
develop its intuition, mathematics, and the data. The additional difficulty is related to the
nature of data: although everyone has an immediate intuition about consciousness and
emotions, there is a widespread misunderstanding in scientific circles about the nature of
these data.
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A level of physical idealization should be appropriately chosen: if Newton started with
quantum properties of space, we might still not have a theory of gravity. Were he not aware
of the astronomers’ observations, he would not have come up with the gravitation theory
either. Today, the challenge is in selecting a proper level of physical idealization in the ocean
of neurophysiological and psychological data, which is still grossly incomplete for creating
a unified theory of mind and brain. Simplifications and idealizations are necessary for a
preliminary exploration of such awide subject. Study ofmind proceeds today atmany levels
of physical idealization: for example, Grossberg emphasizes ties between physical intuition
and mathematical modeling of neural structures. My analysis emphasizes ties between
physical intuition and mathematical modeling of philosophical conceptions of mind.

12.2.2 Physical Nature of Symbol and the Emergence of
Consciousness

Cosmogonic myths, according to Jung, are symbols of the coming of differentiated con-
sciousness (Aion, p. 148). The consciousness was emerging in the process of ordering the
percepts out of their original unordered chaos. This explains why original myths describe
creation of ordered cosmos out of chaos. The ordering had to be achieved based only onwhat
was “available” to the psyche, or by “analogies” with previously established more primitive
a priori models, archetypes of Mother, Father, archetypal family relationships, etc. The
origin of these archetypal models goes back to mechanisms of imprinting observed today
in animal’s newborns and disappears in the history of evolution. At some point in history,
our ancestors started using these archetypal models for differentiation and organization of
perceptions about the outer world on a more abstract level than that of animal psyche.

The vortexes of interacting archetype-models and percepts that appeared in the ancient
psyche are ancient symbols, traces of which had been later recorded in ancient myths. The
emergence of individual differentiated consciousness, according to Jaynes, occurred during
the second millennia BC. Collective differentiated consciousness, according to Jaynes, was
developed from about the ninth to third millennia BC. By this time, primordial archetypes
existed for millions to hundreds of millions of years, and became “hardwired” genetically
inherited a priori models that made psyche possible.

The process of emergence of differentiated consciousness has been traced in an-
thropological research comparing consciousness among peoples and cultures. Levy-Bruhl
describes a psychic phenomena observed in primitive peoples that he called participation
mystique. It is a psychological connection of a person with an object, in which subjects
cannot clearly distinguish themself from the object. This partial identity with an object is of
an a priori origin and is a property of undifferentiated consciousness. Participationmystique
is a vestige of this primitive state of psyche.Although itwas first observed among primitives,
it occurs frequently among civilized peoples. Identification with an object impairs cognition
and interferes with adaptation and survival. In this regard Jung quotes a case (observed in
a primitive tribe) of a father killing his beloved young son when in a rage over a failed
fishing trip. We do not have to live among primitive tribes to observe this type behavior. It
is unfortunately still too common among civilized peoples.

Identification with an object in the realm of affect could be especially devastating,
but even less complete identification at the level of concepts interferes with cognition.
Adaptivity requires development of the differentiated consciousness and this is achieved
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through symbol. In psychological terms, symbol “draws libido away from the object,
devalues it, and bestows the surplus libido on the subject.” In mathematical terms, symbol
is a loop of interactions among percepts-cognitions, internal models, and feelings. Symbol
results in adaptation of the internal model, which becomes more differentiated, and, in turn,
leads to a more differentiated and beneficial direction of psychic energy.

This basic nature of symbol as a process of differentiation and adaptation is similar
in everyday perception and in the process of evolution of consciousness. In everyday
perception, the amount of adaptation is relatively small and a symbol-process quickly
converges to a definite conscious concept-sign (leading to a behavioral or mental response in
terms of previously learned concepts). In the historical evolution of consciousness leading to
changes of cultural paradigms, symbol-processes may persist for thousands of years, which
requires cultural, external representations of models. The symbol-process persists through
cycles of internalization and projection by many individuals over millennia. We hypoth-
esize that similar symbol processes sustained over much longer periods lead to changes
of genetically inherited archetypes. The development of the physical theory of genetic
evolution of consciousness would require verification of this hypothesis, clarification of
the nature of interaction of MFT loops with genetic evolution, and further development of
concepts of evolution.

12.2.3 Nature of Free Will and Creativity

12.2.3.1 Cat Named Schopenhauer
People who love cats are not surprised to hear that some cats are geniuses. I do not belong to
this group of people by birth. I am convinced that people are endowed with more intellectual
abilities than cats. But Schopenhauer surprised me and made me think again about the nature
of the consciousness and creativity. He was a neighbor’s cat, who at some point in his life
decided to come live with us. It was a surprising decision, particularly because he was
admired in his own home by his human masters as well as by his older dog-friend who
brought him up and took good care of him. And because, as mentioned above, I am not a
natural lover of cats, so he was not universally welcome at our home. But he made me like
him. How did he do it?—I cannot explain. Why did he come to live with us? For a while,
Schopenhauer was going back and forth between his old home and ours. His owner was
asking my wife what kind of food we buy for him etc. and was trying to lure him back
in every way. To this day I think that he came to us because he enjoyed the philosophical
atmosphere at our home. He had a strong will. And my wife named him Schopenhauer,
because he always got his way.

For a while Schopenhauer kept me in quandary about the nature of consciousness. Our
social life is quite extensive and I have many friends. With friends you can enjoy playing
tennis, going to movies, discussing books, and talking about philosophy. None of this is
possible with a cat, so why did I feel that Schopenhauer is a genius, while not many people fit
into this category? What does it tell me about the nature of genius? One day, unexpectedly,
the answer to this question was revealed to me. My wife and I were walking down the street
by Schopenhauer’s old home. At the time Schopenhauer was still going back and forth
between the two homes, and he happened to be in the frontyard of his old home. We called
him. He came up, but not very close. He recognized us as distinct from other passersby,
but he definitely did not quite recognize us as those people that he knew in our home. He
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could not perceive us separately from surroundings as clearly as any human recognizes his
friends. His consciousness was not sufficiently differentiated for this. It became clear to me
that there are relatively few differentiated concepts-submodels in his internal model, just
those that are vitally important for his survival. Probably there are models for mice, birds,
and dogs, a number of models for odors and smells, a few models for people, and a few
models for environments, still their degree of differentiation is much less than that of our
human models.

But within this relatively narrow a priori internal model, Schopenhauer was free. He
could even modify his a priori model, move its boundaries a little to suit his needs, such
as changing his home and making others like him, even those who are not inclined to,
such as myself, or an unfriendly dog. A few people can do this. Genetically and culturally
people inherit a tremendously wide, differentiated internal model composed of hundreds
of thousands or millions of submodels. But most could barely find their way around just a
few familiar corners. Not many can fully use their inheritance: people “bury their talents.”
And very few can modify their a priori models according to their needs. Those who can
make another human being like them, even against her or his inclinations, become great
leaders. They lead to changes of our internal models through individual impressions or by
cultural means.

One day Schopenhauer disappeared. We mourned him for a long time. During this
time, my wife told me that she thought Schopenhauer was a female. I doubted it, but there
was no way to verify this.

12.2.3.2 Creativity and Differentiation
An ultimate realization of free will is creativity. Modeling field theory of mind leads to
a conclusion that creativity consists in the development and expansion of the conscious
parts of internal models. It includes differentiation and synthesis. Differentiation is first the
differentiation of subject from object, and next the differentiation of psychic functions, such
as concepts, from feelings. Differentiation also takes place within each psychic function:
differentiation of thinking is achieved by developing differentiated internal models. MFT
contains mathematical description of some aspects of this process: generation of new
models and reducing fuzziness of models in the process of learning; still we should better
understand the role of evolutionary computations and genetic algorithms in the process of
differentiation. Differentiation of feelings and other psychic functions is less understood. I
think differentiation of feelings proceeds through the development of differentiated models
of emotional concepts, especially those involving relationships.

The nature of creativity as well as the nature of beauty gradually change in the course
of evolution. At the dawn of consciousness, subject–object differentiation required unusual
creative powers. We see traces of this process in ancient myths. Culturally, as a part of
the collective consciousness, this process is long accomplished, even though it is not
necessarily complete in every individual psyche. Every individual has to perform the
creative acts of differentiating himself or herself from the world, from his or her mother,
from the object of sexual desire, etc. Most often, this task is no longer concentrated on
the subject–object differentiation, but it has evolved toward a more fine differentiation of
psychic functions. During most of the past 2000 years, the creative power concentrated on
differentiation of thinking and feelings. Philosophers and scientists addressed concepts of
understanding, while poets and artists developed differentiated concepts of feelings. Plato
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and Aristotle developed concepts of thoughts abstracted from feelings. The philosophy of
ancient Greece gave rise to a popular notion of a philosopher as aloof and removed from real
life. Poets and artists aimed at impressing viewers and listeners by appealing to affective
sides of psyche. During the past several hundred years this process is changing toward
synthesis.6 According to Kant, the ideal of beauty requires a synthesis of understanding
and will. Existential philosophy is concerned with conceptual analysis of the most affective
aspects of psyche and destroys the popular image of an aloof philosopher. Dostoevsky
and Nietzsche can be characterized in many ways, but not as aloof. Shakespeare, although
appealing to the affective side of our psyche, at the same time addresses and solves the
deepest philosophical questions of the essence of love and meaning of life. Today, the best
pieces of art are expected to appeal to both sides of our psyche, thinking and feelings; we
expect a synthesis of new differentiated concepts and new differentiated affects. It is a daring
task and few are capable of solving it. So, it is not surprising that art goes to extremes, trying
to fulfill new expectations. The disproportion between extreme means and shallowness of
ideas that we often see today in the world of art is not necessarily due to “degradation”
of culture, but is also caused by unrealistic expectations and aims of the artists. And the
patient and discriminate lover of art finds contemporary pieces that continue the line of great
masters and achieve new levels of synthesis of ever finer differentiated concepts and affects.

Computational intelligence faces an opposite challenge. Creativity of robots is limited
by too much differentiation of their psyche. If a robot knows everything it was designed for,
it cannot be creative. This is another point of view on one of the main themes of this book:
that adaptivity requires fuzziness of the a priori concepts. Aristotelian logic is very limited
in adaptivity and creation of new concepts. Fuzzy logic of Aristotelian Forms is needed
for maintaining adaptivity, and the mathematical description of this process is provided by
MFT. On the one hand, the robotic intellect requires differentiated internal models much
wider in scope than current computer capabilities. On the other hand, robotic creativity
requires synthesis of the general concepts, beyond the differentiated a priori models; a
problem yet to be solved by developing models with evolving hierarchies.

12.2.3.3 Creativity and Unconscious
Human intelligence maintains the source of general, fuzzy, undifferentiated models within
its unconscious. Creative expansion of our conscious internal models proceeds by bringing
to consciousness the contents of our unconscious. The role of the unconscious in creativity
is far from being understood. The creative process can often proceed at unconscious levels;
this was repeatedly described by scientists and artists. It seems that there always is an
unconscious part of a creative process. Jung concluded that severing connections between
consciousness and unconscious leads to a loss of creativity. Our mathematical analysis
explains this fact by relating adaptivity to fuzziness of a priori concepts. Although the goal
of creativity is differentiated consciousness, completely differentiated consciousness loses
adaptivity. It expands the role of Aristotelian logic from the realm of Understanding to the
entire psyche and loses the capability for perceiving novelty. (One may find many people
like this around, who have a ready answer to every question and are closed to new insights.)
Uncertainty and fuzziness are a must for perceiving novelty. And the unconscious is an
infinite provider of fuzziness.

Is the problem of robotic creativity going to be solved by developing a psyche complex
enough to contain the unconscious?
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12.2.4 Mysteries of Physics and Consciousness: New Physical
Phenomena?

Several properties of consciousness look mysterious. To me, the mystery is not in those
relatively rare parapsychological or other similar events that are difficult to imagine or ex-
plain within existing scientific theories. The mystery is that there are basic facts concerning
everybody and everyday experience that appear to be impossible to reconcile with rational
understanding. Free will is the most important among these facts. Everyone believes that he
or she has a free will. The feeling that we can control, at least to some extent, certain parts
of our desires and volitions is so fundamental to our existence that we would not give it up,
no matter what other considerations might be, including scientific deductions. If science
cannot explain free will, most will doubt this aspect of scientific thought, rather than free
will. Therefore, science either has to explain free will, or to acknowledge that here is the
boundary of applicability of the rational method as far as it exists today.

Freedom implies a degree of unpredictability, but in a way opposite to that of random-
ness or chaos. Weather patterns are chaotic in that minor variations in initial conditions
may cause tremendous consequences some time later; because of this, weather patterns
are not computable and not quite predictable. An outcome of a coin toss is random; even
a better example of randomness is an outcome of quantum measurement. But none of
these examples of unpredictability can explain freedom. The fundamental difficulty is that
freedom supposes its opposite, causality. If there is no causality, there could be no freedom.
But if the world’s laws are causal, how could freedom be explained? Kant’s explanation
was to consider causality as an a priori concept of mind and freedom as a noumenon, the
property of the unknowable human-in-itself.

Some other properties of consciousness are almost as mysterious as free will. These
include creativity and the related nature of physical and mathematical intuitions. Possibly,
the nature of intuition is the same in the arts and sciences. Scientific truth is similar to
beauty, and might be related to unconscious a priori models of psyche that evolved over
hundreds of millions of years. But scientific intuition seems “more mysterious” because
of an opposition of the fuzzy origin of an intuition to the precision and explicitness of
mathematical and physical theories. It would be acceptable to explain by evolutionary
mechanisms an intuition about a scientific theory that would give an approximate description
of nature, say within one-tenth or even one-hundredth of the actual measured values. But
it is very counterintuitive to accept an evolutionary explanation for a physical intuition
leading to the development of the general theory of relativity or quantum mechanics, which
agrees with measurements up to one-millionth of one-millionth part.

To reconcile these properties of our consciousness with the scientific method, Penrose
came to a modified Platonic view that there are three interrelated worlds: the world of
consciousness, the world of matter, and the world of ideas, including mathematical objects
and constructs. His main point is not to argue with Aristotle, who placed the world of ideas
inside our heads, and the three worlds of Penrose may be no different from the Kantian
theory of mind or modeling field theory. But Penrose emphasizes that we have to come up
with a scientific explanation for all the three worlds. He believes that the new undiscovered
yet physical principles of the material world are needed for the description of consciousness.
A discovery of these new principles will constitute a theory that he calls Correct Quantum
Gravitation. This future theory will unify quantum theory and the general theory of relativity
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and will explain the nature of quantum measurement as a nonlocal, nonalgorithmic process.
The nonalgorithmic nature of future physics, according to Penrose, will resolve the mysteries
of creativity and free will related to the exit out of the finite world of events into the infinite
world of ideas.

12.3 EPILOGUE

The interplay of apriority and adaptivity, transcendence and immanence, eternity and
minuteness is a fundamental fact, the condition of human existence. Following the teachings
of Böhme and Berdyaev, history is a realization of the idea of an a priori and timeless God in
the ever-changing world of matter in space and time. And a single human life is an adaptive
realization of the a priori given. And the scientific method, from its origin in medieval
scholasticism, to Descartes and Newton, and to today, appears as a mathematical nexus
between a priori laws and empirical data—a nexus that in the area of material substance
has been accomplished by Newton, and in the area of spiritual substance is being realized
today in discovering physical concepts of the mind.

The realistic metaphysics founded by Plato and Aristotle and steadily evolved by
thinkers to our time continues today in the physical intuition of spiritual substance as
an adaptation of a priori internal models, which combine adaptivity and apriority in that
the principles of the models, their functional forms, are genetically inherited and adaptive
changes of model parameters and parametric structures in the process of learning provide
for a physical premise of an individual cognition.

A priori models, being the main instrument of cognition, at the same time define limits
of the accessible to cognition. This dual, antinomial role of a priori models enables us, on the
one hand, to understand mind in its everyday manifestation as an adaptation of the a priori
model, and on the other hand, to understand creativity as a widening of the a priori aspects
of the conscious models—the concepts, imperatives, and postulates of the a priori contents
of pure and practical reason. Started by Kant, rational analysis of the concrete contents of
a priori knowledge turns out to be a first step toward creative conscious enlargement of the
postulates of the a priori models. Unconscious creativity, noted even by Plato, is related
to a dualism of conscious–unconscious in a priori knowledge, determining two types of
creativity—the conscious and unconscious. Describing a creative process of poets and
oracles, Plato emphasizes a state of unconscious ecstasy; however, for himself, he accepts
a contrary, conscious creative process founded on the rational method of Socrates. The
rational aspect of the tradition of Plato and Aristotle, continued by great thinkers for more
than 2000 years, points toward an increasing role of the rational principle in the creative
process, although not negating the nonconscious roots of the nature of creativity. Thus, the
nature of the process of creativity has been changing. The identified direction of this change,
when considered from the vantage point of the physics of mind as a modeling field, means
that creativity is the differentiation and widening of the boundaries of the conscious parts of
the internal models, while maintaining undivided individual psyche through the synthesis.
The creative process discovers those parts of the model that are yet hidden in the depths (or
hights?) of the area beyond the conscious and integrates them within consciousness.

The spiritual movement of romanticism directly relates to the issue of the nature of
creativity (Riasanovsky, 1992). In the theory of mind as a modeling field, romanticism is
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understood as an attempt to transcend the boundaries of knowledge, to overcome these
boundaries through negation, rejection of a priori knowledge, and not through reason,
analyzing the nature of the a priori model. I would like to compare the physical concept
of mind founded on the a priori model with the romantic understanding of mind. And I
would like to analyze the nature of creativity corresponding to the physical and romantic
conceptions of mind. This is of pressing interest because the romantic concept continues to
exert a profound effect on artistic, political, and scientific thinking of today, and influences
the development of scientific approaches to intelligence.

As a reaction to the antinomial nature of a priori knowledge, there is a romantic
dream of a pristine, perfect perception of a precivilized human, unspoiled by education
and by concepts that stand between us and the world. Let us trace the influence of this
romantic dream in terms of Freud’s concepts. Interpreting structures of the psyche such as
the superego, which constitute a part of the a priori model, Freud emphasizes its interference
with the ideal perception and cognition rather than its role as an organizer of individual
experience and a facilitator of perception, cognition, and consciousness. Such a romantic
approach does not explain the possibility of perception and cognition of the world, because
it does not account for the a priori internal model, which makes perception and cognition
possible. As far as we can judge today, an a priori model in animals is simpler and contains
fewer differentiable elements than an a priori model in humans. A cognition in a such
simpler model results in a world with relatively few definitely differentiable objects, while
the rest of the world consists of barely perceived chaotic elementary shapes and motions
determined by properties of the retina (something like the perception of a newly appearing
objects in human peripheral vision). And even these elementary perceptions are possible
to the extent that the retina contains a priori models of these perceptual elements. Simple
acts of perception (by senses) or cognition (by mind) are possible because they are the
acts of recognition (by senses or mind) of the elements of the a priori model stored in
the a priori Forms of the neural organization. There are no trees, nor leaves, nor creeks
in the world—only elementary unordered perceptual events—everything organized can be
perceived only to the extent that in the neural organization of our brain a priori models are
imprinted that complete and organize the elementary perceptions into a coherent picture of
the world. The concept of mind based on internal models assumes that the main principles
of these models, their functional forms shaped by evolution, are genetically inherited, while
adaptive changes of the parameters of the models in the process of learning form a physical
basis for individual cognition.

Kant considered that the a priori categories of the mind (the models) constituted the
faculty of Understanding. And he described the working of the mind as an interaction among
faculties of Understanding, Judgment, and Reason. Judgment, the faculty of feeling, relates
the a priori models to objects in the world. And Reason, the faculty of will, directs actions
based on the results of Judgment. Actions most important for the intellect are learning by
modifying contents of the a priori models. Modeling field theory described in this book
provides the mathematical apparatus for the Kantian conception of the mind. It describes
mathematically the basic intellectual process of mind as a dynamic symbol, a vortex of
input signals, concepts, emotions, and actions.

Modeling field theory provides a foundation for the mathematical theory of the emo-
tional intellect, and for the concept of beauty. Beauty is related to the ability of the faculty of
Judgment to perceive pure purposiveness as a potential for the improvement of the internal
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models. This aspect of the future physical theory of mind I call cyberaesthetics. It will reveal
the perception of beauty as an adaptation property of complex intelligent systems capable of
adaptation and learning beyond specific goals. As a property perceived by adaptive systems,
beauty cannot be prescribed a priori, but depends on the current state of the internal model.
Thus, beauty is not entirely subjective either, it is not at the “whim of a beholder,” but is
based on objective properties of the subject and subject–object interaction. A possibility for
mathematical theory of beauty described in this book is bound to the understanding of the
purposiveness of the internal models as it relates to their differentiation and improvement.

How do the a priori models evolve? How do the new Forms-archetypes appear and the
bounds of the a priori accessible widen? What is the mathematics of the nature of the creative
process and is such mathematics possible? Is the nature of creativity in widening the internal
model and what can be said about the physical principles of the creative process? These
questions are formulated today as scientific problems as reviewed in Chapter 10, and we
are still very far away from a complete understanding. I believe that these issues are related
to freedom of will, and, consequently, as shown by Berdyaev, to the meaning of history
(Berdyaev, 1969). Penrose believes that new as yet undiscovered physical principles of the
material world are needed (Penrose, 1989). The nonalgorithmic nature of future physics,
according to Penrose, will resolve the mysteries of creativity and free will related to the
exit out of the finite world of events into the infinite world of ideas.

An ancient Chinese proverb says that behind every man there is another man. Every-
thing we build rests on the shoulders of those who built before us. At the end of the book, I
would like to express my gratitude to those who’s conceptions and discussions influenced
my ideas and the content of this book. Since it is impossible to list everyone here, I would
only mention our contemporaries, who’s ideas are being evolved. Chomsky insisted that
language learning is based on a language faculty, an a priori, genetically inherited component
of the mind; what I call an a priori model throughout this book. In the 1980s, Chomsky
formulated a concept of mind as an abstract system of genetically fixed principles and
adaptive parameters. The new concept has been recognized as a radical change in the theory
of a priori content of language faculty and as a principal discovery in Chomskyan linguistics
(Botha, 1991). But a mathematical realization of the new program cannot be achieved using
combinatorial hypothesis testing methods, which are not realizable computationally and do
not stimulate the intuition about the exact content and structure of the a priori models. New
mathematical methods of combining apriority of the principles-models with adaptivity of
parameters are needed, which correspond to the physical intuition of the working of the
mind. Modeling field theory provides the needed mathematical apparatus and might help
in the discovery of the a priori content of the language faculty.

Dmitriev’s conception of the nature of the beautiful in literary texts and his relating
the beautiful to the working of mind influenced my development of MFT toward the
mathematical theory of emotions. Discussions with Freeman clarified for me inadequacies
of classical psychological attitudes to the concepts of mental images and representations as
too concrete and nonadaptive.

The concept of the physics of the mind as a neural field of interactions between internal
and external signals was originated by Grossberg. His and Carpenter’s adaptive resonance
theory describes perception as a resonance between internal and external signals. Modeling
field theory can be viewed as an extension of this concept toward internal signals being
generated by internal models, whose adaptation constitutes learning, leading to an ever
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increasing complexity of the internal model. My work on this book tremendously benefited
from our discussions. And, I am especially thankful to Steve, who was the first to suggest
writing this book.

Holland’s mathematical ideas about the nature of the genetic evolution, especially his
idea of schemata as an object of evolutionary pressure, enabled me to relate modeling
field theory to evolutionary computational concepts. Levine’s concepts and discussions
helped me to formulate my descriptions of the neural correlates of consciousness. Meystel’s
conception of the hierarchical semiosis led me toward developing the modeling field theory
of the dynamic symbol. Our discussions of the nature of similarity, hierarchies, and semiotics
inspired many sections in this book. Minsky’s ideas about symbolic artificial intelligence
and the society of mind provided significant inspirational impetus, even if often for thinking
in the opposite direction. Penrose reminded me very forcefully about the remaining unsolved
fundamental problems in the quantum theory. His discussion of Gödel’s theory led me to
consider its limitations, while discussions of the mystery of the physical intuition inspired
my thinking about the development of mathematical foundations of the beautiful.

Fuzzy logic developed by Zadeh turned out to be fundamental to an understanding of
the mind and the development of modeling field theory. Without fuzziness of our a priori
concepts there is no adaptivity, no learning, and no creativity. Our discussions of adaptivity
and granularity inspired multiple passages in this book. Modeling field theory can be viewed
as an extension of fuzzy logic in the direction of complex adaptivity and apriority.

How far can we go in building a concept of mind and consciousness founded on an
a priori internal model of the world, ascending to Plato’s world of ideas, and combining
Aristotelian Forms of mind with Zadeh’s logic of fuzzy? To what extent will adequate a
priori adaptive models emerge in the near future? In the discernment of the concrete content
of these models, what will the role of the Kant–Grossberg method, analyzing antinomies
of mind be? Looking toward a unified theory of mind and brain, the physics of the mind is
being created today in parallel with the physics of the brain, and where would the invisible
border separating these two areas be—the border defined by the interplay of a priori and
empirical, the physical idealization and physical intuition of mind?

And what is the role of unknown yet physical phenomena in explaining the mystery of
the mind?

NOTES

1. “Free will is not a cucumber” responded Nietzsche to those philosophers who were cavalier about
explaining the nature of free will. Many cognitive scientists and psychologists today continue
this cavalier attitude, whereas others warn about pitfalls of shallow thinking. Concepts of free
will and creativity cannot be formulated today as a scientific problem. These concepts contradict
causality, and this cannot be reconciled with the science. But, more so, these concepts insist
on purpose. Chaos or randomness has nothing to do with freedom and contradict freedom no
less than causality. Freedom is deterministic, but noncausal. Noncausal purposiveness cannot
be formulated today as a scientific problem. Few scientists have had the guts to acknowledge
this; among the brave ones are Descartes and Chomsky. Although Maimonides warned about the
importance of understanding where the current limits of rational understanding are. But many
scientists prefer a cavalier attitude toward higher mental abilities. A notable example is Minsky’s
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Society of Mind (1985). A section entitled “Free Will” discusses interactions of multiple agents,
none of whom possesses free will. A reader might think that Minsky does not believe that humans
possess free will. But in many other places in the book he refers to people as “looking for excuse
instead of,” etc., as if he believes that humans can alter their destiny by their will. Where is this
will coming from?—A thoughtful reader is left bewildered, because the “explanations” of free
will do not explain an intuition shared by everyone including Minsky. Many examples of similar
discussions of free will are abound (Franklin, 1995). Everyone has an intuition about himself
or herself as a person with a free will, but many scientists seems to ignore this intuition when
discussing the subject.

2. Nagel thought that subjective phenomena are difficult to explain scientifically because “every
subjective phenomenon is essentially connected with a single point of view and it seems inevitable
that an objective, physical theory will abandon that point of view.” This illustrates a common
misperception about the nature of difference between “objective” and “subjective.” This could
be traced to Kantian “transcendentalization” of the nature of a priori. According to this point of
view, a priori transcends all experience. But we have seen that this is not necessarily so: a priori
may have an adaptive nature. As both the apriority and adaptivity are subjects of science, so both
the objective and individual are.

3. The timeless and spaceless nature of archetypes of the collective unconscious is discussed by
Jung (1951), who analyzed the primordial origin of archetypes and their uniform nature among
various peoples. A relatively recent origin of our a priori intuitions about ordered time and space
is confirmed by the observations of psychologists (Lèvy-Bruhl, 1910) and linguists (Whorf,
1936) concerning different conceptions of time and space in different peoples, in particular, some
primitive tribes perceive time and space as not quite ordered globally with a higher level of the
local orderliness (in the local region of time and space where the tribe currently lives).

4. Notwithstanding, it seems that humans are capable of recognizing (objects) without any specific
need. This ability for “disinterested” intentionality is the foundation for our “higher” mental
abilities, including an ability to perceive beauty. This ability, however, appears as disinterested
only for the purposes of “lower” instincts. Its intentionality is related to the “higher” instinct of
acquiring knowledge for its own sake. Clearly, it is related to adaptation, and in the long run
to survivability.

5. As far as we know today, the largest part of a large Cretaceous cortex (whales, dolphins) is
devoted to acoustical mapping of the environment, including the complicated changing acoustical
propagation properties of the underwater world. The Cretaceous brain has almost no interaction
between its hemispheres and is more homogeneous than the human brain in other ways as well.

6. Great masters of all times strove for this differentiated synthesis.

BIBLIOGRAPHICAL NOTES

The definition of consciousness is taken from Webster’s Third New International Dictionary. Merriam-
Webster Inc., 1981.

Contemporary scientific understanding of the role of the unconscious is, in a significant part, due
to the works of Freud and Jung. Freud discovered the unconscious (1900). Jung developed
conceptions of psyche and consciousness based on unconscious archetypes; he identified a
number of archetypes and their properties and described psychic types and the differentiation
process (1921, 1934, 1951).

On relationships between beauty and truth in literary texts (Dmitriev, 1997).
Historical evidence for the evolution of consciousness from the primordial, to the collective, to the

individual is discussed in Jaynes (1976). Primitive consciousness was analyzed by Lèvy-Bruhl
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(1910), who introduced the concept of participation mystique. Whorf (1936) analyzed rela-
tionships between consciousness and language and found evidence for varying degrees of
differentiation of linguistic constructs (grammar).

Recent discussions of neural mechanisms of consciousness and emotions can be found in Grossberg,
Levine, Pribram, Taylor, and Zeki. Grossberg (1995) suggested that a necessary condition of
consciousness is a resonant state of the type emerging in the ART neural network; the nature
of the ART resonance is similar to the MFT convergence state (convergence of thinking vortex
process). He further suggested that motor learning is usually unconscious because it occurs via
negative feedback error correction, which does not lead to a resonant state. The competitive
relational model of Taylor is like a simplified version of MFT; its semantic net and comparison
net can be compared to theMFT internal models and similarity measures. Brain mechanisms and
areas involved in vision are discussed in Zeki (1996). The limbic system and its functionality
was suggested and elaborated by Broca (1878), Papez (1937), and MacLean (1952). Further
information can be found in the Encyclopedia of Neural Science (Adelman, 1987). One of the
early neural network modeling of emotions was Grossberg’s gated dipole network (1972a,b),
which modeled psychological opponent processes including positive and negative affect, and
included emotions as an integral part of learning.

Involvement of the nineteenth-century physicists in neural and psychological investigations is dis-
cussed by Grossberg (1988).

Semiotic analysis of psyche is related to semiotic processes in inorganic matter by Taborsky (1998,
1999).

The possibility that neurons perform quantum computations within their microtubular structure was
explored by Hameroff (1987, 1994). Penrose (1989, 1994) discusses a need for a new physical
theory combining quantum physics and gravity. Quantum theory of modeling fields is described
in Perlovsky (1997c).

For Chomsky’s theory of language faculty see Chomsky (1972, 1981) and Botha (1991). This
is currently a large field of research, with several periodic publications. Some are devoted
to studying neural structures associated with language, identifying hereditary deficiencies of
specific grammatical concepts, and localizing them in the brain.
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This section contains brief definitions of the main notations used throughout the book.

Ak amplitude of kth submodel

AI artificial intelligence

AIC Akaike information criterion

A-L, A-LL Aristotelian similarity

AR autoregressive model or signal

ARMA autoregressive moving average model or signal

ART adaptive resonance theory

AZ-LL fuzzy-adaptive similarity

[A,B] commutator, AB − BA

B Bhattacharyya distance

C covariance matrix

Ch covariance of the hth pdf (h submodel)

C−1 inverse of matrix of C

Chn quantum amplitudes

CAS complex adaptive systems

CR Cramer–Rao (theory)

CRB Cramer–Rao bound

D dimensionality of a space (or data vector)

D = x −M difference between a vector and its mean

d(x, y) distance between vectors x and y

det C determinant of matrix C

d/dx derivative with respect to x

∂/∂Sk partial derivative with respect to Sk
δhh′ delta function

E entropy

E{·} expectation
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E{·|h} conditional expectation

E{x} expected value of x, mean

E{xn|k} conditional expected value of x, given (class or hypothesis) k

EM estimation-maximization algorithm

ENN Einsteinian neural network

ε photon energy

f (k|n) fuzzy membership function

F(ω) (Einsteinian) spectrum model

�ω number of physical states for a single photon

G,G(x|M,C) Gaussian density

GT Gödel–Turing theory

GQMF Gibbs quantum modeling field system

� phase space volume (the total number of quantum states)

�U,0 the total number of states in the universe (for noninteracting IS and W)

�W|X the number of states in W given data X

h,Hk, k hypothesis (or model, class) number

H total number of hypothesis (also a set of hypothesis)

H Hamiltonian

H Hamiltonian density

HQMF Hamiltonian quantum modeling field system

|h > internal QMF quantum states

h̄ Plank constant

I mutual information

IS Intelligent system

k k-factor

k Boltzmann constant

ξ(k|n) crisp membership function

� partition (segmentation, association) of the data among classes
(models)

L likelihood

LL log likelihood

L(�) likelihood conditional on segmentation �

l(n|k) conditional similarity measure between datum n and model k

ll(n|k) logarithm of the conditional similarity measure

l(k|�) k-model similarity conditional on segmentation �

L(�) total similarity conditional on segmentation �

LTM long-term memory
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|λ > eigenstates of X operator

λ eigenvalues of this operator

λ Lagrangian multiplier

m a submodel index

M total number of submodels

Mk kth model

Mih components of the above vector, i = 1, . . . , D

Mh(Sh, n) hth model (mean) of X(n)

M
;a
ih derivatives, ∂Mih/∂S

a
h

M̂ estimated mean value; “hat” denotes estimated quantities as distinct
from the true values of model parameters

M quantum operator measuring (Mh ·Nh) values

ME maximum entropy estimation principle

MF modeling fields

MFT modeling fields theory

MHT multiple hypothesis testing algorithm

ML maximum likelihood estimation principle

MLANS maximum likelihood adaptive neural system

n observation number

N total number of observations (also a set of n values)

Nh average number of observations classified to hypothesis h (a subset of
N corresponding to h-hypothesis)

n ∈ k (data) element n belonging to class k

NP number of parameters

|n > external world quantum states

NRT nucleus reticularis thalami

{N1| . . . |NH} partition of the set {N}
OC operating curve

ω frequency

ωk mean frequency of kth submodel

Pl probability of leakage

Pd probability of detection

Pfa probability of false alarm

P(x) probability of an event x

P (x|y) the conditional probability of x given y

P (h|n) a posteriori probabilities

pdf probability density function



428 List of Symbols

pdf(x|y) the conditional pdf of x given y

�n f (n) product of f (n) over x

�(t) the quantum state of the universe

QMF quantum modeling fields

r correlation coefficient

r(h) a priori probability of the hypothesis h

Rk,Vk target position and velocity

ρ density matrix or operator

Sh parameters of the hth submodel

Sah components of the above vector, a = 1, . . . , A

S(ω) spectrum

STM short-term memory

σ standard deviation

σk kth submodel standard deviation

�x f (x) sum of f (x) over x

t time

tn time of observation n

T temperature

Tr trace of a matrix or operator

U universe

W World

x average of x

X(n) nth observation vector

x, y variables

x,C bold indicates vectors and matrixes

xT,CT transposed vector and matrix

|x(n) > internal HQMF encoding of the external patterns X(n)

X an observation operator acting on the internal QMF states

Z-LL Zadeh (fuzzy) similarity

〈· · ·〉 average value, usually weighted with probabilities



DEFINITIONS

This section contains brief definitions of the main concepts used throughout the book.

Adalines Artificial neural networks created by Widrow (1959). Used simple internal
models.

Adaptive fuzzy membership A fuzzy membership; the fuzziness can adapt to the data.

Adaptive fuzzy similarity (AZ-similarity) A similarity measure between the model and
the world that combines adaptive segmentation and low computational complexity.

Adaptive resonance theory (ART) A neural network developed by Carpenter and Gross-
berg (1987), which describes perception as a resonance between afferent and efferent
signals, that is between signals coming from the outside, from sensory cells receiving
external stimuli, and those coming from the inside, that is signals generated by a priori
models. ART is a theoretical principle of the structure of adaptive robust feedback
connections between two different levels of a neural network. One level is cognitively
“higher” than the other.

Affect An unconscious undifferentiated emotion that is not under the control of free will.

Adaptivity An ability of the mind to adapt to changing environments, to learn from
experience.

AI An abbreviation for artificial intelligence.

A priori A priori knowledge refers to the content of the mind prior to experience.
Classical philosophers considered a priori as transcendent and prior to any experience
whatsoever. This view of a priori is still used by many philosophers today, however, it is
becoming less and less useful in the face of increasing appreciation of the development
of the a priori contents of the mind: genetic evolution, embryo development, early
childhood development, continuous learning, and adaptation. Therefore, throughout
this book, I take a more pragmatic and more theoretically palatable view of what is a
priori: it depends on the context. When appropriate, a priori is understood as including
all the contents of the mind prior to the most current experience.

Apriority An ability of the mind to utilize a priori knowledge (available before experi-
ence, genetic, inborn, God given, learned previously).

Apriority vs. adaptivity of mind One of the main philosophical issues debated through
millennia under various names, including materialism vs. idealism, realism vs. nominal-
ism, immanence vs. transcendence, quidditive vs. existential aspects, behaviorism vs.
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mentalism, internal representations vs. Pavlovian reflexes, parametric vs. nonparamet-
ric estimation, afferent vs. efferent signals, parallel vs. serial processing, connectionist
vs. symbolic, learning vs. programming, emergence vs. analytic descriptions, neural
vs. symbolic, top-down vs. bottom-up processing, connectivism vs. logic.

Archetypes Primordial structures of psyche discovered by Jung. He assumed their uni-
form nature among various peoples and calls them the collective unconscious. Concep-
tually related to Aristotelian Forms. In modeling field theory they are mathematically
represented as a priori models.

Aristotelian Forms The Aristotelian theory of mind is based on Forms. Forms are
different from Plato’s Ideas in that they are dynamic entities that support learning.
Forms combine apriority and adaptivity. A priori Forms exist as potentialities. They
become concepts in the process of interacting with the material world. This process
constitutes learning.

Aristotelian logic Logic is a science of correct reasoning and of criteria of validity
of thoughts. Aristotelian logic addresses absolute eternal truths. Its cornerstone is a
“law of excluded third”: every proposition is either true or not true (anything else
is excluded). It is a foundation for most of mathematics and most of our algorithms
of intelligence. Aristotelian logic addresses Platonian Ideas rather than Aristotelian
Forms. Computational difficulties of the algorithms based on Aristotelian logic can be
traced to the original contradiction in Aristotelian theories.

Aristotle vs. Plato Philosophers emphasized the ontological difference between their
teachings, which is unimportant today. The difference in epistemology of Plato and Aris-
totle, which is crucial for the design of learning systems, escaped philosophical scrutiny.

Artificial intelligence (AI) In a wide sense, the entire area of mathematical or com-
putational intelligence. In a narrow sense, a specific mathematical approach that uses
systems of logical rules; I also call it the Plato–Minsky approach (often called “symbolic
AI”; however, I do not use this term because it presupposes a too simple nature
of symbol).

Assignment A particular type of associations.

Association An important step in many intelligent algorithms that consists in establishing
relationships between subsets of data and classes (submodels, agents, objects, tracks,
processes, sources of signals, types, modes, etc.). Also called segmentation, partition,
clustering, grouping, classification.

Autoregression Regression applied to time series.

Backpropagation A neural network concept combining a nonparametric structure of
a classification boundary and gradient learning. A mathematical realization of the
nominalistic concept of intellect by remembering from past experiences a boundary
separating classes or concepts in the classification space. Faces combinatorial com-
plexity as a nonparametric technique.

Bayesian decision theory A mathematical approach to solving the hypothesis choice
problem based on the theory of probability. Developed by Bayes in 1763. It was
the first mathematical technique to combine a priori knowledge with data in the face
of uncertainty. A set of hypotheses represents the a priori knowledge. A decision is
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made a posteriori, that is after the current data become available. Bayesian theory
does not explain learning; still it represents one aspect of Aristotelian theory of Form:
meeting between the a priori Forms (hypotheses) and matter (data). Under certain
conditions, Bayesian theory leads to optimal decisions (for example, for making bets
in card games).

Bayesian similarity or likelihood Measures a degree of stochastic deviation of data from
its mean value given by the model

Beautiful Beauty is a perceived purposiveness (of our internal representations in their
relationships to the outside world) as divorced from any specific lower level “utilitarian”
goal. In MFT, similarity measure is an ability of this type. The object is called beautiful
to the extent that its purposiveness is felt in its pure form and is bound to its a priori
nature. The nature of beauty is related to an interest not in the object, but in the subject:
what I make out of this representation in myself. Beautiful is what coincides with the
purpose of acquiring more knowledge and improving the harmony between the internal
model and Nature. Beauty is a mechanism of evolution, adaptation, and survival. As
with any other survival mechanism, there are mechanisms of camouflage, counterfeit-
ing, and countercounterfeiting. Beautiful is perceived through the aesthetical aspect
of Judgment. It is related to the “pure” purposiveness of our representations, which is
separate from any specific purpose for which an object can be used, and includes only
the knowledge itself. MFT provides a foundation for the mathematical description of
the beautiful: similarity measures establish emotional relationships among data and
models, and activate actions of adaptation toward improving the harmony between the
models and nature.

Behaviorism A scientific direction and an accompanying intellectual and philosophi-
cal movement, defining psychology as a science of human behavior. Behaviorism
attempted to explain the entire human psychology as a sequence of stimuli and reflexes
and denied a need for consciousness in understanding of the intellect. It dominated
American psychology from about 1920 to 1960. Behaviorism created a scientific
methodology of experimental psychology; however, as a philosophy maintaining that
the concepts of consciousness, free will, and idea are not needed in psychology and
should be discarded, behaviorism exerted an inhibiting influence on the development
of concepts of mind.

Bottom-up processing A mathematical technique of deriving classes and concepts (top
level) from the data (bottom level). Related to the principle of adaptivity and the
philosophy of nominalism.

Classification Engineering application areas and mathematical algorithms that classify
patterns in data as belonging to particular classes or types.

Classification space A multidimensional space in which events or objects are represented
as points (vectors).

Classifier A boundary between decision regions in classification spaces (same as dis-
crimination surface).

Collective consciousness Most of our conscious models are collective in nature in that
they are conditioned by culture and only their relatively minor aspects are adaptive
objects of the free will. Collective consciousness that emphasizes individual values
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should not be confused with individual consciousness, which is a historically new and
still rare phenomenon among humans.

Collective unconscious Primordial psychic structures, archetypes, discovered by Jung.
The contents of archetypes are not accessible directly to the consciousness. They
provide a framework, a possibility for the psyche. Archetypes are conceptually related
to Aristotelian a priori Forms, and to the primary matter of Avicenna. Archetypes
initiate adaptive processes in the psyche that may become conscious, but the word
“archetype” refers to the unconscious nonadaptive primordial content. Archetypes are
mathematically described in MFT by a priori models.

Combinatorial complexity A ubiquitous problem of the algorithms of intelligence. On
the one hand, intelligence should be flexible enough to manipulate various combinations
of multiple elementary notions, concepts, and plans in order to find a suitable one in
complex situations. On the other hand, evaluation or learning of combinations leads to
a combinatorial explosion: the number of combinations, even for problems of moderate
complexity, exceeding the number of particles in the universe. Algorithms associated
with apriority faced logical complexity, and those associated with adaptivity faced
training complexity. Attempts to combine the two led to combinatorial complexity of
computations. Combinatorial complexity is also known as the “curse of dimensionality”
(Bellman). It was traced in this book to Aristotelian logic and resolved using adaptive
model-based fuzzy logic.

Complex adaptive systems (CAS) Systems of intelligent agents that can aggregate and
evolve according to genetic algorithms. Proposed by Holland (1992, 1995).

Connectivism A point of view that neural type architectures, composed of a large number
of interconnected simple elements (neurons), are essential for explaining mind.

Consciousness An awareness or perception of inward psychological facts, a subjective ex-
perience of sensing, feelings, or thoughts. Consciousness directs the will and results in
a better adaptation. In complex situations, various instincts might encounter contradic-
tions. Consciousness can resolve an instinctual impasse by suppressing some processes
and allocating power to others. By differentiating alternatives, consciousness can direct
a psychological function to a goal. Consciousness is a complicated differentiated phe-
nomenon that is characterized (very roughly) by the following levels: undifferentiated
awareness, collective consciousness, and individual consciousness. Both collective
and individual consciousness are characterized by multiple modalities or types of
consciousness that at the top level include sensing, feeling, thinking, and intuition.
Conscious parts of internal models are more differentiated, more adaptive, more ac-
cessible to will and Reason, and more amenable to future differentiation and adaptation.

Contradiction law A law of Aristotelian logic, according to which every statement
(concept) is either true or false. It is also called the law of excluded third.

Cooperative and competitive dynamics Types of neural organization and interactions
among neurons or agents. Cooperative neurons enhance each other’s activation levels;
competitive neurons inhibit each other.

Cramer–Rao bounds (CRB) Fundamental mathematical bounds on learning, establish-
ing the minimal learning requirements in terms of the amount of data needed to learn
the model parameters as a function of the true model structure and parameters.
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Creativity An ability to create what did not exist previously (within the collective or
one’s own psyche). Characterized by multiple levels: lower levels include adaptivity
and learning based on a priori models; higher levels include expanding the a priori
model, and perceiving the beautiful and the sublime. In this book I use creativity only
with respect to the higher levels. Creativity is related to fuzziness of existing a priori
models, because without fuzziness there is no learning. It is related to the unconscious,
which is an eternal source of fuzziness. It is related to individual consciousness, for
individuality requires creation of individual models out of collective ones. The nature
of creativity changes throughout history toward an increased conscious element. And
creativity possesses a mysterious flavor due to its relationship to free will.

Crisp concept A concept of Aristotelian logic. It either matches the data or does not [the
third possibility of a partial match is excluded by the law of contradiction (“excluded
third”)].

Cyberaesthetics A future science of intellectual emotions. An aspect of the physical
theory of mind, which will provide a mathematical description of higher emotions,
including the beautiful and the sublime. It is based on Kant–MFT theory that describes
mathematically the basic intellectual process of the mind as a dynamic symbol, a vortex
of input signals, concepts, emotions, and actions. And it will reveal the perception of
beauty as a property of complex intelligent systems capable of adaptation and learning
beyond specific goals.

Designatum The object to which the sign refers. Its mathematical description in MFT is
given by the incoming data associated with the sign.

Differentiation A process of evolution of consciousness, which proceeds through differ-
entiation of psychic functions and their contents. It was introduced by Jung. The original
archaic state of consciousness is an undifferentiated identity. And only gradually,
psychic functions differentiate (thinking from feelings, from sensing, etc.) and the
faculty of Understanding acquires a large number of highly differentiated internal
models-concepts, which make differentiated thinking possible. The MFT techniques for
estimating and increasing the numbers of submodels as needed describe mathematically
an aspect of this process.

Discriminating surfaces A concept according to which learning is a search for a collec-
tion of planar surfaces making up a boundary separating classes in the classification
space.

Ego The specific internal model responsible for consciousness. The main properties of
Ego are that it is a subject of free will and it contains a conscious part of Self (the
archetype, or internal model), which, to a significant extent, coincides with conscious-
ness. Individuality as a total character distinguishing an individual from others is
another characteristic of Ego. Not all aspects of individuality are conscious. Even
though the Ego is a product of culture and upbringing to a greater extent than it is a
product of personal free choice, free will exists within the conscious part of the Ego.

Einsteinian likelihood A likelihood that considers the unknown state of the world as the
main source of uncertainty. Usual statistical likelihood considers the main source of
uncertainty to be random deviations of the data from the model, as, e.g., measurement
errors.
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Einsteinian neural network (ENN) A neural network implementing modeling field the-
ory based on Shannon–Einsteinian similarity (Einsteinian likelihood, or information).

Emotions Feelings and their manifestations. An a priori faculty of psyche, an ability
to perceive satisfaction or dissatisfaction of basic instincts. Emotions originate from
evolutionary-old affective brain systems that control behavior essential for survival and
reproduction. Therefore emotional control of consciousness and behavior is common.
Unconscious undifferentiated emotions that are not under the control of free will are
called affects. Even very strong emotions could be highly differentiated, complicated,
completely conscious, and under the control of free will. The conscious control of
emotions seems to be of a relatively recent origin and is less understood. Jung con-
sidered emotional consciousness. According to our analysis, it is based on structured
similarity measures, and its differentiated development is based on the internal models
of emotional concepts of relationships and the archetypes of “others.” I differentiate
between lower emotions related to ancient affective systems necessary for survival and
higher intellectual emotions related to Kantian Judgment. A mathematical description
of higher emotions in modeling field theory is given by similarity measures. Higher
emotions are related to an ability to perceive beauty.

Epistemology The study of the origin of knowledge (including mechanisms of learning).
According to Plato, knowledge exists in its final form in the world of Ideas, and our
knowledge is due to a mysterious connection to this world. According to Aristotle,
knowledge dynamically emerges in the process of meeting between the Forms and
matter. The epistemological problem of science has not been solved by philosophy. It is
impossible to accept any of the existing theories of the growth of scientific knowledge,
such as the received instant rationality of falsificationism, Kuhn’s irrationalism, or
Lakatos’ rationality of continuous growth (see, e.g., Lakatos and Musgrave, 1970), for
none of these theories addresses the fundamental issue of the relationship between the
growth of science and the content of a priori knowledge.

Evolutionary computation Mathematical techniques of learning that resemble genetic
evolution.

Excluded third law A law of Aristotelian logic, according to which every statement
(concept) is either true or false (any third alternative is excluded). It is also called the
law of contradiction.

Factor analysis A mathematical technique for the analysis of statistical correlations in
multidimensional spaces. It models stochastic or random deviations about the mean
value, with the mean defined by a single multidimensional deterministic phenomenon.
Developed by Spearman (1910) and Thurstone (1947).

Feelings Internal manifestations of a psychic ability to perceive satisfaction or dissatis-
faction of basic instincts. In MFT they are described by measures of similarity. See
emotions.

Formalism A direction in mathematics that formally defined mathematical objects in
terms of axioms or rules. “Being unable to intuit or know the objects of science in
themselves, we must settle for the formal laws they satisfy” (Webb, 1980). Related
to Aristotelian logic. Founded by Hilbert. Inconsistency of formalism was proved
by Gödel.
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Free will According to Webster’s dictionary, the ability to choose between alternative
possibilities in such a way that the choice and action are to some extent creatively
determined by the conscious subject. A subject of free will is Ego (an internal model
responsible for consciousness). Free will is inside consciousness. Free will is limited by
laws of nature in the outer world and in the inner world by the unconscious aspects of
Self. Free will belongs to consciousness, but not to the conscious and unconscious
totality of the psyche. Free will is a mysterious feeling in that it has no rational
explanation: free will is opposite to determinism, but it is also opposite to randomness
or chaos. Free will is related to the sense of our destiny, and currently seems beyond
scientific understanding.

Fuzzy concept A concept of fuzzy logic. It can match data partially and thus can be used
as a foundation for learning.

Fuzzy logic Logic is a science of correct reasoning and of criteria of validity of thoughts.
Fuzzy logic created by Zadeh addresses relative truths of everyday life. In this book,
it serves as a foundation for the modeling field theory, which extends fuzzy logic
to combining adaptivity with apriority. Fuzzy logic addresses Aristotelian Forms.
Computational difficulties of the algorithms based on Aristotelian logic are overcome
using fuzzy logic.

Fuzzy membership A degree of a pixel (or data subset) belonging to a class.

Genetic algorithms Mathematical techniques of learning that resemble genetic evolution.
Designed to combat the combinatorial explosion.

Gödel theorems Gödel proved that formal systems related to Aristotelian logic or logic
of predicates are fundamentally limited. Turing has reformulated this result for compu-
tational systems and demonstrated limitations of any system of algorithms. There have
been several attempts to use these results for proving the principled difference between
the mind and machine. A most recent one is due to Penrose, who believes that the Gödel–
Turing limitations have to be surpassed in order to model the mind. My conclusion in
Chapter 11 is that Gödel–Turing results establish limitations to Aristotelian logic, and
are related to the combinatorial explosion of complexity of intelligent algorithms, but
are not necessarily relevant to the theory of mind.

Gödel theory Established fundamental limitations of logic.

Gradient learning A computational concept of learning in which performance of an
algorithm is gradually improved by modifying parameters of the algorithm along the
gradient of the performance measure. Also called “hill climbing.” It can be used in
model-based and nonparametric techniques, such as backpropagation neural networks.

Heterarchical architecture An organization of an intelligent system that combines mul-
tiple modules that have significant independence with a “soft” hierarchy within certain
modules.

Hierarchical architecture An organization of a multilevel intelligent system, with each
level processing data received from a lower level and reporting results to a higher
level. Strict hierarchies have no feedbacks or vertical loops (among levels). According
to psychological and neural data, the mind and the brain are not strict hierarchies, but
combine multiple modules that have significant independence with a “soft” hierarchy
within certain modules.
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Hypothesis choice A classical problem of mathematical intelligence: a decision must be
made based on available data. A decision consists in selecting one of several available
hypotheses concerning what the data might tell.

Ideas When capitalized refer to Platonian Ideas, which exist in their own world.

Individual consciousness Conscious aspects of internal models are more adaptive than
unconscious ones and they are more affected by personal experience, upbringing, and
culture. In particular, consciousness leads to the development of the individual person-
ality, that is, to the development and adaptation of internal models that differentiate
persons from their environment in many different ways, while preserving personal
identity by a synthesis of differentiated models into a coherent conscious whole. Jung
called this process individuation and considered it to be the most important task of
personal spiritual development. Most of our conscious models are collective in nature
in that they are conditioned by culture and only their relatively minor aspects are
adaptive objects of free will. Individual consciousness is the ability to modify the
structure of Ego by expanding the conscious parts of the internal models. It is related
to free will. All of us believe that we have individual consciousness. But it should not
be confused with individualistic collective consciousness. Individual consciousness is
a historically new and still rare phenomenon among humans.

Individual unconscious Unnoticed consciously, suppressed, or forgotten contents of the
individual experience.

Information (Shannon’s) A measure of certainty about choice among alternatives. Com-
putation of the numbers of alternative states depends on the goal: which variations are
of interest or importance and should be counted as different states, and which should be
ignored? Such a general formulation could lead to a definition of information contingent
on meaning of various states and on defining intelligence. In Shannon’s theory, an
engineering problem is limited to counting the numbers of predefined states, such
as letters in the alphabet. Thus, Shannon’s information is not related to an emergent
meaning in a learning system.

Instinct ofworldmodeling Maximizing the similarity between the internal model and the
outer world data. A good correspondence between the internal models and the world is
so important that there have to be very basic biological mechanisms driving toward reg-
ular or even constant improvements of the model. Many forms of exploratory behavior
can be explained by assuming a basic instinct or drive to improve the internal model.
The MFT similarity maximization mechanism is a possible mathematical description
of that instinct or drive to improve the world model.

Intelligence A clear definition of intelligence would appear when its theory comes to
near completion. As a first step, let us characterize intelligence as a goal-directed
functioning in artificial and natural systems. This includes some of the following:
functioning inside and outside of an intelligent system self; selection of goals and
subgoals; sensing, perception, recognition, decision, planning, and acting; acting inside
and outside of self; learning and adaptation; memory; acquiring, storing, and using
knowledge; internal representations; hierarchical and parallel organization (of all of the
above: goals, functioning, knowledge); reproduction; evolution; social organization;
organization of the environment; and organization of Self. This list is continued toward
thinking, feeling, emotion, intuition, consciousness, free will, and creativity.
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This book develops the idea that there are specific elements of intelligence. They
involve a dynamic process of concept formation in which fuzzy a priori concepts
interact with input signals to form new concepts, which are crisp or less fuzzy than the
a priori ones. This process of concept formation employs a mechanism of interaction be-
tween concepts and emotions. A mathematical description of this process is developed
throughout the book (mostly in Chapter 4). This mechanism is uniformly employed
at multiple levels of a heterohierarchical organization: in perception (formation of
percepts from sensory signals) and in cognition (formation of new concepts from
previously learned concepts). The heterohierarchical organization as well as a variety
of a priori concepts and experiences determine the richness of the intelligence. An
appreciation of these mechanisms as fundamental elements of intelligence is helped
by relating the mathematical concepts to the concepts in philosophy, semiotics, and
psychology. This relationship is interspersed throughout the book, mostly in Chapters 3
and 10.

Intelligent agent A psychic process or a software module in an intelligent system. Charac-
terized by a degree of independence from other agents in terms of its goals, procedures,
initiation, and termination conditions. An MFT agent continuously exercises a sequence
of the three Kantian faculties: computes a submodel (Understanding), evaluates a
similarity measure and fuzzy membership (Judgment), and acts by learning (changing
model parameters) or by sending behavior signals to other agents (Reason). An MFT
agent is a dynamic symbol, a vortex of thinking–feeling–action.

Intentionality A property of referring to something else, purposiveness. The models
and similarities of MFT are constructed so that they have an intent, purpose, or
meaning within the intelligent system, which is the mathematical description of the
intentionality of the intellect. This intentionality includes the correspondence to the
world and adaptivity that provides for learning. Intentionality provides a background
for a mathematical theory of higher faculties of mind, including the possibility for
mathematical treatment of the beautiful and the sublime. I disagree with recent attempts
to relate intentionality exclusively to consciousness: within a living system everything
is intentional (directed at survival, reproduction etc.) Individual creative consciousness
is capable of abstracting from this lower level intentionality and is intentional or
purposive without any specific lower level utilitarian goal; its intent is self-realization,
or the future self. The intent of the individual consciousness is the essence of our
existence, which is today beyond scientific analysis. (Compare to purposiveness. I think
that Kant’s purposiveness is a more accurate term than the now popular intentionality).

Internalmodel Mathematical models used by model-based algorithms. Models anticipate
(predict or model) the input data. Models can combine adaptive and a priori aspects of
the mind. The internal model is among the most important concepts of mathematical
intelligence. Mathematical internal models are related to Platonian Ideas, Aristotelian
Forms, Kantian categories of pure reason, and Jungian archetypes.

Internal representations A notion that mind utilizes internal representations of the
objects in the process of recognition (similar to internal models, but historically,
this notion was overinterpreted: many researchers hold implied specific assumptions
about the nature and properties of the representations, and these assumptions could
differ widely).
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Interpretant A signal indicating a recognized concept inside the mind or an intelligent
system. The result of Judgment in Kantian theory. In MFT it is an output ak from the
k-th model reaching a high similarity value.

Judgment In Kantian theory, it is an ability to see that a particular case comes under the
general rule. Described in Critique of Judgment (1790). It corresponds to the feeling
mode of consciousness. In modeling field theory, it is described mathematically by
similarity measures.

Kalman filter A target track algorithm that combines the track model (of any complexity)
with uncertainty due to measurement errors. It was originally developed for a single
target (process) and does not perform association.

Kant–Grossberg method Kant explored antinomies of reason to elucidate the explicit a
priori contents of mind. Similarly, Grossberg explores visual illusions to elucidate the
explicit a priori contents of the visual system.

Kant–MFT theory A combination of Kant’s philosophical theory of mind with the math-
ematical apparatus of MFT. A dynamic system in which the three abilities identified
by Kant exist in the process of constant interaction, as if it were in a “vortex.” This
vortex models learning of a concept as a dynamic formation of a symbol. It provides a
foundation for a physical theory of mind, including the concept of beauty.

Kant theory of mind A rational philosophical theory in which mind consists of the
three main a priori faculties: Understanding (concepts), Judgment (that a particu-
lar piece of data corresponds to a particular concept), and Reason (behavior). Kant
goes into great detail, specifying a number of finely differentiated properties of mind
and their interrelationships, as if writing a system specification document for a soft-
ware project. Kant gives a rational explanation of the concepts of the beautiful and
the sublime.

Language faculty The a priori contents of mind, which, according to Chomsky, determine
our ability to learn and use language.

Learning Same as adaptivity. Some researchers differentiate learning as a higher aspect
of adaptivity, which is accompanied by structural changes within the learning sys-
tem. Learning, as adaptivity, requires fuzzy logic: a crisp (Aristotelian) concept either
matches data or does not, and therefore is incapable of perceiving a need for adaptation
(due to imperfect match).

Likelihood Probability density function (pdf) considered as a function of model param-
eters and fixed data.

Limits on learning Fundamental mathematical limits depend on the amount of available
data and contents of the a priori models.

Limits to scientific method An important part of this investigation is a delineation of
what we can hope to understand from a rational scientific point of view, and what is
currently beyond such hope. The line delineating boundaries of applicability of the
scientific method is a moving one; still, it needs to be identified so that our scientific
discussions could be properly focused.

Likelihood ratio test A method of hypothesis choice according to the likelihood (or pdf)
ratio.
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Logic A science of correct reasoning and of criteria of validity of thoughts. This book
considers Aristotelian and fuzzy logics. The word “logic,” when used without a qualifier
in this book, designates Aristotelian logic.

Mathematical concepts of intelligence There are a few basic “classical” computational
concepts underlying most of algorithms of intelligence and neural networks. These
concepts are directly related to the philosophical discussions of apriority vs. adaptivity.
Each concept faces a combinatorial explosion. New emerging computational concepts
addressing the combinatorial complexity include complex adaptive systems and genetic
algorithms, hierarchical organization, and modeling field theory.

Maximum information (MI) A method of estimating model parameters from data by
maximizing the mutual information between the data and model. Suitable for approx-
imate models.

Maximum likelihood (ML) A method of estimating model parameters from data by
maximizing the likelihood function. The ML has important theoretical advantages,
when the model is accurate.

Maximum likelihood adaptive neural system (MLANS) A neural network implement-
ing modeling field theory based on Bayesian similarity (likelihood).

Meaning The meaning of a concept is determined by its interrelationships with other
concepts and by actions initiated (within an intelligent system or in the outer world, by
activation of the concept).

Mentalism Maintains that complicated mental processes are essential for understand-
ing human behavior and mind. Mentalism opposes behaviorism and is accepted by
cognitive science.

Model-based neural networks Neural networks whose structure and learning mech-
anisms are determined by internal models. In addition to the model-based neural
networks considered in this book, other types of neural networks incorporate statisti-
cal mixture models similar to MLANS: SPNN (Streit and Luginbuhl, 1990, 1994);
HME (Jacobs et al., 1991; Jordan and Jacobs, 1994) and HMD and POEM (Ku-
mar and Manolakos, 1996; Baggenstoss, 1997). A closely related probabilistic neural
network (PNN) (Specht, 1990) estimates pdf using a nearest neighbor type Parzen
estimation.

Model-based recognition Mathematical algorithms that recognize patterns (events, ob-
jects, images, etc.) in input data by utilizing mathematical models of these patterns.

Model-based vision (MBV) Same as model-based recognition as applicable to image
data.

Modeling field theory (MFT) A mathematical theory combining a priori knowledge with
learning and fuzzy logic as a potential approach to physically acceptable concepts of
intellect. It is a set of dynamic equations maximizing AZ-similarity. MFT provides
a mathematical description of Aristotelian Forms, Kantian theory of mind, and the
process of semiosis, or dynamic process of symbol formation. MFT combines apriority
and adaptivity and resolves the conundrum of combinatorial complexity. It consists of
the three a priori ingredients or faculties: internal models that ascend to Plato and
Aristotle, measures of similarity between the internal models and the input data that
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ascend to Kant’s Judgment, and the dynamic laws of adaptivity that maximize the
similarity between the models and data (ascending to Kant’s Reason). MFT is a dynamic
system in which the three abilities identified by Kant exist in the process of constant
interaction, as if it were in a “vortex.” This vortex models learning of a concept as a
dynamic formation of a symbol.

Modeling field theory of consciousness A physical theory of consciousness that can only
be outlined at present. In this theory, consciousness is due to an internal model.

Multiple hypothesis testing (MHT) A mathematical method of concurrent association
and parameter estimation. Combines apriority and adaptivity. Suffers from combina-
torial complexity.

Multiple hypothesis tracking MHT method, when applied to tracking.

Nearest neighbor concept A nonparametric computational concept of learning: new
events or objects are classified to the same class or category as the nearest (most
alike) event from past experience. It is the simplest mathematical realization of the
nominalistic concept of intellect, according to which ideas and concepts emerge in
the process of learning from experience as names of classes of similar objects (and
not from a priori knowledge). It is a straightforward and highly intuitive concept
and it serves as the basis for a large number of algorithms and neural networks.
It leads to combinatorial explosion of the number of past experiences required for
learning.

Neural fields An intuition about and mathematical techniques of the mind as a distributed
dynamic (spatiotemporal) process.

Neural networks Biological: an interconnected network of neural cells (neurons). Arti-
ficial: devices or algorithms that resemble biological neurons architecturally, function-
ally, or conceptually.

Nominalism Philosophy created by Antisthenes, founder of the Cynic school of philos-
ophy. Nominalism considers ideas to be just names (nomina) for classes or collections
of similar empirical facts. Among most prominent nominalists is Occam, who lived in
the fourteenth century. Despite the fact that most of the great scientists were realists
(Newton, Einstein), nominalism plays an important role in the scientific method,
because it emphasizes the experiential origin of knowledge.

Nonparametric techniques Mathematical techniques of intelligence and learning in
which an algorithm uses a large number of parameters that are not directly related
to an a priori model of the data or process. Faces combinatorial complexity of training
requirements.

Ontology A philosophy of the being. (In this book it usually refers to Platonian ontology
of Ideas, as true or more real beings than objects of everyday experience.)

Parametric structures Parametric models, the structure of which is a parametric function.
A simple example is the number of active agents in MFT. A complicated example is
schemata in CAS.

Parametric techniques Mathematical techniques of intelligence and learning, in which
an algorithm uses adaptive parametric models of the data or process.

Partial similarities Similarities between a pixel and a model.
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Pattern recognition Algorithms of intelligence directed at recognition of patterns in
data. Many pattern recognition algorithms are based on statistical techniques. They use
classification features and many are adaptive.

Perceptrons Artificial neural networks created by Rosenblatt (1958). Used no prior
knowledge.

Personality types Determined by a predominant mode and attitude of consciousness.
Jung identified four modes of consciousness: thinking, sensing, feeling, and intuition
and two attitudes: introverted and extroverted.

Plato–Minskyapproach A specific mathematical approach to computational intelligence
that uses systems of logical rules. Related to the principle of apriority and the philos-
ophy of realism.

Platonian Ideas A concept of mind that maintains that our ability to think is founded on
the principle that concepts or abstract ideas of mind are known to us a priori, through
a mystic connection with the world of Ideas. Ideas exist in their own world.

Philosophical concepts of intelligence Much of the philosophical discussion of intel-
ligence has being devoted to the “mind–body problem.” It was concentrated, to a
significant degree, on the roles of apriority vs. adaptivity. Another area of the discussion
was shaped by Kant and concentrated on the explicit contents of a priori knowledge.
Most recently, debates are about emotions, the beautiful, subjective experience, con-
sciousness, free will, and creativity.

Physical theory of mind Combines physical intuition (originated in a priori contents of
our mind) with mathematics and experience. Eventually it combines the mind and the
brain into a unified theory of spiritual and material substance. Currently it is being
developed along several lines. For example, Grossberg combines the intuition with
data that are primarily psychological and neural. I combine the intuition with data that
are primarily the philosophical concepts of mind.

Pixel similarity Similarity between a pixel and all submodels.

Pragmatics In semiotics: relations between sign-vehicles and their interpreters. Its math-
ematical description in MFT is given by the adaptation actions of Reason, modifying
the models, and other actions, such as sending a message to other agents.

Probabilistic data association (PDA) A tracking algorithm in which all measurements
are probabilistically associated with each track using a posteriori Bayes probabilities,
followed by the parameter update computed using a Kalman filter. It avoids combina-
torial complexity but requires good track estimates already formed. Otherwise suffers
from combinatorial complexity.

Psychic functions, or modes of consciousness Jung identified four main functions:
thinking, feeling (emotion), intuition, and sensing. Thinking and feeling are rational
and more easily accessible to consciousness and more easily attain highly differentiated
status. Intuition and sensing are irrational and less accessible to consciousness and
differentiation.

Psychology of philosophy The philosophical schism between realism and nominalism;
according to Jung (1934) it has been, to a significant degree, due to the antagonism
between two different psychological types: the introverted and extroverted. Thinkers
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of the introverted type are more conscious about their internal thoughts and tend to
emphasize a priori internal knowledge, whereas thinkers of the extroverted type tend
to emphasize learning from experience.

Pure Reason A Kantian term designating the world of general concepts as a specific
content of our mind.

Pure Spirit Designates a pre-Kantian, precritical philosophy of mind.

Purposiveness From the point of view of an intelligent system, like ourselves or a
robot, every object, as a phenomenon, has the purpose of being recognized by an
intelligent system (in addition to any other purpose to which we or the robot may
put this object). The universal purpose of any object is its concept: for an object to
have any purpose for a particular intelligent system, the object’s concept has to exist
in the system. This is a design principle of any intelligent system. And this design
principle is applicable to us: evolution (or God) designed us so that we can find our
way around those objects that we recognize in nature. The basic principle of the design
is that nature appears to us as purposive. The purposiveness of nature is the a priori
part of our representations and it harmonizes nature with our desire for knowledge
and produces the feeling of pleasure (or pain, if chaos is encountered). (Compare to
intentionality. I think that Kant’s purposiveness is a more accurate term than the now
popular intentionality.)

Pyramid of self-reflections Within the hierarchical internal model, on every level, the
model of self contains a submodel of the previous level model-of-self, resulting in a
pyramid of self-reflections (Meystel, 1995).

Qualia Subjective feelings accompanying perception. Some contemporary philosophers
suggested that the subjectivity of qualia is a mystery beyond mathematical description. I
disagree. Qualia do not represent a mystery for the concept of mind based on the internal
model. Within a context of two-way interaction between individual sensations and the
a priori model, the subjectivity of qualia is explained by the adaptivity of the model,
which includes inherited structures, individual development, and the remains of the
entire accumulated experience up to the moment of a particular individual perception.
In addition, one has to account for conscious as well as unconscious aspects of the
internal model. This physical intuition about qualia presents no mystery to mathematical
description.

Quantummeasurement A process of relating a state of a quantum system to the macro-
scopic classical world accessible to our conscious perception. A quantum system is
described by a wavefunction, which is a superposition of multiple states. During a
“macroscopic observation,” these multiple states “collapse” to a single macroscopic
classical state. Existing quantum theory provides us with a mathematical technique
leading to an extremely accurate description of the observed physical world, but the
process of the wavefunction collapse remains unexplained. Penrose (1989) believes that
a future theory that he calls Correct Quantum Gravitation will unify the quantum theory
and the general theory of relativity and will explain the nature of quantum measurement
as a nonlocal, nonalgorithmic process. The nonalgorithmic nature of future physics will
resolve the mysteries of creativity and free will related to the exit out of the finite world
of events into the infinite world of ideas.
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Realism Philosophy created by the school of Plato and Aristotle. According to Plato,
Eide or Ideas really exist in their own world. Our ability to think is founded on the
principle that concepts or abstract ideas of mind are known to us a priori, through a
mystic connection with the world of Ideas. Realism postulates the apriority of mind.

Reason In Kantian theory it is an ability to draw conclusions that will generate behavior.
(The most important type of behavior, interwoven with higher intellectual abilities and
emotions, was considered by Kant to be the behavior of learning.) Described in the
Critique of Practical Reason (1788). It corresponds to the desire-to-act mode of con-
sciousness. In modeling field theory, it is described mathematically by adaptation laws.

Recognition Engineering application areas and mathematical algorithms that classify
patterns in data as belonging to particular classes or types.

Regression, linear A basic and widely used mathematical prediction method in the pres-
ence of uncertainty that combines probabilistic and deterministic aspects. Establishes
a linear relationship among variables.

Schema Within CAS and genetic algorithm theory it is a mathematical notion correspond-
ing to a generalized concept of a collection of building blocks of internal models (gene
alleles, or substrings) that coevolves in the evolution process. Schemata are not used
in genetic algorithms, but for their mathematical analysis. Schemata can be viewed
as fuzzy submodels obtained by averaging nonfuzzy individual-agent models over a
population. The evolution of schemata is more similar to MFT adaptation than learning
at an individual agent level. CAS agents are nonfuzzy and nonadaptive. CAS schemata
are fuzzy and adaptive. The genetic mechanism of preferential reproduction for better
fitted agents creates a gradient in the space of parameters of fuzzy schemata leading to
schemata adaptation.

Semantics In semiotics: relations between sign-vehicles and their designata. Its mathe-
matical description in MFT is given by Judgment, or similarity measures relating input
data and models.

Semiosis A process of symbol formation. It involves syntactics, semantics, and pragmat-
ics. In Chapter 10, the MFT adaptation process is identified with the dynamic process
of semiosis combining internal representations, meaning, and behavior.

Semiotics A science of signs, symbols, and their interpretations. Among founders are
Peirce (1935–66) and Morris (1971).

Sensor fusion An engineering area of applications of intelligent algorithms. Combines
data from multiple sensors into a unified picture of the world. Includes data association
and sensor management, which is related to the attention function.

Shannon–Einsteinian similarity Measures the amount of information in the model about
the world. Suitable for approximate models.

Sign A nonadaptive entity designating something else, such as a name designating a class
of objects.

Signal and imageprocessing Engineering application areas and mathematical algorithms
that deal with signals and images. Includes spectrum estimation.

Sign-vehicle In semiotics: the media used as a sign. Its mathematical description in MFT
is given by input data associated with internal models.



444 Definitions

Similarity A measure of correspondence between the data and model. A similarity mea-
sure depends on selecting a proper data subset (segmentation, association) that is a
combination of samples or pixels. This leads to combinatorial explosion in classi-
cal approaches. An AZ-similarity measure was developed in Chapter 4 that elim-
inates combinatorial explosion by using fuzzy logic. Also see pixel similarity and
partial similarity. The similarity measure corresponds to the Judgment faculty in Kant’s
theory.

Spiritual substance Descartes separated spiritual phenomena from material ones and
declared them to be properties of the two substances. Each one should be explained
from its own principles and one should not be used to explain another. Descartes freed
matter from materialized residues of the idea of emanation and created a condition
for the development of science. Newton was disappointed that he could not surpass
Descartes in this regard: his physics did not encompass spiritual substance. Today, we
are close to creating a physics of spiritual substance: a mathematical theory of mind
that corresponds to our physical intuition.

State parameters Model parameters in Kalman filter formalism.

Strong AI A term introduced by Searle: a belief that the material and energetic structure
of the brain plays no principal role in the theory of intellect.

Symbol A dynamic entity, an adaptive emergent concept formed in the process of semio-
sis. In Chapter 10, the MFT agents (submodels) are identified with the dynamic symbols.
An MFT symbol is a vortex of thinking, feeling, and acting. This definition is different
from the often used notion of a static symbol, which is just a sign, as in “symbolic AI.”
Our definition corresponds to the semiotic analysis, analytical psychology of Jung, and
Pribram’s analysis of neural interactions in the brain. According to Jung, symbol is a
dynamic entity relating consciousness and unconscious, a creative process.

Symbolic AI The often used designation for computational intelligence methods utilizing
logical rule systems. This is a misnomer, as logical rule systems use signs, not symbols.

Syntactics In semiotics: relations among sign vehicles. Its mathematical description in
MFT is given by a logic governing Understanding, or relationships among internal
models.

Synthetic judgments a priori In Kant’s theory, nontrivial (synthetic, nontautological)
conclusions derived from fundamental (a priori) truths in such a way that their validity
is undoubted (that is, of a priori origin). According to Kant, explaining the mind’s
ability to form synthetic judgments a priori is the main problem of the analysis of Pure
Reason. He explained it as a special a priori ability. In modeling field theory this ability
is due to hierarchical structures of the a priori model.

Target tracking In general: techniques of detecting objects and estimating their tra-
jectories in sensory data. In this book: algorithms for the detection and prediction of
multiple, possibly overlapping, moving patterns. Tracking algorithms are model based;
they combine deterministic models with uncertainty, and they combine apriority of the
motion models with adaptivity to trajectory parameters.

Thing-in-itself In Kantian theory, the infinite, forever impenetrable mysterious nature of
an object.
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Thinking A vortex of thought, a process of perception or cognition, involving concepts
(internal models), emotions (similarity), and adaptation. Compare to symbol. Although
used to denote a part of this process, the ability to operate with concepts.

Time and space According to Kant, time and space are prior to any experience, but he was
ambivalent concerning the apriority of their origin. According to Jung, the primordial
archetypes are timeless and spaceless (that is, time and space are of a more recent
origin than the archetypes). The relatively recent origins of the concepts of time and
space are indicated by observations of psychologists (Lèvy-Bruhl, 1910) and linguists
(Whorf, 1936) concerning different conceptions of time and space in different peoples;
in particular, some primitive tribes perceive time and space as not quite ordered globally
with a higher level of the local orderliness (in the local region of time and space where
the tribe currently lives). In the modeling field theory of mind, the concepts of time
shall be explained due to the properties of a priori models.

Time travel Combined effects of quantum and relativistic theories could lead to the
possibility of back-and-forth time travel. This is due to a nonzero probability of a
space–time state that curves so much that a closed time-like line appears. If closed
time-like lines could be exploited in a computer, there is a possibility that the computer
has at its disposal the results of computations, before the computation began. According
to Penrose (1989) this opens the possibility for noncomputable physics, which is needed
to explain consciousness. The discovery of these new principles will constitute a theory
that he calls Correct Quantum Gravitation.

Top-down processing A mathematical technique of recognizing predefined classes and
concepts (top level) in the data (bottom level). Related to the principle of apriority and
the philosophy of realism.

Turing’s test A test that introduced a computational metaphor for the mind. It consisted
in a thought experiment: a computer or a human is placed in a closed room and
communications (questions and answers) are transmitted, say by a teletype. If as a
result of such an interaction, one cannot tell if there is a human or a computer in the
room, then the mind is similar to a computation.

Turing theory Formulated the concept of algorithmic computability and established its
limitations related to Gödel’s theory.

Uncertainty Mathematical methods of describing uncertainty include the theory of prob-
ability, the theory of chaos, and fuzzy logic. These theories are significantly interrelated.
The theory of probability describes chances or relative frequencies of events that occur
many times with random variations. Fuzzy logic describes events whose uncertainty is
nonrandom and related to insufficient knowledge rather than random chance. The theory
of chaos describes chaotic dynamics of certain processes. Uncertainties considered in
this book are related to events and states, rather than dynamics.

Unconscious Psychic contents inaccessible to consciousness. The unconscious is known
through scientific deductions. Unconscious contents can be classified into two general
groups: personal and impersonal. The personal unconscious comprises life experiences
that were forgotten or subliminally perceived, thought, or felt. Impersonal unconscious
contents originate in the inherited possibilities of the psychic functioning in general.
A significant part of these contents is common to all of humankind; Jung called these
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the collective unconscious. Specific contents of the unconscious consist of archetypes
or internal models.

Understanding A faculty of concepts, a source of general notions in Kantian theory.
Described in the Critique of Pure Reason (1781). It corresponds to the thinking mode
of consciousness. In modeling field theory, it is described mathematically by internal
models. Penrose (1989) designates by “understanding” a specific awareness of the entire
mathematical or physical theory. I call this intuition; some aspects can be understood
the properties of internal representations or models (understanding); other aspects
are related to the expansion of the internal models and represent a challenge to our
contemporary rational understanding.

Universals General concepts of mind. In philosophical discussions, the issue of adaptivity
vs. apriority is often referred to as “the origin of universals.”
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