
1 
 

Android Mobile Operated Car Control 

Project Report submitted in partial fulfillment of the 

requirement for the degree of 

Bachelor of Technology. 

in 

Information Technology 

under the Supervision of 

Mr. Punit Gupta 

By 

Abhishek Mankotia (Roll no. - 111416) 

to 

 

Jaypee University of Information and Technology 

Waknaghat, Solan – 173234, Himachal Pradesh 

 

 



2 
 

Certificate 

 

This is to certify that project report entitled “Android Mobile Operated Car 

Control” ,  submitted by Abhishek Mankotia in partial fulfilment for the award of 

degree of Bachelor of Technology in Information Technology to Jaypee University 

of Information Technology, Waknaghat, Solan has been carried out under my 

supervision. 

This work has not been submitted partially or fully to any other University or 

Institute for the award of this or any other degree or diploma. 

 

Date:                                                    Mr. Punit Gupta 

         Assistant Professor 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Acknowledgement 

 

I am using this opportunity to express my gratitude to everyone who supported me 

throughout the course of this B.Tech. project. I am thankful for their aspiring 

guidance, invaluably constructive criticism and friendly advice during the project 

work. I am sincerely grateful to them for sharing their truthful and illuminating 

views on a number of issues related to the project. 

I express my warm thanks to Mr. Punit Gupta for their support and guidance. 

Also, I’d like to thank all the people who provided me with the facilities being 

required and conductive conditions for this project. 

Thank you. 

Date:        Abhishek Mankotia 

                  111416 

 

 

 

 

 

 

 

 

 

 



4 
 

Table of Content 

S. No.  Topic                          Page No. 

1.  An Introduction to the Problem                1 

2.  Existing Technology                    3 

 2.1 ScanGaugeE                   3 

 2.2 Flow Meters DFM                  7  

3.  Proposed Solution                                                          9 

 3.1 Infrastructure Diagram                10 

4.  An Introduction to Hardware                12 

 4.1  Arduino Uno                  12 

 4.2  Important Features of Arduino Uno               13 

 4.3 Summary                  14 

 4.4 Datasheet                  15 

 4.5 Pinout Diagram                 16 

 4.6 HC-05 Bluetooth Module                17 

 4.7 HC-SR04 Ultrasonic Sensor                 18 

 4.8 Liquid Crystal Display                20 

5.  An Introduction to IDEs and SDKs Used              22 

 5.1 Arduino 1.0.6                  22 

 5.2 Android Development Tools                27 

6.  Understanding Different Modules               29 



5 
 

 6.1 Blink Example                 29 

 6.2 Analog Read Volatage                30 

 6.3 Connecting Arduino Board With the HC-05 Module             31

 6.4 Connecting Arduino Board With the HC-SR04 Module            32

 6.5 Connecting Arduino Board With A LCD              34

  

7.   Work Done                  36 

 7.1 Arduino Code for Sending Distance and Fuel Signals            36 

 7.2 Android Application                 44 

8.  Experimentation and Results                50 

 8.1 Hardware Implementation                50 

 8.2 Software Implementation                 54 

 8.3 Final Run-through of the Project               57 

9.  Conclusion and Future Work                68 

 9.1 Conclusion                  68 

 9.2 Future Work                  69

  Reference                             

70 

 

 

 

 

 



6 
 

 

 

List of Figures 

S. No.  Title                            Page No. 

1.               ScanGaugeE                             4 
2.               The Entire ScanGaugeE apparatus                5 
3.               ScanGaugeE Display                 6 
4.               DFM Fuel Flow Meter                 8 
5.               Infrastructure Diagram – 1                10 
6.    Infrastructure Diagram – 2                11 
7.               Arduino Uno                  12 
8.      Datasheet                  15 
9.               Pinout Diagram                 16 
10.               Connections from Bluetooth HC-05                17 
11.               HC-SR04 Ultrasonic Sensor                19 
12.               Connections from HC-SR04                19 
13.               Liquid Crystal Display                21 
14.               Screen Grab of the Arduino IDE               23 
15.    Android Development Tools               28 
16.               Connecting the LED and Resistor to the Board                        29 
17.               Connecting the Potentiometer to the Arduino Board            30 
18.               Connecting the HC-05 Module to the Arduino Board            31 
19.               Connecting the HC-SR04 Module to the Arduino Board               33 
20.               Connecting the LCD to the Arduino Board              34 
21.               Circuit Diagram                 37 
22.               Schematic of Potentiometer                                                            50 
23.               Connecting a Potentiometer to the circuit              50 
24.               Schematic of Bluetooth Module               51 
25.               Bluetooth HC-05 Module connected to Arduino             51 
26.               HC-SR04 Ultrasonic Module Schematic              52 
27.    HC-SR04 Ultrasonic Module connected to Arduino Uno            52 
28.    Schematic of the Grove backlit LCD                         53 
29.               Grove backlit LCD connected smugly to the Board                        53 
30.               Interface Showing Various Paired Devices              54

  
31.    Interface Showing the Fuel and Distance values             55 
32.     Screen Grab of Display Message Activity                                      56 
33.    Snapshot of the apparatus                                                            58 
34.               Splash Screen showing the App name and Logo                            59 
35.               Screenshot showing the DeviceListActivity                                   60 
36.               Screenshot showing the module pairing                                         61 



7 
 

37.               Screenshot of blinking LED on HC-05 module                              61 
38.               Screenshot showing the application connecting to the module       

62 
39.               Screenshot showing the application Engine On                              62 
40.               Circuit snapshot after the engine is turned on                                 63 
41.               Snapshot of the potentiometer’s knob being rotated                       64 
42.            Snapshot of the HC-SR04 Ultrasonic sensor in action                         

64 
43.            Snapshot of the backlit LCD in action                                                  

65 
44.            Snapshot of the Android application  mileage and fuel values             

65 
45.            Screenshot showing the Display Message Activity                               

66 
46.            Screenshot of the Display Message Activity after the mileage             

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

Abstract 

I think one of the major achievements achieved by computers besides doing 

complex calculations and its contribution to scientific research is in the field of 

making everyday tasks simpler. I reckon, almost every person who owns/drives a 

car has always thought of one thing every once in a while, their vehicle’s fuel 

economy. Well, I thought why not give a solution to their problem and have some 

kind of a system to help them keep track of it. Besides that, why not provide them 

with some kind of a car control in their hands. 

Talking of the problem, I had to make some kind of a system to control/keep track 

of various features of a car, beginning with fuel economy. 

The solution I came up with was an embedded system interfaced with an Android 

mobile application. Initially, we planned on implementing only a fuel economy 

calculator but later, we decided on adding some other features such as a gauge to 

show the engine’s temperature and a light control system. The embedded system 

consists of a microcontroller board – Arduino Uno, which is based on the 

ATmega328(datasheet), a few sensors – primarily a sensor to measure analogue 

signals and to measure the fuel level.  

These sensors are going to send information to the Arduino board which is 

interfaced with the Android phone with the help of a Bluetooth module – HC 05. 

 On receiving the distance and fuel signals, the board will send them to the android 

phone, which on receiving the signals will calculate the fuel economy and show it 



9 
 

on the screen. The user will also be able to keep a log of the various fuel economies 

calculated in the past. I further plan on implementing some kind of demographics 

on screen with which the user will be able to keep track of his fuel economy even 

better.  

This project spans over various disciplines as I have understood the working of 

traditional odometer as well as digital odometers and how the distance is calculated 

whist a vehicle’s wheel is rotating. I’ve made use of the available equipment and 

implemented the same. 

I can expand the scope of the project and utilize similar approach to implement 

other functionalities in the car, as previously stated. I feel this project has really 

helped me in achieving a keen sense of observation and application. Also, it has 

helped me realize the importance of using engineering principles to solve everyday 

problems. 

 

 

 

 

 

 

 

 

 

 



10 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

An Introduction to the Problem 

 

 
Ever since the rise of fuel prices in recent times, fuel economy has become a 

priority of almost every other car commuter. Whilst there have been a lot of 

sanctions imposed on inefficient vehicles by major environmental protection 

agencies, one major issue that still remains is how to optimize your cars fuel 

economy and effectively calculate it. 

 

A large number of vehicles are devoid of a system that keeps track of a car’s fuel 

economy and shows it in real time, making the user aware of how much fuel he’s 

expending, in turn, how much the user is spending on his car every day. 

 



11 
 

Most of us do a simple calculation each time our fuel tank hits empty: number of 

miles on our odometer divided by the liters of fuel consumed. In theory, this 

provides an accurate assessment of how many kilometers we can drive per litre. In 

reality, the number we come up with is a mere estimate that fluctuates by the tank, 

and even by the day. 

This is perfectly fine for coming up with a rough number, but things start to get a 

bit confusing when you start trying to improve your car’s fuel econmy. How do you 

know if the techniques or gadgets you're using are working if a rough estimate is all 

you can get? If your car's mileage varies by about 10 percent based on driving 

conditions, how do you know if the improvement you see after, say, adding acetone 

to your gas tank is a result of the additive or of the weather? 

There are a large number of factors that affect your car's mileage. For instance, 

snowy weather requires headlights during the day, wipers and defrosting your front 

and rear windshields. All this activity uses fuel. On the other hand, warm weather 

might mean activating the air conditioning, which also lowers your fuel economy. 

And then there's the fact that fuel takes up less volume in the cold and expands in 

the heat, so the amount of gas you can fit in your tank isn't even constant. 

Weather, hills, road conditions and frequency of stoplights all affect how many 

kilometers you get per litre at any given time, so manual calculation after you've 

gone through an entire tank doesn't do much for determining an increase or 

decrease in MPG 

In this project I endeavor to provide a solution to the eminent problem of keeping 

track of your car’s fuel economy. Before analyzing the work done during the course 

of this project, I’d like to highlight the existing technology present in this field.  

 

 

 



12 
 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

Existing Technology 

Here, we look at some of the existing pioneers in the field who have developed 

systems which calculate a vehicle’s fuel economy in real time and let users utilize 

their fuel more efficiently. 

Both the systems mainly revolve around taking the signals from the fuel tank and 

another sensor present on the axle of the wheels.  They come with additional 

benefits which are further discussed:  

1. ScanGaugeE 

ScanGaugeE provides you with real-time information about your vehicle’s fuel 

economy through an intuitive graphic display. According to a report issued by the 

US government, adjusting your driving habits can increase fuel economy by up to 



13 
 

33%. Use the instant feedback provided by ScanGaugeE™ to adjust your driving 

style and improve your fuel economy. 

It helps you keep track of your fuel costs and fuel used in real-time. View 

information such as miles-per-gallon, gallons-per-hour and Trip Fuel Used. Track 

actual fuel costs with Trip-Fuel-Costs and Today’s-Fuel-Costs digital gauges. 

Track your vehicle’s CO2 output in real-time. View information such as Current-

CO2 and Trip-CO2. You can also track the days Total CO2 and Total CO2 for the 

tank within the built-in Trip Computers. 

 

 

 

 

Figure 1 ScanGaugeE 

ScanGaugeE installs in just minutes without tools and does not require batteries or 

an external power source. All data and power are derived from the single OBDII 

connection which is present on all 1996 and newer cars and light trucks. 

The detachable six foot cord also allows ScanGaugeE to be mounted just about 

anywhere on the dash or console while staying connected to your vehicle.  

Pros and Cons 



14 
 

The apparatus is kind of cumbersome to install. It comes with connector cables which 

can be kind of clumsy to install in your car. Also, the entire installation is kind of large 

so one needs to make sure they have the kind of space needed for such a system present 

in their vehicle. 

 

 

 

 

Figure 2 The entire ScanGaugeE appratus 

Talking of advantages, the system has added a bar graph to the left of the display. The 

graph always tracks fuel economy over time, therefore, giving the user a real time idea 

of the fuel economy expended by the user.  Also, the scale of the graph, or how it 

displays information is configurable. This is a pretty nice feature,  in my opinion.  

 

http://ecomodder.com/blog/wp-content/uploads/2011/11/SGE005.jpg


15 
 

You can also set the graph’s zero point to a set fuel economy. They call this “GOAL”, 

and you can manually set whatever fuel economy you want as your zero point. With 

GOAL you can see if you are hitting the fuel economy you want or not.  

 

 

Figure 3 ScanGauge display 

 
Also, they have added gauge sets. You can scroll through the gauge sets with the left 

buttons. There are three default (not customizable) gauge sets, and two customizable 

sets. The default gauge sets show instant and trip fuel economy, the next shows trip 

CO2 emissions and today’s CO2, and the third shows trip fuel cost and today’s fuel cost.  

 

This implies that the system also helps environmentally conscious individuals. 

 

http://ecomodder.com/blog/wp-content/uploads/2011/11/SGE008.jpg


16 
 

Another downer is the cost, at $96 this apparatus fails to attract a lot of potential 

buyers who’d rather stick to their copies and pens than spend that kind of money on a 

fancy gizmo.  

2. Fuel flow meters DFМ 
 

Inline fuel meter DFМ can be applied for fuel accounting both autonomously and as 

a part of vehicle tracking and fuel monitoring system. 

Fuel gauge DFM allows to solve the following tasks: 

 fuel consumption control; 

 fuel consumption rationing; 

 fuel theft detecting and preventing; 

 fuel comsumption optimization and real-time monitoring; 

 engine fuel consumption testing. 

Fuel meter DFМ enables to receive objective information about actual fuel 

consumption and vehicle working time. It also permits to reduce fuel and 

repairing costs. It is possible to develop fuel consumption rates for selected routes 

and and technological operations. 

                                                      

 

The economic effect of using the fuel accounting devices is different at various 

companies, usually about 10 to 40%, depending on the baseline situation and 

management persistence. 

Fuel gauge DFM has three-dimension ring type measuring chamber. DFМ 

generates an impulse, when the volume of fuel (which is equal to volume of the 

measuring chamber) passes through it. 

For detailed operating principle for every DFM model please visit product pages. 



17 
 

 

Figure 4 DFM Fuel Flow Meter 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

CHAPTER 3 

Proposed Solution 

 

The solution I came up with along with my project supervisor revolves around 

exploiting the various functionalities offered by two upcoming technologies – 

Arduino Uno and Android. We’ll talk of both these technologies later in this 

document. For now, let us think of the board as means of connecting readily 

available sensors and exploiting them through our handheld devices. 

We shall be using a fuel sensor and a potentiometer to emulate the working of an 

actual car. We shall than proceed to  make the user interact with the hardware using 

his mobile phone, where, not only can he view the distance traversed and fuel 

consumed in real time but also keep track of his past fuel economies which can help 

him in bettering his fuel consumption decisions.  

Infrastructure diagrams in the following pages will assist in better understanding of 

the project. 

 

 

 

 

 

 

 



19 
 

 

1. Infrastructure Diagram 

 

 

 

 

 

Figure 5 Infrastructure diagram - 1 

 

 

 

 

A fuel sensor is present in the 

fuel tank which continuously 

sends signals to the Arduino 

board. 

Another sensor which 

continuously monitors the 

wheel movement sends these 

signals to the Arduino board. 

The Arduino board is burned 

with a code which calculates 

mileage and communicates with 

the Android phone. 

The data is presented on the 

users Android mobile phone. 



20 
 

Now the question arises: how will we demonstrate the feasibility of this project in 

the confines of a computer lab or a small room? Don’t worry we shall emulate the 

project using a few sensors compatible with Arduino Uno. The details of these 

sensors shall be discussed later. 

 

 

 

 

 

 

 

 

  

 

 

Figure 6 Infrastructure diagram - 2 

 

 

 

 

Ultrasonic 

sensor sends 

fuel signals 

to the board. 

Board programmed using 

Arduino IDE on computer. 

Potentiometer sends 

voltage signals to the 

board 

Bluetooth module facilitates 

communication between board and 

phone. 



21 
 

CHAPTER 4 

An Introduction to Hardware 

 

Now, we have a brief idea of how the solution will work, we shall progress to 

understand the various hardware used in the making of this project. Starting off 

with the development board: 

1.  Arduino Uno 

Figure 7 Arduino Uno 

Arduino is a tool for making computers that can sense and control more of the 

physical world than your desktop computer. It's an open-source physical computing 

platform based on a simple microcontroller board, and a development environment 

for writing software for the board.  

It can be used to develop interactive objects, taking inputs from a variety of 

switches or sensors, and controlling a variety of lights, motors, and other physical 

outputs. Arduino projects can be stand-alone, or they can communicate with 

software running on your computer (e.g. Flash, Processing, MaxMSP.) The boards 



22 
 

can be assembled by hand or purchased preassembled; the open-source IDE can be 

downloaded for free.  

The Arduino programming language is an implementation of Wiring, a similar 

physical computing platform, which is based on the Processing multimedia 

programming environment. 

2. Important Features of Arduino Uno 

 There are many other microcontrollers and icrocontroller platforms 

available for physical computing. Parallax Basic Stamp, Netmedia's BX-24, 

Phidgets, MIT's Handyboard, and many others offer similar functionality. All of 

these tools take the messy details of microcontroller programming and wrap it up in 

an easy-to-use package. Arduino also simplifies the process of working with 

microcontrollers, but it offers some advantage for teachers, students, and interested 

amateurs over other systems:  

 Inexpensive - Arduino boards are relatively inexpensive compared to other 

microcontroller platforms. The least expensive version of the Arduino module can 

be assembled by hand, and even the pre-assembled Arduino modules cost less than 

$50  

 Cross-platform - The Arduino software runs on Windows, Macintosh OSX, 

and Linux operating systems. Most microcontroller systems are limited to 

Windows.  

 Simple, clear programming environment - The Arduino programming 

environment is easy-to-use for beginners, yet flexible enough for advanced users to 

take advantage of as well. For teachers, it's conveniently based on the Processing 

programming environment, so students learning to program in that environment will 

be familiar with the look and feel of Arduino  

 Open source and extensible software- The Arduino software is published as 

open source tools, available for extension by experienced programmers. The 

language can be expanded through C++ libraries, and people wanting to understand 



23 
 

the technical details can make the leap from Arduino to the AVR C programming 

language on which it's based. Similarly, you can add AVR-C code directly into your 

Arduino programs if you want to.  

 Open source and extensible hardware - The Arduino is based on Atmel's 

ATMEGA8 and ATMEGA168 microcontrollers. The plans for the modules are 

published under a Creative Commons license, so experienced circuit designers can 

make their own version of the module, extending it and improving it. Even 

relatively inexperienced users can build the breadboard version of the module in 

order to understand how it works and save money.  

3. Summary 

Microcontroller ATmega328 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits) 6-20V 

Digital I/O Pins 14 (of which 6 provide PWM output) 

Analog Input Pins 6 

DC Current per I/O Pin 40 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 

32 KB (ATmega328) of which 0.5 KB 

used by bootloader 

SRAM 2 KB (ATmega328) 

EEPROM 1 KB (ATmega328) 

Clock Speed 16 MHz 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 

 



24 
 

4. Datasheet 

 

Figure 8 Datasheet 

 



25 
 

5. Pinout Diagram 

 

Figure 9 Pin Out diagram 

 



26 
 

6. HC-05 module 

HC-05 embedded Bluetooth serial communication module (can be short for  

module) has two work modes: order-response work mode and automatic connection 

work mode. And there are three work roles (Master, Slave and Loopback) at the 

automatic connection work mode. When the module is 

at the automatic connection work mode, it will follow the default way set lastly to 

transmit the data automatically. When the module is at the order-response work 

mode, user can send the AT command to the module to set the control parameters 

and sent control order. The work mode of module can be switched by controlling 

the module PIN (PIO11) input level.  

 
 

Figure 10 Connections from Bluetooth module HC-05 to Arduino Uno 

 

 

 



27 
 

7. HC-SR04 Ultrasonic Sensor 

The HC-SR04 ultrasonic sensor uses sonar to determine distance to an object like 

bats do. It offers excellent non-contact range detection with high accuracy and 

stable readings in an easy-to-use package. From 2cm to 400 cm or 1” to 13 feet. It 

operation is not affected by sunlight or black material like Sharp rangefinders are 

(although acoustically soft materials like cloth can be difficult to detect). It comes 

complete with ultrasonic transmitter and receiver module. 

Features 

 Power Supply :+5V DC 

 Quiescent Current : <2mA 

 Working Current: 15mA 

 Effectual Angle: <15° 

 Ranging Distance : 2cm – 400 cm/1″ – 13ft 

 Resolution : 0.3 cm 

 Measuring Angle: 30 degree 

 Trigger Input Pulse width: 10uS 

 Dimension: 45mm x 20mm x 15mm 

 

 

 

 

 

 



28 
 

 

 

 

 

 

 

Figure 11 HC-SR04 Ultrasonic Sensor 

 

Figure 12 Connections from HC-SR04 Ultrasonic Sensor to Arduino Uno  

 



29 
 

8. Liquid Crystal Display 

The LiquidCrystal library allows you to control LCD displays. There are many of 

them out there, and you can usually tell them by the 16-pin interface. 

 The LCDs have a parallel interface, meaning that the microcontroller has to 

manipulate several interface pins at once to control the display. The interface 

consists of the following pins: 

A register select (RS) pin that controls where in the LCD's memory you're writing 

data to. You can select either the data register, which holds what goes on the screen, 

or an instruction register, which is where the LCD's controller looks for instructions 

on what to do next. 

A Read/Write (R/W) pin that selects reading mode or writing mode 

An Enable pin that enables writing to the registers 

8 data pins (D0 -D7). The states of these pins (high or low) are the bits that you're 

writing to a register when you write, or the values you're reading when you read. 

There's also a display constrast pin (Vo), power supply pins (+5V and 

Gnd) and LED Backlight (Bklt+ and BKlt-) pins that you can use to power the 

LCD, control the display contrast, and turn on and off the LED backlight, 

respectively. 



30 
 

 

Figure 13 LCD interfaced with Arduino 

 

 

 

 

 

 

 

 

 

 



31 
 

CHAPTER - 5 

 An Introduction to IDEs and SDKs Used 

We now have a brief idea of all the kinds of hardware used in the making of this 

project. In order to harness the potential of the various sensors, we now need to 

embed an ingenious code which will help us to achieve the desired motive. 

Arduino Uno can be embedded with a code, written and compiled in a light IDE 

known as Arduino IDE. The version used in the making of this project is 1.0.6. 

Also, talking of interaction with the mobile phone; an application has been 

developed in Android. The choice of platform relies on a number of benefits 

provided by this particular environment, the one that tops the list being the ability to 

freely upload your own application on your phone bypassing numerous formalities 

on other available platforms such as iOS and Windows. 

1. Arduino 1.0.6 

The Arduino integrated development environment (IDE) is a cross-platform 

application written in Java, and derives from the IDE for the Processing 

programming language and the Wiring projects. It is designed to introduce 

programming to artists and other newcomers unfamiliar with software development. 

It includes a code editor with features such as syntax highlighting, brace matching, 

and automatic indentation, and is also capable of compiling and uploading 

programs to the board with a single click. A program or code written for Arduino is 

called a sketch.  

Arduino programs are written in C or C++. The Arduino IDE comes with a 

software library called "Wiring" from the original Wiring project, which makes 

many common input/output operations much easier. Users only need define two 

functions to make a runnable cyclic executive program: 

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Processing_%28programming_language%29
http://en.wikipedia.org/wiki/Processing_%28programming_language%29
http://en.wikipedia.org/wiki/Wiring_%28development_platform%29
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Brace_matching
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Wiring_%28development_platform%29
http://en.wikipedia.org/wiki/Cyclic_executive


32 
 

 setup(): a function run once at the start of a program that can initialize 

settings 

 loop(): a function called repeatedly until the board powers off 

A typical first program for a microcontroller simply blinks an LED on and off. In 

the Arduino environment, the user might write a program like this: 

 

 

 

 

 

Screen grab of the IDE is as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 14 A Screen grab of the Arduino IDE 

#define LED_PIN 13 
  
void setup () { 
  pinMode (LED_PIN, OUTPUT); // Enable pin 13 for digital output 
} 
  
void loop () { 
  digitalWrite (LED_PIN, HIGH); // Turn on the LED 
  delay (1000); // Wait one second (1000 milliseconds) 
  digitalWrite (LED_PIN, LOW); // Turn off the LED 
  delay (1000); // Wait one second 
} 
 

http://en.wikipedia.org/wiki/Light-emitting_diode


33 
 

1.1. Structure of Arduino Code 

Sketch 

A sketch is the name that Arduino uses for a program. It's the unit of code that is 

uploaded to and run on an Arduino board. 

Comments 

The first few lines of the Blink sketch are a comment: 

/* Hello */ 

Everything between the /* and */ is ignored by the Arduino when it runs the sketch 

(the * at the start of each line is only there to make the comment look pretty, and 

isn't required). It's there for people reading the code: to explain what the program 

does, how it works, or why it's written the way it is. It's a good practice to comment 

your sketches, and to keep the comments up-to-date when you modify the code. 

This helps other people to learn from or modify your code. 

There's another style for short, single-line comments. These start with // and 

continue to the end of the line. For example, in the line: 

int ledPin = 13;                // LED connected to digital pin 13 

the message "LED connected to digital pin 13" is a comment. 

 

Variables 

A variable is a place for storing a piece of data. It has a name, a type, and a value. 

For example, the line from the Blink sketch above declares a variable with the 

name ledPin, the type int, and an initial value of 13. It's being used to indicate 

http://arduino.cc/en/Tutorial/Blink


34 
 

which Arduino pin the LED is connected to. Every time the name ledPin appears in 

the code, its value will be retrieved. In this case, the person writing the program 

could have chosen not to bother creating the ledPin variable and instead have 

simply written 13 everywhere they needed to specify a pin number. The advantage 

of using a variable is that it's easier to move the LED to a different pin: you only 

need to edit the one line that assigns the initial value to the variable. 

Functions 

A function (otherwise known as a procedure or sub-routine) is a named piece of 

code that can be used from elsewhere in a sketch. For example, here's the definition 

of the setup() function from the Blink example: 

void setup() 

{ 

  pinMode(ledPin, OUTPUT);      // sets the digital pin as output 

} 

The first line provides information about the function, like its name, "setup". The 

text before and after the name specify its return type and parameters: these will be 

explained later. The code between the { and } is called the body of the function: 

what the function does. 

You can call a function that's already been defined (either in your sketch or as part 

of the Arduino language). For example, the line pinMode(ledPin, OUTPUT); calls 

the pinMode() function, passing it two parameters: ledPin and OUTPUT. These 

parameters are used by the pinMode() function to decide which pin and mode to set. 

pinMode(), digitalWrite(), and delay() 

The pinMode() function configures a pin as either an input or an output. To use it, 

you pass it the number of the pin to configure and the constant INPUT or OUTPUT. 

http://arduino.cc/en/Reference/HomePage


35 
 

When configured as an input, a pin can detect the state of a sensor like a 

pushbutton. As an output, it can drive an actuator like an LED. 

The digitalWrite() functions outputs a value on a pin. For example, the line: 

digitalWrite(ledPin, HIGH); 

set the ledPin (pin 13) to HIGH, or 5 volts. Writing a LOW to pin connects it to 

ground, or 0 volts. 

The delay() causes the Arduino to wait for the specified number of milliseconds 

before continuing on to the next line. There are 1000 milliseconds in a second, so 

the line: 

delay(1000); 

creates a delay of one second. 

setup() and loop() 

There are two special functions that are a part of every Arduino 

sketch: setup() and loop(). The setup() is called once, when the sketch starts. It's a 

good place to do setup tasks like setting pin modes or initializing libraries. 

The loop()function is called over and over and is heart of most sketches. You need 

to include both functions in your sketch, even if you don't need them for anything. 

 

 

 



36 
 

 

2. Android Development Tools 

The Android software development kit (SDK) includes a comprehensive set of 

development tools. These include a debugger, libraries, a handset emulator based on 

QEMU, documentation, sample code, and tutorials. Currently supported 

development platforms include computers running Linux (any modern desktop 

Linux distribution), Mac OS X 10.5.8 or later, and Windows XP or later. For the 

moment one can also develop Android software on Android itself by using the 

AIDE - Android IDE - Java, C++ app and the Java editor app. The officially 

supported integrated development environment (IDE) is Eclipse using the Android 

Development Tools (ADT) Plugin, though IntelliJ IDEA IDE (all editions) fully 

supports Android development out of the box, and NetBeans IDE also supports 

Android development via a plugin. Additionally, developers may use any text editor 

to edit Java and XML files, then use command line tools (Java Development Kit 

and Apache Ant are required) to create, build and debug Android applications as 

well as control attached Android devices (e.g., triggering a reboot, installing 

software package(s) remotely).  

Enhancements to Android's SDK go hand in hand with the overall Android platform 

development. The SDK also supports older versions of the Android platform in case 

developers wish to target their applications at older devices. Development tools are 

downloadable components, so after one has downloaded the latest version and 

platform, older platforms and tools can also be downloaded for compatibility 

testing.  

 

 

http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/QEMU
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/List_of_Linux_distributions
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Java_Development_Kit
http://en.wikipedia.org/wiki/Apache_Ant


37 
 

Android applications are packaged in .apk format and stored under /data/app 

folder on the Android OS (the folder is accessible only to the root user for security 

reasons). APK package contains .dex file (compiled byte code files called Dalvik 

executables), resource files, etc. 

 

Figure 15 Android Development Tools 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/APK_%28file_format%29
http://en.wikipedia.org/wiki/Dalvik_Virtual_Machine


38 
 

CHAPTER – 6 

Understanding Different Modules 

(Exploring the Hardware) 

1. Blink Example 

We started off with implementing a simple program on the arduino board. To build 

the circuit, attach a 220-ohm resistor to pin 13. Then attach the long leg of an LED 

(the positive leg, called the anode) to the resistor. Attach the short leg (the negative 

leg, called the cathode) to ground.  

        Figure 16 Connecting the LED and resistor to the Arduino board. 

Code snippet: 

 

 

 

 

void loop() { 

  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level) 

  delay(1000);               // wait for a second 

  digitalWrite(led, LOW);    // turn the LED off by making the voltage LOW 

  delay(1000);               // wait for a second 

} 



39 
 

2. Analog Read Voltage 

Connect the three wires from the potentiometer to your Arduino board. The first 

goes to ground from one of the outer pins of the potentiometer. The second goes 

from 5 volts to the other outer pin of the potentiometer. The third goes from analog 

input 2 to the middle pin of the potentiometer.  

By turning the shaft of the potentiometer, you change the amount of resistance on 

either side of the wiper which is connected to the center pin of the potentiometer. 

This changes the voltage at the center pin. When the resistance between the center 

and the side connected to 5 volts is close to zero (and the resistance on the other 

side is close to 10 kilohms), the voltage at the center pin nears 5 volts. When the 

resistances are reversed, the voltage at the center pin nears 0 volts, or ground. This 

voltage is the analog voltage that you're reading as an input.  

                      

Figure 17 Connecting the potentiometer to the Arduino board 

 

 

 

 



40 
 

Code snippet: 

 

 

 

 

 

3. Connecting Arduino Board with the HC – 05 Module 

Firstly, we go to the  bluetooth icon , right click and select Add a Device . On 

searching for new device , our bluetooth module will appear as HC-05 , and add it. 

The pairing code will be 1234. After make a pairing, we can now program the 

arduino and upload a sketch  to send or receive data from Computer. 

   Figure 18 Connections on the Arduino Board  

void loop() { 

  // read the input on analog pin 0: 

  int sensorValue = analogRead(A0); 

  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V): 

  float voltage = sensorValue * (5.0 / 1023.0); 

  // print out the value you read: 

  Serial.println(voltage); 

} 



41 
 

Code Snippet:  

 

 

 

 

 

 

 

 

 

 

4. Connecting Arduino Board with the HC – SR04 Module 

This sensor is really easy to use and hence, popular among the Arduino Tinkerers. 

So I’ve decided to use this example using this sensor. In this project the ultrasonic 

sensor read and write the distance in the serial monitor. It’s really simple. 

Our goal is to help understand how this sensor works and then we can use this 

example in our major project 

Note: There’s an Arduino library called NewPing that comes really handy whilst 

using this sensor. 

 

// see if there's incoming serial data: 
if (Serial.available() > 0) { 
// read the oldest byte in the serial buffer: 
incomingByte = Serial.read(); 
// depending on the incoming byte do the needful action 
if (incomingByte == '1') { 
digitalWrite(11, HIGH); 
//delay(500); 
//Serial.println("ON"); 
state=1; 
} 
else if (incomingByte =='0') { 
digitalWrite(11, LOW); 
//delay(500); 
//Serial.println("OFF"); 
state = 0; 
} 

http://playground.arduino.cc/Code/NewPing


42 
 

 

Figure 19 Connections on the Arduino Board 

Code Snippet:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Read the signal from the sensor: a HIGH pulse whose 

// duration is the time (in microseconds) from the sending 

// of the ping to the reception of its echo off of an object. 

  pinMode(echoPin, INPUT); 

  duration = pulseIn(echoPin, HIGH); 

  // convert the time into a distance 

  cm = (duration/2) / 29.1; 

  inches = (duration/2) / 74;  

  Serial.print(inches); 

  Serial.print("in, "); 

  Serial.print(cm); 



43 
 

5. Connecting Arduino Board with A LCD  

Luckily, I was provided with a Grove sensor kit which had a backlit LCD display 

with a predefined library at disposal, the connections are pretty simple: GND and 

VCC fit in where they belong, SDA and SCL fit in on the Arduino Board. 

We use various functions contained in the predefined library: 

Grove_LCD_RGB_Backlight-master. 

Hardware Required 

 Arduino Board 
 LCD Screen  
 hook-up wire 

Circuit Diagram 

 

Figure 20 Connections from LCD to Arduino board 

 

 

 

 



44 
 

Code Snippet:  

 

 

 

 

 

 

 

 

 

 

 

 

 

void setup()  

{ 

    lcd.begin(16, 2);     

    lcd.setRGB(colorR, colorG, colorB); 

    lcd.print("hello, world!"); 

    delay(1000); 

} 

void loop()  

{ 

    lcd.setCursor(0, 1); 

    lcd.print(millis()/1000); 

    delay(100); 

} 



45 
 

CHAPTER - 7 

Work Done 

1. Arduino Code for sending Distance and Fuel Signals 

via Bluetooth 

In this module, I have designed a circuit which is similar to the one present in a car 

where distance and fuel signals are continuously fed to the digital odometer present 

on the dashboard. We shall be using a potentiometer to emulate the movement of 

wheels and an ultrasonic sensor, HC-SR04, interfaced with the Arduino board shall 

measure changes in the fuel level if any. Also, we shall be displaying the mileage 

and fuel on an LCD. 

The values obtained from the different sensors are sent with the help of a Bluetooth 

module, namely HC-05. It is interfaced with the development board as shown in a 

schematic (figure 3.4). 

1.1. Requirements 

 Arduino Uno 

 A potentiometer 

 A backlit LCD display 

 HC-SR04 Ultrasonic Sensor 

 HC-05 Bluetooth Module 

 A Breadboard 

 Connecting Wires 

 

 



46 
 

 

1.2. Circuit Diagram 

 

Figure 21 Circuit Diagram  

 

 

 

 

 

 



47 
 

1.3. Explanation of Code 

 

#include <NewPing.h> 

#include <Wire.h> 

#include "rgb_lcd.h" 

The NewPing library increases the performance of the ultrasonic sensor used to 

measure the fuel level in the project. The NewPing library totally fixes initial 

problems faced by the sensor, adds many new features, and breathes new life into 

these very affordable distance sensors. Some of the features are: 

 Works with many different ultrasonic sensor models: SR04, SRF05 etc. 

 Option to interface with all but the SRF06 sensor using only one Arduino 

pin. 

 Doesn't lag for a full second if no ping echo is received like all other 

ultrasonic libraries. 

 Ping sensors consistently and reliably at up to 30 times per second. 

 Timer interrupt method for event-driven sketches. 

 The Wire library allows you to communicate with I2C / TWI devices. On the 

Arduino boards with the R3 layout (1.0 pinout), the SDA (data line) and SCL (clock 

line) are on the pin headers close to the AREF pin. The Arduino Due has two I2C / 

TWI interfaces SDA1 andSCL1 are near to the AREF pin and the additional one is 

on pins 20 and 21. 

Here “rgb_lcd.h” file contains certain functions to utilize the LCD display has been 

provided by the sensor manufacturer.  

 

#define TRIGGER_PIN  12  // Arduino pin tied to trigger pin on the ultrasonic 

sensor. 



48 
 

#define ECHO_PIN     11  // Arduino pin tied to echo pin on the ultrasonic sensor. 

#define MAX_DISTANCE 200 // Maximum distance we want to ping for (in 

centimeters). Maximum sensor distance is rated at 400-500cm. 

The above statements identify the various connection from the HC-SR04 Ultrasonic 

sensor.  

 The following variables decide the color of the backlit LCD: 

const int colorR = 255; 

const int colorG = 0; 

const int colorB = 0; 

Two arrarys are defined in order to store the obtained values from the sensors and 

the final values: 

int sensorValue[4] = {0,0}; 

int voltageValue[4] = {0,0}; 

Now, the setup() function is called when a sketch starts. We use it to initialize 

variables, pin modes, start using libraries, etc. The setup function will only run 

once, after each powerup or reset of the Arduino board. 

 

 

 

 

 



49 
 

Code Snippet: 

 

 

 

 

 

 

 

 

 

Moving on to the loop function, it does precisely what its name suggests, and loops 

consecutively, allowing your program to change and respond. We use it to actively 

control the Arduino board. 

 

 

 

 

 

 

 

 

 

 

Serial.begin(9600); //change to 16, 2 for smaller 16x2 screens 

  pinMode(led, OUTPUT); 

  digitalWrite(led, LOW); 

  counter=0; 

  lcd.begin(16, 2);   

  lcd.setRGB(colorR, colorG, colorB); 

  lcd.print("ODOMETER"); 

 



50 
 

Code Snippet: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  if (Serial.available() > 0) 

  { 

    

In this part of the code, we’re sending the values from the sensor depending on the 

command communicated by the Android mobile application over Bluetooth. 

If the value received is ‘1’, the LED is turned ON and the distance and fuel signals 

are continuously sent to the application, if ‘0’, the LED is turned OFF and the 

sensors come to a hault.  

if (inbyte == '0') 

    { 

      //LED off 

      digitalWrite(led, LOW); 

    } 

    if (inbyte == '1') 

    { 

      unsigned int uS = sonar.ping(); 

      do 

        { 

          digitalWrite(led, HIGH); 

          val = analogRead(potPin); 

          readSensor(uS); 

          sendAndroidValues(); 

          delay(val); 

          digitalWrite(led, LOW); 

          delay(val); 

        }while(inbyte == '1'); 

 



51 
 

     

Also we use two functions, namely, readSensor() and sendAndroidValues() to read 

the value from the sensors and send these values over Bluetooth respectively. The 

pseudo codes are as follows:  

sendAndroidValues() 

  

 

 

 

 

 

 

 

 

readSensor() 

   

   

 

 

 

 

 

 

Serial.print(sensorValue[0]); 

Serial.print('+'); 

Serial.print('<'); 

Serial.print(sensorValue[1]); 

Serial.print('>'); 

Serial.print('~'); 

Serial.println(); 

 

counter=counter+3.4; 

sensorValue[0] = round(counter); 

unsigned int uS4 = sonar.ping(); 

unsigned int uS2 = uS4 - uS0; 

sensorValue[1] = (uS2/ US_ROUNDTRIP_CM); 

 



52 
 

On uploading the code on the development board, we initially observe the LCD 
turning on, displaying the text “ODOMETER”.  

As soon as the user turns ON the engine using the mobile application, the LED 
turns on. The ultrasonic sensor continuously scans for any changes in the fuel level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

2. Android Application 

After burning the code on the Arduino Uno, we move on to the next pedestal in 

communication between the user and hardware – The Android application. 

The Android application I have developed connects your mobile phone to the 

embedded system and continuously scans for signals received. It then processes the 

received values of distance and fuel to calculate the mileage. All of the data is then 

stored in a table which the user can view for future reference. Also, I further plan on 

implementing some kind of an analytic tool where the user can visualize his fuel 

economy in form of a graph. 

The application basically revolves around taking distance and fuel measure from the 

Arduino board via Bluetooth. The mileage is calculated and is stored in a database 

using SQLite, the details of which will be discussed later. 

The application makes use of six classes, which communicate together to fulfill the 

functionality expected from the application. 

Five major classes have been briefly discussed in the following pages: 

2.1 DeviceListActivity.java 

 

We shall start our discussion with the first page shown after the Splash Screen. 

This activity displays a list of available devices from all the paired devices on your 

Android phone. The user can connect his device accordingly and proceed to retrieve 

signals from his car. 

To understand how this is done we initially check the state of the Bluetooth adapter. 

If it is OFF we prompt the user to turn it on. This is done using the checkBTState() 

function: 

 



54 
 

 

 

 

 

 

 

We then proceed to display the list of available devices, storing and displayed in an 

array of paired devices: 

 

 

 

 

Now, we connect our device to the desired device using OnItemClickListener() 

 

 

 

2.2 MainActivity.java 

 

The following class mainly deals with the Bluetooth functionality of this 

application. Various functions have been defined which help the Android 

if(mBtAdapter==null) {  
         Toast.makeText(getBaseContext(), "Car does not support Bluetooth", 
Toast.LENGTH_SHORT).show(); 
        } else { 
          if (mBtAdapter.isEnabled()) { 
            Log.d(TAG, "...Bluetooth ON..."); 
          } else { 
            //Prompt user to turn on Bluetooth 
            Intent enableBtIntent = new 
Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE); 
            startActivityForResult(enableBtIntent, 1); 

if (pairedDevices.size() > 0) { 
     
 findViewById(R.id.title_paired_devices).setVisibility(View.VISIBLE);//m
ake title viewable 
      for (BluetoothDevice device : pairedDevices) { 
       mPairedDevicesArrayAdapter.add(device.getName() + 
"\n" + device.getAddress()); 
      } 

String info = ((TextView) v).getText().toString(); 
            String address = info.substring(info.length() - 17); 
 
            // Make an intent to start next activity while taking an extra which is 
the MAC address. 
   Intent i = new Intent(DeviceListActivity.this, 
MainActivity.class); 
            i.putExtra(EXTRA_DEVICE_ADDRESS, address); 
   startActivity(i);    



55 
 

application to connect with the development board and receive fuel and distance 

signals from the sensors.   

bluetoothIn = new Handler()  

A Bluetooth handler is used which facilitates communication between the hardware 

and the Android mobile phone. 

On receiving the desired message, the application now removes the desired 

information. 

recDataString.append(readMessage);            

int endOfLineIndex = recDataString.indexOf("~");                                     

int endOfLineIndexa = recDataString.indexOf("+"); 

int beginningOfLineIndex = recDataString.indexOf("<"); 

int endOfLineIndexb = recDataString.indexOf(">"); 

The aforementioned statements are used to scan for the symbols present in the 

received data. This helps to easily decode the received fuel and distance signals. 

String sensor0 = recDataString.substring(1, endOfLineIndexa); 

String sensor1 = recDataString.substring(beginningOfLineIndex+1, 

endOfLineIndexb);              

These statements record the values of fuel level and distance and store them into 

variables sensor1 and sensor 0 respectively using recDataString.substring().         

Now that we have understood how the distance and fuel signals are retrieved, we 

now calculate the fuel economy.  

OnClickListener() is used to define what clicking the two buttons does. 



56 
 

On pressing the “Engine Start” button: 

 

 

 

The LED is turned on and the fuel and distance signals are continuously scanned 

and retrieved. 

When the “Engine Stop” button is pressed: 

 

 

 

 

 

 

We send the current values of distance and fuel to the next activity via the intent. 

 

2.3 DisplayMessageActivity.java 

 

This activity retrieves data from the Main Activity after the engine is turned off. 

The fuel and distance signals are used to calculate the car’s fuel economy and are 

then stored in a table. 

 

This Activity contains various functions to retrieve fuel and distance signals, 

calculate the car’s fuel economy and store them in a table. 

 

mConnectedThread.write("0");    // Send "0" via Bluetooth 

Toast.makeText(getBaseContext(), "ENGINE STOP",               

String message = "#"+FinalValFuel+"<"+FinalValDist+">"; 

intent.putExtra(EXTRA_MESSAGE, message); 

StartActivity(intent); 

mConnectedThread.write("1");    // Send "1" via Bluetooth 
        Toast.makeText(getBaseContext(), "ENGINE ON", 

Toast.LENGTH_SHORT).show(); 



57 
 

A function BuildTable() is used to create a table to store and show the recorded log 

of distance, fuel and fuel economy values. 

 

A pseudo code has been shown in the following page: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides that, the job of calculating the mileage and creating the table is done by 

SQLController.java and MyDbHelper.java respectively 

2.4 MyDbHelper.java 

A class has been implemented to create the database. It uses the 

SQLiteOpenHelper which is a helper class to manage database creation and 

version management. 

 

 A database called “FUEL_ECONOMY.DB” is created. It consists of a table called 

“TABLE_MILEAGE” and columns such as “MILEAGE_ID”, 

“MILEAGE_DISTANCE”, “MILEAGE_FUEL” and “MILEAGE_VALUE”. 

 

int rows = c.getCount(); 
   int cols = c.getColumnCount(); 
 
   c.moveToFirst(); 
 
   // outer for loop 
   for (int i = 0; i < rows; i++) { 
 
    TableRow row = new TableRow(this); 
    row.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT, 
      LayoutParams.WRAP_CONTENT)); 
 
    // inner for loop 
    for (int j = 0; j < cols; j++) { 
 
     TextView tv = new TextView(this); 
     tv.setLayoutParams(new LayoutParams(LayoutParams.WRAP_CONTENT, 
       LayoutParams.WRAP_CONTENT)); 
     tv.setGravity(Gravity.CENTER); 
     tv.setTextSize(18); 
     tv.setPadding(0, 5, 0, 5); 
 
     tv.setText(c.getString(j)); 
 



58 
 

A table is created using the following statement:  

 

 

 

 

The above mentioned query creates a table “MILEAGE_TABLE” with columns, 

namely – MILEAGE_ID, MILEAGE_DISTANCE., MILEAGE_FUEL and 

MILEAGE_VALUE. 

2.5 SQLController.java 

This class contains houses the most important but extremely simple function for 

mileage calculation and data insertion. 

The function looks like: 

 

 

 

 

 

 

 

 

ContentValues cv = new ContentValues(); 

cv.put(MyDbHelper.MILEAGE_DISTANCE, 
dist_val);cv.put(MyDbHelper.MILEAGE_FUEL, fuel_val); 

int dist_int_val = Integer.parseInt(dist_val); 

int fuel_int_val = Integer.parseInt(fuel_val); 

int mileage_int_val = dist_int_val/fuel_int_val; 

String mileage_str = String.valueOf(mileage_int_val); 

cv.put(MyDbHelper.MILEAGE_VALUE, mileage_str); 

database.insert(MyDbHelper.TABLE_MILEAGE, null, cv); 

  

private static final String CREATE_TABLE = "create table " + TABLE_MILEAGE 

   + "(" + MILEAGE_ID + " INTEGER PRIMARY KEY AUTOINCREMENT, " 

   + MILEAGE_DISTANCE + " TEXT NOT NULL ," + MILEAGE_FUEL 

   + " TEXT NOT NULL,"  

   +MILEAGE_VALUE+ " TEXT NOT NULL);"; 



59 
 

CHAPTER - 8 

Experimentation and Results 

1. Hardware Implementation 

1.1 Potentiometer 

 

Figure 22 Schematic of a Potentiometer 

In order to simulate the working of an accelerating car, we connect a 

potentiometer to our Arduino board. The three pins are connected to VCC, A2 

and GND respectively in the following manner:  

 

Figure 23 Connecting a Potentiometer to the circuit 



60 
 

 

1.2 HC-05 Bluetooth Module 

Communication between the two major modules – the software and hardware 

has been facilitated by the HC-05 module. To understand its proper working, a 

schematic would come in handy: 

 

Figure 24 Schematic of Bluetooth Module HC-05 

Connections from the HC-05 module to the Arduino Board are pretty simple: You 

need to connect the VCC and GND pins to where they belong, RX and TX pins 

switch sides on the board: 

 

Figure 25 Bluetooth HC-05 Module connected on Arduino Uno 



61 
 

The module is connected at a baud rate of 9600. 

1.3 HC-SR04 Ultrasonic Sensor 

Now that we’ve furnished two criterions – distance and communication, we 

further proceed to calculate fuel changes using the HC-SR04 module. To 

understand the connections more properly, a schematic has been illustrated 

below: 

 

Figure 26 HC-SR04 Ultrasonic Module Schematic 

Connections to the board are pretty much similar to that of the Bluetooth module: 

 

Figure 27 HC-SR04 Ultrasonic Module connected to Arduino Uno 

This sensor will help us sense the changes in the fuel level via sending and 

retrieving ultrasonic waves. 



62 
 

 

1.4 Grove backlit LCD  

In addition to the already mentioned sensors, to take simulation to a next level: we 

implemented a digital odometer. LCD provided in the Grove kit has been used with 

a predefined library, the connections are pretty simple: 

 

Figure 28 Schematic of the Grove backlit LCD 

The above illustration shows the connections to the shielding provided with the kit. 

I, however, connected the display directly to the Arduino board as follows: 

 

Figure 29 Grove backlit LCD connected smugly to the Board 



63 
 

 

2. Software Implementation 

We shall now proceed to discuss the Android application via illustrations. All major 

classes have been discussed in detail in previous chapters. Now, we shall look at 

where these interfaces fit in and help the user to conveniently keep track of his car’s 

fuel economy. 

2.1 Selecting Your Bluetooth Device from the List of 

Available Devices 

Firstly, we need to figure a way to connect our Android handheld to the hardware. 

To do the same, I have created an Activity where a list of paired devices with the 

phone is shown, on selecting the desired device, its MAC address is passed on to 

the next Activity. The interface looks like: 

 

Figure 30 Interface Showing the Various Paired Devices 



64 
 

 

2.2 Viewing Distance and Fuel Values on Your Phone 

The retrieved signals from the hardware are shown on an interface on your mobile 

phone. Two buttons have been provided: “Engine Start” and “Engine Stop”. On 

pressing the “Engine Start” button, a signal is sent to the device to start receiving 

signals from the sensor and broadcast them to the handheld. 

On pressing the “Engine Stop”, the final values of the fuel and distance are stored 

and sent to the next Activity in order to be processed and calculate the fuel 

economy. 

           

 Figure 31 Interface Showing the Fuel and Distance values 

After successful completion of this activity, we proceed to the next step: 

 

 



65 
 

 

2.3 Calculation of Car Mileage and Storing the Values in a 

Table 

After turning off the engine, you will be left with two values – the distance 

traversed and the fuel level consumed. Now we are left with one final task: 

calculation of fuel economy. 

A simple activity, as already discussed, takes care of this. A database has been 

created using SQLlite which promptly stores all of the data in a convenient table. 

The following illustrations demonstrate the same: 

 

 

 

 

 

 

 

Figure 32 Screen Grab of Display Message Activity 

The application dutifully completes its responsibility of communication with the 

hardware, giving a convenient interface and storing the data in a neat table. 

 



66 
 

 

3. Final Run-through of the Project 

Now that we’ve fully understood what went into the making of the project, we shall 

finally be able to appreciate it working in real time. We’ll proceed step-by-step.  

Firstly, we’ll set-up the apparatus which consists of the following:  

 Arduino Uno 

 A potentiometer 

 A backlit LCD display 

 HC-SR04 Ultrasonic Sensor 

 HC-05 Bluetooth Module 

 A Breadboard 

 Connecting Wires 

For our convenience, I have put up the circuit diagram for the various connections 

again:  

 

 

 

 

 

 

 



67 
 

 

Figure 33 Snapshot of the apparatus 

On successfully assembling the circuit, it should look something like this. As soon 

as you connect it to the appropriate power source, we shall see the backlit LCD 

light up displaying “ODOMETER”. 

Now, we’re ready to move on to the next step i.e. uploading and loading our 

Android application on our handheld device. 

You can transfer the .apk file directly to your mobile phone and install the 

application using the steps shown on the screen. 

 

 



68 
 

 

On successful installation and loading the application will look something like this:  

 

Figure 34 Splash Screen showing the App name and Logo 

Figure 8.1.3 shows how the application will look momentarily on being loaded. 

Splash Screen being a graphical control element consisting of an image, text etc. 

shown for a fraction of seconds whilst the application prepares for action. 

The logo has been created with Adobe Photoshop. The layout has been created in 

Android. 

In a fraction of seconds we shall move to the next screen, the DeviceListActivity. 



69 
 

 

 

Figure 35 Screenshot showing the DeviceListActivity 

The following activity shows the list of all the available devices. The device needs 

to be paired with your Android mobile phone. If you are unable to view your 

device, try restarting the hardware and pair it with your phone again. 

The module we have interfaced with our device is shown on the screen as HC-05. 

It has already been paired with our handheld. This can be done by connecting your 

device in the Bluetooth devices and entering the default passcode “1234” as 

follows: 

 

 



70 
 

 

 

Figure 36 Screenshot showing the module pairing 

On successful pairing the LED on the HC-05 module will blink less frequently, also 

the device will be shown in the DeviceListActivityScreen. 

 

Figure 37 Screenshot of blinking LED on HC-05 module 



71 
 

 

Figure 38 Screenshot showing the application connecting to the module 

The application should successfully connect to your mobile phone and the 

following screen will be displayed with currently no values for distance and fuel: 

 

Figure 39 Screenshot showing the application prior to turning the Engine On 



72 
 

 

Now, we can finally proceed to turn on the engine. As soon as we press the “Engine 

Start” button, we notice the LED on the board gradually blinking: 

 

Figure 40 Circuit snapshot after the engine is turned on 

Also, we notice the LED no longer shows “ODOMETER”, instead we now view 

the values of mileage and fuel level. 

The distance and fuel signals are continuously emitted from the hardware via the 

HC-05 module and are received by the Android device. The values are displayed on 

the mobile screen. 



73 
 

In order to emulate what happens in a real car, we have attached a potentiometer; on 

rotating the knob we shall notice the value of distance increases faster, symbolizing 

an increase in the speed of the car:  

 

Figure 41 Snapshot of the potentiometer’s knob being rotated 

On varying the distance in front of the HC-SR04 sensor, we shall notice a change in 

the fuel level, we therefore successfully emulate the working of a fuel tank sensor:  

 

Figure 42 Snapshot of the HC-SR04 Ultrasonic sensor in action 



74 
 

The LCD display acts like a digital odometer showing the present value of mileage 
and fuel level: 

 

Figure 43 Snapshot of the backlit LCD in action 

 

Figure 44 Snapshot of the Android application showing mileage and fuel values 

We find the corresponding values on the Android application. Now, we proceed to 

press the “Engine Stop” button, we notice the LED goes OFF, and we are taken to a 

new screen: 



75 
 

 

 

Figure 45  Screenshot showing the Display Message Activity prior to calculating 
the mileage 

As soon as you click the “ENGINE STOP” button; the existing values of the fuel 

and distance are sent to the next activity. They are sent using the “intent” 

functionality of Android.  

In order to calculate the mileage, you need to click on the “MILEAGE” button.  

 



76 
 

 

Figure 46 Screenshot of the Display Message Activity after the mileage has been 
calculated 

On clicking the “MILEAGE” button the fuel and distance signals are fed to a 

function which calculates the mileage. This value is then stored in a variable and 

sent to the table to be stored. 

This functionality helps the user to keep track of all his previous mileages. This data 

can be further manipulated for better statistical records. 

 

 

 

 

 

 

 

 



77 
 

CHAPTER - 9 

Conclusion and Future Work 

1. Conclusion  

During the course of this project, I understood the importance of embedded systems 

and its application in solving everyday problems. The problem I took up was to 

make some kind of a system to control/keep track of various features of a car, 

beginning with fuel economy.  

The solution I came up with was an embedded system interfaced with an Android 

mobile application. Initially, we planned on implementing only a fuel economy 

calculator but later, we decided on adding some other features such as a gauge to 

show the engine’s temperature and a light control system. I successfully 

implemented the fuel economy module, the remaining modules can be taken up in 

future. 

The system successfully generates distance and fuel signals which are sent to the 

Android mobile phone using the HC-05 module; the fuel economy is then 

calculated and stored in a table for future reference. 

 

 

 

 

 

 



78 
 

2. Future Work 

2.1 Light Control 

Another feature that I wish to implement is that of controlling the headlights and 

tail lamps using infrared sensors. It will make the lights to automatically go on 

whenever it gets dark and therefore, will provide a handy feature.  

2.2 Graphical Visualization 

The user can keep track of their vehicle’s fuel economy by visualizing graphs on 

the app. 

2.3 Parking Assistance  

On completion of the aforementioned additions, I plan on making use of a SONAR 

sensor for the Arduino board which is readily available in the market and 

implement some kind of a parking assistance system which the user can visualize 

on his phone screen.  

 

 

 

 

 

 

 



79 
 

Reference:      

1. Brian W. Evans, “Structure”, Arduino Programming Notebook, First Edition,         

Creative Commons, 7-29 

 

2. Tim Fulton, “ScanGauge-E Review and Comparison”, Ecomodder 

 

3. Minsk, Belarus, “Engine fuel flow meters DFM”, Technoton 

 

4. The New Boston, “Java/Android Development”, Community forums, 

thenewboston 

 

 

 

 

 


	Information Technology

	Mr. Punit Gupta

	Abhishek Mankotia (Roll no. - 111416)

	2. Fuel flow meters DFМ

	Features

	1. Arduino 1.0.6

	Sketch

	Comments

	Variables

	Functions

	pinMode(), digitalWrite(), and delay()

	setup() and loop()

	1. Blink Example

	        Figure 16 Connecting the LED and resistor to the Arduino board.

	Code snippet:

	2. Analog Read Voltage

	Code snippet:

	Hardware Required



