DESIGN AND SCHEDULING OF A MAJOR BUILDING

PROJECT

A
THESIS
Submitted in partial fulfillment of the requirements for the award of the degree of

MASTER OF TECHNOLOGY
IN
CIVIL ENGINEERING
With specialization in
CONSTRUCTION MANAGEMENT
Under the supervision
of
Dr. Ashok Kumar Gupta
Professor and Head of Department by

Anil Kumar
(172607)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN - 173234
HIMACHAL PRADESH, INDIA
MAY - 2019

STUDENT'S DECLARATION

I hereby declare that the work presented in the Project report entitled "Design and Scheduling of a Major Building Project" submitted for partial fulfillment of the requirements for the degree of Master of Technology in Civil Engineering at Jaypee University of Information Technology, Waknaghat is an authentic record of my work carried out under the supervision of Dr. Ashok Kumar Gupta. This work has not been submitted elsewhere for the reward of any other degree/diploma. I am fully responsible for the contents of my project report.

Signature of Student
Anil Kumar
172607
Department of Civil Engineering
Jaypee University of Information Technology,
Waknaghat, India
Date:

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "Design and Scheduling of a Major Building Project" in partial fulfillment of the requirements for the award of the degree of Master of Technology in Civil Engineering submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Anil Kumar (172607) during a period from August, 2018 to May, 2019 under the supervision of Dr. Ashok Kumar Gupta, Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat. The above statement made is correct to the best of my knowledge.

Date: \qquad

Signature of Supervisor	Signature of HOD	Signature of External Examiner
Dr. Ashok Kumar Gupta	Dr. Ashok Kumar Gupta	External Examiner
Professor and Head of	Professor and Head of Department	Department
Department of Civil Engineering	Engineering	
JUIT, Waknaghat	JUIT, Waknaghat	

ACKNOWLEDGMENT

I take this opportunity to acknowledge all who have been a great sense of support and inspiration throughout the project work. There are lots of people who inspired me and helped, worked for me in every possible way to provide the detail about various related topics, thus, making of report work success. I am very grateful to our head of department and my supervisor Dr. Ashok Kumar Gupta for his guidance, encouragement, and support. I am also thankful for all his diligence, guidance, and encouragement and helped throughout the period of this report, which has enabled me to complete project report work on time. I also thank him for the time that he spared for me, from his extremely busy schedule. His insight and creative ideas are always the inspiration for me during the dissertation work.

Anil Kumar
 172607

Abstract

The key objective of this research is to analyze and design a multistoried building project complex using STAAD Pro and then schedule the prime and necessary activities involved in the construction of the building complex with the help of Microsoft Project 2013 and then in the end using Autodesk Revit 2013 we are going to make 3d model of the buildings and take material takeoff for estimate of construction cost .The plan of building complex consists of 4 residential apartments of Six storey building. The design involves load calculations and generating load combinations and analysis of the structure with the help of STAAD Pro. IS: 456(2000) confirms all the design methods used in STAAD-Pro. Different work associated with the project are estimated and the activities are scheduled. Planned cost, time, and materials of the project are acquired by resource allocation. Various activities involved in the construction of this residential building project are estimated and the activities are scheduled, as project starts. Budgeted cost, time, and materials of the project are obtained by resource allocation.

Keywords: STAAD PRO, MSP 2013, Analysis, Design, Revit, Estimation.

TABLE OF CONTENTS

S.no
1
2
3
4
5
6
7
8 Chapter 1
Topic
Student's Declaration
Certificate
Acknowledgment
Abstract v
Table of contents
vii
List of Tables
viii
List of Figures
ix
Introduction 1-4
1.1. Outline of the Chapter 1
1.2. Steps involved in Structural Design 2
1.3. Loads Considered 2
1.3.1 Imposed Load 2
1.3.2 Dead Load 2
1.3.3 Wind Load 2
1.3.4 Seismic Load 3
1.3.5 Load Combinations 3
9 Chapter 2 Literature Review 5 5-10
2.1. General 5
2.2 Literature Study 5
2.2. Objective of the Study 10
10 Chapter 3 Methodology 11-27
3.1. Outline of the chapter 11
3.2. Modelling 12
3.2.1 Structure Generation 12
3.2.2 Assigning Properties 12
3.2.3 Loads and Definitions 14
3.2.4 Concrete Design 16
3.2.5 Design Analysis/Print 17
3.2.6 Interactive Concrete Design 18
3.3 Scheduling 24
$11 \quad$ Chapter 4 Results and Discussions 28-52
4.1 Scheduling 28
4.2 Loads Considered 30
4.3 Deflected Shape 31
4.4 Max. Displacement at nodes 32
4.5 Max. S.F \& B.M at nodes 33
4.6 Column Design 34
4.7 Beam Design 37
4.8 Slab Design 38
4.9 Foundation Design 41
4.10 Cost Analysis 48
12 Chapter 5 Conclusion 53-54
5.1 General 53
5.2 Future Scope 54
REFERENCES
APPENDIX
APPENDIX-A

List of Tables

Table no.3.2.3.1
4.4.1 Max. Displacement at different nodes 32
CaptionWind load intensity at different heights
4.5.1 Max. S.F \& B.M at Different nodes 334.6.14.6.2
4.8.4.14.8.4.2
4.10.1.14.10.1.24.10.1.3
4.10.1.4
Main Reinforcement 35
Shear Reinforcement 36
Foundation Geometry 46
Foundation Reinforcement 47
Built up Area of one building 48
Estimate of one building 50
Estimate of all building 51
Total Construction cost of all buildings 52

List of Figures

Figure no. Caption Page no.
3.2.1.1 3D view of frame model 12
3.2.2.1 Showing columns beams and supports 13
3.2.2.2 3D picture showing beams, columns and plates 13
3.2.3.1 Dialog box showing Load cases details \& Load Definitions 14
3.2.3.2 Showing Dead load \& Live Load acting on structure 15
3.2.3.3 Showing seismic load acting in X direction with displacement 16
3.2.4.1 Dialog box showing concrete design 16
3.2.5.1 Dialog box showing analysis print and result 17
3.2.6.1 Envelope window in concrete design 18
3.2.6.2(a) Design brief for beam 18
3.2.6.2(b) Design brief for column 18
3.2.6.2(c) Design Brief for slabs 19
3.2.6.3(a) Beam Design Window 21
3.2.6.3(b) Column Design Window 21
3.2.6.3(c) Slabs Design Window 22
3.2.6.4 Foundation Design Window 22
3.2.6.5(a) Job Setup Window 23
3.2.6.5(b) Concrete \& Rebar input window 23
3.2.6.5(c) Cover \& Soil input window 23
3.2.6.5(d) Sliding \& Overturning window 24
3.2.6.5(e) Footing geometry window 24
3.3.1 Dialog box showing Project Calendar 25
3.3.2 WBS in MSP 2013 26
3.3.3 Networking of activities by CPM 27
4.3.1 Deflected Shape 31
4.8.1 Showing Displacement contour 38
4.8.2 Result line showing displacement over the span 38
4.8.3 Principal Major Stress (Top R/F) 39
4.8.4 Principal Minor Stress (Top R/F) 39
4.8.5 Principal Major Stress (Bottom R/F) 40
4.8.6 Principal Minor Stress (Bottom R/F) 40
4.10.1.1 Model of Ground floor of building 48
4.10.1.2 Model of building complex 49

CHAPTER 1
 INTRODUCTION

1.1 Outline of the Chapter

We humans from the beginning of era required buildings or structures for live in and to acquire that we want from time to time. But then again it's not only buildings but also to build structure efficiently so that it can fulfill its main purpose. So here comes the role of civil engineering and the role of design and analysis of structure.

This project is of analysis, design, scheduling and estimating construction cost of multistoried building project using a very popular designing software STAAD Pro, Microsoft Project 2013, Revit 2013. We are using STAAD Pro because of its listed below benefits:

1. Simple to utilize interface.
2. Verification with the IS codes.
3. Solving errors in a versatile manner.
4. Planning Precision.

STAAD Pro shows a modern UI, powerful analysis and design engines and picturing tools with advanced finite element and dynamic analysis capabilities. STAAD Pro is every professional's option for concrete design, steel design and cold-formed steel design of low and high-rise buildings for model generation, analysis and design and result verification.

Similarly Microsoft Project 2013 is chosen because of the following advantages:

1. It empowers the undertaking the executive's experts to deal with task portfolio speculations dependent on need, start ventures at the most punctual, and create result inside pre-decided spending plan.
2. Microsoft Project 2013 conveys precise outcomes and furthermore gets ready for the future to deal with monstrous and deficiencies over a skyline.
3. Microsoft Project 2013 conveys extends on time and pursues plan the board adequately. It additionally conveys a system to track the advancement of the undertaking.

Also and for designing the 3 d project Revit software is chosen because of its following advantages:

1. Intelligent 3D-model-based design tools
2. BIM programming for designers, contractors, engineers and architects
3. Create an integrated model that contains genuine data
4. Great for demonstrating, clash recognition and change the management
5. Contains all important structure components just as maker, model, cost, and structure and phase data, among others.

1.2 Steps involved in Structural Design

1 Structural design.
2 Calculation of load.
3 Analysis Technique.
4 Member design and Detailing.

1.3 Loads Considered

1.3.1 Imposed Loads

1 Floor Load $=4 \mathrm{Kn} / \mathrm{m}^{2}$
2 Roof Live Load $=2 \mathrm{Kn} / \mathrm{m}^{2}$

1.3.2 Dead Loads

1 Self-Weight of Slab $=0.15 * 25=3.75 \mathrm{Kn} / \mathrm{m}^{2}$
2 DL due to External Wall $=0.35 * 2.45 * 20=19.15 \mathrm{Kn} / \mathrm{m}^{2}$
3 DL due to Partition Wall $=0.2 * 2.5 * 20=11.8 \mathrm{Kn} / \mathrm{m}^{2}$
4 DL due to Parapet Wall $=0.2 * 1.5 * 20=8 \mathrm{Kn} / \mathrm{m}^{2}$
5 Plaster for two face $=0.02 * 2.45 * 1 * 18 * 2=2 \mathrm{Kn} / \mathrm{m}^{2}$

1.3.3 Wind Load

Design Wind Speed, V_{Z}
The design wind speed, V_{z} for any place is obtained from:
1 Terrain Roughness, height and size of structure.
2 Local Topography.
3 Risk Level.
Mathematically

$$
\begin{equation*}
\mathrm{V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{b}} * \mathrm{~K}_{1} * \mathrm{~K}_{2} * \mathrm{~K}_{3} \tag{eq. 1}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{b}}=$ Basic wind speed at any height in m / s;
$\mathrm{K}_{1}=$ probability factor (risk coefficient)
$\mathrm{K}_{2}=$ terrain, height and structure size factor
$\mathrm{K}_{3}=$ topography factor

1.3.4 Seismic Load

Method for Analysis -

1. Equivalent Static Method
2. Lumped Mass Model Method
3. Response Spectrum Method

In this report equivalent static method is used.
Code Used = IS 1893 (Part I), 2002
Total design seismic base shear, V_{b} at any main direction is determined from the given below expression:

$$
\mathrm{V}_{\mathrm{b}}=\mathrm{Ah} * \mathrm{~W} \quad \text { eq. } 2
$$

Where,

$$
\begin{align*}
& \mathrm{V}_{\mathrm{b}}=\text { Total Seismic design base shear } \\
& \mathrm{W}=\text { seismic weight of all the floors }(\mathrm{W}=\mathrm{DL}+50 \% \mathrm{LL}) \\
& \mathrm{Ah}=\text { horizontal acceleration spectrum } \\
& \mathrm{Ah}=\frac{Z}{2} * \frac{I}{R} * \frac{S a}{g} \tag{eq. 3}
\end{align*}
$$

Where,

$$
\begin{aligned}
& \mathrm{I}=\text { Importance Factor } \\
& \mathrm{Z}=\text { Zone Factor } \\
& \mathrm{R}=\text { Response Reduction Factor } \\
& \frac{S a}{g}=\text { Design Acceleration Spectrum }
\end{aligned}
$$

1.3.5 Loads Combination

For Beams and columns

1. $1.5(\mathrm{DL}+\mathrm{LL})$
2. 1.2(DL+LL+EQX)
3. 1.2(DL+LL-EQX)
4. 1.2(DL+LL+EQZ)
5. 1.2(DL+LL-EQZ)
6. $1.5(\mathrm{DL}+\mathrm{EQX})$
7. 1.5(DL-EQX)
8. 1.5(DL+EQZ)
9. 1.5(DL-EQZ)

For Foundation

1. $\mathrm{DL}+\mathrm{LL}$
2. DL+0.5LL+EQX
3. DL+0.5LL-EQX
4. DL+0.5LL+EQZ
5. DL+0.5LL-EQZ

CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

In this thesis main goal is to schedule a project from its beginning till its completion, then analyze the structure for seismic, wind loading and load combinations and after that estimation of cost incurred in the project. So this literature study so far consists of all such research papers that include design of structures, analysis or scheduling of projects.

2.2 LITERATURE STUDY

Wale et al [1] Project Managing is information using efficiently, aptitudes and methods to spread maneuvers to see job requirements. It's a vital ability to achieve something efficiently for affiliations, engaging them to fix the project results to Organizational goals. It is often characterized as process \& movement of arranging out, sorting, moving, and monitoring assets, frameworks to accomplish explicit objectives in sound or everyday concerns. A project is an impermanent point projected to create an exceptional thing, organization or result with a described beginning \& finish, embraced to meet unconventional goals. In usage, the organization of these two structures is routinely truly indisputable, and everything considered requires the improvement of extraordinary particular aptitudes and the board strategies.

Kumar K et al [2] Nations around the globe give significant inclination to the development business, as it contribute inconceivably to the development of a country, however utilization of conventional practices and ill-advised arranging diminishes the effectiveness of the development business which influences the venture as expanded span of the undertaking, this prompts the expanded overhead expense of the task and low quality of work. With the end goal to dispose of these imperfections in development venture, a powerful undertaking administration device is presented as Microsoft Project 2013 programming. In this investigation venture planning, estimation and asset designation are adjusted in MK Apartment private development venture utilizing MSP 2013 programming. Different work associated with the development of MK condo venture are evaluated and the exercises are planned, as undertaking beginning structure first Aug 2016 and completing on 29th July 2017. Planned cost, time, and materials of the venture are acquired by asset portion.

Nalwadgi et al [3] presently multi day expansive number of utilization programming's are accessible in the structural building field. All these products are created as the premise of cutting edge. Limited component examination which incorporate the impact of dynamic load, for example, wind impact, earth tremor impact wagers and also in the today's work, an endeavor has been made to consider the adequacy of certain basic planning application
programming hence an on-going task has been picked. This undertaking has a spot with the solidarity producers to be executed in the Gulbarga City. Bharat pride is the name of the undertaking.

Rani.H and Babu [4] their work included the study and planning of multistory (G+4) building with the help of STAAD Pro. They used STAAD Pro coz of its favorable features like easy to use interface, IS code confirmation, adaptable nature of solving problems, the precision of arrangement. Staad Pro is everyone's choice for design of concrete, steel, timber, aluminum and cold shaped steel structure of low \& elevated structure. In their work, a G+4 storey private building is broke down using E-Tabs and traditional building material are replaced by green material making the building eco-friendly, energy efficient and economical.

Hussian et al [5] their work was to plan a multi-storied working of G+ 5 stories, at kalakode around 4 km from paravoor. The plan is finished by considering the necessities and principles suggested by IS code, Kerala building standards and national building rules. Arranging is finished utilizing the 3D demonstrating programming Revit 2011 with the assistance of Auto CAD 2014. The structure examination and configuration is finished utilizing STAAD.PRO.V8i and a cross-check is improved the situation chosen individuals utilizing limit state technique for plan according to IS 456-2000. STAAD. Professional uses a direction dialect based info arrange, which can be made through an editorial manager called the supervisor document, the incredible STAAD.Pro illustrations input generator or through CAD based information generators like AutoCAD. The yield produced by staad.pro comprises of point by point numerical outcomes for examination what's more, design.

Sharma \& Maru [6] Investigation and plan of structures for static powers is a standard issue nowadays due to the approachability of reasonable specific projects which can be utilized for the investigation. Then again, the dynamic investigation is a tiresome procedure and needs spare info identified with the form of the structure, and a conception of basic elements for the elucidation of diagnostic consequences. Strengthened cement structures are the most wellknown sort of development in city areas, which are exposed to a few kinds of influences amid their period of lifespan, for example, static powers because of DL \& LL and dynamic powers because of the breeze and tremor. Here the present works (the issue has taken) are on a G+30 storied normal building. These structures have the arrangement region of $30 \mathrm{~m} \times 45 \mathrm{~m}$ with a story tallness 3.8 m each and profundity of the establishment is 3.0 m . and add to the stature of a picked building together with profundity of the establishment as 120 m .

Shivashaankar \& Yashwant [7] the paper presents the various limitations in design and construction practices along with the feedback to overcome the limitations and make the structures safer to take the earthquake forces. The paper focuses on software used in the civil engineering for analysis and design, construction methods/practices, use of materials, types of structures, experiments for earthquake studies, quality control parameters etc.

Sharma, Abhishek \& Pathak, K. K. [8] Improper planning, scheduling and execution works that results in several issues like reduction in quality of construction, delay in providing facilities, development, and making the project more expensive. A report suggested that the supply of manpower is inversely proportional to time required to complete the project. As the manpower is increased, the completion time of the project is decreased and vice versa. Present study deals with the manpower planning, scheduling and tracking of "Construction of a Residential Block at Shakti Kunj, Ahmedabad", a six storied (G+6) building project whose construction is in progress at Shakti Kunj, Ahmedabad, Gujarat. An evaluation between the baseline duration and cost to actual duration and cost of manpower of project is also determined using MSP 2013.

Paulay, T. and Priestley, M.N. [9] underscores genuine structure design, not analysis of multistory structures for seismic obstruction. Solid prominence is set on explicit specifying necessities for development. Key plan standards are introduced to make structures that react to a wide scope of potential seismic powers, which are outlined by various nitty gritty models. The discourse incorporates the plan of strengthened cement flexible casings, auxiliary dividers, double frameworks, and fortified stone work structures, structures with confined malleability and establishment dividers. Notwithstanding the precedents, full plan figuring's are given for three model structures.

Clough Ray W. and King Ian P. [10] an effective advanced PC strategy for the auxiliary investigation of huge, multistory building outlines is displayed. The structure might be exposed to both vertical and sidelong loadings and may incorporate a subjective arrangement of shear dividers. Hub and shear contortions, and in addition flexural twists of the individuals, might be considered. The strategy depends on the improvement of a tri-corner to corner firmness network of each casing in the building, its decrease by recursion connections to the parallel casing solidness, lastly the super stiffness of the total building. Results acquired for a precedent structure are assessed.

Chopra Anil K. and Gutierrez Jorge A. [11] in view of the Ritz idea, for dynamic investigation of the reaction of multistorey structures including establishment communication to seismic tremor ground movement, is displayed. The framework considered is a shear expanding on an unbending round circle balance joined to the surface of a directly versatile halfspace. In this strategy, the basic relocations are changed to ordinary methods of vibration of the expanding on an inflexible establishment. The investigation method is created and numerical outcomes are exhibited to show that phenomenal outcomes can be acquired by considering just the initial couple of methods of vibration. As the quantity of questions is diminished by changing to summed up directions, the technique introduced is substantially more proficient than direct strategies.

Choi, C., Chung, H., Lee, D., \& Wilson, E. L. 12] the impact of the consecutive utilization of dead load due to the successive nature of development is an essential factor to be considered
in the multistory edge examination. Shockingly, nonetheless, this impact has been disregarded by numerous designers practically speaking previously. One of the approaches to incorporate this impact legitimately in the examination is to bring out the investigation through wellordered techniques as per the successful utilization of dead loads as the development continues. These systems, nonetheless, require explained calculations and more arrangement time. A streamlined methodology, named as adjustment factor strategy (CFM), to take care of the issue without explained well-ordered examinations has been proposed in this paper. This strategy uses the rectification factors built up by a relapse from the information got from the current structures to change the outcomes from the standard investigation to deliver more precise arrangements. Some numerical tests are exhibited to demonstrate the legitimacy and adequacy of the technique.

Abishek and Pathak [13] Investigated the connection between the task finish time and the labor accessibility as contrarily relative that is the fruition time of the undertaking can be diminished, by expanding the labor. For the present investigation, the creator considered a multi-story building development named "Mahadev Parisar at Shivaji nagar Bhopal". The venture characteristics comprises of $\mathrm{G}+6$ floors private condos with 92 pads in it. With an accessible land territory of 2.64 sections of land at Shivajinagar Bhopal with, he evaluated the length of culmination of two years, however the task was postponed. In this venture, MSP2013 is utilized as the task the board device, and two-stage system is received in this undertaking planning process. In the principal stage, the data accessible from the site and every one of the illustrations accessible are gathered, the amounts of materials going into the venture are evaluated and arranged. For the second stage, different exercises engaged with the development of the flat are recorded in the MSP 2013, these exercises are separated utilizing WBS application in MSP into subtasks. The movement begin and complete dates are characterized physically or utilizing auto plan choice, different assets accessible for the development of the venture are distributed and the basic way of the task is given by MSP2013, the gauge of the undertaking was set and the exercises are followed for finishing the fragmented exercises were rescheduled accordingly the evaluated time of fulfillment was surpassed from 693 days to 1424 days, the expense of labor was surpassed from 2.5 crores to 3.1 crores . The fluctuation cost of 67 lakhs and the difference time of 731 days were found because of the utilization of planning.

Rhuta and Patil [14] examine the development venture the board in different nations like USA, Canada, and Australia. Looks at the development venture arranging situation over the development venture at ground execution organize, where a portion of the thing that matters is seen as in the event of the arranging procedure, it is accepted that everything runs easily, it isn't the equivalent if there should be an occurrence of genuine undertaking situation, accessibility of assets might be restricted Resolving this utilizing a task the board programming MSP 2013. This is settled by leveling the assets and contrasting the time cost usage and a booked time and assessed cost. Venture the board strategies like CPM/PERT are adjusted with
the end goal to determine different deformities, for example, over allotment, lopsided utilization of assets and to anticipate the cutting edge issues emerging in the undertaking. for this situation ponder, the two-stage strategy was received in the main stage different undertaking related information are gathered from the site, the amount of work that should be performed was determined and the computations were arranged, in the second stage all the task related exercises are recorded consecutively utilizing MSP2013.

Suresh and Nanduri [15] the sentiment that structuring quake resistant structures will cause considerable further costs. In a Swiss outline assesses some place in the scope of 3 and 17% of the hard and fast structure and their costs are specified. The investigation method is created and numerical outcomes are exhibited to show that phenomenal outcomes can be acquired by considering just the initial couple of methods of vibration. As the quantity of questions is diminished by changing to summed up directions, the technique introduced is substantially more proficient than direct strategies.

Behera and Debeshish [16] in todays advanced time the structures are made to fulfill our fundamental points of view. It's definitely not a problem to build up a Structure regardless it is basic to fabricate a viable structure which will serve for quite a while without showing any mistake. This study focuses in searching good strategy for making geomtry, defining the cross zones of segment \& shaft. Creating assurance and supports (to describe an assistance atmosphere it is fixed or pinned) \& after it the loads are portrayed. Then the model is explored by run analysis, after it keep an eye on the loading screen and look for errors \& warnings and if not any ,then the structure is safe for design.

Adiyanto and Zaini [17] the impact of the consecutive utilization of dead load due to the successive nature of development is an essential factor to be considered in the multistory edge examination. Shockingly, nonetheless, this impact has been disregarded by numerous designers practically speaking previously. One of the approaches to incorporate this impact legitimately in the examination is to bring out the investigation through well-ordered techniques as per the successful utilization of dead loads as the development continues. These systems, nonetheless, require explained calculations and more arrangement time. A streamlined methodology, named as adjustment factor strategy (CFM), to take care of the issue without explained well-ordered examinations has been proposed in this paper. This strategy uses the rectification factors built up by a relapse from the information got from the current structures to change the outcomes from the standard investigation to deliver more precise arrangements. Some numerical tests are exhibited to demonstrate the legitimacy and adequacy of the technique.

Thakur and Singh [18] Shear divider frameworks are a standout amongst the most ordinarily utilized parallel burden opposing framework in tall structures, Shear divider has extremely high in plane solidness and quality which could be utilized to all the while oppose expansive even loads and bolster vertical or gravity loads making them very worthwhile in numerous
basic designing applications. In multistory structure to oppose parallel powers joining of Shear dividers has turned out to be inescapable. It is important to decide successful, effective and perfect area of shear divider. This analysis of G+4 Story (Zone IV) is specified some primer consideration that is dissected through change in different position of shear divider with various shapes to decide factor i.e. storey drift \& minutes. Thus investigation is finished by operating Software pack STAAD Pro.

Ambadkar and Bawner [19] studied the effects of wind on structures. Wind loads as specified in IS: 875 (Part 3) - 1987 were considered in the analysis. In this project analysis of $G+11$ building. Analysis is done for various variations such as 1) Terrain with few or no obstructions having heights below 1.5 m . 2) Terrain with obstructions having heights between 2.0 to 10 m . 3) Terrain with many close spaced obstacles having the size of building structures up to 10 m high. 4) Terrain with many hefty high close spaced obstacles. Conferring to Internal Pressure Coefficients (Cpi) providing for that many variations. This analysis is done for wind speed 45 $\mathrm{m} / \mathrm{s}, 48 \mathrm{~m} / \mathrm{s}, 52 \mathrm{~m} / \mathrm{s}$. Results gotten from STAAD-PRO analysis are used for finding major associations of moments, forces and displacement with wind speeds. Moments, forces and displacement obtained from all cases are related with wind speeds, conferring to their percentage of opening if for many variations.

Arya and Khan [20] in this examination paper, the impact of wind speed and auxiliary reaction of structure outline on slanting ground has been contemplated. Thinking about different casing geometries and incline of grounds. Blend of static and wind loads are considered. For blend, 60 cases in various breeze zones and three distinct statures of structure outlines are broke down. STAAD-Pro v8i programming has been utilized for investigation reason. Results are gathered as far as pivotal power, Shear power, minute, bolster response, Story-wise float and Displacement which are fundamentally examined to evaluate the impacts of different slant of ground.

2.2 OBJECTIVE OF STUDY

The fundamental target of this examination is:

1. Analysis and Design of different basic parts of the modular building.
2. To schedule various activities included in the overall construction of a building
3. To evaluate the cost required to finish the task with effectiveness.

CHAPTER 3

Methodology

3.1 Outline of Chapter

The fundamental step in the methodology includes designing, scheduling and cost optimization of the project. Designing phase includes Six storey building design in Staad pro which further includes loads calculations and concrete design. Then the scheduling phase is carried out by using Microsoft Project 2013, in which all the important activities occurring in a construction project are listed and a calendar is created specifying start date, finish date and exceptions etc. And lastly after all the resources and activities are allocated and scheduled respectively, cost of the materials, labor, and construction are calculated.

3.2 MODELLING:

3.2.1 Structure Generation

Plan of the building is designed in STAAD and after applying translational repeat no. of floor is given and frame model is generated. Fig. 3.2.1.1 shows the 3d frame model of structure.
Y_{z}^{x}

Fig 3.2.1.1 3d view of frame model

3.2.2 Assigning Properties

1. Size of Beam $-0.3^{*} 0.3 \mathrm{~m}$
2. Size of Column $-0.6 * 0.6 \mathrm{~m}$
3. Slab Thickness -150 mm
4. Height of each Floor $-3 m$
5. Material-Concrete
6. Support - Fixed

As above mentioned specifications property for beams and columns and thickness of plate are defined and assigned. Supports are assigned as shown in Fig. 3.2.2.1 \& Fig. 3.2.2.2 shows beams, columns and slabs assigned to the project.

Fig. 3.2.2.1 showing columns beams and supports

Fig.3.2.2.2 3D picture showing beams, columns and plates

3.2.3 Load and Definitions

Before assigning any loads to the structure firstly we need to define seismic and wind definitions for seismic and wind load to act on the structure. For specifying the wind definition Go to wind definitions and click Add after it is added, add Intensity and exposure manually as per IS 875 Part-3 Intensity provided is given in Table 3.2.3.1, After this definition is added. Go to seismic definition, Click add, Select Code, after clicking on (IS 1893-2002) fill the zone factor importance factor structure type etc. as per code. Applied loads definitions and combinations as per Fig. 3.2.3.1, Fig. 3.2.3.2, Fig. 3.2.3.3.

Table 3.2.3.1 Wind load intensity at different heights

S.No.	Height (m)	Intensity
1	3	0.75
2	6	0.9
3	9	0.99
4	12	1.10
5	15	1.25
6	18	1.37

Fig.3.2.3.1 Dialog box showing Load cases details \& Load Definitions

Fig. 3.2.3.2 Showing Dead load \& Live Load acting on structure

Fig.3.2.3.3 showing seismic load acting in X direction with displacement

3.2.4 Concrete Design

After creating and assigning loads definitions and combinations, design for concrete is started. It is done as per IS 456 (2000) with the help of code important parameters are defined like CLEAR, FC, FYMAIN, MAXMAIN. After filling these parameters commands for designing beam, column, slab, and for takeoff is given and after that all these are assigned to the project.

Fig. 3.2.4.1 Dialog box showing concrete design

3.2.5 Design Analysis/Print

In the last step analysis/print command is given and assigned and then analysis is run for possible errors or warnings as shown in Fig. 3.2.5.1

Fig. 3.2.5.1 Dialog box showing analysis print and result

3.2.6 Interactive Concrete design

After analysis is done, we go for concrete design mode in Staad Pro for design of beam, column and slabs. For this open concrete design tab, and once window is open.

1. Create Envelope and name it as it suits us.
2. After this select the load cases you would like to design the project for, Fig. 3.2.6.1 shows window of envelope.

Fig.3.2.6.1 Envelope window in concrete design
3. After envelope is created, select the beams and columns and form members.
4. Then members are created, go to Groups/Briefs and add new briefs for beams, columns and slab as shown in Fig. 3.2.6.2 (a) (b) (c).

Fig. 3.2.6.2 (a) Design brief for beam

Fig. 3.2.6.2 (c) Design Brief for slabs
4. After designing briefs add the members into design groups and slabs into slab design group.

Showing beams and columns as members

5. Then after designing groups and briefs, go to concrete member tab and start designing beam, columns and slab as shown in Fig. 3.2.6.3 (a), (b), (c).

Fig. 3.2.6.3(a) Beam design window

Fig. 3.2.6.3(b) Column design window

Fig. 3.2.6.3(c) Slab design window
6. Beams, column and slab design is done then foundation design is started. For it go to foundation design wizard and include the load cases for foundation design and run STAAD Foundation as shown in Fig. 3.2.6.4

Fig. 3.2.6.4 Showing Foundation design window
7. Once STAAD Foundation opens, create Job for isolated foundation and set parameters as shown in Fig 3.2.6.5(a) (b) (c) (d) (e).

Fig. 3.2.6.5(a) Job setup window

Fig. 3.2.6.5(b) Concrete \&rebar input window

Fig. 3.2.6.5(c) Cover \& soil input window
Sliding and Overturning

Coefficient of friction	0.5
Factor of safety against sliding	1.5
Factor of safety against overturning	1.5

Fig.3.2.6.5 (d) Sliding \& overturning window

Fig. 3.2.6.5(e) Footing Geometry window
8. After setting and defining all the parameters for foundation design, run the design and analyze.

3.3 SCHEDULING

Create and schedule a new project

1. Open MSP 2013 software.
2. First of all before starting listing activities, we need to specify the calendar for the project.
3. For that click on "Project" option and then select "Change Working Time" and design the calendar as per your desire like here as shown in Fig. 3.3.1.
4. And after that start listing all the activities with start date or finish date and MSP will schedule it automatically or manually.

Preparing calendar for project with exceptions and holidays till start and finish date

Exceptions Work Weeks

Name	Start	Finish	\wedge
Republic Day	1/26/2019	1/26/2019	
Maha Shivaratri	2/4/2019	2/4/2019	
Holi	3/20/2019	3/20/2019	
Ramzan	6/5/2019	6/5/2019	
Bakr Id	8/12/2019	8/12/2019	
Independence Day	8/15/2019	8/15/2019	
Ganesh Chaturthi	9/2/2019	9/2/2019	
Muharam	9/10/2019	9/10/2019	
Gandhi Jayanti	10/2/2019	10/2/2019	
nureahrs	10/8/3n10	10/8/7n10	\checkmark

Fig.3.3.1 Dialog box showing project calendar

In the project calendar, working hours are set to 8 hours with 1 hour break for rest and lunch for laborers and employees etc.

After calendar is set, start listing all the activities and duration and specify schedule auto/manual based on your convenience, here it is set on auto schedule means it will adjust duration and start and finish dates itself. Below fig.3.3.2 shows activities listed

WBS -	Task Mode	Task Name -	Duration -	Start	Finish	Predecessors
1	λ	\triangle Start	516,4 days	Tue 1/1/19	Thu 1/7/21	
1.1	*	Prepare Contract Drawings	38 days	Tue 1/1/19	Mon 2/25/19	
1.2	\square	\triangle Project Procurment	524,3 days	Tue 1/1/19	Tue 1/19/21	
1.2.1	\pm	Subcontractor Bid \& Interview Period	15 days	Tue 1/1/19	Mon 1/21/19	
1.2.2	λ	Recommendatiı \& Approval of Subcontractors	15 days	Tue 3/26/19	Mon 4/15/19	2
1.2.3	λ	Other Material Procurment	191 days	Tue 2/26/19	Mon 12/2/19	2
1.2.4	\square	- Construction	475,3 days	Wed 3/13/19	Tue 1/19/21	
1.2.4.1	λ	Foundation	70 days	Wed 3/13/19	Thu 6/20/19	
1.2.4.2	λ	Concrete Columns (1st Floor)	15 days	Wed 3/13/19	Wed 4/3/19	

Fig.3.3.2 WBS in MSP 2013

After this relations are decided for activities. Generally there are 4 types of relations in MSP 2013.

1. Start to Finish
2. Start to-Start
3. Finish to-Finish.
4. Finish to Start

As shown above in Fig.3.3.2 activities listed are assigned relations based on predecessors and successors. After assigning relations critical path is shown in the Fig.3.3.3 below

Fig.3.3.3 Networking of the Activities by Critical Path Method

And adding all the activities in the MSP 2013 Activities are scheduled and project duration is calculated. Also resources used can be easily monitored and handled with it.

CHAPTER 4

Results and Discussions

4.1 SCHEDULING

Work Burndown - Shows how much work you have completed and how much you have left. If the remaining cumulative work line is steeper, then the project may be late.

From the beginning of the Project the resources are on use and track can be kept on it easily with the help of graphs and bar charts.

In the above bar chart 82% work shown is completed and only 18% work is left.
With the help of software after shifting the project start date and scheduling and levelling the resources it is known that the Project ends in 524 days using all the available resources.

4.2 Loads Considered

Dead Loads
1 DL due to Plate $/$ Slab $=0.15 * 25=3.75 \mathrm{kN} / \mathrm{m}^{2}$
2 DL due to External Wall $=0.35 * 2.45 * 20=19.15 \mathrm{kN} / \mathrm{m}^{2}$
3 DL due to Partition Wall $=0.2 * 2.5 * 20=11.8 \mathrm{kN} / \mathrm{m}^{2}$
4 DL due to Parapet Wall $=0.2 * 1.5 * 20=8 \mathrm{kN} / \mathrm{m}^{2}$
5 Plaster for two face $=0.02 * 2.45 * 1 * 18 * 2=2 \mathrm{kN} / \mathrm{m}^{2}$
Imposed Loads

1. Roof Live Load $=2 \mathrm{kN} / \mathrm{m}^{2}$
2. Floor Load $=4 \mathrm{kN} / \mathrm{m}^{2}$

Design Load
For the design of the beam, column and slab we've considered load combination L/C \#14 which is $1.2(\mathrm{DL}+\mathrm{LL}-\mathrm{EQZ})$.

4.3 Deflected Shape

Below shown figure is the deflected shape of the building under Load combination
$\mathrm{L} / \mathrm{C}=1.2(\mathrm{DL}+L L-E Q Z)$.

Fig. 4.3.1 Deflected shape

4.4 Max Displacement at nodes

Table 4.4.1 Max Displacement at different nodes

			Horizontal			Vertical	Horizontal	Resultant	Rotational		
	Node	L/C	X mm	Y mm	Z mm	mm	rX rad	rY rad	rZ rad		
Max X	54	141.2 (DL+LL-EQZ)	0.029	-0.408	-4.218	4.238	-0.002	-0.000	0.000		
Min X	49	141.2 (DL+LL-EQZ)	-0.029	-0.408	-4.218	4.238	-0.002	0.000	-0.000		
Max Y	2	141.2 (DL+LL-EQZ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Min Y	80	141.2 (DL+LL-EQZ)	0.007	-2.018	-29.432	29.501	-0.000	0.000	-0.000		
Max Z	2	141.2 (DL+LL-EQZ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Min Z	248	141.2 (DL+LL-EQZ)	0.004	-0.880	-29.458	29.471	-0.001	-0.000	-0.000		
Max rX	2	141.2 (DL+LL-EQZ)	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Min rX	181	141.2 (DL+LL-EQZ)	0.012	-0.459	-11.457	11.466	-0.002	0.000	-0.000		
Max rY	218	141.2 (DL+LL-EQZ)	0.017	-0.248	-4.230	4.237	-0.002	0.000	-0.000		
Min rY	221	141.2 (DL+LL-EQZ)	-0.017	-0.248	-4.230	4.237	-0.002	-0.000	0.000		
Max rZ	126	141.2 (DL+LL-EQZ)	-0.012	-1.523	-29.436	29.475	-0.001	-0.000	0.000		
Min rZ	121	141.2 (DL+LL-EQZ)	0.012	-1.523	-29.436	29.475	-0.001	0.000	-0.000		
Max Rst	207	141.2 (DL+LL-EQZ)	0.003	-1.934	-29.447	29.510	-0.000	-0.000	-0.000		

From the above table it is shown that what is the displacement at different nodes and it is concluded that max. Displacement at different nodes is less than 30 mm .

4.5 Max S.F \& B.M at Different nodes

Table 4.5.1 Max SF \& BM at different nodes

	Beam	L/C	Node	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz kNm
Max Fx	98	141.2 (DL+LL-EQZ)	44	1551.114	6.097	129.665	0.252	-344.366	5.240
Min Fx	542	141.2 (DL+LL-EQZ)	176	-11.911	71.511	-0.051	-0.008	0.018	74.625
Max Fy	166	141.2 (DL+LL-EQZ)	88	1429.768	141.236	-0.218	-0.002	0.286	356.097
Min Fy	289	141.2 (DL+LL-EQZ)	204	1.362	-52.368	-0.017	0.315	-0.018	37.394
Max Fz	99	141.2 (DL+LL-EQZ)	45	1416.382	-0.327	141.833	-0.015	-356.536	-0.435
Min Fz	392	141.2 (DL+LL-EQZ)	242	104.492	-11.689	-15.402	0.475	43.073	-15.277
Max Mx	365	141.2 (DL+LL-EQZ)	215	661.520	0.790	95.251	1.013	-310.489	-0.116
Min Mx	362	141.2 (DL+LL-EQZ)	212	661.523	-0.791	95.251	-1.013	-310.490	0.115
Max My	111	141.2 (DL+LL-EQZ)	63	940.678	-0.274	105.025	0.008	183.101	0.408
Min My	99	141.2 (DL+LL-EQZ)	45	1416.382	-0.327	141.833	-0.015	-356.536	-0.435
Max Mz	166	141.2 (DL+LL-EQZ)	88	1429.768	141.236	-0.218	-0.002	0.286	356.097
Min Mz	166	141.2 (DL+LL-EQZ)	94	1399.162	141.236	-0.218	-0.002	-0.367	-67.612

4.6 Column Design

Design Load for which columns are designed $=1.2($ DL+LL-EQZ $)$

Member 105 (Main reinforcement layout)

Member 105 (Shear Reinforcement layout)

Below here is the table of main reinforcement for all columns.
Table 4.6.1 Main Reinforcement

Mem	L/C	Axial kN	Major kNm	Minor kNm	Design Axis	As Req. mm^{2}	Total Bars	$\begin{gathered} \text { As Prov. } \\ \mathrm{mm}^{2} \end{gathered}$
M73	C14	1078.424	351.566	613.464	Biaxl min	11781	24 T 25	11781
M74	C14	1168.933	381.072	650.976	Biaxl min	11781	24 T25	11781
M75	C14	1168.994	381.092	650.722	Biaxl min	11781	24 T25	11781
M76	C14	664.245	216.544	488.094	Biaxl min	7854	16 T 25	7854
M77	C14	1081.148	352.454	616.366	Biaxl min	11781	24 T 25	11781
M78	C14	1551.108	505.661	763.164	Biaxl min	15708	32 T 25	15708
M79	C14	1417.863	462.223	737.912	Biaxl min	15708	32 T 25	15708
M80	C14	1417.336	462.052	737.546	Biaxl min	15708	32 T 25	15708
M81	C14	1344.986	438.466	711.287	Biaxl min	13744	28 T 25	13744
M82	C14	661.520	215.656	489.100	Biaxl min	7854	16 T 25	7854
M83	C14	1479.229	482.229	733.612	Biaxl min	15708	32 T 25	15708
M84	C14	1416.380	461.740	738.958	Biaxl min	15708	32 T 25	15708
M85	C14	1429.768	356.097	0.367	Biaxl maj	3927	8 T 25	3927
M86	C14	1204.389	286.042	435.048	Biaxl min	7854	16 T 25	7854
M87	C14	1430.450	466.327	742.138	Biaxl min	15708	32 T 25	15708
M88	C14	1418.821	462.536	738.876	Biaxl min	15708	32 T 25	15708
M89	C14	858.693	279.934	557.189	Biaxl min	9817	20 T 25	9817
M90	C14	1479.232	482.229	733.613	Biaxl min	15708	32 T 25	15708
M91	C14	1416.382	461.741	738.959	Biaxl min	15708	32 T 25	15708
M92	C14	1429.770	466.105	742.135	Biaxl min	15708	32 T 25	15708
M93	C14	1430.452	466.327	742.139	Biaxl min	15708	32 T 25	15708
M94	C14	1418.823	462.536	738.877	Biaxl min	15708	32 T 25	15708
M95	C14	858.695	279.935	557.190	Biaxl min	9817	20 T 25	9817
M96	C14	1081.150	352.455	616.367	Biaxl min	11781	24 T 25	11781
M97	C14	1551.114	505.663	763.166	Biaxl min	15708	32 T 25	15708
M98	C14	1417.868	462.225	737.914	Biaxl min	15708	32 T 25	15708
M99	C14	1417.342	462.053	737.548	Biaxl min	15708	32 T 25	15708
M100	C14	1344.991	438.467	711.289	Biaxl min	13744	28 T 25	13744
M101	C14	661.523	215.656	489.101	Biaxl min	7854	16 T 25	7854
M102	C14	1078.427	351.567	613.466	Biaxl min	11781	24 T25	11781
M103	C14	1168.936	381.073	650.978	Biaxl min	11781	24 T 25	11781
M104	C14	1168.997	381.093	650.724	Biaxl min	11781	24 T 25	11781
M105	C14	664.247	216.544	488.096	Biaxl min	7854	16 T 25	7854

And given below table here shows the shear reinforcement for all the columns
Table 4.6.2 Shear Reinforcement

Mem	Max Shear in Localy			Max Shear in Local z			Asv Req.mm^{2}	Link Size	Spacing cm
	L/C	Value kN	Position m	L/C	Value kN	Position m			
M73	C14	20.630	3.000	C14	108.373	0.000	0	10	7.1
M74	C14	19.002	15.000	C14	121.263	0.000	0	10	7.1
M75	C14	18.936	15.000	C14	121.072	0.000	0	10	7.1
M76	C14	13.692	15.000	C14	94.359	0.000	0	10	7.1
M77	C14	20.441	3.000	C14	109.669	0.000	0	10	7.1
M78	C14	13.025	3.000	C14	129.665	0.000	0	10	7.1
M79	C14	2.409	12.000	C14	140.819	0.000	0	10	7.1
M80	C14	2.784	15.000	C14	140.641	0.000	0	10	7.1
M81	C14	10.056	15.000	C14	133.761	0.000	0	10	7.1
M82	C14	11.689	15.000	C14	95.251	0.000	0	10	7.1
M83	C14	1.159	15.000	C14	118.629	0.000	0	10	7.1
M84	C14	0.497	12.000	C14	141.833	0.000	0	10	7.1
M85	C14	141.236	0.000	C14	0.218	0.000	0	10	7.1
M86	C14	0.374	12.000	C14	128.890	0.000	0	10	7.1
M87	C14	0.310	12.000	C14	141.095	0.000	0	10	7.1
M88	C14	0.699	12.000	C14	141.237	0.000	0	10	7.1
M89	C14	1.134	15.000	C14	109.496	0.000	0	10	7.1
M90	C14	1.159	15.000	C14	118.629	0.000	0	10	7.1
M91	C14	0.497	12.000	C14	141.833	0.000	0	10	7.1
M92	C14	0.374	15.000	C14	141.237	0.000	0	10	7.1
M93	C14	0.310	12.000	C14	141.095	0.000	0	10	7.1
M94	C14	0.699	12.000	C14	141.237	0.000	0	10	7.1
M95	C14	1.134	15.000	C14	109.496	0.000	0	10	7.1
M96	C14	20.441	3.000	C14	109.669	0.000	0	10	7.1
M97	C14	13.025	3.000	C14	129.665	0.000	0	10	7.1
M98	C14	2.409	12.000	C14	140.819	0.000	0	10	7.1
M99	C14	2.784	15.000	C14	140.641	0.000	0	10	7.1
M100	C14	10.056	15.000	C14	133.761	0.000	0	10	7.1
M101	C14	11.689	15.000	C14	95.251	0.000	0	10	7.1
M102	C14	20.630	3.000	C14	108.373	0.000	0	10	7.1
M103	C14	19.003	15.000	C14	121.263	0.000	0	10	7.1
M104	C14	18.936	15.000	C14	121.072	0.000	0	10	7.1
M105	C14	13.692	15.000	C14	94.359	0.000	0	10	7.1

4.7 Beam Design

Design Load for which beams are designed $=1.2(\mathrm{DL}+\mathrm{LL}-\mathrm{EQZ})$

Member 23 (Shear Reinforcement layout)

4.8 Slab Design

Slab 6, specified Design load = 1.2(DL+LL-EQZ)

Fig. 4.8.1 Showing Displacement Contour

Fig. 4.8.2 Result line graph showing displacement over the span

Fig. 4.8.3 Principal Major Stress (Top Reinforcement)

Fig. 4.8.4 Principal Minor Stress (Top Reinforcement)

Fig. 4.8.5 Principal Major Stress (Bottom reinforcement)

Fig. 4.8.6 Principal Minor Stress (Bottom Reinforcement)

4.9 Foundation Design

1. Foundation Type - Isolated
2. Soil Bearing Capacity $-230 \mathrm{kN} / \mathrm{m}^{2}$

4.9.1 Parameters for Design

Unit Weight of Concrete	$25.00 \mathrm{kN} / \mathrm{m}^{3}$
Strength of concrete	$25.00 \mathrm{~N} / \mathrm{mm}^{2}$
Yield strength of concrete	$415.00 \mathrm{~N} / \mathrm{mm}^{2}$
Minimum Bar Dia.	$\emptyset 12$
Maximum Bar Dia.	$\emptyset 25$
Minimum Bar Spacing	50.00 mm
Maximum Bar Spacing	500.00 mm

Load Combination/s- Service Stress Level		
Load Combination Number	Load Combination Title	
19	DL+LL	
20	DL+0.5LL+EQX	
21	DL+0.5LL-EQX	
22	DL+0.5LL+EQZ	
23	DL+0.5LL-EQZ	
Load Combination/s- Strength Level		
Load Combination Number	Load Combination Title	
19	DL+LL	
20	DL+0.5LL+EQX	
21	DL+0.5LL-EQX	
22	DL+0.5LL+EQZ	
23	DL+0.5LL-EQZ	

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
	879.951	-8.592	-8.821	-8.600	8.316
20	828.023	7.556	-7.570	-7.212	-49.791
21	660.207	10.415	-4.611	-4.293	-52.564
22	827.390	-7.384	7.468	49.751	7.006
23	659.574	-4.524	10.427	52.671	4.233

Applied Loads - Strength Level					
LC Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
	879.951	-8.592	-8.821	-8.600	8.316
20	828.023	7.556	-7.570	-7.212	-49.791
21	660.207	10.415	-4.611	-4.293	-52.564
22	827.390	-7.384	7.468	49.751	7.006
23	659.574	-4.524	10.427	52.671	4.233

4.9.2 Calculations for Design

Size of Footing

Initial Length : L_{o} -
1.00 m

Initial Width : Wo -
1.00 m

Initial length and width area: A_{o} -
$\mathrm{L}_{\mathrm{o}} * \mathrm{~W}_{\mathrm{o}}=1.00 \mathrm{~m}^{2}$
Min. required area for bearing pressure : $\mathrm{A}_{\text {min }}$ -
$\mathrm{P} / \mathrm{q} \max =3.859 \mathrm{~m}^{2}$

Final dimensions for design

Length, $\mathrm{L}_{2}-3.35 \mathrm{~m} \quad$ Governing Load Case : 20
Width, W_{2} -
3.35 m Governing Load Case : 20

Area, A_{2} -
$11.223 \mathrm{~m}^{2}$

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding	Factor of safety against overturning	
Load Case No.	Along X- Direction	Along Z- Direction	About X-Direction

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction :
Governing Disturbing Force :
Governing Restoring Force :
Minimum Sliding Ratio for the Critical Load Case :
Critical Load Case for Overturning about X-Direction :
Governing Overturning Moment :
Governing Resisting Moment :
Minimum Overturning Ratio for the Critical Load Case :
20.623 kN
700.039 kN
33.945 kN

21
$-374.045 \mathrm{kNm}$
2345.088 kNm
6.270

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction :	21
Governing Disturbing Force :	-117.561 kN
Governing Restoring Force :	700.039 kN
Minimum Sliding Ratio for the Critical Load Case :	5.955
Critical Load Case for Overturning about Z-Direction :	21
Governing Overturning Moment :	-67.960 kNm
Governing Resisting Moment :	2345.088 kNm
Minimum Overturning Ratio for the Critical Load Case :	34.507

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	$=\# \mathbf{2 0}$		
Effective Depth $=$	D-(cc $\left.+0.5 \times d_{b}\right)$	$=0.449$	m
Effective End Depth $=$	Initial End Depth $-\mathrm{D}-\left(\mathrm{cc}+0.5 \times d_{b}\right)$	$=0.256$	m
Effective Width of Equivalent Rectangle $=$	Col. Width $+($ Footing Width - Col. Width $) / 8.0$	$=0.944$	m
Governing moment $\left(\mathrm{M}_{\mathrm{u}}\right)$		$=601.771$	kNm

As Per IS 4562000 ANNEX G G-1.1C

$$
\begin{array}{cccc}
\text { Limiting Factor1 }\left(\mathrm{K}_{\mathrm{umax}}\right)= & \frac{700}{\left(1100+0.87 \times \mathrm{f}_{\mathrm{y}}\right)} & =0.479107 \\
\text { Limiting Factor2 }\left(R_{\mathrm{umax}}\right)= & 0.36 \times \mathrm{f}_{\mathrm{ck}} \times \mathrm{k}_{\mathrm{umax}} \times(1-0.42 \times \text { humax }) & =3444.291146 & \mathrm{kN} / \mathrm{m} 2 \\
\text { ent Of Resistance }\left(\mathrm{M}_{\mathrm{umax}}\right)= & \mathrm{R}_{\text {umax }} \times{\mathrm{BB} \times \mathrm{d}_{\mathrm{e}}}^{2} & =655.302109 & \mathrm{kNm} \\
\mathrm{M}_{\mathrm{u}}<=\mathrm{M}_{\mathrm{umax}} & \text { hence, safe } & &
\end{array}
$$

Critical Load Case	= \#20		
Effective Depth =	D - $\left(\mathrm{cc}+0.5 \times \mathrm{d}_{\mathrm{b}}\right)$	$=0.449$	m
Effective End Depth		$=0.256$	m
Effective Width		$=0.944$	m
Governing moment $\left(M_{u}\right)=$		$=486.922$	kNm
As Per IS 4562000 ANNEX G G-1.1C			
Limiting Factor1 $\left(\mathrm{K}_{\text {umax }}\right)=$	$\frac{700}{\left(1100+0.87 \times f_{y}\right)}$	$=0.479107$	
Limiting Factor2 ($\left.\mathrm{R}_{\mathrm{umax}}\right)=$	$0.36 \times \mathrm{f} \mathrm{ck}^{\times \mathrm{K}_{\text {umax }} \times(1-0.42 \times \text { humax })}$	$=3444.291146$	kN/m2
Limit Moment Of Resistance $\left(\mathrm{M}_{\text {umax }}\right)=$	$\mathrm{R}_{\text {umax }} \times \mathrm{B} \times \mathrm{de}_{\mathrm{e}}{ }^{2}$	$=655.302109$	kNm
$M_{u}<=M_{u m a x}$	hence, safe		

4.9.3 Foundation Geometry for all footings:

Table 4.9.3.1 Foundation Geometry

Footing No.	$\begin{gathered} \text { Grovp } \\ \text { ID } \end{gathered}$	Foundation Geometry			
-	-	Length	Width	Thickne ss	Slope End Thickne ss
2	1	2.950 mm	2.950 mm	0.455 m	0.212 mm
3	2	3.350 mm	3.350 mm	0.505 mm	0.312 mm
4	3	3.350 mm	3.350 mm	0.505 mm	0.312 mm
5	4	3.050 mm	3.050 mm	0.455 mm	0.262 mm
43	5	2.950 mm	2.950 mm	0.455 mm	0.212 mm
44	6	3.400 mm	3.400 mm	0.555 m	0.312 mm
45	7	3.450 mm	3.450 mm	0.555 mm	0.312 mm
46	8	3.450 mm	3.450 mm	0.555 m	0.312 mm
47	9	3.450 mm	3.450 mm	0.555 mm	0.362 mm
4 S	10	3.050 mm	3.050 mm	0.455 mm	0.262 mm
85	1.1	3.050 mm	3.050 mm	0.455 mm	0.262 mm
86	12	3.450 mm	3.450 mm	0.555 m	0.312 mm
87	13	3.450 mm	3.450 mm	0.555 m	0.312 mm
88	14	3.450 mm	3.450 mm	0.555 m	0.312 mm
89	15	3.450 mm	3.450 mm	0.555 m	0.312 mm
90	16	3.200 mm	3.200 mm	0.455 m	0.262 mm
127	17	3.050 mm	3.050 mm	0.455 m	0.262 mm
12 S	13	3.450 mm	3.450 mm	0.555 m	0.312 mm
129	19	3.450 mm	3.450 mm	0.555 m	0.312 mm
130	20	3.450 mm	3.450 mm	0.555 mm	0.312 mm
131	21	3.450 mm	3.450 mm	0.555 mm	0.312 mm
132	22	3.200 mm	3.200 mm	0.455 m	0.262 mm
169	23	2.850 mm	2.850 mm	0.405 mm	0.162 m
170	24	3.300 mm	3.300 mm	0.505 m	0.312 mm
171	25	3.450 mm	3.450 mm	0.555 mm	0.312 mm
172	26	3.450 mm	3.450 mm	0.555 mm	0.312 mm
173	27	3.300 mm	3.300 mm	0.505 mm	0.312 mm
174	23	2.700 mm	2.700 mm	0.405 mm	0.212 mm
212	29	2.850 mm	2.850 mm	0.405 mm	0.162 mm
213	30	2.900 mm	2.900 mm	0.405 mm	0.212 mm
214	31	2.900 mm	2.900 mm	0.405 mm	0.212 mm
215	32	2.700 mm	2.700 mm	0.405 mm	0.212 mm

4.9.4 Foundation R / F of whole building

Table 4.9.4.1 Foundation reinforcement

Footing No.	Footing Reinforcement			
-	Bottom Reinforcement(M_{z})	Bottom Reinforcement(M_{x})	Top Reinforcement(M_{z})	Top Reinforcement(M_{x})
2	Ø12@ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $175 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $235 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
3	$\emptyset 12$ @ $105 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $00 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
4	$\emptyset 12$ @ $105 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $00 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
5	$\emptyset 12$ @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $170 \mathrm{~mm} \mathrm{c/c}$	Ø12@ $225 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
43	$\emptyset 12$ @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $175 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 235 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
44	$\emptyset 12 @ 95 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $125 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
45	Ø12@ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
46	Ø12@ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
47	$\emptyset 12 @ 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
48	$\emptyset 12 @ 130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $225 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
85	Ø12@ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $85 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $150 \mathrm{~mm} \mathrm{c/c}$	Ø12@ $225 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
86	$\emptyset 12$ @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
87	$\emptyset 12$ @ $95 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
88	Ø12@ $95 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
89	Ø12@ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
90	Ø12@ $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $00 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $235 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
127	$\emptyset 12$ @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $150 \mathrm{~mm} \mathrm{c/c}$	$\emptyset 12$ @ $225 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
128	$\emptyset 12 @ 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
129	Ø12@ $95 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
130	$\emptyset 12$ @ $95 \mathrm{~mm} \mathrm{c/c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c/c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c/c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
131	Ø12@ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
132	Ø12 @ $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	Ø12@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12$ @ $150 \mathrm{~mm} \mathrm{c/c}$	Ø12@ $235 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

169	$\emptyset 12 @ 195 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 105 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 270 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 270 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
170	$\emptyset 12 @ 115 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 85 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 210 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
171	$\emptyset 12 @ 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
172	$\emptyset 12 @ 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 205 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
173	$\emptyset 12 @ 105 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 210 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
174	$\emptyset 12 @ 235 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 255 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 255 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
212	$\emptyset 12 @ 195 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 105 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 270 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 270 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
213	$\emptyset 12 @ 145 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 95 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 195 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 275 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
214	$\emptyset 12 @ 145 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 95 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 195 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 275 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
215	$\emptyset 12 @ 235 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 135 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 255 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\emptyset 12 @ 255 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

4.10 Cost Analysis

4.10.1 Construction cost

Table 4.10.1.1 Built-Up Area of 1 Building

Over-all Built-Up area	$21824 \mathrm{ft}^{2}$
Ground Floor	$3704 \mathrm{ft}^{2}$
First Floor	$3624 \mathrm{ft}^{2}$
Second Floor	$3624 \mathrm{ft}^{2}$
Third Floor	$3624 \mathrm{ft}^{2}$
Fourth Floor	$3624 \mathrm{ft}^{2}$
Fifth Floor	$3624 \mathrm{ft}^{2}$

$$
\text { -回 } \mathbb{E}
$$

Fig. 4.10.1.1 Model of Ground floor of building

Fig. 4.10.1.2 Model of building complex

Table 4.10.1.2 Estimate of one Building

S. No.	Family \& Category	Name of Material	Area of Material	Cost of Material(₹)	Overall Cost
1	Floor Tile 24*48 (Ground Floor) :1	Floor Tile $24 * 48$	3704 SF	250	₹ 926000
2	Floor Tile 24 X 48 :5	Floor Tile 24 X 48	18120 SF	300	₹ 5436000
3	$\begin{aligned} & \text { Exterior wall 8" } \\ & : 108 \end{aligned}$	Concrete Masonry Units	4770 SF	140	₹ 667800
4	$\begin{aligned} & \text { Interior Wall 6" } \\ & : 162 \end{aligned}$	Common Brick	7464 SF	110	₹ 821040
5	Generic Basic Roof 6":1	Default Roof	3624 SF	300	₹ 1087200
6	$\begin{aligned} & \text { Column } \\ & 24 " \text { X } 24 ": 192 \end{aligned}$	Default Wall	16512 SF	110	₹ 1816320
7	Flush Door: $\text { 34"X 84" } 60$	Door Frame	1380 SF	200	₹ 276000
8	Flush Door: $34 " X 84 ": 60$	Door Panel	2700 SF	200	₹ 540000
9	$\begin{aligned} & \text { Panel Door: } \\ & 34 " \text { X } 84 ": 36 \end{aligned}$	Door Frame	828 SF	280	₹ 231840
10	Panel Door: $34 " \text { X 84" : } 36$	Door Panel	1800 SF	280	₹ 504000
11	Glass : 192	Glass	4608 SF	90	₹ 414720
12	Sash : 96	Sash	1632 SF	180	₹ 293760
13	Trim : 96	Trim	960 SF	230	₹ 220800
				Total	₹ 13235480

Table 4.10.1.3 Estimate of all buildings

S. No.	Family \& Category	Name of Material	Area of Material	Cost of Material(₹)	Overall Cost
1	Floor Tile 24*48 (Ground Floor) :4	$\begin{aligned} & \hline \text { Floor Tile } \\ & 24 * 48 \end{aligned}$	14816 SF	250	₹ 3704000
2	$\begin{aligned} & \text { Floor Tile } \\ & 24 \text { X } 48: 20 \end{aligned}$	$\begin{aligned} & \text { Floor Tile } \\ & 24 \text { X } 48 \end{aligned}$	72480 SF	300	₹ 21744000
3	Exterior wall 8" $\text { : } 432$	Concrete Masonry Units	19080 SF	140	₹ 2671200
4	$\begin{aligned} & \text { Interior Wall 6" } \\ & : 648 \end{aligned}$	Common Brick	29856 SF	110	₹ 3284160
5	Generic Basic Roof 6": 4	Default Roof	14496 SF	300	₹ 4348800
6	$\begin{aligned} & \text { Column } \\ & 24 " \text { X } 24 ": 768 \end{aligned}$	Default Wall	66048 SF	110	₹ 7265280
7	Flush Door: $34 " X 84 ": 240$	Door Frame	5520 SF	200	₹ 1104000
8	Flush Door: $34 " X 84 ": 240$	Door Panel	10800 SF	200	₹ 2160000
9	Panel Door: $34 " \text { X 84" : } 144$	Door Frame	3312 SF	280	₹ 927360
10	Panel Door: $34 " \text { X 84" : } 144$	Door Panel	7200 SF	280	₹ 2016000
11	Glass : 768	Glass	18432 SF	90	₹ 1658880
12	Sash : 384	Sash	6528 SF	180	₹ 1175040
13	Trim : 384	Trim	3840 SF	230	₹ 883200
				Total	₹ 52941920

Table 4.10.1.4 Total Constructing Cost of all Buildings

Constructing Cost	₹ 52941920
Painting cost per sq. ft.	₹ 30
Total painting cost	₹ 5545440
Total constructing cost	₹ 58487360
1% of total cost (Tools \& Tackles)	₹ 584873.60
2% of total cost (Water Charges)	₹ 1169747.20
5% of total cost (Sanitary fittings)	₹ 2924368
10% of total cost (Contractor’s Profit)	₹ 5848736
30% of total cost17546208 (Labor charges)	₹ 17546208
Total Construction Cost of whole Project	₹ 86561292.8

CHAPTER 5
 CONCLUSION

5.1 General

STAAD PRO gives us reinforcement requirement for concrete members and the project contains many members all designed as per IS: 456 (2000).

1. Max. Hogging and sagging moments are calculated for the design load and other active load cases. And every section is designed to resist the critical hogging and sagging moment.
2. Shear R/F is calculated to resist both S.F \& torsional moments.
2.1 Max. Deflection at different nodes < 30 mm .
2.2 In shear \& flexure structural components are safe of the building.
3. Increment in the quantity of analysis tools is an indication to the expanding significance of manageable plan in engineering and the need to enhance building execution is appropriate for conveying the sort of data that can be utilized to improve plan and building execution. REVIT arch. Systematizes the hard work of activities like Material Takeoff, Schedule/Quantities etc. whilst taking and coordinating data in the documents set.

Total Construction Cost of whole Project $=₹ 86561292.8$
Total Project Duration = 524 days
4. Construction of structure utilizing Traditional path ends up being uneconomical and expends additional time with numerous complexibility and gigantic mistake which affects actual execution of the Project. Customary way for planning doesn't sub separate the primary task like over allocation of assets, inappropriate judgment of assets for specific activities and so forth.

5.2 Future Scope

An effective construction project management must have varied plans \& advanced concepts to benefit in advancing and managing numerous projects. It offers the basis for a career path in the construction industry and offers a good understanding of the theoretic ideas of construction practices.

And since technology is changing always and advancing similarly it is changing in the architecture, civil engineering or design field also. And since software play a very major role so having good knowledge of software like AutoCAD, STAAD Pro, 3ds Max, Revit, Primavera, Rhino etc. can help in a great way.

REFERENCES

[1] Wale, P.M., Jain, N.D., Godhani, N.R., Beniwal, S.R. and Mir, A.A., 2015. Planning and Scheduling of Project using Microsoft Project (Case Study of a Building in India). IOSR Journal of Mechanical and Civil Engineering, pp.57-63.
[2] Kumar K., Monish, Maregoudru., Maheshwar S, B.P., Sparsha., 2017. Construction Project Scheduling of MK Apartment Using MS Project 2013. (IRJET)International Research Journal of Engineering and Technology.
[3] Nalwadgi Manjunath, T Vishal, Gajendra., 2016. Analysis and design of multistorey building by using STAAD Pro. (IRJET)International Research Journal of Engineering and Technology.
[4] Rani.H Babitha, Babu Nagendra,. 2018. Analysis and Design of G + 4 Building Using STAAD Pro. (IRJET)International Research Journal of Engineering and Technology.
[5] A, Anoop, Hussian Fousiya, R Neeraja., Chandran Rahul, Planning Analysis And Design Of Multi Storied Building Dy Staad.Pro.V8i. International Journal of Scientific \& Engineering Research.
[6] Sharma, M. and Maru, D.S., 2014. Dynamic Analysis of Multistoried Regular Building. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN, pp.22781684.
[7] Shivashaankar, D.S. and Yashwant, P.R., 2014. Design and Practical Limitations in Earthquake Resistant Structures and Feedback. International Journal of Civil Engineering and Technology (IJCIET)", ISSN, pp.0976-6308.
[8] Pathak K.K., Abhishek Sharma(2015) "Manpower Planning, Scheduling And Tracking Of A Construction Project Using Microsoft Project Software" journal of today’s ideas Tomorrows technologies, Vol. 3, No.2,pp 161-169.
[9] Paulay, T. and Priestley, M.N., 1992. Seismic design of reinforced concrete and masonry buildings.
[10] Clough Ray W. and King Ian P. (1994) Structural Analysis of multistory Buildings.
[11] Chopra Anil K. and Gutierrez Jorge A. (1974) Earthquake Response Analysis Of Multistorey Buildings Including Foundation Interaction.
[12] Choi, C., Chung, H., Lee, D., \& Wilson, E. L. (1992) Simplified Building Analysis with Sequential Dead Loads-CFM.
[13] Pathak K.K., Abhishek Sharma(2015) "Manpower Planning, Scheduling And Tracking Of A Construction Project Using Microsoft Project Software" journal of today's ideasTomorrows technologies, Vol. 3, No.2,pp 161-169.
[14] Rhuta Joshi, Patil V.Z., (2015) "Resource Scheduling of Construction Projects: Case Study" international journal of science and research (IJSR), ISSN 2319-7064, Vol-4, Issue 5, pp 563-568.
[15] Suresh, B., and PM Brajkiran Nanduri. "Earthquake analysis and design vs non earthquake analysis and design using Staad pro." international journal of advanced engineering and technology 3 (2012): 104-106.
[16] Behera, Ashis Debashis. 3-D Analysis of Building Frame Using STAAD-PRO. Diss. 2012.
[17] Adiyanto, M. I., T. A. Majid, and S. S. Zaini. "Analysis and Design of 3 Storey Hospital Structure Subjected To Seismic Load Using STAAD PRO." International conference on construction and building technology. 2008.
[18] Thakur, Ashok, and Arvinder Singh. "Comparative Analysis of a Multi Storied Residential Building with a without Shear Wall Using STADD Pro." International Journal of Recent Research Aspects 1 (2014): 54-57.
[19] Ambadkar, Swati D., and Vipul S. Bawner. "Behaviour of multistoried building under the effect of wind load 1." (2012).
[20] Arya, Umakant, Aslam Hussain, and Waseem Khan. "Wind Analysis of Building Frames on sloping ground." International Journal of Scientific and Research Publications 4.5 (2014): 1-7.

APPENDIX A

A. 1 STAAD INPUT FILE

STAAD SPACE

START JOB INFORMATION
ENGINEER DATE 10-Feb-19
END JOB INFORMATION
INPUT WIDTH 79
SET PRINT 5
UNIT METER KN
JOINT COORDINATES
$23.9725300 ; 37.9450500 ; 411.917600 ; 515.890100 ; 83.9725330$ 0;
97.945053 0; 1011.917630 ; 1115.89013 0; 143.9725360 ; 157.9450560 ;
$1611.917660 ; 1715.890160 ; 203.9725390 ; 217.9450590 ; 2211.917690$;
$2315.890190 ; 263.97253120 ; 277.94505120 ; 2811.9176120$;
$2915.8901120 ; 323.97253150 ; 337.94505150 ; 3411.9176150$;
$3515.8901150 ; 383.97253180 ; 397.94505180 ; 4011.9176180$;
41 15.8901 18 0; 4300 3.97253; 443.972530 3.97253; 457.945050 3.97253;
4611.91760 3.97253; 4715.890103 .97253 ; 4819.86260 3.97253;

4903 3.97253; 503.972533 3.97253; 517.9450533 .97253 ;
5211.91763 3.97253; 5315.89013 3.97253; 5419.86263 3.97253;

5506 3.97253; 563.972536 3.97253; 577.945056 3.97253;
5811.91766 3.97253; 5915.89016 3.97253; 6019.862663 .97253 ;

6109 3.97253; 623.972539 3.97253; 637.945059 3.97253;
64 11.9176 9 3.97253; 6515.89019 3.97253; 6619.86269 3.97253;
67012 3.97253; 683.9725312 3.97253; 697.94505123 .97253 ;
7011.917612 3.97253; 7115.890112 3.97253; 7219.862612 3.97253;

73015 3.97253; 743.9725315 3.97253; 757.9450515 3.97253;
7611.917615 3.97253; 7715.890115 3.97253; 7819.8626153 .97253 ;

79018 3.97253; 803.9725318 3.97253; 817.9450518 3.97253;
8211.917618 3.97253; 8315.890118 3.97253; 8419.862618 3.97253; $85007.94505 ; 863.9725307 .94505 ; 877.9450507 .94505$; 88 11.9176 0 7.94505; 8915.89010 7.94505; 9019.862607 .94505 ; 9103 7.94505; 923.972533 7.94505; 937.945053 7.94505; 94 11.9176 3 7.94505; 9515.89013 7.94505; 9619.862637 .94505 ; $97067.94505 ; 983.9725367 .94505 ; 997.9450567 .94505$; 100 11.9176 67.94505 ; $10115.890167 .94505 ; 10219.862667 .94505$; $103097.94505 ; 1043.9725397 .94505 ; 1057.9450597 .94505$; $10611.917697 .94505 ; 10715.890197 .94505 ; 10819.862697 .94505$; $1090127.94505 ; 1103.97253127 .94505 ; 1117.94505127 .94505$; $11211.9176127 .94505 ; 11315.8901127 .94505 ; 11419.8626127 .94505$; $1150157.94505 ; 1163.97253157 .94505 ; 1177.94505157 .94505$; $11811.9176157 .94505 ; 11915.8901157 .94505 ; 12019.8626157 .94505$; $1210187.94505 ; 1223.97253187 .94505 ; 1237.94505187 .94505$; $12411.9176187 .94505 ; 12515.8901187 .94505 ; 12619.8626187 .94505$; 12700 11.9176; 1283.972530 11.9176; 1297.94505011 .9176 ; $13011.9176011 .9176 ; 13115.8901011 .9176 ; 13219.8626011 .9176$; 13303 11.9176; 1343.972533 11.9176; 1357.945053 11.9176; $13611.9176311 .9176 ; 13715.8901311 .9176 ; 13819.8626311 .9176$; 13906 11.9176; 1403.972536 11.9176; 1417.94505611 .9176 ; $14211.9176611 .9176 ; 14315.8901611 .9176 ; 14419.8626611 .9176$; 14509 11.9176; 1463.972539 11.9176; 1477.945059 11.9176; $14811.9176911 .9176 ; 14915.8901911 .9176 ; 15019.8626911 .9176$; 151012 11.9176; 1523.9725312 11.9176; $1537.945051211 .9176 ;$ $15411.91761211 .9176 ; 15515.89011211 .9176 ; 15619.86261211 .9176$; 157015 11.9176; 1583.9725315 11.9176; $1597.945051511 .9176 ;$ $16011.91761511 .9176 ; 16115.89011511 .9176 ; 16219.86261511 .9176$; 163018 11.9176; 1643.9725318 11.9176; 1657.945051811 .9176 ; $16611.91761811 .9176 ; 16715.890118$ 11.9176; 16819.86261811 .9176 ; 16900 15.8901; 1703.972530 15.8901; 1717.94505015 .8901 ;
17211.9176015 .8901 ; 17315.8901015 .8901 ; 17419.8626015 .8901 ; 17503 15.8901; 1763.972533 15.8901; 1777.945053 15.8901; $17811.9176315 .8901 ; 17915.8901315 .8901 ; 18019.86263$ 15.8901; 18106 15.8901; 1823.972536 15.8901; 1837.945056 15.8901; 18411.91766 15.8901; 18515.89016 15.8901; 18619.86266 15.8901; 18709 15.8901; 1883.972539 15.8901; 1897.945059 15.8901; 19011.91769 15.8901; 19115.89019 15.8901; 19219.86269 15.8901; 193012 15.8901; 1943.9725312 15.8901; 1957.9450512 15.8901; 19611.917612 15.8901; 19715.890112 15.8901; 19819.862612 15.8901; 199015 15.8901; 2003.9725315 15.8901; 2017.9450515 15.8901; 20211.917615 15.8901; 20315.890115 15.8901; 20419.862615 15.8901; 205018 15.8901; 2063.9725318 15.8901; 2077.9450518 15.8901; $20811.91761815 .8901 ; 20915.890118$ 15.8901; 21019.862618 15.8901; 2123.972530 19.8626; 2137.945050 19.8626; 21411.91760 19.8626; 21515.89010 19.8626; 2183.972533 19.8626; 2197.945053 19.8626; 22011.91763 19.8626; 22115.89013 19.8626; 2243.972536 19.8626; 2257.945056 19.8626; 22611.91766 19.8626; 22715.89016 19.8626; 2303.972539 19.8626; 2317.945059 19.8626; 23211.91769 19.8626; 23315.89019 19.8626; 2363.9725312 19.8626; 2377.9450512 19.8626; 23811.917612 19.8626; 23915.890112 19.8626; 2423.9725315 19.8626; 2437.9450515 19.8626; 24411.917615 19.8626; 24515.890115 19.8626; 2483.9725318 19.8626; 2497.9450518 19.8626; 25011.917618 19.8626;
25115.890118 19.8626;

MEMBER INCIDENCES

28 9; 39 10; 410 11; 714 15; 815 16; 916 17; 1220 21; 1321 22;
1422 23; 1726 27; 1827 28; 1928 29; 2232 33; 2333 34; 2434 35; 2738 39;
2839 40; 2940 41; 322 8; 333 9; 344 10; 355 11; 388 14; 399 15;
4010 16; 4111 17; 4414 20; 4515 21; 4616 22; 4717 23; 5020 26; 5121 27;
5222 28; 5323 29; 5626 32; 5727 33; 5828 34; 5929 35; 6232 38; 6333 39;
6434 40; 6535 41; 6749 50; 6850 51; 6951 52; 7052 53; 7153 54; 7255 56;
7356 57; 7457 58; 7558 59; 7659 60; 7761 62; 7862 63; 7963 64; 8064 65;

8165 66; 8267 68; 8368 69; $846970 ; 857071 ; 867172 ; 877374 ; 887475$; 8975 76; 9076 77; 9177 78; 9279 80; 9380 81; 9481 82; 9582 83; 9683 84; 9743 49; 9844 50; 9945 51; 10046 52; 10147 53; 10248 54; 10349 55;

10450 56; 10551 57; 10652 58; 10753 59; 10854 60; 10955 61; 11056 62; 11157 63; 11258 64; 11359 65; 11460 66; 115 61 67; 11662 68; 11763 69; $1186470 ; 1196571 ; 1206672 ; 12167$ 73; $1226874 ; 1236975 ; 1247076$; 1257177 ; $1267278 ; 1277379 ; 12874$ 80; 12975 81; 13076 82; 13177 83; 13278 84; $1339192 ; 13492$ 93; 13593 94; 13694 95; 13795 96; 1389798 ; 13998 99; 14099 100; 141100 101; 142101 102; 143103 104; 144104 105; 145105 106; 146106 107; 147107 108; 148109 110; 149110 111; 150111 112; 151112 113; 152113 114; 153115 116; 154116 117; 155117 118; 156118 119; 157119 120; 158121 122; 159122 123; 160123 124; 161124 125; 162125 126; 16385 91; 16486 92; 16587 93; 16688 94; 16789 95; 16890 96; 1699197 ; 17092 98; 17193 99; 17294 100; 17395 101; 17496 102; 17597 103;

17698 104; 17799 105; 178100 106; 179101 107; 180102 108; 181103 109; 182104 110; 183105 111; 184106 112; 185107 113; 186108 114; 187109 115; 188110 116; 189111 117; 190112 118; 191113 119; 192114 120; 193115 121; 194116 122; 195117 123; 196118 124; 197119 125; 198120 126; 199133 134; 200134 135; 201135 136; 202136 137; 203137 138; 204139 140; 205140 141; 206141 142; 207142 143; 208143 144; 209145 146; 210146 147; 211147 148; 212148 149; 213149 150; 214151 152; 215152 153; 216153 154; 217154 155; 218155 156; 219157 158; 220158 159; 221159 160; 222160 161; 223161 162; 224163 164; 225164 165; 226165 166; 227166 167; 228167 168; 229127 133; 230128 134; 231129 135; 232130 136; 233131 137; 234132 138; 235133 139; 236134 140; 237135 141; 238136 142; 239137 143; 240138 144; 241139 145; 242140 146; 243141 147; 244142 148; 245143 149; 246144 150; 247145 151; 248146 152; 249147 153; 250148 154; 251149 155; 252150 156; 253151 157; 254152 158; 255153 159; 256154 160; 257155 161; 258156 162; 259157 163; 260158 164; 261159 165; 262160 166; 263161 167; 264162 168; 265175 176; 266176 177; 267177 178; 268178 179; 269179 180; 270181 182; 271182 183; 272183 184; 273184 185; 274185 186; 275187 188; 276188 189; 277189 190;

278190 191; 279191 192; 280193 194; 281194 195; 282195 196; 283196 197; 284197 198; 285199 200; 286200 201; 287201 202; 288202 203; 289203 204; 290205 206; 291206 207; 292207 208; 293208 209; 294209 210; 295169 175; 296170 176; 297171 177; 298172 178; 299173 179; 300174 180; 301175 181; 302176 182; 303177 183; 304178 184; 305179 185; 306180 186; 307181 187; 308182 188; 309183 189; 310184 190; 311185 191; 312186 192; 313187 193; 314188 194; 315189 195; 316190 196; 317191 197; 318192 198; 319193 199; 320194 200; 321195 201; 322196 202; 323197 203; 324198 204; 325199 205; 326200 206; 327201 207; 328202 208; 329203 209; 330204 210; 332218 219; 333219 220; 334220 221; 337224 225; 338225 226; 339226 227; 342230 231; 343231 232; 344232 233; 347236 237; 348237 238; 349238 239; 352242 243; 353243 244; 354244 245; 357248 249; 358249 250; 359250 251; 362212 218; 363213 219; 364214 220; 365215 221; 368218 224; 369219 225; 370220 226; 371221 227; 374224 230; 375225 231; 376226 232; 377227 233; 380230236 ; 381231 237; 382232 238; 383233 239; 386236 242; 387237 243; 388238 244; 389239 245; 392242 248; 393243 249; 394244 250; 395245 251; 3988 50; 3999 51; 40010 52; 40111 53; 40414 56; 40515 57; 40616 58; 40717 59; 41020 62; 41121 63; 41222 64; 41323 65; 41626 68; 41727 69; 41828 70; 41929 71; $4223274 ; 4233375 ; 4243476 ; 4253577 ; 42838$ 80; 42939 81; 43040 82; 43141 83; 43349 91; 43450 92; 43551 93; 43652 94; 43753 95; 43854 96; 43955 97; 44056 98; 44157 99; 44258 100; 44359 101; 44460 102; 44561 103; 44662 104; 44763 105; 44864 106; 44965 107; 45066 108; 45167 109; 45268 110; 45369 111; 45470 112; 45571 113; 45672 114; 45773 115; 45874 116; 45975 117; 46076 118; 46177 119; 46278 120; 46379 121; 46480 122; 46581 123; 46682 124; 46783 125; 46884 126; 46991 133; 47092 134; 47193 135; 47294 136; 47395 137; 47496 138; 47597 139; 47698 140; 47799 141; 478100 142; 479101 143; 480102 144; 481103 145; 482104 146; 483105 147; 484106 148; 485107 149; 486108 150; 487109 151; 488110 152; 489111 153; 490112 154; 491113 155; 492114 156; 493115 157; 494116 158; 495117 159; 496118 160; 497119 161; 498120 162; 499121 163; 500122 164; 501123 165; 502124 166; 503125 167; 504126 168;

505133 175; 506134 176; 507135 177; 508136 178; 509137 179; 510138 180; 511139 181; 512140 182; 513141 183; 514142 184; 515143 185; 516144 186; 517145 187; 518146 188; 519147 189; 520148 190; 521149 191; 522150 192; 523151 193; 524152 194; 525153 195; 526154 196; 527155 197; 528156 198; 529157 199; 530158 200; 531159 201; 532160 202; 533161 203; 534162 204; 535163 205; 536164 206; 537165 207; 538166 208; 539167 209; 540168 210; 542 176 218; 543177 219; 544178 220; 545179 221; 548182 224; 549183 225; 550184 226; 551185 227; 554188 230; 555189 231; 556190 232; 557191 233; 560194 236; 561195 237; 562196 238; 563197 239; 566200 242; 567201 243; 568202 244; 569203 245; 572206 248; 573207 249; 574208 250; 575209 251; ELEMENT INCIDENCES SHELL 5768951 50; 57791052 51; 578101153 52; 579141557 56; 580151658 57; 581161759 58; 582202163 62; 583212264 63; 584222365 64; 585262769 68; 586272870 69; 587282971 70; $58832337574 ; 58933347675 ; 590343577$ 76; 591383981 80; 592394082 81; 593404183 82; 594495092 91; 595505193 92; 596515294 93; 597525395 94; 598535496 95; 599555698 97; 600565799 98; 6015758100 99; 6025859101 100; 6035960102 101; 6046162104 103; 6056263105 104; 6066364106 105; 6076465107 106; 6086566108 107; 6096768110 109; 6106869111 110; 6116970112 111; 6127071113 112; $6137172114113 ; 6147374116$ 115; 6157475117 116; 6167576118 117; $6177677119118 ; 6187778120$ 119; 6197980122 121; 6208081123 122; 6218182124 123; 6228283125 124; 6238384126 125; 6249192134 133; 6259293135 134; 6269394136 135; 6279495137 136; 6289596138 137; 6299798140 139; 6309899141 140; 63199100142 141; 632100101143 142; $633101102144143 ; 634103104146145$; 635104105147 146; 636105106148 147; 637106107149 148; 638107108150 149; 639109110152 151; 640110111153 152; 641111112154 153; 642112113155 154; 643113114156155 ; 644115116158 157; 645116117159 158; 646117118160 159; 647118119161 160; 648119120162 161; 649121122164 163;
$650122123165164 ; 651123124166165 ; 652124125167166$; 653125126168 167; 654133134176 175; 655134135177 176; 656135136178 177; 657136137179 178; 658137138180 179; 659139140182 181; 660140141183 182; 661141142184 183; 662142143185 184; 663143144186 185; 664145146188 187; 665146147189 188; 666147148190 189; 667148149191 190; 668149150192 191; 669151152194 193; 670152153195 194; 671153154196 195; 672154155197 196; 673155156198 197; 674157158200 199; 675158159201 200; 676159160202 201; 677160161203 202; 678161162204 203; 679163164206 205; 680164165207 206; 681165166208 207; 682166167209 208; 683167168210 209; 684176177219 218; 685177178220 219; 686178179221 220; 687182183225 224; 688183184226 225; 689184185227 226; 690188189231 230; 691189190232 231; 692190191233 232; 693194195237 236; 694195196238 237; 695196197239 238; 696200201243 242; 697201202244 243; 698202203245 244; 699206207249 248; 700207208250 249; 701208209251 250;

ELEMENT PROPERTY

576 TO 701 THICKNESS 0.15
DEFINE MATERIAL START
ISOTROPIC CONCRETE
E 2.17184e+007
POISSON 0.17
DENSITY 23.6158
ALPHA 5e-006
DAMP 0.05
TYPE CONCRETE
STRENGTH FCU 27578.9
END DEFINE MATERIAL
MEMBER PROPERTY AMERICAN

2 TO 47 TO 912 TO 1417 TO 1922 TO 2427 TO 2967 TO 96133 TO 162199 200 TO 228265 TO 294332 TO 334337 TO 339342 TO 344347 TO 349352 TO 354 357 TO 359398 TO 401404 TO 407410 TO 413416 TO 419422 TO 425 428 TO 431433 TO 540542 TO 545548 TO 551554 TO 557560 TO 563 566 TO 569572 TO 575 PRIS YD 0.3 ZD 0.3 32 TO 3538 TO 4144 TO 4750 TO 5356 TO 5962 TO 6597 TO 132163 TO 198 229 TO 264295 TO 330362 TO 365368 TO 371374 TO 377380 TO 383 -

386 TO 389392 TO 395 PRIS YD 0.6 ZD 0.6
CONSTANTS
BETA 90 MEMB 166
MATERIAL CONCRETE ALL
SUPPORTS
2 TO 543 TO 4885 TO 90127 TO 132169 TO 174212 TO 215 FIXED
DEFINE 1893 LOAD
ZONE 0.075 RF 5 I 1 SS 2 ST 1 DM 0.05

SELFWEIGHT 1

FLOOR WEIGHT
YRANGE 318 FLOAD 3.75
YRANGE 315 FLOAD 2
MEMBER WEIGHT
2 TO 47 TO 912 TO 1417 TO 1922 TO 2467717276778182868791265 269270274275279280284285289332 TO 334337 TO 339342 TO 344347 -

348 TO 349352 TO 354398401404407410413416419422425433438439 -
444445450451456457462469474475480481486487492493498505510 -
511516517522523528529534542545548551554557560563566 -
569 UNI 19.15
27 TO 299296290294357 TO 359428431463468499504535540572575 UNI 8 68 TO 7073 TO 7578 TO 8083 TO 8588 TO 9093 TO 95133 TO 162199 TO 228 266 TO 268271 TO 273276 TO 278281 TO 283286 TO 288291 TO 293399400 405406411412417418423424429430434 TO 437440 TO 443446 TO 449 452 TO 455458 TO 461464 TO 467470 TO 473476 TO 479482 TO 485 -

488 TO 491494 TO 497500 TO 503506 TO 509512 TO 515518 TO 521 524 TO 527530 TO 533536 TO 539543544549550555556561562567568 573574 UNI 11.8

DEFINE WIND LOAD
TYPE 1 WIND 1
INT 0.750 .90 .991 .11 .25 1.37 HEIG $36 \begin{array}{llll}6 & 12 & 15 & 18\end{array}$
EXP 1 JOINT 2 TO 58 TO 1114 TO 1720 TO 2326 TO 2932 TO 3538 TO 4143 44 TO 210212 TO 215218 TO 221224 TO 227230 TO 233236 TO 239242 TO 245 248 TO 251

LOAD 1 LOADTYPE Seismic TITLE EQX
1893 LOAD X 1
LOAD 2 LOADTYPE Seismic TITLE EQZ
1893 LOAD Z 1
LOAD 3 LOADTYPE Dead TITLE DL
SELFWEIGHT Y-1
FLOOR LOAD
YRANGE 318 FLOAD -3.75 GY
MEMBER LOAD
2 TO 47 TO 912 TO 1417 TO 1922 TO 2467717276778182868791265 269270274275279280284285289332 TO 334337 TO 339342 TO 344347 348 TO 349352 TO 354398401404407410413416419422425433438439 444445450451456457462469474475480481486487492493498505510 511516517522523528529534542545548551554557560563566 569 UNI GY - 19.15

27 TO 299296290294357 TO 359428431463468499504535540572 575 UNI GY - 8

68 TO 7073 TO 7578 TO 8083 TO 8588 TO 9093 TO 95133 TO 162199 TO 228 266 TO 268271 TO 273276 TO 278281 TO 283286 TO 288291 TO 293399400 405406411412417418423424429430434 TO 437440 TO 443446 TO 449 452 TO 455458 TO 461464 TO 467470 TO 473476 TO 479482 TO 485 488 TO 491494 TO 497500 TO 503506 TO 509512 TO 515518 TO 521 -

524 TO 527530 TO 533536 TO 539543544549550555556561562567568 -
573574 UNI GY -11.8
ELEMENT LOAD
576 TO 701 PR LY -2
LOAD 4 LOADTYPE Live REDUCIBLE TITLE LL
FLOOR LOAD
YRANGE 315 FLOAD -4 GY
LOAD 5 LOADTYPE Roof Live REDUCIBLE TITLE RLL
FLOOR LOAD
YRANGE 1618 FLOAD -2 GY
LOAD 6 LOADTYPE Wind TITLE WL X
WIND LOAD X 1 TYPE 1 YR 318
LOAD 7 LOADTYPE Wind TITLE WL -X
WIND LOAD X -1 TYPE 1 YR 318
LOAD 8 LOADTYPE Wind TITLE WL Z
WIND LOAD Z 1 TYPE 1 YR 318
LOAD 9 LOADTYPE Wind TITLE WL -Z
WIND LOAD Z -1 TYPE 1 YR 318

***Load Combination for frame design
LOAD COMB 11 1.2(DL+LL+EQX)
11.231 .241 .2

LOAD COMB 12 1.2(DL+LL-EQX)
$11.231 .24-1.2$
LOAD COMB 13 1.2(DL+LL+EQZ)
21.231 .241 .2

LOAD COMB 14 1.2(DL+LL-EQZ)
$21.231 .24-1.2$
LOAD COMB 19 DL+LL
31.041 .0

LOAD COMB 20 DL+0.5LL+EQX
11.031 .041 .0

LOAD COMB 21 DL+0.5LL-EQX
$11.031 .04-1.0$
LOAD COMB 22 DL+0.5LL+EQZ
21.031 .041 .0

LOAD COMB 23 DL+0.5LL-EQZ
$21.031 .04-1.0$
PERFORM ANALYSIS
START CONCRETE DESIGN
CODE INDIAN
FC 25000 ALL
FYMAIN 415000 ALL
DESIGN BEAM 2 TO 47 TO 912 TO 1417 TO 1922 TO 2427 TO 2967 TO 96133 -
134 TO 162199 TO 228265 TO 294332 TO 334337 TO 339342 TO 344347 TO 349 -
352 TO 354357 TO 359398 TO 401404 TO 407410 TO 413416 TO 419 -
422 TO 425428 TO 431433 TO 540542 TO 545548 TO 551554 TO 557 -
560 TO 563566 TO 569572 TO 575
DESIGN COLUMN 32 TO 3538 TO 4144 TO 4750 TO 5356 TO 5962 TO 65 -
97 TO 132163 TO 198229 TO 264295 TO 330362 TO 365368 TO 371374 TO 377 -
380 TO 383386 TO 389392 TO 395
DESIGN ELEMENT 576 TO 701
CONCRETE TAKE
FYSEC 415000 ALL
MAXMAIN 16 ALL
MAXSEC 10 ALL
START BAR COMBINATION
MD1 10 ALL
MD2 12 ALL
END BAR COMBINATION
MINMAIN 12 ALL

MINSEC 8 ALL
RATIO 4 ALL
REINF 0 ALL
END CONCRETE DESIGN
PERFORM ANALYSIS
FINISH

