DESIGN OF HOSTEL BUILDING

Project Report submitted in partial fulfilment of the requirement for the degree of Bachelor of Technology.

In

Civil Engineering

Under the Supervision of

Dr. Ashish Kumar, Associate Professor

By

Abhishek Singh (Enrollment No.: 111705)

Shivam Singh Bhadouria (Enrollment No.:111668)

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

DECLARATION

We hereby declare that the project work presented in this report entitled "DESIGN OF HOSTEL BUILDING" submitted for the award of the degree of Bachelor of Technology in Civil Engineering to the Department of Civil Engineering, Jaypee University of Information and Technology Wakhnaghat, has been carried out by us. This work is independent and its main content work has not been submitted for degree at any University in India or Abroad.

Abhishek Singh

Shivam Singh Bhadouria

Certificate

This is to certify that project report entitled "DESIGN OF HOSTEL BUILDING", submitted by Abhishek Singh (111705) & Shivam Singh Bhadouria (111668) in partial fulfilment for the award of degree of Bachelor of Technology in Civil Engineering to Jaypee University of Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award of this or any other degree or diploma.

Date: 28/1/14

Signature:	Signature:	Signature:
Dr. Ashish Kumar	Dr. Ashok Kumar Gupta	External Examiner
Associate Professor	Professor and Head of Department	
Civil Engineering Department	Civil Engineering Department	

ACKNOWLEDGEMENT

Every project big or small is successful largely due to the effort of a number of wonderful people who have always given their valuable advice or lent a helping hand. I sincerely appreciate the inspiration; support and guidance of all those people who have been instrumental in making this project a success.

At this juncture I feel deeply honoured in expressing my sincere thanks to my guide **Dr. Ashish Kumar, Associate Professor, Jaypee University of Information Technology** for the confidence bestowed in me and providing valuable insights leading to the successful completion of my project.

I express my gratitude to **Prof. Dr. Ashok Kumar Gupta, HOD Civil Department** for arranging the Project work in good schedule. Last but not the least, I would also extend my gratitude to **Mr. Mani Mohan, Assistant Professor, Civil Engineering Department, JUIT** for his critical advice and guidance, without which this project would not have been possible.

Abhishek Singh

Shivam Singh Bhadouria

(4th year, Civil Engineering)

Abstract

This Project includes a Design, Planning & Estimation of Hostel Building for a total no. of 360 students. This included an analysis of the building on the software STAAD-Pro along with the design of the various components of the building. The designing components include Slabs, Beams, Columns, Footing and Staircase.

The project will also include the determination of the amount of water required and therefore providing a suitable water Tank. Estimating the amount of concrete and steel required has also been done.

The hostel is design for Zone II- seismic Zone and a plain terrain Region. The size of one hostel block is 80ftx50ft, with rooms of 16ftx12ft.the . Along with a 4 feet individual balcony for each room and a combined balcony of 4 feet. the passage way provided by is 8ft in length. The hostel will be arranged in a rectangular pattern, each side representing a hostel block. At opposite corners provision of baths and toilets have been provided which are different structural elements.

LIST OF FIGURES

Fig. No.	Name of Figure	Page No.
Fig. 1.	Plan – 1 st Floor	8
Fig. 2	Plan – Ground Floor	9
Fig. 3	Detailed Plan of all floors of 3 blocks	10
Fig. 4	Detailed Plan of Ground Floor Block 2	11
Fig. 5	Detailed plan of Block 2, first floor and above.	12
Fig. 6	Detailed Plan of Bath and Toilets.	13

CONTENTS

• Abstract	iv
List of Figures	v
1. Introduction	1
1.1Types of Buildings	2
1.2 Parts of Building	3
1.3 Components of a building	3
1.4 Types of Load	4
2. Plan of the Building	6
3. Design of Slab	14
3.1 General	15
3.2 Classification of Slab	15
3.3 Design of slab (S1)	17
3.4 Design of slab (S2)	19
3.5 Design of slab (S3)	21
3.6 Design of slab (S4)	23
3.7 Design of slab (S5)	25
3.8 Design of slab (S6)	27
3.9 Design of slab (S7)	29
3.10 Design of slab (S8)	31
3.11 Design of slab (S9)	33

3.12 Design of slab (S10)	35
3.13 Design of slab (S11)	37
3.14 Design of slab (S12)	39
4. Design of Beam	41
4.1 Types of Beams	42
4.2 Design and Detailing of beam	44
5. Design of Columns	92
5.1 Types of Columns	93
5.2 Design and Detailing of Columns	95
6. Design of Staircase	111
7. Design of Footing	115
8. Elevated Water Tank	126
9. Estimation	140
References	153

1. Introduction

A building is a man-made structure with a roof and walls standing more or less permanently in one place. Buildings serve several needs of society – primarily as shelter from weather, security, living space, privacy, to store belongings, and to comfortably live and work. A building as a shelter represents a physical division of the human habitat (a place of comfort and safety) and the outside (a place that at times may be harsh and harmful).

Without any semblance of doubt, reinforced cement concrete construction has been the most revolutionary construction technique of modern times. Combining the high compressive strength of concrete with high tensile strength and elasticity of steel has resulted in a composite material that is strong, durable and economical. Moreover, it is time tested.

1.1 TYPES OF BUILDINGS

1.1.1 Based on Occupancy

- 1. **Residential buildings**: The building in which sleeping accommodation is provided for normal residential purposes are called residential buildings.
- 2. Educational / institutional buildings: The building used for school, college or day care purposes are called education / institutional building.
- Assembly Building: The buildings which are constructed for the purposes to gathering of the people for their respective purposes i.e. social, religious, civil, political is called assembly buildings.
- Business Buildings: The buildings used for transaction of business, for the keeping of accounts and records and other similar purposes called business buildings. Mercantile Buildings: - The buildings used for display of merchandise, either wholesale or retail are called Mercantile Buildings.
- 5. Industrial buildings: The buildings in which products or materials of all kinds and properties are fabricated, assembled or processed are called industrial buildings. Storage buildings: The buildings used primary for the storage, handling or shattering of goods and wares or merchandise, vehicles and animals are called storage buildings. Hazardous buildings: -The buildings used for storage, handling manufacturing or processing of highly combustible or explosive material are called Hazardous buildings.

1.1.2 Based on type of construction

- Building with type 1 construction: In these building the design and material used const. are such that all structural components have about 4 hours fire resistance. Buildings with type 2 construction: - In these building the design any type of material used in their construction are such that all structural components have 3 hours fire resistance.
- Buildings with type 3 construction: In these building the design and types of the materials used in their construction are such that all structural components have 3 hours fire resistance.
- 3. **Buildings with type 4 construction**: In these buildings the design and the type of material used in their construction are such that all structural components have 4 hours fire resistance.

1.2 PARTS OF A BUILDING

A building can be divided into two parts: -

- **1. Sub structure**: The part of a building constructed beneath the ground level is known as Sub structure.
- 2. Super structure: The part of the building constructed above ground level is known as super structure. It is second part of a building. All the activities of the building construction take place after the making of sub-structure. Flooring, wall roofing are the example of super structure of a building.

1.3 COMPONENTS OF A BUILDING

- **1. FOUNDATION**: It is the lowest part of a structure below the ground level which is direct contact with ground and transmitted all the dead, live and other loads to the soil on which the structure rests.
- **2. PLINTH**: The portion of a building and the top of the floor immediately above the ground is known as plinth. The level of the surrounding ground is known as formation level of the ground floor of the building is known as plinth level.
- **3. WALLS**: Walls are provided to enclose or divide the floor space n desired pattern in addition wall provided privacy security and give protection against sun, rain, cold and other undesired effect of the weather.
- **4. COLUMN**: A column may be defined as an isolated load bearing member, the width of which is neither less than its thickness. It carries the axially compressive load.
- **5. FLOORS**: Floors are flat supporting elements of a building. They divided a building into different levels. There by creating more accommodation on a given plot of land. The basic purpose of a floor is to provide a firm and other items like stores, furniture, equipment etc.
- 6. DOORS, WINDOWS AND VENTILATORS: A door may be defined as a barrier secured in an opening left in a wall to provide usual means of access to a building, room or passage. Windows and ventilators are provided for sun light, fresh air and ventilation purposes.
- **7. ROOF**: It is the uppermost component of a building and its function is to cover the space below it of a room and protect it from rain, snow, sun, wind etc.
- **8. BUILDING FINISHES**: A building is considered incomplete till such time the surface of its components is given appropriate treatment.

Building finishes include items like plastering, painting, pointing, white / colour washing, varnishes and distempering etc.

1.4 TYPES OF LOADS

- DEAD LOAD: Dead loads are permanent or stationary loads which are transferred to the structure throughout their life span. Dead load is primarily due to self-weight of structural members, permanent partition walls, fixed permanent equipment and weighs of different materials.
- 2. **LIVE LOAD**: Live loads are those loads which are transient and can change in magnitude. They include all objects found with in a building during its life as well as external environmental effects such as loads due to the sun,earth or weather. Wind and earth quake loads are put into the special category of lateral live loads due to the severity of their action upon a building and their potential to cause failure.

IS: 875 (part-II) deals with the imposed loads on roofs, floors, stairs, balconies, etc., for various occupancies.

2. The Plan of the building

The building to be constructed should have a proper plan, which should be in accordance with Ministry of Urban Development Bye-laws (MoUD Bye-laws) - which state the following.

- 1. Maximum Ground Coverage -33.33%
- 2. Maximum Floor Area Ratio 100%
- 3. Maximum Height- 26m
- 4. Minimum Area per person- 4.9 sqmt
- 5. Minimum Width of Passageway -1.25mt
- **6.** Minimum width of exits- 2 m
- 7. Minimum width of stairway- 1.25m
- 8. Minimum Bath & Toilet Conditions -1 for 6 persons.

Therefore the plan for the hostel designed according to the requirements given above.

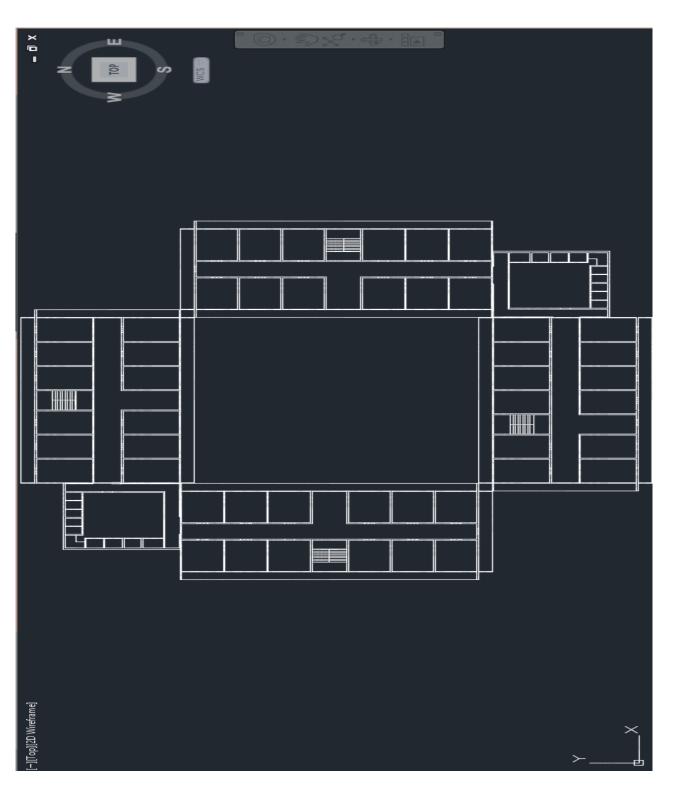


Fig. 1 Plan – 1st Floor

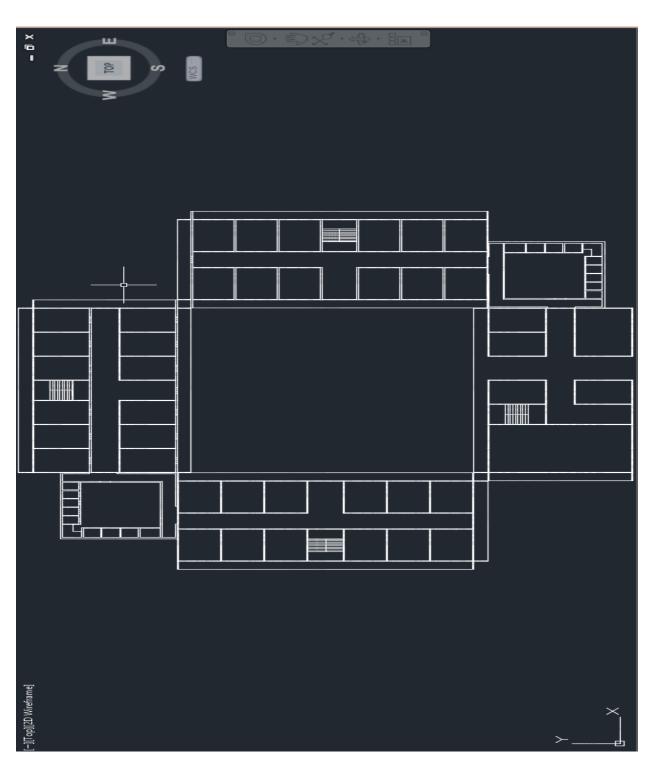


Fig. 2 Plan – Ground Floor

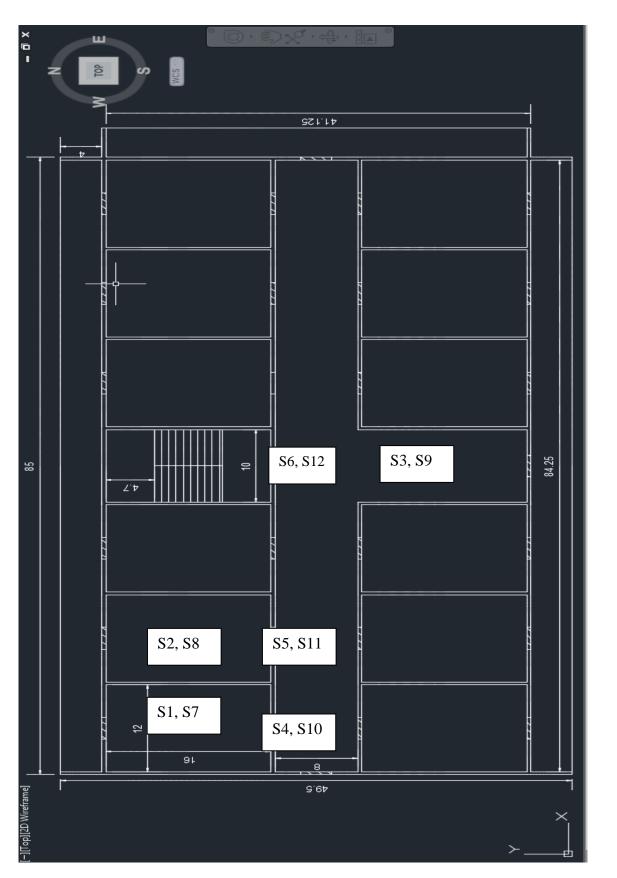


Fig. 3 Detailed Plan of all floors of 3 blocks.

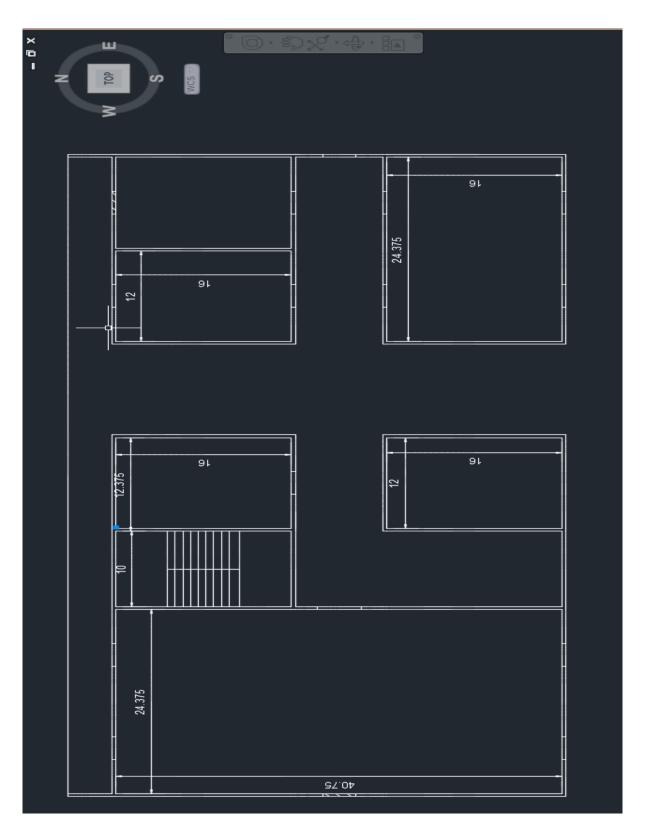


Fig. 4 Detailed Plan of Ground Floor Block 2

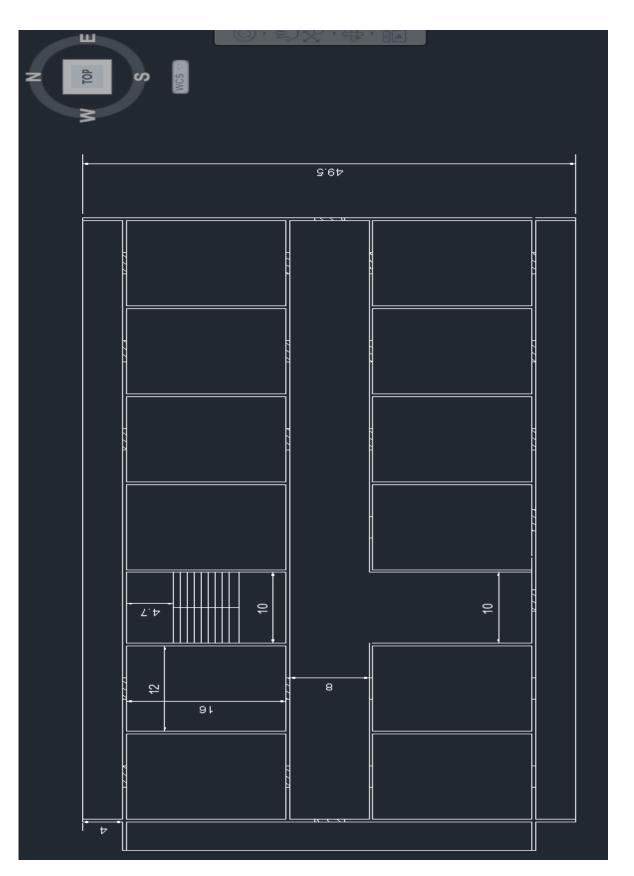


Fig. 5 Detailed plan of Block 2, first floor and above.

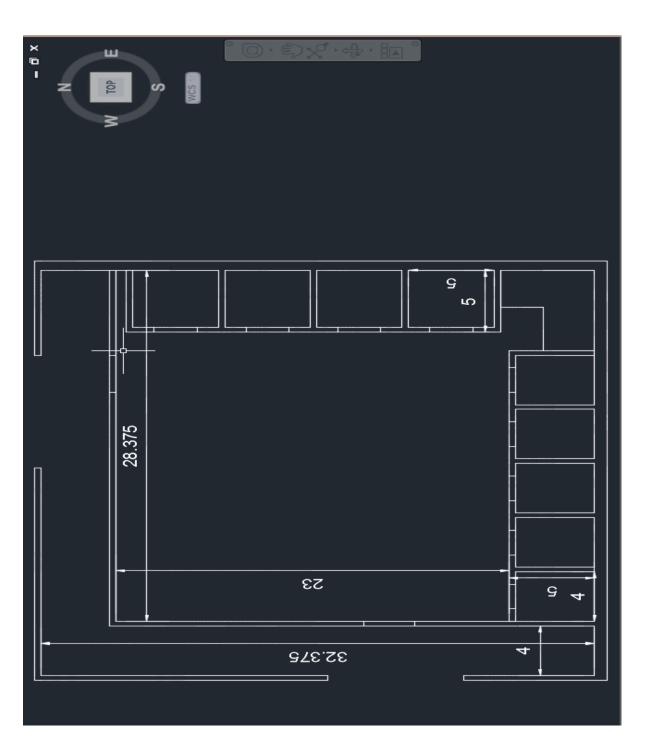


Fig. 6 Detailed Plan of Bath and Toilets.

Therefore the design of the Beams, Columns & slabs will be based upon the above Plan.

3. DESIGN OF SLAB

3.1 GENERAL

A slab is a flat two dimensional planar structural element having thickness small compared to its other two dimensions. It provides a working flat surface or a covering shelter in buildings. It primarily transfers the load by bending in one or two directions. Reinforced concrete slabs are used in floors, roofs and walls of buildings and as the decks of bridges. The floor system of a structure can take many forms such as in situ solid slab, ribbed slab or pre-cast units. Slabs may be supported on monolithic concrete beam, steel beams, walls or directly over the columns.

Concrete slab behave primarily as flexural members and the design is similar to that of beams.

3.2 CLASSIFICATION OF SLABS

- 1) <u>Two way slabs</u>: There are two types of two way slabs
 - a) Two way simply supported slabs: -The bending moments Mx and My for a rectangular slabs simply supported on all four edges with corners free to lift or the slabs do not having adequate provisions to prevent lifting of corners are obtained using coefficients given in Table 1 (Table 27,IS 456-2000)
 - b) Two way Restrained slabs: -When the two way slabs are supported on beam or when the corners of the slabs are prevented from lifting the bending moment coefficients are obtained from Table 2 (Table 26, IS456-2000) depending on the type of boundary conditions. These coefficients are obtained using yield line theory. Since, the slabs are restrained; negative moment arises near the supports. We have considered our slabs to be restrained.

We have divided the design of slab on the type of boundary conditions for two way slabs.

2) <u>One way slabs</u>: - The slabs spanning in one direction and continuous over supports are called one way continuous slabs. These are idealized as continuous beam of unit width. For slabs of uniform section which support substantially UDL over three or more spans which do not differ by more than 15% of the longest, the B.M and S.F are obtained using the coefficients available in Table 12 and Table 13 of IS 456-2000. For

moments at supports where two unequal spans meet or in case where the slabs are not equally loaded, the average of the two values for the negative moments at supports may be taken. Alternatively, the moments may be obtained by moment distribution or any other methods.

The design of the slabs will be in accordance to Indian Standard Code 456-2000. The Floor Slabs have been divided into 6 different types depending upon the types and number of free edges.

- 1) S1- One Long Edge Discontinuous (4.8*3.6)
- 2) S2-Interior Panel (4.8*3.6)
- 3) S3-Interior Panel (3.6*3)
- 4) S4- One Short Edge Discontinuous (3.6*2.4)
- 5) S5- Interior Panel (3.6*2.4)
- 6) S6- One Long Edge Discontinuous (3*2.4)

Similarly the Roof Slabs have been separated into 6 different slabs.

The Loads acting upon the Structure have been taken & calculated form Indian Standard code 875 part I-1987 and IS 875 part II-1987, taking the values of dead load and Live load applicable on the building respectively.

Thus the values of the loads taken are as follows-

- Live Load Applicable on the structure

 Room Floors 2kn/m
 - b) Baths & toilets- 2kN/m
 - c) Balconies- 4kN/m
 - d) Roof slab (Access Provided) -1kN/m
- 2) Dead Load Applicable
 - a. Partition wall -5.73 kN/m
 - b. Floor finishes (Rooms) 1kN/m
 - c. Floor Finish (Roof)- 0.5kN/m

Thus the design of Floor and Roof Slabs are as Follows:-

3.3 DESIGN OF SLAB (S1)

		5.5 DESIGIN	OF SLAD (SI)			
1	Trail depth and effective span				KNOWN	M25
	Clear span	length	4.8	m	DATA	FE 500
		width	3.6	m		MONOLITHIC
					cle	ear cover 20(mild exposure)
		L/B ratio	1		d	lensity of conc.=25 kn/m3
		Type of slab	two way			dia of main bars =12mm
					bc 1 :one	Long Edge discontinuous (4.8x3.6)
	From deflection criteria {I/d=26*m}	depth	123.40	mm		modification factor=1.2
		D	150	mm	-	idth of beam=230mm
		deff	118	mm	taking dia of bars as	12 mm
		Ly	4.918	m		
		Lx	3.718	m		
		α(ly/lx)	1.3			
2	LOAD ON SLAB			2		
		Self Weight	3.75	-		
		Imposed Load	2	KN/m ²	TABLE 2 IMPOSED	LOADS ON VARIOUS TYPES OF
		floor finish	1	KN/m²	FLOO	DRS(RESIDENTIAL)
		Ultimate Load W	10.125	KN/m ²		IS 875 part 2
		αx(+)	0.044		The boundary con	dition of slab in one Long Edge
		αγ(+)	0.028		discontinuous (case 3, Table 26) IS 456-2000
3	positive moment at mid span					
		short span	6.16	KN/m ²		
		long span	6.86	KN/m ²		
4	negative moment at edges					
		short span	8.21	KN/m ²		
		long span	9.14	KN/m ²	as αx(-)=4*αx(+)/3	3
5	Minimum depth required from Maximum BM consideration					
		d'	52.437	mm		
			design is s	safe		
	_					
17	/					

6 area of reinforcement(per m width)

	short span	ast for + moment ast for - moment		225.000 225.000	mm²/m mm²/m	$\frac{(A_{st}) _{regd}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u / (f_{ck}bd^2)} \right]$
	long span					
		ast for + moment		225.000	mm²/m	
		ast for - moment		225.000	mm²/m	
7	spacing of bars					
	providing bars of dia	12	2 1	mm		sha da da a than 200 mm an 2 daubisha an
		spacing for short span M(+)		300.000	mm/m	check : less than 300mm or 3d whichever is less
		spacing for short span M(-)		300.000	mm/m	15 1055
		spacing for long span M(+)		300.000	mm/m	
		spacing for long span M(-)		300.000	mm/m	300
8	check for cracking					
	steel should be more than 0.15% of the gross ar	rea =		225	mm²/m	
	-		(ok		
9	torsional reinforcement at corners					
		mesh extending 0.2Lx on each side in 4 layers				
		at corner of two edges discontinuous ast =		168.750	mm²/m	
		at corner with one edges discontinuous ast=	;	84.375	mm²/m	

3.4 DESIGN OF SLAB (S2)

		5.4 DE3	DIGIN OF SLAD (SZ				
1	Trail depth and effective span				KNOWN	M25	
	Clear span	length	4.8	m	DATA	FE 500	
		width	3.6	m		MONOLITHI	IC
					c	clear cover 20(mild	exposure)
		L/B ratio	1			density of conc.=2	5 kn/m3
		Type of slab	two way			dia of main bars =	=12mm
						bc 1 :Interior Panel	(4.8x3.6)
	From deflection criteria {I/d=26*m}	depth	123.40	mm		modification fact	or=1.2
		D	150	mm	assuming width of	f beam=230mm	
		deff	118	mm	taking dia of bars as	12 mm	
		Ly	4.918	m			
		Lx	3.718	m			
		α(lγ/lx)	1.3				
2	LOAD ON SLAB						
		Self Weight	2	KN/m²			
		Imposed Load	2	KN/m ²	TABLE 2 IMPOSE	D LOADS ON VARIOU	JS TYPES OF
		floor finish	1	KN/m ²	FLO	ORS(RESIDENTIAL)	
		Ultimate Load W	7.5	KN/m ²	(Access provided)	IS 875 part 2	
		αx(+)	0.036		The boundary condition	on of Interior slab	
		αγ(+)	0.024		(case 1, Table 26)		IS 456-2000
3	positive moment at mid span						
		short span	3.73	KN/m ²			
		long span	4.35	KN/m ²			
4	negative moment at edges	0					
	<u> </u>	short span	4.98	KN/m²			
		long span	5.80	KN/m²	as αx(-)=4*αx(+)/3		
				,			
5	Minimum depth required from Maximum BM consideration						
		d'	41.783	mm			
19							
19							

design is safe

6 area of reinforcement(per m width)

	short span	ast for + moment ast for - moment	225.000 225.000	mm²/m mm²/m	
	long span			0	
		ast for + moment	225.000		
		ast for - moment	225.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		check : less than 300mm or 3d
		spacing for short span M(+)	300.000	mm/m	whichever is less
		spacing for short span M(-)	300.000	mm/m	which ever is less
		spacing for long span M(+)	300.000	mm/m	
		spacing for long span M(-)	300.000	mm/m	300
8	check for cracking steel should be more than 0.15% of the gross	area =	225 ok	mm²/m	
9	torsional reinforcement at corners		UK		
5					
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	168.750	mm²/m	
		at corner with one edges discontinuous ast=	84.375	mm²/m	

20

3.5 DESIGN OF SLAB (S3)

		3.5 DESIGN U	F SLAD (33)			
1	Trail depth and effective span				KNOWN	M25	
	Clear span	length	3.6	m	DATA	FE 500	
		width	3	m		MONOLITH	C
					C	lear cover 20(mild	exposure)
		L/B ratio	1			density of conc.=2	5 kn/m3
		Type of slab	two way			dia of main bars :	=16mm
						bc 1 :Interior Pane	l (3.6x3)
	From deflection criteria {I/d=26*m}	depth	104.17	mm		modification fact	or=1.2
		D	130	mm	assuming width of	beam=230mm	
		deff	98	mm	taking dia of bars as	12 mm	
		Ly	3.698				
		Lx	3.098	m			
		α(lγ/lx)	1.2				
2	LOAD ON SLAB			2			
		Self Weight	3.25	KN/m ²			
		Imposed Load	2	KN/m²	TABLE 2 IMPOSED	LOADS ON VARIOU	JS TYPES OF
		floor finish	1	KN/m ²	FLO	ORS(RESIDENTIAL)	
		Ultimate Load W	9.375	KN/m ²	(Access provided)	IS 875 part 2	
		αx(+)	0.032		The boundary condition	on of Interior slab	
		αγ(+)	0.024		(case 1, Table 26)		IS 456-2000
3	positive moment at mid span						
		short span	2.88	KN/m²			
		long span	3.08	KN/m ²			
4	negative moment at edges						
		short span	3.84	KN/m ²			
		long span	4.10		as αx(-)=4*αx(+)/3		
				,			
5	Minimum depth required from Maximum BM consideration						
		d'	35.126	mm			
21							

design is safe

6 area of reinforcement(per m width)

	short span	ast for + moment ast for - moment	195.000 195.000	mm²/m mm²/m	
	long span				
		ast for + moment	195.000	mm²/m	
		ast for - moment	195.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		check : less than 300mm or 3d
		spacing for short span M(+)	294.000	mm/m	whichever is less
		spacing for short span M(-)	294.000	mm/m	
		spacing for long span M(+)	294.000	mm/m	
		spacing for long span M(-)	294.000	mm/m	294
8	check for cracking				
•	steel should be more than 0.15% of the gross	sarea =	195	mm²/m	
			ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	146.250	mm²/m	
		at corner with one edges discontinuous ast=	73.125	mm²/m	

22

3.6 DESIGN OF SLAB (S4)

			/		
tive span				KNOWN	M25
	length	3.6	m	DATA	FE 500
	width	2.4	m		MONOLITHIC
				c	lear cover 20(mild exposure)
	L/B ratio	2			density of conc.=25 kn/m3
	Type of slab	two way			dia of main bars =12mm
				bc 1 :on	e Short Edge discontinuous (3.6x2.4)
a {I/d=26*m}	depth	84.94	mm		modification factor=1.2
			mm	-	vidth of beam=230mm
	deff		mm	taking dia of bars as	12 mm
	Ly		m		
			m		
	α(ly/lx)	1.5			
			2		
	Self Weight	2.75			
	Imposed Load	2	KN/m ²	TABLE 2 IMPOSE	D LOADS ON VARIOUS TYPES OF
	floor finish	1	KN/m²	FLO	ORS(RESIDENTIAL)
	Ultimate Load W	8.625	KN/m ²	(Access provided)	IS 875 part 2
	αx(+)	0.051		The boundary co	ndition of slab in one Short Edge
	αγ(+)	0.028		discontinue	ous (Table 26) IS 456-2000
nid span					
	short span	2.70	KN/m ²		
	long span	3.27	KN/m ²		
edges					
-	short span	3.60	KN/m ²		_
	long span	4.36	KN/m²	as αx(-)=4*αx(+)/	3
ured from Maximum			·		
	d'	36.195	mm		
	a {I/d=26*m} nid span	tive span length width L/B ratio Type of slab depth D deff Ly Lx α(ly/lx) Self Weight Imposed Load floor finish Ultimate Load W αx(+) αy(+) nid span short span long span deg span	tive span length 3.6 width 2.4 L/B ratio 2 Type of slab 2 two way a $\{l/d=26^*m\}$ depth 84.94 D 110 deff 78 Ly 3.678 Lx 2.478 a (ly/lx) 1.5 Self Weight 2.75 Imposed Load 2 floor finish 1 Ultimate Load W 8.625 ax(+) 0.051 ay(+) 0.028 nid span 3.27 edges short span 3.60 long span 4.36	length width3.6 2.4mL/B ratio Type of slab2 two waya {//d=26*m}depth D84.94 110mm deffD110mm deffLy3.678 1.678m m a (ly/lx)Self Weight2.75 1.5KN/m² KN/m² floor finishImposed Load floor finish2 1.5KN/m² ultimate Load W ax(+) ay(+)8.625 0.028short span long span2.70 3.27short span long span3.60 4.36kort span long span3.60 4.36kort span long span3.60 4.36	tive span length width LB ratio LB ratio LB ratio LB ratio $LB ratioLB ratio LB ratioLS ratio LS ratio LS$

				design is s	afe	
6	area of reinforcement(per m width)					
	short span	ast for + moment ast for - moment		165.000 165.000	mm²/m mm²/m	
	long span			1001000		
		ast for + moment		165.000	mm²/m	
		ast for - moment		165.000	mm²/m	
7	spacing of bars					
	providing bars of dia		12	mm		
		spacing for short span M(+)		234.000	mm/m	check : less than 300mm or 3d whichever is
		spacing for short span M(-)		234.000	mm/m	less
		spacing for long span M(+)		234.000	mm/m	
		spacing for long span M(-)		234.000	mm/m	234
8	check for cracking					
	steel should be more than 0.15% of the gross	area =		165	mm²/m	
				ok		
9	torsional reinforcement at corners					
		mesh extending 0.2Lx on each side i 4 layers	in			
		at corner of two edges discontinuous ast =	6	123.750	mm²/m	
		at corner with one edges discontinuc ast=	ous	61.875	mm²/m	
1						

3.7 DESIGN OF SLAB (S5)

		3.7 DESIGN (JE SLAB (S	וכו			
1	Trail depth and effective span				KNOWN	M25	
	Clear span	length	3.6	m	DATA	FE 500	
		width	2.4	m		MONOLITHIC	
						clear cover 20(mild exposure)	
		L/B ratio	2			density of conc.=25 kn/m3	
		Type of slab	two way			dia of main bars =12mm	
						bc 1 :Interior Panel (3.6x2.4)	
	From deflection criteria {I/d=26*m}	depth	84.94			modification factor=1.2	
		D	110	mm	-	of beam=230mm	
		deff	78	mm	taking dia of bars as	12 mm	
		Ly	3.678				
		Lx	2.478	m			
		α(ly/lx)	1.5				
2	LOAD ON SLAB						
		Self Weight	2.75	-			
		Imposed Load	2	KN/m ²	TABLE 2 IMPOSED LO	LOADS ON VARIOUS TYPES OF FLOORS	
		floor finish	1	KN/m ²		(RESIDENTIAL)	
		Ultimate Load W	8.625	KN/m ²	(Access provided)	IS 875 part 2	
		αx(+)	0.041		The boundary condit	ion of Interior slab	
		αγ(+)	0.024		case 3 (Table 26)	IS 456-2000	
3	positive moment at mid span						
		short span	2.17	KN/m²			
		long span	2.80	KN/m ²			
4	negative moment at edges						
		short span	2.90	KN/m ²			
		long span	3.73	KN/m²	as αx(-)=4*αx(+)/3		
5	Minimum depth required from Maximum BM consideration						
		d'	33.510	mm			
			design is s	safe			
			-				
25							

6 area of reinforcement(per m width)

	ч <i>у</i>				mm²/m	
	short span	ast for + moment		165.000	mm²/m	
		ast for - moment		165.000		
					0	
	long span				mm²/m	
		ast for + moment		165.000	mm²/m	
		ast for - moment		165.000		
7	spacing of bars					
	providing bars of dia		12	mm	mm/m	check : less than 300mm or 3d
		spacing for short span M(+)		234.000	mm/m	whichever is less
		spacing for short span M(-)		234.000	mm/m	
		spacing for long span M(+)		234.000	mm/m	
		spacing for long span M(-)		234.000		234
					0	
8	check for cracking				mm²/m	
	steel should be more than 0.15% of the gross	area =		165		
				ok		
9	torsional reinforcement at corners					
		mesh extending 0.2Lx on each sic in 4 layers	le		mm²/m	
		at corner of two edges discontinue ast =	ous	123.750	mm²/m	
		at corner with one edges discontinuous ast=		61.875	mm2/m	

3.8 DESIGN OF SLAB (S6)

		5.6 DESIGN OF	- 3LAD (30)			
1	Trail depth and effective span				KNOWN	M25
	Clear span	length	3	m	DATA	FE 500
		width	2.4	m		MONOLITHIC
					clea	r cover 20(mild exposure)
		L/B ratio	1		de	nsity of conc.=25 kn/m3
		Type of slab	two way		d	ia of main bars =12mm
					bc 1 :One	Long edge discontinous(3x2.4)
	From deflection criteria {I/d=26*m}	depth	84.94	mm		nodification factor=1.2
		D	110	mm	-	th of beam=230mm
		deff	78		taking dia of bars as	12 mm
		Ly	3.078			
		Lx	2.478			
_		α(Ιγ/Ιx)	1.2			
2	LOAD ON SLAB			. 7		
		Self Weight	2.75	KN/m ²		
		Imposed Load	2	KN/m ²	TABLE 2 IMPOSED LC	DADS ON VARIOUS TYPES OF
		floor finish	1	KN/m ²	FLOORS	S(RESIDENTIAL)
		Ultimate Load W	8.625	KN/m ²	(Access provided)	IS 875 part 2
		αx(+)	0.041		The boundary condit	tion of slab in one Long Edge
		αγ(+)	0.024		discontinuous (cas	se 3, Table 26) IS 456-2000
3	positive moment at mid span					
		short span	2.17	KN/m ²		
		long span	1.96	KN/m ²		
4	negative moment at edges					
		short span	2.90	KN/m ²		
		long span	2.61	KN/m ²	as αx(-)=4*αx(+)/3	
5	Minimum depth required from Maximum BM consideration					
		d'	29.508	mm		
			design is s	afe		
2	7					

27

6	area of	reinforcement(per m width)	
---	---------	----------------------------	--

	short span	ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
	long span				
		ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		check : less than 300mm or 3d whichever
		spacing for short span M(+)	234.000	mm/m	is less
		spacing for short span M(-)	234.000	mm/m	13 1835
		spacing for long span M(+)	234.000	mm/m	
		spacing for long span M(-)	234.000	mm/m	234
8	check for cracking				
	steel should be more than 0.15% of the gross a	rea =	165	mm²/m	
			ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	123.750	mm²/m	
		at corner with one edges discontinuous ast=	61.875	mm²/m	

3.9 DESIGN OF ROOF SLAB (S7)

1 Trail depth and effective span MCB MCB Clear span length 4.8 m DATA FE 50 Victor victor 3.8 m MCMOULTIVE Clear cover 20(mild exposure) I LB ratio 1 depth 1 depth depth depth 1 termodification factor=1.2 bit i cone Long Edge discontinuous (4.83.4 I From deflection criteria (l/d=26'm) depth 123.40 m modification factor=1.2 Image: addition factor=1.2 assuming width of beam=230mm I From deflection criteria (l/d=26'm) depth 123.40 m assuming width of beam=230mm I I Image: addition factor=1.2 modification factor=1.2 modif			J.J DEJION	OI NOOI JLAD (J	,,		
Note balancewight wightis wightis wightM MONOLITHIC clear cover 20(mild exposure) dia of main bars = 12mm b t 1come Long Edge discontinuous (4.8.8.4 dia of main bars = 12mm b t 1come Long Edge discontinuous (4.8.8.4 dia of main bars = 12mm b t 1come Long Edge discontinuous (4.8.8.4 depthis m mmm assuming width of beam=230mm taking dia of bars as12 mmFrom deflection criteria (Vd=26'm)depth depth12.3 uo mmm assuming width of beam=230mm taking dia of bars astaking dia of bars as12 mmImposed Load1.3mm taking dia of bars as12 mm m taking dia of bars as12 mm m m taking dia of bars as12 mm m m taking dia of bars asImposed Load1 taking dia of bars as12 mm m m taking dia of bars as12 mm m m taking dia of bars as12 mm m m taking dia of bars asImposed Load1 taking dia of bars as12 mm m m taking dia of bars as12 mm m m taking dia of bars as12 mm m m taking dia of bars asImposed Load1 taking dia of barskN/m² m taking dia of bars as12 mm m m taking dia of bars asImposed Load1 takingkN/m² taking15 taking15 takingImposed Load1 takingkN/m² taking15 taking15 takingImposed Load2 takingkN/m² taking15 taking15 takingImposed Load3 takingkN/m² taking15 taki	1 Trail depth	and effective span				KNOWN	M25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Clear span		length	4.8	m	DATA	FE 500
$ I \ B \ B \ B \ B \ B \ B \ B \ B \ B \$			width	3.6	m		MONOLITHIC
Type of slabtwo waydia of main bars =12 m b 1 23.40From deflection criteria (l/d=26°m)depth123.40mmmodification factor=1.2D150mmassuming width of beam=230mm deff18mmtaking dia of bars as12deff1.8mmtaking dia of bars as12mmLx3.718mtaking dia of bars as12mma(try/k)1.3mtaking dia of bars as12mmImposed Load1KN/m²floor finish0.5kN/m²floor finish0.5kN/m²takle 2 IMPOSED LOADS ON VARIOUS TYPES OF ROOFga(+)0.0447.875KN/m²takle 2 IMPOSED LOADS ON VARIOUS TYPES OF ROOFgapan7.83kN/m²takle 2 IMPOSED LOADS ON VARIOUS TYPES OF ROOFgapan6.39kN/m²is 875 part 2gapan6.39kN/m²as $ax(-)=4*ax(+)/3$ mog span7.11kN/m²short span6.39kN/m²iong span7.11kN/m²as $ax(-)=4*ax(+)/3$ is $ax(-)=4*ax(+)/3$						clear co	over 20(mild exposure)
bt 1: one Long Edge discontinuous (4.82.4. From deflection criteria (I/d=26*m) depth 123.40 mm madification factor=1.2 D 150 mm assuming width of beam=230mm taking dia of bars as 12 mm Ly 4.918 m taking dia of bars as 12 mm Ly 4.918 m taking dia of bars as 12 mm Ly 4.918 m taking dia of bars as 12 mm Ly 4.918 m taking dia of bars as 12 mm Ly 4.918 m m taking dia of bars as 12 mm Ly 4.918 m m taking dia of bars as 12 mm Ly 4.918 m mm taking dia of bars as 12 mm Imposed Load 1 KN/m² taking dia of bars as 12 mm U/Utimate Load W 7.875 kN/m² take 2 iMPOSED LOADS ON VARIOUS TYPES OF ROOF agetive moment at mid span for span for span for span for span for span for				1			•
From deflection criteria (l/d=26*m) depth 123.40 mm modification factor=1.2 B D 150 mm assuming width of beam=230mm deff 118 mm taking dia of bars as 12 mm Ly 4.91 37.18 m taking dia of bars as 12 mm Ly 4.91 37.18 m taking dia of bars as 12 mm Ly 4.91 37.18 m taking dia of bars as 12 mm Ly 4.91 37.18 m taking dia of bars as 12 mm Ly 4.91 1.3 taking dia of bars as 12 mm Imposed Load 1.3 kN/m ² taking dia of bars as 13 taking dia of bars as 13 taking dia of bars as 13 taking dia of bars as 15 taking dia of bars as 14 taking dia of bars as 15 taking dia			Type of slab	two way			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	From deflec	tion criteria {l/d=26*m}	-		mm		
k Partial and a set of the set						-	
Lx 3.718 m α(ly/x) 1.3 2 LOAD ON SLAB Self Weight 3.75 kN/m ² Imposed Load 1 kN/m ² floor finish 0.5 kN/m ² Ultimate Load W 7.875 kN/m ² ax(+) 0.044 The boundary condition of slab in one Long Edge discontinuous (case 3, Table 26) IS 456-2000 3 positive moment at mid span 4.79 kN/m ² ang span 5.33 kN/m ² hong span 6.39 kN/m ² as $\alphax(-)=4^{+}\alphax(+)/3$ as $\alphax(-)=4^{+}\alphax(+)/3$ box consideration 4.245 mm d' 46.245 mm						taking dia of bars as	12 mm
2 LADA ON SLAB 2 LADA ON SLAB 3 Self Weight inposed Load infinish 4 Inposed Load W 7 Uttimate Load W 7 Operation Stabe 7 Operation Stabe 8 Normation Stabe 9 Operation Stabe 10 State Stat							
2 LOAD ON SLAB Self Weight 3.75 kN/m ² Imposed Load 1 kN/m ² floor finish 0.5 kN/m ² Utimate Load W 7.875 kN/m ² utimate Load W 7.875 kN/m ² mask(+) 0.044 1 mask(+) 0.044 1 mask(+) 0.028 1 mask(+) 0.028 1 mask(+) 0.024 1 mask(+) 0.044 1 mask(+) 0.028 1 mask(+) 1 1 mask(+) <td></td> <td></td> <td></td> <td></td> <td>m</td> <td></td> <td></td>					m		
Self Weight 3.75 kN/m² Imposed Load 1 kN/m² floor finish 0.5 kN/m² Ultimate Load W 7.875 kN/m² ux(+) 0.044 V ux(+) 0.028 V ux(+) 0.028 V ux(+) 0.028 V ung span 4.79 kN/m² long span 4.79 kN/m² hort span 4.79 kN/m² long span 5.33 kN/m² long span 7.11 kN/m² short span 6.39 kN/m² long span 7.11 kN/m² as $\alphax(-)=4^*\alpha x(+)/3$ as $\alphax(-)=4^*\alpha x(+)/3$			α(ly/lx)	1.3			
Imposed Load 1 kN/m ² floor finish 0.5 kN/m ² Ultimate Load W 7.875 kN/m ² ax(+) 0.044 5875 part 2 ax(+) 0.044 The boundary condition of slab in one Long Edge discontinuous (case 3, Table 26) IS 456-2000 3 positive moment at mid span 4.79 kN/m ² 4 negative moment at edges short span 4.79 kN/m ² short span 6.39 kN/m ² long span 5.33 kN/m ² short span 6.39 kN/m ² long span 7.11 kN/m ² short span 6.39 kN/m ² long span 7.11 kN/m ² short span 6.39 kN/m ² long span 7.11 kN/m ²	2 LOAD ON SI	LAB		- 			
floor finish 0.5 kN/m ² TABLE 2 IMPOSED LOADS ON VARIOUS TYPES OF ROOF Ultimate Load W 7.875 kN/m ² IS 875 part 2 ax(+) 0.044 The boundary condition of slab in one Long Edge discontinuous (case 3, Table 26) IS 456-2000 3 positive moment at mid span 4.79 kN/m ² and the span 4.79 kN/m ² bong span 5.33 kN/m ² short span 6.39 kN/m ² iong span 7.11 kN/m ²			-				
floor finish floor finish 0.5 kN/m ² IS 875 part 2 ax(+) 0.044 The boundary condition of slab in one Long Edge discontinuous (case 3, Table 26) IS 456-2000 3 positive moment at mid span 4 negative moment at edges 5 Minimum depth required from Maximum BM consideration d' Acconsideration d' Acconsideration d' Acconsideration d' Acconsideration d' Acconsideration			•			TABLE 2 IMPOSED LOADS (ON VARIOUS TYPES OF ROOFS
ax(+) 0.04 The boundary condition of slab in one Long Edge discontinuous (case 3, Table 26) IS 456-2000 3 positive moment at mid span 4.79 kN/m ² hord span 4.79 kN/m ² hord span 5.33 kN/m ² hord span 6.39 kN/m ² hord span 6.39 kN/m ² hord span 7.11 kN/m ² hord span 7.11 kN/m ² hord span 6.39 kN/m ² hord span 6.39 kN/m ² hord span 6.19 kN/m ² hord span kN/m ² kN/m ²			floor finish	0.5	kN/m²		
αy(+) 0.028 discontinuous (case 3, Table 26) IS 456-2000 3 positive moment at mid span 4.79 kN/m ² Iong span 5.33 kN/m ² a negative moment at edges short span 6.39 kN/m ² Iong span 7.11 kN/m ²			Ultimate Load W	7.875	kN/m²		IS 875 part 2
3 positive moment at mid span short span 4.79 kN/m ² 4 negative moment at edges long span 5.33 kN/m ² 4 negative moment at edges short span 6.39 kN/m ² 6 Minimum depth required from Maximum BM consideration d' 46.245 mm design is safe			αx(+)	0.044		The boundary conditio	n of slab in one Long Edge
 short span 4.79 kN/m² long span 5.33 kN/m² short span 6.39 kN/m² long span 7.11 kN/m² as αx(-)=4*αx(+)/3 d' 46.245 mm design is safe 			αγ(+)	0.028		discontinuous (case	3, Table 26) IS 456-2000
4 negative moment at edges long span 5.33 kN/m ² short span 6.39 kN/m ² long span 7.11 kN/m ² Minimum depth required from Maximum BM consideration d' 46.245 mm design is safe	3 positive mo	oment at mid span					
 4 negative moment at edges short span 6.39 kN/m² long span 7.11 kN/m² as αx(-)=4*αx(+)/3 d' 46.245 mm design is safe 			short span	4.79	kN/m²		
short span 6.39 kN/m ² long span 7.11 kN/m ² Minimum depth required from Maximum BM consideration d' 46.245 m design is safe			long span	5.33	kN/m²		
5 Minimum depth required from Maximum BM consideration 7.11 kN/m ² as αx(-)=4*αx(+)/3 6 46.245 mm d' 46.245 mm design is safe	4 negative m	oment at edges					
Minimum depth required from Maximum BM consideration d' 46.245 mm design is safe			short span	6.39	kN/m²		
5 Minimum depth required from Maximum BM consideration d' d' 46.245 mm design is safe			long span	7.11	kN/m²	as $\alpha x(-)=4^{\alpha}x(+)/3$	
design is safe							
			d'				
	20			design is s	safe		

6	area	of	reinforcement	(per m	width)

	short span	ast for + moment ast for - moment	225.000 225.000	mm²/m mm²/m	$\frac{(A_{st})_{reqd}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u/(f_{ck}bd^2)} \right]$
	long span				
		ast for + moment	225.000	mm²/m	
		ast for - moment	225.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		shoely a loss than 200mm or 2d which ever
		spacing for short span M(+)	300.000	mm/m	check : less than 300mm or 3d whichever is less
		spacing for short span M(-)	300.000	mm/m	15 1855
		spacing for long span M(+)	300.000	mm/m	
		spacing for long span M(-)	300.000	mm/m	300
8	check for cracking				
	steel should be more than 0.15% of the gross a	rea =	225	mm²/m	
			ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	168.750	mm²/m	
		at corner with one edges discontinuous ast=	84.375	mm²/m	

3.10 DESIGN OF ROOF SLAB (S8)

1	Trail depth and effective span				KNOWN	M25
	Clear span	length	4.8	m	DATA	FE 500
		width	3.6	m		MONOLITHIC
					C	clear cover 20(mild exposure)
		L/B ratio	1			density of conc.=25 kn/m3
		Type of slab	two way			dia of main bars =12mm
						bc 1 :Interior Panel (4.8x3.6)
	From deflection criteria {I/d=26*m}	depth	123.40	mm		modification factor=1.2
		D	150	mm	assuming width of	f beam=230mm
		deff	118	mm	taking dia of bars as	12 mm
		Ly	4.918	m		
		Lx	3.718	m		
		α(ly/lx)	1.3			
2	LOAD ON SLAB		- 			
		Self Weight	3.75	kN/m ²		
		Imposed Load	1	-	TABLE 2 IMPOSED LC	ADS ON VARIOUS TYPES OF ROOFS
		floor finish	0.5	kN/m²		
		Ultimate Load W	7.875	kN/m²	(Access provided)	IS 875 part 2
		αx(+)	0.036		The boundary conditi	on of Interior slab
		αγ(+)	0.024		(case 1, Table 26)	IS 456-2000
3	positive moment at mid span					
		short span	3.92	kN/m²		
		long span	4.57	kN/m²		
4	negative moment at edges					
		short span	5.23	kN/m²		
		long span	6.10	kN/m²	as αx(-)=4*αx(+)/3	
5	Minimum depth required from Maximum BM consideration					
		d'	42.815	mm		
			design is s			
21						
31						

6 area of reinforcement(per m width)

	short span	ast for + moment ast for - moment	225.000 225.000		
	long span				
		ast for + moment	225.000	mm²/m	
		ast for - moment	225.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		
		spacing for short span M(+)	300.000	mm/m	check : less than 300mm or 3d
		spacing for short span M(-)	300.000	mm/m	whichever is less
		spacing for long span M(+)	300.000	, mm/m	
		spacing for long span M(-)	300.000	, mm/m	300
				,	
8	check for cracking				
	steel should be more than 0.15% of the gross	area =	225	mm²/m	
	5		ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	168.750	mm²/m	
		at corner with one edges discontinuous ast=	84.375	mm²/m	

3.11 DESIGN OF ROOF SLAB (S9)

1	Trail depth and effective span				KNOWN	M25
	Clear span	length	3.6	m	DATA	FE 500
		width	3			MONOLITHIC
					C	clear cover 20(mild exposure)
		L/B ratio	1			density of conc.=25 kn/m3
		Type of slab	two way			dia of main bars =12mm
						bc 1 :Interior Panel (3.6x3)
	From deflection criteria {I/d=26*m}	depth	104.17	mm		modification factor=1.2
		D	130	mm	assuming width of	f beam=230mm
		deff	98	mm	taking dia of bars as	12 mm
		Ly	3.698			
		Lx	3.098			
		α(ly/lx)	1.2			
2	LOAD ON SLAB			1		
		Self Weight	3.25			
		Imposed Load	1		TABLE 2 IMPOSED LC	ADS ON VARIOUS TYPES OF ROOFS
		floor finish	0.5	kN/m²		
		Ultimate Load W	7.125	kN/m²	(Access provided)	IS 875 part 2
		αx(+)	0.032		The boundary conditi	on of Interior slab
		αγ(+)	0.024		(case 1, Table 26)	IS 456-2000
3	positive moment at mid span					
		short span	2.19	kN/m²		
		long span	2.34	kN/m²		
4	negative moment at edges					
		short span	2.92	kN/m²	$2 = \frac{1}{2} $	
		long span	3.12	kN/m²	as $\alpha x(-)=4*\alpha x(+)/3$	
5	Minimum depth required from Maximum					
	BM consideration					
		d'	30.622	mm		
			design is s	safe		
33						

6 area of reinforcement(per m width)

	short span	ast for + moment	195.000	mm²/m	
		ast for - moment	195.000	mm²/m	
	long span			0	
		ast for + moment	195.000	mm²/m	
		ast for - moment	195.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		
		spacing for short span M(+)	294.000	mm/m	check : less than 300mm or 3d whichever is less
		spacing for short span M(-)	294.000	mm/m	whichever is less
		spacing for long span M(+)	294.000	mm/m	
		spacing for long span M(-)	294.000	mm/m	294
8	check for cracking				
	steel should be more than 0.15% of the gross	area =	195	mm²/m	
			ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	146.250	mm²/m	
		at corner with one edges discontinuous ast=	73.125	mm²/m	

34

3.12 DESIGN OF ROOF SLAB (S10)

				(310)		
1	Trail depth and effective span				KNOWN	M25
	Clear span	length	3.6	m	DATA	FE 500
		width	2.4	m		MONOLITHIC
						clear cover 20(mild exposure)
		L/B ratio	2			density of conc.=25 kn/m3
		Type of slab	two way			dia of main bars =12mm
					bc 1 :or	ne Short Edge discontinuous (3.6x2.4)
	From deflection criteria {I/d=26*m}	depth	84.94	mm		modification factor=1.2
		D	110	mm	assuming	width of beam=230mm
		deff	78	mm	taking dia of bars as	12 mm
		Ly	3.678			
		Lx	2.478	m		
		α(ly/lx)	1.5			
2	LOAD ON SLAB					
		Self-Weight	2.75	kN/m²		
		Imposed Load	1	kN/m²		
		floor finish	0.5	kN/m²	TABLE 2 IMPOSED L	OADS ON VARIOUS TYPES OF ROOFS
		Ultimate Load W	6.375	kN/m²	(Access provided)	IS 875 part 2
		αx(+)	0.051		The boundary co	ondition of slab in one Short Edge
		αγ(+)	0.028		discontinu	ious (Table 26) IS 456-2000
3	positive moment at mid span					
		short span	2.00	kN/m²		
		long span	2.41	kN/m²		
4	negative moment at edges					
		short span	2.66	kN/m²	/	
		long span	3.22	kN/m ²	as $\alpha x(-)=4^*\alpha x(+)$	/3
5	Minimum depth required from Maximum BM consideration					
		d'	31.117	mm		
35	1					

			design is s	afe	
6	area of reinforcement(per m width)				
	short span	ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
	long span				
		ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
7	spacing of bars				
	providing bars of dia	16	mm		sha da lasa than 200 mm an 2 da historia i
		spacing for short span M(+)	234.000	mm/m	check : less than 300mm or 3d whichever is less
		spacing for short span M(-)	234.000	mm/m	1035
		spacing for long span M(+)	234.000	mm/m	
		spacing for long span M(-)	234.000	mm/m	234
8	check for cracking				
	steel should be more than 0.15% of the gros	ss area =	165	mm²/m	
			ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	123.750	mm²/m	
		at corner with one edges discontinuous ast=	61.875	mm²/m	

3.13 DESIGN OF ROOF SLAB (S11)

				(311)		
1	Trail depth and effective span				KNOWN	M25
	Clear span	length	3.6	m	DATA	FE 500
		width	2.4	m		MONOLITHIC
						clear cover 20(mild exposure)
		L/B ratio	2			density of conc.=25 kn/m3
		Type of slab	two way			dia of main bars =12mm
						bc 1 :Interior Panel (3.6x2.4)
	From deflection criteria {I/d=26*m}	depth	84.94	mm		modification factor=1.2
		D	110	mm	assuming width	of beam=230mm
		deff	78	mm	taking dia of bars as	12 mm
		Ly	3.678	m		
		Lx	2.478	m		
		α(Iy/Ix)	1.5			
2	LOAD ON SLAB					
		Self Weight	2.75	kN/m²		
		Imposed Load	1	kN/m ²		
		floor finish	0.5	kN/m²	TABLE 2 IMPOSED L	OADS ON VARIOUS TYPES OF ROOFS
		Ultimate Load W	6.375	kN/m²	(Access provided)	IS 875 part 2
		αx(+)	0.041		The boundary condit	tion of Interior slab
		αγ(+)	0.024		case 3 (Table 26)	IS 456-2000
3	positive moment at mid span					
		short span	1.60	kN/m²		
		long span	2.07	kN/m ²		
4	negative moment at edges					
		short span	2.14	kN/m ²		
		long span	2.76	kN/m²	as αx(-)=4*αx(+)/3	
5	Minimum depth required from Maximum BM consideration			·		
		d'	28.809	mm		
			design is s	afe		
			Ũ			
37						

6 area of reinforcement(per m width)

	short span	ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
	long span			0	
		ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
7	spacing of bars				
	providing bars of dia	12	mm		check : less than 300mm or 3d
		spacing for short span M(+)	234.000	mm/m	whichever is less
		spacing for short span M(-)	234.000	mm/m	whichever is less
		spacing for long span M(+)	234.000	mm/m	
		spacing for long span M(-)	234.000	mm/m	234
8	check for cracking				
	steel should be more than 0.15% of the gross	area =	165	mm²/m	
			ok		
9	torsional reinforcement at corners				
		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	123.750	mm²/m	
		at corner with one edges discontinuous ast=	61.875	mm²/m	

38

3.14 DESIGN OF ROOF SLAB (S12)

			OI SEAD (5121		
1	Trail depth and effective span				KNOWN	M25
	Clear span	length	3	m	DATA	FE 500
		width	2.4	m		MONOLITHIC
					clea	r cover 20(mild exposure)
		L/B ratio	1		de	nsity of conc.=25 kn/m3
		Type of slab	two way		di	ia of main bars =12mm
					bc 1 :One	Long edge discontinous(3x2.4)
	From deflection criteria {I/d=26*m}	depth	84.94	mm	n	nodification factor=1.2
		D	110	mm	assuming widt	h of beam=230mm
		deff	78	mm	taking dia of bars as	12 mm
		Ly	3.078	m		
		Lx	2.478			
		α(ly/lx)	1.2			
2	LOAD ON SLAB					
		Self Weight	2.75	kN/m ²		
		Imposed Load	1	kN/m ²	TABLE 2 IMPOSED LC	DADS ON VARIOUS TYPES OF
		floor finish	0.5	kN/m²		ROOFS
		Ultimate Load W	6.375	kN/m²	(Access provided)	IS 875 part 2
		αx(+)	0.041		The boundary condit	ion of slab in one Long Edge
		αγ(+)	0.024		discontinuous (cas	e 3, Table 26) IS 456-2000
3	positive moment at mid span					
		short span	1.60	kN/m²		
		long span	1.45	kN/m²		
4	negative moment at edges					
		short span	2.14	kN/m ²		
		long span	1.93	kN/m²	as αx(-)=4*αx(+)/3	
5	Minimum depth required from Maximum BM consideration					
		d'	25.369	mm		
			design is s	afe		
39)					

6 area of reinforcement(per m width)

	short span	ast for + moment ast for - moment	165.000 165.000	mm²/m mm²/m	
	long span				
		ast for + moment	165.000	mm²/m	
		ast for - moment	165.000	mm²/m	
7	spacing of bars				
	providing bars of dia	16	mm		check : less than 300mm or 3d whichever
		spacing for short span M(+)	234.000	mm/m	is less
		spacing for short span M(-)	234.000	mm/m	13 1035
		spacing for long span M(+)	234.000	mm/m	
		spacing for long span M(-)	234.000	mm/m	234
8	check for cracking steel should be more than 0.15% of the gross a	rea =	165 ok	mm²/m	
9	torsional reinforcement at corners		UK		
J		mesh extending 0.2Lx on each side in 4 layers			
		at corner of two edges discontinuous ast =	123.750	mm²/m	
		at corner with one edges discontinuous ast=	61.875	mm²/m	

4. Design of Beam

A beam is a structural element that is capable of withstanding load primarily by resisting bending. The bending force induced into the material of the beam as a result of the external loads, own weight, span and external reactions to these loads is called a bending moment.

Beams are traditionally descriptions of building or civil engineering structural elements, but smaller structures such as truck or automobile frames, machine frames, and other mechanical or structural systems contain beam structures that are designed and analyzed in a similar fashion.

4.1 Types of Beams

In engineering, beams are of several types

- 1. Simply supported a beam supported on the ends which are free to rotate and have no moment resistance.
- 2. Fixed a beam supported on both ends and restrained from rotation.
- 3. Over hanging a simple beam extending beyond its support on one end.
- 4. Double overhanging a simple beam with both ends extending beyond its supports on both ends.
- 5. Continuous a beam extending over more than two supports.
- 6. Cantilever a projecting beam fixed only at one end.
- 7. Trussed a beam strengthened by adding a cable or rod to form a truss.

The Design of the Beams is done according to norms detailed in IS code 456-2000, Cl-23.

For Simplification, Beams are grouped together according to the Length of the beam and load applicable on the beams.

Therefore for each floor, the different beams have been grouped together as follows:

S. No.	Length (m)	Loading
1	4.8	Having slab on two side
2	4.8	Having slab on one side
3	3.6	Having slab on two sides
4	3.6	Having slab on one side
5	3	Having slab on two side
6	3	Having slab on one side
7	2.5	Having slab on two side
8	2.5	Having slab on one side
9	1.2	Having slab on two side
10	.2	Having slab on one side

The loads taken for the design of beams are as follows

Thus the values of the loads taken are as follows-

- 1) Live Load Applicable on the structure
 - a. Room Floors 2kn/m
 - b. Baths & toilets- 2kN/m
 - c. Balconies- 4kN/m
 - d. Roof slab (Access Provided) -1kN/m
- 2) Dead Load Applicable
 - a. Partition wall -5.73kN/m
 - b. Floor finishes (Rooms) 1kN/m
 - c. Floor Finish (Roof)- 0.5kN/m
 - d. Weight of Slab- 3.75kN/m (From the design of Slab)

4.2 Design and Detailing of Beams

4.2.1 Top floor Beams

Long T Beam (Room-Secondary)

1 Input Data

effective Length	4.92	m
width (b)	250	mm
thickness of slab	150	mm
fck	20	(N/mm2)
fy	415	(N/mm2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
Dia of bars		
Compression steel	25	mm
tensile steel	20	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	328	mm
effective depth (d)	330	mm
overall depth (D)	380	mm
depth of rib	230	mm
width of rib	250	mm
effective flange width (b _f)	1970	mm

3 Loads

factored	load from slab	7.875	kN/m
slab load transferred to beam		18.2	kN/m
factored	load from Partition wall	0	kN/m
self weig	self weight of rib		kN/m

		Total Load (w)	20.38	kN/m
--	--	----------------	-------	------

4 Factored Moment and Shaer forces

Moment at span	61.7	kNm
Moment at support	49.3	kNm
Vu=0.5*w*L	50.1	kN

5 Main Reinforcements

xu,max = 0.48d	158.4	mm
is xu,max>Df	Yes	
Assuming neutral axis to be located at xu=Df	150	mm

Mur	568.0692	kNm
is Mur>Mu	Yes	

Hence the neutral axis is located within the flange (xu<Df)

Hence the T-section is designed as a singly reinforced rectangular section with bf=		b	1970	mm
	and	d=	330	mm

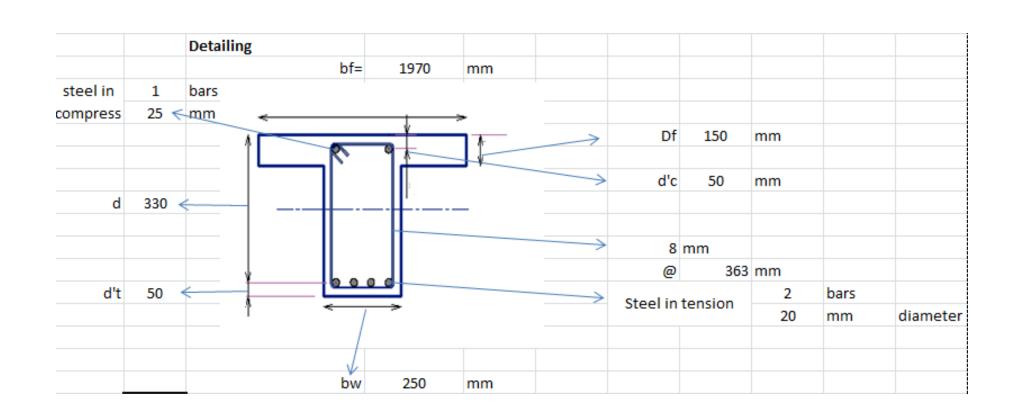
and

330 mm

Area of steel at span

Moment at span	4.92	kNm
Area of steel at span	526.35	mm2
No. of bars		2
Detailing		2
no. of bars of dia (mm)		20
Provided Steel mm ²		628

$$\frac{(A_{st})_{reqd}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u / (f_{ck}bd^2)} \right]$$


Area of steel at support

Moment at support	49.16	kNm
Area of steel at support	419.62	mm2
No. of bars		1
Detailing		1
no. of bars of dia (mm)		25
Provided Steel mm ²		491

provide	2	bars of	20	mm dia giving Ast =	628	mm2 on the tension side
	1 hanger bars of	25	mm	diameter on the compression side		

6 Shear reinforcements

Snear reinforcements				
	Design shear force Vu	50.125725	kN	
	Nominal shear stress τν	0.608	N/mm2	
if	1	bars of	20	mm diameter are bent up near the supports the remaining
	bars provide an area Ast =	628	mm2	
	percentage of steel pt	0.76		β 3.048727
	τς	0.56	N/mm2	
	Shear reinforcement	Required		
	Shear carried by bent bars is	given by		
	Vus	160.41	kN	
providing nominal shear rein	forcements using		8	mm diameter two-legged stirrups.
	spacing of stirrups sv	363	mm	

Short T Beam (Room-Secondary)

1 Input Data

effective Length	3.72	m
width (b)	250	mm
thickness of slab	150	mm
fck	20	(N/mm2)
fy	415	(N/mm2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	4.92	m
width of lobby	2.52	m
Dia of bars		
Compression steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam		248	mm
effective dept	th (d)	250	mm
overall depth	ו (D)	300	mm
depth of r	ib	150	mm
width of ri	ib	250	mm
effective flange w	vidth (b _f)	1770	mm

3 Loads

factored	load from slab 1	7.875	kN/m2
factored	load from slab 2	10.125	kN/m2
slab load transferred to beam		16.0	kN/m
factored	load from Partition wall	0	kN/m
self weig	ght of rib	0.9375	kN/m
	Total Load (w)	17.38	kN/m

4 Factored Moment and Shaer forces

Moment at span	30.1	kNm
Moment at support	24.1	kNm
Vu=0.5*w*L	32.3	kN

5 Main Reinforcements

xu,max = 0.48d		120	mm
is xu,max>Df		No	
Assuming neutral axis to be	located at xu=Df	150	mm

Mur	357.4692	kNm
is Mur>Mu	Yes	

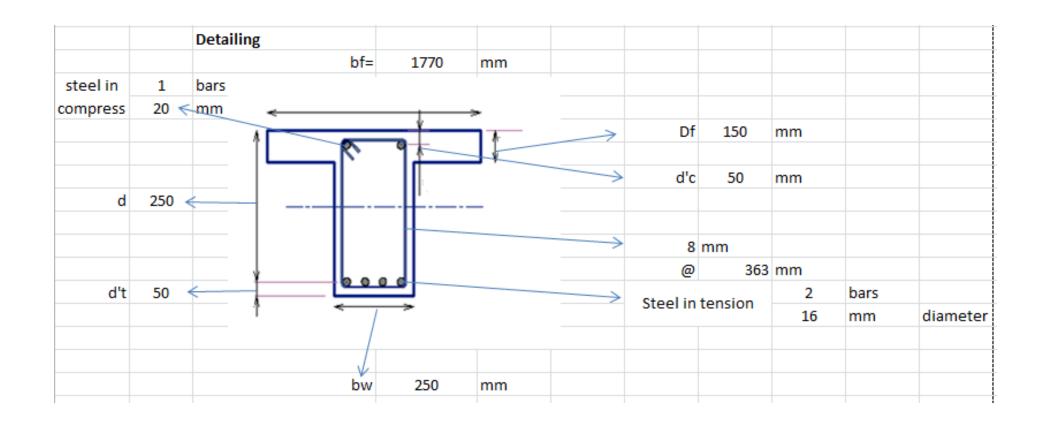
Hence the neutral axis is located within the flange (xu<Df)

Hence the T-section is designed as a singly reinforced rectangular section with bf=

b 1770 mm d= 250 mm

Area of steel at span

Moment at span	3.72	kNm
Area of steel at span	338.55	mm2
No. of bars		2
Detailing		2
no. of bars of dia (mm)		16
Provided Steel mm ²		402


$\frac{(A_{st})|_{reqd}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u/(f_{ck}bd^2)} \right]$

and

Area of steel at support

Moment at support 23.98 kNm

			Area of steel at support	269.96	mm2				
			No. of bars		1				
			Detailing		1				
			no. of bars of dia (mm)		20				
			Provided Steel mm ²		314				
	provide		2	bars of	16	mm dia giving Ast = 40)2	mm2 oi	n the tension side
		1	hanger bars of	20	mm	diameter on the compression side			
6	Shear reinforcements								
			Design shear force Vu	32.334525	kN				
			Nominal shear stress τν	0.517	N/mm2				
		if	1	bars of	16	mm diameter are bent up near th	ie s	upports	the remaining
			bars provide an area Ast =	402	mm2				
			percentage of steel pt	0.64				β	3.608815
			TC	0.53	N/mm2			F	
			Shear reinforcement	Not Required					
				-					
			Shear carried by bent bars is	s given by					
			Vus	102.66	kN				
	providing nominal shea	r rei	nforcements using		8	mm diameter two-legged stirru	ıps.		
			spacing of stirrups sv	363	mm				

T Beam (Lobby-Secondary)

1 Input Data

effective Length	2.5	m
width (b)	250	mm
thickness of slab	150	mm
fck	20	(N/mm2)
fy	415	(N/mm2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
width of lobby	2.52	m
Dia of bars		
Compression steel	16	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	166.67	mm
effective depth (d)	170	mm
overall depth (D)	220	mm
depth of rib	70	mm
width of rib	250	mm
effective flange width (b _f)	1566.67	mm

3 Loads

factored	load from slab 1	6.375	kN/m2
slab load transferred to beam		8.0	kN/m
factored	load from Partition wall	0	kN/m
self weig	ght of rib	0.4375	kN/m
	Total Load (w)	8.63	kN/m

4 Factored Moment and Shaer forces

Moment at span 6.7 kNm

Moment at support	5.4	kNm
Vu=0.5*w*L	10.8	kN

5 Main Reinforcements

xu,max = 0.48d		81.6	mm
is xu,max>Df		No	
Assuming neutral axis to be	located at xu=Df	150	mm

Mur	181.044	kNm
is Mur>Mu	Yes	

Hence the neutral axis is located within the flange (xu<Df)

Hence the T-section is designed as a singly reinforced rectangular section with bf=		b	1566.667	mm
	and	d=	170	mm

Area of steel at span

Moment at span	2.50	kNm
Area of steel at span	110.75	mm2
No. of bars		1
Detailing		2
no. of bars of dia (mm)		16
Provided Steel mm ²		402

$\frac{(A_{st})_{reqd}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u / (f_{ck}bd^2)} \right]$

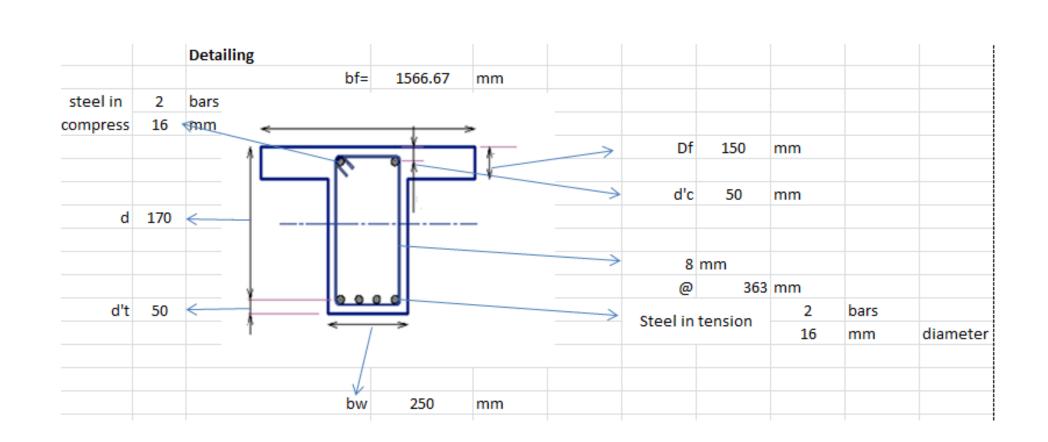
Area of steel at support

Moment at support	5.38	kNm
Area of steel at support	88.44	mm2

No. of bars	1
Detailing	2
no. of bars of dia (mm)	16
Provided Steel mm ²	402

provide

2bars of16mm dia giving Ast =402mm2 on the tension side2hanger bars of16mm diameter on the compression side


6 Shear reinforcements

Design shear force Vu	10.78125	kN
Nominal shear stress τν	0.254	N/mm2

if	1 bars of 16 mm dian		16 mm diameter are bent up near the	mm diameter are bent up near the supports the remaining
	bars provide an area Ast =	402	mm2	
	percentage of steel pt	0.95		β 2.453994
	τς	0.61	N/mm2	
	Shear reinforcement	Not Required		
	Shear carried by bent bars is	s given by		
	Vus	102.66	kN	
providing nominal shear rei	inforcements using		8	mm diameter two-legged stirrups.

spacing of stirrups sv

363 mm

Long L Beam (Room)

1 Input Data

effective Length	4.92	m
width (b)	250	mm
thickness of slab	150	mm
		(N/mm
fck	20	2)
		(N/mm
fy	415	2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
Dia of bars		
Compression		
steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

	220	
Effective depth of beam	328	mm
effective depth (d)	330	mm
overall depth (D)	380	mm
depth of rib	230	mm
width of rib	250	mm
effective flange width (b _f)	1970	mm

3 Loads

factored	load from slab	7.875	kN/m
slab load transferred to beam		9.1	kN/m
factored	load from Partition wall	0	kN/m
self weight of rib		1.4375	kN/m
	Total Load (w)	11.27	kN/m

4 Factored Moment and Shaer forces

Moment at span	11.4	kNm
Moment at support	22.7	kNm
Vu=0.5*w*L	27.7	kN

5 Effective Flange width

i)	bf	1110	mm
ii)	bf	1860	mm
	using minimum of the two		
hence	bf	1110	mm

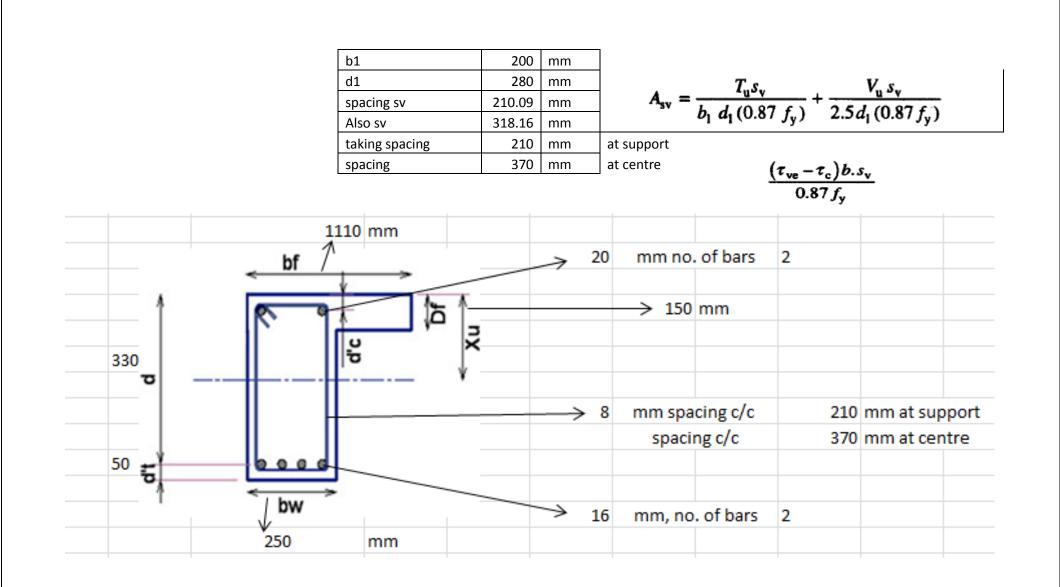
6 Torsional Moments at support section

total self weight of rib		6.1	kN/m
total ultimated load on L-beam		44.8	kN
Factored shear force Vu	2	2.41	kN
Torsional moment Tu		9.64	kN

7 Equivalent Bending Moment and Shear force

	Mt	14.28	kNm
	Mu	22.73	kNm
Equivalent B.M. Mel		37.01	kNm

Equivalent shear force Ve		84.08	kN
---------------------------	--	-------	----


8 Main Longitudinal Reinforcement

At the support section (considered as			
---------------------------------------	--	--	--

rectangular)								
	Mu		37.01	kNm				
	Area of steel		339.7	mm2	-			
	no. of bars		2					
					1			
					mm diameter			
provide		2	bars of	20	Ast=	628	mm2 at top of s	upport section.
At the center of span section					1			
	Mu		11.4	kNm	-			
	Area of steel		97.78					
		imum r		-	er clause 26.5.1.1 of	S:456-200		
	Ast		168.98	mm2				
	no. of bars		1					
		•	h (mm diameter	404.02	mm2 on the ter	ision side at
provide 		2	bars of	16	Ast=	401.92	centre of	
span section								
Shear reinforcement								
Equivalent shear force Ve			84.08	kN]			
			04.00	N/mm	-			
Nominal shear stress τν			1.02					
percentage steel			0.761				β	3.051
				N/mm				
	τς		0.563					
			Requir		-			
Shear reinfor	cement		ed					

using

8 mm diameter two legged stirrups with side 25mm and bottom covers of 50mm

Short L Beam (Room)

1 Input Data

effective Length	3.72	m
width (b)	250	mm
thickness of slab	150	mm
		(N/mm
fck	20	2)
		(N/mm
fy	415	2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	4.92	m
Dia of bars		
Compression		
steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	248	mm
effective depth (d)	250	mm
overall depth (D)	300	mm
depth of rib	150	mm
width of rib	250	mm
effective flange width (b _f)	1770	mm

3 Loads

factored	load from slab	7.875	kN/m
slab load transferred to beam		7.3	kN/m
factored	load from Partition wall	0	kN/m
self weight of rib		0.9375	kN/m
	Total Load (w)	8.73	kN/m

4 Factored Moment and Shaer forces

Moment at span	5.0	kNm
Moment at support	10.1	kNm
Vu=0.5*w*L	16.2	kN

5 Effective Flange width

i)	bf	1010	mm
ii)	bf	2460	mm
	using minimum of the two		
hence	bf	1010	mm

6 Torsional Moments at support section

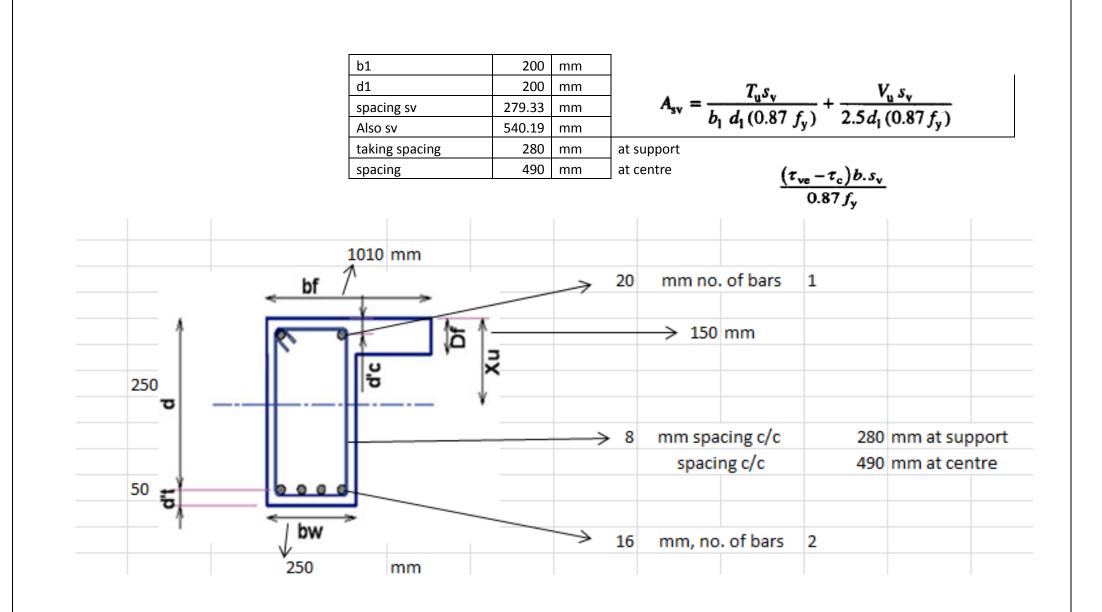
total self weight of rib	4.9	kN/m
total ultimated load on L-beam	27.2	kN
Factored shear force Vu	13.62	kN
Torsional moment Tu	5.18	kN

7 Equivalent Bending Moment and Shear force

	Mt	6.70	kNm
	Mu	10.07	kNm
Equivalent B.M. Mel		16.77	kNm

Equivalent shear force Ve		46.75	kN
---------------------------	--	-------	----

8 Main Longitudinal Reinforcement


At the support section (considered as			
---------------------------------------	--	--	--

rectangular)								
	Mu		16.77	kNm				
	Area of steel		198.9	mm2				
	no. of bars		1					
					1			
					mm diameter			
provide		1	bars of	20	Ast=	314	mm2 at top of s	support section.
At the center of span section					1			
	Mu		5.0	kNm				
	Area of steel		56.84	mm2				
		imum ı			er clause 26.5.1.1 of I	S:456-200		
	Ast		128.01	mm2				
	no. of bars		1					
		2	have of	10	mm diameter	404.02	mm2 on the ter	nsion side at
provide		2	bars of	16	Ast=	401.92	centre of	
span section								
Shear reinforcement								
Equivalent shear force Ve			46.75	kN]			
			40.75	N/mm				
Nominal shear stress τν			0.75	2				
percentage steel			0.502				β	4.622
				N/mm				
	τς		0.479	2				
			Requir		-			
Shear reinforcement			ed					

using

8 mm diameter two legged stirrups with side 25mm and bottom covers of 50mm

62

Short L Beam (Lobby)

1 Input Data

effective Length	2.5	m
width (b)	250	mm
thickness of slab	150	mm
		(N/mm
fck	20	2)
		(N/mm
fy	415	2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
Dia of bars		
Compression		
steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	166.6667	mm
effective depth (d)	170	mm
overall depth (D)	220	mm
depth of rib	70	mm
width of rib	250	mm
effective flange width (b _f)	1566.667	mm

3 Loads

factored	load from slab	6.375	kN/m
slab load transferred to beam		4.0	kN/m
factored	load from Partition wall	0	kN/m
self weight of rib		0.4375	kN/m
	Total Load (w)	4.64	kN/m

4 Factored Moment and Shaer forces

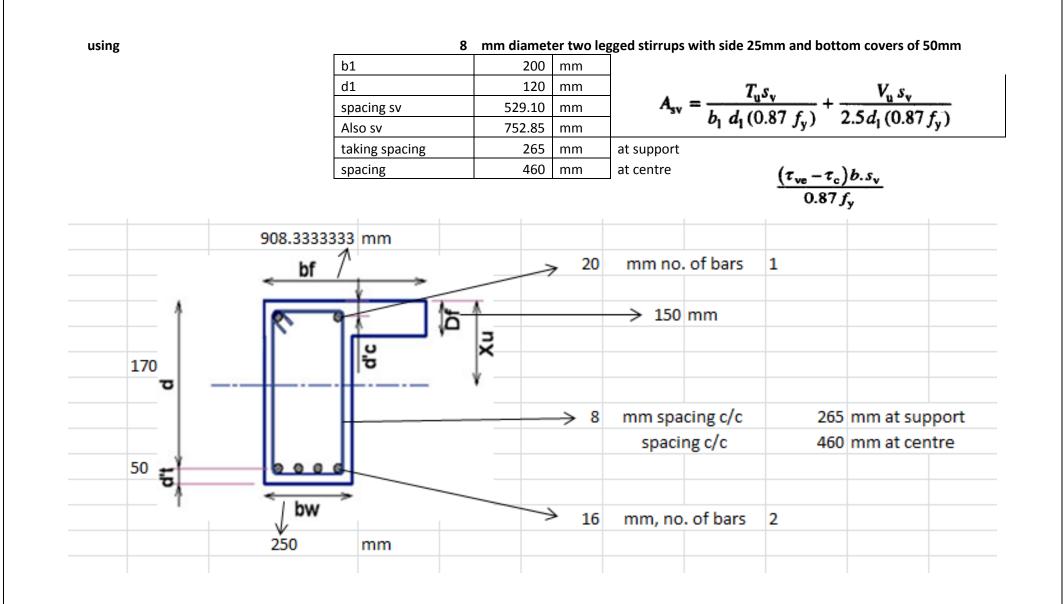
Moment at span	1.2	kNm
Moment at support	2.4	kNm
Vu=0.5*w*L	5.8	kN

5 Effective Flange width

i)	bf	908.3333	mm
i	i)	bf	1860	mm
		using minimum of the two		
	hence	bf	908.3333	mm

6 Torsional Moments at support section

total self weight of rib	2.7	kN/m
total ultimated load on L-beam	10.0	kN
Factored shear force Vu	4.98	kN
Torsional moment Tu	1.64	kN


7 Equivalent Bending Moment and Shear force

	Mt	1.81	kNm
	Mu	2.42	kNm
Equivalent B.M. Mel		4.23	kNm

Equivalent shear force Ve		15.47	kN
---------------------------	--	-------	----

8 Main Longitudinal Reinforcement

At the support section (considered as							
rectangular)		4.22		4			
	Mu	4.23	kNm				
	Area of steel	71.4	mm2				
	no. of bars	1					
				mm diameter		mm2 at top o	of support
provide	1	bars of	20	Ast=	314	section.	, support
At the center of span section				_			
	Mu	1.2	kNm				
	Area of steel	19.88	mm2				
	checking for minimur	n reinforceme	nt as per	clause 26.5.1.1 of IS:	456-200		
	Ast	87.05	mm2				
	no. of bars	1					
	-	h f	4.5	mm diameter	404.00		tension side at
provide	2	bars of	16	Ast=	401.92	centre of	
span section							
Shear reinforcement							
Equivalent shear force Ve		15.47	kN]			
		13.17	N/mm	-			
Nominal shear stress τν		0.36	2				
percentage steel		0.739]		β	3.143
			N/mm				
	τς	0.557	2]			
Shear reinforceme		Not Required					

4.2.2 Ground Floor, First Floor and Second Floor Beams

Long T Beam (Room-Secondary)

1 Input Data

effective Length	4.92	m
width (b)	250	mm
thickness of slab	150	mm
fck	20	(N/mm2)
fy	415	(N/mm2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
Dia of bars		
Compression steel	25	mm
tensile steel	20	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	328	mm
effective depth (d)	330	mm
overall depth (D)	380	mm
depth of rib	230	mm
width of rib	250	mm
effective flange width (b _f)	1970	mm

3 Loads

factored	load from slab	10.125	kN/m
slab load transferred to beam		23.4	kN/m
factored	load from Partition wall	8.595	kN/m
self weight of rib		1.4375	kN/m
	Total Load (w)	34.18	kN/m

4 Factored Moment and Shaer forces

Moment at span	103.4	kNm
Moment at support	82.7	kNm
Vu=0.5*w*L	84.1	kN

5 Main Reinforcements

xu,max = 0.48d		158.4	mm
is xu,max>Df		Yes	
Assuming neutral axis to be lo	ocated at xu=Df	150	mm

Mur	568.0692	kNm
is Mur>Mu	Yes	

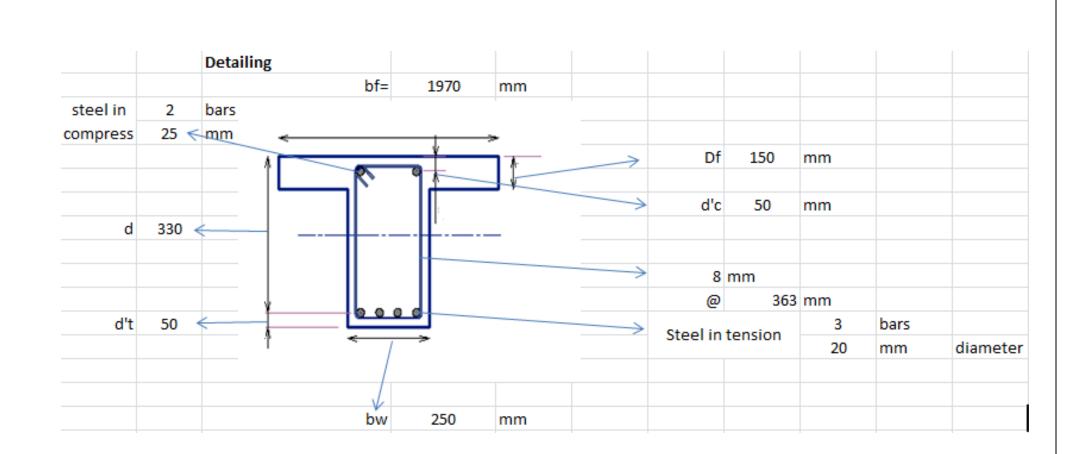
Hence the neutral axis is located within the flange (xu<Df)

d=

Hence the T-section is designed as a singly reinforced rectangular section with bf=	b	1970 mm
---	---	---------

Area of steel at span

Moment at span	4.92	kNm
Area of steel at span	893.48	mm2
No. of bars		3
Detailing		3
no. of bars of dia (mm)		20
Provided Steel mm ²		943


$$\frac{(A_{st})_{reqd}}{bd} = \frac{f_{ck}}{2f_v} \left[1 - \sqrt{1 - 4.598M_u/(f_{ck}bd^2)} \right]$$

and

Area of steel at support

330 mm

			Moment at support	82.24	kNm				
			Area of steel at support	710.52	mm2				
			No. of bars		2				
			Detailing		2				
			no. of bars of dia (mm)	<u>.</u>	25				
			Provided Steel mm ²		982				
	provide		3	bars of	20		43 I	mm2 o	n the tension side
		2	hanger bars of	25	mm e	liameter on the compression side			
~									
6	Shear reinforcements	ĺ		04 075505	1.51				
			Design shear force Vu	84.075525					
			Nominal shear stress τν	1.019	N/mm2				
		if	2	bars of	20	mm diameter are bent up near t	he si	innorts	the remaining
			bars provide an area Ast =		mm2		ne se		
				0.0					
			percentage of steel pt	1.14			ĺ	β	2.032485
			τς	0.65	N/mm2				
			Shear reinforcement	Required					
			Shear carried by bent bars is	given by					
			Vus	240.61	kN				
	providing nominal shear	rein	forcements using		8	mm diameter two-legged stirr	ups.		
			spacing of stirrups sv	363	mm				

Short T Beam (Room-Secondary)

1 Input Data

effective Length	3.72	m
width (b)	250	mm
thickness of slab	150	mm
fck	20	(N/mm2)
fy	415	(N/mm2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	4.92	m
width of lobby	2.52	m
Dia of bars		
Compression steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	248	mm
effective depth (d)	250	mm
overall depth (D)	300	mm
depth of rib	150	mm
width of rib	250	mm
effective flange width (b _f)	1770	mm

3 Loads

factored	load from slab 1	9.375	kN/m2
factored	load from slab 2	10.125	kN/m2
slab load transferred to beam		17.2	kN/m
factored	load from Partition wall	8.595	kN/m
self weight of rib		0.9375	kN/m
	Total Load (w)	27.23	kN/m

4 Factored Moment and Shaer forces

Moment at span	47.1	kNm
Moment at support	37.7	kNm
Vu=0.5*w*L	50.6	kN

5 Main Reinforcements

xu,max = 0.48d		120	mm
is xu,max>Df		No	
Assuming neutral axis to be lo	ocated at xu=Df	150	mm
•			

Mur	357.4692	kNm
is Mur>Mu	Yes	

Hence the neutral axis is located within the flange (xu<Df)

Hence the T-section is designed as a singly reinforced rectangular section with bf=

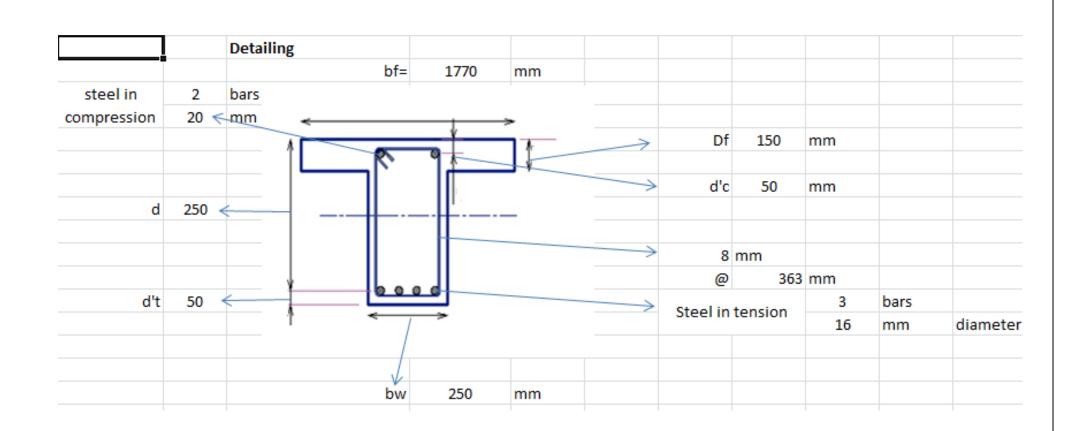
d=

b

1770 mm 250 mm

Area of steel at span

Moment at span	3.72	kNm
Area of steel at span	535.29	mm2
No. of bars		3
Detailing		3
no. of bars of dia (mm)		16
Provided Steel mm ²		603


$$\frac{(A_{st})_{\text{regd}}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u/(f_{ck}bd^2)} \right]$$

and

Area of steel at support

Moment at support	37.49	kNm	
-------------------	-------	-----	--

			Area of steel at support	425.99	mm2				
		ĺ	No. of bars		2	1			
		ĺ	Detailing		2				
		ĺ	no. of bars of dia (mm)		20				
			Provided Steel mm ²		628]			
	provide		3	bars of	16	mm dia giving Ast = 6	503	mm2 o	n the tension side
	•	2	hanger bars of	20	mm	diameter on the compression side			
			C						
6	Shear reinforcements	_				_			
			Design shear force Vu	50.645925	kN				
			Nominal shear stress τν	0.810	N/mm2				
		if	2	bars of	16	mm diameter are bent up near	the s	supports	the remaining
			bars provide an area Ast =	603	mm2				
								_	
			percentage of steel pt	0.97				β	2.405877
			τς	0.61	N/mm2				
			Shear reinforcement	Required					
			Shear carried by bent bars is g	given by					
			Vus	153.99	kN				
	providing nominal shear	reinf			8	mm diameter two-legged stir	rups	•	
			U U		_		•		
			spacing of stirrups sv	363	mm				

T Beam (Lobby-Secondary)

1 Input Data

effective Length	2.5	m
width (b)	250	mm
thickness of slab	150	mm
fck	20	(N/mm2)
fy	415	(N/mm2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
width of lobby	2.52	m
Dia of bars		
Compression steel	16	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam		166.67	mm
effective	depth (d)	170	mm
overall o	lepth (D)	220	mm
depth	of rib	70	mm
width of rib		250	mm
effective flar	nge width (b _f)	1566.67	mm

3 Loads

factored	load from slab 1	8.625	kN/m2
slab load transferred to beam		10.8	kN/m
factored	load from Partition wall	0	kN/m
self weight of rib		0.4375	kN/m
	Total Load (w)	11.44	kN/m

4 Factored Moment and Shaer forces

Moment at span 8.9 kNm

Moment at support	7.1	kNm
Vu=0.5*w*L	14.3	kN

5 Main Reinforcements

xu,max = 0.48d		81.6	mm
is xu,max>Df		No	
Assuming neutral axis to be	located at xu=Df	150	mm

Mur	181.044	kNm
is Mur>Mu	Yes	

Hence the neutral axis is located within the flange (xu<Df)

Hence the T-section is designed as a singly reinforced rectangular section with bf=		b	1566.667	mm
	and	d=	170	mm

Area of steel at span

Moment at span	2.50	kNm
Area of steel at span	147.28	mm2
No. of bars		1
Detailing		2
no. of bars of dia (mm)		16
Provided Steel mm ²		402

$$\frac{(A_{st})_{reqd}}{bd} = \frac{f_{ck}}{2f_y} \left[1 - \sqrt{1 - 4.598M_u/(f_{ck}bd^2)} \right]$$

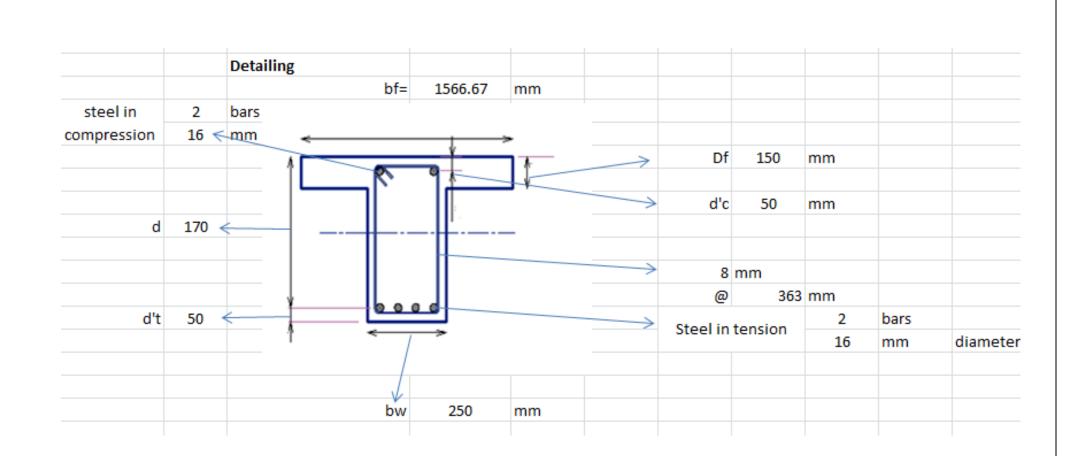
Area of steel at support

Moment at support	7.13	kNm
Area of steel at support	117.55	mm2

No. of bars	1
Detailing	2
no. of bars of dia (mm)	16
Provided Steel mm ²	402

provide

2bars of16mm dia giving Ast =402mm2 on the tension side2hanger bars of16mm diameter on the compression side


6 Shear reinforcements

Design shear force Vu	14.296875	kN
Nominal shear stress τν	0.336	N/mm2

if	1	bars of	16	mm diameter are bent up near the supports the remair	
	bars provide an area Ast =	402	mm2		
	percentage of steel pt	0.95		β 2.453994	
	τς	0.61	N/mm2		
	Shear reinforcement	Not Required			
	Shear carried by bent bars is	s given by			
	Vus	102.66	kN		
providing nominal shear rei	inforcements using		8	mm diameter two-legged stirrups.	

spacing of stirrups sv

363 mm

Long L Beam (Room)

1 Input Data

effective Length	4.92	m
width (b)	250	mm
thickness of slab	150	mm
		(N/mm
fck	20	2)
		(N/mm
fy	415	2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
Dia of bars		
Compression		
steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	328	mm
effective depth (d)	330	mm
overall depth (D)	380	mm
depth of rib	230	mm
width of rib	250	mm
effective flange width (b _f)	1970	mm

3 Loads

factored	load from slab	10.125	kN/m
slab load transferred to beam		11.7	kN/m
factored	load from Partition wall	8.595	kN/m
self weight of rib		1.4375	kN/m
	Total Load (w)	22.46	kN/m

4 Factored Moment and Shaer forces

Moment at span	22.7	kNm
Moment at support	45.3	kNm
Vu=0.5*w*L	55.3	kN

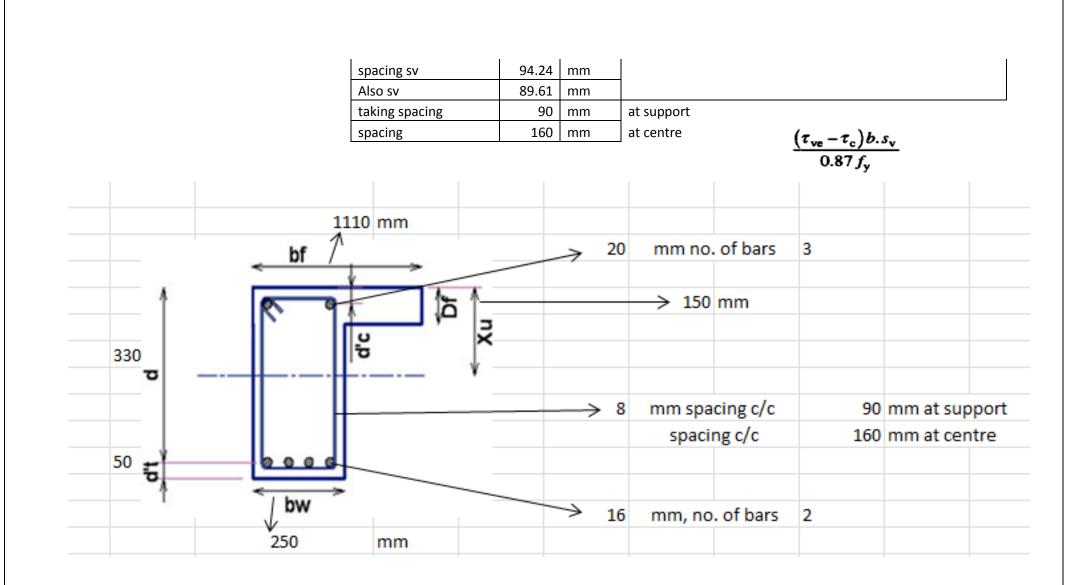
5 Effective Flange width

i)	bf	1110	mm
ii)	bf	1860	mm
	using minimum of the		
	two		
hence	bf	1110	mm

6 Torsional Moments at support section

total self weight of rib	13.5	kN/m
total ultimated load on L-beam	99.9	kN
Factored shear force Vu	49.96	kN
Torsional moment Tu	21.48	kN

7 Equivalent Bending Moment and Shear force


	Mt	31.84	kNm
	Mu	45.31	kNm
Equivalent B.M. Mel		77.16	kNm

Equivalent shear force Ve		187.44	kN
---------------------------	--	--------	----

8 Main Longitudinal Reinforcement

At the support section (considered as			
---------------------------------------	--	--	--

rectangular)								
	Mu		77.16	kNm				
	Area of steel		814.5	mm2				
	no. of bars		3					
provide		3	bars of	20	mm diameter Ast=	9/12	mm2 at top section.	of support
provide		3		20	A31-	542	Section.	
At the center of span section								
	Mu		22.7	kNm				
	Area of steel		200.26	mm2				
	checking for minir	num r	einforcem	ent as per	clause 26.5.1.1 of IS:	456-200		
	Ast		168.98	mm2				
	no. of bars		1					
					mm diameter			tension side
provide		2	bars of	16	Ast=	401.92	at	
centre of span section								
Shear reinforcement								
Equivalent shear force Ve			187.44	kN				
Nominal shear stress tv			2.27	N/mm2				
percentage steel			1.142				β	2.034
5	τς		0.653	N/mm2			•	
			Requir		1			
Shear reinfo	prcement		ed					
		-						6.00
using		8			legged stirrups with	side 25mm ar	nd bottom co	vers of 50mm
	b1		200	mm		T.s.	V	$\frac{s_v}{(0.87 f_y)}$
	d1		280	mm		-n-v		

Short L Beam (Room)

1 Input Data

effective Length	3.72	m
width (b)	250	mm
thickness of slab	150	mm
		(N/mm
fck	20	2)
		(N/mm
fy	415	2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	4.92	m
Dia of bars		
Compression		
steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam	248	mm
effective depth (d)	250	mm
overall depth (D)	300	mm
depth of rib	150	mm
width of rib	250	mm
effective flange width (b _f)	1770	mm

3 Loads

factored	load from slab	10.125	kN/m
slab load transferred to beam		9.4	kN/m
factored	load from Partition wall	8.595	kN/m
self weight of rib		0.9375	kN/m
	Total Load (w)	19.42	kN/m

4 Factored Moment and Shaer forces

Moment at span	11.2	kNm
Moment at support	22.4	kNm
Vu=0.5*w*L	36.1	kN

5 Effective Flange width

i)	bf	1010	mm
ii)	bf	2460	mm
	using minimum of the two		
hence	bf	1010	mm

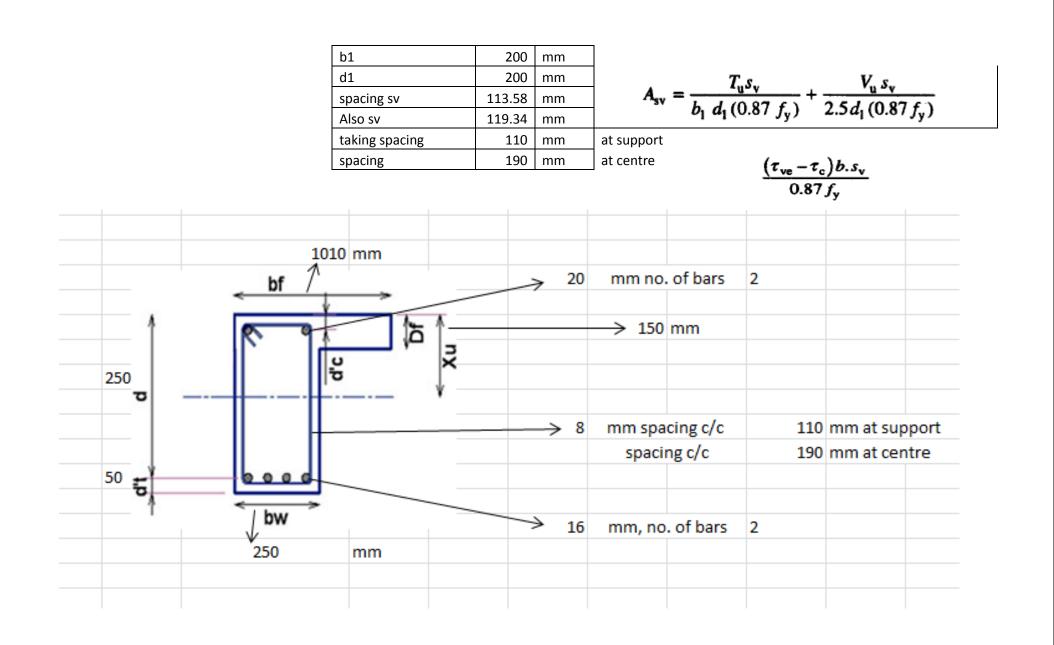
6 Torsional Moments at support section

total self weight of rib	12.0	kN/m
total ultimated load on L-beam	67.0	kN
Factored shear force Vu	33.50	kN
Torsional moment Tu	12.73	kN

7 Equivalent Bending Moment and Shear force

	Mt	16.47	kNm
	Mu	22.39	kNm
Equivalent B.M. Mel		38.87	kNm

Equivalent shear force Ve		114.98	kN
---------------------------	--	--------	----


8 Main Longitudinal Reinforcement

At the support section (considered as			
---------------------------------------	--	--	--

rectangular)								
	Mu		38.87	kNm				
	Area of steel		520.6	mm2				
	no. of bars		2					
					1			
					mm diameter			
provide		2	bars of	20	Ast=	628	mm2 at top of	support section.
At the center of span section]			
	Mu		11.2	kNm				
	Area of steel		129.63	mm2				
		imum			er clause 26.5.1.1 of I	S:456-200		
	Ast		128.01	mm2				
	no. of bars		1					
					. .		.	
provide		2	bars of	16	mm diameter Ast=	401 02	mm2 on the te centre of	nsion side at
-		Z	bars of	10	ASI=	401.92	centre of	
span section								
Shear reinforcement								
Equivalent shear force Ve			114.98	kN				
			111.50	N/mm				
Nominal shear stress τν			1.84	2				
percentage steel			1.005				β	2.311
· ~				N/mm				
	τς		0.624	2				
			Requir					
Shear reinford	cement		ed					

using

8 mm diameter two legged stirrups with side 25mm and bottom covers of 50mm

Short L Beam (Lobby)

1 Input Data

effective Length	2.5	m
width (b)	250	mm
thickness of slab	150	mm
		(N/mm
fck	20	2)
		(N/mm
fy	415	2)
Cover for comp. (d'c)	50	mm
Cover for tension (d't)	50	mm

width of room	3.72	m
Dia of bars		
Compression		
steel	20	mm
tensile steel	16	mm
Stirrups	8	mm

2 Depth

Effective depth of beam		166.6667	mm
effective depth (d)		170	mm
overall depth (D)		220	mm
depth of rib		70	mm
width of rib		250	mm
effective flange width ((b _f)	1566.667	mm

3 Loads

factored	load from slab	8.625	kN/m
slab load transferred to beam		5.4	kN/m
factored	load from Partition wall	0	kN/m
self weight of rib		0.4375	kN/m
	Total Load (w)	6.05	kN/m

4 Factored Moment and Shaer forces

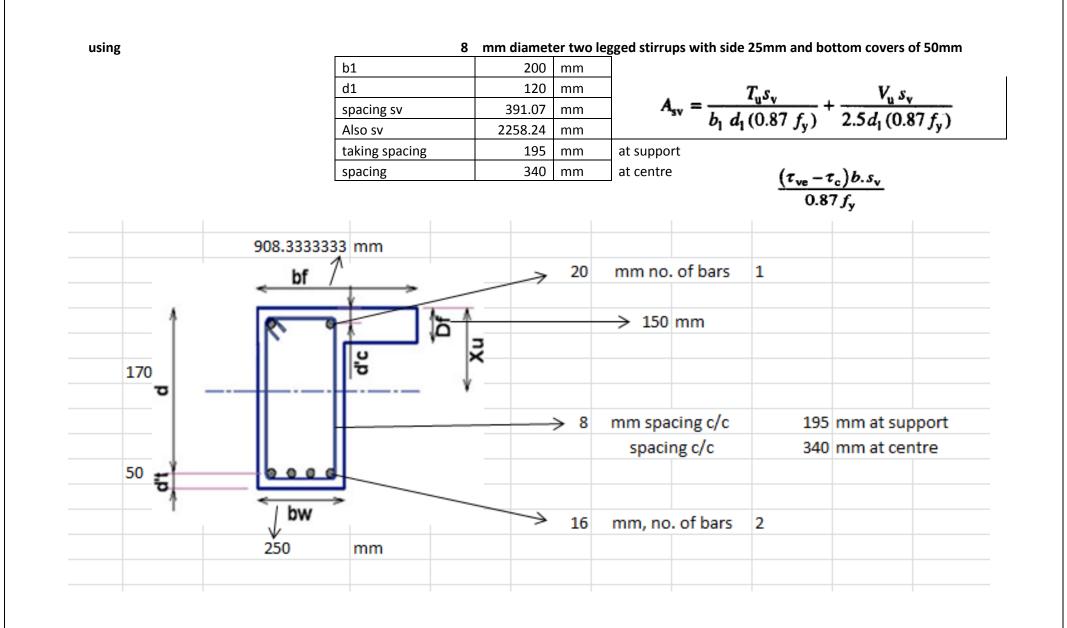
Moment at span	1.6	kNm
Moment at support	3.1	kNm
Vu=0.5*w*L	7.6	kN

5 Effective Flange width

i)	bf	908.3333	mm
i	i)	bf	1860	mm
		using minimum of the two		
	hence	bf	908.3333	mm

6 Torsional Moments at support section

total self weight of rib	3.6	kN/m
total ultimated load on L-beam	13.5	kN
Factored shear force Vu	6.74	kN
Torsional moment Tu	2.22	kN


7 Equivalent Bending Moment and Shear force

	Mt	2.45	kNm
	Mu	3.15	kNm
Equivalent B.M. Mel		5.60	kNm

Equivalent shear force Ve		20.93	kN
---------------------------	--	-------	----

8 Main Longitudinal Reinforcement

At the support section (considered as rectangular)								
	Mu		5.60	kNm				
	Area of steel		95.8	mm2				
	no. of bars		1	2				
			_		1			
					mm diameter		mm2 at top o	of support
provide		1	bars of	20	Ast=	314	section.	
At the center of span section					1			
	Mu		1.6	kNm				
	Area of steel		25.99	mm2				
	checking for minim	num		nt as per o	clause 26.5.1.1 of IS:4	456-200		
	Ast		87.05	mm2				
	no. of bars		1					
provide		2	bars of	10	mm diameter Ast=	401 02	mm2 on the t centre of	tension side at
-		2	Dars Of	10	ASI-	401.92	centre or	
span section								
Shear reinforcement								
Equivalent shear force Ve			20.93	kN				
				N/mm				
Nominal shear stress τν			0.49	2				
percentage steel			0.739				β	3.143
				N/mm				
	τς		0.557	2				
Shear reinforceme			0.557 Not Required	2				

5. Design of Columns

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member. For the purpose of wind or earthquake engineering, columns may be designed to resist lateral forces. Other compression members are often termed "columns" because of the similar stress conditions. Columns are frequently used to support beams or arches on which the upper parts of walls or ceilings rest.

5.1 Types of Columns

- 1) Based on shape Rectangle, Square, Circular, Polygon
- 2) **Based on slenderness ratio -** Short column, < 12, Long column, > 12
- 3) **Based on type of loading -** Axially loaded column, A column subjected to axial load and uniaxial bending, A column subjected to axial load and biaxial bending
- 4) Based on pattern of lateral reinforcement Tied columns, Spiral columns
 - i) Minimum eccentricity: Emin > 1/500 + D/30 > 20

Where, l = unsupported length of column in 'mm' D = lateral dimensions of column

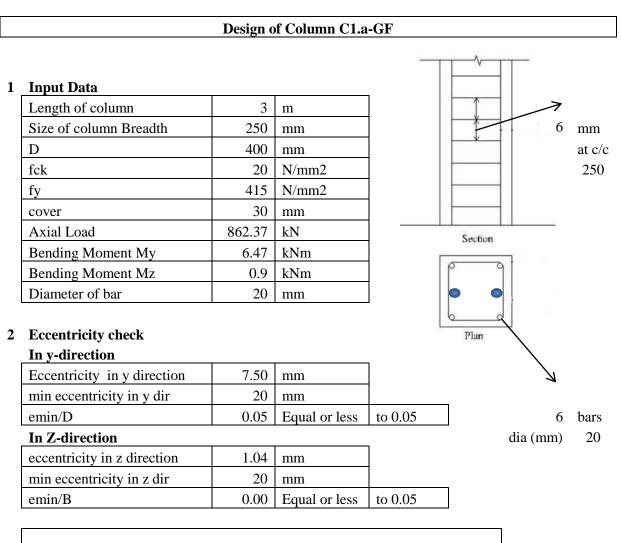
5) Types of Reinforcements for columns and their requirements

a) Longitudinal Reinforcement

- *i*) Minimum area of cross-section of longitudinal bars must be atleast 0.8% of gross section area of the column.
- *ii*) Maximum area of cross-section of longitudinal bars must not exceed 6% of the gross cross-section area of the column.
- *iii*) The bars should not be less than 12mm in diameter.
- *iv*) Minimum number of longitudinal bars must be four in rectangular column and 6 in circular column. Spacing of longitudinal bars measures along the periphery of a column should not exceed 300mm.

b) Transverse reinforcement

- i) It may be in the form of lateral ties or spirals.
- ii) The diameter of the lateral ties should not be less than 1/4th of the diameter of the largest longitudinal bar and in no case less than 6mm.
- iii) The pitch of lateral ties should not exceed Least lateral dimension 16 x diameter of longitudinal bars (small) 300mm
- c) Helical Reinforcement
 - i) The diameter of helical bars should not be less than 1/4th the diameter of largest longitudinal and not less than 6mm
 - ii) The pitch should not exceed (if helical reinforcement is allowed); 75mm 1/6th of the core diameter of the column
 - iii) Pitch should not be less than, 25mm 3 x diameter of helical bar Pitch should not exceed (if helical reinforcement is not allowed)
 - iv) Least lateral dimension 16 x diameter of longitudinal bar (smaller) 300mm


The Design of the Columns is done according to norms detailed in IS code 456-2000, Cl-25.

For Simplification, columns are grouped together according to the Length of the columns and load applicable on the columns. Therefore for each floor, the different columns have been grouped together as follows:

Thus the values of the loads taken are as follows-

- 1) Live Load Applicable on the structure
 - a. Room Floors 2kn/m
 - b. Baths & toilets- 2kN/m
 - c. Balconies- 4kN/m
 - d. Roof slab (Access Provided) -1kN/m
- 2) Dead Load Applicable
 - a. Partition wall -5.73kN/m
 - b. Floor finishes (Rooms) 1kN/m
 - c. Floor Finish (Roof)- 0.5kN/m
 - d. Weight of Slab- 3.75kN/m (From the design of Slab)

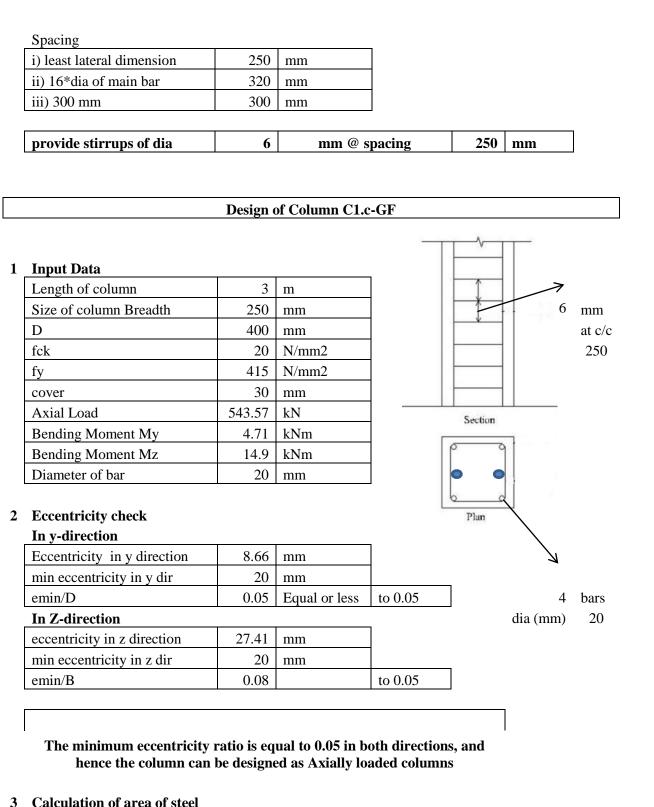
5.2 Design & Detailing of Columns

The minimum eccentricity ratio is equal to 0.05 in both directions, and hence the column can be designed as Axially loaded columns

3 Calculation of area of steel

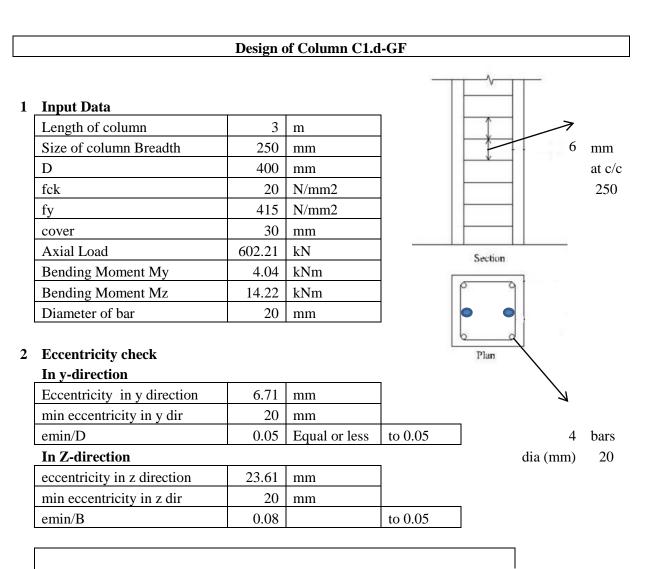
Area of steel required	1827.64	mm2		
Min area of Longitudinal r	einforceme	ent = 0.8%		
Min area of steel	800	mm2		
Hence As,	1827.64	mm2		
No. of bars required	6			
Provided bars	6	of dia	20	mm
provided area of steel	1884	mm2		

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	320	mm


iii) 300 mm	300	mm				
provide stirrups of dia	6	mm @ s	pacing	250	mm]
	Design o	of Column C1.b	-GF			
			_	<u> </u>		
Input Data						
Length of column	3	m]	1	7	
Size of column Breadth	250	mm		*	6	mm
D	400	mm		*		at c/c
fck	20	N/mm2				250
fy	415	N/mm2				
cover	30	mm				
Axial Load	908.01	kN		Section		
Bending Moment My	6.42	kNm			_	
Bending Moment Mz	0.94	kNm		000	1	
Diameter of bar	20	mm				
				6 0		
Eccentricity check				Plan	Ť	
In y-direction	-	1	7		\backslash	
Eccentricity in y direction	7.07	mm	-		Ŕ	
min eccentricity in y dir	20	mm				
emin/D	0.05	Equal or less	to 0.05		8	bars
In Z-direction			7		dia (mm)	20
eccentricity in z direction	1.04	mm				
min eccentricity in z dir	20	mm				
emin/B	0.00	Equal or less	to 0.05			

The minimum eccentricity ratio is equal to 0.05 in both directions, and hence the column can be designed as Axially loaded columns

Calculation of area of steel


Curculation of area of seeen			-	
Area of steel required	2081.15	mm2		
Min area of Longitudinal r	einforceme	ent = 0.8%		
Min area of steel	800	mm2		
Hence As,	2081.15	mm2		
No. of bars required	7		-	
Provided bars	8	of dia	20	mm
provided area of steel	2512	mm2		

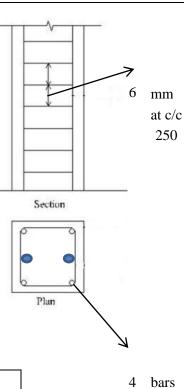
4			
	using stirrups of diameter	6	mm

· _					
	Area of steel required	56.86	mm2		
	Min area of Longitudinal re	einforcem	ent = 0.8%		
	Min area of steel	800	mm2		
	Hence As,	800.00	mm2		
	No. of bars required	3			
	Provided bars	4	of dia	20	mm
	provided area of steel	1256	mm2		

using stirrups of diameter	6	mm		
Spacing		<u>. </u>		
i) least lateral dimension	250	mm		
ii) 16*dia of main bar	320	mm		
iii) 300 mm	300	mm		
provide stirrups of dia	6	mm @ spacing	250	mm

The minimum eccentricity ratio is equal to 0.05 in both directions, and hence the column can be designed as Axially loaded columns

3 Calculation of area of steel


Area of steel required	382.58	mm2			
Min area of Longitudinal reinforcement = 0.8%					
Min area of steel	800	mm2			
Hence As,	800.00	mm2			

No. of bars required	3			
Provided bars	4	of dia	20	mm
provided area of steel	1256	mm2		

using stirrups of diameter	6	mm			
Spacing					
i) least lateral dimension	250	mm			
ii) 16*dia of main bar	320	mm			
iii) 300 mm	300	mm			
provide stirrups of dia	6	mm @ sj	pacing	250	mm

Design of Column C1.e-IF

Input Data		
Length of column	3	m
Size of column Breadth	250	mm
D	400	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load	606.33	kN
Bending Moment My	9.01	kNm
Bending Moment Mz	1.61	kNm
Diameter of bar	20	mm

2 Eccentricity check

1

In y-direction

Eccentricity in y direction	14.86	mm	
min eccentricity in y dir	20	mm	
emin/D	0.05	Equal or less	to 0.05
In Z-direction			

eccentricity in z direction	2.66	mm	
min eccentricity in z dir	20	mm	
emin/B	0.01		to 0.05

20

dia (mm)

The minimum eccentricity ratio is equal to 0.05 in both directions, and hence the column can be designed as Axially loaded columns

3 Calculation of area of steel

Area of	steel required	405.46	mm2
---------	----------------	--------	-----

Min area of steel	800	mm2				
Hence As,	800.00	mm2				
No. of bars required	3		-			
Provided bars	4	of dia	20	mm		
provided area of steel	1256	mm2				
using stirrups of diameter	6	mm]			
Spacing		·	-			
i) least lateral dimension	250	mm				
ii) 16*dia of main bar	320	mm				
iii) 300 mm	300	mm				
musside stimule of dis	6			250		
provide stirrups of dia	0	mm @ s	pacing	250	mm	
	Design	of Column C1.	f-IF			
					T	
Input Data		I	-			
Length of column	3	m		L Î	>	
Size of column Breadth	250	mm			6	mm
D	400	mm				at c/c
	20	N/mm2				250
fck	20	11/111112	-			250
fck fy	415	N/mm2				230
fy cover	-	N/mm2 mm				230
fy cover Axial Load	415	N/mm2		Section		230
fy cover	415 30	N/mm2 mm		Section		230
fy cover Axial Load	415 30 652.31	N/mm2 mm kN		Section]	230
fy cover Axial Load Bending Moment My	415 30 652.31 9.01	N/mm2 mm kN kNm		Section		230
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar	415 30 652.31 9.01 1.61	N/mm2 mm kN kNm kNm				2.50
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check	415 30 652.31 9.01 1.61	N/mm2 mm kN kNm kNm		Section Section		2.50
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction	415 30 652.31 9.01 1.61 20	N/mm2 mm kN kNm kNm mm				2.50
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction Eccentricity in y direction	415 30 652.31 9.01 1.61 20 13.81	N/mm2 mm kN kNm kNm mm				2.50
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction Eccentricity in y direction min eccentricity in y dir	415 30 652.31 9.01 1.61 20 13.81 20	N/mm2 mm kN kNm kNm mm mm				
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction Eccentricity in y direction min eccentricity in y dir emin/D	415 30 652.31 9.01 1.61 20 13.81	N/mm2 mm kN kNm kNm mm	to 0.05		dia (mm)	bars
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction Eccentricity in y direction min eccentricity in y dir emin/D In Z-direction	415 30 652.31 9.01 1.61 20 13.81 20 0.05	N/mm2 mm kN kNm kNm mm mm Equal or less	to 0.05		dia (mm)	
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction Eccentricity in y direction min eccentricity in y dir emin/D In Z-direction eccentricity in z direction	415 30 652.31 9.01 1.61 20 13.81 20 0.05 2.47	N/mm2 mm kN kNm kNm mm mm Equal or less mm	to 0.05		•	bars
fy cover Axial Load Bending Moment My Bending Moment Mz Diameter of bar Eccentricity check In y-direction Eccentricity in y direction min eccentricity in y dir emin/D In Z-direction	415 30 652.31 9.01 1.61 20 13.81 20 0.05	N/mm2 mm kN kNm kNm mm mm Equal or less	to 0.05		•	bars

minimum eccentricity ratio is equal to 0.05 in both directions, and hence the column can be designed as Axially loaded columns

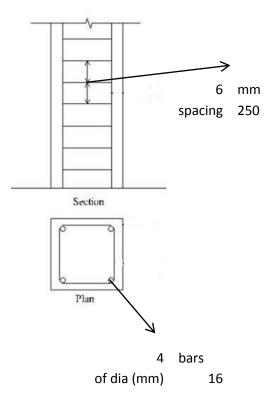
3 Calculation of area of steel

Area of steel required	660.86	mm2		
Min area of Longitudinal r				
Min area of steel				
Hence As,	800.00	mm2		
No. of bars required	3			
Provided bars	4	of dia	20	mm
provided area of steel	1256	mm2		

4

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	320	mm
iii) 300 mm	300	mm

provide stirrups of dia	6	mm @ spacing	250	mm
-------------------------	---	--------------	-----	----


Design of column C2.a-IF

1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	30	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	431.01	kN
Bending Moment M	22	kNm
Diameter of bar	16	mm

2 Reinforcement Calculation

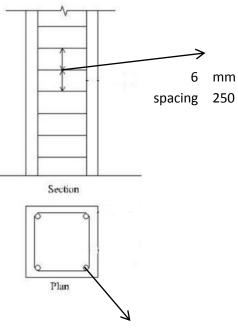
effective cover d'	46	mm
d'/D	0.184	mm
pu	0.34	
mu	0.05	
from interaction chart	33	
p/fck	0.02	
percentages steel	0.6	
Area of steel	375	mm2
Min area of steel	500	mm2
Hence As,	500.00	mm2

No. of bars required	3			
Provided bars	4	of dia	16	mm
provided area of steel	803.84	mm2		

3 Spacing of stirrups

using stirrups of diameter	6	mm	
Spacing			
i) least lateral dimension	250	mm	
ii) 16*dia of main bar	256	mm	
iii) 300 mm	300	mm	

provide stirrups of dia 6 mm @ spacing 250 mm


Design of column C2.b-IF

1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	30	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	384.11	kN
Bending Moment M	23.6	kNm
Diameter of bar	16	mm

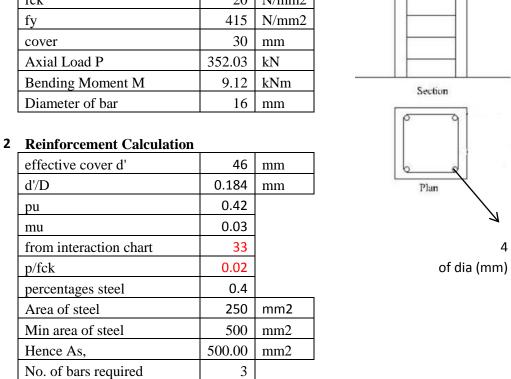
2 Reinforcement Calculation

46	mm		0
0.184	mm		Pla
0.31			
0.05			
33			
0.01			
0.3		_	
187.5	mm2		
500	mm2		
500.00	mm2		
3			
4	of dia	16	mm
803.84	mm2		
	0.184 0.31 0.05 33 0.01 0.3 187.5 500 500.00 3 4	0.184 mm 0.184 mm 0.31	0.184 mm 0.31 0.05 33 0.01 0.3 187.5 187.5 mm2 500 mm2 3 4

4 bars of dia (mm) 16

3 Spacing of stirrups

using stirrups of diameter	6	mm	
----------------------------	---	----	--


250	mm
256	mm
300	mm
	256

provide stirrups of dia	6	mm @ spacing	250	mm	
-------------------------	---	--------------	-----	----	--

Design of column C2.c-IIF

1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	352.03	kN
Bending Moment M	9.12	kNm
Diameter of bar	16	mm

16 mm

3 Spacing of stirrups

Provided bars

effective cover d'

percentages steel

Min area of steel

No. of bars required

provided area of steel

Area of steel

Hence As,

d'/D

pu mu

p/fck

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm

provide stirrups of dia	6	mm @ spacing	250	mm	
-------------------------	---	--------------	-----	----	--

4 of dia

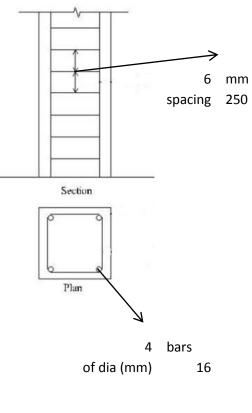
803.84 mm2

6 mm

spacing 250

4 bars

16


Design of column C2.d-IIF

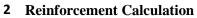
1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	398.91	kN
Bending Moment M	9.51	kNm
Diameter of bar	16	mm

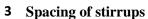
2 Reinforcement Calculation

effective cover d'	46	mm		0
d'/D	0.184	mm		Pla
pu	0.48			
mu	0.03			
from interaction chart	33			
p/fck	0.04			
percentages steel	0.8		_	
Area of steel	500	mm2		
Min area of steel	500	mm2		
Hence As,	500.00	mm2		
No. of bars required	3		-	
Provided bars	4	of dia	16	mm
provided area of steel	803.84	mm2		

3 Spacing of stirrups

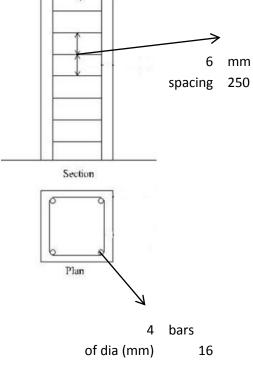

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm

				[]
provide stirrups of dia	6	mm @ spacing	250	mm


Design of column C2.e-IIF

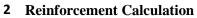
1 Input Data

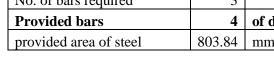
Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	258.63	kN
Bending Moment M	21.7	kNm
Diameter of bar	16	mm



effective cover d'	46	mm		0	
d'/D	0.184	mm		Pla	ın
pu	0.31		_		
mu	0.07				
from interaction chart	33				
p/fck	0.02				0
percentages steel	0.4		_		
Area of steel	250	mm2			
Min area of steel	500	mm2			
Hence As,	500.00	mm2			
No. of bars required	3		_		_
Provided bars	4	of dia	16	mm	
provided area of steel	803.84	mm2			-

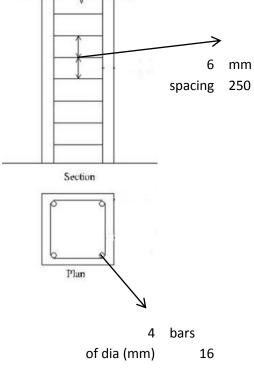
using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm


provide stirrups of dia	6	mm @ spacing	250	mm


Design of column C2.f-IIF

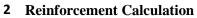
1 Input Data

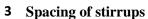
Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	222.7	kN
Bending Moment M	23.95	kNm
Diameter of bar	16	mm


effective cover d'	46	mm		0	
d'/D	0.184	mm		Pla	ın
pu	0.27		_		
mu	0.08				
from interaction chart	33				
p/fck	0.04				0
percentages steel	0.8		_		
Area of steel	500	mm2			
Min area of steel	500	mm2			
Hence As,	500.00	mm2			
No. of bars required	3		_		_
Provided bars	4	of dia	16	mm	
provided area of steel	803.84	mm2			

3 Spacing of stirrups

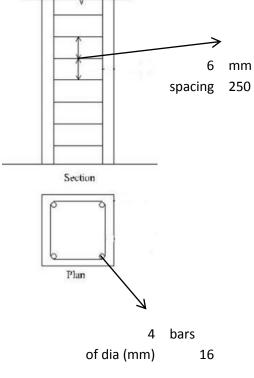
using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm


provide stirrups of dia	6	mm @ spacing	250	mm


Design of column C2.g-IIIF

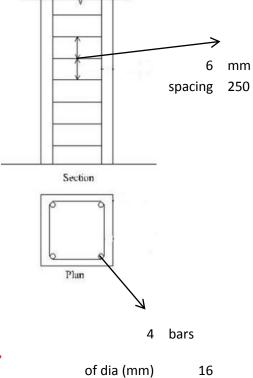
1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	97.63	kN
Bending Moment M	22.4	kNm
Diameter of bar	16	mm



46	mm		0	
0.184	mm		Pla	3
0.12		-		
0.07				
33				
0.03				С
0.6				
375	mm2			
500	mm2			
500.00	mm2			
3		_		
4	of dia	16	mm	
803.84	mm2			
	0.184 0.12 0.07 33 0.03 0.6 375 500 500.00 3 4	0.184 mm 0.12 mm 0.07 33 0.03 mm2 500 mm2 500.00 mm2 3 dia	0.184 mm 0.12	0.184 mm 0.12 Plan 0.07 33 0.03 0.03 0.6 16 375 mm2 500.00 mm2 3 16

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm


provide stirrups of dia	6	mm @ spacing	250	mm

Design of column C2.h-IIIF

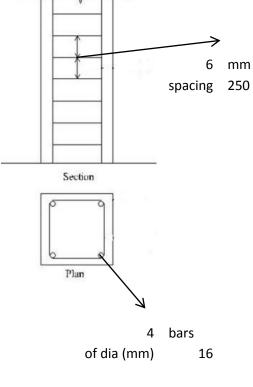
1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	146.98	kN
Bending Moment M	9.5	kNm
Diameter of bar	16	mm

2 Reinforcement Calculation

effective cover d'	46	mm			0	
d'/D	0.184	mm			Pla	n
ри	0.18		-			
mu	0.03					
from interaction chart	33					
	lies	s within ra	nge<0,			
p/fck		providi	ng			C
percentages steel	0	minimur	n steel			
Area of steel	0	mm2				
Min area of steel	500	mm2				
Hence As,	500.00	mm2				
No. of bars required	3					
Provided bars	4	of dia		16	mm	
provided area of steel	803.84	mm2				

3 Spacing of stirrups


using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm

provide stirrups of dia 6 mm @ spacing 250 mm

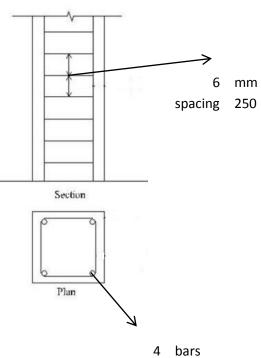
Design of column C2.i-IIIF

1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	85.66	kN
Bending Moment M	24.36	kNm
Diameter of bar	16	mm

2 Reinforcement Calculation

effective cover d'	46	mm			0	8
d'/D	0.184	mm			Pla	m
ри	0.10		-			
mu	0.08					
from interaction chart	33					
p/fck		0.02				of dia
percentages steel	0.4	minimun	n steel			
Area of steel	250	mm2				
Min area of steel	500	mm2				
Hence As,	500.00	mm2				
No. of bars required	3		-			
Provided bars	4	of dia		16	mm	
provided area of steel	803.84	mm2				


3 Spacing of stirrups

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm

	provide stirrups of dia	6	mm @ spacing	250	mm
--	-------------------------	---	--------------	-----	----

1 Input Data

Length of column	3	m
Size of column Breadth	250	mm
D	250	mm
fck	20	N/mm2
fy	415	N/mm2
cover	30	mm
Axial Load P	60.41	kN
Bending Moment M	23.02	kNm
Diameter of bar	16	mm

effective cover d'

2 Reinforcement Calculation

d'/D	0.184	mm		Plan	
pu	0.07				\mathbf{n}
mu	0.07				K
from interaction chart	33				4
p/fck		0.02			of dia (mm)
percentages steel	0.4	minimun	n steel		
Area of steel	250	mm2			
Min area of steel	500	mm2			
Hence As,	500.00	mm2			
No. of bars required	3				_
Provided bars	4	of dia	16	mm	
provided area of steel	803.84	mm2			

46 mm

3 Spacing of stirrups

using stirrups of diameter	6	mm
Spacing		
i) least lateral dimension	250	mm
ii) 16*dia of main bar	256	mm
iii) 300 mm	300	mm

provide stirrups of dia	6	mm @ spacing	250	mm
provide surrups of did	U	min @ spacing	200	

16

6. Design of Staircase

Design of Staircase (Dog- Legged)

1 Input Data

input Duta		
vertical distance H	3	m
Length of hall	4.8	m
Breadth of hall	3	m
fck	20	N/mm2
fy	415	N/mm2
Live load	2.5	kN/m2
Diameter of bars	10	mm

2 General Arrangement of stair

Let riser R	150	mm
Tread T	250	mm
width of each flight	1.4	m
Height of each flight	1.5	m
No.of risers	10	in each flight
No. of treads	9	in each flight
Space occupied by treads	2.25	m
taking width of Landing	1.275	m
Space left for passage	1.275	m

3 Computation of design constants

xu,max/d	0.48
Ru	2.762

4 Computation of loading & Bending Moment

Let bearing of th landing slab in t	160	
Effective span	3.6	m
let thickness of waist slab	200	mm
Weight of slab w' on slope	5	kN/m2
	5.831	kN/m2
Dead weight on horizontal area w1	5.651	
Dead weight on steps w2	1.875	kN/m2

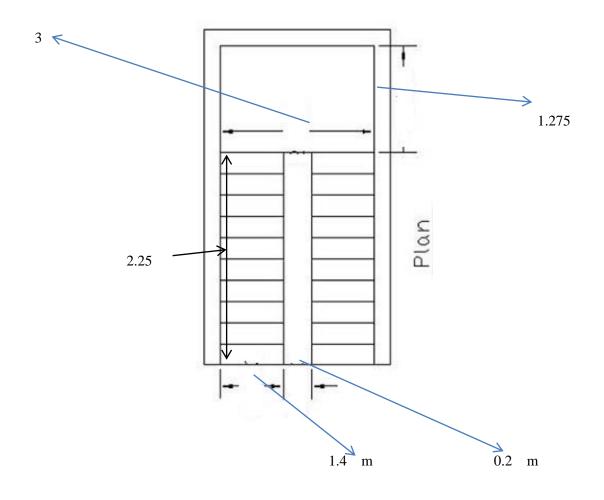
Total dead weight per meter	7.706	kN/m2
weight of finishing	0.1	kN
Live Load	2.5	kN/m2
Total w	10.306	kN/m
Ultimate Load	15.459	kN/m
Bending Moment Mu	25.11307659	kNm

5 Design of waist slab

depth 95.35 mm	Design of whise shus		
	depth	95.35	mm

adopting overall depth D	150	mm
depth d	125	mm

6 Computation of reinforcement


Since d provided is more than the required for B.M., we have an under reinforced section for which

Termoreed section for which					
Ast	620.67	mm2			
using	10	mm dia bars havi	ng Area		
no. of bars required in width	1.4	m			
	12	bars			
Spacing of bars	110	mm			
Distribution steel Asd	180	mm2			
diamter of bar	8	mm			
Spacing of bars of 8mm	270	mm			

tread 250 mm Riser 150 mm 8 mm @ 270 mm c/c 10mm @ 110 mm c/c

Section

78.5 mm2

7. Design of Footing

Design of Footing F1

1 Input Data

Length	3	m
cross section of column		
В	250	mm
D	400	mm
Axial Load Pu	1028.671	kN
Moment in x dir	74.35	kNm
fck	20	N/mm2
fy	415	N/mm2
safe bearing capacity	120	kN/m2
dia of bars	16	mm

2 Size of footing

W	1028.671	kN
W'	102.8671	kN
Μ	74.35	kNm
Area of footing	9.43	m2
taking width B	3.1	m
Length	3.1	m
eccentricity	72.28	mm
PO	107.04	kN/m2

3 Design of footing

Cantilever length	1.497	m
Bending Moment M	371.95	kNm
Mu	557.93	kNm
depth d	899	mm
Taking depth d	900	mm
Depth D	960	mm

effective d	epth available	for the second	l (inner) laver
	eptil available		

m 884 m

at the ends	D	480	mm
	d	420	mm

4 Check for shear

Two way shear	section situated at d/2 from column face all round.		
b0	1150	mm	
Shear force Fu	1330.66	kN	
τν=ks x τc	1.118	N/mm2	
d0=Fu/(4*b0*τν)	259	mm	

m 753.35236 m

at distance d/2 from column face availabe effective depth =

is provided depth > d0

in punching shear

one way shear

			from the column
critical section at a distance	900	mm	face
	0.5972777		
cantilever length	3	m	
	297.29142		
shear force Vu	3	kN	

Safe

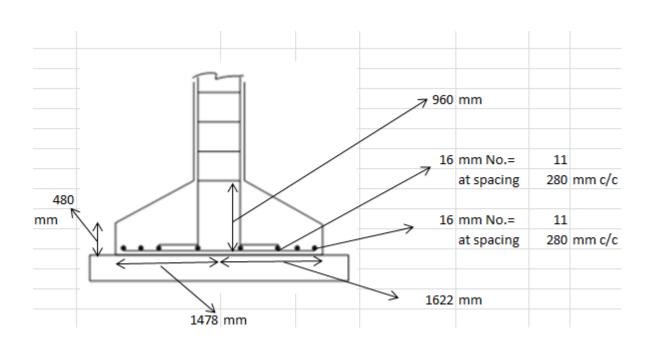
Section will be trapezoidal in shape

width b at the top	2815	mm
	706.69330	
effective depth d'	8	mm

	1	
For under reinforced section xu/d =		
0.4		
	282.67732	
xu	3	mm
width of Section at N. A		
hn	3096.01	mm

bn	3096.01	mm
τν	0.136	N/mm2

which is less than the permissible shear stress of 0.384N/mm2 at pt=0.3% corresponding to an under reinforced section


5 Steel reinforcement

For an under reinforced section			
Ast	1	mm2	
using bars of dia	16	mm	
number of bars required =			11
spacing	280	mm	

using the same reinforcement in the perpendicular dimension.

6 Check for the development length

Ld=47*Φ	752	mm	
20 // ¥			1490
			1490
using side cover of 60mm available length			
provided Ld < La	Yes		

Design of Footing F2

1 Input Data

Length	3	m
cross section of column		
В	250	mm
D	400	mm
Axial Load Pu	1125.84	kN
Moment in x dir	-64.34	kNm
fck	20	N/mm2
fy	415	N/mm2
safe bearing capacity	120	kN/m2
dia of bars	16	mm

2 Size of footing

5		
W	1125.84	kN
W'	112.584	kN
Μ	-64.34	kNm
Area of footing	10.32	m2
taking width B	3.3	m
Length	3.3	m
eccentricity	-57.14844	mm
РО	103.38	kN/m2

3 Design of footing

Cantilever length	1.468	m

Bending Moment M	367.53	kNm
Mu	551.30	kNm
depth d	894	mm
Taking depth d	900	mm
Depth D	960	mm

	<i>.</i>	
effective depth available for the second ((inner)	laver

m 884 m

m

at the ends	D	480	mm
	d	420	mm

4 Check for shear

Two way shearsection situated at d/2 from column face all round.

b0	1150	mm
Shear force Fu	1483.67	kN
τν=ks x τc	1.118	N/mm2
d0=Fu/(4*b0*τν)	288	mm

at distance d/2 from column face availabe effective depth =			721.7125	m
		in punching		
is provided depth > d0	Safe	shear		

one way shear

			from the column
critical section at a distance	900	mm	face
cantilever length	0.56785156	m	
shear force Vu	290.595455	kN	

Section will be trapezoidal in shape

width b at the top	2995	mm
effective depth d'	692.568749	mm

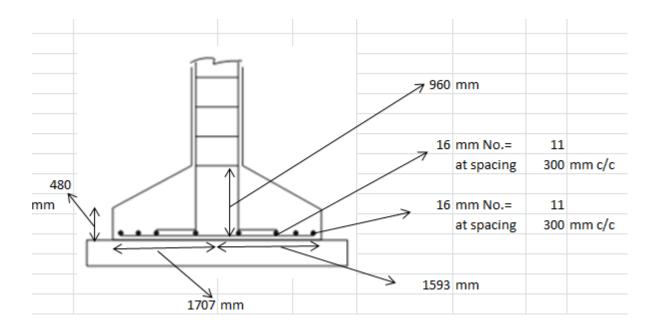
0.4		
xu	277.027499	mm

width of Section at N. A

bn	3304.99	mm
τν	0.127	N/mm2

which is less than the permissible shear stress of 0.384N/mm2 at pt=0.3% corresponding to an under reinforced section

5 Steel reinforcement


For an under reinforced section		
Ast	2106.77112	mm2

using bars of dia	16	mm	
number of bars required =			11
spacing	300	mm	

using the same reinforcement in the perpendicular dimension.

6 Check for the development length

	· · ·		1	
L	d=47*ф	752	mm	
				1590
-	using side cover of 60mm availab	le length	mm	
р	rovided Ld < La	Yes		

Design of Footing F3

1 Input Data

Length	3	m
cross section of column		
В	250	mm
D	400	mm
Axial Load Pu	738.74	kN
Moment in x dir	-37.77	kNm
fck	20	N/mm2
fy	415	N/mm2
safe bearing capacity	120	kN/m2
dia of bars	16	mm

2 Size of footing

W	738.74	kN
W'	73.874	kN
М	-37.77	kNm
Area of footing	6.77	m2
taking width B	2.7	m
Length	2.7	m
eccentricity	-51.127596	mm
РО	101.34	kN/m2

3 Design of footing

Cantilever length	1.174	m
Bending Moment M	188.51	kNm
Mu	282.77	kNm
depth d	640	mm
Taking depth d	650	mm
Depth D	710	mm

effective depth available for the second (inner) layer		634	m m	
		255	7	
at the ends	D	355 mm		

at the ends	D	355	mm
	d	295	mm

4 Check for shear

section situated at d/2 from column face all round. Two way shear

b0	900	mm
Shear force Fu	984.99	kN
τν=ks x τc	1.118	N/mm2
d0=Fu/(4*b0*τν)	245	mm

	500	
Shear force Fu	984.99	kN
τν=ks x τc	1.118	N/mm2
d0=Fu/(4*b0*τν)	245	mm

at distance d/2 from column face availabe effective de	epth =
	in punching

523.93725 m

is provided depth > d0shear Safe

one way sh	near
------------	------

			from the column
critical section at a distance	650	mm	face
cantilever length	0.5238724	m	
	215.00305		
shear force Vu	6	kN	

Section will be trapezoidal in shape

width b at the top 1842.5 mm	width b at the top	1842.5	mm
------------------------------	--------------------	--------	----

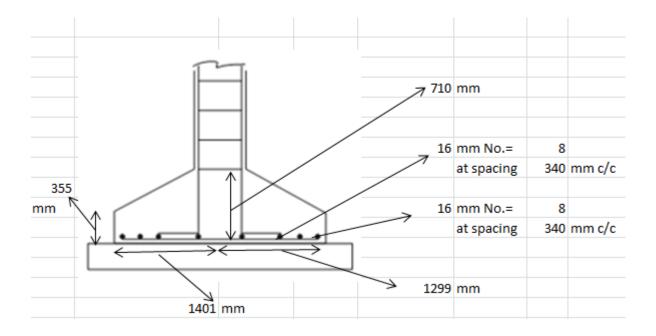
m

	480.97470	
effective depth d'	4	mm

192.38988	
1	mm
	192.38988 1

bn	2729.58	mm
τν	0.164	N/mm2

which is less than the permissible shear stress of 0.384N/mm2 at pt=0.3% corresponding to an under reinforced section


5 Steel reinforcement

For an under reinforced section			
	1488.3699		
Ast	7	mm2	
using bars of dia	16	mm	
number of bars required =			8
spacing	340	mm	

using the same reinforcement in the perpendicular dimension.

6 Check for the development length

Ld=47*φ	752	mm	
			1290
using side cover of 60mm available length			
provided Ld < La	Yes		

Design of Footing F4

1 Input Data

Length	3	m
cross section of column		
В	250	mm
D	400	mm
Axial Load Pu	641.42	kN
Moment in x dir	47.4	kNm
fck	20	N/mm2
fy	415	N/mm2
safe bearing capacity	120	kN/m2
dia of bars	16	mm

2 Size of footing

W	641.42	kN
W'	64.142	kN
Μ	47.4	kNm
Area of footing	5.88	m2
taking width B	2.5	m
Length	2.5	m
eccentricity	73.8985376	mm
РО	102.63	kN/m2

3 Design of footing

Cantilever length	1.199	m
Bending Moment M	184.39	kNm
Mu	276.58	kNm
depth d	633	mm
Taking depth d	640	mm
Depth D	700	mm

effective depth	available for the	second (inner) l	aver
chective depti			ayci

m 624 m

at the ends	D	350	mm
	d	290	mm

4 Check for shear

Two way shear	section situated at d/2 from column face all round.		
b0	890	mm	
Shear force Fu	840.19	kN	
τν=ks x τc	1.118	N/mm2	
d0=Fu/(4*b0*τν)	211	mm	

m 545.7859 m

at distance d/2 from column face availabe effective depth =

54

is provided depth > d0

in punching shear

one way shear

			from the column
critical section at a distance	640	mm	face
cantilever length	0.55889854	m	
shear force Vu	215.09322	kN	

Safe

Section will be trapezoidal in shape

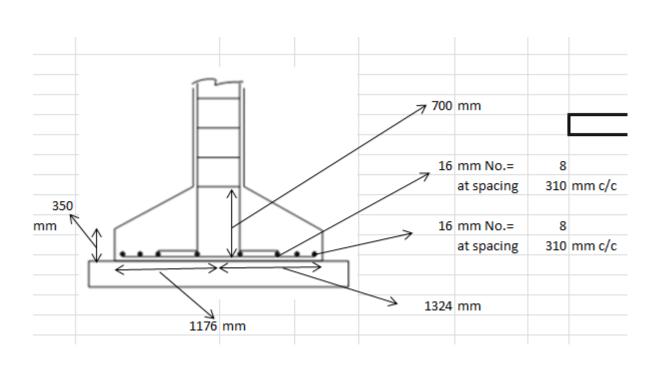
width b at the top	1690	mm
effective depth d'	485.614488	mm

For under reinforced section xu/d = 0.4		
xu	194.245795	mm

width of Section at N. A

bn	2494.33	mm
τν	0.178	N/mm2

which is less than the permissible shear stress of 0.384N/mm2 at pt=0.3% corresponding to an under reinforced section


5 Steel reinforcement

For an under reinforced section			
Ast	1482.64791	mm2	
using bars of dia	16	mm	
number of bars required =			8
spacing	310	mm	

using the same reinforcement in the perpendicular dimension.

6 Check for the development length

Ld=47*φ	752	mm	
			1190
using side cover of 60mm available length		mm	
provided Ld < La	Yes		

8. Elevated Water Tank (Intz Type)

INTRODUCTION

A water tank is used to store water to tide over the daily requirement. In the construction of concrete structure for the storage of water and other liquids the imperviousness of concrete is most essential .The permeability of any uniform and thoroughly compacted concrete of given mix proportions is mainly dependent on water cement ratio .The increase in water cement ratio results in increase in the permeability .The decrease in water cement ratio will therefore be desirable to decrease the permeability, but very much reduced water cement ratio may cause compaction difficulties and prove to be harmful also. Design of liquid retaining structure has to be based on the avoidance of cracking in the concrete having regard to its tensile strength.Cracks can be prevented by avoiding the use of thick timber shuttering which prevent the easy escape of heat of hydration from the concrete mass the risk of cracking can also be minimized by reducing the restraints onfree expansion or contraction of the structure.

WATER DEMAND

Water Quantity Estimation: The quantity of water required for municipal uses for which the water supply scheme hasto be designed requires following data:Water consumption rate (Per Capita Demand in litres per day per head)Population to be served. Quantity= Per demand x Population

Water Consumption Rate: It is very difficult to precisely assess the quantity of water demanded by the public, since there are many variable factors affecting water consumption.

Factors affecting per capita demand:

• Size of the city: Per capita demand for big cities is generally large as compared tothat for smaller towns as big cities have sewered houses.

- Presence of industries.
- Climatic conditions.
- Habits of economic status.

• Quality of water: If water is aesthetically \$ people and their . Medically safe, the consumption will increase as people will not resort to privatewells, etc.

• Pressure in the distribution system.

• Efficiency of water works administration: Leaks in water mains and services; and un authorised use of water can be kept to a minimum by surveys.

• Cost of water.

• Policy of metering and charging method: Water tax is charged in two different ways on the basis of meter reading and on the basis of certain fixed monthly rate.

WATER TANKS

CLASSIFICATIONS:

Classification based on under three heads:

- 1. Tanks resting on ground
- 2. Elevated tanks supported on stagging
- 3. Underground tanks
- . Classification based on shapes
- 1. Circular tanks
- 2. Rectangular tanks
- 3. Spherical tanks
- 4. Intze tanks
- 5. Circular tanks with conical bottom

Design of Intz Tank

Number of people = 2000
 Daily requirement = 1350lpcd
 Total water required = 2000*135*2= 540klpcd= 540cu.m
 Designing for 350cu.m, with refilling twice a day.

Capacity =350 cu.m Height of supporting tower=16m No. of columns=8 Depth of foundation=1 m below GL.

Permissible Stresses:-M20 Grade Concrete: $\sigma_{ct} = 1.2 \text{ N/mm}^2$, $\sigma_{cb} = 1.7 \text{ N/mm}^2$; m= 13 $\sigma_{cc} = 5 \text{ N/mm}^2$, $\sigma_{cbc} = 7 \text{ N/mm}^2$ Fe-415 Grade Steel: $\sigma_{st} = 150 \text{ N/mm}^2$

2) Dimensions:-

Let Inside Diameter of the tank = D

Assuming average depth=0.75D

$$(\frac{\pi D2}{4} * 0.75D) = 350$$

Diameter (D) =8.5m Height of cylindrical portion = 6.2m Depth of conical dome = 1.7m Spacing of bracings = 4m Dia. of supporting tower = 5m

3) Design of top Dome

Assume thickness of dome slab =100mm Live load on dome =1.5 kN/m² Self wt. = 2.4 kN/m² Finishes = 0.1 kN/m² Total load,w = 4 kN/m² Central rise, r =1.7m Radius of dome,R: $r(2R-r) = (0.5D)^2$ R=6.2m $\cos\Theta = \cos(36.24) = 0.8$

Meridional Thrust,
$$T_1 = \frac{wR}{1 + \cos\theta} = 13.80 \text{ kN/m}$$

Circumferential force, $T_2 = wR \left[cos\theta - \frac{1}{1 + cos\theta} \right] = 6.06 \text{ kN/m}$ Meridian Stress $= \frac{T1}{A} = \frac{13.80 \times 1000}{1000 \times 100} = 0.138 \text{ N/mm}^2 < 5 \text{N/mm}^2$ Hoop Stress $= \frac{T2}{A} = \frac{6.06 \times 1000}{1000 \times 100} = 0.0606 \text{N/mm}^2 < 5 \text{N/mm}^2$

Stresses are within safe limits, providing nominal reinforcement of 0.3%, $A_{st} = \frac{0.3 \times 100 \times 1000}{100} = 300 \text{ mm}^2$ Provide 8mm dia. bars at 160mm c/c on both faces.

4) Design of Top ring beam:

Hoop tension, $F_t = \frac{T1\cos\Theta.D}{2} = 46.92$ kN

 $\begin{aligned} A_{st} &= \frac{Ft}{\sigma st} = \frac{46.92 \times 1000}{150} = 313 \text{ mm}^2 \\ \text{Provide 4 bars of 12mm dia. } (A_{st} = 452 \text{ mm}^2) \\ \text{If } A_c \text{ is cross-sectional area of ring beam}, \frac{46.92 \times 1000}{Ac + 13 \times 452} = 1.2 \end{aligned}$

 $A_c = 33224 \text{ mm}^2$

Provide 200mm*200mm size top ring beam, with 4 bars of 12mm dia. as main reinforcement and 6 mm dia. stirrups at 200mm c/c.

Shear force along the edge = $T_1 \sin \Theta = 8.21 \text{kN}$ Shear stress along the edge =0.0821` N/mm² – very low

5) Design of cylindrical wall:

Maximum hoop tension at the base of wall, $F_t = \frac{whD}{2}$, where, w = unit wt. of water=10kN/m³ h=height of water

 $F_t = 263.5 \text{ kN/m}$

Tension reinforcement per metre of height $A_{st} = \frac{Ft}{\sigma st} = \frac{263.5*1000}{150} = 1757 \text{ mm}^2/\text{m height.}$

Provide 6-20mm dia. bars @180mm c/c on each face.($A_{st} = 1885 \text{mm}^2$)

 A_{st} required at 1.7m below top =482 mm² Provide 10-10mm bars @180mm c/c on each face.

Let, t =thickness of side wall at bottom $\frac{263.5*1000}{1000t+13*1885} = 1.2$

t =195 mm Adopt 250mm thick wall at bottom gradually reducing to 200mm at top.

Distribution steel: At bottom, $A_{st} = 0.2\%$ of cross-sectional area $= 500 \text{mm}^2$ Provide 6-10mm dia. bars at 200mm c/c.

At top, 0.2% of cross-sectional area =400mm² Provide 10mm dia. bars at 250mm c/c.

6) Design of bottom ring beam:

Load due to top dome = $T_1 \sin \Theta$ =8.21kN/m Load due to top ring beam =0.2*0.2*24 =0.96kN/m Self wt. of ring beam (assuming 1.2m*0.6m*24kN/m³) =17.28kN/m Load due to cylindrical wall = $\frac{0.250+0.2}{2}$ * 6.2 * 24 = 33.48kN/m Total vertical load V=60kN/m

Hoop tension due to vertical loads, $H_v = \frac{vD}{2} = 255$ kN Hoop tension due to water pressure, $H_w = \frac{whdD}{2} = 158.1$ kN Total hoop tension = $H_v + H_w = 413.1$ kN $A_{st} = 2754$ mm² Provide 9 bars of 20 mm dia.($A_{st} = 2828$ mm²) Maximum tensile stress = $\frac{548.52 \times 1000}{1200 \times 600 + 13 \times 2828} = 0.55$ N/mm² <1.3 N/mm²

Provide ring beam 1200mm wide and 600mm deep with 9-20mm dia bars and distribution bars of 10mm dia from cylindrical wall taken round the main bars as stirrups at 180mm c/c spacing.

7) Design of conical dome:

Average dia $=\frac{8.5+5}{2} = 6.75$ m

Average depth of water = $6.2 + \frac{1.7}{2} = 7.05 m$

Weight of water above conical dome

$$= \pi \times 6.75 \times 7.05 \times 1.7 \times 10 = 2451.50$$
 KN

Assuming 600mm thick slab,

Self weight of slab = $\pi \times 2.30 \times 6.75 \times 0.6 \times 24 = 702.33$ KN

Load from top dome, top ring beam, cylindrical wall and bottom ring beam

 $= \pi \times 8.5 \times 60$

= 1602.21 KN

Total load at base of conical slab =2451.50+702.33+1602.21= 4756 KN

Load/ unit length, $V_2 = \frac{4756}{\pi \times 6.2} = 244.2$ KN/m

Meridian thrust = T = $V_2 cosec\theta$

= 244.2×cosec 45°= 345.35 KN

Meridional stress $=\frac{345.35 \times 10^3}{600 \times 1000} = 0.580 \text{ N/} mm^2$

Hoop tension in conical dome will be maximum at the top of the conical slab since diameter is maximum at this section.

Hoop tension (H) = $(p*cosec\theta + q*cosec\theta)*D/2$

Water pressure, $p=10\times6.2=62$ KN/ mm^2

Weight of conical dome slab / m^2 ,

$$q = 0.6 \times 24 = 14.4 \ KN \ mm^2$$

 θ = 45°, D= 8.5 m

 $H = (62 \times cosec45^{\circ} + 14.4 \times cot45^{\circ}) 8.5/2$

= 433.85 KN

$$A_{st} = \frac{433.85 \times 10^3}{150} = 2892.33 \ mm^2$$

Provide 6-25mm ϕ bars @ 180mm c/c

 A_{st} (2945.24 mm^2) On both faces of slab

Distribution steel: $\frac{0.2 \times 600 \times 1000}{100} = 1200 \ mm^2$

Provide 10mm ϕ at 130mm c/c on both faces along the meridions.

Max. tensile stress = $\frac{433.85 \times 10^3}{(600 \times 1000) + (13 \times 2945.24)}$ = 0.68<1.3(safe)

8) Design of bottom spherical dome:-

Thickness of dome slab (assume) = 300mm

Diameter at base = 5m

Central rise =
$$1/5 \times 5 = 1$$
 m

Radius of dome R, $(2R-r)r = (D/2)^2$

$$R = \frac{(D/2)^2 + r^2}{2r} = \frac{(5/2)^2 + 1^2}{2} = 3.625 \text{m} = 3.7 \text{m}$$

Self weight of dome slab

$$= 2\pi \times 3.7 \times 1 \times 0.3 \times 24 = 167.38$$
 KN

Volume of water above the dome

$$=\pi \times 2.5^{2} \times (6.2+1.7) - (\frac{2\pi \times 3.7^{2} \times 1}{3} - \frac{\pi \times 2.5^{2}}{3}(3.7-1)) = 144.12 \ m^{3}$$

Weight of water = 1441.2 KN

Total load on dome = 167.38+1441.2= 1608.58 KN

Load/ unit area $= \frac{1608.58}{\pi \times 2.5^2} = 81.92 \text{ KN/}m^2$ Meridional thrust, $T = \frac{WR}{1 + cos\theta}$ $\cos\theta \frac{2.68}{3.7} = 0.724$ $\theta = 44.5^{\circ}$ $T_1 = \frac{81.92 \times 3.7}{1.724} = 175.8 \text{ KN/}m$ Meridional stress= $\frac{175.8 \times 10^3}{300 \times 1000}$ =0.586(safe) Circumference force = wR ($\cos\theta - \frac{1}{1 + cos\theta}$) $= 81.92 \times 3.7(0.724 - 1/1.724)$

Hoop stress= $\frac{43.63 \times 10^3}{300 \times 1000}$ =0.145 N/mm² (safe)

Provide nominal reinforcement of 0.3%,

$$A_{st} = \frac{0.3 \times 300 \times 1000}{100} = 900 mm^2$$

Provide 12mm φ bars (a) 120 mm c/c circumferentially and along the meridions.

9) Design of bottom circular Girder

Thrust from conical dome, T_1 = 244.2 KN/m Thrust from spherical dome, T_2 = 175.8 KN/m Net horizontal force on ring beam $T_1 cos \alpha - T_2 cos \beta = (244.2 \times 0.707 - 175.8 \times 0.713) = 47.3$ KN Hoop compression in beam $= \frac{47.3 \times 5}{2} = 118.25$ KN Assuming the size of girder as 600 mm wide and 1200 mm deep hoop stress $= \frac{118.25 \times 10^3}{600 \times 1200} = 0.164 N/mm^2$ Vertical load on ring beam $= 244.2 \times 0.707 + 175.8 \times 0.70$ = 295.7 KN/m Self weight of beam $= 0.6 \times 1.2 \times 24 = 17.28$ KN/m Total load = 295.7 + 17.28 = 313KN/m Total design load on ring girder $W = \pi Dw = \pi \times 5 \times 313$ = 4916.6KN

The circular girder is supported on 6 columns using the moment coefficient

Maximum –ve BM at support section = 0.0142wR

= 0.0142×4916.6×2.5

$$= 174.5$$
kN-m

maximum +ve BM at mid span section

=0.0075wR = 0.0075×4916.6×2.5 = 92.2kN-m

Torsional moment = 0.0015wR

$$= 0.0015 \times 4916.6 \times 2.5$$

$$= 18.4$$
kN-m

Shear force @ support section

$$V = \frac{wR \times \frac{\pi}{4}}{2} = \frac{313 \times 2.5 \times \frac{\pi}{4}}{2} = 307.3 \text{kN}$$

Shear force at section of maximum torsion $307.3 - \frac{313*3.14*2.5*12.75}{180} = 133.2$ kN

10) Design of support section:

M = 102kN-mV=307.3kN k_b =0.39 j_b =0.87, Q=0.897 d= $\sqrt{\frac{174.5*10^{6}}{0.897*600}}$ = 570 mm

Effective depth (d)= 600 mm (taking cover of 50 mm, D= 600+50= 650mm)

$$A_{\rm st} = \frac{174.5 \times 10^6}{150 \times 0.897 \times 600} = 2162 \ \rm{mm}^2$$

Providing 7-20mm diameter bars (Ast= 2199mm²) $\tau_v = \frac{307.3*10^3}{600*600} = 0.85 \text{ N/mm}^2$

 $\frac{100Ast}{bd} = \frac{100*2199}{600*600} = 0.61$ $\tau_c = 0.27 N/mm^2$ $\tau_c < \tau_v$, hence shear reinforcement required

Shear taken by concrete $=\frac{0.27*600*600}{1000} = 97.2$ kN Balance shear =307.3- 97.2=210kN

Using 12mm diameter 4 legged stirrups, spacing

 $s_{v} = \frac{150*4*113*600}{210*10^3} = 193 \text{ mm}$; Adopt 12mm diameter 4 legged stirrups at 190mm c/c near supports.

b) Design of mid span

Maximum positive moment= 92.2kN-m

$$A_{st=\frac{92.2*10^6}{150*0.9*600}} = 1138.3 \text{mm}^2$$

But minimum area of reinforcement in the section

$$=(\frac{0.3*600*650}{100}) = 1170$$
 mm²

Providing 6 bars of 16mm diameter at mid span section and 4-legged stirrups of 10mm diameter at 300mm c/c.

c) Design of section subjected to maximum torsion

T=18.4kN-m	D= 650mm

V=133.2kN b= 600mm

M=0 d= 600mm

$$M_{t} = T^{*}(\frac{1+D/d}{1.7}) = 18.4^{*}(\frac{1+650/600}{1.7}) = 22.6$$
kN-m

Therefore $M_{e1} = (M + M_t) = (0 + 22.6) = 22.6$ kN-m

$$A_{st} = \left(\frac{22.6*10^6}{150*0.9*600}\right) = 279 \text{mm}^2$$

But minimum area of reinforcement

$$A_{st} = (\frac{0.3 \times 650 \times 600}{100}) = 1170 \text{mm}^2$$

Provide 6 bars of 16mm diameter (A_{st} = 1206mm²)

Equivalent shear $V_e = (V+1.6(T/b)) = (133.2 + 1.6*18.4/0.6) = 182.3$ kN

$$\tau_{ve} = (V_e/bd) = 0.506N/mm2$$

$$\frac{100\mathrm{Ast}}{bd} = \frac{100*1206}{600*600} = 0.335$$

From Table 1.3B $\tau_c = 0.24$ N/mm2

Since $\tau_v > \tau_c$, Shear reinforcements are required

Using 12mm diameter 4-legged stirrups with the side covers of 25mm and top and bottom covers of 50mm, spacing

IS456:2000 Clause B-6.4.3 $s_v = \frac{A_{sv} * \sigma_{sv}}{(\tau v e - \tau c) * b} = \frac{4 * 113 * 150}{(0.506 - 0.24) * 600} = 425 \text{mm}$

Adopt 12mm diameter 4-legged stirrups at 300mm c/c.

11) Design of Column of supporting tower

The supporting tower comprises 6 equally spaced columns on a circle of 5m diameter.

Loads on Columns

Vertical Load on each column: 4916.6/6 = 819.43kN

Self-weight of column of height 16m and diameter 650mm= $\frac{\pi * 0.65^2 * 16 * 24}{4} = 127$ kN

Self-weight of bracing (3no.s at 4m interval)(size 500mmx500mm) = $\frac{3*0.5*0.5*\pi*5*24}{6}$ = 47kN

Total vertical Load on each column = 819.3 + 127 + 47 = 993.3kN

Wind Forces on column

Intensity of wind pressure = 1.5 kN/m^2 . Reduction coefficient for circular shape = 0.7

Wind force on Top Dome and Cylindrical wall = (6.2+1.7/2)*0.7*1.5*8.5 = 62.92kN

Wind force on conical dome = 1.7*6.75*0.7*1.5 = 12.05kN

Wind force on bottom ring beam = 1.2*5*0.7*1.5 = 6.3kN

Wind force on 4 columns = 4*0.65*16*0.7*1.5 = 43.68kN

Wind force on bracings = 0.5*5*3*1.5 = 11.25kN

Total horizontal wind force = 62.92+12.05+6.3+43.68+11.25 = 136.2kN

Assuming contra flexure points at mid height of columns and fixity at base due to raft foundations the moment at the base of the columns is computed as

M = 136.2*2.5*0.5 = 170.25kN-m

 M_1 = moment at the base of the column due to wind loads

 $= 62.92 \times 25.6 + 12.05 \times 17.7 + 6.3 \times 16 + 3.75 \times 12 + 3.75 \times 8 + 3.75 \times 4 = 2014.84$ kN-m

And V = reaction developed at the base of exterior columns

 $M_1 = \Sigma M + V/r_1 * (\Sigma r^2)$

 $2014.84 = 170.25 + V/2.5 * (2*2.5^{2} + 2*(2.5/\sqrt{2})^{2})$

V = 245.95 kN

Therefore load on leeward column at base = 993.3 + 245.95 = 1239.2kN

Moment in each column at base = 170.25/6 = 28.375kN-m

Axial Load P = 1239.2kN

Bending Moment M = 28.38kN-m

Eccentricity $e = (M/P) = (28.38 \times 10^6 / 1239.2 \times 10^3) = 23 \text{ mm}$

Since eccentricity is small direct stresses are predominant.

Using 8 bars of 32mm diameter and lateral ties of 10mm diameter at 300mm c/c.

 $A_{sc} = 8*804 = 6432mm2$

Equivalent area of composite section $A_e = (\frac{\pi * 650^2}{4} + (1.5 * 13 * 6432)) = 0.45 * 10^6 \text{mm}^2$ Equivalent second Moment of Area of composite section = Ie

$$= \frac{\pi * 325^4}{4} + \left((1.5 * 13) * \left[(2 * 804 * 275 * 275) + 4 * 804 * (\frac{275}{\sqrt{2}})^2 \right] \right)$$
$$= 13.48 * 10^9 \text{mm}^4$$

Direct compressive stress $\sigma'_{cc} = \frac{1239.2*10^3}{0.45*10^6} = 2.75 \text{N/mm}^2$

Bending stress = $\sigma'_{cb} = \frac{28.375 \times 10^6 \times 325}{13.48 \times 10^9} = 0.68 \text{N/mm}^2$ IS: 456-200, Clause B-4.1 $\frac{\sigma'_{cc}}{\sigma_{cc}} + \frac{\sigma'_{cb}}{\sigma_{cb}} < 1$ 0.5 < 1

Stress is within safe limits.

12) Design of bracings

Moment in brace = $(2*\text{moment in column}*\sqrt{2}) = 2*28.375*\sqrt{2} = 80.3\text{kN-m}$

Section of brace = 500mmx500mm

b= 500mm; d= 450mm

Moment of resistance of section $M_1 = 0.897*500*450^2 = 91$ kN-m

$$A_{\rm st} = \frac{80.3 \times 10^6}{230 \times 0.9 \times 450} = 862 \,{\rm mm}^2$$

Provide 4 bars of 20mm diameter ($A_{st} = 1260 \text{mm}^2$) at the top and bottom since wind direction is reversible.

Length of brace $L = (2*2.5*\sin 30^{\circ}) = 2.5m$

Maximum shear force in brace = Moment in brace / (1/2 *Length of brace)

$$= 80.3/(0.5*2.5) = 64.24$$
kN

 $\tau_v = 64.24*1000 / (500*450) = 0.286 N / mm^2$

 $(100\text{Ast/bd}) = \frac{100*1260}{500*450} = 0.56$

IS: 456-2000 Clause B-5.4 and Table 23 $\tau_c\,{=}\,0.31N/{mm^2}$

Since $\tau_v < \tau_c$, Shear reinforcements are not required.

9. Estimation

		Bar Bending	Schedu	e of Colu	mns	
		Column			_	C1 a GF
Input						
Data		Length	3	m		Dia of bars(mm)
		width	0.4	m		2
		depth	0.25	m		Number of bars
		No. of elements		12		
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
				(,	()	- 18
1	А	Straight bars	6	3.98	20	707.5
2	В	stirrups	20	1.076	6	57.38
		•	I	1	total	764.94
		No. of stir	rups= Len	gth/Spacing	; +1	
		E	328			
		A	138	1		
		Length of stirrups	1.08	1		
		Column			1	C1 b GF
Input Data		Length	3	m		Dia of bars(mm)
		width	0.4	m		2
		depth	0.25	m		Number of bars
		No. of elements		12		
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
				()	()	
1	А	Straight bars	8	3.98	20	943.4
2	В	stirrups	20	1.076	6	57.38
	_				total	1000.79
		No. of stir	rups= Len	gth/Spacing	;+1	
		E	328			
		A	138	1		
		Length of stirrups	1.08	1		
		Column	•			C1 c GF
Input Data		Length	3	m		Dia of bars(mm)
		width	0.4	m		2
		depth	0.25	m		- Number of bars
		No. of elements		4		
				· · ·	I 	
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
			_			
1	А	Straight bars	4	3.98	20	157.2
2	В	stirrups	20	1.076	6	19.12
					total	176.36

E	328
А	138

Length of stirrups	1.08		
Column			C1 d GF
Length	3	m	Dia of bars(mm)
width	0.4	m	20
depth	0.25	m	Number of bars
No. of elements		4	4
	Column Length width depth	Length3width0.4depth0.25	Length3width0.4depth0.25

	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	Α	Straight bars	4	3.98	20	157.23
2	В	stirrups	20	1.076	6	19.129
					total	176.363

E	328
А	138
Length of stirrups	1.08

	Column	C1 e IF		
Input				
Data	Length	3	m	Dia of bars(mm)
	width	0.4	m	20
	depth	0.25	m	Number of bars
	No. of elements		12	4

	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	4	3.98	20	471.70
2	В	stirrups	20	1.076	6	57.387
					total	529.090

No. of stirru	ps= Length/Spacing +1

E	328
А	138
Length of stirrups	1.08

		Column		C1 f IF		
Input						
Data		Length	3	m		Dia of bars(mm)
		width	0.4	m		20
		depth	0.25	m		Number of bars
		No. of elements		12		4
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg

1	А	Straight bars	4	3.98	20	471.70
2	В	stirrups	20	1.076	6	57.38
			•		total	529.09
		No. of stirr	ups= Len	gth/Spacing	+1	
		E	328			
		А	138			
		Length of stirrups	1.08			
	1	Column		1		C2 a IF
Input						
Data		Length	3	m		Dia of bars(mm)
		width	0.25	m		10
		depth	0.25	m		Number of bars
		No. of elements		4		
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
	IVIAIK		110.	(11)	(1111)	2 Ng
1	A	Straight bars	4	3.784	16	95.6
2	В	stirrups	20	0.776	6	13.79
	-	0		01170	total	109.47
		No. of stirr	ups= Len	gth/Spacing		
		E	178			
		A	138			
				-		
		Length of stirrups	0.78			
		Length of stirrups	0.78			
		Length of stirrups Column	0.78]		C2 b IF
-		Column				
-		Column	3	m		Dia of bars(mm)
-		Column Length width	3 0.25	m m		Dia of bars(mm)
-		Column Length width depth	3	m m		Dia of bars(mm) 10 Number of bars
-		Column Length width	3 0.25	m		Dia of bars(mm)
-	Bar	Column Length width depth	3 0.25	m m 4	Diameter	Dia of bars(mm) 10 Number of bars
-	Bar Mark	Column Length width depth No. of elements	3 0.25 0.3	m m 4 length	Diameter (mm)	Dia of bars(mm) 10 Number of bars Quantity=L*D ² /16
Input Data	Bar Mark	Column Length width depth	3 0.25	m m 4	Diameter (mm)	Dia of bars(mm) 10 Number of bars
Data	Mark	Column Length width depth No. of elements Bar Shape	3 0.25 0.3 No.	m m 4 length (m)	(mm)	Dia of bars(mm) 1 Number of bars Quantity=L*D ² /16 2 kg
-		Column Length width depth No. of elements	3 0.25 0.3	m m 4 length		Dia of bars(mm) 1 Number of bars Quantity=L*D ² /16

E	178
А	188
Length of stirrups	0.88

As all the above columns are similar to the above column , therefore total steel steel rquired by columns for floor II and III 7119.85936 kg

therefore total steel required by columns

42.069 tons

	T Beam	Long				
Input	Data	Length	4.8	m	Dia of bars	Number of bars
		width	0.25	m	20	3
		depth	0.38	m	25	2
					stirrups mm	8
					Spacing(mm	
)	360
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	5.008	20	12.37
2	В	Straight bars upper	2	5.286	25	40.78703704
3	С	Bent	2	5.82	20	28.74
4	E	stirrups	10	1.004	8	3.966
					total	85.859

BBS of Beams of ground floor, Ist Floor and IInd Floor

E	138
А	268
Length of stirrups	1

No. of stirrups= Length/Spacing +1

		a 1		1		
	T Beam	Short				
Input	Data	Length	3.72	m	Dia of bars	Number of bars
		width	0.25	m	16	3
		depth	0.3	m	20	2
					stirrups mm	8
					Spacing(mm	
)	360
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	3.848	20	9.50
2	В	Straight bars upper	2	4.036	20	19.9308642
3	С	Bent	2	4.63	20	22.85
4	E	stirrups	10	0.844	8	3.334
					total	55.614
		F	138]		

E	138
А	188
Length of stirrups	0.84

T Beam	Lobby				
Input Data	Length	2.5	m	Dia of bars	Number of bars
	width	0.25	m	16	2

		depth	0.22	m	16	2
					stirrups mm	8
					Spacing(mm	
)	360
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	2.548	20	6.29
2	В	Straight bars upper	2	2.648	16	8.36899
3	С	Bent	1	3.29	20	8.13
4	E	stirrups	10	0.684	8	2.702
					total	25.495

E	138
А	108
Length of stirrups	0.68

	L Beam	Long				
Input	Data	Length	4.92	m	Dia of bars	Number of bars
		width	0.25	m	16	2
		depth	0.38	m	20	3
					stirrups mm	8
					Spacing(mm	
)	125
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	5.128	20	12.66
2	В	Straight bars upper	3	5.396	20	39.97037
3	С	Bent	1	5.94	20	14.67
4	E	stirrups	40	1.004	8	15.866
					total	83.164

E	138
А	268
Length of stirrups	1

	L Beam	Short				
Input	Data	Length	3.72	m	Dia of bars	Number of bars
		width	0.25	m	16	2
		depth	0.3	m	20	2
					stirrups mm	8
					Spacing(mm	
)	150
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	3.848	20	9.50
2	В	Straight bars upper	2	4.036	20	19.93086
3	С	Bent	1	4.63	20	11.42
4	E	stirrups	30	0.844	8	10.003

total	
-------	--

50.859

E	138
А	188
Length of stirrups	0.84

	L Beam	Lobby				
Input	Data	Length	2.5	m	Dia of bars	Number of bars
		width	0.25	m	16	2
		depth	0.22	m	20	2
					stirrups mm	8
					Spacing(mm	
)	150
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	2.548	20	6.29
2	В	Straight bars upper	2	2.656	20	13.11605
		e 11				
3	С	Bent	1	3.29	20	8.13
4	E	stirrups	20	0.684	8	5.404
					total	32.944

E	138
А	108
Length of stirrups	0.68

No. of stirrups= Length/Spacing +1

BBS of Beams of top floor

ng ngth dth	4.8	m	Dia of bars	
0		m	Dia of bars	
dth				Number of bars
	0.25	m	20	3
pth	0.38	m	25	2
			stirrups mm	8
			Spacing(mm	
)	360
		length	Diameter	Quantity=L*D ² /16
ir Shape	No.	(m)	(mm)	2 kg
raight bars	1	5.008	20	12.37
raight bars upper	2	5.286	25	40.78703704
ent	2	5.82	20	28.74
rrups	10	1.004	8	3.966
			total	85.859
r r	r Shape aight bars aight bars upper nt	r Shape No. aight bars 1 aight bars upper 2 nt 2	r Shape No. length n Shape No. (m) aight bars 1 5.008 aight bars upper 2 5.286 nt 2 5.82	r Shape No. length Diameter (m) Diameter (m) (mm) aight bars 1 5.008 20 aight bars upper 2 5.286 25 nt 2 5.82 20 rrups 10 1.004 8

E	138
А	268
Length of stirrups	1

T Beam	Short				
Input Data	Length	3.72	m	Dia of bars	Number of bars
	width	0.25	m	16	3
	depth	0.3	m	20	2
				stirrups mm	8

					Spacing(mm)	360
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	3.848	20	9.50
2	В	Straight bars upper	2	4.036	20	19.9308642
3	С	Bent	2	4.63	20	22.85
4	E	stirrups	10	0.844	8	3.334
					total	55.614

E	138
А	188
Length of stirrups	0.84

	T Beam	Lobby				
Input	Data	Length	2.5	m	Dia of bars	Number of bars
		width	0.25	m	16	2
		depth	0.22	m	16	2
					stirrups mm	8
					Spacing(mm	
)	360
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	2.548	20	6.29
2	В	Straight bars upper	2	2.648	16	8.36899
3	С	Bent	1	3.29	20	8.13
4	E	stirrups	10	0.684	8	2.702
					total	25.495

E	138
А	108
Length of stirrups	0.68

No. of stirrups= Length/Spacing +1

	L Beam	Long				
Input	Data	Length	4.92	m	Dia of bars	Number of bars
		width	0.25	m	16	2
		depth	0.38	m	20	2
					stirrups mm	8
					Spacing(mm	
)	290
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	5.128	20	12.66
2	В	Straight bars upper	2	5.396	20	26.64691
3	С	Bent	1	5.94	20	14.67
4	E	stirrups	20	1.004	8	7.933
					total	61.908

E 138

		Length of stirrups	1			
				-		
	L Beam	Short				
Input	Data	Length	3.72	m	Dia of bars	Number of bars
		width	0.25	m	16	2
		depth	0.3	m	20	2
					stirrups mm	8
					Spacing(mm	
)	150
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	3.848	20	9.50
2	В	Straight bars upper	2	4.036	20	19.93086
3	C	Bent	1	4.63	20	11.42
4	E	stirrups	30	0.844	8	10.003
•	-	Stillaps		01011	total	50.859
		F	420	1		
		E	138	No. of stirrups= Length/Spacing +1		
		A	188	NO. 0	of stirrups= Len	gth/Spacing +1
		Length of stirrups	0.84	J		
	L Beam	Lobby				
Input	Data	Length	2.5	m	Dia of bars	Number of bars
•		width	0.25	m	16	2
		depth	0.22	m	20	2
		ι <u>·</u>		1	stirrups mm	8
					Spacing(mm	
)	150

)	150
	Bar			length	Diameter	Quantity=L*D ² /16
	Mark	Bar Shape	No.	(m)	(mm)	2 kg
1	А	Straight bars	1	2.548	20	6.29
2	В	Straight bars upper	2	2.656	20	13.11605
3	С	Bent	1	3.29	20	8.13
4	E	stirrups	20	0.684	8	5.404
					total	32.944

E	138
А	108
Length of stirrups	0.68

Total steel required in beams 46.604 tons

А	268
Length of stirrups	1

Bar bending Schedule of Slabs

Bar Mark	Description of Elements	ø of Bar s	NºOT	Nºof Bars	Total №	Cutting length (m)	Code	Α	B	С	D	Shape	Weig (Kg)			
SLAB S1																
1	MAIN REINFROCEMENT	T12	1	13	13 Nº	5.0374	222	3378	41.4	1618	100	3378 41.4 1618 10	0 58.1			
_	MAIN REINFROCEMENT	T12	1	17	17 Nº	6.5974	222	4399.4	41.4	2098	100	4399.4 2098 10	0 99.5			
3	MAIN REINFROCEMENT	T12	1	13	13 Nº	5.0374	222	4464	41.4	532	100	4464 41.4 532 10	0 58.1			
4	MAIN REINFROCEMENT	T12	1	17	17 Nº	6.5974	222	5845.4	41.4	652	100	41.4 652 10 5845.4 10	0 99.5			
5	TORSIONAL BARS	Т8	2	3	6 Nº	0.984	100	984				984	2.3			
6	TORSIONAL BARS	Т8	2	3	<mark>6 N</mark> ≌	0.744	100	744				744	1.7			
										ToTal Quantity required in (4.8x3.6m ²⁾ Intity (tons) required in (27x15m ²) in 4 blocks						
								ТоТа	l Quar							

Bar Bending Schedule of Staircase

bar Mar	Description of Elements	ø of Bars	NºOI Elmt	Nºof Bars	Total №	length	Cod e	Α	В	с	D	Shape	Weigh t (Kg)
							ST/	AIRS					
1	MAIN REINFORCEMENT	10	7	13	91	4.8	222	1275	2250	1275		2250 1275 1275	269.23
2	LANDING REINFORCEMENT	10	7	12	84	3.475	304	675	1275	100	1425	1425 100 675 1275	179.92
3	DISTRIBUTION REINFORCEMENT	8	7	9	63	1.4	100	1400				1400	34.793
							FIRST	STAIR					
1	MAIN REINFORCEMENT	10	1	13	13	4.8	213	1275	1275	2250		1275 1275 2250	38.462
2	LANDING REINFORCEMENT	10	1	12	12	3.475	304	675	1275	100	1425	100 1425 675 100 1275	25.703
3	DISTRIBUTION REINFORCEMENT	8	1	9	9	1.4	100	1400				1400	4.9704
		•									Tot	al quantity Required in 1 starircase	553.08
											Total q	uantity (tons) Required in 1 starircase	2.2123

150

Bar Bending Schedule of Footing

bar Mar	Description of Elements	ø of Bar	N≌OI Elmt	Nºof Bars	Total №	Cutting length (m)	Cod e	A	В	с	Shape			Weigh t (Kg)	
F1															
1	MAIN REINFORCEMENT	16	12	11	132	3.38	200	200	2980	200	200	2980	200	704	
2	MAIN REINFORCEMENT	16	12	11	132	3.38	200	200	2980	200	200	2980	200	704	
3	STARTER BARS	20	12	6	72	2.4	111	500	1900		50	o [1900	426.04	
4	STIRRUPS	6	12	8	96	1.544	501	328	138	144	138	138 328			
							F2								
1	MAIN REINFORCEMENT	16	12	11	132	3.46	200	200	3180	80	200	3180	80	720.66	
2	MAIN REINFORCEMENT	16	12	11	132	3.46	200	200	3180	80	200	3180	80	720.66	
3	STARTER BARS	20	12	8	96	2.4	111	500	1900		50	o [1900	568.05	
4	STIRRUPS	6	12	8	96	1.344	501	328	138	144	138	328]	28.63	

151

F3																
1	MAIN REINFORCEMENT	16	8	6	48	2.98	200	200	2580		200	2580	200	225.7		
2	MAIN REINFORCEMENT	16	8	6	48	2.98	200	200	2580	200	200	2580	200	225.7		
3	STARTER BARS	10	8	4	32	2.4	111	500	1900		5	500	47.337			
4	STIRRUPS	6	8	7.6	60.8	1.344	501	328	138	144	138 328			18.132		
											Total quantity required for 1 block					
									Total quantity (tons) required for 4 block							

Therefore Total Quantity of steel required in the 4 blocks = 228 tons

Total cost of steel = Rs. 9.12 lakhs

References

- University Grants commission; Construction of hostels for colleges during the twelfth plan (2012-2017).
- Model Building Bye-laws, Town & country Planning Organization, Ministry of urban development, GOI.
- IS code 456-2000, Plain And Reinforced concrete code of Practice.
- IS code1893-1984, Criteria for Earthquake Resistant Design of Structures
 - Part I- General provisions and buildings.
- IS code 875-1987; Code of Practice for Design Loads (other than Earthquake) for Building and structures.
 - Part 1-Dead Loads –Unit weights of Building Materials and stored Materials.
 - Part II- Imposed Loads