
i

Distributed group key management using hierarchical approach with

Diffie-hellam and symmetric algorithm

Project Report submitted in partial fulfillment of the requirement for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Prof Satya Parkash Gharera

By

Veenu aggarwal

111313

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

 CERTIFICATE

This is to certify that project report entitled “Distributed Group Key Management using

Hierarchical approach with Diffie Hellman and Symmetric Algorithm ”, submitted by

Veenu Aggarwal in fulfillment for the award of degree of Bachelor of Technology in

Computer Science & Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

 Prof Satya Parkash Ghrera

 Head Dept. of CSE

iii

 ACKNOWLEDGEMENT

I would like to express my deepest appreciation to all those who provided me the

possibility to complete this report. A special gratitude I give to my final year

project supervisor Prof. Dr. S.P.Ghrera whose contribution in stimulating suggestions and

encouragement, helped me to coordinate my project .

Furthermore I would also like to acknowledge with much appreciation the crucial role of

the staff of Jaypee university of information technology, who helped me to assemble the

parts and gave suggestion about the task “Distributed group key management using

hierarchical approach with diffie-hellman and symmetric algorithm”. Last but not least, I

have to appreciate the guidance given by other supervisor as well as the panels especially

in our project presentation that has improved our presentation skills thanks to their

comment and advices.

Date: Name of t he student : Veenu Aggarwal

iv

TABLE OF CONTENT

TITLE PAGE NO

Certificate ii

Acknowledgement iii

List of Figures v

List of Tables vi

Abstract vii

Introduction 1

1.1Group communication protocols 2

1.1.1Centeralised protocols 2

1.1.2Decenteralised protocols 2

1.1.3Distributed protocols 2

The purpose of crptography 5

Literature review 7

3.1Centeralised group key management 8

3.2Decenteralised group key management 8

3.3 Contributory group key agreement 9

3.4 Diffie hellamn algorithm 11

3.5 Symmetric algorithm 13

3.6Asymmetric algorithm 13

Design principle 14

4.1Logging into the system 18

4.2Logging out from system 19

4.3 Use case diagram for login and logout 20

System requirements 21

5.1 Software requirements 21

5.2Hardware requirements 21

Final design 22

6.1 Join 22

6.2 Leave 24

6.3 Simulation 26

6.3.1 First user join the group 26

6.3.2 Second user join the group 26

6.3.3 Third user joins the group 27

6.3.4 Fourth user joins the group 27

Real time implementation of distributed group key management 28

v

7.1join operation to login 28

7.2Leave operation to logout 29

7.3Simulation 30

7.3.1Html page to login 30

7.3.2First user login 30

7.3.3first user has been inserted into the tree 31

7.3.4Second user login 32

7.3.5Second user has been inserted into the tree 32

7.3.6If user enters wrong password or username 32

7.3.7User logout 32

Security requirements 34

Applications of group key management 35

9.1 mobile and ad hoc network 35

9.2multimedia security 36

9.3 wired networks 37

Conclusion 38

Appendix 40

vi

LIST OF FIGURES

TITLE PAGE NO

2.1 DGKD join operation 6

2.2 DGKD leave operation 6

2.3 EDKAS join operation 7

2.4 EDKAS leave operation 7

3.1 DHSA parent binary code for 9

3.5 Diffie hellman 12

Member position discovery

3.2 Flow chart for leave operation 10

3.3 Flow chart for join operation 11

4.1 DHSA join operation 14

4.2 DHSA leave operation 15

4.3 USE CASE diagram 20

LOGGING into system 18

Flowchart for logging into system 18

Flowchart for logging out system 19

vii

LIST OF TABLES

TITLE PAGE NO

3.1 List of parent binary code and 9

Associated public key

3.2 List of parent binary code and 14

Associated public key

3.3List of parent binary code and 16

Associated public key

viii

 ABSTRACT

Secure and reliable group communication is an active area of research. Its popularity is

caused by the growing importance of group-oriented and collaborative

applications.Various network applications require sending data to one or many members

within the network, maintaining security in the large groups is among the biggest

obstacles for controlling access.Unfortunately, IP multicast does not provide any security

over the group communication. Group key management is a fundamental mechanism for

secured multicast and unicast. The most widely used technique in a network is group

communication. This helps in the reduction of the bandwidth usage. The major concern

in group communication is message security. Group key provides security of messages

and hence proper group key management is a necessity in a group communication. While

centralized methods are often appropriate for key distribution in large multicast-style

groups, many collaborative group settings require distributed key agreement techniques.

Ensuring secure communication in an ad hoc network is extremely challenging because

of the dynamic nature of the network and the lack of centralized management. For this

reason, key management is particularly difficult to implement in dynamic networks

.Group key management is a fundamental building block for secure group

communication systems. We will present an efficient many-to-many group key

management protocol in distributed group communication. In this protocol, group

members are managed in the hierarchical manner logically. Two kinds of keys are used,

asymmetric and symmetric keys. The leaf nodes in the key tree are the asymmetric keys

and all the intermediate node keys are symmetric keys assigned to each intermediate node

and uses a simple rekeying procedure which is suitable for large and dynamic networks.

For asymmetric key, a more efficient key agreement will be introduced. To calculate

intermediate node keys, members use codes assigned to each intermediate node key tree.

Group members calculate intermediatetheir own node keys rather than distributed by a

sponsor member. The features of this approach are that, no keys are exchanged between

existing members at join, and only one key, the group key, broadcasted to remaining

members at leave.This work investigates a novel group key agreement approach which

blends so-called key trees with Diffie-Hellman key exchange.

1

 1.0 INTRODUCTION

The most widely used technique in a network is group communication . With rapid

growth of wireless networks, the usage of group communication has become more

popular from both application and academic points of view. These applications include

private video conferencing , distributed interactive simulation, multi-partner military

action, wireless sensor, , paying TV,transmission of audio and video, updating and

downloading softwares, video games , mobiles and ad hoc networks,checking accounts

online. Security , bandwidth management ,speed etc are the various concerns on group

communication.If the communication between members is properly designed and

managed, then it will lead to the effective usage of band width. Recently the focus is

mainly on the security issues involved in the group communication. When the group uses

the unicast communication, one sender is sending the data stream onto one group

member. In multicasting, the group member is sending the data onto other group

members. The most critical problem that has to be addressed in any group

communication is the security of its messages .Group key management is the most

important among all its security problems However , security and scalability are two

important factors that need to be considered.

Multicast is an efficient technology that supports group communication. It helps in better

utilization of network resources. Group key needs to be shared among all the members, to

ensure security in group communication and also it needs to be maintained secure and

fresh. All the group members should participate in the secure distribution, creation and

revocation of the keys. This helps to ensure that only authorized users have group key.

The communication session in group key management is managed by two entities: Group

Controller (GC), responsible for key generation, distribution and rekeying for membership

change and Key Server (KS), responsible for maintaining the keys and distributing the keys .The

group key is renewed all the time as In the group communication, the members in the group

are not fixed, members can join / members can leave the group. So we need to secure the sending

message to be received by the group members at that instance. Every messages has to be

encrypted with group key before transmitting. Thus outsiders or intruders are unable to

interpret the messages even though they receive the encrypted message.

2

In any practical application, the network has to be scalable and dynamic. Frequent

membership changes might exist in such networks. With every membership change, key

management operation has to be performed to ensure security. Key distribution is

required in secure multicast to ensure that only the current group members can send

encrypted multicast datagram, and decrypt the received multicast datagram. In other

words, the key distribution algorithm must ensure that an entity is only allowed to

participate during those periods when it is authorized or allowed to do so. It means the

securing multicast communication must provide the following features :

Scalability: The size of a multicast group may vary from a few to tens of thousands. The

rate of join/leave requests and the expected lifetime of a member may vary largely in

different applications. The group key management system should not make arbitrary

assumptions about group size. Membership changes should only affect a small subset of

members so that the system can support large dynamic groups.

Forward secrecy : An entity should not be allowed to read multicast communication

after it leaves the multicast group.

Backward secrecy : An entity should not be allowed to read multicast communication

messages exchanged prior to the time when it joins the multicast group.

One of the solutions to support such requirements is the group data encryption with group

key. A group key is the key that is shared by all the existing group members. In order to

ensure security requirements, the group key must be renewed on each membership

change and redistributed securely to only valid members. This process is called group re-

keying or re-keying in short.

1.1 Group communication protocols are classified into three main

categories:

Group key management (GKM) is one of the most viable issues in secure group

communication (SGC). The existing GKM protocols fall into three typical classes:

centralized group key distribution (CGKD), decentralized group key management

(DGKM), and distributed/contributory group key agreement (CGKA). major

problems lies within these protocols, as they require central trusted entities such as

group controller or subgroup controllers, relaying of messages (by subgroup

controllers), member synchronization (for multiple round stepwise key agreement),

3

thus suffering from the single point of failure as if ceteral manager fails in the group

the entire group destroys and attack, performance bottleneck, or misoperations in the

situation of transmission delay or network failure. We proposed a new class of GKM

protocols: distributed group key distribution (DGKD) . The new DGKD protocol

solves the above problems and surpasses the existing GKM protocols in terms of

simplicity, efficiency, scalability, and robustness.

1.1.1 Centralized (one-to-many) protocols: A key server is only responsible for

managing and distributing group key to group members .

1.1.2 Decentralized protocols: The group is divided into multiple domains. Each domain

is managed by a domain controller or subcontroller which is responsible for generating

the keys for that domain .

1.1.3 Distributed (many-to-many) protocols: Instead of key server, group members

collaborate with each other to establish the group key . The responsibility of the members

is equal.

Based on application requirements, one of the above protocols is used. In distributed

applications such as wireless sensor and ad hoc networks, there is no infrastructure or

base station. To ensure group confidentiality, group members need to collaborate to share

the group key securely on each membership change. This task involves high overhead.

The main goal of secure distributed group communication is how to share a group key

securely and efficiently in the group.

Several approaches have been proposed to reduce the overhead of secure group

communication in distributed environment . Most of these approaches are based on

different types of n-party Diffie-Hellman key agreement protocol. The main issue with

such approaches is that the group members need synchronization to form parental keys

from their two child keys. Moreover, the cost of modular exponentiation is higher than

any other approaches. Once the calculation of a member is slow, the key agreement

process gets delayed. Although the other approaches introduce different concepts of key

management, the re-keying overhead has not been decreased largely.

The project will be based on efficient many-to-many group key management protocol in

distributed group communication. In this protocol, group members are managed in the

hierarchical manner logically. Two kinds of keys are used, asymmetric and symmetric

4

keys. The leaf nodes of logical tree are the asymmetric keys of the corresponding group

members and all the intermediate node keys are symmetric keys assigned to each

intermediate node. For asymmetric key, Diffie-Hellman key agreement is introduced

which provides help in authentication. To calculate intermediate node keys, members use

codes assigned to each intermediate node key tree. Group members calculate intermediate

node keys rather than distributed by a sponsor member. The features of this approach are

that, no keys are exchanged between existing members at join, and only one key, the

group key, is delivered to remaining members at

5

 2.0 THE PURPOSE OF CRYPTOGRAPHY

Cryptography is the science of writing in secret code and is an ancient art; the first

documented use of cryptography in writing dates back to circa 1900 B.C. when an

Egyptian scribe used non-standard hieroglyphs in an inscription. Some experts argue that

cryptography appeared spontaneously sometime after writing was invented, with

applications ranging from diplomatic missives to war-time battle plans. It is no surprise,

then, that new forms of cryptography came soon after the widespread development of

computer communications. In data and telecommunications, cryptography is necessary

when communicating over any untrusted medium, which includes just

about any network, particularly the Internet.

Within the context of any application-to-application communication, there are some

specific security requirements, including:

 Authentication: The process of proving one's identity. (The primary forms of

host-to-host authentication on the Internet today are name-based or address-based,

both of which are notoriously weak.)

 Privacy/confidentiality: Ensuring that no one can read the message except

the intended receiver.

 Integrity: Assuring the receiver that the received message has not been altered

in any way from the original.

 Non-repudiation: A mechanism to prove that the sender really sent this

message.

Cryptography, then, not only protects data from theft or alteration, but can also be used

for user authentication. There are, in general, three types of cryptographic schemes

typically used to accomplish these goals:

1.Secret key (or symmetric) cryptography

2. Public-key (or asymmetric) cryptography

6

3. Hash functions

In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted

into ciphertext, which will in turn (usually) be decrypted into usable plaintext.

7

 3.0 LITERATURE REVIEW

Consider a group of people who wish to establish secure ad-hoc communication using

their mobile devices. The group is called dynamic if it allows to add and delete

participants during the communication session, otherwise the group is static. We call an

ad-hoc group heterogeneous if its members are equipped with different kinds of devices,

and homogeneous if devices have similar performance properties.

In hierarchical approaches, the members of group are mapped with the leaves of a logical

binary key tree. Each member maintains all the keys along the path from his/her leaf to

the root. The root key is the group key. At join/leave, all the keys in the path set need to

be changed to new ones. Based on the key management approach, the number of key

generations, key encryptions, and key delivery differs. Typically, each member maintains

O(log n) keys which shows the height of the key tree where n is the number of members.

In order to establish a group key for secure distributed group communication, many

approaches have been proposed. As stated before, most of these approaches are based on

different types of n-party Diffie-Hellman key agreement protocol. The other approaches

are based on other methods. The main purpose of these approaches is to reduce the

overhead of group key management. The fact with all of them is that the evaluation

measures of these approaches are not distinct. For example, they do not consider key

generation, key encryption separately in their works.

With increasing communication services, users are often grouped in various applications.

They normally form centralized or decentralized structures, capable of handling entities

involved in functions ranging from web and mail to sensor networks, file sharing to

databases, and so on. Applications of such groups are enormous, and so are the demands

for secure and reliable communication in these groups.

The literature presents with several different approaches to group key management. We

can divide them into three main groups in terms of efficiency in communication and

computation, and scalability:

8

3.1 CENTERALISED GROUP KEY MANAGEMENT

In CGKD schemes [1], [2], [3], [4], [5], [6], [7], [8], [9], there is a central trusted

authority (called group controller (GC)) that is responsible for generating and distributing

the group key i.e rekeying operations. Whenever a new member joins or an existing

member leaves, the GC generates a new group key and distributes the new key to the

group. A single entity is responsible for controlling the whole group, hence a group key

management protocol seeks to minimize storage requirements, computational power on

both client and server sides, and bandwidth utilization; The problems with the centralized

schemes are the central point of failure, performance bottleneck, non-scalability, and the

requirement of trustworthiness of the group controller by all members.

3.2 DECENTERALISED GROUP KEY MANAGEMENT:

In DGKM schemes [10], [11], [12], [13], the group is divided into multiple distinct

subgroups and every subgroup has a subgroup controller (SC) responsible for key

management for its subgroup, trying to minimize the problem of clubing the work in a

single place. In addition, an SC has the key of its parental subgroup. When an SC

receives a message from one subgroup, it decrypts the message, encrypts the message

with the key of the other subgroup and sends to the other subgroup, i.e., relay of the

message occurs. The problems with DGKM are that SCs can still be considered as central

and trusted entities (at a smaller scale) and the messages undergo multiple relaying before

they reach the entire group. Relaying of every data message puts huge burden on SCs.

3.3 CONTRIBUTORY GROUP KEY AGREEMENT:

Contributory group key agreement (CGKA) protocols, originally designed for peer

groups in local- and wide-area wired networks, can also be used in ad-hoc scenarios

because of the similar security requirements and trust relationship between participants

that excludes any trusted central authority (e.g., a group manager) from the computation

of the group key. In CGKA schemes [14], [14], [15], [16], [17],[18], the group key is

generated/agreed up by uniform contributions from all group members. These kind of

schemes assume equality and uniform work load among all group members. There is no

explicit KDC, and the members themselves do the key generation .All members can

perform access control and the generation of the key can be either contributory, meaning

that all members contribute some part of information to generate the group key, or done

9

by single member. They are generally executed in multiple rounds and require strict

synchronization. The CGKA protocols are primarily different variations of the n-party Di

e-Hellman key agreement/exchange [14], [16], [19], [20], [17], [18]. The main problem

with using this key exchange mechanism is that the group members need synchronization

to iteratively form parental keys from their two children's keys. Once one member is slow

or one rekeying packet is delayed, the key agreement process will be postponed or even

can misoperate. Moreover, there are dependences among nodes' keys (i.e., a blinded node

key is dependent on the secret node key and a parental key on its two child's keys).

TGDH [15] uses two-party Diffie-Hellman key agreement protocol in group. In addition,

The concept of hierarchical key tree is used in this method. The leaves of the key tree

represent users. Each member assigned to the leaf of the key tree maintains the key tree.

Starting from leaf nodes, each intermediate node represents a key shared by its two child

node keys computed by using single Diffie-Hellman key agreement protocol. TGDH has

reduced the modular exponentiation from O(n) to O(logn) during initial establishment

and join/leave.However, the cost of modular exponentiation causes the protocol to delay

because the protocol needs initiation after each membership change.

DGKD [16] ,uses the concept of sponsor and co-distributer in this method. This method

is based on hierarchical tree structure.A sponsor initiates the key generation and rekeying

process at join/leave. The sponsor is chosen based on the ID size. The selected sponsor is

responsible to change the keys along the path, and co-distributor distributes new key . A

co-distributor is the sponsor of a branch on other path. Since this is distributed method all

the group members are equally capable and are mutually trusted. Depending on the

relative location of joining/leaving member, any group member can have the potential

sponsor. The disadvabtage of this approach is that all affected intermediate keys in the

path have to be generated by the sponsor node. Moreover, this approach uses asymmetric

cryptosystem for sending the necessary keys from sponsor to co-distributors which is

slower than symmetric cryptosystem.

10

 Figure 3.1 DGKD join operation

 Figure 3.2 DGKD leave operation

EDKAS [17] This method is based on the concept of distributed one way function trees.

it is a period based group rekeying approach. For each node a secret key and its

corresponding blinded key is associated. The blinded keys are computed by applying a

given one-way function(oft). Each member generates a unique secret key for itself by a

secure pseudo random number generator (PRNG). In this way the secret key associated

with the root node (known as group key) is shared by all the members. The key of an

intermediate node is computed by the blinded keys of two child nodes using Ki,j=f(g(Ki),

g(Kj)) where f is a mixing function and g is a given one-way hash function. Each member

maintains his/her own secret key and all the blinded keys of nodes that are sibling of the

nodes from the path set. The disadvantages of this protocol are expensive maintenance of

secure channels between members, and expensive communication cost as well as its

message size cost.

11

 Figure 3.3 EDKAS join operation

 Figure 3.4 EDKAS leave operation

3.4 DIFFIE HELLMAN ALGORITHM FOR KEY EXCHANGE

The Diffie–Hellman key exchange algorithm solves the following dilemma. The two

users named Alice and Bob want to share a secret key for use in a symmetric cipher, but

their communication mean is insecure. Every piece of information that they exchange is

observed by their Eve. How is it possible for Alice and Bob to share a key without

making it available to Eve? At first glance it appears that Alice and Bob face cant share

the key through this mean. It was a brilliant insight of Diffie and Hellman that the

difficulty of the discrete logarithm problem for F ∗ p provides a possible solution. The

first step is for Alice and Bob to agree on a large prime number p and a nonzero integer g

modulo p. Alice and Bob make the values of p and g public knowledge; for example, they

might post the values on their web sites, so Eve knows them, too. For various reasons to

be discussed later, it is best if they choose g such that its order in F ∗ p is a large prime.

The next step is for Alice to pick a secret integer a that she does not reveal to anyone,

while at the same time Bob picks an integer b that he keeps secret.

12

Bob and Alice use their secret integers to compute

A ≡ g ^a (mod p) | {z } Alice computes this

and B ≡ g^ b (mod p) | {z } Bob computes this

They next exchange these computed values, Alice sends A to Bob and Bob sends B to

Alice. Note that Eve gets to see the values of A and B, since they are sent over the

insecure communication channel.

Finally, Bob and Alice again use their secret integers to compute

A 0 ≡ B ^a (mod p) | {z } Alice computes this

B 0 ≡ A ^b (mod p) | {z } Bob computes this

The values that they compute, A0 and B0 respectively, are actually the same,

since A 0 ≡ B ^a ≡ (g^ b)^ a ≡ g^ ab ≡ (g ^a)^ b ≡ A ^b ≡ B 0 (mod p).

 Figure 3.5 Diffie hellman key exchange

13

3.5 SYMMETRIC ALGORITHM FOR INTERMEDIATE NODES

When using symmetric algorithms, both parties share the same key for encryption and

decryption. To provide privacy, this key needs to be kept secret. Once somebody else

gets to know the key, it is not safe any more. Symmetric algorithms have the advantage

of not consuming too much computing power.

A few well-known examples are: DES, Triple-DES (3DES).

3.6 ASYMMETRIC ALGORITHM FOR LEAF NODES

Asymmetric algorithms uses two pairs of keys. One pair is used for encryption and the

other one for decryption. The decryption key is typically kept secretly, hence called

``private key'' or ``secret key'', while the encryption key is spread to all who might want

to send encrypted messages, therefore called ``public key''. Everybody having the public

key is able to send encrypted messages to the owner of the secret key. The secret key

can't be reconstructed from the public key.

Asymmetric algorithms seem to be ideally suited for real-world use: As the secret key

does not have to be shared, the risk of getting known is much smaller. Every user only

needs to keep one secret key in secrecy and a collection of public keys, that only need to

be protected against being changed. With symmetric keys, every pair of users would need

to have an own shared secret key. Well-known asymmetric algorithms are RSA, DSA

14

 4.0 DESIGN PRINCIPLE

We now present our efficient approach, DHSA, for distributed secure group

communication. As name indicates, this distributed group key management approach

uses Diffie-Hellman and symmetric algorithm along with the concept of logical

hierarchical key tree. The mainreason for this approach is to reduce re-keying overhead

at join/leave. DHSA focuses on member collaboration for key calculation instead of key

delivery by sponsor or co-distributor. For this purpose, we introduce three basic

characteristics of DHSA:

(1) The leaf key (users) in the logical tree is the public key of the corresponding group

member, and all intermediate node keys are symmetric keys.

(2) The public key of each member along with binary code the corresponding parent node

is stored in a list shared by group members. This list will be updated each time on any

membership change and periodically (leave/join).

(3) All group members have the same capability and are equally trusted and responsibile

i.e no central authority.

The public key(key for leaf) of each member is generated by Diffie-Hellman key

agreement. When p is a large prime number and g is the primitive element of

multiplicative group Z*p, the public key of a member is obtained by g xi (mod p) . This

public key is used to create a share key with other members in the group. For example, ui

can share a key with uj by calculating g^(xa*xb) (mod) p .

DHSA introduces two types of codes in its key tree, binary code for member position

discovery, and decimal one for intermediate node key calculation.

1. Binary Code: Code will be used for member position discovery.

2. Decimal Code: Code will be used for intermediate node key calculation.

Figure illustrates a key tree with 8 members, {u1,…,u8}, and its corresponding binary

code. The binary code of first level of each intermediate node from the bottom of the key

tree, and the corresponding two members’ public key are stored in a list. Each member

uses this list to find the public key of any member who don’t have sibing and with whom

they can establish a connection. As stated before, this list is updated whenever there is a

membership change and is broadcasted to other members by multicast. Usually, the

15

sibling member of affected branch is responsible to broadcast/multicast the updated

information to other members. Table shows the management of binary code and its

associated members public key in the list. As shown in this table, the public keys of u1

and u2 are gx1 , gx2 respectively, and their associated parent binary code is 000. Since

there is no sibling member for u3, the list just shows its public key, g x3 , and the

associated parent binary code, 00.

 Figure 4.1 DHSA parent binary code for member position discovery

 Table 4.1 List of parent binary code and associated member public key

Parent binary code Member public key

000 gx1,gx2

00 gx3

010 gx5,gx6

011 gx7,gx8

As stated above, the other code type in DHSA is decimal code. Decimal code is used just

for intermediate node keys calculation, and is assigned to each intermediate node in the

key tree. Root node will contain the group key.Intermediate node key is calculated using

the below formulae.

Keyintermediate node f Keygroup Codeintermediate node

Codechild_node = (Codeparent_node || Random digit).

16

Figure 4.1 shows a hierarchical tree structure. When a new member wants to join a group

it sends a join request message to the entire group. The node with no siblings or if

everyone has sibling then message is replied by node with lowest id will reply .If there

are multiple nodes having no siblings, then the node with smallest parent binary code

value replies to the join request. On recieving this join request each member check if it

has the smallest binary code value, if so then that node will be responsible for the group

key management operations at this join. When f is a given one way hash function, and Kg

is the previous group key, the new group key K’g is calculated as follows.

 Figure 4.2 Flow chart for join operation

start

join

yes

Broadcasts hello

message

Node with no

sibling replies

Both shares key

using diffie -

hellman

Calculate new

code for parent Downgrade the

position

Calculate new

group key and

send group key to

all

Each calculate

intermediate

code

stop

17

 Figure 4.3 Flowchart for leave operation

start

upgrade

the parent

position

Update the

member list

Generate new

group key

Unicast to each

member

leave

stop

start

18

4.1 LOGGING INTO THE SYSTEM

When a new member wants to join a group it enters the username and password. The

node with no siblings or if everyone has sibling then message is replied by node with

lowest id will reply .If there are multiple nodes having no siblings, then the node with

smallest parent binary code value replies to the join request. On recieving this join

request each member check if it has the smallest binary code value, if so then that node

will be responsible for the group key management operations at this join.

 Figure 4.4 Flowchart for logging into the system

join

yes

Enters

username and

password

Node with no

sibling replies

Both shares key

using diffie -

hellman

Calculate new

code for parent Downgrade the

position

Calculate new

group key and

send group key to

all

Each calculate

intermediate

code

stop

start

19

4.2 Logging out from the system

 Figure 4.5 flowchart for logging out from system

start

logout

upgrade

the parent

position

Update the

member list

Generate new

group key

Unicast to each

member

stop

start

20

4.3 USE CASE DIAGRAM FOR LOGIN SYSTEM

 Figure 4.6 Usecase for logging in and out from system

 calls

 calls

user

login

Insert

function

Delete

function

logout

21

 5.0 SYSTEM REQUIREMENT

5.1 Software requirement

 Operating system

 Developing language (JAVA).

 Eclipse platform

 Glass fish server 4.1

 Xampp server

5.2 Hardware requirements

 HDD - To install the software at least 2 GB and the data

storage is depending upon the organizational setup.

 PROCESSOR - Intel Pentium IV, 1GHZ or above

 RAM - 256MB or above

 VIDEO - 1024x768, 24-bit colors

 KEYBOARD - Standard 104 Keys(QWERTY)

22

 6.0 FINAL DESIGN

To explain the detailed approach, consider our simple example with 8 members as

illustrated in Figures5.1 for join operation and Figure 5.2 for leave operation. Members

decide a large prime number p and its primitive element g for each group. These values

are public in group. Initially, this value is selected at initial mode of key tree

establishment.

When a new member wants to join a group, it sends a hello message to discover the

group members. Members, who receive the signal of this member, checks the list to know

which member does not have a sibling member. A member who does not have a sibling

member in it’s branch replies to the hello message. But when each member has his/her

corresponding sibling member , the member with lowest parent binary ID replies to that

member. He/she exchanges the public key generated by Diffie-Hellman key agreement.

Here, a member who replies is responsible to provides authentication to the member.

Once authentication operation is provided, the public key of new member and his/her

corresponding parent binary code is stored in list and updates the list, and the updated

information is broadcasted to existing members. Next, the current members as well as the

new one can calculate the affected intermediate node keys by applying a given one-way

hash function(OFT) to bitwise XOR of new group key and the intermediate node code.

6.1 JOIN OPERATION

Using Fig 5.1 a multicast group of 7 members, {u1, u2, u3, u5, u6, u7, u8} as current

members when a new member u4 joins the group (Fig. 5.1).

(1) u4 broadcasts a hello message for joining group.

(2) u3 who does not have a sibling node, replies to this message.

(3) u3 shares a key with u4 by Diffie-Hellman key agreement.

This key is g^x3x4 (mod p).

(4) u3 downgrades it’s position from 00 to 001, updates the member discovery key by

replacing the new parent binary code and new member’s public key (Table 5.1).

(5) u3 calculates the new intermediate node code for it’s Parent as shown.

Code_K3,4 = (04 || 6)= 046.

23

(6) u3 generates new group key .

K’g=f(Kg)

(7) u3 sends K’g, and the new node code to u4 being encrypted by the shared key

between them.

U3 (K’g,046)g^x3x4.

(8) Existing members, {u1, u2, u3, u5, u6, u7, u8}, renew the group key as describe .

(9) Then, the members in the affected path set calculate the intermediate node keys by

applying one-way hash function to bitwise XOR of intermediate node codes and the new

group key.

U3,U4:K3,4=f(K’g(+) 046).

U3…..U4:K3,4=(K’g(+)04).

 Table 6.1 List of parent binary code and associated member public key

Parent binary code Member public key

000 gx1,gx2

001 gx3,gx4

010 gx5,gx6

011 gx7,gx8

Figure 6.1 DHSA join operation

24

In this just one key is delivered to new member,which is an important feature for

distributed group communication in wireless and dynamic network. Since members are

mobile, in addition to dynamic join/leave, simultaneous join may occur in wireless

networks. In order to solve such problem, the overload of rekeying operation must be

minimized. The features of DHSA provide this task with just one key delivery reducing

overhead of rekeying.

6.2 Leave operation

When a member leaves a multicast group, his/her node is deleted from the key tree. The

sibling member on that branch moves up to it’s parent node position. And the sibling

node is responsible to update the list and to transmit this information of the list to other

members. After each leave, the group key and some intermediate node keys need to be

updated. At leave operation, the key tree has divided into some parts. The number of

these parts is equal to (log n -1) where n is the number of group members ,new group key

is generated by sibling and sends it to one of the member in each part. To do this the

sibling node looks up the list and finds one of the available members in each part, shares

a key with that member using it’s public key and send the group key for it’s via unicast .

The member who receives multicast group key to his it’s branch members being

encrypted with upper intermediate node which is not affected. Now the users are able to

renew the affected intermediate node key.

Following are the steps to leave a group:

(1) u7 is upgraded to it’s parent position.

(2) u7 updates the member list by deleting the leaving node’s public key, and changes it’s

parent binary code. u7 also broadcast message to the other nodes about the updated

information.

(3) u7 generates new group key K”g by using symmetric algorithm.

(4) u7 looks up the list and use Diffie-Hellman key agreement to share a key with one of

the member in each branch. Then, it unicast new group key to each member.

U7 U1:(K’’g)g^x1x7

U7 U5:(K’’g)g^x5x7

25

(5) now u1 and u5 multicast the received new group key G ,K , to members of their

branch as follow:

U7 U2….U4:(K’g)K1,4

U7 U6:(K’g)K5,6

(6) Finally the members in affected path calculate the code of the affected intermediate

node by the formula below.

U5,U6,U7:K5,7=f(K’g(+)08).

Table 6.2 List of parent binary code and associated member public key

Parent binary code Member public key

000 gx1,gx2

001 gx3,gx4

010 gx5,gx6

01 gx7

 Figure 6.2 DHSA leave operation

26

6.3 SIMULATION:

6.3.1 First user joined the group

6.3.2 Second user joined the group

27

6.3.3 Third user joined the group

6.3.4 Fourth user joined the group

28

7.0 REAL TIME IMPLEMENTATION OF

DISTRIBUTED GROUP KEY MANAGEMENT

Members decide a large prime number p and its primitive element g for each group.

These values are public in group. Initially, this value is selected at initial mode of key tree

establishment.

When a new member wants to join a System, it enters a username and password to

discover the authentication using the database. Members, who receive the signal of this

member, checks the list to know which member does not have a sibling member. A

member who does not have a sibling member in it’s branch replies to the message. But

when each member has his/her corresponding sibling member , the member with lowest

parent binary ID replies to that member. He/she exchanges the public key generated by

Diffie-Hellman key agreement.

Once the member replies , the public key of new member and his/her corresponding

parent binary code is stored in list and updates the list, and the updated information is

broadcasted to existing members. Next, the current members as well as the new one can

calculate the affected intermediate node keys by applying a given one-way hash

function(OFT) to bitwise XOR of new group key and the intermediate node code

7.1 JOIN OPERATION WHILE LOGING INTO THE SYSTEM

A multicast group of 7 members, {u1, u2, u3, u5, u6, u7, u8} as current members when a

new member u4 joins the group (Fig. 5.1).

(1) u4 logins into the system through the login the page.

(2) u3 who does not have a sibling node, replies to this message.

(3) u3 shares a key with u4 by Diffie-Hellman key agreement.

This key is g^x3x4 (mod p).

(4) u3 downgrades it’s position from 00 to 001, updates the member discovery key by

replacing the new parent binary code and new member’s public key (Table 5.1).

(5) u3 calculates the new intermediate node code for it’s Parent as shown.

Code_K3,4 = (04 || 6)= 046.

(6) u3 generates new group key .

29

K’g=f(Kg)

(7) u3 sends K’g, and the new node code to u4 being encrypted by the shared key

between them.

U3 (K’g,046)g^x3x4.

(8) Existing members, {u1, u2, u3, u5, u6, u7, u8}, renew the group key as describe .

(9) Then, the members in the affected path set calculate the intermediate node keys by

applying one-way hash function to bitwise XOR of intermediate node codes and the new

group key.

U3,U4:K3,4=f(K’g(+) 046).

U3…..U4:K3,4=(K’g(+)04).

7.2 Leave operation to logout the system

Following are the steps to leave a group:

(1)The user logouts the system through servlet. u7 is upgraded to it’s parent position.

(2) u7 updates the member list by deleting the leaving node’s public key, and changes it’s

parent binary code. u7 also broadcast message to the other nodes about the updated

information.

(3) u7 generates new group key K”g by using symmetric algorithm.

(4) u7 looks up the list and use Diffie-Hellman key agreement to share a key with one of

the member in each branch. Then, it unicast new group key to each member.

U7 U1:(K’’g)g^x1x7

U7 U5:(K’’g)g^x5x7

(5) now u1 and u5 multicast the received new group key G ,K , to members of their

branch as follow:

U7 U2….U4:(K’g)K1,4

U7 U6:(K’g)K5,6

(6) Finally the members in affected path calculate the code of the affected intermediate

node by the formula below.

U5,U6,U7:K5,7=f(K’g(+)08).

30

7.3 SIMULATION:

7.3.1 Html page to log into the system

7.3.2 First user logged into the system

31

7.3.3 First user has been inserted into the tree as the user logs into the system

7.3.4 Second user logged into the system

32

7.3.5 Second user has been inserted into the tree as the user logs into the system

7.3.6 If user enters the wrong username or password

33

7.3.7 User logs out the system

34

8.0 Security Requirement

Some security requirements which must be fulfilled by key management protocol in

order to ensure secure group communication in dynamic systems.

1. Group key secrecy: Any non-group member is unable in any way to compute any

previously existing or existing group key. This also implies that non group member is

also unable to find any changed node key in the group. Mathematical operations and

random numbers involved in rekeying must be cryptographically strong.

2. Forward key secrecy: Former members of the group, who may know any subset of

older group keys, should not be able to find any new group key.

3. Backward key secrecy: Present members of the group, who may know any subset of

group keys, should not be able to discover any previously used group key.

4. Key independence: Passive members or former members and present members of the

group, who may know an group keys, are unable to determine any other key.

5. Reuse of known node keys: Evicted members must not discover any new information

that is flowing within the group. Sometimes evicted users can use their prior knowledge

of node keys to decrypt any future transmission. All node keys known to a leaving

member must be changed during rekeying process.

35

9.0 Applications of Group Key Management

The increased popularity of group oriented applications and protocols ,group

communication becomes essential in many situations , from network layer multicasting to

application layer teleconferencing . Regardless to the environment and situation , security

protocol and their services are necessary to provide communication privacy and

confidentiality.

9.1 Mobile ad-hoc network

A mobile ad-hoc network (MANET) is a self-configuring network of mobile nodes

connected by wireless links, to form an arbitrary topology. The nodes moves randomly

and freely i.e the network's wireless topology may be unpredictable and may change

rapidly. Minimal configuration, quick deployment and absence of a central governing

authorityare the basic characteristics of mobile ad-hoc network. Secure communication

an important aspect of any networking environment, is an especially significant challenge

in ad hoc networks. The unreliable wireless medium in MANET is a threat for Secure

Data Transmission. The communication in mobile ad hoc networks comprises two

phases, the route discovery and the data transmission. In an adverse environment, both

Phases are vulnerable to a variety of attacks, one way to counter security attacks would

be to cryptographically protect and authenticate all control and data traffic. Key

management is a basic part of any secure communication structure. Most secure

communication protocols rely on a secure, robust, and efficient key management system.

The key is a piece of input information for cryptography algorithms. Different

cryptographic keys are used for encryption like symmetric key, public key, group key and

hybrid key (symmetric key + asymmetric key). In symmetric key management same keys

are used by sender and receiver. This key is used for encryption the data as well as for

decryption the data. In public key cryptography, two keys are used one private key and

another public key.

Different keys are used for encryption and decryption. The private key is available only

for individual and kept by source node and it is used for decryption. In MANET there are

various Key Management Schemes proposed. To secure communications in Mobile Ad

Hoc Networks (MANETs), messages are often protected by encryption using a chosen

36

cryptographic key, which, in the scenario of group communication is called the group key

proposed in . Multicast is a communication service that provides data delivery from a

source to a set of recipients, also known as multicast group.

Secure group communication systems typically rely on a group key, a secret shared by all

members of the group. Privacy is provided by encrypting all data with the group key. The

key management system controls access to the group key, ensuring that only

authenticated members receive the key.

9.2 Multimedia Security

The availability of digital technologies and increasing Internet bandwidth in recent years

have raised the demand for new multimedia services. The Internet service providers are

now deploying the new technologies for group communications that allow the

participation of many members. Service types include tele-conference, video-on-demand,

interactive simulation, software updates and real-time delivery of stock market

information. Multimedia security is an important requirement for the distribution

networks when the delivery includes either confidential or patent data. With the

deployment of digital technologies for the reproduction, storage and distribution of

content, there is a increasing need for the protection of intellectual property. Content

providers (movie studios and recording studios, in particular) have been evaluating the

technologies that prevent unauthorized access to services.

Secure multicast communications in a computer network basically involves efficient

packet delivery from one or more sources .This can be done using:

• Multicast data confidentiality: As the data traverses the public Internet, Encryption is

commonly used for data confidentiality so to avoid unauthorized access to data.

• Multicast group key management: The security of the data is done using a group key

being shared by the members that belong to the group. This key changes every time as a

member joins or leaves the group for backward access control or forward access control.

In some applications, there is a need to change the group key periodically. Encryption is

commonly used to control access to the group key.

•Sessions in Multicast : In multicast communications, a session is defined as the time

period in which data is exchanged among the group members. The type of member

participation characterizes the nature of a session. In a one-to many application, data is

37

multicast from a single source to multiple receivers such as Pay-per-view, news feeds and

real-time delivery of stock market information . A many-to-many application involves

multiple senders and multiple receivers such as teleconferencing, white boarding and

interactive simulation allows each member of the multicast group to send data as part of

group communications.

9.3 Wired Networks

In wired network, the root node is a key generator, which helps in generation and

renewing of the common group key. Key generators can act as the multicast group

creators or the group members or a trusted third party. Intermediate group members

referred as key distributors can be the network devices or group members have the

capability of assisting the group key management operations like join or leave. Each leaf

node represents a user that attaches to the single key distributor.In the key transporting

network, each member or intermediate node is associated with some parameters. The key

generator maintains data of all the other nodes and holds secret group info, so to generate

the common group key. Key generator establishes a globally shared common group key

so to group communication only between the authenticated members. The group key

generator transports only the parameters for deriving the common group key are

delivered. Along the path from key generator to legitimate group members, each key

distributor performs a transformation on the received data and forwards the result to a

next key distributors and sub group members

38

 11.0 CONCLUSION

Various classifications of group key management techniques are discussed in this

report.We concentrated more on four different distributed key management techniques

such as EDKAS, TGDH, DGKD and DHSA. From the analysis of the four methods, it

become clear that for new member join case,DHSA has the least rekeying overheads and

is a constant indicating that DHSA is more scalable than other methods. This protocol is

based on logical key hierarchy tree. We have used symmetric cryptosystem along with

asymmetric cryptosystem.

For asymmetric key, Diffie-Hellman key agreement is introduced .At the end, we

conclude our propos with two of its major functionalities.

 In DHSA, intermediate node keys are calculated by group members rather than

distributed by a sponsor member.

 The features of this protocol are that, at join no keys are needed to be exchanged

between existing members, at leave only one key, the group key, is delivered to

remaining members.

39

 REFRENCES

[1] S. Anahita Mortazavi, Alireza Nemaney Pour “ Distributed group key

management using hierarchical approach with diffie hellman and symmetric

algorithm “ 2011 CNDS,International symposium on computer networks and

distributed systems,Feb 2011.

[2] B. Jiang and X. Hu, “A Survey of Group Key Management,” 2008 IEEE,

2008 International Conference on Computer Science and software

Engineering, Vol. 3, pp. 994-1002, Dec. 2008, doi:10.1109/CSSE.2008.1282.

[3] Uday Pratap Singh,Rajkumar Singh Rathore, Computer Engineering and

Intelligent Systems ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)Vol 3,

No.7, 2012.

[4] Preeti ,Banadana Sharma, International Journal For Advance Research in

Engineering and Technology, Vol. 2 , Issue VI, June, 2014 ISSN 2320-6802.

[5] Pratima Adusumilli, Xukai Zou, Byrav Ramamurthy,” Distributed Group Key

Distribution with Authentication Capability”,2005 IEEE, Workshop on

Information Assurance and Security,15-17 june 2005

[6] Sandro Rafaeli and David Hutchison,” A Survey of Key Management for

Secure Group Communication”ACM Computing Surveys,Vol 35,No 3,September

2003

[7]By Mridula R. D.& Sreeja Rajesh ,Global Journal of Computer Science and

Technology,Network, Web & Security,Volume 13 Issue 11 Version 1.0 Year

2013.

[8]Uday Pratap Singh,Rajkumar Singh Rathore,International journal of computer

applications,Volume 61 No 19,January 2013

[9] Alan T. Sherman and David A. McGrew, Member,” Key Establishment in

Large Dynamic GroupsUsing One-Way Function Trees”, IEEE, IEEE

Transactions on Software Engineering, VOL. 29, NO. 5, MAY 2003.

[10] www.math.brown.edu/jhs/MathCrypto/SampleSections.html

[11] William Stallings,Cryptography and network security Principle and

Practice,Fourth edition.

40

[12] Bibo Jiang, Xiulin Hu, “A Survey of Group Key Management, International

Conference on Computer Science and Software Engineering”, IEEE,2008, DOI

10.1109/CSSE.2008.1282

41

 APPENDIX

INSERT FUNCTION

public void insert(int dd) throws Exception

{

int xb,xa = 0;

int lkey,rkey,temp;

int skey;

BigInteger pr;

Node newNode = new Node(); // make new node

// newNode.iData = id; // insert data

newNode.iData = dd;//node id

newNode.leftChild=null;

newNode.rightChild=null;

newNode.pkey=-1;

// qu.add(newNode);

Iterator<Node>i=qu.iterator();

while(i.hasNext())

{

// System.out.print(i.next().iData);

qu.remove();

}

int h=height(root);

for(int k=1;k<=h;k++)

printGivenLevel(root,k);

if(root==null)

{// no node in root

// root.dData=0;

root = newNode;

42

qu.add(newNode);

//return;

}

else

{

Node current=qu.peek();

Node parent=new Node();

Node pre=new Node();

while(true) // (exits internally)

{

System.out.println();

parent = current;

current = current.leftChild;

if(current == null) // if end of the line,

{ // insert on left

parent.leftChild=new Node();

parent.leftChild.iData=parent.iData;//node id

parent.leftChild.dData=2*parent.dData;//binary code

parent.leftChild.leftChild=null;

parent.leftChild.rightChild=null;

//p=getNextPrime(Math.abs(sr.nextLong()));

p=getNextPrime(Math.abs(l));

if(parent==root)

{

xa=sr.nextInt();

lkey= Math.abs(BigInteger.valueOf((long)

g).modPow(BigInteger.valueOf((long)xa),p).intValue());

//parent.pkey=lkey;

//System.out.print("lkek"+lkey);

parent.leftChild.pkey=lkey;

parent.iData=0;

43

}

else

{

search(root,parent);

double code;

lkey=parent.pkey;

parent.leftChild.pkey=lkey;

}

parent.rightChild=newNode;

parent.rightChild.dData=(2*parent.dData)+1;

System.out.println("user"+parent.rightChild.iData+"sends hello message");

System.out.println("user"+parent.leftChild.iData+"replies message");

System.out.println("prime number"+p);

xb=sr.nextInt();

rkey= Math.abs(BigInteger.valueOf((long)

g).modPow(BigInteger.valueOf((long)xb),p).intValue());

parent.rightChild.pkey=rkey;

System.out.println("user"+parent.leftChild.iData+"has key"+lkey);

System.out.println("user"+parent.rightChild.iData+"has key"+rkey);

temp=(int) Math.pow(g,xa);

skey=Math.abs(BigInteger.valueOf((long)

g).modPow(BigInteger.valueOf((long)xb),p).intValue());

System.out.println("sharedkey"+skey);

//System.out.println("intermediate code for node "+ parent.iData);

Tree t=new Tree();

byte[] bytesOfMessage =t.generateRandomString().getBytes();

MessageDigest md = MessageDigest.getInstance("MD5");

byte[] thedigest = md.digest(bytesOfMessage);

// System.out.println(thedigest);

System.out.println("old group key"+root.pkey);

44

root.pkey= Math.abs(byteArrayToInt(thedigest));

System.out.println("new group key"+root.pkey);

qu.add(parent.leftChild);

qu.add(parent.rightChild);

long groupkey=root.pkey;

// System.out.println(parent.rightChild.iData);

checkAffected(root,parent.rightChild,groupkey);

return;

}// nd if go left

/*else //i or go right?

{

current = parent.rightChild;

if(current == null) // if end of the line

{ // insert on right

parent.rightChild = newNode;

parent.rightChild.dData=(2*parent.dData)+1;i

qu.add(parent.rightChild);

return;

}

}*/else

{

qu.remove();

//System.out.print("hey");

}

} // end else go right\

}

} // end insert()

DELETE FUNCTION

public int delete(long key,Node p,Node parent)

45

{

int ans=0;

if(p==null)

return 0;

if(p.iData==parent.iData && p.iData==key && p==root && parent==root)

{

root=null;

/*Iterator<Node>i=qu.iterator();

while(i.hasNext())

{

Node n=i.next();

qu.remove(n);

}*/

return 1;

}

if(p.iData==key)

{

if(parent.leftChild==p)

{

parent.iData=parent.leftChild.iData;

parent.leftChild=null;

return 1;

}

else if(parent.rightChild==p)

{

Iterator <Node>i=qu.iterator();

/* while(i.hasNext())

{

Node n = i.next();

System.out.print("data "+ n.iData);

if(n.iData==p.iData)

46

{

System.out.println("hey");

qu.remove();

}

if(n.iData==parent.leftChild.iData)

{

System.out.println("hey");

qu.remove();

}

}*/

parent.iData=parent.leftChild.iData;

qu.add(parent);

parent.leftChild=null;

parent.rightChild=null;

return 1;

}

}

ans=ans|delete(key,p.leftChild,p);

ans=ans|delete(key,p.rightChild,p);

return ans;

}

DISPLAY FUNCTION

public void displayTree()

{

int count =0,i;

Stack globalStack = new Stack();

globalStack.push(root);

int nBlanks = 32;

boolean isRowEmpty = false;

47

System.out.println(

"..");

while(isRowEmpty==false)

{

Stack localStack = new Stack();

isRowEmpty = true;

for(int j=0; j<nBlanks; j++)

System.out.print(' ');

while(globalStack.isEmpty()==false)

{

Node temp = (Node)globalStack.pop();

if(temp != null)

{

// System.out.print(temp.iData);

localStack.push(temp.leftChild);

localStack.push(temp.rightChild);

if(temp.leftChild != null ||

temp.rightChild != null)

{

for(i=0;i<count;i++)

System.out.print('0');

System.out.print(Integer.toBinaryString(temp.dData));

// System.out.print(temp.iData);

isRowEmpty = false;

}

else

{

System.out.print(temp.iData);

48

}

}

else

{

System.out.print("--");

localStack.push(null);

localStack.push(null);

}

for(int j=0; j<nBlanks*2-2; j++)

System.out.print(' ');

} // end while globalStack not empty

System.out.println();

count++;

nBlanks /= 2;

while(localStack.isEmpty()==false)

globalStack.push(localStack.pop());

} // end while isRowEmpty is false

System.out.println(

"..");

} // end displayTree()

// ---

}

SERVLET CODE FOR LOGIN PAGE

public class login extends HttpServlet{

//static int count=0;

private outer.Tree t= new outer.Tree();

// private int i;

public void init()

{

//i=0;

// outer.Tree t = new outer.Tree();

49

}

public void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String uid = request.getParameter("user");

String pass =request.getParameter("pwd");

//request.getSession().setAttribute("user", uid);

out.println("<head>");

out.println("<body bgcolor=\"cyan\">");

out.println("<center>");

out.println("<pfontsize=\"20\">User entered:"+uid +"</p>");

try{

Class.forName("com.mysql.jdbc.Driver");

Connection con = (Connection)

DriverManager.getConnection("jdbc:mysql://localhost:3306/user","root","");

if(con!=null)

{

// i++;

out.println("<p fontsize=\"20\">Conn established</p>");

}

Statement stmt = (Statement) con.createStatement();

String qry = "select * from user_detail";

ResultSet rs = (ResultSet) stmt.executeQuery(qry);

while(rs.next())

{

//System.out.println("entered1");

String user = rs.getString(1);

String pwd = rs.getString(2);

// out.println("<p>User retrieved:"+user+"</p>");

50

// out.println("<p>Password retrieved:"+pwd+"</p>");

if(uid.equals(user) && pass.equals(pwd))

{

// out.println("entered");

HttpSession session = request.getSession(false);

session = request.getSession();

session.setAttribute("UserLogged",user);

out.println("<p fontsize=\"20\">user id and password recieved are "+uid+" and

"+pwd+"</p>");

out.println("<p fontsize=\"20\">user " +uid+" has been inserted to the group</p>");

//RequestDispatcher rd = request.getRequestDispatcher("/UserInput.jsp");

//rd.forward(request, response);

// outer.Tree t= new outer.Tree();

// for(int j=0;j<i;j++)

// {

t.callinsert();

t.displayTree();

// }

break;

}

//else

//{

// out.println("<p>user id and password not valid</p>");

//}

}

}

catch(Exception ex)

{

ex.printStackTrace();

}

out.println("<form action =\"logout\" method=\"post\">");

51

out.println("<input type=\"submit\" value=\"logout\">");

out.println("</form>");

out.println("</center>");

out.println("</head>");

out.println("</body>");

}

}

