
i

Auto recognizing system for Dice games

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

In

Computer Science & Engineering

Under the Supervision of

 Mr. Suman Saha

By

 Neeraj Singh | 111316

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Auto Recognition system For Dice games”,

submitted by Mr. Neeraj Singh in partial fulfillment for the award of degree of Bachelor of

Technology in Computer Science & Engineering to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date: Mr. Suman Saha
 Assistant Professor

iii

Acknowledgement

I have taken efforts in this project. However, it would not have been possible without the

kind support and help of many individuals and organizations. I would like to extend my

sincere thanks to all of them.

I am highly indebted to Mr.Suman Saha for his guidance and constant supervision as well

as for providing necessary information regarding the project & also for their support in

completing the project. I would like to express my gratitude towards faculty member of

Jaypee University of Information Technology for their kind co-operation and

encouragement which help me in completion of this project. I would like to express my

special gratitude and thanks to staff persons for giving me such attention and time. My

thanks and appreciations also go to my colleague in developing the project and people who

have willingly helped me out with their abilities.

Date: Neeraj Singh

iv

Table of Content

CHAPTER 1 INTRODUCTION 1

1.Introduction 2
1.1Introduction 2

CHAPTER 2 3

LITERATURE REVIEW 3

2. Literature Review 3
2.1Color and Illumination Invariant Dice Recognition 4
2.2Image Edge Detection Based On Opencv 4
2.3An Auto-Recognizing System for Dice Games Using a Modified Unsupervised Grey Clustering

Algorithm 5

CHAPTER 3 OPENCV 6

3. OpenCV 4
3.1Introduction 4
3.2 Application 5
3.3 Modular Structure 7
3.4 Platform 15
3.5 Setup Development Environment 19

CHAPTER 4 IMAGE EDGE DETECTION BASED ON OPENCV 26

4. Image Edge Detection Based on OpenCV 27
4.1 Introduction 27
4.2Working on Image 27
4.3 MORPHOLOGICAL PROCESSING 30
4.4 CONTOUR TRACKING 30

CHAPTER 5 DICE DETECTION 31

5.DICE DETECTION 32
5.1 Introduction 32
5.2 Materials and Methods 32
5.3 Supervised Algorithm for detecting the spot on Dice 35

6. Conclusion and Future Work 43
6.1 Conclusion and Future Work 43

v

7. References 44
7.1 References 44

vi

List of Figures

FIGURE 1:OPENCV 4
FIGURE 2:OPENFRAMEWORKS RUNNING THE OPENCV ADD-ON EXAMPLE 6
FIGURE 3:LINUX 15
FIGURE 4:GCC 16
FIGURE 5:CDT 16
FIGURE 6:WINDOWS 16
FIGURE 7:VISUAL STUDIO 17
FIGURE 8:JAVA 17
FIGURE 9:ECLIPSE 17
FIGURE 10:ANDROID 18
FIGURE 11:IOS 18
FIGURE 12:GCC 18
FIGURE 13:OPEN WINDOW 19
FIGURE 14:GO TO NEW 20
FIGURE 15:ENTER THE NAME OF LIBRARY 20
FIGURE 16:CLICK ON EXTERNAL JAR 21
FIGURE 17:CLICK ON EDIT 21
FIGURE 18:SET EXTERNAL PATH 22
FIGURE 19:USER LIBRARY 22
FIGURE 20:OPEN JAVA PROJECT 23
FIGURE 21:ADD EXTERNAL LIBRARY 23
FIGURE 22ADD OPENCV LIBRARY 24
FIGURE 23 24
FIGURE 24:OUPUT OF CODE 25
FIGURE 25:SOURCE IMAGE EDGE IS NOT CLEAR 28
FIGURE 26:RGB TO GRAYSCALE IMAGE 28
FIGURE 27:AFTER MEDIAN FILTER 29
FIGURE 28:THE IMAGE AFTER THRESHOLDING 29
FIGURE 29:MORPHOLOGICAL PROCESSING IMAGE 30
FIGURE 30:THE EFFECT OF CONTOUR TRACKING 30
FIGURE 31: ORIGINAL IMAGE. 33
FIGURE 32: BINARY IMAGE. 33
FIGURE 33: AFTER HOLE-FILLING. 34
FIGURE 34: AFTER CLOSING AND OPENING. 34

vii

Abstract

Dice have been part of the way that humans play games for many centuries. It is probably

about as long as man has been playing games at all. Six-sided dice had been developed

near Rome dating back to 900 B.C.. Recently, dice are most often associated with

gambling games and strategy war games; they are used dice in highly abstract ways in

both. Similarly, liar dice games are a kind of interesting and popular game that can be

found in almost every pub in China and Hong Kong.

Nowadays, electronic gambling machines have become increasingly popular. The first

such machines employing electromechanical principles were slot machines. For

increasing interest, electronic gambling machines have emerged using mechanical motion

of various types to produce random numbers. Typically, these kinds of games are

electronic roulette and electronic dice machines. In their structure, the important module

of electronic dice machines is the detection of dice location and throwing manner. Such

machines are extremely attractive to users. Simultaneously, they provide results visually

giving no room for fraudulently acquired numbers.

Here, we propose an automated detection system with machine vision to execute such

inspection. Machine vision is a powerful tool and is widely employed in automatic

monitoring and detecting processes. The system employs image processing techniques,

and the unsupervised algorithm to estimate the location of each die and identify the spot

number accurately and effectively. The proposed algorithms are substituted for manual

recognition. From the experimental results, it is found that this system is excellent due to

its good capabilities which include flexibility, high speed, and high accuracy.

1

Chapter 1

Introduction

2

1.Introduction

1.1Introduction
Dice is a common table game in casinos, and most popular in the casinos in

Asia. As automatic or computer-controlled games are becoming popular,

many are interested in the technologies able to assist or even replace human

bankers. A computer vision system is proposed in this paper for dice

recognition, which refers to the automatic reading of the numbers of dots on

dice, in generic table game settings.

The proposed system consists of three modules for dice detection, top

surface segmentation and dots identification. To detect the dice, a scheme

called modified unsupervised grey clustering algorithm is proposed to locate

the dice.

The grey theory has been applied to research in industry, social system,

ecological system, environmental system, education, business management,

and traffic control. The object of the present study is to automatically

recognize the score of dice. This study develops an iterative calculation that

is suitable for dice identification, and is organized as follows: an image

acquisition system, an image processing method and an auto-recognition

system for dice are presented contains conclusions about the proposed

system.

Our aim, which is to develop a method of dice recognition that is fast,

robust, reasonably simple and accurate with a relatively simple and easy to

understand algorithms and techniques. The examples provided in this thesis

are real-time and taken from our own surroundings.

3

Chapter 2

Literature Review

2. Literature Review

4

The Project on dice recognition had helped detailed survey of a number of dice

recognition algorithm.

There is a lot of previous work is done on Dice recognition system.

Description of related paper work is described as:

2.1Color and Illumination Invariant Dice Recognition
Published by: Gee-Sern Hsu, Hsiao-Chia Peng, Shang-Min Yeh

Artificial Vision Lab, National Taiwan University of Science and

Technology Taipei, Taiwan

Abstract: A system is proposed for automatic reading of the number of dots on

dice in general table game settings. Different from previous dice recognition

systems which recognize dice of a specific color using a single top-view camera

in an enclosure with controlled settings, the proposed one uses multiple cameras

to recognize dice of various colors posed in a wide range of viewing angle and

under uncontrolled conditions. It is composed of three modules. Module-1 locates

the dice using the gradient-conditioned color segmentation (GCCS), proposed in

this paper, to segment dice of arbitrary colors from the background. Module-2

exploits the local invariant features good for building homographies across

multiple views and lighting conditions. The homographies are used to enhance

coplanar features and weaken non-coplanar features, giving a solution to segment

the top faces of the dice and make up the features ruined by possible specular

reflection. To identify the dots on the segmented top faces, an MSER (Maximally

Stable Extreme Region) detector is embedded in its consistency in locating the dot

regions regardless of illumination and viewpoint variations. Experiments show

that the proposed system performs satisfactorily in various test conditions.

2.2Image Edge Detection Based On Opencv

Published by: Guobo Xie and Wen Lu

School of computer, Guangdong University of technology,

Guang zhou, China

Abstract: Image processing is one of most growing research area these days and

now it is very much integrated with the industrial production. Generally speaking,

It is very difficult for us to distinguish the exact number of the copper core in the

tiny wire, However, in order to ensure that the wire meets the requirements of

production, we have to know the accurate number of copper core in the wire. Here

the paper will introduce a method of image edge detection to determine the exact

number of the copper core in the tiny wire based on OpenCV with rich computer

vision and image processing algorithms and functions. Firstly, we use high-

resolution camera to take picture of the internal structure of the wire. Secondly, use

5

OpenCV image processing functions to implement image pre-processing. Thirdly

we use morphological opening and closing operations to segment image because of

their blur image edges. Finally the exact number of copper core can be clearly

distinguished through contour tracking. By using of Borland C++ Builder 6.0,

experimental results show that OpenCV based image edge detection methods are

simple, high code integration, and high image edge positioning accuracy.

2.3An Auto-Recognizing System for Dice Games Using

a Modified Unsupervised Grey Clustering Algorithm

Published by: Kuo-Yi Huang

Department of Mechatronic Engineering, Huafan University,

Taipei, Taiwan

Abstract: a novel identification method based on a machine vision system is

proposed to recognize the score of dice. The system employs image processing

techniques, and the modified unsupervised grey clustering algorithm (MUGCA) to

estimate the location of each die and identify the spot number accurately and

effectively. The proposed algorithms are substituted for manual recognition. From

the experimental results, it is found that this system is excellent due to its good

capabilities which include flexibility, high speed, and high accuracy.

2.4Image Identification Scheme for Dice Game

Published by: Chin-Ho Chung, Wen-Yuan Chen, and Bor-Liang Lin

Department of Electronic Engineering,

Ta Hwa Institute of Technology, Hsin-Chu, Taiwan

Abstract: In this paper, based on the features of dice images and the least

distance criterion (LDC) method, developed an auto recognition scheme for dice

games. First, use R plane to replace gray-scale image to speed up processing.

Next, use O’stu method to convert the R plane into binary. Furthermore, image

pre-processing steps are used to filter out the noise, and a non-circular object

discard stage eliminates the bigger noise blocks. Finally, the LDC, the dice score

calculation, and the score exception processing is used to accomplish the

automatic identification scheme of the dice.

6

Chapter 3

OpenCV

4

3. OpenCV

3.1Introduction

FIGURE 1:OPENCV

OpenCV (Open Source Computer Vision Library) is an open-source BSD-licensed

library that includes several hundreds of computer vision algorithms. The document

describes the so-called OpenCV 2.x API, which is essentially a C++ API, as opposite to

the C-based OpenCV 1.x API. It is developed by Intel Russia research center in Nizhny

Novgorod, and now supported by Willow Garage and Itseez. It is free for use under the

open source BSD license. The library is cross-platform. It focuses mainly on real-time

image processing. If the library finds Intel's Integrated Performance Primitives on the

system, it will use these proprietary optimized routines to accelerate itself.

Officially launched in 1999, the OpenCV project was initially an Intel Research initiative

to advance CPU-intensive applications, part of a series of projects including real-time ray

tracing and 3D display walls. The main contributors to the project included a number of

optimization experts in Intel Russia, as well as Intel’s Performance Library Team. In the

early days of OpenCV, the goals of the project were described as

 Advance vision research by providing not only open but also optimized code for

basic vision infrastructure. No more reinventing the wheel.

http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Nizhny_Novgorod
http://en.wikipedia.org/wiki/Nizhny_Novgorod
http://en.wikipedia.org/wiki/Willow_Garage
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/BSD_license
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Integrated_Performance_Primitives
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

5

 Disseminate vision knowledge by providing a common infrastructure that developers

could build on, so that code would be more readily readable and transferable.

 Advance vision-based commercial applications by making portable, performance-

optimized code available for free—with a license that did not require to be open or

free themselves.

The first alpha version of OpenCV was released to the public at the IEEE Conference on

Computer Vision and Pattern Recognition in 2000, and five betas were released between

2001 and 2005. The first 1.0 version was released in 2006. In mid-2008, OpenCV

obtained corporate support from Willow Garage, and is now again under active

development. A version 1.1 "pre-release" was released in October 2008.

The second major release of the OpenCV was on October 2009. OpenCV 2 includes

major changes to the C++ interface, aiming at easier, more type-safe patterns, new

functions, and better implementations for existing ones in terms of performance

(especially on multi-core systems). Official releases now occur every six months and

development is now done by an independent Russian team supported by commercial

corporations.

In August 2012, support for OpenCV was taken over by a non-profit foundation,

OpenCV.org, which maintains a developer and user site.

3.2 Application

OpenCV's application areas include:

 2D and 3D feature toolkits

 Ego motion estimation

 Facial recognition system

 Gesture recognition

 Human–computer interaction (HCI)

 Mobile robotics

 Motion understanding

 Object identification

 Segmentation and Recognition

http://en.wikipedia.org/wiki/Conference_on_Computer_Vision_and_Pattern_Recognition
http://en.wikipedia.org/wiki/Conference_on_Computer_Vision_and_Pattern_Recognition
http://en.wikipedia.org/wiki/Willow_Garage
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Egomotion
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Gesture_recognition
http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
http://en.wikipedia.org/wiki/Mobile_robotics
http://en.wikipedia.org/w/index.php?title=Motion_understanding&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Object_identification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Segmentation_(image_processing)

6

 Stereopsis Stereo vision: depth perception from 2 cameras

 Structure from motion (SFM)

 Motion tracking

 Augmented reality

To support some of the above areas, OpenCV includes a statistical machine

learning library that contains:

 Boosting (meta-algorithm)

 Decision tree learning

 Gradient boosting trees

 Expectation-maximization algorithm

 k-nearest neighbor algorithm

 Naive Bayes classifier

 Artificial neural networks

 Random forest

 Support vector machine (SVM)

FIGURE 2:OPENFRAMEWORKS RUNNING THE OPENCV ADD-ON

EXAMPLE

http://en.wikipedia.org/wiki/Stereopsis
http://en.wikipedia.org/wiki/Structure_from_motion
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Augmented_reality
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Gradient_boosting
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Random_forest
http://en.wikipedia.org/wiki/Support_vector_machine

7

3.3 Modular Structure

OpenCV has a modular structure, which means that the package includes several shared or

static libraries. The following modules are available:

 core - a compact module defining basic data structures, including the

dense multi-dimensional arrayMat and basic functions used by all other

modules.

 imgproc - an image processing module that includes linear and non-linear

image filtering, geometrical image transformations (resize, affine and

perspective warping, generic table-based remapping), color space

conversion, histograms, and so on.

 video - a video analysis module that includes motion estimation,

background subtraction, and object tracking algorithms.

 calib3d - basic multiple-view geometry algorithms, single and stereo

camera calibration, object pose estimation, stereo correspondence

algorithms, and elements of 3D reconstruction.

 features2d - salient feature detectors, descriptors, and descriptor

matchers.

 objdetect - detection of objects and instances of the predefined classes

(for example, faces, eyes, mugs, people, cars, and so on).

 highgui - an easy-to-use interface to simple UI capabilities.

 videoio - an easy-to-use interface to video capturing and video codecs.

 gpu - GPU-accelerated algorithms from different OpenCV modules.

 ... some other helper modules, such as FLANN and Google test wrappers,

Python bindings, and others.

Automatic Memory Management

First of all, std::vector, Mat, and other data structures used by the functions and methods

have destructors that deallocate the underlying memory buffers when needed. This means

that the destructors do not always deallocate the buffers as in case of Mat. They take into

account possible data sharing. A destructor decrements the reference counter associated

with the matrix data buffer. The buffer is deallocated if and only if the reference counter

reaches zero, that is, when no other structures refer to the same buffer. Similarly, when

a Mat instance is copied, no actual data is really copied. Instead, the reference counter is

incremented to memorize that there is another owner of the same data. There is also

theMat::clone method that creates a full copy of the matrix data.

8

Automatic Allocation of Output Data

OpenCV deallocates the memory automatically, as well as automatically allocates the

memory for output function parameters most of the time. So, if a function has one or

more input arrays (cv::Mat instances) and some output arrays, the output arrays are

automatically allocated or reallocated. The size and type of the output arrays are

determined from the size and type of input arrays. If needed, the functions take extra

parameters that help to figure out the output array properties.

InputArray and OutputArray

Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical

arrays. Usually, such functions take cpp:class:Mat as parameters, but in some cases it’s

more convenient to use std::vector<> (for a point set, for example) or Matx<> (for 3x3

homography matrix and such). To avoid many duplicates in the API, special “proxy”

classes have been introduced. The base “proxy” class is InputArray. It is used for passing

read-only arrays on a function input. The derived from InputArray class OutputArray is

used to specify an output array for a function. Normally, you should not care of those

intermediate types (and you should not declare variables of those types explicitly) - it will

all just work automatically. You can assume that instead of InputArray/OutputArray you

can always use Mat, std::vector<>, Matx<>, Vec<> or Scalar. When a function has an

optional input or output array, and you do not have or do not want one,

pass cv::noArray().

Fixed Pixel Types. Limited Use of Templates

Templates is a great feature of C++ that enables implementation of very powerful, efficient

and yet safe data structures and algorithms. However, the extensive use of templates may

dramatically increase compilation time and code size. Besides, it is difficult to separate an

interface and implementation when templates are used exclusively. This could be fine for

basic algorithms but not good for computer vision libraries where a single algorithm may

span thousands lines of code. Because of this and also to simplify development of bindings

for other languages, like Python, Java, Matlab that do not have templates at all or have

limited template capabilities, the current OpenCV implementation is based on

polymorphism and runtime dispatching over templates. In those places where runtime

dispatching would be too slow (like pixel access operators), impossible or just very

inconvenient the current implementation introduces small template classes, methods, and

functions. Anywhere else in the current OpenCV version the use of templates is limited.

9

Consequently, there is a limited fixed set of primitive data types the library can operate

on. That is, array elements should have one of the following types:

 8-bit unsigned integer (uchar)

 8-bit signed integer (schar)

 16-bit unsigned integer (ushort)

 16-bit signed integer (short)

 32-bit signed integer (int)

 32-bit floating-point number (float)

 64-bit floating-point number (double)

 a tuple of several elements where all elements have the same type (one of

the above). An array whose elements are such tuples, are called multi-

channel arrays, as opposite to the single-channel arrays, whose elements

are scalar values. The maximum possible number of channels is defined

by theCV_CN_MAX constant, which is currently set to 512.

Error Handling

OpenCV uses exceptions to signal critical errors. When the input data has a correct

format and belongs to the specified value range, but the algorithm cannot succeed for

some reason (for example, the optimization algorithm did not converge), it returns a

special error code (typically, just a boolean variable).

The exceptions can be instances of the cv::Exception class or its derivatives. In its

turn, cv::Exception is a derivative of std::exception. So it can be gracefully handled in the

code using other standard C++ library components. The exception is typically thrown

either using the CV_Error(errcode, description) macro, or its printf-

likeCV_Error_(errcode, printf-spec, (printf-args)) variant, or using

the CV_Assert(condition) macro that checks the condition and throws an exception when

it is not satisfied. For performance-critical code, there is CV_DbgAssert(condition) that is

only retained in the Debug configuration. Due to the automatic memory management, all

the intermediate buffers are automatically deallocated in case of a sudden error.

Multi-threading and Re-enterability

The current OpenCV implementation is fully re-enterable. That is, the same function, the

same constant method of a class instance, or the same non-constant method of different

class instances can be called from different threads. Also, the same cv::Mat can be used in

different threads because the reference-counting operations use the architecture-specific

atomic instructions.

10

Algorithm

class Algorithm

This is a base class for all more or less complex algorithms in OpenCV, especially for

classes of algorithms, for which there can be multiple implementations. The examples are

stereo correspondence (for which there are algorithms like block matching, semi-global

block matching, graph-cut etc.), background subtraction (which can be done using mixture-

of-gaussians models, codebook-based algorithm etc.), optical flow (block matching,

Lucas-Kanade, Horn-Schunck etc.).

The class provides the following features for all derived classes:

 So called “virtual constructor”. That is, each Algorithm derivative is

registered at program start and you can get the list of registered algorithms

and create instance of a particular algorithm by its name

(see Algorithm::create). If you plan to add your own algorithms, it is good

practice to add a unique prefix to your algorithms to distinguish them from

other algorithms.

 Setting/retrieving algorithm parameters by name. If you used video

capturing functionality from OpenCV highgui module, you are probably

familiar SetCaptureProperty(), cvGetCaptureProperty(), VideoCapture::set

) andVideoCapture::get(). Algorithm provides similar method where

instead of integer id’s you specify the parameter names as text strings.

See Algorithm::set and Algorithm::get for details.

 Reading and writing parameters from/to XML or YAML files. Every

Algorithm derivative can store all its parameters and then read them back.

There is no need to re-implement it each time.

Creating own algorithm

If you want to make your own algorithm, derived from Algorithm, you should basically

follow a few conventions and add a little semi-standard piece of code to your class:

 Make a class and specify Algorithm as its base class.

 The algorithm parameters should be the class members. See Algorithm::get() for

the list of possible types of the parameters.

 Add public virtual method AlgorithmInfo* info() const; to your class.

 Add constructor function, AlgorithmInfo instance and implement

the info() method.

11

 Add some public function (e.g. initModule_<mymodule>()) that calls info() of

your algorithm and put it into the same source file as info() implementation. This

is to force C++ linker to include this object file into the target application.

SeeAlgorithm::create() for details.

Data type

Template “trait” class for OpenCV primitive data types. A primitive OpenCV data type is

one of unsigned char, bool, signed char, unsignedshort, signed short, int, float, double, or

a tuple of values of one of these types, where all the values in the tuple have the same type.

Any primitive type from the list can be defined by an identifier in the form CV_<bit-

depth>{U|S|F}C(<number_of_channels>), for example: uchar ~CV_8UC1, 3-element

floating-point tuple ~ CV_32FC3, and so on. A universal OpenCV structure that is able to

store a single instance of such a primitive data type is Vec. Multiple instances of such a

type can be stored in a std::vector, Mat, Mat_, SparseMat, SparseMat_, or any other

container that is able to store Vec instances.

Ptr

Class Ptr

Template class for smart reference-counting pointers. This class provides the following

options:

 Default constructor, copy constructor, and assignment operator for an arbitrary C++

class or a C structure. For some objects, like files, windows, mutexes, sockets, and

others, a copy constructor or an assignment operator are difficult to define. For

some other objects, like complex classifiers in OpenCV, copy constructors are

absent and not easy to implement. Finally, some of complex OpenCV and your own

data structures may be written in C. However, copy constructors and default

constructors can simplify programming a lot.Besides, they are often required (for

example, by STL containers). By wrapping a pointer to such a complex

object TObj to Ptr<TObj>, you automatically get all of the necessary constructors

and the assignment operator.

 O(1) complexity of the above-mentioned operations. While some structures,

like std::vector, provide a copy constructor and an assignment operator, the

operations may take a considerable amount of time if the data structures are large.

But if the structures are put intoPtr<>, the overhead is small and independent of the

data size.

http://docs.opencv.org/2.4.10/modules/core/doc/basic_structures.html#Vec

12

 Automatic destruction, even for C structures. See the example below with FILE*.

 Heterogeneous collections of objects. The standard STL and most other C++ and

OpenCV containers can store only objects of the same type and the same size. The

classical solution to store objects of different types in the same container is to store

pointers to the base classbase_class_t* instead but then you loose the automatic

memory management. Again, by using Ptr<base_class_t>() instead of the raw

pointers, you can solve the problem.

The Ptr class treats the wrapped object as a black box. The reference counter is allocated

and managed separately. The only thing the pointer class needs to know about the object

is how to deallocate it. This knowledge is encapsulated in the Ptr::delete_obj() method that

is called when the reference counter becomes 0. If the object is a C++ class instance, no

additional coding is needed, because the default implementation of this method

calls delete obj;. However, if the object is deallocated in a different way, the specialized

method should be created.

Mat

OpenCV n-dimensional dense array class. The class Mat represents an n-dimensional

dense numerical single-channel or multi-channel array. It can be used to store real or

complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector

fields, point clouds, tensors, histograms (though, very high-dimensional histograms may

be better stored in a SparseMat). The data layout in Mat is fully compatible

with CvMat, IplImage, and CvMatND types from OpenCV 1.x. It is also compatible with

the majority of dense array types from the standard toolkits and SDKs, such as Numpy

(ndarray), Win32 (independent device bitmaps), and others, that is, with any array that

uses steps (or strides) to compute the position of a pixel. Due to this compatibility, it is

possible to make a Mat header for user-allocated data and process it in-place using

OpenCV functions.

Matrix Expressions

This is a list of implemented matrix operations that can be combined in arbitrary complex

expressions (here A, B stand for matrices (Mat), s for a scalar (Scalar), alpha for a real-

valued scalar (double)):

 Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A

13

 Scaling: A*alpha

 Per-element multiplication and division: A.mul(B), A/B, alpha/A

 Matrix multiplication: A*B

 Transposition: A.t() (means AT)

 Matrix inversion and pseudo-inversion, solving linear systems and least-squares

problems:

A.inv([method]) (~ A-1) , A.inv([method])*B (~ X: AX=B)

 Comparison: A cmpop B, A cmpop alpha, alpha cmpop A, where cmpop is one

of : >, >=, ==, !=, <=, <. The result of comparison is an 8-bit single channel mask

whose elements are set to 255 (if the particular element or pair of elements satisfy

the condition) or 0.

 Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A,

where logicop is one of: &, |, ^.

 Element-wise absolute value: abs(A)

 Cross-product, dot-product: A.cross(B) A.dot(B)

 Any function of matrix or matrices and scalars that returns a matrix or a scalar, such

as norm, mean, sum, countNonZero, trace,determinant, repeat, and others.

 Matrix initializers (Mat::eye(), Mat::zeros(), Mat::ones()), matrix comma-

separated initializers, matrix constructors and operators that extract sub-matrices

(see Mat description).

 Mat_<destination_type> () constructors to cast the result to the proper type.

Input Array

class InputArray

This is the proxy class for passing read-only input arrays into OpenCV functions.

Since this is mostly implementation-level class, and its interface may change in future

versions, we do not describe it in details. There are a few key things, though, that should

be kept in mind:

http://docs.opencv.org/modules/core/doc/basic_structures.html#Mat

14

 When you see in the reference manual or in OpenCV source code a function

that takes InputArray, it means that you can actually

pass Mat, Matx, vector<T> etc.

 Optional input arguments: If some of the input arrays may be empty,

pass cv::noArray().

 The class is designed solely for passing parameters. That is, normally

you should not declare class members, local and global variables of this

type.

 If you want to design your own function or a class method that can operate

of arrays of multiple types, you can use InputArray(or OutputArray) for the

respective parameters. Inside a function you should

use _InputArray::getMat() method to construct a matrix header for the array

(without copying data). _InputArray::kind() can be used to

distinguish Mat from vector<> etc., but normally it is not needed.

Output Array

class OutputArray

This type is very similar to InputArray except that it is used for input/output and output

function parameters. Just like with InputArray, OpenCV users should not care

about OutputArray, they just pass Mat, vector<T> etc. to the functions. The same

limitation as for InputArray: Do not explicitly create OutputArray instances applies here

too. If you want to make your function polymorphic (i.e. accept different arrays as output

parameters),it is also not very difficult. Note that _OutputArray::create() needs to be called

before _OutputArray::getMat(). This way you guarantee that the output array is properly

allocated. Optional output parameters. If you do not need certain output array to be

computed and returned to you, pass cv::noArray(), just like you would in the case of

optional input array. At the implementation level, use _OutputArray::needed() to check if

certain output array needs to be computed or not.

NAryMatIterator

class NAryMatIterator

Use the class to implement unary, binary, and, generally, n-ary element-wise operations on

multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous

arrays, some may be not. It is possible to use conventional MatIterator‘s for each array but

incrementing all of the iterators after each small operations may be a big overhead. In this

case consider using NAryMatIterator to iterate through several matrices simultaneously as

15

long as they have the same geometry (dimensionality and all the dimension sizes are the

same). It iterates through the slices (or planes), not the elements, where “slice” is a

continuous part of the arrays. On each iteration it.planes[0], it.planes[1] , ... will be the

slices of the corresponding matrices.

SparceMat

class SparseMat

The class SparseMat represents multi-dimensional sparse numerical arrays. Such a sparse

array can store elements of any type that Mat can store. Sparse means that only non-zero

elements are stored (though, as a result of operations on a sparse matrix, some of its stored

elements can actually become 0. It is up to you to detect such elements and delete them

using SparseMat::erase). The non-zero elements are stored in a hash table that grows when

it is filled so that the search time is O(1) in average (regardless of whether element is there

or not).

3.4 Platform

 Linux

FIGURE 3:LINUX

Compatibility: > OpenCV 2.0

http://docs.opencv.org/modules/core/doc/basic_structures.html#Mat

16

FIGURE 4:GCC

Using OpenCV with gcc and CMake

Compatibility: > OpenCV 2.0

FIGURE 5:CDT

Using OpenCV with Eclipse (plugin CDT)

Compatibility: > OpenCV 2.0

 Windows

FIGURE 6:WINDOWS

http://docs.opencv.org/doc/tutorials/introduction/linux_gcc_cmake/linux_gcc_cmake.html#linux-gcc-usage
http://docs.opencv.org/doc/tutorials/introduction/linux_eclipse/linux_eclipse.html#linux-eclipse-usage

17

FIGURE 7:VISUAL STUDIO

Build applications with OpenCV inside the Microsoft Visual Studio

Compatibility: > OpenCV 2.0

 Desktop Java

FIGURE 8:JAVA

Compatibility: > OpenCV 2.4.4

FIGURE 9:ECLIPSE

 Using OpenCV Java with Eclipse

Compatibility: > OpenCV 2.4.4

 Android

http://docs.opencv.org/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html#windows-visual-studio-how-to
http://docs.opencv.org/doc/tutorials/introduction/java_eclipse/java_eclipse.html#java-eclipse

18

FIGURE 10:ANDROID

 Compatibility: > OpenCV 2.4.2

 iOS

FIGURE 11:IOS

Compatibility: > OpenCV 2.4.2

FIGURE 12:GCC

Cross compilation for ARM based Linux systems

Compatibility: > OpenCV 2.4.4

http://docs.opencv.org/doc/tutorials/introduction/crosscompilation/arm_crosscompile_with_cmake.html#arm-linux-cross-compile

19

3.5 Setup Development Environment

Using OpenCV Java with Eclipse

Since version 2.4.4 OpenCV supports Java. We will define OpenCV as a user library in

Eclipse, so we can reuse the configuration for any project. Launch Eclipse and

select Window –> Preferences from the menu.

FIGURE 13:OPEN WINDOW

Navigate under Java –> Build Path –> User Libraries and click New...

http://opencv.org/opencv-java-api.html

20

FIGURE 14:GO TO NEW

 Enter a name, e.g. OpenCV-2.4.6, for your new library.

FIGURE 15:ENTER THE NAME OF LIBRARY

 Now select your new user library and click Add External JARs....

21

FIGURE 16:CLICK ON EXTERNAL JAR

Browse through C:\OpenCV-2.4.6\build\java\ and select opencv-246.jar. After adding the

jar, extend the opencv-246.jar and select Native library location and press Edit....

FIGURE 17:CLICK ON EDIT

22

Select External Folder... and browse to select the folder C:\OpenCV-2.4.6\build\java\x64.

If you have a 32-bit system you need to select the x86 folder instead of x64.

FIGURE 18:SET EXTERNAL PATH

 Your user library configuration should look like this:

FIGURE 19:USER LIBRARY

23

Now start creating a new Java project.

FIGURE 20:OPEN JAVA PROJECT

On the Java Settings step, under Libraries tab, select Add Library... and select OpenCV-

2.4.6, then click Finish.

FIGURE 21:ADD EXTERNAL LIBRARY

24

FIGURE 22ADD OPENCV LIBRARY

 Libraries should look like this:

FIGURE 23

25

Now have created and configured a new Java project it is time to test it. Create a new java

file.

import org.opencv.core.Core;

import org.opencv.core.CvType;

import org.opencv.core.Mat;

public class Hello

{

 public static void main(String[] args)

 {

 System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

 Mat mat = Mat.eye(3, 3, CvType.CV_8UC1);

 System.out.println("mat = " + mat.dump());

 }

}

When you run the code you should see 3x3 identity matrix as output

FIGURE 24:OUPUT OF CODE

26

Chapter 4

Image Edge

Detection based on

OpenCV

27

4. Image Edge Detection Based on OpenCV

4.1 Introduction

 The rapid development of computer industry production and computer intelligence, as

well as the corresponding developments in computer-aided image analysis, has made

industrial image processing to be a very important branch of scientific image processing.

Image processing plays a very important role in industrial production, which can

visualize the anatomical structure of the product, therefore, we can check and judge the

merits of the product in time and to some extent reduce the unnecessary losses, so it is

necessary for us to avoid the traditional off-line manual detection methods which may

easily result in error detection.

4.2Working on Image

4.2.1Capture an image

In OpenCV, the data type of image is usual IplImage. IplImage comes from Intel Image

Processing Library. Image Processing Library is inheritance from the actual OpenCV

versions which may require IplImage data type is defined in CXCORE . IplImage is the

main image structure used in OpenCV. IplImage has been in OpenCV since the very

beginning. It is a part of the C interface for OpenCV. You need to allocate and deallocate

memory for Iplmage structures yourself. OpenCV has many powerful image processing

functions. In order to capture and show an image we should use cvLoadImage

cvNamedWindow, and cvShowImage functions. The function cvLoadImage loads the

specified image file and return IplImage pointer to the file. CvNameWindown defines a

window for displaying. The function cvShowImage display the image in the specified

window. By using the above three functions, we can successfully display the image that

we will deal with.

28

FIGURE 25:SOURCE IMAGE EDGE IS NOT CLEAR

 4.2.2Color to Gray

Opencv offers us cvCvtColor function to convert the color image to grayscale image. The

effect of RGB to GrayScale image is well demonstrated in the Fig.

FIGURE 26:RGB TO GRAYSCALE IMAGE

29

4.2.3Median filter

At the same time, because of the noise interfering to the detection accuracy, it is necessary

for us to do denoising for the captured images. OpenCV includes a Median filter that can

be applied to an image by calling the cvSmooth function. The image after smooth

processing is as Fig.

FIGURE 27:AFTER MEDIAN FILTER

 4.2.4 Thresholding

Thresholding or binarization is a conversion from a color image to a bi-level one. This is

the first step in several image processing applications. This process can be understood as a

classification between objects and background in an image. we use Opencv's cvThreshold

function.

FIGURE 28:THE IMAGE AFTER THRESHOLDING

30

4.3 MORPHOLOGICAL PROCESSING

Mathematical morphology examines the geometrical structure of an image by probing it

with small patters, called ‘structuring elements’ of varying size and shape. This procedure

results in nonlinear image operators which are well-suited to exploring geometrical and

topological structures. A succession of such operators is applied to an image in order to

make certain features apparent, and distinguish meaningful information from irrelevant

distortions, by reducing it to a sort of caricature.

FIGURE 29:MORPHOLOGICAL PROCESSING IMAGE

4.4 CONTOUR TRACKING

The idea of contour tracking, also known as boundary following or edge tracking, is to

traverse the border of a region completely and without repetition.The result of the contour

tracking is to obtain a boundary points sequence. Opencv offers cvFindContours function

to realize contour tracking, which retrives contour from the binary image, and return the

number of contour.

FIGURE 30:THE EFFECT OF CONTOUR TRACKING

31

Chapter 5

DICE DETECTION

32

5.DICE DETECTION

5.1 Introduction

We propose an automated detection system with machine vision. Machine vision is a

powerful tool and is widely employed in automatic monitoring and detecting processes.

Many applications for dice gambling machines using machine vision have been proposed.

The Chroma-key principle and the smoothing vectors were used to estimate the location

of each die, and a template matching technique was proposed for fine-tuning and

detecting the number of spots. However, estimated results depended on the image

contrast. Another system which automated the tasks of detection and classification of the

dice scores on the playing tables in casinos was based on the online analysis of images

captured by a monochrome CCD camera and the spots of dice were extracted. This

system includes the diameter of each spots and the distance between each spots on the die

surface had to be known before the detection process, a sort of template matching was

repeated to classify dice and all spots associated to each die. In addition, an

electromechanical dice gambling machine was established to detect dice location based

on contactless electronic ID keys and a scanner. As machine vision was not provided

during the recognition process, the suspicion of cheating cannot be eliminated.

Because of the above-mentioned issues, a novel auto-recognition system is proposed to

estimate the location of each die and the score of dice accurately and effectively in the

games using machine vision techniques.

5.2 Materials and Methods

5.2.1 Image acquisition

In order to obtain online images for auto-recognition, a machine vision system was being

developed. This system includes a CCD (coupled-charge device) monochrome camera

with a zoom lens, a frame grabber, and a personal computer (Intel Pentium 4 processor 2.4

GHz). Basic programming is linked to grab the monochrome images and perform the image

processing. The CCD camera was employed for image acquisition with a light intensity of

33

5.2.2 Image processing and apply algorithm for finding

spot of dices

Segmenting the spot images of dice is an important procedure in the classification process.

The spot images are extracted by using the global thresholding, hole-filling, closing, and

opening operators the location of each dice can be obtained according to the images of

spots. This geometric characteristic would be treated as the reference data to recognize the

spot number.

FIGURE 31: ORIGINAL IMAGE.

FIGURE 32: BINARY IMAGE.

34

FIGURE 33: AFTER HOLE-FILLING.

FIGURE 34: AFTER CLOSING AND OPENING.

Steps for recognizing the dice are:

1. Auto-acquire Image

2. Extract the spots of dices

3. Compute the coordinates of spots of dices

4. Apply supervised algorithm for detecting the number of spot on dices

5. Obtain score of dices.

35

5.3 Supervised Algorithm for detecting the spot on Dice

Step for finding the Dice spots are:

1. Find all the squares type of objects on the image using canny method. The threshold is

being changed multiple times to make sure all quadrangles are found.

2. Delete all objects that bound similar area. This is made because during step 1 usually

each quadrangle is replicated few time.

3. Delete all the pixels from the outside of the chosen color ranges. Chosen color range

depend on the color of spot on the dice. Color of spot of dice is entered manually by user.

So pixel other than spot are deleted.

4. Make a list of blobs that were not rejected.

5. Check if a blob shape is similar to circle. Also their square area must be between preset

boundaries.

6. Count the number of blobs which are present in Square Boundary - that's the number

on the dice.

36

Step 1: Find all the squares using canny method.

1. First you split the image to R, G, and B planes.

2. Then for each plane perform edge detection, and in addition to that, threshold for

different values like 50, 100, Etc.

3. And in all these binary images, find contours in the images.

4. After finding contours, remove some small unwanted noises by filtering according to

area.

5. For a rectangle, it will give you the four corners. For others, corresponding corners

will be given. So filter these contours with respect to number of elements in

approximated contour that should be four, which is same as number of corners. First

property of rectangle.

6. Next, there may be some shapes with four corners but not rectangles. So we

take second property of rectangles, i.e. all inner angles are 90.

Canny Function for Edge Detection:

Void Canny(InputArray image, OutputArray edges, double threshold1,

double threshold2, int apertureSize=3).

Parameters:

 image – single-channel 8-bit input image.

 edges – output edge map; it has the same size and type as image .

 threshold1 – first threshold for the hysteresis procedure.

 threshold2 – second threshold for the hysteresis procedure.

 apertureSize – aperture size .

37

Step 2: Filter the image according to the color of the spot of dice.

For this we use Core.inRange () function.

In this,

public static void inRange(Mat src,

 Scalar lowerb,

 Scalar upperb,

 Mat dst)

The function checks the range as follows:

 For every element of a single-channel input array:

dst(I)= lowerb(I)_0 <= src(I)_0 <= upperb(I)_0

 For two-channel arrays:

dst(I)= lowerb(I)_0 <= src(I)_0 <= upperb(I)_0 land lowerb(I)_1 <= src(I)_1 <=

upperb(I)_1

 and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the specified 1D, 2D, 3D,... box

and 0 otherwise.

When the lower and/or upper boundary parameters are scalars, the

indexes (I) at lowerb and upperb in the above formulas should be omitted.

Parameters:

src - first input array.

lowerb - inclusive lower boundary array or a scalar.

upperb - inclusive upper boundary array or a scalar.

dst - output array of the same size as src and CV_8U type.

http://docs.opencv.org/java/org/opencv/core/Mat.html
http://docs.opencv.org/java/org/opencv/core/Scalar.html
http://docs.opencv.org/java/org/opencv/core/Scalar.html
http://docs.opencv.org/java/org/opencv/core/Mat.html

38

Step 3: Make a list of Blob and check if blob is similar to circle.

For this we Hough Circle Transform function.

HoughCircles(InputArray image, OutputArray circles, int method, double dp,

double minDist, double param1, doubleparam2, int minRadius, int maxRadius)

Parameters:

 Image – 8-bit, single-channel, grayscale input image.

 Circles – Output vector of found circles. Each vector is encoded as a 3-element

floating-point vector .

 Circle storage –This is a memory storage that will contain the output sequence of

found circles.

 Method – Detection method to use. Currently, the only implemented method

is CV_HOUGH_GRADIENT.

 dp – Inverse ratio of the accumulator resolution to the image resolution. For example,

if dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the

accumulator has half as big width and height.

 minDist – Minimum distance between the centers of the detected circles. If the

parameter is too small, multiple neighbor circles may be falsely detected in addition to

a true one. If it is too large, some circles may be missed.

 param1 – First method-specific parameter. In case of CV_HOUGH_GRADIENT , it

is the higher threshold of the two passed to the Canny() edge detector (the lower one

is twice smaller).

 param2 – Second method-specific parameter. In case of CV_HOUGH_GRADIENT ,

it is the accumulator threshold for the circle centers at the detection stage. The smaller

it is, the more false circles may be detected. Circles, corresponding to the larger

accumulator values, will be returned first.

http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghcircles#void Canny(InputArray image, OutputArray edges, double threshold1, double threshold2, int apertureSize, bool L2gradient)

39

 minRadius – Minimum circle radius.

 maxRadius – Maximum circle radius.

For finding number of Spot in dices we use findContour() fuction.

void findContours(Mat image,

 contours,

 Mat hierarchy,

 int mode,

 int method)

image - Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's.

Zero pixels remain 0's, so the image is treated as binary. You can use "compare",

"inRange", "threshold", "adaptiveThreshold", "Canny", and others to create a

binary image out of a grayscale or color one. The function modifies

the image while extracting the contours. If mode equals

to CV_RETR_CCOMP or CV_RETR_FLOODFILL, the input can also be a 32-

bit integer image of labels (CV_32SC1).

contours - Detected contours. Each contour is stored as a vector of points.

hierarchy - Optional output vector, containing information about the image

topology. It has as many elements as the number of contours. For each i-th

contour contours[i], the elements hierarchy[i][0], hiearchy[i][1], hiearchy[i][2],

and hiearchy[i][3] are set to 0-based indices in contours of the next and previous

contours at the same hierarchical level, the first child contour and the parent

contour, respectively. If for the contour i there are no next, previous, parent, or

nested contours, the corresponding elements ofhierarchy[i] will be negative.

mode - Contour retrieval mode

 CV_RETR_EXTERNAL retrieves only the extreme outer contours. It

sets hierarchy[i][2]=hierarchy[i][3]=-1 for all the contours.

 CV_RETR_LIST retrieves all of the contours without establishing any

hierarchical relationships.

 CV_RETR_CCOMP retrieves all of the contours and organizes them into a two-

level hierarchy. At the top level, there are external boundaries of the components.

At the second level, there are boundaries of the holes. If there is another contour

inside a hole of a connected component, it is still put at the top level.

http://docs.opencv.org/java/org/opencv/core/Mat.html
http://docs.opencv.org/java/org/opencv/core/Mat.html

40

 CV_RETR_TREE retrieves all of the contours and reconstructs a full hierarchy of

nested contours. This full hierarchy is built and shown in the

OpenCV contours.c demo.

method - Contour approximation method (if you use Python see also a note

below).

 CV_CHAIN_APPROX_NONE stores absolutely all the contour points. That is,

any 2 subsequent points (x1,y1) and (x2,y2) of the contour will be either

horizontal, vertical or diagonal neighbors, that is, max(abs(x1-x2),abs(y2-

y1))==1.

 CV_CHAIN_APPROX_SIMPLE compresses horizontal, vertical, and diagonal

segments and leaves only their end points. For example, an up-right rectangular

contour is encoded with 4 points.

 CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS applies

one of the flavors of the Teh-Chin chain approximation algorithm.

Kmeans function is used for detecting groups for spots of dices.

Kmeans function is given as:

kmeans(InputArray data,

int K,

InputOutputArray bestLabels,

TermCriteria criteria,

int attempts,

int flags,

OutputArraycenters=noArray())

Parameters:

 samples – Floating-point matrix of input samples, one row per sample.

 data – Data for clustering.

 cluster_count – Number of clusters to split the set by.

 K – Number of clusters to split the set by.

41

 labels – Input/output integer array that stores the cluster indices for every sample.

 criteria – The algorithm termination criteria, that is, the maximum number of

iterations and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As

soon as each of the cluster centers moves by less thancriteria.epsilon on some iteration,

the algorithm stops.

 termcrit – The algorithm termination criteria, that is, the maximum number of

iterations and/or the desired accuracy.

 attempts – Flag to specify the number of times the algorithm is executed using

different initial labellings. The algorithm returns the labels that yield the best

compactness (see the last function parameter).

 rng – CvRNG state initialized by RNG().

 flags –Flag that can take the following values:

o KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.

o

o KMEANS_PP_CENTERS Use kmeans++ center initialization by Arthur and

Vassilvitskii .

o

o KMEANS_USE_INITIAL_LABELS During the first (and possibly the only)

attempt, use the user-supplied labels instead of computing them from the initial centers.

For the second and further attempts, use the random or semi-random centers. Use one

of KMEANS_*_CENTERS flag to specify the exact method.

o

 centers – Output matrix of the cluster centers, one row per each cluster center.

 _centers – Output matrix of the cluster centers, one row per each cluster center.

 compactness – The returned value that is described below.

The function kmeans implements a k-means algorithm that finds the centers

of cluster_count clusters and groups the input samples around the clusters. As an

output, 𝑙𝑎𝑏𝑙𝑒𝑠 𝑖 contains a 0-based cluster index for the sample stored in the 𝑖𝑡ℎ row of

the samples matrix.

42

The function returns the compactness measure that is computed as

 ∑ ||𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑖 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑙𝑎𝑏𝑒𝑙𝑠𝑖||
2

𝑖

After every attempt, the best (minimum) value is chosen and the corresponding labels and

the compactness value are returned by the function. Basically, you can use only the core of

the function, set the number of attempts to 1, initialize labels each time using a custom

algorithm, pass them with the (flags = KMEANS_USE_INITIAL_LABELS) flag, and

then choose the best (most-compact) clustering.

43

6. Conclusion and Future Work

6.1 Conclusion and Future Work

Recognition technology has come a long way in the last twenty years. Today, machines

are able to automatically verify identity information for secure transactions, for

surveillance and security tasks, and for access control to buildings. These applications

usually work in controlled environments and recognition algorithms that can take

advantage of the environmental constraints to obtain high recognition accuracy.

However, next generation recognition systems are going to have widespread application

in smart environments, where computers and machines are more like helpful assistants. A

major factor of that evolution is the use of neural networks in face recognition. A

different field of science that also is very fast becoming more and more efficient, popular

and helpful to other applications.

Firstly, we obtain an image of dice using an auto-acquisition method with machine

vision. Secondly, the locations of spots on the dice are estimated by the image processing

techniques. Finally, an unsupervised grey clustering algorithm is proposed to identify the

spot number of each die. In traditional methods, manual detection with human eyes is

used to recognize dice, thus we propose a methodology which can estimate the score of

dice in dice games accurately and effectively.

In future, we can use this in Statistical analysis. We are going to use the recognizing

system in making automated Weldon dice system.

In 1894, Weldon rolled a set of 12 dice 26,306 times. He collected the data in part, to

judge whether the differences between a series of group frequencies and a theoretical law,

taken as a whole, were or were not more than might be attributed to the chance

fluctuations of random sampling.

So by the use automated recognizing system we can decrease the processing time.

We can do more counting in less time.

44

7. References

7.1 References

[1] Kuo-Yi Huang, “An Auto-Recognizing System for Dice Games Using a Modified

Unsupervised Grey Clustering Algorithm”, Feb 2008, pp-1212-1221.

[2] Chin-Ho Chung, Wen-Yuan Chen, and Bor-Liang Lin, “Image Identification Scheme

for Dice Game”, 2009.

[3] Wen-Yuan Chen, “Dice Image Recognition Scheme Using Pattern Comparison and

Affine Transform Techniques”.

[4] John SUM, Jan CHAN, “On A Liar Dice Game – BLUFF”, Proceedings of the

Second International Conference on Machine Learning and Cybernetics, Wan, 2-5

November 2003.

[5] Gee-Sern Hsu, Hsiao-Chia Peng, Shang-Min Yeh, “Color and Illumination Invariant

Dice Recognition”, IEEE International Conference on Systems, Man, and Cybernetics,

COEX, Seoul, Korea, 14-17October, 2012.

[6] http://docs.opencv.org

[7] http://en.wikipedia.org/wiki/OpenCV

[8] http://docs.opencv.org/doc/tutorials/introduction

[9] http://en.wikipedia.org/wiki/Walter_Frank_Raphael_Weldon

[10] http://en.wikipedia.org/wiki/K-means_clustering

[11] https://galton.uchicago.edu/about/docs/2009/2009_dice_zac_labby.pdf

[12] https://www.youtube.com/watch?v=8tYbGweDBCM

[13] http://stackoverflow.com/questions/8667818/opencv-c-obj-c-detecting-a-sheet-of-paper-
square-detection

[14] http://answers.opencv.org/question/16665/android-opencv-find-square-edges-in-

contour-then-getperspectivetransform-and-warpperspective/

[15] http://stackoverflow.com/questions/22295247/using-k-means-clustering-pixel-in-

opencv-using-java

http://docs.opencv.org/
http://en.wikipedia.org/wiki/OpenCV
http://docs.opencv.org/doc/tutorials/introduction
http://en.wikipedia.org/wiki/Walter_Frank_Raphael_Weldon
http://en.wikipedia.org/wiki/K-means_clustering
https://galton.uchicago.edu/about/docs/2009/2009_dice_zac_labby.pdf
https://www.youtube.com/watch?v=8tYbGweDBCM
http://stackoverflow.com/questions/8667818/opencv-c-obj-c-detecting-a-sheet-of-paper-square-detection
http://stackoverflow.com/questions/8667818/opencv-c-obj-c-detecting-a-sheet-of-paper-square-detection
http://answers.opencv.org/question/16665/android-opencv-find-square-edges-in-contour-then-getperspectivetransform-and-warpperspective/
http://answers.opencv.org/question/16665/android-opencv-find-square-edges-in-contour-then-getperspectivetransform-and-warpperspective/
http://stackoverflow.com/questions/22295247/using-k-means-clustering-pixel-in-opencv-using-java
http://stackoverflow.com/questions/22295247/using-k-means-clustering-pixel-in-opencv-using-java

45

[16] http://mnemstudio.org/clustering-k-means-example-1.htm

[17] https://github.com/badlogic/opencv-fun/blob/master/src/pool/tests/Cluster.java

[18]http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Machine_Le

arning_Clustering_K-Means_Clustering_Vector_Quantization.php

[19]http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles

/bounding_rects_circles.html

[20] http://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-

hough-circles/

[21] http://stackoverflow.com/questions/13446374/android-opencv-find-contours

[22] https://eclipse.org/

[23] http://en.wikipedia.org/wiki/Eclipse_(software)

[24] https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

[25] http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-

1880261.html

[26] http://www.oracle.com/technetwork/java/javase/downloads/index.html

[27] http://www.tutorialspoint.com/eclipse/eclipse_create_java_interface.htm

[28] http://answers.opencv.org/question/6127/core-inrange/

[29] http://stackoverflow.com/questions/13031357/opencv-mat-processing-time

http://mnemstudio.org/clustering-k-means-example-1.htm
https://github.com/badlogic/opencv-fun/blob/master/src/pool/tests/Cluster.java
http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Machine_Learning_Clustering_K-Means_Clustering_Vector_Quantization.php
http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Machine_Learning_Clustering_K-Means_Clustering_Vector_Quantization.php
http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
http://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-hough-circles/
http://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-hough-circles/
http://stackoverflow.com/questions/13446374/android-opencv-find-contours
https://eclipse.org/
http://en.wikipedia.org/wiki/Eclipse_(software)
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.tutorialspoint.com/eclipse/eclipse_create_java_interface.htm
http://answers.opencv.org/question/6127/core-inrange/
http://stackoverflow.com/questions/13031357/opencv-mat-processing-time

