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Abstract 

 

Map Reduce is a programming model and an associated implementation for processing and 

generating large data sets. Users specify a map function that processes a key/value pair to 

generate a set of intermediate key/value pairs, and a reduce function that merges all 

intermediate values associated with the same intermediate key. Many real world tasks are 

expressible in this model. 

 

A Map Reduce program is composed of a Map() procedure that performs filtering and sorting 

(such as sorting students by first name into queues, one queue for each name) and 

a Reduce() procedure that performs a summary operation (such as counting the number of 

students in each queue, yielding name frequencies). The "Map Reduce System" (also called 

"infrastructure" or "framework") orchestrates the processing by marshalling the distributed 

servers, running the various tasks in parallel, managing all communications and data transfers 

between the various parts of the system, and providing for redundancy and fault tolerance. 

 

The model is inspired by the map and reduce functions commonly used in functional 

programming, although their purpose in the Map Reduce framework is not the same as in their 

original forms. The key contributions of the Map Reduce framework are not the actual map 

and reduce functions, but the scalability and fault-tolerance achieved for a variety of 

applications by optimizing the execution engine once. As such, a single-

threaded implementation of Map Reduce (such as MongoDB) will usually not be faster than a 

traditional (non-Map Reduce) implementation, any gains are usually only seen with multi-

threaded implementations. Only when the optimized distributed shuffle operation (which 

reduces network communication cost) and fault tolerance features of the Map Reduce 

framework come into play, is the use of this model beneficial. 

 

http://en.wikipedia.org/wiki/Procedure_(computing)
http://en.wikipedia.org/wiki/Marshalling_(computer_science)
http://en.wikipedia.org/wiki/Redundancy_(engineering)
http://en.wikipedia.org/wiki/Fault-tolerant_computer_system
http://en.wikipedia.org/wiki/Map_(higher-order_function)
http://en.wikipedia.org/wiki/Fold_(higher-order_function)
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Single-threaded
http://en.wikipedia.org/wiki/Single-threaded
http://en.wikipedia.org/wiki/MongoDB
http://en.wikipedia.org/wiki/Multi-threaded
http://en.wikipedia.org/wiki/Multi-threaded
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Programs written in this functional style are automatically parallelized and executed on a large 

cluster of commodity machines. The run-time system takes care of the details of partitioning 

the input data, scheduling the program's execution across a set of machines, handling machine 

failures, and managing the required inter-machine communication. This allows programmers 

without any experience with parallel and distributed systems to easily utilize the resources of 

a large distributed system.  

 

Our implementation of Map Reduce runs on a large cluster of commodity machines and is 

highly scalable: a typical Map Reduce computation processes many terabytes of data on 

thousands of machines. Programmers and the system easy to use: hundreds of Map Reduce 

programs have been implemented and upwards of one thousand Map Reduce jobs are 

executed on Google's clusters every day. 

 

Map Reduce libraries have been written in many programming languages, with different 

levels of optimization. A popular open-source implementation is Apache Hadoop. The name 

Map Reduce originally referred to the proprietary Google technology, but has since 

been generalized. 

 

Hadoop is a Java software framework that supports data-intensive distributed applications and 

is developed under open source license. It enables applications to work with thousands of 

nodes and petabytes of data. The two major pieces of Hadoop are HDFS: Hadoop's own file 

system. This is designed to scale to petabytes of storage and runs on top of the file systems of 

the underlying operating systems. 

 

 

 

http://en.wikipedia.org/wiki/Library_(software)
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Generic_trademark
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Chapter 1: Introduction 

 

Map Reduce is a programming model for expressing distributed computations on massive 

amounts of data and an execution framework for large-scale data processing on clusters of 

commodity servers. It was originally developed by Google and built on well-known principles 

in parallel and distributed processing dating back several decades. Map Reduce has since 

enjoyed widespread adoption via an open-source implementation called Hadoop, whose 

development was led by Yahoo (now an Apache project). Today, a vibrant software 

ecosystem has sprung up around Hadoop, with significant activity in both industry and 

academia. 

 

 

Modern information societies are defined by vast repositories of data, both public and private. 

Therefore, any practical application must be able to scale up to datasets of interest. For many, 

this means scaling up to the web, or at least a non-trivial fraction thereof. Any organization 

built around gathering, analyzing, monitoring, altering, searching, or organizing web content 

must tackle large-data problems: \web-scale" processing is practically synonymous with data-

intensive processing. This observation applies not only to well-established internet companies, 

but also countless startups and niche players as well. Just think, how many companies do you 

know that start their pitch with we're going to harvest information on the web and. . . "? 

 

 

Another strong area of growth is the analysis of user behavior data. Any operator of a 

moderately successful website can record user activity and in a matter of weeks (or sooner) be 

drowning in a torrent of log data. In fact, logging user behavior generates so much data that 

many organizations simply can't cope with the volume, and either turn the functionality off or 

throw away data after some time. This represents lost opportunities, as there is a broadly-held 

belief that great value lies in insights derived from mining such data. Knowing what users 

look at, what they click on, how much time they spend on a web page, etc. leads to better 

business decisions and competitive advantages. Broadly, this is known as business 
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intelligence, which encompasses a wide range of technologies including data warehousing, 

data mining, and analytics. 

 

How much data are we talking about? A few examples: Google grew from processing 100 TB 

of data a day with Map Reduce in 2004 to processing 20 PB a day with Map Reduce in 2008 . 

In April 2009, a blog post1 was written about eBay's two enormous data warehouses: one with 

2 petabytes of user data, and the other with 6.5 petabytes of user data spanning 170 trillion 

records and growing by 150 billion new records per day. Shortly thereafter, Facebook 

revealed2 similarly impressive numbers, boasting of 2.5 petabytes of user data, growing at 

about 15 terabytes per day. Petabyte datasets are rapidly becoming the norm, and the trends 

are clear: our ability to store data is fast overwhelming our ability to process what we store. 

 

 

Moving beyond the commercial sphere, many have recognized the importance of data 

management in many scientific disciplines, where petabyte-scale datasets are also becoming 

increasingly common. For example: 

 

 The high-energy physics community was already describing experiences with 

petabyte-scale databases back in 2005 [20]. Today, the Large Hadron Collider (LHC) 

near Geneva is the world's largest particle accelerator, designed to probe the mysteries 

of the universe, including the fundamental nature of matter, by recreating conditions 

shortly following the Big Bang. When it becomes fully operational,the LHC will 

produce roughly 15 petabytes of data a year. 

 

 Astronomers have long recognized the importance of a \digital observatory" that 

would support the data needs of researchers across the globe the Sloan Digital Sky 

Survey [145] is perhaps the most well known of these projects. Looking into the 

future, the Large Synoptic Survey Telescope (LSST) is a wide-field instrument that is 

capable of observing the entire sky every few days. 
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1.1 Computing in the Cloud 

 

 

For better or for worse, it is often difficult to untangled Map Reduce and large-data processing 

from the broader discourse on cloud computing. True, there is substantial promise in this new 

paradigm of computing, but unwarranted hype by the media and popular sources threatens its 

credibility in the long run. In some ways, cloud computing is simply brilliant marketing. 

Before clouds, there were grids, and before grids, there were vector supercomputers, each 

having claimed to be the best thing since sliced bread.  

 

 

So what exactly is cloud computing? This is one of those questions where ten experts will 

give eleven different answers; in fact, countless papers have been written simply to attempt to 

define the term (e.g., [9, 31, 149], just to name a few examples). Here we offer up our own 

thoughts and attempt to explain how cloud computing relates to Map Reduce and data-

intensive processing. 

 

 

At the most superficial level, everything that used to be called web applications has been 

rebranded to become cloud applications", which includes what we have previously called 

\Web 2.0" sites. In fact, anything running inside a browser that gathers and stores user-

generated content now qualifies as an example of cloud computing. This includes social-

networking services such as Facebook, video-sharing sites such as YouTube, web based email 

services such as Gmail, and applications such as Google Docs. In this context, the cloud 

simply refers to the servers that power these sites, and user data is said to reside in the cloud". 

The accumulation of vast quantities of user data creates large-data problems, many of which 

are suitable for Map Reduce. To give two concrete examples: a social-networking site 

analyzes connections in the enormous globe-spanning graph of friendships to recommend new 

connections. An online email service analyzes messages and user behavior to optimize ad 
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selection and placement. These are all large data problems that have been tackled with Map 

Reduce. 

 

 

From the utility provider point of view, this business also makes sense because large 

datacenters benefit from economies of scale and can be run more efficiently than smaller 

datacenters. In the same way that insurance works by aggregating risk and redistributing it, 

utility providers aggregate the computing demands for a large number of users. Although 

demand may fluctuate significantly or each user, overall trends in aggregate demand should 

be smooth and predictable, which allows the cloud provider to adjust capacity over time with 

less risk of either offering too much (resulting in inefficient use of capital) or too little 

(resulting in unsatisfied customers). In the world of utility computing, Amazon Web Services 

currently leads the way and remains the dominant player, but a number of other cloud 

providers populate a market that is becoming increasingly crowded. Most systems are based 

on proprietary infrastructure, but there is at least one, Eucalyptus , that is available open 

source. Increased competition will benefit cloud users, but what direct relevance does this 

have for Map Reduce? The connection is quite simple: processing large amounts of data with 

Map Reduce requires access to clusters with sufficient capacity. However, not everyone with 

large-data problems can afford to purchase and maintain clusters. This is where utility 

computing comes in: clusters of sufficient size can be provisioned only when the need arises, 

and users pay only as much as is required to solve their problems. This lowers the barrier to 

entry for data-intensive processing and makes Map Reduce much more accessible. 

 

 

 

 

 



  

14 
 

1.2 Big Ideas 

 

Tackling large-data problems requires a distinct approach that sometimes runs counter to 

traditional models of computing. In this section, we discuss a number of “big ideas" behind 

Map Reduce. To be fair, all of these ideas have been discussed in the computer science 

literature for some time (some for decades), and Map Reduce is certainly not the first to adopt 

these ideas. Nevertheless, the engineers at Google deserve tremendous credit for pulling these 

various threads together and demonstrating the power of these ideas on a scale previously 

unheard of. 

 

Scale “out", not “up". For data-intensive workloads, a large number of commodity low-end 

servers (i.e., the scaling “out" approach) is preferred over a small number of high-end servers 

(i.e., the scaling “up" approach). The latter approach of purchasing symmetric multi-

processing (SMP) machines with a large number of processor sockets (dozens, even hundreds) 

and a large amount of shared memory (hundreds or even thousands of gigabytes) is not cost 

effective, since the costs of such machines do not scale linearly (i.e., a machine with twice as 

many processors is often significantly more than twice as expensive). On the other hand, the 

low-end server market overlaps with the high-volume desktop computing market, which has 

the effect of keeping prices low due to competition, interchangeable components, and 

economies of scale. 

 

 

What if we take into account the fact that communication between nodes in a high-end SMP 

machine is orders of magnitude faster than communication between nodes in a commodity 

network-based cluster? Since workloads today are beyond the capability of any single 

machine (no matter how powerful), the comparison is more accurately between a smaller 

cluster of high-end machines and a larger cluster of low-end machines (network 

communication is unavoidable in both cases). Barroso and Holzle model these two approaches 

under workloads that demand more or less communication, and conclude that a cluster of low-
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end servers approaches the performance of the equivalent cluster of high-end servers the small 

performance gap is insufficient to justify the price premium of the high-end servers. For data-

intensive applications, the conclusion appears to be clear: scaling “out" is superior to scaling 

“up” and therefore most existing implementations of the Map Reduce programming model are 

designed around clusters of low-end commodity servers. 

 

 

Capital costs in acquiring servers are, of course, only one component of the total cost of 

delivering computing capacity. Operational costs are dominated by the cost of electricity to 

power the servers as well as other aspects of datacenter operations that are functionally related 

to power: power distribution, cooling, etc. [67, 18]. As a result, energy efficiency has become 

a key issue in building warehouse-scale computers for large-data processing. Therefore, it is 

important to factor in operational costs when deploying a scale-out solution based on large 

numbers of commodity servers. Datacenter efficiency is typically factored into three separate 

components that can be independently measured and optimized. The first component 

measures how much of a building's incoming power is actually delivered to computing 

equipment, and correspondingly, how much is lost to the building's mechanical systems (e.g., 

cooling, air handling) and electrical infrastructure (e.g., power distribution inefficiencies). The 

second component measures how much of a server's incoming power is lost to the power 

supply, cooling fans, etc. The third component captures how much of the power delivered to 

computing components (processor, RAM, disk, etc.) is actually used to perform useful 

computations. 
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1.3 Why is this Different ? 

 

“Due to the rapidly decreasing cost of processing, memory, and communication, it has 

appeared inevitable for at least two decades that parallel machines will eventually displace 

sequential ones in computationally intensive domains. This, however, has not happened." | 

Leslie Valiant. 

For several decades, computer scientists have predicted that the dawn of the age of parallel 

computing was “right around the corner" and that sequential processing would soon fade into 

obsolescence (consider, for example, the above quote). Yet, until very recently, they have 

been wrong. The relentless progress of Moore's Law for several decades has ensured that most 

of the world's problems could be solved by single-processor machines, save the needs of a few 

(scientists simulating molecular interactions or nuclear reactions, for example). Couple that 

with the inherent challenges of concurrency, and the result has been that parallel processing 

and distributed systems have largely been concerned to a small segment of the market and 

esoteric upper-level electives in the computer science curriculum. 

 

 

However, all of that changed around the middle of the first decade of this century. The manner 

in which the semiconductor industry had been exploiting Moore's Law simply ran out of 

opportunities for improvement: faster clocks, deeper pipelines, superscalar architectures, and 

other tricks of the trade reached a point of diminishing returns that did not justify continued 

investment. This marked the beginning of an entirely new strategy and the dawn of the multi-

core era. Unfortunately, this radical shift in hardware architecture was not matched at that 

time by corresponding advances in how software could be easily designed for these new 

processors (but not for lack of trying). Nevertheless, parallel processing became an important 

issue at the forefront of everyone's mind it represented the only way forward. 
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Why is Map Reduce important? In practical terms, it provides a very effective tool for 

tackling large-data problems. But beyond that, Map Reduce is important in how it has 

changed the way we organize computations at a massive scale. Map Reduce represents the 

first widely-adopted step away from the von Neumann model that has served as the 

foundation of computer science over the last half plus century. Valiant called this a bridging 

model , a conceptual bridge between the physical implementation of a machine and the 

software that is to be executed on that machine. Until recently, the von Neumann model has 

served us well: Hardware designers focused on efficient implementations of the von Neumann 

model and didn't have to think much about the actual software that would run on the 

machines. Similarly, the software industry developed software targeted at the model without 

worrying about the hardware details. The result was extraordinary growth: chip designers 

churned out successive generations of increasingly powerful processors, and software 

engineers were able to develop applications in high-level languages that exploited those 

processors. 

 

 

Today, however, the von Neumann model isn't sufficient anymore: we can't treat a multi-core 

processor or a large cluster as an agglomeration of many von Neumann machine instances 

communicating over some interconnect. Such a view places too much burden on the software 

developer to effectively take advantage of available computational resources, it simply is the 

wrong level of abstraction. Map Reduce can be viewed as the first breakthrough in the quest 

for new abstractions that allow us to organize computations, not over individual machines, but 

over entire clusters. As Barroso puts it, the datacenter is the computer. 

 

 

To be fair, Map Reduce is certainly not the first model of parallel computation that has been 

proposed. The most prevalent model in theoretical computer science, which dates back several 

decades, is the PRAM [77, 60]. In the model, an arbitrary number of processors, sharing an 

unboundedly large memory, operate synchronously on a shared input to produce some output. 
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CHAPTER 2 : LITERATURE SURVEY 

2.1. Summary of Papers 

Title of Paper Map Reduce: Simplified Data Processing on Large 

Clusters 

Authors Jeffrey Dean and Sanjay Ghemawat 

Year of Publication 2004 

Publishing Details IEEE Transactions on Knowledge and Data Engineering,Vol.24 

No.1 

Summary The Map Reduce programming model has been successfully 

used at Google for many different purposes. We attribute 

this success to several reasons. First, the model is easy to 

use, even for programmers without experience with parallel 

and distributed systems, since it hides the details of 

parallelization, fault-tolerance, locality optimization, and 

load balancing. Second, a large variety of problems are 

easily expressible as Map Reduce computations. 

For example, Map Reduce is used for the generation of data 

for Google's production web search service, for sorting, for 

data mining, for machine learning, and many other systems. 

Third, we have developed an implementation of Map 

Reduce that scales to large clusters of machines comprising 

thousands of machines. The implementation makes efficient 

use of these machine resources and therefore is suitable for 

use on many of the large computational problems 

encountered at Google. 
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Title of Paper Data-Intensive Text Processing with MapReduce 

Authors Jimmy Lin and Chris Dyer 

Year of Publication 2008 

Publishing Details IEEE Computer Society 

Summary Used for many years in the business community,data mining and 

predictive analytics are finding new roles in areas outside 

business. Also referred to as knowledge discovery or sense 

making tools these analytical processes can help analysts, 

managers, and operational personnel identify actionable 

patterns and trends in data. Briefly, data mining is 

“[a]n information extraction activity whose goal is to discover 

hidden facts contained in the databases of many sites. 

 

In other words, data mining involves the systematic analysis of 

data using automated methods in an effort to identify 

meaningful or otherwise interesting patterns, trends, or 

relationships in the data.Crime and criminal behavior, including 

the most aberrant or heinous crimes, frequently can be 

categorized and modeled— a characteristic used successfully in 

the apprehension of serial killers and child predators, as well as 

drug dealers,robbers, and thieves. So it’s no surprise that data 

mining and predictive analytics are rapidly gaining acceptance 

and use in the applied public safety, security,and intelligence . 
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Title of Paper Next Step for Learning Analytics 

Authors Jinan Fiaidhi 

Year of Publication 2014 

Publishing Details IEEE Computer Society 

Summary The paper presents description about Text analytics applies a 

variety of natural language processing analysis techniques along 

with linguistics, statistical, and data-mining techniques to extract 

concepts and patterns that can be applied to categorize and 

classify textual documents. It also attempts to transform the 

unstructured information into data that can be used with more 

traditional learning analytics techniques. Finally, it helps identify 

meaning and relationships in large volumes of information. 

However, there is no single method appropriate for all text 

analysis tasks. 

Learning analytics approaches must take several different 

perspectives and accommodate different data sources.The ideal 

vision for learning analytics is to integrate analytics for both 

structured and unstructured data (mainly of textual nature of a 

comprehensive learning analytics architecture. 
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Title of Paper Predictive Analytics 

Authors Ravi Kalakota 

Year of Publication 2014 

Web link http://practicalanalytics.wordpress.com/predictive-analytics-

101/ 

Summary This article presents the various techniques which are changing 

the world business and turning them into valuable and 

actionable information like summation, predictive, descriptive 

and prescriptive where descriptive is of our interest where data 

mining comes into action.It’s a new world with new rules 

especially around man +machine interactions. “how companies 

find customers “ to “how customers find companies today” is 

evolving. Serving customers with “with few/isolated channels, 

screens,devices”.How demographic segmentation was enough 

to complex behavious segmentation to drive1:1personalization. 

The end goal of  predictive analytics = [Better outcomes, smarter 

decisions, actionable insights,  relevant information]. How you 

execute this varies by industry and information supply 

chain (Raw Data -> Aggregated Data ->  Contextual Intelligence -

> Analytical  Insights (reporting vs. prediction) -> Decisions 

(Human or Automated Downstream Actions)). 
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2.2. Integrated Summary of Literature Studied 

 

 

Literature survey of the research papers helped us to understand the need for finding the 

Effective Pattern with use in identifying fraudulent activity and the various techniques which 

can help make an accurate and effective system for analyzing inoxes for fraudulent activity. 

Inbox data is huge for a operating company and need to be structured for the extraction of 

useful pattern. Also there are techniques which aim to solve the problems described through 

other data mining techniques with varying results. Studying various papers revealed the 

existence of various approaches to solve the above stated problem by using term weight 

approach .But there are certain issues which needs to be resolved . 

 

 

Also Research papers have been published on Stop word elimination and Porterstemming and 

how they help in reduction of the search space by eliminating stop words which are general 

English words. Porters Stemming helps in suffix removal by converting a word into its root 

and improves the performance of an IR system will be improved if term groups are conflated 

into a single term. This may be done by removal of the various suffixes -ED, -ING, -ION, -

IONS to leave the single term. In addition, the suffix stripping process will reduce the total 

number of terms in the IR system, and hence reduce the size and complexity of the data in the 

system, which is always advantageous. 

 

 

We know that multiple data mining methods have been developed for finding useful patterns 

in contents like PDF files, text files. Current paper addresses the problem of making text 

mining results more effective to humanities scholars, journalists, intelligence analysts, and 

other researchers. To use effective and bring to up to date discovered patterns is still an open 

research task, especially in the domain of text mining. Text mining is the finding of very 

interesting knowledge (or features) in the text documents. It is a very difficult to find exact 

knowledge (or features) in text documents to help users what they actually want. A d-pattern 

mining technique is discovered. It evaluates specificities of patterns and then evaluates term-
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weights according to the distribution of terms in the discovered patterns. It solves 

Misinterpretation Problem. 

 

The study of the associated literature about the above mentioned topics aided in developing an 

integrated approach as to how to develop an accurate system for mining effective pattern and 

present it to the user with the most appropriate answer where the user can decide the further 

action. 
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Chapter 3 

Map Reduce 

 

The only feasible approach to tackling large-data problems today is to divide and conquer a 

fundamental concept in computer science that is introduced very early in typical 

undergraduate curricula. The basic idea is to partition a large problem into smaller sub 

problems To the extent that the sub-problems are independent, they can be tackled in parallel 

by different workers, threads in a processor core, cores in a multi-core processor, multiple 

processors in a machine, or many machines in a cluster. Intermediate results from each 

individual worker are then combined to yield the final output. The general principles behind 

divide-and-conquer algorithms are broadly applicable to a wide range of problems in many 

different application domains. However, the details of their implementations are varied and 

complex. For example, the following are just some of the issues that need to be addressed: 

 

 How do we break up a large problem into smaller tasks? More specifically, how do we 

decompose the problem so that the smaller tasks can be executed in parallel? 

 

 How do we assign tasks to workers distributed across a potentially large number of 

machines (while keeping in mind that some workers are better suited to running some 

tasks than others, e.g., due to available resources, locality constraints, etc.) ? 

 

 How do we ensure that the workers get the data they need? 

 

 How do we coordinate synchronization among the different workers? 

 

 How do we share partial results from one worker that is needed by another? 
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 How do we accomplish all of the above in the face of software errors and hardware 

faults? 

In traditional parallel or distributed programming environments, the developer needs to 

explicitly address many (and sometimes, all) of the above issues. In shared memory 

programming, the developer needs to explicitly coordinate access to shared data structures 

through synchronization primitives such as mutexes, to explicitly handle process 

synchronization through devices such as barriers, and to remain ever vigilant for common 

problems such as deadlocks and race conditions. Language extensions, like OpenMP for 

shared memory parallelism, or libraries implementing the Message Passing Interface (MPI) 

for cluster-level parallelism, provide logical abstractions that hide details of operating system 

synchronization and communications primitives. However, even with these extensions, 

developers are still burdened to keep track of how resources are made available to workers. 

Additionally, these frameworks are mostly designed to tackle processor-intensive problems 

and have only rudimentary support for dealing with very large amounts of input data. When 

using existing parallel computing approaches for large-data computation, the programmer 

must devote a significant amount of attention to low-level system details, which detracts from 

higher-level problem solving. 

 

 

One of the most significant advantages of Map Reduce is that it provides an abstraction that 

hides many system-level details from the programmer. Therefore, a developer can focus on 

what computations need to be performed, as opposed to how those computations are actually 

carried out or how to get the data to the processes that depend on them. Like OpenMP and 

MPI, Map Reduce provides a means to distribute computation without burdening the 

programmer with the details of distributed computing (but at a different level of granularity). 

However, organizing and coordinating large amounts of computation is only part of the 

challenge. Large-data processing by definition requires bringing data and code together for 

computation to occur no small feat for datasets that are terabytes and perhaps petabytes in 

size! Map Reduce addresses this challenge by providing a simple abstraction for the 

developer, transparently handling most of the details behind the scenes in a scalable, robust, 

and efficient manner. This is operationally realized by spreading data across the local disks of 
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nodes in a cluster and running processes on nodes that hold the data. The complex task of 

managing storage in such a processing environment is typically handled by a distributed file 

system that sits underneath Map Reduce. 

 

                

 

 

 

 

 

 

 

 Picture from refrence Book[1]. 

Illustration of map and fold, two higher-order functions 

commonly used together in functional programming: map 

takes a function f and applies it to every element in a list, 

while fold iteratively applies a function g to aggregate 

results. 
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3.1 Functional Programming Roots 

 

Map Reduce has its roots in functional programming, which is exemplified in languages such 

as Lisp and ML. A key feature of functional languages is the concept of higher order 

functions, or functions that can accept other functions as arguments. Two common built-in 

higher order functions are map and fold, illustrated in Figure 2.1. Given a list, map takes as an 

argument a function f (that takes a single argument) and applies it to all elements in a list (the 

top part of the diagram). Given a list, fold takes as arguments a function g (that takes two 

arguments) and an initial value: g is first applied to the initial value and the first item in the 

list, the result of which is stored in an intermediate variable. This intermediate variable and 

the next item in the list serve as the arguments to a second application of g, the results of 

which are stored in the intermediate variable. This process repeats until all items in the list 

have been consumed; fold then returns the final value of the intermediate variable. Typically, 

map and fold are used in combination. 

 

 

In a nutshell, we have described Map Reduce. The map phase in Map Reduce roughly 

corresponds to the map operation in functional programming, whereas the reduce phase in 

Map Reduce roughly corresponds to the fold operation in functional programming. As we will 

discuss in detail shortly, the Map Reduce execution framework coordinates the map and 

reduce phases of processing over large amounts of data on large clusters of commodity 

machines. 

 

 

Viewed from a slightly different angle, Map Reduce codifies a generic “recipe" for processing 

large datasets that consists of two stages. In the first stage, a user-specified computation is 

applied over all input records in a dataset. These operations occur in parallel and yield 

intermediate output that is then aggregated by another user-specified computation. The 

programmer defines these two types of computations, and the execution framework 

coordinates the actual processing (very loosely, Map Reduce provides a functional 
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abstraction). Although such a two-stage processing structure may appear to be very restrictive, 

many interesting algorithms can be expressed quite concisely especially if one decomposes 

complex algorithms into a sequence of Map Reduce jobs. Subsequent chapters in this book 

focus on how a number of algorithms can be implemented in Map Reduce. 
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3.2 Mapper and Reducer 

 

Key-value pairs form the basic data structure in Map Reduce. Keys and values may be 

primitives such as integers, floating point values, strings, and raw bytes, or they may be 

arbitrarily complex structures (lists, tuples, associative arrays, etc.). Programmers typically 

need to define their own custom data types, although a number of libraries such as Protocol 

Buffers,5 Thrift,6 and Avro7 simplify the task. 

 

Part of the design of Map Reduce algorithms involves imposing the key-value structure on 

arbitrary datasets. For a collection of web pages, keys may be URLs and values may be the 

actual HTML content. For a graph, keys may represent node ids and values may contain the 

adjacency lists of those nodes (see Chapter 5 for more details). In some algorithms, input keys 

are not particularly meaningful and are simply ignored during processing, while in other cases 

input keys are used to uniquely identify a datum (such as a record id). In Chapter 3, we 

discuss the role of complex keys and values in the design of various algorithms. 

 

In Map Reduce, the programmer defines a mapper and a reducer with the following 

signatures: 

 

 

 Picture from refrence paper[1]. 

The input to a Map Reduce job starts as data stored on the underlying distributed file system . 

The mapper is applied to every input key-value pair (split across an arbitrary number of files) 

to generate an arbitrary number of intermediate key-value pairs. The reducer is applied to all 

values associated with the same intermediate key to generate output key-value pairs. Implicit 

between the map and reduce phases is a distributed “group by" operation on intermediate 

keys. Intermediate data arrive at each reducer in order, sorted by the key. However, no 
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ordering relationship is guaranteed for keys across different reducers. Output key-value pairs 

from each reducer are written persistently back onto the distributed file system (whereas 

intermediate key-value pairs are transient and not preserved). The output ends up in r files on 

the distributed file system, where r is the number of reducers. For the most part, there is no 

need to consolidate reducer output, since the r files often serve as input to yet another Map 

Reduce job. 

 

A simple word count algorithm in Map Reduce is shown: 

 

 

  

 Picture from refrence Book[1]. 
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Pseudo Code For it.

 

 

 Picture from refrence Book[1]. 
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3.3 The Execution Framework 

 

One of the most important idea behind Map Reduce is separating the what of distributed 

processing from the how. A Map Reduce program, referred to as a job, consists of code for 

mappers and reducers (as well as combiners and partitioners to be discussed in the next 

section) packaged together with configuration parameters (such as where the input lies and 

where the output should be stored). The developer submits the job to the submission node of a 

cluster (in Hadoop, this is called the jobtracker) and execution framework (sometimes called 

the “runtime") takes care of everything else: it transparently handles all other aspects of 

distributed code execution, on clusters ranging from a single node to a few thousand nodes. 

Specific  responsibilities include: 

 

 

Scheduling: Each Map Reduce job is divided into smaller units called tasks. For example, a 

map task may be responsible for processing a certain block of input key-value pairs (called an 

input split in Hadoop); similarly, a reduce task may handle a portion of the intermediate key 

space. It is not uncommon for Map Reduce jobs to have thousands of individual tasks that 

need to be assigned to 

nodes in the cluster. In large jobs, the total number of tasks may exceed the number of tasks 

that can be run on the cluster concurrently, making it necessary for the scheduler to maintain 

some sort of a task queue and to track the progress of running tasks so that waiting tasks can 

be assigned to nodes as they become available. 

 

 

Data/Code Co-location: The phrase data distribution is misleading, since one of the key ideas 

behind Map Reduce is to move the code, not the data. However, the more general point 

remains in order for computation to occur, we need to somehow feed data to the code. In 

MapReduce, this issue is inexplicably intertwined with scheduling and relies heavily on the 

design of the underlying distributed file system. To achieve data locality, the scheduler starts 
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tasks on the node that holds a particular block of data (i.e., on its local drive) needed by the 

task. This has the effect of moving code to the data. If this is not possible (e.g., a node is 

already running too many tasks), new tasks will be started elsewhere, and the necessary data 

will be streamed over the network. An important optimization here is to prefer nodes that are 

on the same rack in the datacenter as the node holding the relevant data block, since inter-rack 

bandwidth is significantly less than intra-rack bandwidth. 

 

 

Synchronization: In general, synchronization refers to the mechanisms by which multiple 

concurrently running processes “join up", for example, to share intermediate results or 

otherwise exchange state information. In Map Reduce, synchronization is accomplished by a 

barrier between the map and reduce phases of processing. Intermediate key-value pairs must 

be grouped by key, which is accomplished by a large distributed sort involving all the nodes 

that executed map tasks and all the nodes that will execute reduce tasks. This necessarily 

involves copying intermediate data over the network, and therefore the process is commonly 

known as “shuffle and sort". A MapReduce job with m mappers and r reducers involves up to 

m x r distinct copy operations, since each mapper may have intermediate output going to 

every reducer. 

 

 

Error and Fault Handling: The Map Reduce execution framework must accomplish all the 

tasks above in an environment where errors and faults are the norm, not the exception. Since 

Map Reduce was explicitly designed around low-end commodity servers, the runtime must be 

especially resilient. In large clusters, disk failures are common and RAM experiences more 

errors than one might expect. Datacenters suffer from both planned outages (e.g., system 

maintenance and hardware upgrades) and unexpected outages (e.g., power failure, 

connectivity loss, etc.). 
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3.4 PARTITIONERS AND COMBINERS 

 

 

Partitioners are responsible for dividing up the intermediate key space and assigning 

intermediate key-value pairs to reducers. In other words, the partitioner specifies the task to 

which an intermediate key-value pair must be copied. Within each reducer, keys are processed 

in sorted order (which is how the “group by" is implemented). The simplest partitioner 

involves computing the hash value of the key and then taking the mod of that value with the 

number of reducers. This assigns approximately the same number of keys to each reducer 

(dependent on the quality of the hash function). Note, however, that the partitioner only 

considers the key and ignores the value, therefore, a roughly-even partitioning of the key 

space may nevertheless yield large differences in the number of key-values pairs sent to each 

reducer (since different keys may have different numbers of associated values). This 

imbalance in the amount of data associated with each key is relatively common in many text 

processing applications due to the Zipfian distribution of word occurrences. 

 

 

Combiners are an optimization in Map Reduce that allow for local aggregation before the 

shuffle and sort phase. We can motivate the need for combiners by considering the word 

count algorithm, which emits a key-value pair for each word in the collection. Furthermore, 

all these key-value pairs need to be copied across the network, and so the amount of 

intermediate data will be larger than the input collection itself. This is clearly inefficient. One 

solution is to perform local aggregation on the output of each mapper, i.e., to compute a local 

count for a word over all the documents processed by the mapper. With this modification 

(assuming the maximum amount of local aggregation possible), the number of intermediate 

key-value pairs will be at most the number of unique words in the collection times the number 

of mappers (and typically far smaller because each mapper may not encounter every word). 
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The combiner in Map Reduce supports such an optimization. One can think of combiners as 

“mini-reducers" that take place on the output of the mappers, prior to the shuffle and sort 

phase. Each combiner operates in isolation and therefore does not have access to intermediate 

output from other mappers. The combiner is provided keys and values associated with each 

key (the same types as the mapper output keys and values). Critically, one cannot assume that 

a combiner will have the opportunity to process all values associated with the same key. The 

combiner can emit any number of key-value pairs, but the keys and values must be of the 

same type as the mapper output (same as the reducer input). In cases where an operation is 

both associative and commutative (e.g., addition or multiplication), reducers can directly serve 

as combiners. In general, however, reducers and combiners are not interchangeable.  

 

                          

 

 Picture from refrence Book[1]. 
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3.5 Hadoop Distributed File System (HDFS) 

 

As dataset sizes increase, more compute capacity is required for processing. But as compute 

capacity grows, the link between the compute nodes and the storage becomes a bottleneck. At 

that point, one could invest in higher performance but more expensive networks (e.g., 10 

gigabit Ethernet) or special-purpose interconnects such as Infini Band (even more expensive). 

In most cases, this is not a cost-effective solution, as the price of networking equipment 

increases non-linearly with performance (e.g., a switch with ten times the capacity is usually 

more than ten times more expensive). Alternatively, one could abandon the separation of 

computation and storage as distinct components in a cluster. The distributed file system (DFS) 

that underlies Map Reduce adopts exactly this approach. The Google File System (GFS) [57] 

supports Google's proprietary implementation of Map Reduce; in the open-source world, 

HDFS (Hadoop Distributed File System) is an open-source implementation of GFS that 

supports Hadoop. Although Map Reduce doesn't necessarily require the distributed file 

system, it is difficult to realize many of the advantages of the programming model without a 

storage substrate that behaves much like the DFS.14 Of course, distributed file systems are 

not new. The Map-Reduce distributed file system builds on previous work but is specifically 

adapted to large-data processing workloads, and therefore departs from previous architectures 

in certain respects. The main idea is to divide user data into blocks and replicate those blocks 

across the local disks of nodes in the cluster. Blocking data, of course, is not a new idea, but 

DFS blocks are significantly larger than block sizes in typical single-machine file systems (64 

MB by default). The distributed file system adopts a master{slave architecture in which the 

master maintains the file namespace (metadata, directory structure, file to block mapping, 

location of blocks, and access permissions) and the slaves manage the actual data blocks. In 

GFS, the master is called the GFS master, and the slaves are called GFS chunkservers. In 

Hadoop, the same roles are called by the namenode and datanodes, respectively. I adopts the 

Hadoop terminology, although for most basic file operations GFS and HDFS work much the 

same way.  
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In HDFS, an application client wishing to read a file (or a portion thereof) must first contact 

the namenode to determine where the actual data is stored. In response to the client request, 

the namenode returns the relevant block id and the location where the block is held (i.e., 

which datanode). The client then contacts the datanode to retrieve the data. Blocks are 

themselves stored on standard single-machine file systems, so HDFS lies on top of the 

standard OS stack (e.g., Linux). An important feature of the design is that data is never moved 

through the namenode. Instead, all data transfer occurs directly between clients and datanodes; 

communications with the namenode only involves transfer of metadata 

 

The architecture of HDFS is shown in Figure. 

 

 

 

 

 

 

 Picture from refrence Book[1]. 
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In summary, the HDFS namenode has the following responsibilities: 

 

 Namespace management. The namenode is responsible for maintaining the file 

namespace, which includes metadata, directory structure, file to block mapping, 

location of blocks, and access permissions. These data are held in memory for fast 

access and all mutations are persistently logged. 

 

 Coordinating file operations. The namenode directs application clients to datanodes 

for read operations, and allocates blocks on suitable datanodes for write operations. 

All data transfers occur directly between clients and datanodes. When a file is deleted, 

HDFS does not immediately reclaim the available physical storage; rather, blocks are 

lazily garbage collected. 

 

 Maintaining overall health of the file system. The namenode is in periodic contact 

with the datanodes via heartbeat messages to ensure the integrity of the system. If the 

namenode observes that a data block is under-replicated (fewer copies are stored on 

datanodes than the desired replication factor), it will direct the creation of new 

replicas. Finally, the namenode is also responsible for rebalancing the file system. 

During the course of normal operations, certain datanodes may end up holding more 

blocks than others; rebalancing involves moving blocks from datanodes with more 

blocks to datanodes with fewer blocks. This leads to better load balancing and more 

even disk utilization. 

 

 The file system stores a relatively modest number of large files. The definition of 

“modest" varies by the size of the deployment, but in HDFS multi-gigabyte files are 

common (and even encouraged). There are several reasons why lots of small files are 

to be avoided. Since the namenode must hold all file metadata in memory, this 

presents an upper bound on both the number of files and blocks that can be supported. 

Large multi-block files represent a more efficient use of namenode memory than many 

single-block files (each of which consumes less space than a single block size). In 

addition, mappers in a MapReduce job use individual files as a basic unit for splitting 
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input data. At present, there is no default mechanism in Hadoop that allows a mapper 

to process multiple files. 

 

 Workloads are batch oriented, dominated by long streaming reads and large 

sequential writes. As a result, high sustained bandwidth is more important than low 

latency. This exactly describes the nature of Map Reduce jobs, which are batch 

operations on large amounts of data. Due to the common-case workload, both HDFS 

and GFS do not implement any form of data caching. 
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Chapter 4 

Map Reduce Algorithm Design 

 

A large part of the power of Map Reduce comes from its simplicity: in addition to preparing 

the input data, the programmer needs only to implement the mapper, the reducer, and 

optionally, the combiner and the partitioner. All other aspects of execution are handled 

transparently by the execution framework, on clusters ranging from a single node to a few 

thousand nodes, over datasets ranging from gigabytes to petabytes. However, this also means 

that any conceivable algorithm that a programmer wishes to develop must be expressed in 

terms of a small number of rigidly-defined components that must put together in very specific 

ways. It may not appear obvious how a multitude of algorithms can be recast into this 

programming model. The purpose of this chapter is to provide, primarily through examples, a 

guide to Map Reduce algorithm design. These examples illustrate what can be thought of as 

“design patterns" for Map Reduce, which instantiate arrangements of components and specific 

techniques designed to handle frequently-encountered situations across a variety of problem 

domains. 

 

 

Synchronization is perhaps the most tricky aspect of designing Map Reduce algorithms (or for 

that matter, parallel and distributed algorithms in general). Other than embarrassingly-parallel 

problems, processes running on separate nodes in a cluster must, at some point in time, come 

together, for example, to distribute partial results from nodes that produced them to the nodes 

that will consume them. Within a single Map-Reduce job, there is only one opportunity for 

cluster-wide synchronization during the shuffle and sort stage where intermediate key-value 

pairs are copied from the mappers to the reducers and grouped by key. Beyond that, mapper 

and reducers run in isolation without any mechanisms for direct communication. Furthermore, 

the programmer has little control over many aspects of execution, for example: 
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 Where a mapper or reducer runs (i.e., on which node in the cluster). 

 

 When a mapper or reducer begins or finishes. 

 

 Which input key-value pairs are processed by a specific mapper. 

 

 Which intermediate key-value pairs are processed by a specific reducer. 

 

The programmer does have a number of techniques for controlling execution and managing 

the flow of data in Map Reduce. 

 

1. The ability to construct complex data structures as keys and values to store and 

communicate partial results. 

2. The ability to execute user-specified initialization code at the beginning of a map or reduce 

task, and the ability to execute user-specified termination code at the end of a map or reduce 

task. 

3. The ability to preserve state in both mappers and reducers across multiple input or 

intermediate keys. 

4. The ability to control the sort order of intermediate keys, and therefore the order in which a 

reducer will encounter particular keys. 

5. The ability to control the partitioning of the key space, and therefore the set of keys that 

will be encountered by a particular reducer. 
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4.1 Programming Model 

 

 

The computation takes a set of input key/value pairs, and produces a set of output key/value 

pairs. The user of the Map Reduce library expresses the computation as two functions: Map 

and Reduce. 

Map, written by the user, takes an input pair and produces a set of intermediate key/value 

pairs. The Map Reduce library groups together all intermediate values associated with the 

same intermediate key I and passes them to the Reduce function. 

 

The Reduce function, also written by the user, accepts an intermediate key I and a set of 

values for that key. It merges together these values to form a possibly smaller set of values. 

Typically just zero or one output value is produced per Reduce invocation. The intermediate 

values are supplied to the user's reduce function via an iterator. This allows us to handle lists 

of values that are too large to fit in memory. 
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4.2 Types and Example 

 

Even though the previous pseudo-code is written in terms of string inputs and outputs, 

conceptually the map and reduce functions supplied by the user have associated types: 

 

 

 

I.e., the input keys and values are drawn from a different domain than the output keys and 

values. Furthermore, the intermediate keys and values are from the same domain as the output 

keys and values. Our C++ implementation passes strings to and from the user-defined 

functions and leaves it to the user code to convert between strings and appropriate types. 

 

Here are a few simple examples of interesting programs that can be easily expressed as Map 

Reduce computations. 

 

Distributed Grep: The map function emits a line if it matches a supplied pattern. The reduce 

function is an identity function that just copies the supplied intermediate data to the output. 

 

Count of URL Access Frequency: The map function processes logs of web page requests 

and outputs {URL; 1}. The reduce function adds together all values for the same URL and 

emits a {URL; total count} pair. 

 

Reverse Web-Link Graph: The map function outputs {target; source} pairs for each link to a 

target URL found in a page named source. The reduce function concatenates the list of all 

source URLs associated with a given target URL and emits the pair: {target; list(source)} 
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Term-Vector per Host: A term vector summarizes the most important words that occur in a 

document or a set of documents as a list of {word; frequency} pairs. The map function emits a 

{hostname; term vector} pair for each input document (where the hostname is extracted from 

the URL of the document). The reduce function is passed all per-document term vectors for a 

given host. It adds these term vectors together, throwing away infrequent terms, and then 

emits a final {hostname; term vector} pair. 

 

 

Inverted Index: The map function parses each document, and emits a sequence of {word; 

document ID} pairs. The reduce function accepts all pairs for a given word, sorts the 

corresponding document IDs and emits a {word; list(document ID)} pair. The set of all output 

pairs forms a simple inverted index. It is easy to augment this computation to keep track of 

word positions. 

 

 

Distributed Sort: The map function extracts the key from each record, and emits a {key; 

record} pair. The reduce function emits all pairs unchanged. 
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Chapter 5 

Implementation 

 

Many different implementations of the Map Reduce interface are possible. The right choice 

depends on the environment. For example, one implementation may be suitable for a small 

shared-memory machine, another for a large NUMA multi-processor, and yet another for an 

even larger collection of networked machines. 

Like I am implementing my project on a Single node Hadoop System. 

 

1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of 

memory on my machine. 

 

2) Data Replication is used. A set of data is replicated once, twice or more times to see 

the working of the datanode with rest to the namenode. 

 

3) Users submit jobs to a scheduling system. Each job consists of a set of tasks, and is 

mapped by the scheduler to a set of available space within a cluster. 
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*Picture of formatting of namenode 

 

 

 

 

 

 

 

In the above picture , it is shown the formatting of the namenode. 

It is the basic step in the execution of the program of the hadoop cluster. 

The formatting of the namenode helps in erasing all the previous data 

hold in the memory before and make the memory available for further 

execution  
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5.1 Execution Overview 

 

The Map invocations are distributed across multiple machines by automatically partitioning 

the input data into a set of M splits. The input splits can be processed in parallel by different 

machines. Reduce invocations are distributed by partitioning the intermediate key space into R 

pieces using a partitioning function (e.g., hash(key) mod R). The number of partitions (R) and 

the partitioning function are specified by the user. Figure  shows the overall flow of a Map 

Reduce operation in our implementation. When the user program calls the Map Reduce 

function, the following sequence of actions occurs (the numbered labels in Figure correspond 

to the numbers in the list below): 

 

 

 Picture from refrence paper[1]. 
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1) The MapReduce library in the user program First splits the input files into M pieces of 

typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user via 

an optional parameter). It then starts up many copies of the program on a cluster of 

machines. 

 

2) One of the copies of the program is special : the master. The rest are workers that are 

assigned work by the master. There are M map tasks and R reduce tasks to assign. The 

master picks idle workers and assigns each one a map task or a reduce task. 

 

3) A worker who is assigned a map task reads the contents of the corresponding input 

split. It parses key/value pairs out of the input data and passes each pair to the user-

defined Map function. The intermediate key/value pairs produced by the Map function 

are buffered in memory. 

 

4) Periodically, the buffered pairs are written to local disk, partitioned into R regions by 

the partitioning function. The locations of these buffered pairs on the local disk are 

passed back to the master, who is responsible for forwarding these locations to the 

reduce workers. 

 

5) When a reduce worker is notified by the master about these locations, it uses remote 

procedure calls to read the buffered data from the local disks of the map workers. 

When a reduce worker has read all intermediate data, it sorts it by the intermediate 

keys so that all occurrences of the same key are grouped together. The sorting is 

needed because typically many different keys map to the same reduce task. If the 

amount of intermediate data is too large to fit in memory, an external sort is used. 

 

6) The reduce worker iterates over the sorted intermediate data and for each unique 

intermediate key encountered, it passes the key and the corresponding set of 

intermediate values to the user's Reduce function. The output of the Reduce function is 

appended to a final output file for this reduce partition. 
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7) When all map tasks and reduce tasks have been completed, the master wakes up the 

user program. At this point, the Map Reduce call in the user program returns back to 

the user code. 
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5.2 Master Data Structure 

 

The master keeps several data structures. For each map task and reduce task, it stores the state 

(idle, in-progress, or completed), and the identity of the worker machine (for non-idle tasks). 

The master is the conduit through which the location of intermediate file regions is propagated 

from map tasks to reduce tasks. Therefore, for each completed map task, the master stores the 

locations and sizes of the R intermediate file regions produced by the map task. Updates to 

this location and size information are received as map tasks are completed. The information is 

pushed incrementally to workers that have in-progress reduce tasks. 

 

Parallel Execution 

   

 Picture from refrence Book[1]. 
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5.3 Fault Tolerance 

 

Since the MapReduce library is designed to help process very large amounts of data using 

hundreds or thousands of machines, the library must tolerate machine failures gracefully. 

 

Worker Failure 

The master pings every worker periodically. If no response is received from a worker in a 

certain  amount of time, the master marks the worker as failed. Any map tasks completed by 

the worker are reset back to their initial idle state, and therefore become eligible for 

scheduling on other workers. Similarly, any map task or reduce task in progress on a failed 

worker is also reset to idle and becomes eligible for rescheduling. Completed map tasks are 

re-executed on a failure because their output is stored on the local disk(s) of the failed 

machine and is therefore inaccessible. Completed reduce tasks do not need to be re-executed 

since their output is stored in a global file system. When a map task is executed first by 

worker A and then later executed by worker B (because A failed), all workers executing 

reduce tasks are notified of the re-execution. Any reduce task that has not already read the 

data from worker A will read the data from worker B. Map Reduce is resilient to large-scale 

worker failures. For example, during one Map Reduce operation, network maintenance on a 

running cluster was causing groups of 80 machines at a time to become unreachable for 

several minutes. The Map Reduce master simply re-executed the work done by the 

unreachable worker machines, and continued to make forward progress, eventually 

completing the Map Reduce operation. 

 

Master Failure 

It is easy to make the master write periodic checkpoints of the master data structures described 

above. If the master task dies, a new copy can be started from the last checkpointed state. 

However, given that there is only a single master, its failure is unlikely; therefore our current 

implementation aborts the MapReduce computation if the master fails. Clients can check for 

this condition and retry the MapReduce operation if they desire. 
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5.4 Use Case Diagram 
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5.5 Data Flow Diagram 

Level  1 

 

Level 2 
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5.6 Analysis 

 

The above analysis shows that for a given size of data file the amount of time a 

map reduce function take to do the overall computing of the data. 

 

Data transfer rate of the input file 
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Chapter 6: Conclusion 

 

The need to process enormous quantities of data has never been greater. Not only are terabyte- 

and petabyte-scale datasets rapidly becoming commonplace, but there is consensus that great 

value lies buried in them, waiting to be unlocked by the right computational tools. In the 

commercial sphere, business intelligence, driven by the ability to gather data from a dizzying 

array of sources, promises to help organizations better understand their customers and the 

marketplace, hopefully leading to better business decisions and competitive advantages. For 

engineers building information processing tools and applications, larger datasets lead to more 

effective algorithms for a wide range of tasks, from machine translation to spam detection. In 

the natural and physical sciences, the ability to analyze massive amounts of data may provide 

the key to unlocking the secrets of the cosmos or the mysteries of life. In the preceding 

chapters, we have shown how Map Reduce can be exploited to solve a variety of problems 

related to text processing at scales that would have been unthinkable a few years ago. 

However, no tool, no matter how powerful or flexible can be perfectly adapted to every task, 

so it is only fair to discuss the limitations of the Map Reduce programming model and survey 

alternatives. 

Hadoop Map Reduce is a large scale, open source software framework dedicated to scalable, 

distributed, data-intensive computing  

• The framework breaks up large data into smaller parallelizable chunks and handles 

scheduling 

▫ Maps each piece to an intermediate value 

▫ Reduces intermediate values to a solution 

▫ User-specified partition and combiner options 

• Fault tolerant, reliable, and supports thousands of nodes and petabytes of data 

• If you can rewrite algorithms into Maps and Reduces, and your problem can be broken up 

into small pieces solvable in parallel, then Hadoop’s Map Reduce is the way to go for a 

distributed problem solving approach to large datasets 

• Tried and tested in production 

• Many implementation options 
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6.1  Closing Remarks 

 

The need to process enormous quantities of data has never been greater. Not only are terabyte- 

and petabyte-scale datasets rapidly becoming commonplace, but there is consensus that great 

value lies buried in them, waiting to be unlocked by the right computational tools. In the 

commercial sphere, business intelligence driven by the ability to gather data from a dizzying 

array of sources promises to help organizations better understand their customers and the 

marketplace, hopefully leading to better business decisions and competitive advantages. For 

engineers building information processing tools and applications, larger datasets lead to more 

effective algorithms for a wide range of tasks, from machine translation to spam detection. In 

the natural and physical sciences, the ability to analyze massive amounts of data may provide 

the key to unlocking the secrets of the cosmos or the mysteries of life. 

 

 

In the preceding chapters, we have shown how MapReduce can be exploited to solve a variety 

of problems related to text processing at scales that would have been unthinkable a few years 

ago. However, no tool no matter how powerful or exible can be perfectly adapted to every 

task, so it is only fair to discuss the limitations of the MapReduce programming model and 

survey alternatives. Section 7.1 covers online learning algorithms and Monte Carlo 

simulations, which are examples of algorithms that require maintaining global state. As we 

have seen, this is difficult to accomplish in MapReduce. 
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6.2  Limitation of Map Reduce 

 

As we have seen throughout, solutions to many interesting problems in text processing do not 

require global synchronization. As a result, they can be expressed naturally in Map Reduce, 

since map and reduce tasks run independently and in isolation. However, there are many 

examples of algorithms that depend crucially on the existence of shared global state during 

processing, making them difficult to implement in Map Reduce (since the single opportunity 

for global synchronization in Map Reduce is the barrier between the map and reduce phases of 

processing). 

 

  

The first example is online learning. The concept of learning as the setting of parameters in a 

statistical model. Both EM and the gradient-based learning algorithms we described are 

instances of what are known as batch learning algorithms. This simply means that the full 

\batch" of training data is processed before any updates to the model parameters are made. On 

one hand, this is quite reasonable: updates are not made until the full evidence of the training 

data has been weighed against the model. An earlier update would seem, in some sense, to be 

hasty. However, it is generally the case that more frequent updates can lead to more rapid 

convergence of the model (in terms of number of training instances processed), even if those 

updates are made by considering less data [24]. Thinking in terms of gradient optimization 

online learning algorithms can be understood as computing an approximation of the true 

gradient, using only a few training instances. Although only an approximation, the gradient 

computed from a small subset of training instances is often quite reasonable, and the 

aggregate behavior of multiple updates tends to even out errors that are made. In the limit, 

updates can be made after every training instance. Unfortunately, implementing online 

learning algorithms in MapReduce is problematic. 
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The model parameters in a learning algorithm can be viewed as shared global state, which 

must be updated as the model is evaluated against training data. All processes performing the 

evaluation (presumably the mappers) must have access to this state. In a batch learner, where 

updates occur in one or more reducers (or, alternatively, in the driver code), synchronization 

of this resource is enforced by the Map Reduce framework. However, with online learning, 

these updates must occur after processing smaller numbers of instances. This means that the 

framework must be altered to support faster processing of smaller datasets, which goes against 

the design choices of most existing Map Reduce implementations. Since Map Reduce was 

specifically optimized for batch operations over large amounts of data, such a style of 

computation would likely result in inefficient use of resources. In Hadoop, for example, map 

and reduce tasks have considerable startup costs. This is acceptable because in most 

circumstances, this cost is amortized over the processing of many key-value pairs. 

 

 However, for small datasets, these high startup costs become intolerable. An alternative is to 

abandon shared global state and run independent instances of the training algorithm in parallel 

(on different portions of the data). A final solution is then arrived at by merging individual 

results. Experiments, however, show that the merged solution is inferior to the output of 

running the training algorithm on the entire dataset [52]. A related difficulty occurs when 

running what are called Monte Carlo simulations, which are used to perform inference in 

probabilistic models where evaluating or representing the model exactly is impossible. The 

basic idea is quite simple: samples are drawn from the random variables in the model to 

simulate its behavior, and then simple frequency statistics are computed over the samples. 

This sort of inference is particularly useful when dealing with so-called nonparametric 

models, which are models whose structure is not specified in advance, but is rather inferred 

from training data. For an illustration, imagine learning a hidden Markov model, but inferring 

the number of states, rather than having them specified. Being able to parallelize Monte Carlo 

simulations would be tremendously valuable, particularly for unsupervised learning 

applications where they have been found to be far more effective than EM-based learning 

(which requires specifying the model).  
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Appendix A  

 

Technology And Tools Used : 

1. Hadoop :  

Apache Hadoop is an open-source software framework written in Java for distributed 

storage and distributed processing of very large data sets on computer clusters built 

from commodity hardware. All the modules in Hadoop are designed with a fundamental 

assumption that hardware failures (of individual machines, or racks of machines) are 

commonplace and thus should be automatically handled in software by the framework. 

 

The core of Apache Hadoop consists of a storage part (Hadoop Distributed File System 

(HDFS)) and a processing part (MapReduce). Hadoop splits files into large blocks and 

distributes them amongst the nodes in the cluster. To process the data, Hadoop MapReduce 

transfers packaged code for nodes to process in parallel, based on the data each node needs to 

process. This approach takes advantage of data locality[3]—nodes manipulating the data that 

they have on hand—to allow the data to be processed faster and more efficiently than it would 

be in a more conventional supercomputer architecture that relies on a parallel file 

system where computation and data are connected via high-speed networking.[4] 

 

The base Apache Hadoop framework is composed of the following modules: 

 Hadoop Common – contains libraries and utilities needed by other Hadoop modules; 

 Hadoop Distributed File System (HDFS) – a distributed file-system that stores data on 

commodity machines, providing very high aggregate bandwidth across the cluster; 

 Hadoop YARN – a resource-management platform responsible for managing computing 

resources in clusters and using them for scheduling of users' applications;[5][6] and 

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Clustered_file_system
http://en.wikipedia.org/wiki/Clustered_file_system
http://en.wikipedia.org/wiki/Distributed_processing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Commodity_hardware
http://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
http://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/JAR_(file_format)
http://en.wikipedia.org/wiki/Apache_Hadoop#cite_note-3
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 Hadoop MapReduce – a programming model for large scale data processing. 

 

The term "Hadoop" has come to refer not just to the base modules above, but also to the 

"ecosystem", or collection of additional software packages that can be installed on top of or 

alongside Hadoop, such as Apache Pig, Apache Hive, Apache HBase, Apache Spark, and 

others.  

Apache Hadoop's MapReduce and HDFS components were inspired by Google papers on 

their MapReduce and Google File System. 

 

  

The Hadoop framework itself is mostly written in the Java programming language, with some 

native code in C and command line utilities written as Shell script. For end-users, though 

MapReduce Java code is common, any programming language can be used with "Hadoop 

Streaming" to implement the "map" and "reduce" parts of the user's program.[11] Other related 

projects expose other higher-level user interfaces. 

Prominent corporate users of Hadoop include Facebook and Yahoo. It can be deployed in 

traditional on-site datacenters but has also been implemented in public cloud spaces such 

as Microsoft Azure, Amazon Web Services, Google App Engine and IBM Bluemix. 

Apache Hadoop is a registered trademark of the Apache Software Foundation. 

Hadoop consists of the Hadoop Common package, which provides filesystem and OS level 

abstractions, a MapReduce engine (either MapReduce/MR1 or YARN/MR2)[16] and 

the Hadoop Distributed File System (HDFS). The Hadoop Common package contains the 

necessary Java ARchive (JAR) files and scripts needed to start Hadoop. The package also 

provides source code, documentation, and a contribution section that includes projects from 

the Hadoop Community.  

For effective scheduling of work, every Hadoop-compatible file system should provide 

location awareness: the name of the rack (more precisely, of the network switch) where a 

worker node is. Hadoop applications can use this information to run work on the node where 
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http://en.wikipedia.org/wiki/Apache_Hive
http://en.wikipedia.org/wiki/Apache_HBase
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http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Google_File_System
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Shell_scripts
http://en.wikipedia.org/wiki/Apache_Hadoop#cite_note-11
http://en.wikipedia.org/wiki/Microsoft_Azure
http://en.wikipedia.org/wiki/Amazon_Web_Services
http://en.wikipedia.org/wiki/Google_App_Engine
http://en.wikipedia.org/wiki/Bluemix
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Apache_Hadoop#cite_note-16
http://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
http://en.wikipedia.org/wiki/JAR_(file_format)
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the data is, and, failing that, on the same rack/switch, reducing backbone traffic. HDFS uses 

this method when replicating data to try to keep different copies of the data on different racks. 

The goal is to reduce the impact of a rack power outage or switch failure, so that even if these 

events occur, the data may still be readable. 

 

 

A multi-node Hadoop cluster 

 

 

A small Hadoop cluster includes a single master and multiple worker nodes. The master node 

consists of a JobTracker, TaskTracker, NameNode and DataNode. A slave or worker 

node acts as both a DataNode and TaskTracker, though it is possible to have data-only worker 

nodes and compute-only worker nodes. These are normally used only in nonstandard 

applications.  

Hadoop requires Java Runtime Environment (JRE) 1.6 or higher. The standard startup and 

shutdown scripts require that Secure Shell (ssh) be set up between nodes in the cluster.  

In a larger cluster, the HDFS is managed through a dedicated NameNode server to host the 

file system index, and a secondary NameNode that can generate snapshots of the namenode's 

memory structures, thus preventing file-system corruption and reducing loss of data. 

Similarly, a standalone JobTracker server can manage job scheduling. In clusters where the 

Hadoop MapReduce engine is deployed against an alternate file system, the NameNode, 

http://en.wikipedia.org/wiki/JRE
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/File:Hadoop_1.png
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secondary NameNode, and DataNode architecture of HDFS are replaced by the file-system-

specific equivalents. 

 

The Hadoop distributed file system (HDFS) is a distributed, scalable, and portable file-

system written in Java for the Hadoop framework. A Hadoop cluster has nominally a single 

namenode plus a cluster of datanodes, although redundancy options are available for the 

namenode due to its criticality. Each datanode serves up blocks of data over the network using 

a block protocol specific to HDFS. The file system uses TCP/IP sockets for communication. 

Clients use remote procedure call (RPC) to communicate between each other. 

 

HDFS stores large files (typically in the range of gigabytes to terabytes[20]) across multiple 

machines. It achieves reliability by replicating the data across multiple hosts, and hence 

theoretically does not require RAID storage on hosts (but to increase I/O performance some 

RAID configurations are still useful). With the default replication value, 3, data is stored on 

three nodes: two on the same rack, and one on a different rack. Data nodes can talk to each 

other to rebalance data, to move copies around, and to keep the replication of data high. HDFS 

is not fully POSIX-compliant, because the requirements for a POSIX file-system differ from 

the target goals for a Hadoop application. The trade-off of not having a fully POSIX-

compliant file-system is increased performance for data throughput and support for non-

POSIX operations such as Append.[21] 

HDFS added the high-availability capabilities, as announced for release 2.0 in May 

2012,[22] letting the main metadata server (the NameNode) fail over manually to a backup. The 

project has also started developing automatic fail-over. 

 

The HDFS file system includes a so-called secondary namenode, a misleading name that 

some might incorrectly interpret as a backup namenode for when the primary namenode goes 

offline. In fact, the secondary namenode regularly connects with the primary namenode and 

builds snapshots of the primary namenode's directory information, which the system then 

saves to local or remote directories. These checkpointed images can be used to restart a failed 
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http://en.wikipedia.org/wiki/Redundancy_(engineering)
http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/Internet_socket
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http://en.wikipedia.org/wiki/Fail-over
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primary namenode without having to replay the entire journal of file-system actions, then to 

edit the log to create an up-to-date directory structure. Because the namenode is the single 

point for storage and management of metadata, it can become a bottleneck for supporting a 

huge number of files, especially a large number of small files. HDFS Federation, a new 

addition, aims to tackle this problem to a certain extent by allowing multiple namespaces 

served by separate namenodes. 

 

An advantage of using HDFS is data awareness between the job tracker and task tracker. The 

job tracker schedules map or reduce jobs to task trackers with an awareness of the data 

location. For example: if node A contains data (x,y,z) and node B contains data (a,b,c), the job 

tracker schedules node B to perform map or reduce tasks on (a,b,c) and node A would be 

scheduled to perform map or reduce tasks on (x,y,z). This reduces the amount of traffic that 

goes over the network and prevents unnecessary data transfer. When Hadoop is used with 

other file systems, this advantage is not always available. This can have a significant impact 

on job-completion times, which has been demonstrated when running data-intensive jobs. 

For starters, let's take a quick look at some of those terms and what they mean. 

 Open-source software. Open source software differs from commercial software due to the 

broad and open network of developers that create and manage the programs. Traditionally, it's 

free to download, use and contribute to, though more and more commercial versions of 

Hadoop are becoming available. 

 Framework. In this case, it means everything you need to develop and run your software 

applications is provided – programs, tool sets, connections, etc. 

 Distributed. Data is divided and stored across multiple computers, and computations can be 

run in parallel across multiple connected machines. 

 Massive storage. The Hadoop framework can store huge amounts of data by breaking the 

data into blocks and storing it on clusters of lower-cost commodity hardware. 
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How did Hadoop get here? 

As the World Wide Web grew at a dizzying pace in the late 1900s and early 2000s, search 

engines and indexes were created to help people find relevant information amid all of that 

text-based content. During the early years, search results were returned by humans. It’s true! 

But as the number of web pages grew from dozens to millions, automation was required. Web 

crawlers were created, many as university-led research projects, and search engine startups 

took off (Yahoo, AltaVista, etc.). 

One such project was Nutch – an open-source web search engine – and the brainchild of Doug 

Cutting and Mike Cafarella. Their goal was to invent a way to return web search results faster 

by distributing data and calculations across different computers so multiple tasks could be 

accomplished simultaneously. Also during this time, another search engine project called 

Google was in progress. It was based on the same concept – storing and processing data in a 

distributed, automated way so that more relevant web search results could be returned faster. 

In 2006, Cutting joined Yahoo and took with him the Nutch project as well as ideas based on 

Google’s early work with automating distributed data storage and processing. The Nutch 

project was divided. The web crawler portion remained as Nutch. The distributed computing 

and processing portion became Hadoop (named after Cutting’s son’s toy elephant). In 2008, 

Yahoo released Hadoop as an open-source project, and, today Hadoop’s framework and 

family of technologies are managed and maintained by the non-profit Apache Software 

Foundation (ASF), a global community of software developers and contributors. 

 


