
1

EFFICIENT AUDIT SERVICE OUTSOURCING

FOR DATA INTEGRITY IN CLOUDS

PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENT FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY.

IN

INFORMATION AND TECHNOLOGY

UNDER THE SUPERVISION OF

MS. RAMANPREET KAUR

BY

ROHAN KAPIL

111412

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

CERTIFICATE

This is to certify that project report entitled “.…EFFICIENT AUDIT SERVICE

OUTSOURCING FOR DATA INTEGRITY IN CLOUDS….”, submitted by

………ROHAN KAPIL………………… in partial fulfillment forthe award of

degree of Bachelor of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out

under my supervision.

This work has not been submitted partially or fully to any other University or

Institute for the award of this or any other degree or diploma.

Date: Supervisor’s signature

 ASSISTEANCE

 PROFESSOR

3

 ACKNOWLEDGEMENT

Every project big or small is successful largely due to the effort of a number

of wonderful people who have always given their valuable advice or lent a

helping hand. I sincerely appreciate the inspiration; support and guidance of

all those people who have been instrumental in making this project a

success.

I, ROHAN KAPIL, the student of JAYPEE UNIVERSITY OF

INFORMATION TECHNOLOGY (IT), am extremely grateful to “JUIT”

for the confidence bestowed in me and entrusting my project entitled

“EFFICIENT AUDIT SERVICE OUTSOURCING FOR DATA

INTEGRITY IN CLOUDS” At this juncture I feel deeply honoured in

expressing my sincere thanks to our project supervisor Mr. Hemraj Saini for

making the resources available at right time and providing valuable insights

leading to the successful completion of my project.

I also extend my gratitude to my Project Guide Ms RAMANPREET

KAUR, who assisted me in compiling the project.

I would also like to thank all the faculty members of JUIT for their critical

advice and guidance without which this project would not have been

possible. Last but not the least I place a deep sense of gratitude to my family

members and my friends who have been constant source of inspiration

during the preparation of this project work.

4

 Date: ROHAN KAPIL

 ABSTRACT

Every one today use cloud service to store there personal data and even

for maintaining the backup of data in case of any hazard .

For the benefits Of their own, there do exist various motivations

for Cloud Service Providers to behave unfaithfully towards the cloud.

However, the fact that clients no longer have physical possession of data

indicates that they are facing a potentially formidable risk for missing or

corrupted data. To avoid he security risks, audit services are critical to

ensure the integrity and availability of outsourced data and to achieve

digital forensics and credibility on cloud computing.

Provable data possession (PDP), which is a cryptographic technique for

verifying the integrity of data without retrieving it at an untrusted server,

can be used to realize audit services. Profiting from the interactive zero-

knowledge proof system, we address the construction of an interactive

PDP protocol to prevent the fraudulence of prover (soundness property)

and the leakage of verified data.Diffie–Hellman assumption efficient

mechanism with respect to probabilistic queries and periodic verification

to reduce the audit costs per verification and implement abnormal

detection timely.

5

 TABLE OF CONTENT

S. NO. TOPIC PAGE NO.

1. CERTIFICATE 1

2. ACKNOWLEDGEMENT 2

3 ABSTRACT 3

4. INTRODUCTION 6

 4.1 TOWARDS ACHIEVING 9

 ACCOUNTABILITY

 AUDITABILITY

 4.2 SCALABLE AND EFFICIENT 10

 PROVABLE DATA POSSESSION

 4.3 PROVABLE DATA POSSESSION 10

 4.4. OBJECTIVES 11

 4.5 OUTPUT DESIGN 11

5 SOFTWARE ENVIRONMENT 12

 5.1 .NET FRAMEWORK 13

 5.2 MANAGED CODE 13

 5.3 MANAGED DATA 14

 5.4 COMMON TYPE SYSTEM 14

 5.5 CLASS LIBRARY 14

6

 5.6 LANGUAGE SUPPORTED 15

 5.7 CONSTRUCTOR AND DESTRUCTOR 17

 5.8 GARBAGE COLLECTION 18

 5.9 OVERLOADING 28

 5.10 MULTITHREADING 18

 5.11 STRUCTURE EXCEPTION HANDLING 19

6 SYSTEM ANALYSES AND DESIGN 20

 6.1 FLOWCHART. 20

 6.2 USE CASE DIAGRAM 21

 6.3 CLASS DIAGRAM. 22

 6.4 SEQUENCE DIAGRAM 23

 6.5. ACTIVITY DIAGRAM 24

7 IMPLEMENTATION 25

 7.1 DIFFIE–HELLMAN ASSUMPTION 25

 7.2 ZERO KNOWLEDGE PROOF PROTOCOL 26

8 CONCLUSION 35

9 FUTURE WORKS 36

 9.1 SYSTEM TESTING 36

10 APPENDIX 40

7

11 BIBLOGRAPHY/REFERENCES 58

 CHAPTER -1 INTRODUCTION

Cloud computing is a Internet based computing which enables sharing

of services. Using Cloud Storage, users can remotely store their data

and enjoy the on-demand high quality applications and services from a

shared pool of configurable computing resources.

Integrity in cloud is achieved by signing the data block before sending to

the cloud.

 Moreover, users should be able to just use the cloud without

 worrying about the need to verify its integrity.

 Thus, enabling public auditability for cloud storage is of critical

 importance so that users can resort to a Third Party Auditor(TPA) to

 check the integrity of data.

The emerging cloud-computing paradigm is rapidly gaining momentum as

 an alternative to traditional information technology. Cloud computing

 provides a scalability environment for growing amounts of data and

 processes that work on various applications and services by means of on-

 demand self-services. One fundamental aspect of this paradigm shifting is

 that data are being centralized and outsourced into clouds. This kind of

 outsourced storage services in clouds have become a new profit growth point

 by providing a comparably low-cost, scalable, location-independent platform

 for managing clients’ data. The cloud storage service (CSS) relieves the

 burden of storage management and maintenance. However, if such an

 important service is vulnerable to attacks or failures, it would bring

8

 irretrievable losses to users since their data or archives are stored into an

 uncertain storage pool outside the enterprises. These security risks come

 from the following reasons: the cloud infrastructures are much more

 powerful and reliable than personal computing devices. However, they are

 still susceptible to security threats both from outside and inside the cloud for

 the benefits of their possession, there exist various motivations for cloud

 service providers (CSP) to behave unfaithfully toward the cloud users

 furthermore, the dispute occasionally suffers from the lack of trust on CSP.

 Consequently, their behaviors may not be known by the cloud users, even if

 this dispute may result from the users’ own improper operations. Therefore,

 it is necessary for cloud service providers to offer an efficient audit service

 to check the integrity and availability of the stored data. Traditional

 cryptographic technologies for data integrity and availability, based on hash

 functions and signature scheme, cannot work on the outsourced data without

 a local copy of data. In addition, it is not a practical solution for data

 validation by downloading them due to the expensive transaction, especially

 for large-size files. Moreover, the solutions to audit the correctness of the

 data in a cloud environment can be formidable and expensive for the cloud

 users. Therefore, it is crucial to realize public audit ability for CSS, so that

 data owners may resort to a third party auditor (TPA), who has expertise and

 capabilities that a common user does not have, for periodically auditing

 the outsourced data. This audit service is significantly important for digital

 forensics and data assurance in clouds. To implement public audit ability,

 the notions of proof of retrievability (POR) and provable data possession

 (PDP) have been proposed by some researchers. Their approach was based

 on a probabilistic proof technique for a storage provider to prove that

 clients’ data remain intact without downloading the stored data, which is

9

 called “verification without downloading”. For ease of use, some POR/PDP

 schemes work on a publicly verifiable way, so that anyone can use the

 verification protocol to prove the availability of the stored data. Hence, this

 provides us an effective approach to accommodate the requirements from

 public audit ability. POR/PDP schemes evolved around an untrusted storage

 offer a publicly accessible remote interface to check the tremendous amount

 of data. Although PDP/POR schemes evolved around untrusted storage offer

 a publicly accessible remote interface to check and manage tremendous

 amount of data, most of existing schemes cannot give a strict security proof

 against the untrusted CSP’s deception an forgery, as well as information

 leakage of verified data in verification process. These drawbacks greatly

 affect the impact of cloud audit services. Thus, new frameworks or models

 are desirable to enable the security of public verification protocol in cloud

 audit services. Another major concern addressed by this paper is how to

 improve the performance of audit services. The audit performance concerns

 not only the costs of computation, communication, storage for audit

 activities but also the scheduling of audit activities. No doubt improper

 scheduling, more or less frequent, causes poor audit performance, but an

 efficient scheduling can help provide a better quality of and a more cost-

 effective service. Hence, it is critical to investigate an efficient schedule for

 cloud audit services. In response to practical requirements for outsourced

 storages, our concerns to improve the performance of audit services are :

• How to design an efficient architecture of audit system to reduce the storage

and network overheads and enhance the security of audit activities;

• How to provide an efficient audit scheduling to help provide a more cost-

effective audit service

10

• How to optimize parameters of audit systems to minimize the omputation

overheads of audit services.

 LITERATURE REVIEWS

 4.1 TOWARDS ACHIEVING ACCOUNTABILITY,

 AUDITABILITY AND TRUST IN CLOUD COMPUTING

Biggest challenge faced by various computer service provider today is to

trust the cloud service for protection of their data. What the user lack is the

trust for sharing sensitive information to cloud server various research have

been done on this various Encryption and privacy protection technique are

implemented but they only solved the part of it.

Achieving accountability is a complex challenge as we have to consider

large scale distributed server environment to achieve.

(1) real-time tracing of source and duplicate file locations,

 (2) logging of a file’s life cycle, and

(3) logging of content modification and access history

Architecture Lays a foundation towards addressing these three main

abstraction layers of cloud accountability and a Cloud Accountability

Work Flow Layer

Data Layer

System layer

The problem is that the client being a small computing device with limited

resources. Prior work has addressed this problem using either public key

cryptography or requiring the client to outsource its data in encrypted form.

11

We construct a highly efficient and provably secure PDP technique based

entirely on symmetric key cryptography.

 4.2 SCALABLE AND EFFICIENT PROVABLE DATA

 POSSESSION

Cloud storage have given birth to various security issues , which have been

investigated .Provable data possession is a topic that is how efficiently and

scalable the storage server is in storing the client outsourced data .But the

storage server is assumed to be untrusted in terms of both Security and

Reliability.

 4.3 PROVABLE DATA POSSESSION

 In Provable Data Possession the client preprocesses the data and then sends

it to an server for storage .While keeping a small amount of meta-data.

Client asks the server to Prove that the Stored data has not been tampered

with or deleted for dynamic provable data possession , which extends the

PDP model to support provable updates to stored data .

How the data should be arranged or coded?

Methods for preparing input validations and steps to follow when error

occur. The dialog to guide the operating personnel in providing input.

The input design is the link between the information system and the user

 comprises the developing specification and procedures for data preparation

 and those steps are necessary to put transaction data into a usable form for

 processing can be achieved by inspecting the computer to read data from a

 written or printed document or it can occur by having people keying the

 data directly into the system. The design of input focuses on controlling the

12

 amount of input required, controlling the errors, avoiding delay, avoiding

 extra steps and keeping the process simple.

 4.4 OBJECTIVES

1.Input Design is the process of converting a user-oriented description

 of the input into a computer-based system. This design is important to avoid

 errors in the data input process and show the correct direction to the

 management for getting correct information from the computerized system.

2. It is achieved by creating user-friendly screens for the data entry to

 handle large volume of data. The goal of designing input is to make data

 entry easier and to be free from errors. The data entry screen is designed in

 such a way that all the data manipulates can be performed. It also provides

 record viewing facilities.

3. When the data is entered it will check for its validity. Data can be

 entered with the help of screens. Appropriate messages are provided as when

 needed so that the user will not be in maize of instant. Thus the objective of

 input design is to create an input layout that is easy to follow

 4.5 OUTPUT DESIGN

output is one, which meets the requirements of the end user and presents the

 information clearly. In an system results of processing are communicated to

 the users and to other system through outputs. It detemine how the

 information is to be displaced for immediate need

13

 CHAPTER-2 SOFTWARE ENVIRONMENT

 FEATURES OF .NET

Microsoft .NET is a set of Microsoft software technologies for rapidly

 building and integrating XML Web services, Microsoft Windows-based

 applications, and Web solutions. The .NET Framework is a language-neutral

 platform for writing programs that can easily and securely interoperate.

 There’s no language barrier with .NET: there are numerous languages

 available to the developer including Managed C++, C#, Visual Basic and

 Java Script. The .NET framework provides the foundation for components to

 interact seamlessly, whether locally or remotely on different platforms. It

 standardizes common data types and communications protocols so that

 THE .NET FRAMEWORK

 .NET Framework has two main parts:

 1. The Common Language Runtime (CLR).

 2. A hierarchical set of class libraries.

 The CLR is described as the “execution engine” of .NET. It provides the

 environment within which programs run. The most important features are

14

♦ Conversion from a low-level assembler-style language, called

Intermediate Language (IL), into code native to the platform being

executed on.

♦ Memory management, notably including garbage collection.

♦ Checking and enforcing security restrictions on the running code.

♦ Loading and executing programs, with version control and other such

features.

♦ The following features of the .NET framework are also worth

description:

 MANAGED CODE

 The code that targets .NET, and which contains certain extra Information

 - “metadata” - to describe itself. Whilst both managed and unmanaged code

 can run in the runtime, only managed code contains the information that

 allows the CLR to guarantee, safe execution and interoperability.

 MANAGED DATA

 With Managed Code comes Managed Data. CLR provides memory

 allocation and Deal location facilities, and garbage collection. Some .NET

 languages use Managed Data by default, such as C#, Visual Basic.NET and

 JScript.NET, whereas others, namely C++, do not. Targeting CLR can,

 depending on the language you’re using, impose certain constraints on the

 features available. As with managed and unmanaged code, one can have

 both managed and unmanaged data in .NET applications - data that doesn’t

 get garbage collected but instead is looked after by unmanaged code.

15

 COMMON TYPE SYSTEM

 The CLR uses something called the Common Type System (CTS) to

 strictly enforce type-safety. This ensures that all classes are compatible with

 each other, by describing types in a common way. CTS define how types

 work within the runtime, which enables types in one language to

 interoperate with types in another language, including cross-language

 exception handling. As well as ensuring that types are only used in

 appropriate ways, the runtime also ensures that code doesn’t attempt to

 access memory that hasn’t been allocated to it.

 COMMON LANGUAGE SPECIFICATION

 The CLR provides built-in support for language interoperability. To ensure

 that you can develop managed code that can be fully used by developers

 using any programming language, a set of language features and rules for

 using them called the Common Language Specification (CLS) has been

 defined. Components that follow these rules and expose only CLS features

 are considered CLS-compliant.

 THE CLASS LIBRARY

16

 .NET provides a single-rooted hierarchy of classes, containing over 7000

 types. The root of the namespace is called System; this contains basic types

 like Byte, Double, Boolean, and String, as well as Object. All objects derive

 from System. Object. As well as objects, there are value types. Value types

 can be allocated on the stack, which can provide useful flexibility. There

 are also efficient means of converting value types to object types if and

 when necessary. The set of classes is pretty comprehensive, providing

 collections, file, screen, and network I/O, threading, and so on, as well as

 XML and database connectivity. The class library is subdivided into a

 number of sets (namespaces), each providing distinct areas of functionality,

 with dependencies between the namespaces kept to a minimum.

 LANGUAGES SUPPORTED BY .NET

The multi-language capability of the .NET Framework and Visual

 Studio .NET enables developers to use their existing programming skills to

 build all types of applications and XML Web services. The .NET framework

 supports new versions of Microsoft’s old favorites Visual Basic and C++ (as

 VB.NET and Managed C++), but there are also a number of new additions

 to the family.

Visual Basic .NET has been updated to include many new and improved

 language features that make it a powerful object-oriented programming

 language. These features include inheritance, interfaces, and overloading,

 among others. Visual Basic also now supports structured exception

 handling, custom attributes and also supports multi-threading.

Visual Basic .NET is also CLS compliant, which means that any CLS-

 compliant language can use the classes, objects, and components you create

17

 in Visual Basic .NET.Managed Extensions for C++ and attributed

 programming are just some of the enhancements made to the C++ language.

 Managed Extensions simplify the task of migrating existing C++

 applications to the new .NET Framework.C# is Microsoft’s new language.

 It’s a C-style language that is essentially “C++ for Rapid Application

 Development”. Unlike other languages, its specification is just the

 grammar of the language. It has no standard library of its own, and instead

 has been designed with the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for Java-

 language developers into the world of XML Web Services and dramatically

 improves the interoperability of Java-language programs with existing

 software written in a variety of other programming languages.

Active State has created Visual Perl and Visual Python, which enable .NET-

 aware applications to be built in either Perl or Python. Both products can

 be integrated into the Visual Studio .NET environment. Visual Perl

 includes support for Active State’s Perl Dev Kit.

 Other languages for which .NET compilers are available include

FORTRAN

COBOL

Eiffel

 NET FRAMEWORK

 ASP.NET

 XML WEB SERVICES

 Windows Forms

18

 Base Class Libraries

 Common Language Runtime

 Operating System

 FIGURE - 1

 C#.NET is also compliant with CLS (Common Language Specification) and

 supports structured exception handling. CLS is set of rules and constructs

 that are supported by the CLR (Common Language Runtime). CLR is the

 runtime environment provided by the .NET Framework; it manages the

 execution of the code and also makes the development process easier by

 providing services.

 C#.NET is a CLS-compliant language. Any objects, classes, or components

 that created in C#.NET can be used in any other CLS-compliant language. In

 addition, we can use objects, classes, and components created in other CLS-

 compliant languages in C#.NET .The use of CLS ensures complete

 interoperability among applications, regardless of the languages used to

 create the application.

 CONSTRUCTORS AND DESTRUCTORS:

 Constructors are used to initialize objects, whereas destructors are used to

 destroy them. In other words, destructors are used to release the resources

 allocated to the object. In C#.NET the sub finalize procedure is available.

 The sub finalize procedure is used to complete the tasks that must be

 performed when an object is destroyed. The sub finalize procedure is called

 automatically when an object is destroyed. In addition, the sub finalize

19

 procedure can be called only from the class it belongs to or from derived

 classes.

 GARBAGE COLLECTION:

 Garbage Collection is another new feature in C#.NET. The .NET

 Framework monitors allocated resources, such as objects and variables. In

 addition, the .NET Framework automatically releases memory for reuse by

 destroying objects that are no longer in use.

 In C#.NET, the garbage collector checks for the objects that are not

 currently in use by applications. When the garbage collector comes across an

 object that is marked for garbage collection, it releases the memory occupied

 by the object.

 OVERLOADING:

 Overloading is another feature in C#. Overloading enables us to define

 multiple procedures with the same name, where each procedure has a

 different set of arguments. Besides using overloading for procedures, we

 can use it for constructors and properties in a class.

 MULTITHREADING:

20

 C#.NET also supports multithreading. An application that supports

 multithreading can handle multiple tasks simultaneously, we can use

 multithreading to decrease the time taken by an application to respond to

 user interaction.

 STRUCTURED EXCEPTION HANDLING:

 C#.NET supports structured handling, which enables us to detect and

 remove errors at runtime. In C#.NET, we need to use Try…Catch…Finally

 statements to create exception handlers. Using Try…Catch…Finally

 statements, we can create robust and effective exception handlers to improve

 the performance of our application.

 THE .NET FRAMEWORK

 The .NET Framework is a new computing platform that simplifies

 application development in the highly distributed environment of the

 Internet.

 OBJECTIVES OF. NET FRAMEWORK

 To provide a consistent object-oriented programming environment

 whether object codes is stored and executed locally on Internet-distributed,

 or executed remotely. To provide a code-execution environment to

 minimizes software deployment and guarantees safe execution of code.

21

 Eliminates the performance problems. There are different types of

 application, such as Windows-based applications ,Web-based applications.

CHAPTER- 3 SYSTEM ANALYSIS AND DESIGN

 FLOW CHART:

22

Login

TP V

Exists

Create Acc ountyes

File Upload

V erifiction
S tatus

Check

dow nload m odify
File w ith key

File Modify
File Not
Modify

File Downloa d
w ith crypto

key

End

Warning from
Admin

File Verification

Download
Verification

Download
Request
Status

Block

Allow

P roc ess
Pending

File Download

V erify & Upload
Downlod File

Server Client

n o

Metadata Cryptogrphic key
S ent to Mail

V iew Client
Details

Warning Ma il
To Client

key request
to Client

 FIGURE - 2

 USE CASE DIAGRAM:

23

 Server

TPV

Client

Create Account

Login

File Upload

Cryptography key
Request

File Download

File Details

F ile Verify

Client Details

 FIGURE - 3

 CLASS DIAGRAM:

24

`

 REGISTRATION

ID

OWNER ID

PASSWORD

GENDER

MOBILE

EMAIL

DATE

LOGIN ID GENERATION()

CREATE ACCOUNT()

 USER

PASSWORD()

LOGIN

UPLOAD FILE

USER ID

 FIGURE - 4

 SEQUENCE DIAGRAM:

 FILE ARCHIEVE

META DATA GNERATION()

FILEUPLOAD()

FILE ID

FILE NAME

FILE SIZE

FILE PATH

FILW OWNER

KEY REQUEST

 FILE ARCHIEVE MODIFY

COMPARE METADATA()

FILEUPLOAD()

FILE ID

FILE NAME

FILE SIZE

FILE PATH

FILE OWNER

KEY REQUEST

VERIFY STATUS

25

TP V S erv er Client

Da tab as e

Crea te Ac cou nt

Dow nloa d V e rifica tion ke y re que st

U ploa d Fi le s

C ry ptograph y
E nc ryption k ey

V e ri fy C lie nt F ile s

D irec t V erify Files

Down loa d k ey Re que st

A llow /Block

Do w nloa d V e ri fica tion /Ke y Proc es sing

U plo ad Ve ri fica tion Fil e

Fi le M odify S tatus

M odi fy F ile

D ownload Fil e

Download
 v erifica tion

V ie w Cl ie nt De tal ils

W arnin g To Cl ien t

W a r ing from TP V

Dow nloa d
 ve rifica tion

u se r bloc ke d

 FIGURE - 5

26

 ACTIVITY DIAGRAM:

Login

Exists

Create Account

Verification
Status

Check

Download
Request
Status

Client

View Client
Details

Warning Mail
To Client

File Not
Modify

user blocked

File Download
with crypto

key
blocked

File Upload

Cryptographic key
Sent to Mail

File Verification

Download
Verification

key request
to Client

Process
Pending

File Download

Verify & Upload
Downlod File

A

TPV

yes

No

Warning from
TPV

Untrust Server

 FIGURE - 6

27

 IMPLEMENTATION

Implementation is the stage of the project when the theoretical design turned

 out into a working system. Thus it can be considered to be the most

 critical stage in achieving a successful new system and in giving the user,

 confidence that the new system will work and be effective.The

 implementation stage involves careful planning, investigation of

 existing system and it’s constraints on implementation, designing of

 methods to achieve changeover and evaluation of changeover methods.

 DIFFIE–HELLMAN KEY EXCHANGE

Diffie–Hellman key exchange is a method of securely

 exchanging cryptographic keys over a public channel and was the first

 specific example of public-key cryptography D–H is one of the earliest

 practical examples of public key exchange implemented within the field

 of cryptography. The Diffie–Hellman key exchange method allows two

 parties that have no prior knowledge of each other to jointly establish

 a shared secret key over an insecure communication channel. This key can

 then be used to encrypt subsequent communications using a symmetric

 key cipher.

The simplest and the original implementation of the protocol uses

 the multiplicative group of integers modulo p, where p is prime, and g is

 a primitive root modulo p.

28

Here is a example in which we share a key between alice and bob.

Alice and Bob agree to use a prime number p = 23 and

 base g = 5 (which is a primitive root modulo 23).

Alice chooses a secret integer a = 6, then sends Bob A = ga mod p

A = 56 mod 23 = 8

Bob chooses a secret integer b = 15, then sends Alice B = gb mod p

B = 515 mod 23 = 19

Alice computes s = Ba mod p

s = 196 mod 23 = 2

Bob computes s = Ab mod p

s = 815 mod 23 = 2

Alice and Bob now share a secret (the number 2).

ZERO-KNOWLEDGE PROOF PROTOCOLS

One of the most important, and at the same time very counterintuitive,

 primitives for cryptographic protocols are so called zero-knowledge proof

 protocols (of knowledge).Very informally, a zero-knowledge proof

 protocol allows one party, usually called PROVER, to convince another

 party, called VERIFIER, that PROVER knows some facts (a secret, a proof

 of a theorem)without revealing to the VERIFIER ANY information

 about his knowledge

A zero-knowledge proof theorem is an interactive two party protocol

 in which Prover is able to convince Verifier who follows the same protocol,

 by the overhelming statistical evidence, that is true, if theorem is indeed

 true, but no Prover is not able to convince Verifier that theorem is true, if

29

 this is not so. In additions, during interactions, Prover does not reveal to

 Verifier any other information, except whether theorem is true or not.

 Consequently, whatever Verifier can do after he gets convinced, he can do

 just believing that theorem is true. Similar arguments hold for the case

 Prover possesses a secret.

• Audit Service System

• Data Storage Service System

• Audit Outsourcing Service System

• Secure and Performance Analysis

AUDIT SERVICE SYSTEM

In this module we provide an efficient and secure cryptographic

 interactive audit scheme for public audit ability. We provide an

 efficient and secure cryptographic interactive retains the soundness

 property and zero-knowledge property of proof systems.These properties

 ensure that our scheme can not only prevent the deception and forgery of

 cloud storage providers, but also prevent the leakage of outsourced data in

 the process of verification.

30

DATA STORAGE SERVICE SYSTEM

In this module, we considered FOUR entities to store the data in

 secure manner:

Data owner (DO) : Who has a large amount of data to be stored in the

 cloud.

Cloud service provider (CSP) : Who provides data storage service and has

 enough storage spaces and computation resources.

Third party auditor (TPA) : Who has capabilities to manage or monitor –

 outsourced data under the delegation of data owner.

Granted applications (GA) : Who have the right to access and manipulate

 stored data. These applications can be either inside clouds or outside clouds

 according to the specific requirements.

AUDIT OUTSOURCING SERVICE SYSTEM

In this module the client (data owner) uses the secret key to preprocess the

 file, which consists of a collection of blocks, generates a public verification i

 information that is stored in TPA, transmits the file and some verification

 tags to Cloud service provider CSP, and may delete its local copy at a

 later time, using a protocol of proof of, TPA clients) issues a challenge to

 audit (or check) the integrity and availability of the outsourced data in terms

 of the public verification information necessary to give an alarm for normal

 event.

31

SECURITY AND SERVICES

AUDIT-WITHOUT-DOWNLOADING

To allow TPA (or other clients with the help of TPA) to verify the

 correctness of cloud data on demand without retrieving a copy of whole data

 or introducing additional on-line burden to the cloud users.

VERIFICATION-CORRECTNESS

 To ensure there exists no cheating CSP that can pass the audit from TPA

 without indeed storing users’ data intact.

PRIVACY-PRESERVING

 To ensure that there exists no way for TPA to derive users’ data from the

 information collected during the auditing process.

32

SCREEN SHOTS :

 LOGIN PAGE

 REGISTRATION PAGE

33

 SECRET KEY GENERATED

 DATA OWNER PROFILE

34

 TPA PROFILE

 DATA OWNER DETAILS

35

 UPLOADED FILE DETAILS

DATA OWNER UPLOADED FILE

36

DATA OWNER SECRET KEY GENERATED

37

 CONCLUSIONS

To ensure cloud data storage security and integrity it is critical to enable a TPA

to evaluate the service quality from an objective and independent perspective.

Public auditability also allows clients to delegate the integrity verification

tasks to TPA while they themselves can be unreliable or not be able to commit

necessary computation resources performing continuous verifications. we

constructed an efficient audit service for data integrity in clouds. Implement the

audit service based on a third party auditor. In this audit service, the third party

auditor, known as an agent of data owners, can issue a periodic verification to

monitor the change of outsourced data by providing an optimized schedule. To

realize the audit model, we only need to maintain the security of the third party

auditor Audit approach based on probabilistic queries and periodic verification,

as well as an optimization method of parameters of cloud audit services. This

approach greatly reduces the workload on the storage servers, while still

achieves the detection of servers’ misbehavior with a high probability.

38

 FUTURE WORK

CLOUD ENVIRONMENT:

Need to develop a cloud network for testing it on the cloud.

SHARING SECRET KEY:

Sharing secret key using email provided by the user.

 ATTACK ANALYSIS :

 Various inputs are to tested to check the functionality and efficiency.

 SYSTEM TESTING :

 The purpose of testing is to discover errors. Testing is the process of trying

 to discover every conceivable fault or weakness in a work product. It

 provides a way to check the functionality of components, sub assemblies,

 assemblies and/or a finished product It is the process of exercising software

 with the intent of ensuring that the

 Software system meets its requirements and user expectations and does not

 fail in an unacceptable manner. There are various types of test. Each test

 type addresses a specific testing requirement.

 TYPES OF TESTS

 UNIT TESTING

 Unit testing involves the design of test cases that validate that the internal

 program logic is functioning properly, and that program inputs produce valid

 outputs. All decision branches and internal code flow should be validated. It

39

 is the testing of individual software units of the application .it is done after

 the completion of an individual unit before integration. This is a structural

 testing, that relies on knowledge of its construction and is invasive. Unit

 tests perform basic tests at component level and test a specific business

 process, application, and/or system configuration. Unit tests ensure that each

 unique path of a business process performs accurately to the documented

 specifications and contains clearly defined inputs and expected results.

 INTEGRATION TESTING

 Integration tests are designed to test integrated software components to

 determine if they actually run as one program. Testing is event driven and is

 more concerned with the basic outcome of screens or fields. Integration tests

 demonstrate that although the components were individually satisfaction, as

 shown by successfully unit testing, the combination of components is correct

 and consistent. Integration testing is specifically aimed at exposing the

 problems that arise from the combination of components.

 FUNCTIONAL TEST

 Functional tests provide systematic demonstrations that functions tested

 are available as specified by the business and technical requirements, system

 documentation, and user manuals.

 Functional testing is centered on the following items:

 Valid Input : identified classes of valid input must be accepted.

 Invalid Input : identified classes of invalid input must be rejected.

 Functions : identified functions must be exercised.

 Systems/Procedures: interfacing systems or procedures must be invoked.

40

 Organization and preparation of functional tests is focused on

 requirements, key functions, or special test cases. In addition, systematic

 coverage pertaining to identify Business process flows; data fields,

 predefined processes, and successive processes must be considered for

 testing. Before functional testing is complete, additional tests are

 identified and the effective value of current tests is determined.

 SYSTEM TEST

 System testing ensures that the entire integrated software system meets

 requirements. It tests a configuration to ensure known and predictable

 results. An example of system testing is the configuration oriented system

 integration test. System testing is based on process descriptions and flows,

 emphasizing pre-driven process links and integration points.

 WHITE BOX TESTING

 White Box Testing is a testing in which in which the software tester has

 knowledge of the inner workings, structure and language of the software, or

 at least its purpose. It is purpose. It is used to test areas that cannot be

 reached from a black box level.

 BLACK BOX TESTING

 Black Box Testing is testing the software without any knowledge of the

 inner workings, structure or language of the module being tested. Black box

 tests, as most other kinds of tests, must be written from a definitive source

 document, such as specification or requirements document, such as

 specification or requirements document. It is a testing in which the software

 under test is treated, as a black box .you cannot “see” into it. The test

41

 provides inputs and responds to outputs without considering how the

 software works.

 UNIT TESTING:

 Unit testing is usually conducted as part of a combined code and unit test

 phase of the software lifecycle, although it is not uncommon for coding and

 unit testing to be conducted as two distinct phases.

 Test strategy and approach.Field testing will be performed manually and

 functional tests will be written in detail.

 Test objectives

• All field entries must work properly.

• Pages must be activated from the identified link.

• The entry screen, messages and responses must not be delayed.

 Features to be tested

• Verify that the entries are of the correct format

• No duplicate entries should be allowed

• All links should take the user to the correct page.

42

 APPENDICES

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

/// <summary>

/// Summary description for Class1

/// </summary>

public class Class1

{

 SqlConnection con = new SqlConnection(ConfigurationManager.AppSettings["eff"]);

 SqlConnection con1 = new SqlConnection(ConfigurationManager.AppSettings["eff1"]);

 string id, pbky, msky, len1, len2, idno; public Class1(){{}

43

 public void register(String nam, String usernam, String pass, String value, String addrs, String

city, String residence, String residencnindia, String othrstate, String residencystatus, String

citizn, String email, String telephone, String relation, String gender, String dob, String dob1,

String dob2, String age, String mothertongue, String educaton, String occupation, String incom,

String status, String children, String lookingfor, String abtpartner, String height, String bodytype,

String complexin, String cases, String smoke, String drink, String diet, String cntryofbirth, String

caste, String subcaste, String star, String raasi, String timeofbirth, String timeofbirth1, String

timeofbirth2, String cityofbirth, String familyvalues, String abtyourself, String abtfamily, String

hear, String agree, String regdate, String ExpiredDate, String validation, String payment)

 {

 try

 {

 con.Open();

 SqlCommand cmd = new SqlCommand("insert into registerform values('" + nam + "','" +

usernam + "','" + pass + "','" + value + "','" + addrs + "','" + city + "','" + residence + "','" +

residencnindia + "','" + othrstate + "','" + residencystatus + "','" + citizn + "','" + email + "','" +

telephone + "','" + relation + "','" + gender + "',('" + dob + "'+'/'+'" + dob1 + "'+'/'+'" + dob2 +

"'),'" + age + "','" + mothertongue + "','" + educaton + "','" + occupation + "','" + incom + "','" +

status + "','" + children + "','" + lookingfor + "','" + abtpartner + "','" + height + "','" + bodytype +

"','" + complexin + "','" + cases + "','" + smoke + "','" + drink + "','" + diet + "','" + cntryofbirth +

"','" + caste + "','" + subcaste + "','" + star + "','" + raasi + "',('" + timeofbirth + "'+':'+'" +

timeofbirth1 + "'+''+'" + timeofbirth2 + "'),'" + cityofbirth + "','" + familyvalues + "','" +

abtyourself + "','" + abtfamily + "','" + hear + "','" + agree + "','" + regdate + "','" + ExpiredDate +

"','" + validation + "','" + payment + "')", con);

 cmd.ExecuteNonQuery();

 }

 catch (Exception ex)

 {

44

 MsgBox.Show(ex.Message);

 }

 con.Close();

 }

 public int createid()

 {

 con.Open();

 SqlCommand cmd1 = new SqlCommand("select max(uid) from dataowner_registration",

con);

 String var = Convert.ToString(cmd1.ExecuteScalar());

 int var1;

 if (var == null || var == "")

 {

 var1 = 1;

 }

 else

 {

 var1 = Convert.ToInt32(var) + Convert.ToInt32(1);

 }

 con.Close();

 return var1;

 }

 public int createid1()

 {

 con.Open();

 SqlCommand cmd2 = new SqlCommand("select max(fileid) from uploaad", con);

 String var = Convert.ToString(cmd2.ExecuteScalar());

 int var1;

45

 if (var == null || var == "")

 {

 var1 = 1;

 }

 else

 {

 var1 = Convert.ToInt32(var) + Convert.ToInt32(1);

 }

 con.Close();

 return var1;

 }

 public int createid2()

 {

 con.Open();

 SqlCommand cmd3 = new SqlCommand("select max(fileid) from upload_file_details",

con);

 String var = Convert.ToString(cmd3.ExecuteScalar());

 int var1;

 if (var == null || var == "")

 {

 var1 = 1;

 }

 else

 {

 var1 = Convert.ToInt32(var) + Convert.ToInt32(1);

 }

 con.Close();

 return var1;

 }

46

 public DataSet filematching(string fnam)

 {

 con.Open();

 SqlDataAdapter ad = new SqlDataAdapter("select * from uploaad where filename like '" +

'%' + fnam + '%' + "' ", con);

 DataSet dst = new DataSet();

 ad.Fill(dst);

 con.Close();

 return dst;

 }

 public void storesearchdatas(string en, string dec, string nm)

 {

 con.Open();

 SqlCommand cmd2 = new SqlCommand("select id from register where pkey='" + nm + "'",

con);

 idno = Convert.ToString(cmd2.ExecuteScalar());

 SqlCommand cmd3 = new SqlCommand("insert into storedatas values('" + idno + "','" + en

+ "','" + dec + "')", con);

 cmd3.ExecuteNonQuery();

 con.Close();

 }

 public void uploadfile(string oid, string oname, string fileid, string fname, byte[] fibytes)

 {

 try

 {

 con.Open();

 int n = fname.Length;

 SqlCommand cmd2 = new SqlCommand("insert into uploaad values('" + oid + "','" +

oname + "','" + fileid + "','" + fname + "',@files)", con);

 cmd2.Parameters.AddWithValue("@files", fibytes);

 cmd2.ExecuteNonQuery();

47

 con.Close();

 }

 catch (Exception ex)

 {

 MsgBox.Show(ex.Message);

 }

 }

 public void lockkeys(string u, string p)

 {

 con.Open();

 SqlCommand cmd1 = new SqlCommand("update searchuserreg set status='locked' where

uname='" + u + "' and pwd='" + p + "'", con);

 cmd1.ExecuteNonQuery();

 con.Close();

 }

 public void lockkeys1(string u)

 {

 con.Open();

 SqlCommand cmd1 = new SqlCommand("update emergency set status='locked' where

mailid='" + u + "'", con);

 cmd1.ExecuteNonQuery();

 con.Close();

 }

 public DataSet matchingattributes(string dob,string id,string pwd)

 {

 con.Open();

 SqlDataAdapter ad1 = new SqlDataAdapter("select * from searchuserreg where skey='" +

dob + "' and uname='"+id+"' and pwd='"+pwd+"'", con);

 DataSet dt = new DataSet();

48

 ad1.Fill(dt);

 con.Close();

 return dt;

 }

 public DataSet matchingattributes1(string aa, string bb)

 {

 con1.Open();

 SqlDataAdapter ad2 = new SqlDataAdapter("select * from secretkey where mailid='" + aa +

"' and skey='" + bb + "'", con1);

 DataSet dt2 = new DataSet();

 ad2.Fill(dt2);

 con1.Close();

 return dt2;

 }

}

49

 ENCRYPTION

using System;

using System.Data;

using System.Configuration;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

using System.Configuration;

using System.Data.SqlClient;

using System.Text;

using System.Security.Cryptography;

/// <summary>

/// Summary description for encryption

/// </summary>

public class encryption

{

 SqlConnection cn = new SqlConnection(ConfigurationManager.AppSettings["eff"]);

 SqlCommand com,cmd1;

 string logid, len2, prky,prky1,len1,ske,len3;

 string id;

 int fid;

50

 public encryption()

 {

 //

 // TODO: Add constructor logic here

 //

 }

 public static string Encrypt(string toEncrypt, bool useHashing)

 {

 byte[] keyArray;

 byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(toEncrypt);

 System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();

 string key = (string)settingsReader.GetValue("search", typeof(string));

 if (useHashing)

 {

 MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();

 keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));

 hashmd5.Clear();

 }

 else

 keyArray = UTF8Encoding.UTF8.GetBytes(key);

 TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();

 tdes.Key = keyArray;

 tdes.Mode = CipherMode.ECB;

 tdes.Padding = PaddingMode.PKCS7;

 ICryptoTransform cTransform = tdes.CreateEncryptor();

 byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0,

toEncryptArray.Length);

 tdes.Clear();

 return Convert.ToBase64String(resultArray, 0, resultArray.Length);

51

 }

 public static string Decrypt(string cipherString, bool useHashing)

 {

 byte[] keyArray;

 byte[] toEncryptArray = Convert.FromBase64String(cipherString);

 System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();

 string key = (string)settingsReader.GetValue("search", typeof(String));

 if (useHashing)

 {

 MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();

 keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));

 hashmd5.Clear();

 }

 else

 keyArray = UTF8Encoding.UTF8.GetBytes(key);

 TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();

 tdes.Key = keyArray;

 tdes.Mode = CipherMode.ECB;

 tdes.Padding = PaddingMode.PKCS7;

 ICryptoTransform cTransform = tdes.CreateDecryptor();

 byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0,

toEncryptArray.Length);

 tdes.Clear();

 return UTF8Encoding.UTF8.GetString(resultArray);

 }

 public int idd()

52

 {

 cn.Open();

 cmd1 = new SqlCommand("select max(id) from user_reg", cn);

 id = Convert.ToString(cmd1.ExecuteScalar());

 if (id == "")

 {

 fid = 1;

 }

 else

 {

 fid = Convert.ToInt16(id);

 fid = fid + 1;

 }

 cn.Close();

 return fid;

 }

 public int reid()

 {

 cn.Open();

 cmd1 = new SqlCommand("select max(reqid) from reqtobroker", cn);

 id = Convert.ToString(cmd1.ExecuteScalar());

 if (id == "")

 {

 fid = 1;

 }

 else

 {

 fid = Convert.ToInt16(id);

 fid = fid + 1;

53

 }

 cn.Close();

 return fid;

 }

 public int docid()

 {

 cn.Open();

 cmd1 = new SqlCommand("select max(id) from Docreg", cn);

 id = Convert.ToString(cmd1.ExecuteScalar());

 if (id == "")

 {

 fid = 1;

 }

 else

 {

 fid = Convert.ToInt16(id);

 fid = fid + 1;

 }

 cn.Close();

 return fid;

 }

 public int patid()

 {

 cn.Open();

 cmd1 = new SqlCommand("select max(id) from Patreg", cn);

 id = Convert.ToString(cmd1.ExecuteScalar());

 if (id == "")

 {

54

 fid = 1;

 }

 else

 {

 fid = Convert.ToInt16(id);

 fid = fid + 1;

 }

 cn.Close();

 return fid;

 }

 public string createloginid(string n1, string n2, string n3)

 {

 len1 = Convert.ToString(n2.Length);

 logid = Convert.ToString(n2 + n1 + len1 + n3);

 return logid;

 }

 public string skey(string n1)

 {

 len3 = Convert.ToString(n1.Length);

 ske = Convert.ToString(len3 + len3);

 return ske;

 }

 public string createprivacykey(string s1, string s2, string s3)

 {

 len2 = Convert.ToString(s2.Length);

55

 prky = Convert.ToString(s2 + s1 + len2 + s3);

 return prky;

 }

 public string secretkey(string r2, string r3)

 {

 //len3 = Convert.ToString(r2.Length);

 prky1 = Convert.ToString(r2 + r3);

 return prky1;

 }

 public void register(string id, string unam, string ps, string num, string em, string city, string

fnm, string dat)

 {

 try

 {

 cn.Open();

 com = new SqlCommand();

 com.Connection = cn;

 com.CommandType = CommandType.StoredProcedure;

 com.CommandText = "register";

 com.Parameters.Add("@userid", SqlDbType.Int, 0);

 com.Parameters["@userid"].Value = id;

 com.Parameters.Add("@username", SqlDbType.VarChar, 50);

 com.Parameters["@username"].Value = unam;

 com.Parameters.Add("@password", SqlDbType.VarChar, 50);

 com.Parameters["@password"].Value = ps;

 com.Parameters.Add("@contactno", SqlDbType.VarChar, 50);

 com.Parameters["@contactno"].Value = num;

 com.Parameters.Add("@email", SqlDbType.VarChar, 50);

56

 com.Parameters["@email"].Value = em;

 com.Parameters.Add("@city", SqlDbType.VarChar, 50);

 com.Parameters["@city"].Value = city;

 com.Parameters.Add("@filename", SqlDbType.VarChar, 50);

 com.Parameters["@filename"].Value = fnm;

 com.Parameters.Add("@date", SqlDbType.DateTime);

 com.Parameters["@date"].Value = dat;

 com.ExecuteNonQuery();

 cn.Close();

 }

 catch (Exception e)

 {

 MsgBox.Show(e.Message);

 }

 }

 public DataSet checkuser(string usr,string psw)

 {

 cn.Open();

 SqlDataAdapter adt = new SqlDataAdapter("select username,password from registration

where username='" + usr + "' and password='" + psw + "'", cn);

 DataSet da = new DataSet();

 adt.Fill(da);

 cn.Close();

 return da;}}

using System;

using System.Data;

using System.Configuration;

using System.Web;

57

using System.Collections;

using System.Text;

using Microsoft.VisualBasic;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Runtime.InteropServices;

public class MsgBox

{

 private void WebMsgBox()

 {

 }

 protected static Hashtable handlerPages = new Hashtable();

 public static void Show(string Message)

 {

 if (!(handlerPages.Contains(HttpContext.Current.Handler)))

 {

 Page currentPage = (Page)HttpContext.Current.Handler;

 if (!((currentPage == null)))

 {

 Queue messageQueue = new Queue();

 messageQueue.Enqueue(Message);

 handlerPages.Add(HttpContext.Current.Handler, messageQueue);

 currentPage.Unload += new EventHandler(CurrentPageUnload);

 }

 }

 else

 {

58

 Queue queue = ((Queue)(handlerPages[HttpContext.Current.Handler]));

 queue.Enqueue(Message);

 }

 }

 private static void CurrentPageUnload(object sender, EventArgs e)

 {

 Queue queue = ((Queue)(handlerPages[HttpContext.Current.Handler]));

 if (queue != null)

 {

 StringBuilder builder = new StringBuilder();

 int iMsgCount = queue.Count;

 builder.Append("<script language='javascript'>");

 string sMsg;

 while ((iMsgCount > 0))

 {

 iMsgCount = iMsgCount - 1;

 sMsg = System.Convert.ToString(queue.Dequeue());

 sMsg = sMsg.Replace("\"", "'");

 builder.Append("alert(\"" + sMsg + "\");");

 }

 builder.Append("</script>");

 handlerPages.Remove(HttpContext.Current.Handler);

 HttpContext.Current.Response.Write(builder.ToString());

 }

 } }

59

 DATABASE

SELECT TOP 1000 [uid]

 ,[name]

 ,[uname]

 ,[pwd]

 ,[mail]

 ,[mobile]

 ,[dob]

 ,[usertype]

 ,[skey]

 ,[status]

FROM [efficient].[dbo].[dataowner_registration]

 SELECT TOP 1000 [doid]

 ,[doname]

 ,[fileid]

 ,[filename]

 ,[filee]

 FROM [efficient].[dbo].[uploaad]

60

 BIBLIOGRAPHY

 Good Teachers are worth more than thousand books, we have them in Our

 Department

 REFERENCES :

1. User Interfaces in C#: Windows Forms and Custom Controls by

 MatthewMacDonald.

2. Applied Microsoft® .NET Framework Programming (Pro-Developer)

 by Jeffrey Richter.

3. Practical .Net2 and C#2: Harness the Platform, the Language, and the

 Framework by Patrick Smacchia.

4. Data Communications and Networking, by Behrouz A Forouzan.

5. Computer Networking: A Top-Down Approach, by James F. Kurose.

6. Operating System Concepts, by Abraham Silberschatz.

7. “The apache cassandra project,” http://cassandra.apache.org/.

8. A. Helsinger and T. Wright, “Cougaar: A robust configurable multi

 agent platform,” in Proc. of the IEEE Aerospace Conference,

 2005.

9. J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. C. Parkes,

M. Seltzer, J. Shank, and S. Youssef, “Egg: an extensible and

economics-inspired open grid computing platform,” in Proc.

of the GECON, Singapore, May 2006.

10. C. Pautasso, T. Heinis, and G. Alonso, “Autonomic resource

provisioning for software business processes,” Information

and Software Technology, vol. 49, pp. 65–80, 2007.

11. A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,

H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web

61

services on demand: Wsla-driven automated management,”

IBM Syst. J., vol. 43, no. 1, pp. 136–158, 2004.

12. M. Wang and T. Suda, “The bio-networking architecture: a

biologically inspired approach to the design of scalable, adaptive,

and survivable/available network applications,” in Proc.

of the IEEE Symposium on Applications and the Internet,

2001.

13. N. Laranjeiro and M. Vieira, “Towards fault tolerance in

web services compositions,” in Proc. of the workshop on

engineering fault tolerant systems, New York, NY, USA,

2007.

14. C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He,

“Transparent symmetric active/active replication for servicelevel

high availability,” in Proc. of the CCGrid, 2007.

15. J. Salas, F. Perez-Sorrosal, n.-M. M. Pati and R. Jim´enez-

Peris, “Ws-replication: a framework for highly available web

services,” in Proc. of the WWW, New York, NY, USA, 2006,

16. Integrity Verification in Multi-Cloud Storage Using Cooperative

 Provable Data Possession Mughal Patil , Prof. G.R.Rao Computer

 Engineering Department, BVDUCOE Pune-43(India)

17. The Journal of Systems and Software(2012 -13).

 SITES REFERRED:

 http://www.sourcefordgde.com

 http://www.networkcomputing.com/

 http://www.ieee.org

 http://www.emule-project.net/

62

.

