
“Analysis and Implementation of Line

Codes on Different Platforms”
By

Abhishek Kumar Malviya (111080)

Hemant Sharma (111083)

Under the supervision of

Prof. Tapan Jain

May-2015

Dissertation submitted in partial fulfillment

Of the requirement for the degree of

BACHELOR OF TECHNOLGY

IN

ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, SOLAN- 173234, INDIA

ii

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

(Established under the Act 14 of Legislative Assembly of Himachal Pradesh)

Waknaghat, P.O. DomeharBani. Teh. Kandaghat, Distt. Solan- 173234(H.P.)

Phone: 01792-245367, 245368, 245369

Fax- 01792-245362

DECLARATION

We hereby declare that the work reported in the B. Tech report entitled “Analysis and

Implementation of Line Codes on Different Platforms” submitted by “Abhishek Kumar

Malviya and Hemant Sharma” at Jaypee University of Information Technology, Waknaghat is an

authentic record of our work carried out under the supervision of Prof. Tapan Jain. This work has

not been submitted partially or wholly to any other university or institution for the award of this or

any other degree or diploma.

Abhishek Kumar Malviya

Hemant Sharma

Department of Electronics and Communication Engineering

Jaypee University of Information Technology (JUIT)

Waknaghat, Solan- 173234, India

iii

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

(Established under the Act 14 of Legislative Assembly of Himachal Pradesh)

Waknaghat, P.O. DomeharBani. Teh. Kandaghat, Distt. Solan- 173234(H.P.)

Phone: 01792-245367, 245368, 245369

Fax- 01792-245362

CERTIFICATE

This is to certify that the work titled “Analysis and Implementation of Line Codes on Different

Platforms” submitted by “Abhishek Kumar Malviya and Hemant Sharma” in the partial

fulfilment of the degree of Bachelor of Technology (ECE) of Jaypee University of Information

Technology, Waknaghat has been carried out under my supervision. This work has not yet been

submitted partially or wholly to any other university or institution for the award of this or any other

degree or diploma.

Prof. Tapan Jain

 (Assistant Professor)

Department Of Electronics and Communication Engineering

 Jaypee University of Information Technology (JUIT)

Waknaghat, Solan- 173234, India

(Supervisor)

iv

ACKNOWLEDGEMENT

It is divine, grace and blessing of God that today we have successfully reached yet another

milestone of our journey in this endless path of learning that has just begun. After the completion of

our project work, we feel to convey our indebtness to all those who helped us to reach our goal. We

take this opportunity to express our profound gratitude and deep regards to our guide (Mentor Prof.

Tapan Kumar Jain) for his exemplary guidance, monitoring and constant encouragement throughout

the course of this project. The blessing, help and guidance given by him time to time shall carry us a

long way in the journey of life on which we are about to embark. We are obliged to all our faculty

members of JUIT, for the valuable information provided by them in their respective fields. We are

grateful for their cooperation during the period of our project. Lastly, we thank almighty, our Dean

Prof. T.S. Lamba, HOD Prof. S.V. Bhoosan, Project coordinator Dr.Rajiv Kumar, our parents,

brothers, sisters and friends for their constant encouragement without which this project would not

be possible.

Abhishek Kumar Malviya

Hemant Sharma

v

ABSTRACT

In telecommunication, a line code is a code chosen for use within communication systems for

baseband transmission purposes. Line coding is often used for digital data transport.

Line coding consists of representing the digital signal to be transported by an amplitude- and time-

discrete signal that is optimally tuned for the specific properties of the physical channel (and of the

receiving equipment). The waveform pattern of voltage or current used to represent the 1s and 0s of

a digital data on a transmission link is called line encoding. The common types of line encoding are

unipolar, polar, bipolar, and Manchester encoding.

The implementation of these line codes can be done using various techniques. We will be first

implementing it using coding techniques. The next step would be the simulation of the circuits of

each line code technique. After we are done with the simulation we will be doing it on hardware.

The hardware implementation includes the implementation of these line codes using lab

components. The next step will be to implement them using VHDL. Further we will implement it

on FPGA kit.

We will see the implementation of each technique using different methods and will compare the

results. The hardware implementation give us the opportunity to see the working model of the line

codes.

vi

INDEX

DECLARATION .. ii

CERTIFICATE ... iii

ACKNOWLEDGEMENT .. iv

ABSTRACT .. v

List of Figure ... viii

List of Acronyms .. x

CHAPTER-1 INTRODUCTION .. - 1 -

1.1 Introduction ... - 1 -

1.2 Problem Statement .. - 2 -

1.3 Methodology ... - 3 -

CHAPTER-2 THEORETICAL BACKGROUND ... - 4 -

2.1 Background Material ... - 4 -

2.1.1 Line Codes .. - 4 -

2.2 MATLAB .. - 5 -

2.3 MutiSim ... - 5 -

2.4 VHDL ... - 6 -

Advantages .. - 6 -

2.5 VHDL vs VERILOG ... - 7 -

2.6 FPGA ... - 10 -

2.6.1 HARDWARE IMPLEMENTATION ON FPGA .. - 10 -

2.6.2 XILINX PLATFORM STUDIO ... - 11 -

2.6.3 XILINX SOFTWARE DEVELOPMENT KIT .. - 11 -

2.6.4 Steps for recognizing and programming the FPGA ... - 12 -

CHAPTER-3 WORK DESCRIPTION .. - 16 -

3. Work Description .. - 16 -

3.1 Implementation in MATLAB .. - 16 -

3.2 Implementation on MULTISIM .. - 17 -

3.3 Implementation on Hardware Using Lab Components ... - 21 -

3.4 Implementation using Verilog ... - 23 -

vii

3.5 Implementation on FPGA kit .. - 26 -

CHAPTER-4 RESULTS.. - 28 -

4.1 Results from Matlab Implementation .. - 28 -

4.2 Results from Multisim implementation ... - 29 -

4.3 Results from verilog Implementation .. - 33 -

4.4 Results from FPGA kit Implementation .. - 35 -

CHAPTER 5 CONCLUSION ... - 36 -

References .. - 37 -

viii

List of Figure

Figure 2.1 Atlys Board

Figure 2.2 ON LED blinking

Figure 2.3 Port numbers written in brackets

Figure 2.4 Plan- ahead window for Pin Planning

Figure 2.5 Xilinx ISE Design suites

Figure 2.6 Configuring the FPGA

Figure 2.7 Assigning configuration file

Figure 2.8 Path for .bit file

Figure 3.1 Implementation code of Matlab

Figure 3.2 Implementation of Unipolar NRZ on Multisim

Figure 3.3 Implementation of Polar NRZ on Multisim

Figure 3.4 Implementation of Polar RZ on Multisim

Figure 3.5 Implementation of Manchester on Multisim

Figure 3.6 PRNG Hardware

Figure 3.7 Manchester Hardware

Figure 3.8 Verilog code for PRNG

Figure 3.9 Test bench code for PRNG

Figure 3.10 Verilog code for Manchester

Figure 3.11 Test bench code for Manchester

Figure 3.12 Pin planning on FPGA

Figure 3.13 UCF file Generation

Figure 3.14 Boundary Scan

Figure 3.15 Programming File burned to FPGA

Figure 4.1 Output Waveform of Matlab

Figure 4.2 Unipolar NRZ waveform

Figure 4.3 Polar NRZ waveform

Figure 4.4 Polar RZ waveform

Figure 4.5 Manchester waveform

Figure 4.6 RTL Schematic of PRNG

Figure 4.7 Test bench waveform of PRNG

ix

Figure 4.8 RTL Schematic of Manchester

Figure 4.9 Test bench waveform of Manchester

x

List of Acronyms

NRZ

OOK

Non return to zero

On-off keying

FPGA

PRBS

Field Programmable Gate Array

Pseudorandom binary sequence

DSP Digital Signal Processing

PPG Pulse Pattern Generator

SMA Sub Miniature version A

PLD Programmable Logic Device

IC Integrated Circuit

SoC Systems-on-Chip

HDL

VHDL

Hardware Description Language

Very High Speed Integrated Circuit HDL

LAB Logic Array Block

LE Logic Element

LUT Lookup table

SRAM Static Random Access Memory

ALM Adaptive Logic Module

- 1 -

CHAPTER-1

INTRODUCTION

1.1 Introduction

Networks have been experiencing an exponential growth of data traffic demand over the

recent years. This growth has been caused by the dramatic increases in the number of users

and the increasing bandwidth requirements for applications that have been developed (high

resolution video, online gaming, etc.). According to forecasts, data traffic will continue to

increase over the next years [1]. Therefore, it is necessary that next telecommunication

networks are built taking into account this projection.

The terminology line coding originated in telephony with the need to transmit digital

information across a copper telephone line; more specifically, binary data over a digital

repeated line [2]. The concept of line coding, however, readily applies to any transmission

line or channel. In a digital communication system, there exists a known set of symbols to

be transmitted [2].

Different channel characteristics, as well as different applications and performance

requirements, have provided the impetus for the development and study of various types of

line coding. For example, the channel might be ac coupled and, thus, could not support a

line code with a dc component or large dc content. Synchronization or timing recovery

requirements might necessitate a discrete component at the data rate.

Hence the use of different line Coding Techniques is necessary to implement different line

codes depending upon the type of application they are put to [1] [2].

For example, if a signal needs to be tracked on the basis of its time recovery then in that case

Manchester line code is suitable [3], whereas if the implementation is just limited to sending

and receiving of bits then any line code like Polar or Unipolar may work [4] [2].

- 2 -

1.2 Problem Statement

The implementation of line codes is important in the sense that the coming age is of

communication techniques. Every day we encounter new discoveries related to

communication in which the data sent and received is judged and put to application on

the basis of its ease of implementation and its reliability.

In this way the line codes are used for data transmission. The line codes follow a

particular set of rules to send data in linear form or we can say bit by bit form.

Also since we are aware of the fact that the line codes can be implemented using both

active and passive components, in our project we would also like to look at its

implementation on various application software like MATLAB, MULTISIM, and

VERILOG.

The implementation on MULTISIM cannot be directly implemented to a chip that can

be put to multiple application, so for that purpose we will do its hardware realization

using Verilog.

Further to see its real world implementation we will be burning the Verilog code over

the FPGA kit. This will give us the necessary hardware required for multiple

applications.

- 3 -

1.3 Methodology

The methodology that we have adopted is the step by step realization of the line codes.

Taking the very first step we will first be realizing the line codes using the Matlab

application. We would be implementing the codes on the basis of the logic or the rule

that each line code follows.

The second step will be to verify the resulting waveforms of each of the line code by

designing circuits and verifying their results by simulating on simulation tools like

MULTISIM. This will give us the real time simulation of the circuits that we have

implemented before actually realizing them on hardware.

The third step will be to realize the circuits simulated using MULTISIM to hardware

components, and observing the results on DSO.

The next step would be realizing the hardware from the logics of the line codes using

HDL verilog. This will give us the clear picture of the hardware components required for

the realization of each line code. The biggest advantage of using verilog is that we can

realize it for n number of repetitions of the same unit of line code. Also the test bench

unit of this line code will also help us to observe the output generated in form of the

waveform just like we obtain it on DSO.

The last and final step would be burning the Verilog code over the FPGA kit. The kit

helps us to burn different types of codes. Thus it helps to get a hardware that can

generate any line code if we know its verilog code. This saves a lot of time and cost

since single hardware is available to support different application.

- 4 -

CHAPTER-2

Theoretical Background

2.1 Background Material

2.1.1 Line Codes

i. Unipolar nrz

Unipolar encoding is a line code. A positive voltage represents a binary 1, and zero volts

indicates a binary 0. It is the simplest line code, directly encoding the bit stream, and is

analogous to on-off keying in modulation [2].

ii. Polar nrz

A non-return-to-zero (NRZ) line code is a binary code in which 1s are represented by

one significant condition (usually a positive voltage) and 0s are represented by some other

significant condition (usually a negative voltage), with no other neutral or rest condition [2].

iii. Polar rz

Return-to-zero (RZ) describes a line code used in telecommunications signals in which the

signal drops (returns) to zero between each pulse. This takes place even if a number of

consecutive 0s or 1s occur in the signal. The signal is self-clocking. This means that a

separate clock does not need to be sent alongside the signal, but suffers from using twice the

bandwidth to achieve the same data-rate as compared to non-return-to-zero format [2].

iv. Manchester line code

In telecommunication and data storage, Manchester coding is a line code in which the

encoding of each data bit has at least one transition and occupies the same time. It therefore

has no DC component, and is self-clocking, which means that it may

be inductively or capacitively coupled, and that a clock signal can be recovered from the

- 5 -

encoded data. As a result, electrical connections using a Manchester code are

easily galvanically isolated using a network isolator [2].

2.2 MATLAB

MATLAB (matrix laboratory) is a multi paradigm numerical computing environment

and fourth-generation programming language. Developed by MathWorks, MATLAB

allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation

of user interfaces, and interfacing with programs written in other languages,

including C, C++, Java,Fortran and Python [5].

Although MATLAB is intended primarily for numerical computing, an optional toolbox uses

the MuPAD symbolic engine, allowing access to symbolic computing capabilities. An additional

package, Simulink, adds graphical multi-domain simulation and Model-Based

Design for dynamic and embedded systems [6].

In 2004, MATLAB had around one million users across industry and academia. MATLAB users

come from various backgrounds of engineering, science, and economics. MATLAB is widely used

in academic and research institutions as well as industrial enterprises.

MATLAB can call functions and subroutines written in the C programming language or Fortran. A

wrapper function is created allowing MATLAB data types to be passed and returned. The

dynamically loadable object files created by compiling such functions are termed "MEX-files"

(for MATLAB executable) [5][6].

Libraries written in Perl, Java, ActiveX or .NET can be directly called from MATLAB,and many

MATLAB libraries (for example XML or SQL support) are implemented as wrappers around Java

or ActiveX libraries. Calling MATLAB from Java is more complicated, but can be done with a

MATLAB toolbox which is sold separately by MathWorks, or using an undocumented mechanism

called JMI (Java-to-MATLAB Interface), (which should not be confused with the unrelated Java

Metadata Interface that is also called JMI) [5].

2.3 MutiSim

NI Multisim (formerly MultiSIM) is an electronic schematic capture and simulation

program which is part of a suite of circuit design programs, along with NI Ultiboard. Multisim is

one of the few circuit design programs to employ the original Berkeley SPICE based software

- 6 -

simulation. Multisim was originally created by a company named Electronics Workbench, which is

now a division of National Instruments. Multisim includes microcontroller simulation (formerly

known as MultiMCU), as well as integrated import and export features to the Printed Circuit

Board layout software in the suite, NI Ultiboard [7] [8].

Multisim is widely used in academia and industry for circuits education, electronic schematic

design and SPICE simulation [7] [8].

2.4 VHDL

(VHSIC Hardware Description Language) is a hardware description language used

in electronic design automation to describe digital and mixed-signal systems such as field-

programmable gate array and integrated circuits. VHDL can also be used as a general purpose

parallel programming language [9].

Advantages

The key advantage of VHDL, when used for systems design, is that it allows the behavior of

the required system to be described (modeled) and verified (simulated) before synthesis

tools translate the design into real hardware (gates and wires).

Another benefit is that VHDL allows the description of a concurrent system. VHDL is

a dataflow language, unlike procedural computing languages such as BASIC, C, and

assembly code, which all run sequentially, one instruction at a time.

A VHDL project is multipurpose. Being created once, a calculation block can be used in

many other projects. However, many formational and functional block parameters can be

tuned (capacity parameters, memory size, element base, block composition and

interconnection structure).

A VHDL project is portable. Being created for one element base, a computing device project

can be ported on another element base, for example VLSI with various technologies [9].

- 7 -

2.5 VHDL vs VERILOG

 Capability

 When modeling abstract hardware, the capability of VHDL can sometimes only be

achieved in Verilog when using the PLI. The choice of which to use is not therefore based solely on

technical capability but on:

 personal preferences

 EDA tool availability

 commercial, business and marketing issues

The modeling constructs of VHDL and Verilog cover a slightly different spectrum across the levels

of behavioral abstraction.

 Compilation

VHDL. Multiple design-units (entity/architecture pairs), that reside in the same system file, may be

separately compiled if so desired. However, it is good design practice to keep each design unit in its

own system file in which case separate compilation should not be an issue.

Verilog. The Verilog language is still rooted in its native interpretative mode. Compilation is a

means of speeding up simulation, but has not changed the original nature of the language. As a

result care must be taken with both the compilation order of code written in a single file and the

compilation order of multiple files. Simulation results can change by simply changing the order of

compilation.

 Data types

VHDL. A variety of language or user defined data types can be used. Dedicated conversion

functions are needed to convert objects from one type to another. The choice of which data types to

use should be considered wisely, especially enumerated (abstract) data types. It makes models

easier to write, clearer to read and avoid unnecessary conversion functions that can clutter the code

[10].

Verilog. Compared to VHDL, Verilog data types are very simple, easy to use and very much geared

towards modelling hardware structure as opposed to abstract hardware modelling. Unlike VHDL,

all data types used in a Verilog model are defined by the Verilog language and not by the user.

There are net data types, for example wire, and a register data type called reg. A model with a signal

- 8 -

whose type is one of the net data types has a corresponding electrical wire in the implied modeled

circuit. Objects, that is signals, of type reg hold their value over simulation delta cycles and should

not be confused with the modeling of a hardware register. Verilog may be preferred because of its

simplicity [10].

 Design reusability

VHDL. Procedures and functions may be placed in a package so that they are available to any

design-unit that wishes to use them.

Verilog. There is no concept of packages in Verilog. Functions and procedures used within a model

must be defined in the module. To make functions and procedures generally accessible from

different module statements the functions and procedures must be placed in a separate system file

and included using the `include compiler directive.

 Easiest to Learn

Starting with zero knowledge of either language, Verilog is probably the easiest to grasp and

understand. This assumes the Verilog compiler directive language for simulation and the PLI

language is not included. If these languages are included they can be looked upon as two additional

languages that need to be learned. VHDL may seem less intuitive at first for two primary reasons.

First, it is very strongly typed; a feature that makes it robust and powerful for the advanced user

after a longer learning phase. Second, there are many ways to model the same circuit, especially

those with large hierarchical structures [10].

 Forward and back annotation

A spin-off from Verilog is the Standard Delay Format (SDF). This is a general purpose format used

to define the timing delays in a circuit. The format provides a bidirectional link between, chip

layout tools, and either synthesis or simulation tools, in order to provide more accurate timing

representations. The SDF format is now an industry standard in its own right.

 High level constructs

VHDL. There are more constructs and features for high-level modelling in VHDL than there are in

Verilog. Abstract data types can be used along with the following statements:

* Package statements for model reuse,

* Configuration statements for configuring design structure,

* Generate statements for replicating structure,

- 9 -

* Generic statements for generic models that can be individually characterized, for example, bit

width.

Verilog. Except for being able to parameterize models by overloading parameter constants, there is

no equivalent to the high-level VHDL modelling statements in Verilog.

 Language Extensions

The use of language extensions will make a model non standard and most likely not portable across

other design tools. However, sometimes they are necessary in order to achieve the desired results.

VHDL. Has an attribute called 'foreign that allows architectures and subprograms to be modelled in

another language.

Verilog. The Programming Language Interface (PLI) is an interface mechanism between Verilog

models and Verilog software tools. For example, a designer, or more likely, a Verilog tool vendor,

can specify user defined tasks or functions in the C programming language, and then call them from

the Verilog source description. Use of such tasks or functions make a Verilog model nonstandard

and so may not be usable by other Verilog tools. Their use is not recommended.

 Libraries

VHDL. A library is a store for compiled entities, architectures, packages and configurations. Useful

for managing multiple design projects.

Verilog. There is no concept of a library in Verilog. This is due to it's origins as an interpretive

language.

 Low Level Constructs

VHDL. Simple two input logical operators are built into the language, they are: NOT, AND, OR,

NAND, NOR, XOR and XNOR. Any timing must be separately specified using the after clause.

Separate constructs defined under the VITAL language must be used to define the cell primitives of

ASIC and FPGA libraries.

Verilog. The Verilog language was originally developed with gate level modelling in mind, and so

has very good constructs for modelling at this level and for modelling the cell primitives of ASIC

and FPGA libraries. Examples include User Defined Primitive s (UDP), truth tables and the specify

block for specifying timing delays across a module [9].

- 10 -

2.6 FPGA
2.6.1 HARDWARE IMPLEMENTATION ON FPGA

FPGA: A field-programmable gate array (FPGA) is an integrated circuit (IC) that can be

programmed in the field after manufacture. FPGAs are similar in principle to, but have vastly wider

potential application than, programmable read-only memory (PROM) chips [10].

ATLYS BOARD: The Atlys circuit board is a complete, ready-to-use digital circuit development

platform based on a Xilinx Spartan 6 LX45 FPGA. The on-board collection of high-end peripherals,

including Gbit Ethernet, HDMI Video, 128Mbyte DDR2 memory array, audio and USB ports make

the Atlys board an ideal host for complete digital systems built around embedded processors like

Xilinx’s MicroBlaze. Atlys is fully compatible with all Xilinx CAD tools, including ChipScope,

EDK, and the free WebPack, so designs can be completed with no extra costs. The Atlys board can

be communicated with and programmed by the Digilent Adept Software .In addition, the board can

be programmed by Xilinx's iMPACT using the Digilent Plugin for Xilinx Tools [13].

Figure 2.1:Atlys Board

- 11 -

The Spartan-6 LX45 is optimized for high-performance logic and offers:

 6,822 slices each containing four 6-input LUTs and eight flip-flops

 2.1Mbits of fast block RAM

 4 clock tiles (8 DCMs & 4 PLLs)

 6 phased-locked loops

 58 DSP slices

 500MHz+ clock speeds

2.6.2 XILINX PLATFORM STUDIO

Xilinx Platform Studio (XPS) is a key component of the ISE Embedded Edition Design Suite,

helping the hardware designer to easily build, connect and configure embedded processor-based

systems; from simple state machines to full-blown 32-bit RISC microprocessor systems. XPS

employs graphical design views and sophisticated correct-by-design wizards to guide developers

through the steps necessary to create custom processor systems within minutes[15].

The true potential of XPS emerges with its ability to configure and integrate plug and play IP cores

from the Xilinx Embedded IP catalogue, with custom or 3rd party Verilog and VHDL designs.

Now, highly-custom processors can be designed according to project-specific needs include;

peripheral and IO requirements, real-time responsiveness, general purpose processing power,

floating point performance, on-chip or off-chip memory, minimal power consumption and much

more [15] [16].

2.6.3 XILINX SOFTWARE DEVELOPMENT KIT

The Software Development Kit (SDK) is the Xilinx Integrated Design Environment for creating

embedded applications on any of Xilinx' award winning microprocessors for Zynq 7000 All

Programmable SoCs, and the industry-leading MicroBlaze. The SDK is the first application IDE to

deliver true homogenous and heterogeneous multi-processor design and debug.

Firmware and software developers benefit from XPS integration with Xilinx SDK which allows the

automatic generation of critical system software such as boot loaders, bare metal BSP, and Linux

BSPs. This capability ensures that OS porting and applications development can begin without

delay caused by firmware development [20].

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm

- 12 -

2.6.4 Steps for recognizing and programming the FPGA

Once you have compiled your program on Xilinx ISE, following steps will help you program the

FPGA:

1. Connect the FPGA board with the power supply and switch it on. An LED near the power

supply port should start glowing.

Figure 2.2:On LED blinking

2. Now, start the ISE Design Suite where your VHDL/Verilog code is present that needs to be

programmed on FPGA.

3. After you have compiled the code successfully, remove your testbench from the code and

just keep your main code file.

4. Now, you need to build a .ucf file which will define the inputs/outputs present in your code

is connected to which ports of fpga. Expand the user constraints tab and click on I/O Pin

Planning (post synthesis). This will open a PlanAhead window.

- 13 -

Figure 2.3: Port numbers written in brackets

Figure 2.4: PlanAhead Window for Pin Planning

5. Now, you will see your input and output variables below. If they are more than 1 bit long ,

expand them and assign each bit input and output to the required port on FPGA board by

typing it manually or selecting ports under the “SITE” option present. After this save the

design and exit.

6. Now, in the ISE Design Suite , Click on the generate programming file tab on the left side as

shown in the figure below.

- 14 -

Figure 2.5: Xilinx ISE Design Suite

7. This will run all the processes above it and if it compiles successfully, it will give a green

tick mark for completion.

8. Now, click on configure target device, this will ask you to open an impact tool click on ok

and proceed. Click on Boundary Scan on the left side. A blank screen will open up and then

right click on anywhere on that screen and click on Initialize chain from the set of options.

Figure 2.6: Configuring the FPGA

9. This will show a Xilinx device present (make sure your FPGA is connected to the computer

and switched on).Now, assign configuration file and select the .bit file that has been

generated inside your Xilinx project. After the configuration file has been assigned right

click on the device to program it [17] [18].

- 15 -

Figure 2.7: Assigning configuration file

Figure 2.8: Path for .bit file

Figure 2.9: Programming the device

- 16 -

CHAPTER-3

Work Description

3. Work Description

3.1 Implementation in MATLAB

Figure 3.1:Implimentation code of matlab

- 17 -

3.2 Implementation on MULTISIM

i. Unipolar NRZ

Figure 3.2:Implimentaion of Unipolar NRZ on Multisim

- 18 -

ii. Polar NRZ

Figure 3.3:Implimentation of Polar NRZ on Multisim

- 19 -

iii. Polar RZ

Figure 3.4:Implimentation of Polar RZ on Multisim

- 20 -

iv. Manchester line code

Figure 3.5:Implimentation of Manchester on Multisim

- 21 -

3.3 Implementation on Hardware Using Lab Components

i. Pseudo Random Number Generator

Figure 3.6:PRNG Hardware

- 22 -

ii. Manchester Line Code Implementation

Figure 3.7:Manchester Hardware

- 23 -

3.4 Implementation using Verilog

i. Pseudo Random number Generator

Figure 3.8: Verilog code for PRNG

- 24 -

Figure 3.9 Test Bench code for PRNG

ii. Manchester Line code

Figure 3.10 Verilog code for Manchester

- 25 -

Figure 3.11:Test Bench Code for Manchester

- 26 -

3.5 Implementation on FPGA kit

Figure 3.12:Pin Planning on FPGA

Figure 3.13:UCF File Generation

- 27 -

Figure 3.14:Boundary Scan

Figure 3.15:Programming File Burned to FPGA

- 28 -

CHAPTER-4

Results

4.1 Results from Matlab Implementation

Figure 4.1:Output Waveform of Matlab

- 29 -

4.2 Results from Multisim implementation

i. Unipolar NRZ

Figure 4.2:Unipolar NRZ Waveform

- 30 -

ii. Polar NRZ

Figure 4.3:Polar NRZ Waveform

- 31 -

iii. Polar RZ

Figure 4.4:Polar RZ Waveform

.

- 32 -

iv. Manchester line code

Figure 4.5:Manchester Waveform

- 33 -

4.3 Results from verilog Implementation

i. Pseudo Random number Generator

Figure 4.6:RTL Schematic of PRNG

Figure 4.7:Testbench Waveform of PRNG

- 34 -

ii. Manchester Line code

Figure 4.8:RTL Schematic of Manchester

Figure 4.9:Testbench Waveform of Manchester

- 35 -

4.4 Results from FPGA kit Implementation

Figure 4.10: Output on FPGA Kit

 Output LED Done LED

- 36 -

CHAPTER 5

CONCLUSION

In this thesis we have mainly focused on the implementation of the line codes on different

platforms. We have first implemented the line code on MATLAB using their mathematical

modeling and then analyzed the output waveforms. Further we have implemented the and worked

on the circuits and analyzed their output first on simulation tools and then on the hardware. The

results that we obtained were output waveforms and then we have verified the results. In the next

step we worked on the hardware modeling of these line codes using hardware descriptive language

using the basic logic of the line codes. The hardware schematic generated were verified with the

circuits that we had already simulated. Also the test bench waveforms were similar to that of the

waveforms from the simulation. Lastly we implemented the verilog code on FPGA kit so as to have

a generalized hardware for implementation of different line codes. The results have been

successfully verified.

- 37 -

References

[1] Cisco Visual Networking Index (VNI) Global IP Traffic Forecast, 2010 –2015.

[2] Cattermole, K. W. "Invited paper Principles of digital line coding." International Journal of

Electronics 55, no. 1 (1983): 3-33.

[3] Fox, Trevor R. "Decoder for Manchester encoded data." U.S. Patent 4,688,232, issued August

18, 1987.

[4] Gehlot, Narayan L. "System and method for generating NRZ signals from RZ signals in

communications networks." U.S. Patent 6,404,819, issued June 11, 2002.

[5] http://in.mathworks.com/products/matlab/ (Accessed September 2014)

[6] Kamen, Edward, and Bonnie Heck. Fundamentals of Signals and Systems: With MATLAB

Examples. Prentice Hall PTR, 2000.

[7] McKinley, Philip K., and Christian Trefftz. "Multisim: A simulation tool for the study of large-

scale multiprocessors." In In Proceedings of the 1993 International Workshop on Modeling,

Analysis, and Simulation of Computer and Telecommunications Networks (MASCOTS. 1993.

[8] http://www.ni.com/multisim/ (Accessed November 2014)

[9] Navabi, Zainalabedin. VHDL: Analysis and modeling of digital systems. McGraw-Hill, Inc.,

1997.

[10] Christen, Ernst, and Kenneth Bakalar. "VHDL-AMS-a hardware description language for

analog and mixed-signal applications." Circuits and Systems II: Analog and Digital Signal

Processing, IEEE Transactions on 46, no. 10 (1999): 1263-1272.

[11] “FPGA and Structured ASICs-Low Risk SoC for the masses”, Altera Corporation

[12] http://www.tc.etc.upt.ro/teaching/dc-pi/Course3.pdf (Accessed March 2015)

[13] Bush, Ian, Martyn Guest, Miles Deegan, Igor Kozin, and Christine Kitchen. An overview of

FPGAs and FPGA programming: Initial experiences at Daresbury. Council for the Central

Laboratory of the Research Councils, 2006.

- 38 -

[14] Bacon, David F., Rodric Rabbah, and Sunil Shukla. "FPGA Programming for the

Masses." Communications of the ACM 56, no. 4 (2013): 56-63.

[15] Mayer-Lindenberg, Fritz. "High-level FPGA programming through mapping process networks

to FPGA resources." In Reconfigurable Computing and FPGAs, 2009. ReConFig'09. International

Conference on, pp. 302-307. IEEE, 2009.

[16] http://digilentinc.com/Products/Detail.cfm?NavPath=2,400,836&Prod=ATLYS (Accessed

April 2015)

 [17] http://digilentinc.com/Products/Detail.cfm?NavPath=2,729,969&Prod=GETTING-

STARTED-CHIPKIT (Accessed April 2015)

[18] Janocha, H., D. Pesotski, and K. Kuhnen. "FPGA-based compensator of hysteretic actuator

nonlinearities for highly dynamic applications." Signal 1, no. 2 (2008): 3.

[19] Andrews, David, Douglas Niehaus, Razali Jidin, Michael Finley, Wesley Peck, Michael

Frisbie, Jorge Ortiz, Ed Komp, and Peter Ashenden. "Programming models for hybrid FPGA-CPU

computational components: a missing link."IEEE Micro 4 (2004): 42-53.

[20] Klingman, Ed. "FPGA programming step by step." Embedded Systems Programming 17, no. 4

(2004): 29-37.

