
DESIGNING A SIMULATION APPLICATION FOR GREEDY

PERIMETER STATELESS ROUTING PROTOCOL FOR AD
HOC NETWORKS

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

 Amol Vasudeva

By

 Pranshu Srivastava 111232

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that the work titled “Designing a Simulation Application for Greedy

Perimeter Stateless Routing Protocol for Ad Hoc Networks” submitted by Pranshu

Srivastava in the partial fulfilment for the award of degree of Bachelor of Technology in

Computer Science & Engineering from Jaypee University of Information Technology,

Waknaghat has been carried out under my supervision. This work has not been submitted

partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.

Name of Supervisor : Mr. Amol Vasudeva

Designation : Assistant Professor

Signature of Supervisor:

Date :

iii

Acknowledgement

I would like to express my gratitude to all those who gave us the possibility to complete

this project. I want to thank the Department of CSE & IT in JUIT for giving us the

permission to commence this project in the first instance, to do the necessary research

work.

I am deeply indebted to my project guide Mr. Amol Vasudeva, whose help, stimulating

suggestions and encouragement helped me in all the time of research on this project. I

feel motivated and encouraged every time I get his encouragement. For his coherent

guidance throughout the tenure of the project, I feel fortunate to be taught by him, who

gave me his unwavering support.

We are also grateful to Mr.Amit Singh (CSE Project lab) for his practical help and

guidance

 Date: Pranshu Srivastava

iv

Contents

Chapter 1: Mobile Adhoc Networks (MANETS) 4

 1.1 Introduction 4

 1.2 Characteristics 4

 1.3 Applications 5

 1.4 Limitations 6

 1.5 Challenges 6

Chapter 2 : Mobility Models 7

 2.1 Definition 7

 2.2 Types 8

 2.2.1 Random Walk Mobility Model 8

 2.2.2 Random Waypoint Mobility Model 9

 2.2.3 Random Direction Mobility Model 9

Chapter 3: Routing Algorithms 9

 3.1 Definition 9

 3.2 Types 10

 3.2.1 Flat Routing Algorithm: 10

 3.2.2 Destination-Sequenced Distance-Vector Routing (DSDV): 11

 3.2.3 Ad hoc On-Demand Distance Vector Routing (AODV) 11

 3.2.4 Hierarchical Routing: 12

 3.2.5 Lowest ID: 13

 3.2.6 Highest Degree: 13

 3.2.7 Greedy Perimeter Stateless Routing (GPSR): 14

 3.2.7.2 Flowchart of Greedy Algorithm: 16

 3.2.7.3 Working of Perimeter Algorithm 17

 3.2.7.4 Flowchart of Perimeter Algorithm 18

 3.2.7.5 Flowchart of GPSR 19

Chapter 4: Implementation 20

 4.1 Simulation Environment 20

 4.1.1Comparison Parameters: 20

 4.2 Tools and Technologies: 20

 4.2.1Java 1.6 Version: 20

v

 4.2.1.1 Characteristics : 20

 4.2.1.2 JAVA Virtual Machine (JVM): 21

 4.2.1.3 Applet and Standalone Application: 21

 4.2.1.4 Eclipse Galileo Version 3.5.1 22

 4.3 Diagrams 22

 4.3.1 Use Case Diagram 22

 4.3.2 Data Flow Diagram 23

Chapter 5 Route Optimality and Stability 46

 5.1 Definition 46

 5.2 Benefits 46

 5.3 Need For Stability: 47

 5.4 Scalability 48

Chapter 6 Conclusion and Future Work: 48

 6.1 Conclusion 48

Chapter 7 Glossary: 48

Chapter 8 References, IEEE Format 49

vi

List of Figures

S.No. Title Page No.

1. Example of MANET 4

2. Routing Algorithms 9

3. Flat Routing 10

4. Destination-Sequenced Distance-Vector Routing 10

5. Ad hoc On-Demand Distance Vector Routing- source 11

6. Ad hoc On-Demand Distance Vector Routing- Destination 11

7. Hierarchical Routing 12

8. Lowest ID Clustering 12

9. Highest Degree Clustering 13

10. Flowchart of Greedy Algorithm 15

11. Flowchart of Perimeter Algorithm 17

12. Flowchart of GPSR 18

13. Use case Diagram 21

14. Zero Level DFD 22

15. First Level DFD 22

16. Second Level DFD 22

Abstract

A wireless ad-hoc network is a self-configuring network that does not depend on any

infrastructure for communication. Every node is free to move anywhere in the network

and data is exchanged independently across the network. Destruction of one node does

not affect the communication of other nodes in the network. Every node in the network

can act as both host as well as destination. A wireless ad-hoc network does not rely on

fixed infrastructure or predetermined connectivity. It is a self organizing multi-hop

wireless network in which all of the nodes can be mobile. Data is exchanged between

nodes via wireless communication. Aside from the ability to be rapidly deployed,

wireless ad-hoc networks have the ability to exist in highly volatile environments. Unlike

traditional networks, if one node is destroyed it will not impact the data exchange

between the remaining nodes within the network. Greedy Perimeter Stateless Routing

(GPSR), a novel routing protocol for wireless datagram networks that uses the positions

of routers and a packet’s destination to make packet forwarding decisions. GPSR makes

greedy forwarding decisions using only information about a router’s immediate

neighbours in the network topology. When a packet reaches a region where greedy

forwarding is impossible, the algorithm recovers by routing around the perimeter of the

region. By keeping state only about the local topology, GPSR scales better in per-router

state than shortest-path and ad-hoc routing protocols as the number of network

destinations increases. Under mobility’s frequent topology changes, GPSR can use local

topology information to find correct new routes quickly. We describe the GPSR protocol,

and use extensive simulation of mobile wireless networks to compare its performance

with that of Dynamic Source Routing. Our simulations demonstrate GPSR’s scalability

on densely deployed wireless networks.

2

Problem Statement

A console application can provide the means for user input and simulation status while

results are exported for analysis. This method works well as long as the user is relatively

computer literate. However, it can cause confusion for large-scale projects. As a fix, a

graphical user interface could provide a clean interface. Visualization will be

incorporated into the software to graphically show node movement, congestion levels etc

3

Motivation

Mobile Ad-Hoc Network (MANET) has become an increasingly active research area

work in ad-hoc routing, media access, and protocols, etc. However, much of the effort so

far has been in simulation with only a few systems that have ever been implemented and

none that we know have gone beyond field trial to regular use. One of the reasons is the

high complexity involved in implementing and testing actual ad-hoc networks, and the

lack of software tools for doing so.

Our vision is to implement Mobility based clustering algorithm to make MANET easy to

develop, easy to deploy, and easy to use. The project includes: reasons for choosing this

particular algorithm, implementing the algorithm, and model using which we will

implement the algorithm. An application that will provide the means for user input and

simulation status while results are exported for analysis. This method works well as long

as the user is relatively computer literate.

4

Chapter 1: Mobile Adhoc Networks (MANETS)

1.1 Introduction

A mobile ad hoc network (MANET) is a self-configuring infrastructure

less network of mobile devices which are connected by wireless. Each device in a

MANET is free to move independently in any direction, and will therefore change its

links to other devices frequently.

Figure 1: Example of MANET

1.2 Characteristics

 In MANET, each node acts as both host and router. That is it is autonomous in

behavior.

 Multi-hop radio relaying-When a source node and destination node for a message

is out of the radio range, the MANETs are capable of multi-hop routing. The

nodes can join or leave the network anytime, making the network topology

dynamic in nature.

5

 Network topology dynamic in nature.

 Distributed nature of operation for security, routing and host configuration. A

centralized firewall is absent here.

 The nodes can join or leave the network anytime, making the network topology

dynamic in nature.

 Nodal connectivity is intermittent.

 Mobile nodes are characterized with less memory, power and light weight

features.

 Completely symmetric environment.

 The reliability, efficiency, stability and capacity of wireless links are often

inferior when compared with wired links. This shows the fluctuating link

bandwidth of wireless links.

 Mobile and spontaneous behavior which demands minimum human intervention

to configure the network.

 All nodes have identical features with similar responsibilities and capabilit ies and

hence it forms a completely symmetric environment.

 High user density and large level of user mobility.

1.3 Applications

 Personal area networking (cell phone, laptop).

 Military environments (battle grounds).

 Civilian environments (taxi cab network, meeting rooms, boats, aircraft).

Emergency operations (search-and-rescue, policing and fire fighting).

6

1.4 Limitations

 Limitations of the Wireless Network

 packet loss due to transmission errors

 variable capacity links

 frequent disconnections/partitions

 limited communication bandwidth

 Broadcast nature of the communications

 Limitations Imposed by Mobility

 dynamically changing topologies/routes

 lack of mobility awareness by system/applications

 Limitations of the Mobile Computer

 short battery lifetime

 limited memory

 Routing efficiency

 Discovery, maintenance

 Network services

 Authentication, service discovery, address binding, address assignment.

1.5 Challenges

7

 The reliability of wireless transmission is resisted by different factors-The

wireless link characteristics are time-varying in nature. There are transmission

impediments like fading, path loss, blockage and interference that adds to the

susceptible behavior of wireless channels.

 Limited range of wireless transmission-The limited radio band results in reduced

data rates compared to the wireless networks. Hence optimal usage of bandwidth

is necessary by keeping low overhead as possible

 Packet losses due to errors in transmission – MANETs experience higher packet

loss due to factors such as hidden terminals that results in collisions, wireless

channel issues (high bit error rate (BER)), interference, and frequent breakage in

paths caused by mobility of nodes, increased collisions due to the presence of

hidden terminals and uni-directional links.

 Route changes due to mobility- The dynamic nature of network topology results

in frequent path breaks.

 Frequent network partitions- The random movement of nodes often leads to

partition of the network. This mostly affects the intermediate nodes.

 The application of this wireless network is limited due to the mobile and ad hoc

nature. Similarly, the lack of a centralized operation prevents the use of firewall in

MANETs. It also faces a multitude of security threats just like wired networks. It

includes spoofing, passive eavesdropping, denial of service and many others. The

attacks are usually classified on the basis of employee techniques and the

consequences.

Chapter 2 : Mobility Models

2.1 Definition

8

Mobility models represent the movement of mobile users, and how their location,

velocity and acceleration change over time. Such models are frequently used for

simulation purposes when new communication or navigation techniques are investigated.

For mobility modeling, the behavior or activity of a user’s movement can be described

using both analytical and simulation models. The input to analytical mobility models are

simplifying assumptions regarding the movement behaviors of users. Such models can

provide performance parameters for simple cases through mathematical calculations. In

contrast, simulation models consider more detailed and realistic mobility scenarios. Such

models can derive valuable solutions for more complex cases.

2.2 Types

Typical mobility models include

 Random Walk Mobility Model

 Random Waypoint Mobility Model

 Random Direction Mobility Model

2.2.1 Random Walk Mobility Model

In this mobility model, a node moves from its current location to a new location by

randomly choosing a direction and speed in which to travel. The new speed and direction

are both chosen from pre defined ranges, [minspeed; maxspeed] and [0; 2π] respectively.

Each movement in the Random Walk Mobility Model occurs in either at constant time

interval ‘t’ or a constant distance traveled ‘d’, at the end of which a new direction and

speed are calculated. If any node reaches to the simulation boundary, it bounces off the

simulation border with an angle determined by the incoming direction. The node then

continues along this new path.

9

2.2.2 Random Waypoint Mobility Model

The random waypoint mobility model contains pause time between changes in direction

and/or speed. Once a node begins to move, it stays in one location for a specified pause

time. After the specified pause time is elapsed, the randomly selects the next destination

in the simulation area and chooses a speed uniformly distributed between the minimum

speed and maximum speed and travels with a speed whose value is uniformly chosen in

the interval (0 , max). max is some parameter that can be set to reflect the degree of

mobility. Thereafter, it continues its journey toward the newly selected destination at the

chosen speed. As soon as it arrives at the destination, it stays again for the indicated

pause time before repeating the process.

2.2.3 Random Direction Mobility Model

In random direction mobility model each node alternates periods of movement (move

phase) to periods during which it pauses (pause phase). During the beginning of each

move phase, a node independently selects its new direction and speed of movement.

Speed and direction are kept constant for the whole duration of the node movement

phase.

Chapter 3: Routing Algorithms

3.1 Definition
Routing is the process of selecting best paths in a network. To find and maintain routes

between nodes in a dynamic topology with possibly unidirectional /by directional links,

using minimum resources.

10

Figure 2: Routing Algorithms

3.2 Types

3.2.1 Flat Routing Algorithm:

In a Flat Routing technique, the message to be delivered is directly passed from source

node to the destination node without passing the message to any cluster head node. The

information directly hops from one node to another and finds the shortest path to reach

the destination node. Best example of flat routing is Routing Information Protocol which

is a simple hop count protocol where maximum 15 number hops can be taken to reach the

destination node.

Figure 3: Flat Routing

11

3.2.2 Destination-Sequenced Distance-Vector Routing (DSDV):

DSDV is a table-driven routing scheme for ad hoc mobile networks based on

the Bellman–Ford algorithm. The main contribution of the algorithm was to solve

the routing loop problem. Each entry in the routing table contains a sequence number, the

sequence numbers are generally even if a link is present; else, an odd number is used. The

number is generated by the destination, and the emitter needs to send out the next update

with this number. Routing information is distributed between nodes by sending full

dumps infrequently and smaller incremental updates more frequently.

.

Figure 4: Destination-Sequenced Distance-Vector Routing

3.2.3 Ad hoc On-Demand Distance Vector Routing (AODV)

 In this routing algorithm, the path is drawn on demand by the source node when it wants

to send the message that is when the source node desires to send a message and does not

have any path so its broadcast the route request message across the network. All the

nodes in the network after receiving this message will look for the shortest path through

which the message can be sent .The source node will receive the message along with the

IP address of the destination node and then can send the message through that path/route.

12

Figure 5 (a) Ad hoc On-Demand Distance Vector Routing- source

Figure 6 (b) Ad hoc On-Demand Distance Vector Routing- Destination

3.2.4 Hierarchical Routing:

In Hierarchical Routing nodes are divided into groups on the basis of the categories of

nodes. These groups are known as clusters. A cluster can have three categories of nodes:

cluster head, gateway node and ordinary or member nodes. In order to send the

information from one node to another node, the message is first passed on to the cluster

head and then the information is passed to the destination node after looking at the

routing table for the desired cluster. If a node is within the same cluster then the

information is directly passed else first passed to the respective cluster head and then the

destination cluster head followed by the destination node. There are numerous methods

13

to form clusters in a simulation environment.

Figure 7 Hierarchical Routing

3.2.5 Lowest ID:

The Lowest-ID is considered as a simplest clustering scheme algorithm. In this scheme

unique identifier (ID) is assigned to each node. All nodes recognize its neighbors ID and

CH is chosen according to minimum ID. Thus, the nodes IDs of the neighbors of the

CH will be higher than that CH. The main drawback with this scheme is there is no

limitation to the number of nodes attached to the same CH. Also, CHs are prone to power

drainage due to serving as cluster heads.

Figure 8 Lowest ID

3.2.6 Highest Degree:

In comparison with Lowest-ID scheme, the degree of nodes is computed based on its

distance from each other’s . All nodes flood its connectivity value within their

transmission range. Thus, a node decides to become a CH or remain as CN by comparing

14

the connectivity value of its neighbors with its own value. Node with highest connectivity

value in its vicinity will become CH. Connectivity-based clustering follows the same

circumstances of ID-based regarding to cluster size and performance degradation.

Figure 9: Highest Degree

3.2.7 Greedy Perimeter Stateless Routing (GPSR):

GPSR, a novel routing protocol for wireless datagram networks that uses the

positions of routers and a packet’s destination to make packet forwarding

decisions. GPSR makes greedy forwarding decisions using only information

about a router’s immediate neighbors in the network topology. When a packet

reaches a region where greedy forwarding is impossible, the algorithm recovers

by routing around the perimeter of the region.

3.2.7.1 Working of Greedy Algorithm:

1. Nodes are arranged Randomly in a simulation area. All the nodes are static and

equipped with some localization mechanism such as GPS. We assume that

information i.e. ID, location of all the nodes in the network are maintained by

each node. This algorithm is suitable is number of nodes are less i.e. Information

table is maintained by every node.

15

2. Assume Node “s” want to send message to Destination Node “D”. S will find

distance between S and D using location of D from information table. If node D is

within radio range of S, then it will send packet directly.

3. Else S will find nodes that are within radio range of S using Information Table.

Make those nodes neighboring nodes of S.

4. Find distance of every neighboring node from D, using information table. Select

node that has smallest distance among S and other neighboring nodes and send

message to it.

5. If S is local minimum i.e. closest to D, then apply Perimeter Algorithm.

16

3.2.7.2 Flowchart of Greedy Algorithm:

Figure 10: Flowchrt of Greedy Algorithm

17

3.2.7.3 Working of Perimeter Algorithm

1. After greedy algorithm has been failed, Perimeter algorithm sends data packet

through the perimeter of the void created while Greedy algorithm’s failure.

2. Select the node as Source “S” on which Greedy algorithm failed.

3. Search for the node that is closest to destination among neighboring nodes

which can further forward data packets.

4. If any such node is present make that node as Next Hop node and send packet

to that Next Hop node.

5. Else whole GPSR algorithms fails, and packet cannot be send using GPSR

algorithm.

18

3.2.7.4 Flowchart of Perimeter Algorithm

Figure 11: Flowchart of Perimeter Algorithm

19

3.2.7.5 Flowchart of GPSR

Figure 12: Flowchart of GPSR

20

Chapter 4: Implementation

4.1 Simulation Environment

We will simulate an ad hoc network with n nodes randomly distributed in a 100 100

pixel area. The simulator was implemented in Java due to its multithreading feature and

collection of numerous container classes. The network simulator has the ability to

generate network with any number of nodes. The mobility is based on the Random Way

Point model (RWP) in which a mobile node moves from its current location to a new

location by randomly choosing a direction and speed in which to travel. The new speed

and direction are both chosen randomly from pre-defined ranges, [0, 5 unit/sec] and [0,

2] respectively. We have set the election process time to be 2 seconds i.e. after each 2

seconds the cluster head selection mechanism will be initiated. Once the election process

is over, new directions and speeds are computed for all the nodes in the same manner, as

mentioned above. This process was repeated throughout the simulation causing

continuous changes in the topology of the underlying network. Once a node reaches the

boundary of edge, it returns back with the same direction and speed. The transmission

range of all the nodes has been taken to be 40 units, i.e. the two nodes can communicate

with each other if the distance between them is shorter than 40 units. In order to complete

these objectives, a network simulator was developed using Java, compute the five metrics

as previously discussed, apply each of the clustering techniques, and evaluate congestion.

.

4.1.1 Comparison Parameters:

 Number of nodes (scalability)

 Velocity of nodes (uniform or non uniform)

 Transmission power

 Density of nodes

4.2 Tools and Technologies:

4.2.1 Java 1.6 Version:

4.2.1.1 Characteristics :

21

JAVA is a programming language, developed by Sun Microsystems and first released in

1995 (release 1.0). Since that time, it gained a large popularity mainly due to two

characteristics:

 A JAVA programme is hardware and operating system independant. If well

written (!), the same JAVA programme, compiled once, will run identically on a

SUN/solaris workstation, a PC/windows computer or a Macintosh computer. Not

mentioning other Unix flavors, including Linux, and every Web browser, with

some restrictions described below.

This universal executability is made possible because a JAVA programme is run

through a JAVA Virtual Machine.

 it is an object oriented language. This feature is mainly of interest for software

developers.

4.2.1.2 JAVA Virtual Machine (JVM):

A JAVA programme is build by a JAVA compiler which generates its own binary code.

This binary code is independant from any hardware and operating system. To be

executed, it needs a virtual machine, which is a programme analyzing this binary code

and executing the instructions it contains.

Of course, this Java Virtual Machine (JVM) is hardware and operating system dependant.

Two types of Virtual Machines exist: those included in every Web Browser, and those

running as an independent programme, like the Java RunTime Environment (JRE) from

Sun Microsystems. These programmes need to be downloaded for your particular

platform. As seen in the next paragraph, these two types of Virtual Machines do not

behave exactly the same.

4.2.1.3 Applet and Standalone Application:

A JVM in a web browser runs a JAVA programme as an Applet. The applet is embedded

in a web page and downloaded from a web server like any other HTML page or image

when requested. An independent JVM runs a JAVA programme as a Standalone

Application.

22

4.2.1.4 Eclipse Galileo Version 3.5.1

 Eclipse is an Integrated development environment(IDE). It contains a

base workspace and an extensible plug-in system for customizing the environment.

Written mostly in Java, Eclipse can be used to develop applications in Java.

Figure 4.1 Eclipse Galileo

4.3 Diagrams

4.3.1 Use Case Diagram

Figure 13: Use case Diagram

23

4.3.2 Data Flow Diagram

4.3.2.1 Zero Level DFD

 Figure 14 (a) Zero Level DFD

4.3.2.2 First Level DFD

 Figure 15 (b) First Level DFD

4.3.2.3 Second Level DFD

 Figure 16 (c) Second Level DFD

24

4.4 Code

package prototype1gpsr;

import java.util.*;

import java.applet.*;

import java.awt.Button;

import java.awt.Color;

import java.awt.Component;

import java.awt.Graphics;

import java.awt.Label;

import java.awt.Point;

import java.awt.TextField;

import java.awt.event.*;

import java.awt.*;

import java.awt.geom.*;

public class Prototype1GPSR1 extends Applet implements Runnable,

ActionListener,MouseListener

{

//int[] result;

int pc=0,visitd=0,faild=0,faildNode;

double phi;

private Graphics globalGraphics=null;

int barb;

Point sw,ne;

Node[] p;

25

Thread th;

int click=0;

ArrayList<Node> nodeList = new ArrayList<Node>();

int numNodes;

int srcNode,destNode;

int visited[];

int path[];

int path1[];

int pathIndex=0;

int adj[][];

double dist=0;

int SimSize=500;

String greedy,msg;

 double range = 200.0;

 TextField source,destination,nodes,simsize;

 Label l2,l3,l1,l4,l5,l6;

 Button resume, button, button1, button2, button3, pause;

 int flag = 0,flag1=1, suspend = 0;

public void init() {

 resize(1000,1000);

 this.addMouseListener(this);

 p = new Node[25];

 phi = Math.toRadians(40);

 nodes = new TextField(8);

 source = new TextField(8);

 destination = new TextField(8);

 simsize = new TextField(8);

26

 l1 = new Label(" Number of Nodes: ");

 l2 = new Label(" Enter Source Node Id: ");

 l3 = new Label(" Enter Destination Node ID: ");

 l4= new Label("Enter Size of Simulator");

 greedy="Greedy Algorithm failed at ";

 msg="Message can't be Send ";

 l2.setForeground(Color.red);

 add(l2);

 add(source);

 l3.setForeground(Color.green);

 add(l3);

 add(destination);

 add(l1);

 add(nodes);

 button = new Button("Submit");

 button.addActionListener(this);

 add(button);

27

 button2=new Button("Random");

 button2.addActionListener(this);

 add(button2);

 l3.setForeground(Color.black);

 add(l4);

 add(simsize);

 p=new Node[30];

 }

 public void run() {

 while (true) {

 if (suspend == 0)

 {

 for (int i = 0; i < numNodes; i++)

 {

 repaint();

 }

 }

 try {

 Thread.sleep(2000);

 }

 catch (Exception e) { }

28

 }

 }

 public void actionPerformed(ActionEvent ae)

 {

 try {

 if (ae.getSource() == button)

 {

 flag = 1;

 srcNode=Integer.parseInt(source.getText());

 destNode=Integer.parseInt(destination.getText());

 numNodes = click;

 nodes.setText(String.valueOf(click));

 System.out.println("number of nodes : "+numNodes);

 visited=new int[numNodes];

 for(int i=0;i<numNodes;i++)

 visited[i]=0;

 visited[srcNode]=1;

 nodeList = new ArrayList<>();

 if((srcNode < numNodes) && (destNode < numNodes))

 {

29

 //adj=new ArrayList<Integer[]>();

 adj = new int[numNodes][];

 for (int i = 0; i < numNodes; i++)

 {

 adj[i] = new int[numNodes];

 }

 path = new int[numNodes];

 th = new Thread(this);

 th.start();

 }

 }

 if((ae.getSource() == button2))

 {

 Random rn=new Random();

 numNodes=Integer.parseInt(nodes.getText());

 flag = 1;

 srcNode=rn.nextInt(numNodes);

 System.out.println("Source"+ srcNode);

 System.out.println("Dest"+ destNode);

 source.setText(String.valueOf(srcNode));

30

 SimSize=Integer.parseInt(simsize.getText());

 range=0.4*SimSize;

 System.out.println("SimSize"+ SimSize);

 destNode=rn.nextInt((numNodes));

 while(destNode==srcNode)

 {

 destNode=rn.nextInt((numNodes));

 }

 destination.setText(String.valueOf(destNode));

 for(int i=0;i<numNodes;i++)

 {

 int x,y;

 Random r=new Random();

 x=80+r.nextInt(SimSize);

 y=80+r.nextInt(SimSize);

 p[click]=new Node(x,y);

 click++;

 }

 nodeList = new ArrayList<>();

 if((srcNode < numNodes) && (destNode < numNodes))

 {

 adj = new int[numNodes][];

 for (int i = 0; i < numNodes; i++)

 {

 adj[i] = new int[numNodes];

 }

 path = new int[numNodes];

31

 th = new Thread(this);

 th.start();

 }

 }

 }

 catch (Exception e) {

 }

 }

public void paint(Graphics g)

{

 numNodes=click;

 globalGraphics=g.create();

 Graphics2D g2 = (Graphics2D)g;

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,RenderingHints.VALU

E_ANTIALIAS_ON);

 g.drawRect(80, 80, SimSize, SimSize);

 String no="";

 if (flag > 0)

32

 {

 if (suspend == 0)

 {

 g.setColor(Color.black);

 for (int i = 0; i < numNodes; i++)

 {

 no=""+i;

 if (i==srcNode)

 g.setColor(Color.red);

 else if(i==destNode)

 g.setColor(Color.GREEN);

 else

 g.setColor(Color.black);

 nodeList.add(i,p[i]);

 //System.out.print("x "+nodeList.get(i).getx());

 //System.out.println("y "+nodeList.get(i).gety());

 g.fillOval(p[i].getx(),p[i].gety(), 8, 8);

 g.drawString(no, p[i].getx()-2, p[i].gety());

 }

 if(flag1==1)

 {

 flag1=0;

 adjacencyMatrix();

33

 greedy(srcNode,destNode);

 }

 if(faild!=1)

 { for(int k=visitd-1;k>0;k--)

 {

 Point sw;

 sw = new

Point((nodeList.get(path1[k]).getx())+4,(nodeList.get(path1[k]).gety())+4);

 Point ne;

 ne = new Point((nodeList.get(path1[k-1]).getx())+4,(nodeList.get(path1[k-

1]).gety())+4);

 g2.draw(new Line2D.Double(sw,ne));

 }

 }

 else

 {

 for(int k=visitd-1;k>0;k--)

 {

 if(path1[k]==faildNode)

 break;

 Point sw;

 sw = new

Point((nodeList.get(path1[k]).getx())+4,(nodeList.get(path1[k]).gety())+4);

 Point ne;

 ne = new Point((nodeList.get(path1[k-1]).getx())+4,(nodeList.get(path1[k-

1]).gety())+4);

 g2.draw(new Line2D.Double(sw,ne));

 }

34

 th.stop();

 }

 if(faild!=1)

 { for(int k=visitd-1;k>0;k--)

 {

 Point sw;

 sw = new

Point((nodeList.get(path1[k]).getx())+4,(nodeList.get(path1[k]).gety())+4);

 Point ne;

 ne = new Point((nodeList.get(path1[k-1]).getx())+4,(nodeList.get(path1[k-

1]).gety())+4);

 g2.draw(new Line2D.Double(sw,ne));

 }

 }

 else

 {

 for(int k=visitd-1;k>0;k--)

 {

 if(path1[k]==faildNode)

 break;

 Point sw;

 sw = new

Point((nodeList.get(path1[k]).getx())+4,(nodeList.get(path1[k]).gety())+4);

 Point ne;

 ne = new Point((nodeList.get(path1[k-1]).getx())+4,(nodeList.get(path1[k-

1]).gety())+4);

 g2.draw(new Line2D.Double(sw,ne));

 }

35

 th.stop();

 }

 }}}

public void adjacencyMatrix()

{

 System.out.print("AdjacencyMatrix: ");

 int a;

 for(a=0;a<numNodes;a++)

 System.out.print(a+" ");

 System.out.println("");

 for(int i=0;i<numNodes;i++){

 for(int j=0;j<numNodes;j++){

 adj[i][j]=0;

 }

 for(int j=0;j<numNodes;j++){

 if((i!=j) && (nodeList.get(i).distance(nodeList.get(j)))<range){

 adj[i][j]=1;

 }

 }

 }

 for(int i=0;i<numNodes;i++)

 {

 System.out.print("Adjacency for node "+i+": ");

 for(int b=0;b<numNodes;b++)

 System.out.print(adj[i][b]+" ");

 System.out.println();

36

 }

 }

public void greedy(int strtNode, int desNode)

 {

 int presNode=strtNode,nxtNode=strtNode,prevNode=0,flag=0;

 double dist1=0;

 int node1;

 path1=new int[numNodes+1];

 path1[visitd++]=presNode;

 while(nxtNode!=desNode)

 {

 presNode=nxtNode;

 dist=nodeList.get(presNode).distance(nodeList.get(desNode));

 System.out.print("The PRESENT NODE is "+presNode+"\n");

 System.out.println("The DISTANCE of PRESENT NODE "+presNode+" is

"+dist);

 if(flag==0)

 {

 for(int i=0;i<numNodes;i++)

 {

 if(adj[presNode][desNode]!=1)//dest node not in range

 {

 if(presNode!=i)

 {

37

 if(adj[presNode][i]==1)

 {

 dist1=nodeList.get(i).distance(nodeList.get(desNode));

 System.out.println("The DISTANCE of nxtnode "+i+"

is"+dist1+"\n");

 if(dist1<dist)

 {

 dist=dist1;

 nxtNode=i;

 System.out.println("The TEMPORARY NEXTNODE is

"+i+"\n");

 }

 }

 }

 }

 else

 {

 nxtNode=desNode;

 }

 }

 }

 else // for perimeter use

 {

 for(int i=0;i<numNodes;i++)

 {

 if(adj[presNode][i]==1 && i!=prevNode)

 {

 dist1=nodeList.get(i).distance(nodeList.get(desNode));

38

 System.out.println("The DISTANCE of nxtnode "+i+" is

"+dist1+"\n");

 if(dist1<dist)

 {

 dist=dist1;

 nxtNode=i;

 System.out.println("the TEMPORARY NEXTNODE IS

"+i+"\n");

 }

 }

 }

 flag=0;

 }

 if(presNode==nxtNode)

 {

 flag=1;

 prevNode=presNode;

 System.out.println("GREEDY ALGORITHM HAS FAILED");

 greedy=greedy+ presNode +" " ;

 grdymsg();

 nxtNode=perimeter(presNode,desNode);

 if(nxtNode==presNode)

 {

 // exit(0);

 }

 }

 path1[visitd++]=nxtNode;

 System.out.print("The PERMANENT NEXTNODE IS "+nxtNode+"\n");

 }

 System.out.print("The Path is ");

39

 int j;

 for(j=0;j<visitd-1;j++)

 {

 System.out.print(path1[j]+"->");

 }

 System.out.println(path1[visitd-1]);

 }

// for perimeter use

public int perimeter(int strtNode,int desNode)

 {

 int nxtNode=strtNode,a=0;

 double dist1=0,dist2;

 for(a=0;a<numNodes;a++)

 {

 if(adj[strtNode][a]==1)

 {

 dist1=nodeList.get(a).distance(nodeList.get(desNode));

 nxtNode=a;

 break;

 }

 }

 // wrong a might not be neighbour

 for(int i=a+1;i<numNodes;i++)

 {

 if(adj[strtNode][i]==1)

 {

 if(strtNode!=i)

40

 {

 dist2=nodeList.get(i).distance(nodeList.get(desNode));

 if(dist1>dist2)

 {

 dist1=dist2;

 nxtNode=i;

 }

 }

 }

 }

 for(int i=0;i<numNodes;i++)

 {

 {

 adj[i][strtNode]=2;

 }

 }

 if(nxtNode==strtNode)

 {

 System.out.println("MESSAGE CAN NOT BE DELIVERED");

 msg=msg+nxtNode +" ";

 msgcnt();

 faild=1;

 faildNode=strtNode;

 }

 return nxtNode;

 }

public void grdymsg()

{

41

 l5=new Label(greedy+" ");

 l5.setForeground(Color.red);

 add(l5);

}

public void msgcnt()

{

 l6=new Label(msg+" ");

 l6.setForeground(Color.red);

 add(l6);

}

public void drawDot(int x,int y)

{

 String clic=""+click;

 Color blackColor = new Color(0,0,0);

 globalGraphics.setColor(blackColor);

 globalGraphics.fillOval(x,y,8,8);

 globalGraphics.drawString(clic, x, y);

}

@Override

public void mouseClicked(MouseEvent e)

{}

@Override

public void mouseEntered(MouseEvent arg0)

{}

@Override

public void mouseExited(MouseEvent arg0)

{}

@Override

public void mousePressed(MouseEvent e)

42

{

 int mouseX=e.getX();

 int mouseY = e.getY();

 if(mouseY>80 && mouseY < (500+80) && mouseX >80 && mouseX <(500+80))

{

 drawDot(mouseX,mouseY);

p[click]=new Node(mouseX,mouseY);

 click++;

}

}

@Override

public void mouseReleased(MouseEvent e)

{}

}

 class Node {

 int x;

 int y;

 Node()

 {

 x=0;

 y=0;

 }

 Node(int x,int y)

 {

 this.y=y;

 this.x=x;

 }

43

 public int getx(){ return x; }

 public int gety(){ return y; }

 public double distance(Node a)

 {

 double dist;

 int x2=a.getx();

 int y2=a.gety();

 int x3,y3;

 // shifting nodes coordinate to center of node

 x2=x2+4;

 y2=y2+4;

 x3=x+4;

 y3=y+4;

 dist=Math.sqrt(((y2-y3)*(y2-y3))+((x2-x3)*(x2-x3)));

 return dist;

 }

}

4.5 ScreenShots

44

UI Interface of Simulator

Manually Entering Of Nodes

45

Path of Packet Transfer

Random Allocation of Nodes along with fixing simulation area

4.6 Working of Simulator

4.6.1 Manual Simulation

 Allocate the nodes on simulation area by clicking.

46

 Enter Source Node description.

 Enter Destination Node description.

 Click on Submit button.

4.6.2 Random Simulation

 Enter number of nodes required for simulation.

 Enter size of Simulation Area (default size 500*500).

 Click on Random button.

Chapter 5 Route Optimality and Stability

5.1 Definition

We define for any given node the set of multi-point relays of rank 0 as the node itself and

the set for multi-point relays of rank 1 as the multipoint relay set itself. Let us define the

set of multipoint relays on rank k+1 for k integer, as the union of multipoint relay of set

of all nodes element of the multipoint relay set of rank k.In other words each element Mk

of the multipoint relay set of rank k of node X can be reached via a path XMi.....XMk

where Mi is multipoint relay of X and Mi+1 is multipoint relay of Mi. .

5.2 Benefits

Being a proactive protocol, routes to all destinations within the network are known and

maintained before use. Having the routes available within the standard routing table can

be useful for some systems and network applications as there is no route discovery delay

associated with finding a new route.

The routing overhead generated, while generally greater than that of a reactive protocol,

does not increase with the number of routes being created.

47

Default and network routes can be injected into the system by HNA messages allowing

for connection to the internet or other networks within the GPSR ad-hoc cloud. Network

routes are something reactive protocols do not currently execute well.

Timeout values and validity information is contained within the messages conveying

information allowing for differing timer values to be used at differing nodes.

5.3 Need For Stability:

 Stable Routes: To maximize throughput and reduce traffic latency, it is

essential to ensure reliable source-destination connections over time. A route

should therefore be elected based on some knowledge of the nodes motion

and on a probability model of the path future availability.

 Efficient Route Repair: If an estimate of the path duration is available,

service disruption due to route failure can be avoided by creating an

alternative path before the current one breaks. Note that having some

information on the path duration avoids waste of radio resources due to pre-

allocation of backup paths.

 Network Connectivity: Connectivity and topology characteristics of a ad-hoc

networks are determined by the link dynamics. These are fundamental issues

to network design, since they determine the system capability to support user

communications and their reliability level.

 Performance Evaluation: The performances achieved by high-layer

protocols, such as transport and application protocols, heavily depend on the

quality of service metrics obtained at the network layer. As an example, the

duration and frequency of route disruptions have a significant impact on TCP

behavior, as well as on video streaming and VoIP services. Thus,

characterizing route stability is the basis to evaluate the quality of service

perceived by the users.

48

5.4 Scalability

 Analyzing the result on the following parameters

 Number of nodes (scalability)

 Transmission power

By changing the number of nodes and calculating the average number of clusters

determines the stability of the environment. In this project analysis have being done by

changing number of nodes from 10 to 20,30,40,50 and following routes have been

calculated at varying transmission power. Whereas when the velocity is also constant

then after certain amount of time the simulation environment becomes stable. Thus by

changing various parameters graphs has been plotted which indicates that when the

environment is stable and when it is not that is for constant velocity and for a particular

range the environment becomes stable whereas in other cases the environment is less

stable.

Chapter 6 Conclusion and Future Work:

6.1 Conclusion

A great deal of time and effort was put forth in developing the network simulation

software discussed. Simulator can be used for further research work of transmission of

data packets in wireless ad-hoc network. This is a versatile tool that can be utilized for

purposes outside of this work. The program was coded in a manner that makes it scalable

for other network analysis. Additional network metrics and clustering methods can be

integrated with little modification to the existing code. The UI provides the means for

user input and simulation results are displayed on simulator itself. Further little

modification in existing code can also be done for using this simulator software for

MANETS.

Chapter 7 Glossary:

49

7.1 Acronyms

MANET ---------------------------------------Mobile Adhoc Networks

MOBIC --Mobility Based Clustering

ID --Identity

DSDV -- Destination-Sequenced Distance-Vector

Routing

AODV --- Ad hoc On-Demand Distance Vector Routing

MM --Mobility Metric

MN ---Mobility Node

RWP ---Random Way Point Model

CH ---Cluster Head

CN ---Cluster Node

RIP --Routing Information Protocol

JVM ---JAVA Virtual Machine

IDE --Integrated Development Environment

JRE ---JAVA RunTime Environment

GPSR---Greedy Perimeter Stateless Routing

Chapter 8 References, IEEE Format

Book

50

[1] Herbert Schildt, Complete Reference JAVA, 5
th
 edition, Tata McGraw Hill.

[2] Charles E.Perkins, AD HOC Networking, Perason Education, 08-Jan-2001.

 Research Paper

[3] Prithwish Basu, Naved Khan, Thomas D. C. Little, “A Mobility Based Metric for

Clustering in Mobile Ad Hoc Networks”, Department of Electrical and Computer

Engineering Boston University, Boston MA.

Technical Report

[4] Frank Mufalli, Rakesh Nagi, Jim Llinas, Sumita Mishra, “Investigation of Means of

Mitigating Congestion in Complex, Distributed Network Systems by Optimization Means

and Information Theoretic Procedures”, Paine College, 1235 15th Street, Augusta GA.

Web References

[5] MANET Research Summary, http://.hulk.bu.edu/projects/adhoc/summary.html.

[6] Mobility Based metric for Clustering in mobile and adhoc networks,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=918738&queryText%3D

manets+for+mobic.

[8] http://www0.cs.ucl.ac.uk/staff/B.Karp/gpsr/gpsr.html

[9] Karp Brad, and Hsiang-Tsung Kung. "GPSR: Greedy perimeter stateless routing

for wireless networks." In Proceedings of the 6th annual international conference on

Mobile computing and networking, pp. 243-254. ACM, 2000.

Software

http://www0.cs.ucl.ac.uk/staff/B.Karp/gpsr/gpsr.html

51

[10] Creately, for diagrams.

