

 Page i

Bug Tracking and Reporting System

Project Report submitted in partial fulfillment of the requirement for the degree

of Bachelors of Technology.

In Computer Science & Engineering under the Supervision of

Dr. Yashwant Singh

by

Ojas Agarwal (111476)

To

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

 Page ii

Certificate

This is to certify that project report entitled “Bug Tracking and reporting system”, submitted by Ojas

Agarwal in partial fulfillment for the award of degree of Bachelor of Technology in Computer Science &

Engineering to Jaypee University of Information Technology, Waknaghat, Solan has been carried out under

my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award of this

or any other degree or diploma.

Date: 15th May 2015 Dr. Yashwant Singh

 Assistant Professor

 Page iii

Acknowledgement

I express thanks and gratitude to Almighty God, my parents and other family members and friends without

whose uncontained support; I could not have made this career in CSE.

I wish to place on my record my deep sense of gratitude to my project guide Dr. Yashwant Sigh, for his

constant motivation and valuable help throughout the project work. I also extend my thanks to other

Faculties for their Cooperation during my Course.

Finally I would like to thank my friends for their cooperation to complete this project.

Date: 15th May 2015 Ojas Agarwal

 Page iv

ABSTRACT

Bug-Tracking mechanism is employed only is some of the large software development houses. Most of

the others never bothered with bug tracking at all, and instead simply relied on shared lists and email to

monitor the status of defects. This procedure is error-prone and tends to cause those bugs judged least

significant by developers to be dropped or ignored.

Bug-Tracking System is an ideal solution to track the bugs of a product, solution or an application. Bug

Tacking System allows individual or groups of developers to keep track of outstanding bugs in their product

effectively. This can also be called as Defect Tracking System.

The Bug Tracking System can dramatically increase the productivity and accountability of individual

employees by providing a documented work flow and positive feedback for good performance.

 Page v

Table of Contents

Acknowledgement .. i

Abstract .. ii

Table of Contents ... iv

List of Figures ... v

List Of Photoes ... vi

1. Introduction... 1

1.1 Problem Statement ... Error! Bookmark not defined.

1.2 Existing System ... Error! Bookmark not defined.

1.3 Proposed System(Contribution).. 2

2. Feasibility Study and LR.. 3

2.1 Technical feasibility ... 3

2.2 Economic feasibility ... 3

2.3 Operational feasibility .. 3

2.4 Literature Survey .. 4

3. Software Requirements Analysis ... 5

3.1 Overview .. 5

3.2 Problem Description .. 5

3.3 Solution ... 6

3.4 Modules .. 6

3.5 Module Description .. 6

4. Software Design .. 7

4.1. Data Flow Diagram ... 7

4.1.1 Context Level DFD .. 8

4.1.2 Top Level DFD .. 9

4.2 UML Diagrams .. 10

4.2.1 Class Diagram .. 11

4.2.2 Interaction Diagram .. 12

4.2.2.1 Sequence Diagram... 12

4.2.2.2 Collaboration Diagram .. 16

4.2.3 Use case Diagram ... 18

4.2.4 Component Diagram .. 22

4.2.5 Deployment Diagram ... 22

 Page vi

4.3 Control Flow Diagrams ... 24

4.3.1 Activity Diagram .. 24

4.4 Database Design ... 28

4.4.1 E-R Diagram .. 28

5. Implementation………………………………………………………………… 30

6. Testing…………………………………………………………………………… 37

 Snapshots……..………………………………………………………………… 39

7. Conclusion and future works ... 43

8. Bibliography .. 44

9. Appendix…………..………………………………………………………………45

 Page vii

List of Figures

Fig No Fig Name Pages

Fig. 4.1 Context Level DFD 8

Fig. 4.2 Top Level DFD 9

Fig 4.3 Class Diagram 11

Fig 4.4 Administration Sequence Diagram 13

Fig 4.5 Manager Sequence 14

Fig 4.6 Employee Sequence 15

Fig 4.7 Administrative Collaboration 16

Fig 4.8 Manager Collaboration 17

Fig 4.9 Employee collaboration 17

Fig 4.10 Overall Use case Diagram 18

Fig 4.11 Administrator Use case 19

Fig 4.12 Manager Use case 20

Fig 4.13 Employee Use case 21

Fig 4.14 Component Diagram 22

Fig 4.15 Deployment Diagram 23

Fig 4.16 Login Activity Diagram 24

Fig 4.17 Registration Activity Diagram 25

Fig 4.18 Manager Activity Diagram 26

Fig 4.19 Administrator Process 27

Fig 4.20 Employee Process 28

Fig 4.21 ER-Diagram 29

 Page 1

CHAPTER 1

1. Introduction

This project is aimed at developing an online defect tracking system useful for applications developed in an

organization. The Defect Tracking System (DTS) is a web based application that can be accessed throughout

the organization. This system can be used for logging defects against an application/module, assigning

defects to individuals and tracking the defects to resolution. There are features like email notifications, user

maintenance, user access control, report generators etc in this system.

The software is fully integrated with CRM (Customer Relationship Management) as well as CMS (Content

Management System) solution and developed in a manner that is easily manageable, time saving and

relieving one from manual works.

1.1 Problem Statement

The main objective of this system is develop flawless system, which is access real time information

from anywhere in the world, 24 hours a day 365 days in a year. Another aim is that manage hundred of

projects in multiple locations or just a few. Another main objective of this system is track the all the defects

or bugs in the project and make the project user friendly and bugs free system.

1.2 Existing System

In any software development bugs are inevitable. Let it be in any kind of product bugs arise at any

phase of development. One has to take a great care in the proper maintenance and resolution of the bugs. In

the Existing system the bugs are not properly maintained and they are simply relied on shared lists and email

to monitor the bugs.

In this type of system it becomes difficult to track a bug if a bug is over looked then it may cause

tremendous errors in the next phase and can improve the cost of project whatever necessary effort spent on

the bug maintenance may not be worthy. So bug history has to be maintained properly. And there is no

efficient search technique.

One has to search the whole database for the details of particular bug which might have occurred

sometime earlier. It is both time consuming and error prone. And it is very difficult to share the bug among

several users as there is no proper maintenance of the bugs. In order to have an efficient product bugs must

be maintained properly and should be resolved in time both to reduce time and money spent on the

development.

 Page 2

1.3 Contribution

 This system maintains the products, Bugs and bug Tracking. It has advantage of maintaining bug

history it stores all the details from bug origin to bug resolution.

 Each product can have versions for easy maintenance of the product and all the user of the product is

stored in the database. It provides the advantage of maintaining users to the bugs and resolutions

provided by them.

 Our System provides the searching based on status, priority, and operating system.

 It provides with user and bug hierarchy, which would be helpful in knowing the relation between

bugs and users allotted to the bug.

 It is provided with a fully authenticated system with password encryption. And has the facility for

storing attachments for a bug.

 One can keep a track of the bug in a product with much lower cost and effort.

 The most advantage of this system is maintaining log records which are helpful in knowing any

errors or misuse of the system by other users.

1.4 Objectives

 To track the status level of the project.

 To track the status level of each bug in the project module.

 To assign the projects to the users by administration.

 To add the bugs by the administration.

 To add the status, severity levels by the admin.

 To add a detailed bug information.

 To add the modules in the project and to track the person developing it.

1.5 Project Outline

 Chapter 2 contains feasibility analysis and literature review.

 Chapter 3 contains software requirement analysis.

 Chapter 4 contains design of the project.

 Chapter 5 contains the information about tools that were used to make this project

 Chapter 6 contains the testing information.

 After chapter 6 we have a few sample snapshots of the implemented project.

 Chapter 7 contains bibliography.

 Appendix contains sample code of the important parts of the project.

 Page 3

CHAPTER 2

Feasibility Study and Literature Review

2.1 Technical Feasibility

A set of programs associated with the operation of a computer is called software. Software is the part of

the computer system which enables the user to interact with several physical hardware devices.

The minimum software requirement specifications for developing this project are as follows:

Designing frontend : HTML, CSS

Backend : PHP, MySQL

Scripting : Java Script

UML : Rational Rose

IDE : My Eclipse

Web Server : Wamp

The Collection of internal electronic circuits and external physical devices used in building a computer is

called Hardware.

The minimum hardware requirement specification for developing this project is as follows:

 Processor : Pentium IV

 RAM : 512MB RAM

 Hard Disk : 10GB

2.2 Economic feasibility

There is increased customer satisfaction, improvement in product quality, better decision making, increased

speed, improved accuracy better documentation.

2.3 Operational feasibility

This system increases the likelihood of a successful project.

 Page 4

2.4 Behavioral feasibility

To err is human. There can always be a mistake while adding project record manually in an excel sheet. It is

a tedious task to add bugs, periodically change their status, and it will always be prone to errors. This

software aims to find a solution to this. So this is behaviorally feasible.

 Page 5

CHAPTER 3

3. Software Requirements Analysis

3.1 Overview

The main focus of the analysis phase of Software development is on “What needs to be done”. The

objects discovered during the analysis can serve as the framework or Design. The class’s attributes, methods

and association identified during analysis must be designed for implementation language. New classes must

be introduced to store intermediate results during the program execution.

3.2 Problem Description

One has to take a great care in the proper maintenance and resolution of the bugs. In the Existing

system the bugs are not properly maintained and they are simply relied on shared lists and email to monitor

the bugs.

 In this type of system it becomes difficult to track a bug if a bug is over looked then it may cause

tremendous errors in the next phase and can improve the cost of project whatever necessary effort spent on

the bug maintenance may not be worthy. So bug history has to be maintained properly. And there is no

efficient search technique.

One has to search the whole database for the details of particular bug which might have occurred

sometime earlier. It is both time consuming and error prone. And it is very difficult to share the bug among

several users as there is no proper maintenance of the bugs. In order to have an efficient product bugs must

be maintained properly and should be resolved in time both to reduce time and money spent on the

development.

3.3 Solution

This system maintains the products, Bugs and bug tracking. It has advantage of maintaining bug

history it stores all the details from bug origin to bug resolution. Each product can have versions for easy

maintenance of the product and all the user of the product is stored in the database. It provides the advantage

of maintaining users to the bugs and resolutions provided by them. Our System provides the searching based

on status, priority, and operating system. It provides with user and bug hierarchy, which would be helpful in

knowing the relation between bugs and users allotted to the bug. It is provided with a fully authenticated

system with password encryption. And has the facility for storing attachments for a bug. One can keep a

track of the bug in a product with much lower cost and effort. The most advantage of this system is

maintaining log records which are helpful in knowing any errors or misuse of the system by other users.

 Page 6

3.4 Modules

1. Tester

2. Manager

3. Administrator

4. Developer

5. Report

3.5 Module Description

Tester

 Tester can access to the projects or bugs assigned by the manager, can view the assigned projects and

can add a new bug to the list and send the bug back to the manager. Tester can login to the system and access

the assigned project list.

Manager

Manager takes care of recruitment of employees and the management of employees in the project and

monitors the completion of project. He has full access to the particular project assigned by the admin and

controls the team members acess to the bugs assigned. Has the permission to generate the reports and update

the info of team members and adding members to the project.

Administrator

Administrator is a person who will take care of all registration status, acceptance of new bugs, and

many other tasks to reduce burden on employee. He has the entire access to all the other modules. Admin

creates the project and assigning the projects to the created manager, adding members to the managers,

assigning bugs based on the priority.

Report

Both admin and manager can access this module and generate the reports based on the requirements.

 Page 7

CHAPTER 4

4. Software Design

The main focus of the analysis phase of Software development is on “What needs to be done”. The

objects discovered during the analysis can serve as the framework or Design. The class’s attributes, methods

and association identified during analysis must be designed for implementation language. New classes must

be introduced to store intermediate results during the program execution.

Emphasis shifts from the application domain of implementation and computer such as user interfaces or

view layer and access layer. During analysis, we look at the physical entities or business objects in the

system, that is, which players and how they cooperate to do the work of the application. These objects

represent tangible elements of the business.

During the Design phase, we elevate the model into logical entities, some of which might relate more to

the computer domain as people or employees. Here his goal is to design the classes that we need to

implement the system the difference is that, at this level we focus on the view and access classes, such as

how to maintain information or the best way o interact with a user or present information.

Design process:

During the design phase the classes identified in object-oriented analysis Must be revisited with a shift

focus to their implementation. New classes or attribute and Methods must be an added for implementation

purposes and user interfaces.

The following are some of the vies of software design life cycle. They are

 Data Flow Diagrams

 UML Diagrams

 Data Base Design

4.1 Data Flow Diagram

A Data Flow Diagram (DFD) is a graphical representation of the “flow” of data through an information

system. It can also be used for the visualization of data processing (structured design).

There are two types of DFDs. They are:

 Context Level DFD

 Top Level DFD

 Page 8

4.1.1 Context Level DFD

 In the Context Level the whole system is shown as a single process.

 No data stores are shown.

 Inputs to the overall system are shown together with data sources (as External entities).

 Outputs from the overall system are shown together with their destinations (as External entities).

Fig. 4.1 Context Level DFD

4.1.2 Top Level DFD

The Top Level DFD gives the overview of the whole system identifying the major system processes and

data flow. This level focuses on the single process that is drawn in the context diagram by ‘Zooming in’ on

its contents and illustrates what it does in more detail.

 Page 9

Fig. 5.2 Top Level DFD

4.2 UML Diagrams

Unified Modeling Language

The Unified Modeling Language allows the software engineer to express an analysis model using the

modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

This UML diagrams must include the following:

 Class diagram

 Interaction Diagram

 Use case Diagram

 Activity Diagram

 Component Diagram

 Page 10

 Deployment Diagram

Class Diagrams

The class diagram is the main building block in object oriented modeling. They are being used both for

general conceptual modeling of the systematic of the application, and for detailed modeling translating the

models into programming code.

 The classes in a class diagram represent both the main objects and or interactions in the application and

the objects to be programmed. In the class diagram these classes are represented with boxes which contain

three parts:

 The upper part holds the name of the class

 The middle part contains the attributes of the class, and

 The bottom part gives the methods or operations the class can take or undertake

An Activity Diagram shows the flow from activity to activity.

An activity is an ongoing non- atomic execution within a state machine.

http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Programming_code

 Page 11

4.2.1Class Diagrams

Fig 4.3 Class Diagram

 Page 12

4.2.2 Interaction Diagram

Interaction Diagrams

An interaction diagram shows an interaction, consisting of a set of objects and their relationships,

including the messages that may be dispatched among them.

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages. Graphically,

a sequence diagram is a table that shows objects arranged along x-axis and messages, ordered in increasing

time, along the y-axis.

A Collaboration is a society of classes, interfaces, and other elements that work together to provide some

cooperative behavior that’s bigger than the sum of all its parts.

4.2.2.1 Sequence Diagram

 An interaction diagram shows an interaction, consisting of a set of objects and their relationships,

including the messages that may be dispatched among them.

 A sequence diagram is an interaction diagram that emphasizes the time ordering of messages.

 Graphically, a sequence diagram is a table that shows objects arranged along x-axis and messages,

ordered in increasing time, along the y-axis.

Contents

 Sequence diagrams commonly contain the following:

 Objects

 Links

 Messages

Like all other diagrams, sequence diagrams may contain notes and constrains.

 Page 13

Fig 4.4 Administration Sequence Diagram

 : Administrator
Login Permission Manager Employee ProjectDepartment

1: loginrequest()
validation

response()

2: Create()

response()

3: create()
valid()

confirmation()

4: create()

confirmation()

valid()

5: view()

6: view()

 Page 14

Fig 4.5 Manager Sequence

 : Manager
Register Login Department Project Monitor

1: Fill up the details

submit()
verfication()

confirmation()

3: login request()
validation

response()

4: create()

5: allot department()

response()

6: Allot project()

response()

7: monitor

response()

 Page 15

Fig 4.6 Employee Sequence

 : Employee
Register Login Project Bugs Test Plan

1:Fill up the details

Developer()

Tester()

Confirmation()

Confirmation()

Verfication

Verification

2: Login Request()
Validation

response()

3: employee selects alloted project()

response()

4: Tester identify bugs()

5: tester develop testplan

employee rectify bugs

confirmation()

submit to developer
submit to developer

 Page 16

4.2.2.2 Collaborations Diagram

 Collaboration is a society of classes, interfaces, and other elements that work together to provide some

cooperative behavior that’s bigger than the sum of all its parts.

Collaboration is also the specification of how an element, such as a classifier or an operation, is realized

by a set of classifiers and associations playing specific roles used in a specific way

Contents

Collaboration diagrams commonly contain the following:

 Objects

 Links

 Messages

Like all other diagrams, sequence diagrams may contain notes and constrains.

Fig 4.7 Administrative Collaboration

 : Administrator

Login

Permissio

n

Manager
Employee

Project
Departme

nt

2: validation

7: valid()
10: valid()

1: 1: loginrequest()

3: response()

12: 5: view()
13: 6: view()

4: 2: Create()5: response()

6: 3: create()

8: confirmation()9: 4: create()

11: confirmation()

 Page 17

Fig 4.8 Manager Collaboration

Fig 4.9 Employee collaboration

 : Manager

Register

Login

Departme

nt

Project

Monitor

3: verfication()

6: validation

1: 1: Fill up the details
2: submit()

4: confirmation()
5: 3: login request()

7: response()11: 6: Allot project()

12: response()

13: 7: monitor

14: response()

8: 4: create()
9: 5: allot department()

10: response()

Register

Login

Project
 : Employee

Bugs

Test Plan

3: Verfication
6: Verification

9: Validation

13: 4: Tester identify bugs()
17: employee rectify bugs

15: submit to developer
18: confirmation()

1: 1:Fill up the details
2: Developer()

5: Tester()

7: Confirmation()
4: Confirmation()

8: 2: Login Request()

10: response()

11: 3: employee selects alloted project()

12: response()

14: 5: tester develop testplan

16: submit to developer

 Page 18

4.2.3 Use case Diagram

A use case diagram is a diagram that shows a set of use cases and actors and relationships.

Use case Diagrams represent the functionality of the system from a user’s point of view. Use cases are

used during requirements elicitation and analysis to represent the functionality of the system .Use cases

focus on the behavior of the system from external point of view.

Fig 4.10 Overall Use case Diagram

Developer Tester

Validation

Bugs

Testplan

Employee

Administrator

Login

<<include>>

Project

Department

Monitor

Manager

 Page 19

Fig 4.11 Administrator Use case

Developers

Testers

Login

Project

Department

Create Employee

Create Manager

Logout

Permission

Administrator

 Page 20

Fig 4.12 Manager Use case

Developers

Testers

Login

Register

Project

Department

Monitor

Logout

Employees

Manager

 Page 21

Fig 4.13 Employee use case

TesterDeveloper

Login

Register

Project

Bugs

Testplan

Logout

Employee

 Page 22

4.2.4 Component Diagram

Fig 4.14 Component Diagram

4.2.5 Deployment Diagram

A deployment diagram is a diagram that shows the configuration of run time processing nodes and the

components that live on them.

Graphically, a deployment diagram is collection of vertices and arcs.

Contents

 Deployment diagram commonly contain the following things:

 Nodes

 Dependency and association relationships

 Like all other diagrams, deployment diagrams may contain notes and constraints.

 Deployment diagrams may also contain components, each of which must live on some node.

 Deployment diagrams may also contain packages or subsystems, both of which are used to group

elements of your model into larger chunks.

manager Projects

Employee

Developer

Tester

Bugs/Te

stplan
Database JDBC

 Page 23

Fig 4.15 Deployment Diagram

USER

Web

Browser

Servlets

Application

Application Server

J2SE

Server

Database Server

MySQL Server

 Page 24

4.3 Control Flow diagrams

4.3.1 Activity Diagram

 An activity diagram shows the flow from activity to activity. An activity is an ongoing non-atomic execution

within a state machine.

 Activities ultimately result in some action, which is made up of executable atomic computations that

result in a change in state of the system or the return of a value.

 Activity diagrams commonly contain

 Activity states and action states

 Transitions

 Objects

Like all other diagrams, activity diagrams may contain notes and constrains

Login Process

Providing

Credentials

Validation

Retry

Services

<<No>>

<<YES>>

Fig 4.16 Login Activity Diagram

 Page 25

Registration Process

Fig 4.17 Registration Activity Diagram

Manager Process

Fig 4.18 Manager Activity Diagram

Providing

examination

admin validation

Invalidate

details

<<NO>>

Provide

Credentials<<YES>>

Login

Validation

Projects Monitor Department

Create/upd

ate/delete

Logout

 Page 26

Administrator Process

Fig 4.19 Administrator Process

Login

validation

Employee Manager Projects Department

View

Create/upd

ate/delete

Permission

Logout

 Page 27

Employee Process

Fig 4.20 Employee Process

Employee

Developer Tester

Login

validation

Projects

Bugs Testplan

select

create update delete create deleteupdate

Login

Logout

Rectify

 Page 28

4.4 Database Design

Database design is the process of producing a detailed data model of a database. This logical data

model contains all the needed logical and physical design choices and physical storage parameters needed to

generate a design in a Data Definition Language, which can then be used to create a database. A fully

attributed data model contains detailed attributes for each entity.

The term database design can be used to describe many different parts of the design of an

overall database system. Principally, and most correctly, it can be thought of as the logical design of the base

data structures used to store the data. In the relational model these are the tables and views.

 In an object database the entities and relationships map directly to object classes and named

relationships. However, the term database design could also be used to apply to the overall process of

designing, not just the base data structures, but also the forms and queries used as part of the overall database

application within the database management system (DBMS).

4.4.1 ER-Diagrams

Entity Relationship Diagrams (ERDs) illustrate the logical structure of databases. An entity-relationship

(ER) diagram is a specialized graphic that illustrates the interrelationships between entities in a database.

ER diagrams often use symbols to represent three different types of information. Boxes are commonly

used to represent entities. Diamonds are normally used to represent relationships and ovals are used to

represent attributes.

Entity relationship diagrams are a way to represent the structure and layout of a database. It is used

frequently to describe the database schema. ER diagrams are very useful as provide a good conceptual view

of any database, regardless of the underlying hardware and software.

http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Data_Definition_Language
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Database_view
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Database_management_system

 Page 29

Fig 4.21 ER-Diagram

Employee

ECode: INTEGER

FName: VARCHAR(45)

LName: VARCHAR(45)

Gender: VARCHAR(45)

DOB: DATE

Qualification: VARCHAR(45)

Address: VARCHAR(100)

Phone_Number: INTEGER

Mobile: INTEGER

EMail_Id: VARCHAR(45)

DOJ: DATE

Basic_Salary: INTEGER

DNo: INTEGER

Login_Id: VARCHAR(45)

Password: VARCHAR(45)

Marital_Status: VARCHAR(45)

Hint_Question: VARCHAR(45)

Hint_Answer: VARCHAR(45)

Role: VARCHAR(45)

Department

Dept_Number: INTEGER

Dept_Name: VARCHAR(45)

Dept_Location: VARCHAR(45)

Project

Project_Number: INTEGER

Project_Name: VARCHAR(45)

Project_Description: VARCHAR(45)

SDate: DATE

Duration: INTEGER

Client_Name: VARCHAR(45)

Client_Address: VARCHAR(45)

Client_Phone: VARCHAR(45)

Client_EMail: VARCHAR(45)

Project_Lead: VARCHAR(45)

Dept_Name: VARCHAR(45)

Assign_Project

SNo: INTEGER

Project_Name: VARCHAR(45)

User_Id: VARCHAR(45)

Role: VARCHAR(45)

Bug_Report

Bug_No: INTEGER

Bug_Name: VARCHAR(45)

Bug_Type: VARCHAR(45)

Bug_Level: VARCHAR(45)

Priority: VARCHAR(45)

Project_Name: VARCHAR(45)

Tester_Code: VARCHAR(45)

Bug_Date: VARCHAR(45)

E_Code: VARCHAR(45)

Status: VARCHAR(45)

Bug_Rectified_Date: VARCHAR(45)

Stauts: VARCHAR(45)

 Page 30

CHAPTER 5

5. IMPLEMENTATION

5.1 General

 A programming tool or software tool is a program or application that software developers use to

create, debug, maintain, or otherwise support other programs and applications. The term usually refers to

relatively simple programs that can be combined together to accomplish a task. The Chapter describes about

the software tool that is used in our project.

 5.2. HTML

 HTML, an initialism of Hypertext Markup Language, is the predominant markup language for web

pages. It provides a means to describe the structure of text-based information in a document — by denoting

certain text as headings, paragraphs, lists, and so on — and to supplement that text with interactive forms,

embedded images, and other objects. HTML is written in the form of labels (known as tags), surrounded by

angle brackets. HTML can also describe, to some degree, the appearance and semantics of a document, and

can include embedded scripting language code which can affect the behavior of web browsers and other

HTML processors.

HTML is also often used to refer to content of the MIME type text/html or even more broadly as a generic

term for HTML whether in its XML-descended form (such as XHTML 1.0 and later) or its form descended

directly from SGML

1.1.1.1.1.1.1 Hyper Text Markup Language

Hypertext Markup Language (HTML), the languages of the World Wide Web (WWW), allows users to

produces Web pages that include text, graphics and pointer to other Web pages (Hyperlinks).

HTML is not a programming language but it is an application of ISO Standard 8879, SGML (Standard

Generalized Markup Language), but specialized to hypertext and adapted to the Web. The idea behind

Hypertext is that instead of reading text in rigid linear structure, we can easily jump from one point to

another point. We can navigate through the information based on our interest and preference. A markup

language is simply a series of elements, each delimited with special characters that define how text or other

items enclosed within the elements should be displayed. Hyperlinks are underlined or emphasized works that

load to other documents or some portions of the same document.

 Page 31

HTML can be used to display any type of document on the host computer, which can be geographically at a

different location. It is a versatile language and can be used on any platform or desktop.

HTML provides tags (special codes) to make the document look attractive. HTML tags are not case-

sensitive. Using graphics, fonts, different sizes, color, etc., can enhance the presentation of the document.

Anything that is not a tag is part of the document itself.

Basic HTML Tags:

<! -- --> specifies comments

<A>………. Creates hypertext links

………. Formats text as bold

<BIG>……….</BIG> Formats text in large font.

<BODY>…</BODY> Contains all tags and text in the HTML document

<CENTER>...</CENTER> Creates text

<DD>…</DD> Definition of a term

<DL>...</DL> Creates definition list

… Formats text with a particular font

<FORM>...</FORM> Encloses a fill-out form

<FRAME>...</FRAME> Defines a particular frame in a set of frames

<H#>…</H#> Creates headings of different levels(1 – 6)

<HEAD>...</HEAD> Contains tags that specify information about a document

<HR>...</HR> Creates a horizontal rule

<HTML>…</HTML> Contains all other HTML tags

<META>...</META> Provides meta-information about a document

<SCRIPT>…</SCRIPT> Contains client-side or server-side script

<TABLE>…</TABLE> Creates a table

<TD>…</TD> Indicates table data in a table

 Page 32

<TR>…</TR> Designates a table row

<TH>…</TH> Creates a heading in a table

5.2.1 Attributes

The attributes of an element are name-value pairs, separated by "=", and written within the start label of an

element, after the element's name. The value should be enclosed in single or double quotes, although values

consisting of certain characters can be left unquoted in HTML (but not XHTML).Leaving attribute values

unquoted is considered unsafe.

Most elements take any of several common attributes: id, class, style and title. Most also take language-

related attributes: lang and dir.

The id attribute provides a document-wide unique identifier for an element. This can be used by stylesheets

to provide presentational properties, by browsers to focus attention on the specific element or by scripts to

alter the contents or presentation of an element. The class attribute provides a way of classifying similar

elements for presentation purposes. For example, an HTML document (or a set of documents) may use the

designation class="notation" to indicate that all elements with this class value are all subordinate to the main

text of the document (or documents). Such notation classes of elements might be gathered together and

presented as footnotes on a page, rather than appearing in the place where they appear in the source HTML.

An author may use the style non-attributal codes presentational properties to a particular element. It is

considered better practice to use an element’s son- id page and select the element with a stylesheet, though

sometimes this can be too cumbersome for a simple ad hoc application of styled properties. The title is used

to attach subtextual explanation to an element. In most browsers this title attribute is displayed as what is

often referred to as a tooltip. The generic inline span element can be used to demonstrate these various non-

attributes.

The preceding displays as HTML (pointing the cursor at the abbreviation should display the title text in most

browsers).

5.2.2 Advantages

 A HTML document is small and hence easy to send over the net. It is small because it does not

include formatted information.

 HTML is platform independent.

 HTML tags are not case-sensitive.

 Page 33

5.3 Database

A database management system (DBMS) is computer software designed for the purpose of managing

databases, a large set of structured data, and run operations on the data requested by numerous users. Typical

examples of DBMSs include Oracle, DB2, Microsoft Access, Microsoft SQL Server, Firebird, PostgreSQL,

MySQL, SQLite, FileMaker and Sybase Adaptive Server Enterprise. DBMSs are typically used by Database

administrators in the creation of Database systems. Typical examples of DBMS use include accounting,

human resources and customer support systems.

Originally found only in large companies with the computer hardware needed to support large data sets,

DBMSs have more recently emerged as a fairly standard part of any company back office.

5.3.1 Description

A DBMS is a complex set of software programs that controls the organization, storage, management, and

retrieval of data in a database. A DBMS includes:

 A modeling language to define the schema of each database hosted in the DBMS, according to the

DBMS data model.

 The four most common types of organizations are the hierarchical, network, relational and object

models. Inverted lists and other methods are also used. A given database management system

may provide one or more of the four models. The optimal structure depends on the natural

organization of the application's data, and on the application's requirements (which include

transaction rate (speed), reliability, maintainability, scalability, and cost).

 The dominant model in use today is the ad hoc one embedded in SQL, despite the objections of

purists who believe this model is a corruption of the relational model, since it violates several of

its fundamental principles for the sake of practicality and performance. Many DBMSs also

support the Open Database Connectivity API that supports a standard way for programmers to

access the DBMS.

 Data structures (fields, records, files and objects) optimized to deal with very large amounts of data

stored on a permanent data storage device (which implies relatively slow access compared to volatile

main memory).

 A database query language and report writer to allow users to interactively interrogate the database,

analyze its data and update it according to the users privileges on data.

 It also controls the security of the database.

 Page 34

 Data security prevents unauthorized users from viewing or updating the database. Using

passwords, users are allowed access to the entire database or subsets of it called subschemas. For

example, an employee database can contain all the data about an individual employee, but one

group of users may be authorized to view only payroll data, while others are allowed access to

only work history and medical data.

 If the DBMS provides a way to interactively enter and update the database, as well as interrogate

it, this capability allows for managing personal databases. However, it may not leave an audit

trail of actions or provide the kinds of controls necessary in a multi-user organization. These

controls are only available when a set of application programs are customized for each data entry

and updating function.

 A transaction mechanism, that ideally would guarantee the ACID properties, in order to ensure data

integrity, despite concurrent user accesses (concurrency control), and faults (fault tolerance).

 It also maintains the integrity of the data in the database.

 The DBMS can maintain the integrity of the database by not allowing more than one user to

update the same record at the same time. The DBMS can help prevent duplicate records via

unique index constraints; for example, no two customers with the same customer numbers (key

fields) can be entered into the database. See ACID properties for more information (Redundancy

avoidance).

The DBMS accepts requests for data from the application program and instructs the operating system to

transfer the appropriate data.

When a DBMS is used, information systems can be changed much more easily as the organization's

information requirements change. New categories of data can be added to the database without disruption to

the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then move the detail onto

another computer that uses another DBMS better suited for random inquiries and analysis. Overall systems

design decisions are performed by data administrators and systems analysts. Detailed database design is

performed by database administrators.

Database servers are specially designed computers that hold the actual databases and run only the DBMS

and related software. Database servers are usually multiprocessor computers, with RAID disk arrays used for

stable storage. Connected to one or more servers via a high-speed channel, hardware database accelerators

are also used in large volume transaction processing environments.

 Page 35

DBMSs are found at the heart of most database applications. Sometimes DBMSs are built around a private

multitasking kernel with built-in networking support although nowadays these functions are left to the

operating system.

5.4 SQL

Structured Query Language (SQL) is the language used to manipulate relational databases. SQL is tied very

closely with the relational model.

In the relational model, data is stored in structures called relations or tables.

SQL statements are issued for the purpose of:

Data definition: Defining tables and structures in the database (DDL used to create, alter and drop schema

objects such as tables and indexes).

Data manipulation: Used to manipulate the data within those schema objects (DML Inserting, Updating,

Deleting the data, and Querying the Database).

A schema is a collection of database objects that can include: tables, views, indexes and sequences

List of SQL statements that can be issued against an Oracle database schema are:

 ALTER - Change an existing table, view or index definition (DDL)

 AUDIT - Track the changes made to a table (DDL)

 COMMENT - Add a comment to a table or column in a table (DDL)

 COMMIT - Make all recent changes permanent (DML - transactional)

 CREATE - Create new database objects such as tables or views (DDL)

 DELETE - Delete rows from a database table (DML)

 Page 36

 DROP - Drop a database object such as a table, view or index (DDL)

 GRANT - Allow another user to access database objects such as tables or views (DDL)

 INSERT - Insert new data into a database table (DML)

 No AUDIT - Turn off the auditing function (DDL)

 REVOKE - Disallow a user access to database objects such as tables and views (DDL)

 ROLLBACK - Undo any recent changes to the database (DML - Transactional)

 SELECT - Retrieve data from a database table (DML)

 TRUNCATE - Delete all rows from a database table (can not be rolled back) (DML)

 UPDATE - Change the values of some data items in a database table (DML)

 Page 37

CHAPTER 6 (TESTING)

The aim of testing is often to demonstrate that a program works by showing that it has no errors. The basic

purpose of testing phase is to detect the errors that may be present in the program. Hence, one should not

start the testing with the intent of showing that a program works; but the intent should be to show that a

program does not work. In short, it is the process of executing a program with the intent of finding errors.

9.1 Types of testing

There are two basic approaches to testing

FUNCTIONAL TESTING

STRUCTURAL TESTING

Functional testing – This type of testing ignores the internal parts and focus on the output is as per

requirement or not. Black-box type testing geared to functional requirements of an application.

Structural testing- The structural testing is the testing of the structure of the system or component.

Structural testing is often referred to as ‘white box’ or ‘glass box’ or ‘clear-box testing’ because in structural

testing we are interested in what is happening ‘inside the system/application’.

In structural testing the testers are required to have the knowledge of the internal implementations of the

code. Here the testers require knowledge of how the software is implemented, how it works.

Besides these, there are a number of other testing techniques.

Unit testing – Testing of individual software components or modules. Typically done by the programmer

and not by testers, as it requires detailed knowledge of the internal program design and code. may require

developing test driver modules or test harnesses.

Incremental integration testing – Bottom up approach for testing i.e continuous testing of an application as

new functionality is added; Application functionality and modules should be independent enough to test

separately. done by programmers or by testers.

Integration testing – Testing of integrated modules to verify combined functionality after integration.

Modules are typically code modules, individual applications, client and server applications on a network, etc.

This type of testing is especially relevant to client/server and distributed systems.

 Page 38

Functional testing – This type of testing ignores the internal parts and focus on the output is as per

requirement or not. Black-box type testing geared to functional requirements of an application.

System testing – Entire system is tested as per the requirements. Black-box type testing that is based on

overall requirements specifications, covers all combined parts of a system.

End-to-end testing – Similar to system testing, involves testing of a complete application environment in a

situation that mimics real-world use, such as interacting with a database, using network communications, or

interacting with other hardware, applications, or systems if appropriate.

Sanity testing – Testing to determine if a new software version is performing well enough to accept it for a

major testing effort. If application is crashing for initial use then system is not stable enough for further

testing and build or application is assigned to fix.

Regression testing – Testing the application as a whole for the modification in any module or functionality.

Difficult to cover all the system in regression testing so typically automation tools are used for these testing

types.

Acceptance testing -Normally this type of testing is done to verify if system meets the customer specified

requirements. User or customer do this testing to determine whether to accept application.

Load testing – Its a performance testing to check system behavior under load. Testing an application under

heavy loads, such as testing of a web site under a range of loads to determine at what point the system’s

response time degrades or fails.

Stress testing – System is stressed beyond its specifications to check how and when it fails. Performed

under heavy load like putting large number beyond storage capacity, complex database queries, continuous

input to system or database load.

Performance testing – Term often used interchangeably with ‘stress’ and ‘load’ testing. To check whether

system meets performance requirements. Used different performance and load tools to do this.

Usability testing – User-friendliness check. Application flow is tested, Can new user understand the

application easily, Proper help documented whenever user stuck at any point. Basically system navigation is

checked in this testing.

 Page 39

 Sample Snapshots:

Home Screen

Admin Homepage

 Page 40

Project details

Add Manager

 Page 41

Developer view

Tester View

 Page 42

 Page 43

7. CONCLUSION AND FUTURE WORKS

Making this project on “Bug tracking and Reporting” has been a very fulfilling experience. Working long

hours every day to for 2 semesters was a tedious job but rewarding in the end. I never was very good t web

development. But I had to study from different very interesting books on php and web designing that it is no

more a challenge for me.

The skills learned through this project can be summarized as

 Thorough knowledge of backend especially php.

 Deal with complex CSS templates.

 Understand software engineering through hands on experience.

In future I would like to add a data mining feature in the project where this application will detect any

duplicate bugs that a tester might try to add. It will test for keywords in the description of the bug and decide

if a similar bug is already in the database.

 Page 44

8. BIBLIOGRAPHY

Bell, S. (2003). An Analysis and Design of Information Systems. Routledge.

Davis, W. S., & Yen, D. C. (1998). System Analysis And Design. CRC Press.

Devi, N., Aarthi, S., & Fyaz, A. S. (2013). Bug Tracking and Reporting System. International Journal of Soft Computing

and Engineering (IJSCE) , 4.

Price, J. (2007). Database Management System. McGraw-Hill Osborne Media.

Schach. (2007). Software Engineering. McGraw-Hill Science/Engineering/Math.

William S. Davis, D. C. (2007). System Analysis and Design. CRC books.

 Page 45

APPENDIX

Login:

<?php

include 'connect.php';

session_start();

$username = $_POST['username'];

$password = $_POST['password'];

$role = $_POST['role'];

$query= mysqli_query($con,"SELECT * From table_bug WHERE User_Name='$username' and

Password='$password' and Role='$role'");

$numrows = mysqli_num_rows($query);

 if ($numrows!=0)

 {

 while ($row = mysqli_fetch_assoc($query))

 {

 $dbusername = $row['User_name'];

 $dbpassword = $row['Password'];

 }

if($username==$dbusername&&$password==$dbpassword)

{

// session_start();

 $_SESSION['username']=$username;

 $_SESSION['role']=$role;

 $_SESSION['stime']= date("Y-m-d H:i:s");

 echo "Success!";

 }

 else

 echo "Incorrect password!";

 }

 else

 echo "That user does't exist!";

?>

 Page 46

Connect:

<?php

$server = 'localhost';

$username = 'root';

$password = '';

$database = 'ojass';

$con = mysqli_connect($server, $username, $password);

if(!mysqli_connect($server, $username, $password))

{

 exit('Error: could not establish database connection');

}

if(!mysqli_select_db($con,$database))

{

 exit('Error: could not select the database');

}

?>

Home:

<?php

 if($_SESSION['role']=="admin")

 {

$query= mysqli_query($con,"SELECT * From project1");

?>

<table>

 <thead>

 <tr>

 <th>id</th>

 <th>name</th>

 <th>manager</th>

 <th>client</th>

 </tr>

 </thead>

 <tbody>

 Page 47

<?php

 while ($row = mysqli_fetch_assoc($query)){

 ?>

 <tr class='clickableRow' href='detail.php?id=<?php echo $row['Id']; ?>'>

 <td><?php echo $row['Id']; ?></td>

 <td><?php echo $row['Name']; ?></td>

 <td><?php echo $row['Manager']; ?></td>

 <td><?php echo $row['Client']; ?></td>

 </tr>

 <?php } ?>

 </tbody>

</table>

<?php }

else if($_SESSION['role']=="manager")

{ $username = $_SESSION['username'];

 $q2= "SELECT * From project1 where Manager ='$username' ";

 $query2= mysqli_query($con,$q2);

// $query2= mysqli_query($con,"SELECT * From project where Manager ='$username'");

?>

<table>

 <thead>

 <tr>

 <th>id</th>

 <th>name</th>

 <th>client</th>

 </tr>

 </thead>

 <tbody>

<?php

 $numrows2 = mysqli_num_rows($query2);

 while($row2 = mysqli_fetch_assoc($query2)){

 ?>

 Page 48

 <tr class='clickableRow' href='detail.php?id=<?php echo $row2['Id']; ?>'>

 <td><?php echo $row2['Id']; ?></td>

 <td><?php echo $row2['Name']; ?></td>

 <td><?php echo $row2['Client']; ?></td>

 </tr>

 <?php } ?>

 </tbody>

</table>

<?php

}

 else

 {

 ?>

 <table>

 <thead>

 <tr>

 <th>id</th>

 <th>name</th>

 <th>manager</th>

 <th>developer</th>

 <th>tester</th>

 <th>client</th>

 <th>status</th>

 <th>start date</th>

 <th>bug id</th>

 </tr>

 </thead>

 <tbody>

 <?php

 $username = $_SESSION['username'];

 $role = $_SESSION['role'];

 $q= "SELECT * From project where Manager ='$username' OR Developer = '$username' OR

Tester = '$username' ";

 Page 49

 $query1= mysqli_query($con,$q);

 $numrows = mysqli_num_rows($query1);

 //echo $numrows;

 while ($row1 = mysqli_fetch_assoc($query1)){

 ?>

 <tr class='clickableRow' href='detail.php?id=<?php echo $row1['Id']; ?>'>

 <td><?php echo $row1['Id']; ?></td>

 <td><?php echo $row1['Name']; ?></td>

 <td><?php echo $row1['Manager']; ?></td>

 <td><?php echo $row1['Developer']; ?></td>

 <td><?php echo $row1['Tester']; ?></td>

 <td><?php echo $row1['Client']; ?></td>

 <td><?php echo $row1['Status']; ?></td>

 <td><?php echo $row1['Start_date']; ?></td>

 <td><?php echo $row1['Bug_id']; ?></td>

 </tr>

 <?php

 }

 }

 ?>

 </tbody>

</table>

 <?php

 $role = $_SESSION['role'];

 if($role == "developer")

 {

 $q3= "SELECT * From bug where Developer = '$username'";

 $query3= mysqli_query($con,$q3);

 $numrows3 = mysqli_num_rows($query3);

 //echo $numrows;

 ?>

 <table>

 <thead>

 Page 50

 <tr>

 <th>Bug id</th>

 <th>Name</th>

 <th>ID</th>

 <th>Severity</th>

 <th>Description</th>

 <th>status</th>

 </tr>

 </thead>

 <tbody>

 <?php

 while ($row3 = mysqli_fetch_assoc($query3))

 {

 ?>

 <tr class='clickableRow' href='detail.php?id=<?php echo $row3['Id']; ?>'>

 <td><?php echo $row3['Bug_id']; ?></td>

 <td><?php echo $row3['Name']; ?></td>

 <td><?php echo $row3['Id']; ?></td>

 <td><?php echo $row3['Severity']; ?></td>

 <td><?php echo $row3['Description']; ?></td>

 <td><?php echo $row3['Status']; ?></td>

 </tr>

<?php

 }

 }

 ?>

 </tr>

 </tbody>

</table>

 Page 51

Add Manager:

<?php

session_start();

include 'connect.php';

$name= $_POST['name'];

$id= $_POST['id'];

$query= mysqli_query($con,"UPDATE project SET Manager='$name' where Id='$id'");

$query1= mysqli_query($con,"UPDATE project1 SET Manager='$name' where Id='$id'");

$query2= mysqli_query($con,"SELECT Email From table_bug where User_name='$name'");

$row = mysqli_fetch_assoc($query2);

$to = $row['Email'];

$subject = 'YOu have been appointed as manager to a new project';

$message = 'Work hard';

$headers = 'From: tarangadda@gmail.com' . "\r\n" .

 'Reply-To: webmaster@example.com' . "\r\n" .

 'X-Mailer: PHP/' . phpversion();

mail($to, $subject, $message, $headers);

$newurl = "home.php";

header('Location: ' . $newurl);

?>

