FEASIBILITY OF SIDEWALK ALONG THE AMBALA-SHIMLA NATIONAL HIGHWAY NO.-5 AT SHOGHI, SHIMLA, HIMACHAL PRADESH: DESIGN & ANALYSIS

A PROJECT

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision of

Mr. Ashish Kumar & Mr. Mani Mohan

By

Akshay Sharma (111649)

Pankaj Sharma (111673)

Jigme Wangdi (111692)

to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT SOLAN – 173 234

HIMACHAL PRADESH INDIA

May, 2015

CERTIFICATE

This certify that the work which is being presented in the project title "FEASIBILITY OF SIDEWALK ALONG THE AMBALA-SHIMLA NATIONAL HIGHWAY NO. -5 AT SHOGHI, SHIMLA, HIMACHAL PRADESH: DESIGN AND ANALYSIS" in partial fulfillment of the requirements for the award of the degree of Bachelor of technology and submitted in Civil Engineering Department, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Mr.Akshay Sharma(111649), Mr.Pankaj Sharma(111673) and Mr.Jigme Wangdi (111692) during a period from August 2014 to May2015 under the supervision of Mr. Ashish Kumar and Mr. Mani Mohan, Assistant Professors, Civil Engineering Department, Jaypee University of information Technology, Waknaghat.

The above statement made is correct to the best of my knowledge.

Date:-

Prof. Dr. Ashok Kumar Gupta	Mr. Mani Mohan	••••••
Professor & Head of Department	Assistant Professor	External Examiner
Civil Engineering Department	Civil Engineering Department	
JUIT Waknaghat	JUIT Waknaghat	

ACKNOWLEDGEMENT

This report would not have been possible without the essential and gracious support of Mr. Ashish Kumar. His willingness to motivate us contributed tremendously to our report. We also would like to thank him for giving us his valuable time, showing us the path to achieve our objectives and goals and for being there whenever we needed his expert guidance.

Also, we are highly grateful for the support and guidance of Mr. Mani Mohan who guided us in the absence of Mr. Ashish Kumar. He not only guided us but also provide us with unique and efficient solutions whenever we were in problem.

Besides, we would like to thank our Head of Department Prof. Dr. Ashok Kumar Gupta for providing us good environment and facilities to complete this project. Also we would like to take this opportunity to thank Jaypee University of Information Technology for offering this project.

Finally, we would like to thank our faculty members, lab assistants, family and friends for their understandings and supports towards us for completing this report.

Date: -

-AKSHAY SHARMA (111649)

-PANKAJ SHARMA (111673)

-JIGME WANGDI (111692)

ABSTRACT

From several years Shoghi is in great need of a parking facility and facility for pedestrians to walk upon. Our project 'Design of sidewalk at Shoghi' is a project that will not only addresses to these problems but also challenges us to apply our knowledge gained by us in the previous year's along with gaining of on-site work experience.

In the first chapter of this report we have given a brief introduction about Shoghi, its problems and possible solutions we have tried to find out. Also here we have discussed about the code IRC-103-1988 and which we have followed thus making the guidelines from the code as our base for the project. The second chapter gives us the details of the surveys which were performed by us. We have conducted both photographic and total station survey. Photographic survey has given us the fair idea of the problems faced by pedestrians and from the total station survey we collected data points that helped us to make a layout of the 1.1km long stretch.

In the third chapter the procedure for making the layout of the stretch by the use of software's likes AutoCAD and MS-Excel has been provided. The layouts laid the foundation of the designing part of the project where we plotted the sidewalk as well as came to know about the types of supports by allocation of concrete footings along the side walk. The fourth chapter of this report contains the designing and analysis of the sections chosen by us to serve as the sidewalk using STAAD.Pro and MACROS feature of MS-Excel. Initially, upto Cross-Section No.73 we designed steel sidewalk and for the rest of the stretch we used concrete sidewalk.

In the fifth chapter we have provided the estimate and cost analysis for carrying out the whole project and in final sixth chapter we have recommended some amendments that can be carried out for more safety of pedestrians.

Finally the results and discussions are drawn and the project is brought to its conclusion.

KEYWORDS:-AutoCAD, Concrete Sidewalk, MACROS, STAAD.Pro, Steel Sidewalk, Total Station Survey.

CONTENTS

Acknowledgement	i
Abstract	ii
Lists of Figures	vi
List of Tables	viii

CHAPTERS & APPENDICES

1.]	Introdu	uction
	1.1	l Sh	oghi1
	1.2	2 Pro	oblems at Shoghi
	1.3	3 Ab	out the Project
		1.3.1	Objectives
	-	1.3.2	About the code (IRC-103-1988)
2.		Survey	ying6-15
	2.1	l Ge	neral 6
	2.2	2 Ph	otographic survey7
	2.3	3 To	tal station survey
	4	2.3.1	Total station
	4	2.3.2	Advantages of total station
	4	2.3.3	Disadvantages9
	4	2.3.4	Types of total station survey9
	4	2.3.5	Components of total station 10
	4	2.3.6	Leveling of total station
	4	2.3.7	Accessories of total station
		2.3.8	How survey was done at shoghi

3. Modeling	
	Page No.
3.1 General	
3.2 Procedure	16
4. Designing and Analysis	
4.1 General	
4.2 Design of Steel Sidewalk	
4.2.1 Type of Steel Sections	
4.2.1.1 Model 1(Fixed-Fixed) Support section	
4.2.1.2 Model 2(P.C.2-P.C.2) Support section	
4.2.1.3 Model 3(Cantilever-Cantilever) Support section	
4.2.1.4 Guard Rail	
4.3 Design of concrete Sidewalk	
4.4 Calculation of Length of Weld	
4.5 Calculation of Development Length	
5. Estimation and Costing	
5.1 General	
5.2 Estimate of Quantities	
5.3 Estimate of Cost	44
6. Proposed Amendments	
6.1 Provisions for Zebra-Crossings at Shoghi	
6.2 Provisions for Speed Breakers at Shoghi	47
6.3 Provisions for Sign Posts and Markings	50
7. Results and Discussions	
7.1 Results	
7.2 Discussions	

CONCLUSIONS	Page No
REFERENCES	54
APPENDIX-A Photographic Survey	55
APPENDIX-B Total Station Survey Data and Calculated Distances	
APPENDIX-C Detailed Observations Table from the Layout	72
APPENCIX-D STAAD-EDITOR CODES	74

LIST OF FIGURES

	Page No.
1.1	People walking on carriage way
1.2	Bypass road for heavy vehicles at Shoghi
1.3	Traffic Jams at bypass road
2.1	Components of Total Station
2.2	Basic Key Operations
2.3	Menu Pages of Total Station
2.4	Tripod Setup
2.5	Mounting of Total Station
2.6	Focusing of Survey Point
2.7	Leveling-A
2.8	Leveling-B
2.9	Leveling-C
2.10	Verifying of Leveling
2.11	Accessories of Total Station
2.12	Various distances by total station survey
3.1	Snapshot1 from Auto-CAD
3.2	Snapshot2 from Auto-CAD
3.3	Snapshot3 from Auto-CAD
3.4	Line diagram of Shoghi road obtained from total station survey data
3.5	Line diagram of Shoghi road showing cross-sections of survey data
3.6	Line diagram of Shoghi road showing steel section offsets
4.1	Loading Conditions

4.2	Model-1 Showing Dimensions	27
4.3	Model-1 Showing Member Properties	27
4.4	Model-2 Showing Dimensions	28
4.5	Model-2 Showing Member Properties	28
4.6	Model-3 Showing Dimensions	29
4.7	Model-3 Showing Member Properties	29
4.8	Guard Rail-I	30
4.9	Guard Rail-II	31
4.10	Guard Rail-Joint Sections	31
4.11	Transverse Section of the Concrete Sidewalk	33
6.1	Zebra-Crossings near the Housing Board Colony at Gate No-2	46
6.2	Zebra-Crossings at the main Market	47
6.3	Speed Breaker near the Curve where Sight Distance is not visible	47
6.4	Speed Breaker near at 50m before the Zebra-Crossings near the Housing Board	
Colo	ny at Gate No-2	48
6.5	Speed Breaker near at 50m ahter the Zebra-Crossings (cross-section 56)	48
6.6	Speed Breaker near at 100m away from Bustand	49
6.7	Longitudinal Cross-section of Speed Breaker	49
6.8	Signpost	50

LIST OF TABLES

1.1	Capacity of side walks	Page No4
1.2	Types of total station survey	9
4.1	Loading condition summary	25
4.2	Specification table	26
4.3	Length of Weld for Model-1	
4.4	Development Length of Model-1	40
5.1	Quantity Estimate for Steel Section Sidewalk	41
5.2	Quantity Estimate for Concrete Section Sidewalk	44
5.3	Abstract of Cost	44

CHAPTER-1

INTRODUCTION

1.1 SHOGHI

Shoghi is a small suburb of Shimla, Himachal Pradesh, India. It is about 13 kilometers before Shimla on the Ambala Shimla national highway (NH-22). The road to the Taradevi temple (hilltop) goes from here which is about 5 km. Shoghi is also famous for bus halts for food as there are many dhabas (local name for food outlets) here. HIMUDA (Himachal Pradesh Urban Development Authority) has also constructed many flats here.

Nestled in the quaint, lush, green hills of Himachal Pradesh just 13 kilometers short of Shimla (The queen of hills), captivating building blocks of pinks and yellows with sloping tin roofs add a touch of natural grandeur to the picturesque surroundings. As you veer off the national highway towards the blocks, you realise you are entering the Housing Board Colony at Shoghi.

The colony was set up in the cozy hamlet of Shoghi in early 2001 by HIMUDA for meeting the housing needs of so many people. Not only accessible, the colony is far from the madding crowd situated on a knoll overlooking hills rising one after another to meet the insurmountable skies from a deep vale just across the road. You can go to Shoghi, and back to nature, without running into traffic jams, a characteristic of Shimla.

But over the years, the colony has lost most of its charm. The metalled road gives way to streets of cobbled stones, as your huffing and panting car wheezes its way up the hillock towards the rising blocks of flats.

Look down the slopes, along the colony streets, and you find the greenery suffocating under the thick layers of rubbish. Carelessly tossed wrappers of potato chips, aluminum foils and empty soda bottles not only narrate the tales of not-so-quiet evenings enjoyed with drinks, but also of sheer disrespect for the nature and inability of the authorities to prevent the littering. The housing board society is now making attempts to clean up the mess, but the dirty picture's end is nowhere in sight.

It doesn't take you much time to realise that the colony has been left to fend for itself otherwise also. The concrete road signs, spelling out the location of the blocks, too seem to have crooked under their own weight. Security too is an issue. The colony precincts have not been demarcated; and in the absence of fencing, it's free for all. Water meters are stolen, and the open spaces in the campus have metamorphosised themselves into free public parking lots for the "outsiders".

Shoghi offers a beautiful option for a stay near Shimla with lots of nature activities.^[8]

1.2 PROBLEMS AT SHOGHI

The main problem at Shoghi is from housing board colony gate-2 to Shimla bypass for heavy vehicles which is of 1.1 km stretch, within this stretch there is H.P.C.L (Hindustan Petroleum Corporation Limited) Shimla depot, police barrier, primary health center, a Government School, entrance gate towards Hosing Board colony, market place which contains taxi stand, Bus stand, DAV Public School and various kinds of shops and dhabas. For all these places to visit walking is a prime mode transport for the locals. In this stretch there are ample of space for the people to walk but there are always plenty of vehicles parked on the road and other available space making it difficult and forcing people to walk on the carriage way.

Fig.1.1 People walking on carriage way

Usually on this road, vehicles travel at an average speed of 50 km/h and people walking along the road risks their life increasing the probability of accidents. Shimla being the hot-spot for tourists and trekkers the vehicle density on NH-22 is increasing day by day leading to the congestion on NH-22 and the authorities at Shimla tried to relieve this congestion by making a bypass at shoghi via Mehli for the heavy vehicles, at that time Shoghi was not that populated and vehicle density was also not that high but now both have drastically increased.

As there is no proper facility to walk and cross the road, it makes unsafe for the people.

Fig.1.2 Bypass road for heavy vehicles at Shoghi

Fig.1.3 Traffic jams at Bypass road

1.3 ABOUT THE PROJECT

In this project we have designed the side walk. Since people walking towards their daily work and destination faces lots of problem and the safety of the people is the biggest concern we decided to take up our final year project on side walk design. The foot path we designed is a raised foot path of 30 cm from the carriage way level. Also we have

provided proper openings where ever necessary. For the people to cross from one road to another road we decided to provide zebra crossings and speed breaker to lower the speed of the moving vehicles. In this project we followed the IS 103-1988 for the guidelines.

1.3.1 OBJECTIVES

- To provide a safe walking area to the pedestrians of Shoghi.
- To design a feasible and economical sidewalk that can bear maximum load and can serve for at least 30years.
- To apply our knowledge of civil engineering gained by us in our B.Tech course.

1.3.2 ABOUT THE CODE (IRC-103-1988)

Walking is an important mode of transport. Significant trips up to 2 km are on foot and every journey start / end with a walk. Requirements are partly covered in IRC: 70-1977 "Guideline on regulation and control of mixed traffic in urban areas" and IRC: 86-1983 "Geometric design standards for urban roads in plains".

Width of side walk	Capacity		
(meters)	(Number of persons per hour)		
	All in one direction	In both the directions	
1.50	1200	800	
2.00	2400	1600	
2.50	3600	2400	
3.00	4800	3200	
4.00	6000	4000	

Table 1.1 Capacity of side walks

- General Principles:
 - 1. Pedestrian facilities should be planned in an integrated manner to ensure continuous flow.
 - 2. Reduce conflict between pedestrian and vehicles.
 - 3. Convenience is paramount.^[3]

- Footpath/Sidewalk:
 - 1. Should be on both sides.
 - 2. Minimum Width of 1.5 meters.
 - 3. There are criteria based on pedestrians per hour (as shown in Table1.1)
 - 4. In shopping areas, width should be increased by 1m (to be treated as dead width).
 - 5. When adjacent to buildings, fences –dead width has to be 0.5 meters.^[3]
- Guard Rails:
 - 1. Two aspects which need special consideration are:
 - a. The height of hand-rail.
 - b. The obstruction to visibility.
 - 2. The design should be neat, simple in appearance and as far as possible, vandal proof.^[3]
- Zebra Crossing:
 - 1. Width: 2 to 4meters.
 - 2. Nit within 150 meters from each other.
 - 3. Median strip should be of adequate width (this is only reference to pedestrian refugee).^[3]
- What is missing?
 - 1. No mention of right of way for pedestrians at non-signal controlled zebra crossings (though Delhi Police website says so)
 - 2. No mention on height of footpaths.
 - 3. No mention on dipped kerbs and gradients
 - 4. No mention of slip free tilting (needed usually on dipped kerbs).
 - 5. No mention on pedestrian refugee and types
 - 6. Signal phases are mentioned but no guideline on timings.
 - 7. No mention with regards width around street furniture (bus stops, trees, benches, bins, electricity meter boxes, post boxes, signage poles, street lightning).

CHAPTER-2

SURVEYING

2.1 GENERAL

Surveying is the art of determining the relative position of points on, above or beneath the surface of the earth by means of direct or indirect measurement of distance direction and elevation. It includes the art of establishing points by predetermined angular and linear measurements.

The knowledge of surveying is advantageous in many phases of engineering. The earlier surveys were made in connection with land surveying. Practically every engineering project such as road, water supply and irrigation schemes, railroads and transmission lines, mines, bridges and buildings etc. require surveys. Before plans and estimates are prepared, boundaries should be determined and the topography of the site should be ascertained. After the plans are made, the structure must be staked out in the ground. As the work progresses, lines and grades must be given. ^{[3][4]}

In surveying all measurements of lengths are horizontal, or else are subsequently reduced horizontal distances. The object of a survey is to prepare plan or map so that it may represents the area on a horizontal plane. A plan or map is horizontal projection of an area and shows only horizontal distances of points.^{[1][7]}

In this project, we have performed two types of survey:-

- 1. Photographic Survey
- 2. Total Station Survey

2.2 PHOTOGRAPHIC SURVEY

It is the basic kind of survey in which the surveyor visits the area to be surveyed, takes the photograph of the area under consideration to get idea of the topography, surroundings which helps the surveyor to plan his survey camp and helps him to choose the method of surveying. Also, if necessary the surveyor can also talk to the local residents of the area.

In our photographic survey we tried to identify the major problems at Shoghi (as shown in figures). While doing the survey we talked to several residents of Shoghi who told us that there is no proper space for pedestrians to walk along the road neither there are any zebra crossing for the people. Also, there is no parking space for the parking of vehicles and thus the drivers park their vehicles along the side of the road causing the pedestrians to walk on the carriage way which may lead to any kind of accident at any point of time.

The photos of the photographic survey are shown in **<u>APPENDIX-A</u>**.

From the pictures we deduce that:-

- 1. There is encroachment by the locals.
- 2. Parking of vehicles is done along the road.
- 3. Loading and unloading of the goods and people is done by encroaching the areas which are meant for people to walk upon alongside the road.

According to a survey where no sidewalks are provided, or where sidewalks are in poor repair or have missing sections, the following conditions often result in :-

- 1. People being forced to walk in the carriage way, resulting in increased pedestrian/motor vehicle collisions. About 8 percent of all pedestrian crashes involve people walking along the road.
- 2. Without a safe and well-maintained place to walk, people are discouraged and, in extreme cases, prevented from walking. For example, children have a difficult time walking to school and seniors cannot access nearby shops.
- 3. The absence of sidewalks can eliminate access to all destinations for some people with disabilities. Even short gaps in sidewalk facilities make nearby destinations completely inaccessible to these individuals.
- 4. Not providing a safe place to walk does not accommodate the needs of people who rely on walking as a mode of travel.

Hence, there is a great need of sidewalk at Shoghi and until it is not provided over there a saying will always be there that " आगे की बजाए पीछे देख के चलना चाहिए | "

2.3 TOTAL STATION SURVEY

2.3.1 TOTAL STATION

A form of an electronic theodolite combined with an electronic distance measuring device (EDM), the primary function is to measure slope distance, vertical angle, and horizontal angle from a setup point to a foresight point most total stations use a modulated near-infrared light emitting diode which sends a beam from the instrument to a prism.

The prism reflects this beam back to the instrument. The portion of the wavelength that leaves the instrument and returns is assessed and calculated. Distance measurements can be related to this measurement.

The accuracy of a total station is dependent on instrument type. Angle Accuracy (Horizontal or Vertical) can range from 2" to 5". Distance Accuracy can range from: +/-(0.8 + 1 ppm x D) mm to +/-(3 + 3 ppm x D) mm Where, D = distance measured. Accuracy is highly dependent on leveling the instrument. Thus two leveling bubbles are provided on the instrument and are referred to the circular level and the plate level. Circular level is located on the tribrack while plate level is on horizontal axis of instrument just below scope of the total station. Sensitivity of Circular Level = $10^{2}/2$ mm.

Although taping and theodolites are used regularly on site – total stations are also used extensively in surveying, civil engineering and construction because they can measure both distances and angles. The appearance of the total station is similar to that of an electronic theodolite, but the difference is that it is combined with a distance measurement component which is fitted into the telescope. Because the instrument combines both angle and distance measurement in the same unit, it is known as an

integrated total station which can measure horizontal and vertical angles as well as slope distances.

2.3.2 ADVANTAGES OF TOTAL STATION

- 1. Relatively quick collection of information.
- 2. Multiple surveys can be performed at one set-up location.
- 3. Easy to perform distance and horizontal measurements with simultaneous calculation of project coordinates (Northing, Easting, and Elevations).
- 4. Layout of construction site quickly and efficiently.
- 5. Digital design data from CAD programs can be uploaded to data collector.
- 6. Daily Survey Information can also be quickly downloaded into CAD which eliminates data manipulation time required using conventional survey techniques.

2.3.3 DISADVANTAGES OF TOTAL STATION

- 1. Vertical elevation accuracy is not as accurate as using conventional survey level and rod technique.
- 2. Horizontal coordinates are calculated on a rectangular grid system. However, the real world should be based on a spheroid and rectangular coordinates must be transformed to geographic coordinates if projects are large scale.
- 3. As with any computer-based application "Garbage in equals Garbage out". However, in the case of inaccurate construction surveys "Garbage in equals lawsuits and contractors claims for extras."

2.3.4 TYPES OF TOTAL STATION SURVEYING

Slope Staking	Areas
Topographic Surveys	Intersections
Construction Project Layout	Point Projections
Leveling	Road (Highway) surveys
Resections	Taping from baseline
Traverse Surveys and adjustments	Building Face surveys

TABLE2.1 Types of total station surveying

2.3.5 COMPONENTS OF TOTAL STATION

21.

- Handle
- 2 Handle securing screw
- 3 Instrument height mark
- 4 Battery cover
- 5 Operation panel
- 6 Tribrach clamp
 - (SET310S/510S/610S: Shifting clamp)
- 7 Base plate
- 8 Levelling foot screw
- 9 Circular level adjusting screws
- 10 Circular level
- Display
 Objective lens
- 13 Tubular compass slot
- 14 Beam detector for wireless keyboard
 - (Not included on SET610/610S)
- 15 Optical plummet focussing ring
- 16 Optical plummet reticle cover
- 17 Optical plummet eyepiece
- 18 Horizontal clamp
- 19 Horizontal fine motion screw
- 20 Data input/output connector (Beside the operation panel on SET610/610S)
- 21 External power source connector (Not included on SET610/610S)
- 22 Plate level
- 23 Plate level adjusting screw
- 24 Vertical clamp
- 25 Vertical fine motion screw
- 26 Telescope eyepiece
- 27 Telescope focussing ring
- 28 Peep sight
- 29 Instrument center mark

Fig.2.1 Components of Total Station

20

5.1 Basic Key Operation"

Menu Pages:-

Fig.2.3 Menu Pages of Total Station

2.3.6 LEVELING OF TOTAL STATION

Leveling the Total station must be accomplished to sufficient accuracy otherwise the instrument will not report results. Before starting leveling the instrument it should be made sure that all the targets can be seen from the station point. After ensuring the leveling process should be started by following steps:-

1. Tripod Setup

Tripod legs should be equally spaced. The tripod head should be approximately leveled .also care should be taken that the head should be directly over survey point.

Fig.2.4 Tripod Setup

2. Mount Total station on tripod

Place instrument on Tripod .Secure with centering screw bracing the instrument with the other hand. Don't forget to insert the battery in Total station before leveling.

Fig.2.5 Mounting of Total Station

3. Focus on Survey Point

For this, use the optical plummet on the survey point.

Fig.2.6 Focusing of Survey Point

4. Leveling

Adjust the leveling foot screws to center the survey point in the optical plummet reticle. Center the bubble in the circular level by adjusting the tripod legs.

Fig.2.7 Leveling-A

Loosen the horizontal clamp and turn instrument until plate level is level to two of the leveling foot screws. Center the bubble using the leveling screwsthe bubble moves towards the screw that is turned clockwise.

Fig.2.8 Leveling-B

Rotate the instrument 90 degrees and level using the third leveling screw.

Fig.2.9 Leveling-C

Observe the survey point in the optical plummet and center the point by loosening the centering screw and sliding the entire instrument. After re-tightening the centering screw check to make sure that the plate level bubble is level in several directions.

5. Electronically Verify Leveling

Turn on the instrument by pressing and holding the "ON" button (you should hear an audible beep). The opening screen will be the "MEAS" screen. Select the [TILT] function. Adjust the foot level screws to exactly center the electronic "bubble". Rotate the instrument 90° and repeat.

Fig.2.10 Verifying of Leveling

2.3.7 ACCESSORIES OF TOTAL STATION

Fig.2.11 Accessories of Total Station

2.3.8 HOW SURVEY WAS DONE AT SHOGHI?

The main aim of doing survey at Shoghi was to prepare a layout of the 1.1Km long stretch so that we could plan our design of sidewalk accordingly as well as to identify the areas where we have to give the zebra crossings and where we have to leave opening spaces. Through, total station we measured three Distances as shown in the figure namely D_{12} , D_{23} and D_{34} .

Fig.2.12 The various distances by total station survey

Where,

 D_{12} - Distance between the left side's outer most point and the left side of the road (black top).

 D_{23} - Width of the carriage way at several cross sections.

 D_{23} - Distance between the right side's outer most point and the right side of the road (black top). ('NOTE- these distances are measured while moving from housing board colony GateNo.2, Shoghi TO 'The Starting of Bye Pass Road to Mehli from Shoghi. The Data Sheets of the survey are shown in <u>APPENDIX-B</u>.

CHAPTER-3

MODELLING

3.1 GENERAL

In modeling, we have used the AUTO CAD software to prepare a layout of the 1.1Km long highway stretch by using the data points which were obtained from the Total Station Survey as discussed in the previous Chapter-2.

Though Auto Cad provides a large number of functions and tools to the users but here to prepare the layout we have used the basic commands such as

- 1. Drawing Commands: To draw objects like Line, Poly line, Circle, Hatch etc.
- Modifying Commands: To edit the orientation of the objects commands like Copy, Paste, Rotate, Move, Mirror, Trim, Extend and Offset have been used.
- 3. Other Commands:
 - a. LAYERS These allow the user to assign different line types and colours to named layers. For example, a layer may for red continuous lines, another may be for green hidden lines, and yet another for blue centre lines.
 - b. UNITS This command allows the user to set the insertion scale for the drawing and also helps to set the 'Length' and 'Angle' type and precision.
 - c. DIMALIGNED
 - d. DIMLINEAR
 - e. DCLINEAR
 - f. DCALIGNED
 - g. MTEXT

3.2 PROCEDURE

Here, in Auto Cad we have to prepare the layout using the total survey data points. So here we imported these data points to get the layout by following steps:-

Step1:- Before importing the points and draw the layout we set the units and layers of the lines to be drawn. For this to be done we used 'UNITS' and the 'LAYER' commands. On entering the units command a pop window comes on the screen where we set the insertion units to 'Meters' and angle type to 'Surveyor's Units'.

Length	Angle Set this to
Type:	Type: Surveyo's uni
Decimal 👻	Decimal Degrees
Precision:	Precision:
● 0.0000 ▼	0
	Clockwise
Insertion scale	
Units to scale inserted content:	Set this to
crite to could incontou content.	
Millimeters	'METERS'
Millimeters 🔹	
Millimeters	
Millimeters 🔹	
Millimeters Sample Output 1.5,2,0039,0 3<45,0	
Millimeters Sample Output 1.5,2.0039,0 3<45,0 Lighting	'METERS'
Millimeters Sample Output 1.5,2,0039,0 3<45,0	'METERS'

Fig.3.1 Snapshot-1 from Auto-CAD

After then type the 'LAYER' command and then add new layers of different colors.

For Example:-

/ .		Layout Parametric View Manage + Move Rotate - Trim - Copy A Mirror Fillet - Stretch Scale RAray - Modify -	Unsaved Layer State		Insert Screate Screate	Measure Result
Layer Properties Manager ■ ₹ ★	Current layer: 0 used for Some tayer: 0 addition Some tayer: 0 Some tayer: 0	were to swith 'ON' the cu layer Status Name 0	rrent du	witton to open le Dialog box ire Lock Color Li 次	Search fo	
کی ب در ۲۰۰	Invest inter All: I layers displayed of 1 total All: I layers displayed of 1 total Nodel Layout1 / Layout2 / Torops, 0,000	layer (× < 27 - Type a comma				

Fig.3.2 Snapshot-2 from Auto-CAD

Draw 🔻	Modify				Table			operties 🔻	ayer 🔻	ps • Utilities	Clipboar
Current layer: 0	Modify \star Layers	-		Ar		BIOCK		n for layer	y Grou		- ā
4 5 6	<u>5</u> % X ✓							Ø	B		N
Filters	K Status Name	10.01		Lock	Color	Linetype	Lineweight	Trans			W TOP
E- All	V 0	8	Ŏ.	ď	W	Continuous	Default	0	Col		
ZW All Osed Layers	Concrete column line	8	À.	6	90	Continuous Continuous	Default Default	0	Coli		
	for printing	8	d'		□ w	Continuous	Default	0	Col		•
	Left extreme of the road Layer1	8	\$\$\$\$\$\$	ď	10	Continuous	Default	0	Cole		WCS -
	Left side black top of the road Layer2	8	à.	ď	170	Continuous	Default	0	Col		
	Line of sidewalk (1.5m wide between farthest ends)	8	ġ.	ď	130	Continuous	Default	0	Coli		
	Right side black top of the road Layer3	8	Ø	ď	170	Continuous	Default	0	Cole		
	Right side black top of the road Layer4	8	-Ò	ď	50	Continuous	Default	0	Cole		
	sidewalk strips	8	٠Ŏ٠	ď	90	Continuous	Default	0	Coli		
Invert filter	STRAIGHT cross section line (of total station)	8	ġ.	ď	90	Continuous	Default	0	Coli		
Invert filter	« «										
All: 11 layers displayed of 11 t	tal layers										
					<u>\</u>	Marian Jaw Street Fand	alter Da Tal Jank				
						Not:- 70 Techniar of Dec Dec Dec	(1) X413 - Bir40.				

Fig.3.3 Snapshot-3 from Auto-CAD

<u>Step2</u>:- Since the drawing conditions are set and the adequate layer is 'on' in Auto CAD. It's time to import. Type the command 'LINE' and then move to the EXCEL SHEET where you have prepared the data points in the required (X, Y) format.

In the EXCEL Sheet select the points that are falling in one line, copy them and then paste them in the command line of Auto CAD. The Auto CAD will join all the points by making a line between two consecutive points.

Here, we achieved the whole layout by joining drawings made in the same fashion upto each change of station of Total Station. After then hatching was done with solid colour to show the carriage way. **Step3**:- After the layout has been made select the different layer to show the cross section lines and then name them using the 'MTEXT' command. Here, to represent the Cross sections we have used the letters "C.S." followed by the corresponding numeral of the cross section. For example, the first cross section which was at the starting point of the survey is represented as C.S.1 and the last cross section which was at 1090m is represented as C.S.78.

Step4:- As the cross sections have been made and it has been decided that the sidewalk 1.5m wide will be provided at the left hand side of the carriage way (while moving from H.B. Colony Gate No.2 to Shoghi Bye Pass Road) and the length of each section of side walk will be 2.0m which is supported by 3 I-beam girders equidistant from each other. Then, to show the alignment of sidewalk along the stretch we have taken 'OFFSET' of the left hand side of the carriage way line first at 0.20m ; 0.575m; 0.950m; 1.325m; 1.700m. (Measuring from the left side carriage way line) using a different layer and 'POLYLINE'.

Step5:- After the sidewalk alignment is made, the cross-sections of sidewalk which are at 2.0m apart from each other are made using the 'CIRCLE', 'LINE', 'TRIM' and 'EXTEND' commands of Auto CAD. For this also a separate layer should be used.

Step6:- In this step concrete column placement was find out in two steps:-

- a) Drawing of concrete columns of size 0.3mx0.3m at each intersection of <u>sidewalk</u> <u>lines</u> and <u>sidewalk cross section lines</u> by again using the 'OFFSET', 'TRIM', 'EXTEND' commands.
- b) Removal of those concrete columns which fall beyond the outermost left side of the carriage way (while moving from H.B. Colony Gate No.2 to Shoghi Bye Pass Road)using the erase command.

Note:- DIMALIGNED, DIMLINEAR, DCLINEAR, DCALIGNED commands were used to view the aligned and linear distances while drawing the layout.

So, by these six simple steps the modeling from total station data was completed and designing is started all along. (All these steps are shown below in layout diagrams).

VEY DATA	N
Line Description	SYMBOL
ter most points at the Left side	LINE-1
t side of the road (black top)	LINE-2
ht side of the road (black top)	LINE-3
ter most points at the Right side	LINE-4
loving from 'Housing board colony Gate I TO	
The Starting of Bye Pass Road to Mehli fro	om Shoghi').

SYMBOL					
LINE-1					
LINE-2					
LINE-3					
LINE-4					
LINE-5					
loving from 'Housing board colony Gate No.2, Shoghi'					
ТО					
he Starting of Bye Pass Road to Mehli from Shoghi').					

Ν

ACK TOP WITH REQUIRED CONCRETE BLOCKS				
			N	
C.S. c.S. 72 70 71 72	C.S.75	E-5		
LINE-4		C.5.77 LINE-2 C.5.78 LINE-3		
	S.No.	Lin Description	SYMBOL	
	1.	Line Description	LINE-1	
	1.	Left side of the road (black top) Outter most points at the Left side	LINE-1 LINE-2	
	2.	Right side of the road (black top)	LINE-2 LINE-3	
	3. 4.	Outter most points at the Right side	LINE-3	
	4.	Cross-Section Line	LINE-4	
			LINE-5 LINE-6	
	6.	Offset at 0.200m from left side of the road (black Top)	LINE-6 LINE-7	
	7.	Offset at 0.575m from left side of the road (black Top)	LINE-7 LINE-8	
	8.	Offset at 0.950m from left side of the road (black Top)	LINE-8 LINE-9	
	9.	Offset at 1.325m from left side of the road (black Top)		
	10.	Offset at 1.700m from left side of the road (black Top)	LINE-10	
	11.	Concrete Block line	LINE-11	
	11. Note	(Moving from 'Housing board colony Gate No.2.Shoghi'		

CHAPTER-4

DESIGNING & ANALYSIS

4.1 GENERAL

In the designing part we decided that we will be doing the designing of the sidewalk in two parts:-

PART I- Providing steel sections from Cross Section No. 1 (Housing Board Colony Gate No.-1) to the Cross section No.73 (At the junction of village road with the National Highway before the start of Shoghi market).

PART II- Providing concrete sidewalk from Cross Section No. 73 to Cross Section No.78

4.2 DESIGN OF STEEL SIDEWALK:-

Here we have decided to take a section of 2.0m x 1.5m for our sidewalk which will be raised from the earth/road surface at a height of 30cm fitted with the supports made of concrete columns of initial proposed height 0.5m and dimensions 0.3m x 0.3m. Our main goal is to make the structure light as far as possible without compromising the load carrying capacity of the structure so that the pedestrians can walk upon the sidewalk without any fear and worry of safety.

The section of 2.0m x 1.5m is a simple frame structure (which is differentiated on the basis of supports) consisting of ISA90x90x8 and steel strips of 2x5cm as horizontal members, ISJC150 of length 0.3m are used as columns for the transferring of loads to the concrete supports buried in the soil. Here, we are taking a load of 6KN/m² acting on the section along with the self-weight of the members present in the section and for the analysis of the section we are using '**STAAD.Pro V8i**' version 2007.

Fig.4.1Loading Conditions

4.2.1 TYPES OF STEEL SECTIONS

Based on the support conditions we have classified the section into 16 categories as follows:-

TYPE No.	STARTING SUPPORT OF CROSS-SECTION	ENDING SUPPORT OF CROSS-SECTION	NUMBER OF CROSS-SECTION ACCORDING TO <u>APPENDIX-C</u>
1.	FIXED	FIXED	124
2.	FIXED	P.C.1	11
3.	FIXED	P.C.2	2
4.	FIXED	CANTILEVER	0
5.	P.C.1	FIXED	10
6.	P.C.1	P.C.1	26
7.	P.C.1	P.C.2	10
8.	P.C.1	CANTILEVER	1

TYPE No.	STARTING SUPPORT OF CROSS-SECTION	ENDING SUPPORT OF CROSS-SECTION	NUMBER OF CROSS-SECTION ACCORDING TO <u>APPENDIX-C</u>
9.	P.C.2	FIXED	1
10.	P.C.2	P.C.1	12
11.	P.C.2	P.C.2	53
12.	P.C.2	CANTILEVER	10
13.	CANTILEVER	FIXED	0
14.	CANTILEVER	P.C.1	0
15.	CANTILEVER	P.C.2	10
16.	CANTILEVER	CANTILEVER	167

Table 4.1 Loading Condition Summary

Where,

- P.C.1 i.e. Propped Cantilever 1:-Fixed Support is at 1.125m from the starting end moving transversely on sidewalk along 1.5m.
- 2. P.C.2 i.e. Propped Cantilever 2:-

Fixed Support is at 0.75m from the starting end moving transversely on sidewalk along 1.5m.

Though the designing of these types of sections was easy but it would be very difficult for the manufacturer to create and fix these 16types of sections. So we decided to take only three of the sections and replace the others with them. The sections chosen as models were:-

- 1. TYPE-1 (FIXED-FIXED) Support Section (124No.)
- 2. TYPE-11 (P.C.2-P.C.2) Support Section (146No.)
- 3. TYPE-16 (CANTILEVER-CANTILEVER) Support Section (167No.)

Also we have to provide openings, for example near the Good Luck Restaurant at cross section 26-28, near the road to Primary Health Center at cross section 38-39 and at the road to primary school at cross section 52-53. All these openings are accounted in the following estimate part of report. The Staad-Editor code are given in <u>APPENDIX-D</u>.

In all the models to maintain uniformity we have used the following specifications:-

S.No.	NAME OF	DIMENSIONS	LENGTH	MATERIAL	USED IN
	ITEM				
01.	Concrete	0.3mx0.3m	0.5m	Concrete	All the sections
	Column				accordingly
02.	Horizontal	0.2mx0.5m	1.5m	Steel	All the Sections
	Strips				
03.	ISA 90x90x8 ^[6]	90mmx90mmx8mm	1.5m	Steel	All the Sections
			0.81m		Model 2
			2.12m		Model 3
04.	ISJC150 ^[6]	$\begin{array}{l} h=150mm\\ b=55mm\\ t_{f}=6.9mm\\ t_{w}=3.6mm \end{array}$	0.3m	Steel	All the Sections
05.	ISA 50x50x5 ^[6]	50mmx50mmx5mm	2.0m	Steel	Guard Rail
			1.3m		
06.	Steel Bars	20mm-ф	1.0m	Steel	Guard Rail

Table 4.2 Specifications Table

4.2.1.1 MODEL-1 (FIXED-FIXED) Support Section (124 No.):-

Fig.4.2Model-1 Showing Dimensions

Fig.4.3 Model-1 showing member properties

4.2.1.2 MODEL-2 (P.C.2-P.C.2) Support Section (146No.):-

Fig.4.4 Model-2 Showing Dimensions

Fig.4.5 Model-2 showing member properties

4.2.1.3 MODEL-3 (CANTILEVER-CANTILEVER) Support Section (167No.):-

Fig.4.6 Model-3 Showing Dimensions

Fig.4.7 Model-3 showing member properties

4.2.1.4 GUARD RAIL:-

Pedestrian guard rails are an important design element

- 1. To prevent indiscriminate crossing and
- 2. To prevent spilling over of pedestrians on to the carriage way.

The design of guard rails should be neat; simple in appearance and as far as possible should be vandal proof. Two aspects which need special consideration are the height of hand rail and the obstruction to visibility. The visibility of the approaching vehicles by the pedestrians as well as the visibility of the pedestrians by the drivers of the approaching vehicles should be adequate. The guard rails should be sturdy but slender design.

Pedestrian guard rails could normally be considered under the following situations:-

- (a) Hazardous locations on straight stretches
- (b) At Junctions/Intersections
- (c) Schools
- (d) Bus Stops, Railway Stations, etc.
- (e) Over pass, Subway, etc.
- (f) Central reserves.

Provision of Guard-Rails:-

Fig.4.9 Guard Rail-II

Here we'll be providing a section of length 2.0m x 1.3m as shown in *Fig.4.8* and *Fig.4.9*. In the section all the joints are made by welding the members to each other. And the whole sections are joined to each other as shown in *Fig4.10*.

Fig.4.10 Guard Rail-Joint Section

Other Considerations:-

- There will be no gaps in between the guard rails.
- Also, guard rails will be providing on both the sides of the sidewalk.

4.3 DESIGN OF CONCRETE SIDEWALK^[6]:-

The concrete sidewalk will be provided from the Cross-Section No.73 to Cross-Section No.78 i.e. for the whole market area. Following are the few considerations:-

- Width of the Sidewalk = 2.0m
- Height of the Sidewalk = 30 cm
- Transverse Slope of the Side Walk =1:15
- Grade of Concrete Used = M20 (1:1.5:3)
- Water/Cement Ratio= 0.5
- Calculation of dry materials:
 - o Ratio=1:1.5:3
 - \circ Sum= 1+1.5+3 = 5.5
 - Total dry mortar for $1m^3$ of cement concrete = $1.20m^3$

(Considering a wastage of 20%)

- \circ Therefore the materials required for $1m^3$ of cement concrete are:-
 - Cement = $\frac{1*1.20*28.8}{5.5}$ = 6.284 bags
 - Sand = $\frac{2.65*1.20}{5.5}$ = 0.578 m³
 - Aggregates $= \frac{2.8 \times 1.20}{5.5} = 0.611 \text{m}^3$
 - Volume of Water for 1m^3 of Concrete = $\frac{6.284 \times 0.5 \times 50}{1000} = 0.1571 \text{m}^3$

Fig.4.11 Transverse Section of the concrete sidewalk

- Determination of Length of Sidewalk covered with 1m³ of concrete:-
 - Area of Cross-Section as shown in *Fig.4.11* = $\frac{1}{2}x(0.3+0.4) \times 1.5 = 0.525m^2$
 - \circ 0.525m² x (Length of Sidewalk) = 1m³

 \implies Length of Sidewalk = $\frac{1}{0.525}$ = 1.905m

• Total volume of concrete required for sidewalk of width 1.5m and length 150m

$$=\frac{150}{1.905}$$
 m³ = **78.74 m³**

- Also concrete required to make the supports columns (656 No.) of length 0.5m and dimensions $0.3mx0.3m = 656 \times 0.3 \times 0.3 \times 0.5 = 29.52 \text{ m}^3$
- So net volume of concrete required = $29.52+78.74 = 108.26 \text{ m}^3$

4.4 CALCULATION OF LENGTH OF WELD^[5]

We calculated the length of Weld using the MACROS feature of MS-Excel in which we used as follows:-Sub WELDED()

'Enter data fu = Cells(3, 5)fy = Cells(4, 5)Gmw = Cells(5, 5)'thickness of plate t' t = Cells(6, 5)'Angle of Weld A' A = Cells(7, 5)'Force to be handled F' F = Cells(8, 5)

Smin = 0 Size of Weld,S'If 0 < t And t <= 10 Then Smin = 3ElseIf 11 < t And t <= 20 Then Smin = 5ElseIf 21 < t And t <= 32 Then Smin = 6ElseIf 33 < t And t <= 50 Then Smin = 8GoTo Skip1 End If

Skip1: Cells(10, 5) = Smin TT = 0'Throat thickness TT' If $60 \le A$ And $A \le 90$ Then TT = 0.7 * SminElseIf $91 \le A$ And $A \le 100$ Then TT = 0.65 * SminElseIf $101 \le A$ And $A \le 106$ Then TT = 0.6 * SminElseIf $107 \le A$ And $A \le 113$ Then TT = 0.55 * SminElseIf $114 \le A$ And $A \le 120$ Then TT = 0.5 * SminElse GoTo Skip2 End If

Skip2: Cells(11, 5) = TT

'Length of Weld L' L = (F * ((3) ^ 0.5) * Gmw) / (fu * TT) Cells(13, 5) = L

'Total Length of Weld' TL = L + (2 * Smin)Cells(14, 5) = TL

r			1		
1	f_u		=	410	N/mm ²
2	fy		=	250	N/mm ²
3	$\gamma_{ m mw}$		=	1.5	
4	Thickness of Plate	t	=	8	mm
5	Angle of Weld	A	=	90	degree
6	Force to be handled	F	=	6120	Ν

SYMBOL

VALUES

SYMBOLS

End SubExample data is shown in *Table 4.3*

ENTITY

7	Minimum Size of Weld	S	=	3	mm
8	Throat Thickness	Т	=	2.1	mm

9	Length of Weld	L	=	18.5	mm
10	Total Length of Weld	L+2S	=	24.5	mm

Table 4.3 Length of Weld for Model-1

4.5 CALCULATION OF DEVELOPMENT LENGTH^{[4][5]}

We calculated the length of Weld using the MACROS feature of MS-Excel in which we used as follows:-

Sub DevelopmentLength()

S.No.

'Enter Data

'Area of Cross Section,A

A = Cells(3, 5)

'perimeter of Cross Section,p

P = Cells(4, 5)

fvd = Cells(5, 5)

If Cells(6, 5) = "YES" And Cells(7, 5) = "M10" Then

Tbd = 1.2

Else

GoTo Skip0

End If

Skip0:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M20" Then

Tbd = 1.2 + (0.2 * 1.2)

Else

GoTo Skip1

End If

Skip1:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M25" Then

Tbd = 1.4 + (0.2 * 1.4)

Else

GoTo Skip2

End If

Skip2:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M30" Then

Tbd = 1.5 + (0.2 * 1.5)

Else

GoTo Skip3

End If

Skip3:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M35" Then

Tbd = 1.7 + (0.2 * 1.7)

Else

GoTo Skip4

End If

Skip4:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M40" Then

Tbd = 1.9 + (0.2 * 1.9)

Else

GoTo Skip5

End If

Skip5:

If Cells(6, 5) = "NO" And Cells(7, 5) = "M20" Then

Tbd = 1.2

Else

GoTo Skip6

End If

Skip6:

```
If Cells(6, 5) = "NO" And Cells(7, 5) = "M25" Then
```

Tbd = 1.4

Else

GoTo Skip7

End If

Skip7:

If Cells(6, 5) = "NO" And Cells(7, 5) = "M30" Then

Tbd = 1.5

Else

GoTo Skip8

End If

Skip8:

If Cells(6, 5) = "NO" And Cells(7, 5) = "M35" Then

Tbd = 1.7

Else

GoTo Skip9

End If

Skip9:

If Cells(6, 5) = "NO" And Cells(7, 5) = "M40" Then

Tbd = 1.9

End If

Cells(8, 5) = Tbd

'Development Length,Ld

Ld = (A * fvd) / (Tbd * P)

Cells(10, 5) = Ld

'Force in the Member,F

F = Cells(12, 5)

'Required Development Length,RLd

RLd = (A * F) / (Tbd * P)

Cells(13, 5) = RLd

End Sub

9

Example data is shown in *Table 4.4*

Required Development Length

S.No.	ENTITY	SYMBOLS	VALUES	UNITS
1	Area of Cross Section	А	= 1265	mm^2
2	Perimeter of Cross Section	Р	= 512.8	mm
3	f_{vd}		= 250	N/mm ²
4	Whether it is a compression member?		= YES	
5	Grade of concrete		= M20	
6	$ au_{\mathrm{bd}}^{[4]}$		= 1.44	N/mm ²
7	Maximum Development Length	L _d	= 428.27	mm
8	Stress in the member	F	= 45.404	N/mm ²

Table 4.4 Development Length for Model-1

 L_d required =

77.8 mm

CHAPTER-5

ESTIMATION & COSTING

5.1 GENERAL

In this chapter we have done quantity estimation and based on that we have calculated the cost for the whole project using the 'Standard Schedule of Rates 2009 – HIMACHAL PRADESH PUBLIC WORKS DEPARTMENT (Building Civil Works)'.

5.2 ESTIMATE OF QUANTITIES

	Detail of Measurements										
Na	Name of Work- Proposed Sidewalk along the Ambala-Shimla National Highway-5 at Shoghi , Himachal Pradesh of Length 1.1 Km.										
S.No.											

1 AMOUNT OF STEEL IN WELDED BUILT-UP SECTIONS FOR STEEL SIDE WALK

(a)	MODEL 1						
(i)	ST ISJC150	122	1.2		146.4	Rmt.	122*1.2
(ii)	ST ISA90*90*8	122	7		854	**	122*7
(iii)		122	58.5		7137	**	122*58.5
	PRISMATIC STEEL						
	(39strips per section)						
	(0.03x0.03m)						

(b)	MODEL 2						
(i)	ST ISJC150	128	1.2		153.6	•	128*1.2
(ii)	ST ISA90*90*8	128	8.62		1103.36	•	128*8.62
(iii)		128	58.5		7488	"	128*58.5
	PRISMATIC STEEL						
	(39strips per section)						
	(0.03x0.03m)						

S.No.	Description of Items	Nos.		L	В	H/D	QTY.	REMARKS
3. 1 1 0.	Description of items	SEC.	SIDE	(m)	(m)	(m)	(m)	KEWIAKKS

(c)	MODEL 3						
(i)	ST ISJC150	155	0.6		93	"	155*0.6
(ii)	ST ISA90*90*8	155	11.24		1742.2	"	155*11.24
(iii)		155	58.5		9067.5	**	155*58.5
	PRISMATIC STEEL						
	(39strips per section)						
	(0.03x0.03m)						

(d)	GUARD RAIL					
(i)	ST ISA50*50*5	810	6.6	5346	"	810*6.6
(ii)	Steel bar of 20mm dia	810	19	15390	••	810*19

(e)	DEVELOPMENT LENGTH				
(i)	Model 1				
	ST ISJC150	488	0.0778	37.966 "	488*0.078
(ii)	Model 2				
	ST ISJC150	512	0.1205	61.696 "	512*0.121
	SLANT ST ISA90*90*8	256	0.2471	63.258 "	256*0.247
(iii)	Model 3				
	ST ISJC150	310	0.277	85.87 "	310*0.277
	SLANT ST ISA90*90*8	310	0.2378	73.718 "	310*0.238

(f)	LENGTH of WELD							
(i)	Model 1							
	At the junction of 3 members	488	3	0.0245	3	5.868	**	488*3*0.025
	Between the strips & the standard angle	4758	2	0.0245	23	3.142	"	39*122*2* 0.0245
(ii)	Model 2			•				
	At the junction of 3 members	512	3	0.0245	3'	7.632	"	4*128*3* 0.0245
	Between the strips & the atandard angle	4992	2	0.0245	24	4.608	"	39*128*2* 0.0245
	Between the slant angle & horizontal angle	128	2	0.0426	1	0.906	"	128*2*0.042 6*10.9056
(iii)	Model 3				II	I		1
	At the junction of 3 members	620	3	0.0269	5	0.034	"	155*4*3* 0.0269

S.No.	Description of Itoms	No	Nos.		В	H/D	QTY.		REMARKS
5.110.	Description of Items	SEC.	SIDE	(m)	(m)	(m)	(m)		KEWIAKKS
	Between the strips & the angle	6045	2	0.0269			325.221	**	39*155*2* 0.0269
	Between the slant angle & horizontal angle	155	2	0.0269			8.339	**	155*2* 0.0269
(iv)	Guard rail								
	20mm dia bars connected to ISA50*50*8	19	2	0.1256			4.773	**	19*2*0.1256

(g)	NUMBER OF BOLTS	810	1		810	No.	
	(MS20mm DIA) USED IN						
	GUARD RAIL						
	CONNECTIONS						

	NET	C QUANT	TITY ES	TIMATE I	FOR ST	TEEL SI	DEWALK	K	
		No	s.	QTY.		WT./			
S.No.	Description of Items	SECT.	SIDE			MTR. (Kg/ Rmt.)	NE QT		REMARKS
1	ST ISJC150	405		393	Rmt.	9.9	3891	Kg	393*9.9
2	ST ISA90*90*8	405		3699.56	Rmt.	10.8	39955	Kg	3699.568* 10.8
3	PRISMATIC STEEL (39strips per section) (0.03x0.03m)	405		23692.5	Rmt.	7.065	167388	Kg	23692.4* 7.065
4	ST ISA50*50*5	810		5346	Rmt.	3.8	20314.8	Kg	5346* 3.8
5	Steel bar of 20mm dia	810		15390	Rmt.	2.47	38013.3	Kg	15390* 2.47
6	Welding Rods (No.) 45cm long & 4mm thick			950.5224	Rmt.		2112	RODS	1156.41/ 0.45
7	MS 20mm-dia Bolts	810		810	No.		810	No.	

Table 5.1 Quantity estimate for steel section sidewalk

Earlier in Chapter-4 we calculated that $1m^3$ of concrete can be used for 1.905m length of sidewalk and whole length will require a total volume of $78.74m^3$ and steel section requires $29.52m^3$ of concrete of Grade M20.So, the required weight of concrete's constituents are shown in Table5.2

	NET QUANTITY ESTIMATE FOR CONCRETE SIDEWALK								
S.No.	Description of Items	QTY. USED PER m ³ OF CONCRETE		NET QTY. For 108.26m ³ of concrete		REMARKS			
1	Cement Bags	6.284	bags	680	bags	6.284*108.26			
2	Coarse Aggregates	0.578	m ³	63	m ³	0.578*108.26			
3	Fine Aggregates	0.611	m ³	66	m ³	0.611*108.26			
4	Water	0.1571	m ³	17	m ³	0.1571*108.26			

Table 5.2 Quantity estimate for concrete section sidewalk

5.3 ESTIMATE OF COST

	ABSTRACT OF COST ^[10]									
Nan	Name of Work- Proposed Sidewalk along the Ambala-Shimla National Highway-5 at Shoghi , Himachal Pradesh of Length 1.1 Km.									
S.No.	PARTICULARS	Quantity	Unit	Rate	Amount (Rs.)					
1	ST IS JC150	3891	Kg	Rs.43/Kg	167313					
2	ST ISA90*90*8	39955	Kg	Rs.43/Kg	1718065					
3	Prismatic Steel (0.03mx0.03m)	167388	Kg	Rs.43/Kg	7197684					
4	ST ISA50*50*5	20314.8	Kg	Rs.43/Kg	873536.4					
5	Steel Bar of 20mm dia.	38013.3	Kg	Rs.43/Kg	1634572					
6	Welding Rod(45 cm long and 4 mm thick)	2112	Rods	Rs5/rod	10560					
7	MS 20mm-dia Bolts	810	Bolts	Rs45/10Bolts	3645					
8	Cement Bags	680	Bags	Rs.310/Bag	210800					
9	Coarse Aggregates	63	m ³	Rs.581/m ³	30793					
10	Fine Aggregates	66	m ³	Rs.300/m ³	19800					
11	Water	17	m ³	1.5 % to 2% of total cost of concrete	5227.86					

S.No.	PARTICULARS	Quantity	Unit	Rate	Amount
					(Rs.)

			TOTAL	11871996	
12	Contractor's Profit	10% Total Cost 11872			
		GRA	ND TOTAL	1,30,59,196	
	f the project =One Crore Thirty Lacs pees only.	Fifty Nine Thous	and One Hund	red Ninety	

Table 5.3 Abstract of Cost

CHAPTER-6

PROPOSED AMMENDEMENTS

6.1 PROVISION FOR ZEBRA CROSSINGS AT SHOGHI^[3]

We are proposing two zebra crossings at the Shoghi highway. It will be provided at the major points where there is an immense need for the pedestrian to cross the road.

• LOCATION OF ZEBRA CROSSINGS

- Near the housing board colony gate no 2 (between cross section 50-51)
- Main market along the bus stand.(between cross section 74-75)

• WIDTH OF ZEBRA CROSSINGS

- Near the housing board colony gate no 2 (between cross section 50-51) 2m
- Main market along the bus stand.(between cross section 74-75) 3.5m
- WIDTH OF BLACK AND WHITE STRIPS IN ZEBRA CROSSINGS
 - o 30-50cm

Fig.6.1 Zebra-Crossing near the housing board colony at Gate No.2 (between cross section 50-51)

Fig.6.2 Zebra-Crossing at the main market (between cross section 74-75)

6.2 PROVISION FOR SPEED-BREAKERS AT SHOGHI^[2]

• LOCATION OF SPEED-BREAKERS:-

- \circ The curve where visibility is less (Between cross section 30-31).
- 50m before the zebra crossing i.e. near the housing board colony gate no.2 (Between cross-sections 45-46).
- 50m after zebra crossing (At cross-section 56).
- \circ 100m away from bus stand (Between cross-sections 76-77).

Fig.6.3 Speed-Breaker near the curve where sight distance is not visible

(Between cross-section30-31)

Fig.6.4 Speed-Breaker at 50m before the zebra crossing, near the housing board colony gate no.2 (Between cross-section45-46)

Fig.6.5 Speed Breaker at 50m after zebra crossing (At cross-section 56)

Fig.6.6 Speed-Breaker at 100m away from bus stand (Between Cross-Section 76-77)

• DESIGN OF SPEED BREAKERS:-

- Speed breakers are formed basically by providing around it (of 17m radius) hump of 3.7m width and 10cm height for the preferred crossing speed of 25 km/h for general traffic.
- To facilitate appreciable and comfortable passage for larger and heavier vehicle humps may be modified with 1.5m long ramps (1:20) at each edge.
- The distance between one hump to another can vary from (100-120) m centre to centre.

Fig.6.7 Longitudinal Cross-Section of Speed-Breaker

6.3 PROVISION FOR SIGN POST AND MARKINGS^[2]

- DRIVERS SHOULD BE WARNED OF THE presence of speed breakers by posting suitable advanced warning signs. The sign should have definition plate with the words 'SPEED BREAKER' and should be located 40m in advance of the first speed breaker.
- Speed breakers should be painted with alternate black and white bands. Embedded cat-eyes can also be used to enhance night visibility.
- SIGN DETAILS:-
 - Lateral Placement Left :-
 - 0.60m on kerbed roads.
 - 2.3m on unkerbed roads.
 - Mounting Height :-
 - 2.0m on kerbed roads.
 - 1.5m on unkerbed roads.
 - Use reflective paint or strip.
 - Side of triangle- 60cm or 90cm (standard).
 - Red Strip width- 4.5cm or 7.0cm.
 - Post Height- 8cm x 8cm x 0.8cm.
 - \circ T-Iron to be painted white and black in alternate 25cm bands.

Fig.6.8 Sign Post

CHAPTER-7

RESULTS AND DISCUSSIONS

7.1 RESULTS

- From the Total-Station survey the whole stretch of 1.1Km was divided into a total number of 78 cross-sections of length 10m, 20m and 50m respectively. Also, the data points were obtained in (x, y) format for the layout formation from the total-station survey.
- After preparing the layout in AUTO-CAD, 16 support based models were identified and total number of 437 sections of dimensions 2.0m x 1.5m were classified under these support based models.(up to Cross-Section No.-73).
- A maximum load intensity of 6KN/m² was chosen and to make the design as simple as possible, the 16 support based models were incorporated into 3 support based model namely,
 - MODEL-1 (FIXED-FIXED) Support Section (124 No.)
 - MODEL-2 (P.C.2-P.C.2) Support Section (146 No.)
 - MODEL-3 (CANTILEVER-CANTILEVER) Support Section (167 No.)

which were analyzed for feasibility on Staad.Pro and MS-Excel (Macros).

- The total estimated quantity cost after considering the openings in the side walk for the project came out to be Rs. One Crore Thirty Lacs Fifty Nine Thousand One Hundred Ninety Six Rupees only. Of which 55.11% of the total cost is due to the prismatic steel sections of dimensions (0.03cm x 0.03cm) which are 39 in number per section.
- To provide additional safety features for pedestrian recommendations were provided for zebra-crossing and speed breakers. A total of 2 zebra-crossings and 4 speed-breakers are proposed in the report.

7.2 DISCUSSIONS

The layout obtained from the data points is similar to the 'Google-Earth' maps. So we can say that our obtained layout is correct.

For designing and analysis of the sidewalk a load of 6KN/m^2 was taken which was more than the specified maximum load in IS 875:1987 (Part-2) i.e. 5KN/m^2 . It was taken 6KN/m^2 in order to accumulate the load from the pedestrians and for the static load coming from guard rail along with the dynamic load (minor) caused due to the movement of vehicles near the guard rails.

Also the high cost of the project is due to prime condition for maintaining a simple, uniform design. For fulfillment of this condition we have to use heavy sections like ISA90x90x8 and ISJC150 along with prismatic steels members of dimensions 1.5mx0.03mx0.03m and if observed carefully about 55.11% of the cost of the project is due to the prismatic steel member.

But had we used a smaller section as prismatic steel member, all sections were failing under the condition of 'Slenderness Ratio' when the design was checked in reference to IS 800:2007 (for Limit State Design). A steel section rather than 0.03mx0.03m which was not failing under this criteria was 0.02mx0.05m which was adding an additional cost of Rs.28,50,335/- (Rupees Twenty eight lac fifty thousand three hundred thirty five only). So we can say that our designed sidewalk can safely bear a load of 6KN/m² and is safe according to the checks of IS 800:2007.

CONCLUSIONS

At the end of this project report we would like to conclude that our designed steel and concrete sidewalk will be able to bear a live load of $6(KN/m^2)$ safely and efficiently without needing any maintenance atleast for the next 20-25 years. We have designed the sidewalk keeping the future perspective in our mind i.e. population increase, increasing locality, schools, hospitals etc as Shoghi is expanding by leaps and bounds.

Also, after surveying the total stretch of 1.1Km we found that there was not enough space for lying of concrete throughout the stretch. It was only the market place where the concrete sidewalk can be used as by using steel sidewalk we not only increased the cost for the project but also the noise pollution for the area. So we switched for our use of steel sections for the remaining 810m. Though this increased the cost of the project but to have a safe, efficient, uniform and according to code design it was the price we had to pay.

Thus, we would like to conclude that we were able to fulfill our objectives except for giving an economical design but this project taught us a lot. We not only used our knowledge of subjects like surveying, design of steel structures and concrete technology but also helped us to explore more about these subjects and softwares being used in civil engineering like AutoCAD, Staad.Pro, Tekla Structures etc.

FUTURE SCOPE OF WORK

Though much work cannot be done in the surveying and modeling part of the project but there is a scope for doing future work in the design optimization of this project.

Rather than using grating of prismatic steel, the girder and thin chequered plate can be used so as to optimize the cost of the project as our design had 55.11% of total cost of the project because of the use of prismatic steel members. Also one could work on the possibility for making a sidewalk wholly of concrete and reduce the cost to its minimal level.

REFERENCES

- [1] Dr. B.C. Punmia, Ashok Kr. Jain & Arun Kr. Jain, Surveying Vol.1,16th edn. 2005, Laxmi Publications Private Limited ,New Delhi,1965,pp.1-5.
- [2] IRC 99-1988, Tentative Guidelines on the Provision of Speed Breakers for control of Vehicular Speeds on Minor Roads, Reprinted 1st edn. 1996, The Indian Road Congress, 1988, pp.5,10
- [3] IRC 103-1988, Guidelines for Pedestrian Facilities, 1st edn., The Indian Road Congress, 1989, pp.3
- [4] IS 456:2000, Plain & Reinforced Concrete –Code of Practice (Fourth Revision), Bureau of Indian Standards, July 2000, pp. 43
- [5] IS 800:2007, General Construction in Steel –Code of Practice (Third Revision), Bureau of Indian Standards, December 2007, pp. 78-82
- [6] M.S.Shetty, Concrete Technology –Theory and Practice, 7th Revised edn. 2013,
 S.Chand & Company Private Limited ,1982, pp.-492-436
- [7]N. N. Basak, *Surveying and Levelling*, 1st edn., 42nd Reprint 2012, Tata McGraw Hill
 Education Private Limited, New Delhi, 1994, pp. 1-3
- [8] Saurabh Malik , HOUSING BOARD COLONY AT SHOGHI-Residents wait for HIMUDA to restore its lost glory, The Tribune ,October 16, 2012.
- [9] SP:6(1)-1964 (Reaffirmed1988), Handbook for structural Engineers-1. Structural Steel, 19th edn. 1998, Bureau of Indian Standards, November 1974, pp.6-11
- [10] Standard Schedule of Rates2009 –Building (Civil Works), 1st edn.2009,Government of Himachal Pradesh Public Works Department, pp.57

APPENDIX-A

PHOTOGRAPHIC SURVEY

FigA.1 Pedestrian walking along the road

Fig.A.2 Children walking towards school

Fig.A.3 Bus moving closely to the unpaved shoulder

Fig.A.4 Motorcycles parked on the road

Fig.A.5 Encroachment by the shopkeepers on the carriage way

Fig.A.6 Loading and unloading on the carriage way

Fig.A.7 Repair work of vehicles on the along the road

Fig.A.8 Open drainage along the road

Fig.A.9 Snapshot of bus station

Fig.A.10 No space to walk for the pedestrian

FigA.11 Snapshot of open drainage

Fig.A.12 traffic jam at Shoghi bypass

Fig.A.13 Vehicles parked along the road

APPENDIX-B

TOTAL STATION SURVEY DATA AND CALCULATED DISTANCES

CROSS SECTION	Distance from previous C.S.	POINT	N	Е	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		A1	-0.672	-1.588	0.132				
	0	A2	0.459	0.952	0.003	278.0	6 7 2 5	174.0	
C.S.1	0	A3	3.039	7.162	0.035	278.0	6.725	174.0	
		A4	3.755	8.748	0.092				
		B1	8.171	-6.46	0.255				
0.6.2	10	B2	9.426	-3.618	0.072	210.7	7.045	210.2	
C.S.2	10	B3	12.55	2.696	0.019	310.7	7.045	319.3	
		B4	14.123	5.475	0.041				
		C1	17.241	-10.263	0.298				
0.6.2	20	C2	18.254	-7.991	0.202	248.8	7.149	393.3	
C.S.3		C3	21.183	-1.47	0.123		7.149		
		C4	22.908	2.065	0.088				
	30	D1	26.562	-13.565	0.22	100.5			
C.S.4		D2	27.063	-12.694	0.251		7.405	332.1	
C.S.4		D3	29.974	-5.885	0.21				
		D4	31.683	-3.038	0.222				
		E1	35.299	-18.214	0.281		7.617		
C.S.5	40	E2	35.732	-17.532	0.283	80.8		292.3	
C.S.5	40	E3	38.798	-10.559	0.353	00.0		292.3	
		E4	40.182	-7.984	0.356				
		F1	43.726	-23.298	0.554				
C.S.6	50	F2	44.217	-22.6	0.383	85.2	7.405	295.1	
C.S.0	50	F3	47.164	-15.807	0.604	85.3	7.403	293.1	
		F4	48.618	-13.239	0.365				
		G1	49.921	-30.441	0.636				
C S 7	60	G2	51.864	-28.844	0.532	251 5	7.604	406.7	
C.S.7	60	G3	55.01	-21.921	0.832	251.5	7.004	400.7	
		G4	57.529	-18.728	0.718				

CROSS SECTION	Distance from previous C.S.	POINT	Ν	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		H1	61.225	-31.542	0.695				
C.S.8	70	H2	61.951	-28.54	0.745	308.9	8.284	471.0	
C.S.8	70	H3	60.159	-20.452	0.942	508.9	0.204	471.8	
		H4	61.5	-15.929	0.804				
		I1	71.166	-33.453	0.914				
	20	I2	71.711	-30.741	1.028	276.6	0.504	270.2	
C.S.9	80	I3	70.047	-22.381	0.928	276.6	8.524	270.2	
		I4	70.835	-19.796	0.895				
		J1	81.092	-35.358	1.292				
0.0.10	00	J2	81.362	-32.664	1.5	270 7	0.570	1645	
C.S.10	90	J3	79.774	-24.242	1.09	270.7	8.570	164.5	
		J4	80.105	-22.631	0.891				
		K1	91.145	-37.24	1.678				
0.0.11	100	K2	91.312	-34.092	1.872	315.2	0.000	1147	
C.S.11		K3	89.62	-25.957	1.36		8.309	114.7	
		K4	89.66	-24.811	1.305				
		L1	101.317	-36.598	2.086				
0.0.10	110	L2	101.288	-33.374	2.157	222.4	0.100	102.0	
C.S.12	110	L3	99.572	-25.424	1.568	322.4	8.133	103.9	
		L4	99.538	-24.386	1.47				
		M1	106.23	-25.705	2.499				
G G 12	100	M2	104.404	-25.276	2.331	107 6	0 174	1.51.5	
C.S.13	120	M3	96.904	-22.026	1.727	187.6	8.174	151.5	
		M4	95.453	-21.591	1.617				
		N1	108.522	-15.853	2.515				
G G 1 1	100	N2	106.567	-15.607	2.45	1050	0.601	100 -	
C.S.14	130	N3	98.634	-12.208	1.919	197.0	8.631	188.7	
		N4	96.776	-11.877	1.741				
		01	110.099	-5.561	2.697				
0.0.15	1.40	O2	107.267	-5.564	2.593	202.2	0.000	171 6	
C.S.15	140	03	99.025	-2.133	2.03	283.2	8.928	171.6	
		O4	97.311	-2.209	1.923				

CROSS SECTION	Distance from previous C.S.	POINT	N	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		P1	102.731	3.156	2.754				
0.0.16	150	P2	101.751	2.15	2.692	140.4	9.305	66.2	
C.S.16	150	P3	92.561	0.693	2.147	140.4	9.305	66.3	
		P4	92.024	0.304	2.251				
		Q1	95.223	9.924	2.696				
0 0 17	1.00	Q2	94.445	9.045	2.564	1174	0.000	52.5	
C.S.17	160	Q3	85.353	7.588	2.296	117.4	9.208	53.5	
		Q4	85.121	7.106	2.404				
		R1	87.56	16.334	2.476				
C C 10	170	R2	86.8	15.417	2.472	110.1	0.627	07.2	
C.S.18	170	R3	77.363	13.512	2.385	119.1	9.627	97.3	
		R4	77.006	12.607	2.408				
		S 1	79.534	22.438	2.376				
0.0.10	180	S2	78.941	21.515	2.404	100 7	0.500	1640	
C.S.19		S3	69.553	19.514	2.484	109.7	9.599	1640	
		S4	68.56	3.143	2.194				
		T1	71.514	28.232	2.414				
C C 20	100	T2	71.088	27.601	2.331	761	0.200	525 5	
C.S.20	190	Т3	61.852	25.905	2.623	76.1	9.390	525.5	
		T4	56.948	27.792	2.684				
		U1	63.974	34.764	2.396				
C C 21	200	U2	63.565	34.189	2.259	70.6	0.064	124 6	
C.S.21	200	U3	54.606	32.813	2.57	70.6	9.064	134.6	
		U4	53.583	31.938	2.43				
		V1	57.424	42.193	2.425				
	010	V2	56.419	41.25	2.253	127.0	0 706	215.2	
C.S.22	210	V3	47.774	40.061	2.417	137.8	8.726	215.3	
		V4	46.151	38.646	2.168				
		W1	50.309	49.04	2.335				
	220	W2	49.726	48.598	2.349	72.0	0 555	220.5	
C.S.23	220	W3	41.229	47.605	2.272	73.2	8.555	220.5	
		W4	39.661	49.155	2.304				

CROSS SECTIO N	Distanc e from previous C.S.	POINT	N	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARK
		Y1	43.232	57.439	2.516				
C.S.24	230	Y2	42.161	55.185	2.749	249.6	9.046	221.6	
C.S.24	230	Y3	33.465	52.692	2.269	249.0	9.040	221.0	
		Y4	32.037	50.998	2.224				
		Z1	35.749	63.884	2.669				
C.S.25	240	Z2	34.416	61.254	2.623	204.0	0.766	160 5	
C.S.25	240	Z3	25.152	58.162	2.257	294.9	9.766	169.5	
		Z4	24.399	56.643	1.976				
		AA1	26.005	67.528	2.484				
000	250	AA2	25.681	66.361	2.552	101.1	0.020	150.2	
C.S.26	250	AA3	16.465	62.916	2.367	121.1	9.839	159.2	
		AA4	15.738	61.5	2.05				
		BB1	17.617	72.49	2.488				
C C C 27	2.00	BB2	16.886	70.645	2.422	100.5	10 201	100.7	
C.S.27	260	BB3	7.366	66.979	2.526	198.5	10.201	102.7	
		BB4	6.925	66.051	2.275				
		CC1	7.884	75.53	2.442				
	270	CC2	7.544	74.834	2.377	77 6	0.507	210 6	
C.S.28	270	CC3	-1.472	71.756	2.633	77.5	9.527	312.6	
		CC4	-2.921	68.986	2.525				
		DD1	-1.091	79.804	2.331				
	200	DD2	-1.383	79.388	2.339	50.0	0 6 4 7	22.4	
C.S.29	280	DD3	-10.412	75.991	2.724	50.8	9.647	32.4	
		DD4	-10.587	75.718	2.721				
		EE1	-9.687	84.639	2.235				
	200	EE2	-9.999	84.156	2.32		0.040	010 5	
C.S.30	290	EE3	-18.936	81.801	2.651	57.5	9.242	210.7	
		EE4	-19.921	79.938	2.436]			
		FF1	-18.189	89.963	2.475				
C C C C	200	FF2	-18.472	89.463	2.453		0 (50	100.0	
C.S.31	300	FF3	-27.452	86.45	2.599	57.5	9.472	109.3	
		FF4	-28.142	85.602	2.392	1			

CROSS SECTION	Distance from previous C.S.	POINT	N	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		GG1	-26.741	95.156	2.55				
C.S.32	310	GG2	-27.039	94.544	2.53	68.1	9.313	149.0	
C.S.52	510	GG3	-35.842	91.504	2.591	00.1	9.515	149.0	
		GG4	-36.736	90.312	2.472				
		HH1	-29.708	84.384	2.99				
C.S.33	220	HH2	-26.41	84.566	2.641	220.2	0.792	1511	
C.S.33	320	HH3	-18.875	78.328	2.565	330.3	9.782	154.4	
		HH4	-17.348	78.556	2.561				
		II1	-27.869	74.585	2.91				
0 0 24	220	II2	-26.33	74.683	2.828	154.0	11 640	124.0	
C.S.34	330	II3	-16.33	68.725	2.539	154.2	11.640	134.8	
		II4	-15.074	69.215	2.606				
		JJ1	-27.061	63.931	3.126				
0 0 25	340	JJ2	-23.973	64.963	2.995	325.6	12 200	101.2	
C.S.35		JJ3	-11.508	60.057	2.668		13.396	101.2	
		JJ4	-10.699	60.665	2.75				
		KK1	-25.357	54.46	3.411				D23 is
0026	250	KK2	-22.433	55.076	3.257	200.0	10 (20	741	increased because of the
C.S.36	350	KK3	-3.899	53.11	2.91	298.8	18.638	74.1	sharp curvature at the police
		KK4	-3.659	53.811	3.026				barrier
		LL1	-18.901	45.319	3.696				D23 is
C.S.37	200	LL2	-17.695	46.621	3.575	1775	23.539	117.7	increased because of the
C.S.57	360	LL3	5.593	50.05	3.273	177.5	23.339	11/./	sharp curvature at the police
		LL4	5.794	51.21	3.77				barrier
		MM1	-10.455	43.95	3.534				D23 is
C C 20	270	MM2	-11.242	45.424	3.651	1 (7 1	25.001	122.1	increased because of the
C.S.38	370	MM3	0.244	68.739	3.598	167.1	25.991	133.1	sharp curvature at the police
		MM4	-0.816	69.544	3.746				barrier
		NN1	-2.168	51.059	3.821				D23 is
	200	NN2	-3.327	52.009	3.806	140.0	26.205	100 4	increased because of the
C.S.39	380	NN3	6.765	76.399	3.767	149.9	26.395	106.4	sharp curvature at the police
		NN4	5.911	77.033	3.611				barrier

CROSS SECTION	Distance from previous C.S.	POINT	N	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		001	3.313	59.409	3.738				D23 is
C.S.40	390	002	2.325	60.358	3.741	137.0	26.000	177.7	increased because of the
C.S.40	390	003	12.593	84.245	3.956	137.0	20.000	1//./	sharp curvature at the police
		004	10.985	85.002	4.007				barrier
		PP1	9.863	67.061	3.958				D23 is
C C 41	400	PP2	9.031	67.737	3.894	107.2	26.240	1264	increased because of the
C.S.41	400	PP3	17.934	92.527	4.077	107.2	26.340	136.4	sharp curvature at the police
		PP4	16.831	93.329	4.179				barrier
		QQ1	17.069	74.394	4.295				D23 is
0 0 40	410	QQ2	15.263	75.459	4.165	200.7	17.246	116.2	increased because of the
C.S.42	410	QQ3	17.887	92.504	4.099	209.7	17.246	116.3	sharp curvature at the police
		QQ4	16.915	93.142	4.18				barrier
		RR1	23.182	82.585	4.428				D23 is
C.S.43	420	RR2	21.027	83.671	4.36	041.2	17 027	70.0	increased because of the
C.S.43	420	RR3	22.597	101.439	4.223	241.3	17.837	79.0	sharp curvature at the police
		RR4	21.864	101.734	4.065				barrier
		SS1	30.56	85.626	4.59				D23 is
C C 14	420	SS2	30.838	87.042	4.509	144.2	10 104	127 4	increased because of the
C.S.44	430	SS3	46.042	97.017	4.549	144.3	18.184	137.4	sharp curvature at the police
		SS4	45.732	98.356	4.663				barrier
		TT1	40.481	87.686	4.608				D23 is
C.S.45	440	TT2	40.323	88.662	4.574		10 5 60	166.5	increased because of the
C.S.45	440	TT3	55.728	99.017	4.852	98.9	18.562	100.5	sharp curvature at the police
		TT4	55.558	100.673	4.935				barrier
		UU1	50.158	90.129	4.679				D23 is
0.0.46	450	UU2	49.985	90.946	4.623	025	10 122	101.2	increased because of the
C.S.46	450	UU3	65.59	100.18	5.014	83.5	18.132	181.3	sharp curvature at the police
		UU4	65.6	101.993	5.137				barrier
		VV1	60.074	91.55	4.756				D23 is
C C 47	100	VV2	59.844	92.539	4.726	101 5	17 777	00.2	increased because of the
C.S.47	460	VV3	75.618	100.737	5.159	101.5	17.777	98.2	sharp curvature at the police
		VV4	75.789	101.704	5.291				barrier

CROSS SECTION	Distance from previous C.S.	POINT	N	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARK S
		WW1	23.964	88.603	4.434				D23 is increased
C.S.48	470	WW2	23.188	88.673	4.43	77.9	17.301	79.5	because of the
C.S.48	470	WW3	18.659	105.371	4.792	11.9	17.301	19.3	sharp curvature at
		WW4	17.887	105.559	4.95				the police barrier
		XX1	25.458	98.363	4.626				D23 is increased
C C 40	400	XX2	24.937	98.469	4.628	52.0	17 740	72.4	because of the
C.S.49	480	XX3	20.555	115.151	4.93	53.2	17.248	72.4	sharp curvature at
		XX4	19.837	115.245	4.895				the police barrier
		YY1	27.239	108.085	4.826				D23 is increased
	400	YY2	26.644	108.376	4.838		16.000	257.9	because of the
C.S.50	490	YY3	22.878	124.942	5.05	66.2	16.989	257.8	sharp curvature at
		YY4	20.302	125.041	5.143				the police barrier
	500	ZZ1	29.081	118.069	5.094				D23 is increased
C.S.51		ZZ2	28.568	118.202	5.086	52.0	16 640	200 5	because of the
C.S.51		ZZ3	25.355	134.529	5.413	53.0	16.640	288.5	sharp curvature at
		ZZ4	22.644	135.516	5.533				the police barrier
		AAA1	14.594	135.708	5.312				D23 is increased
0 9 52	510	AAA2	14.963	131.482	5.411	424.2	16 676	205 4	because of the
C.S.52	510	AAA3	-0.061	124.246	5.804	424.2	16.676	305.4	sharp curvature at
		AAA4	-0.082	121.192	5.976				the police barrier
		BBB1	4.801	134.36	5.658				
0 0 52	520	BBB2	4.966	131.63	5.548	072.5	16 295	50.2	At point BBB4, width
C.S.53	520	BBB3	-10.044	125.06	6.101	273.5	16.385	50.2	of truck is to
		BBB4	-10.054	124.558	6.127				
		CCC1	-4.779	133.615	5.739				
C S 54	520	CCC2	-5.057	132.25	5.735	120.2	15 002	210.2	At point CCC1,width o
C.S.54	530	CCC3	-19.906	126.833	6.365	139.3	15.806	210.2	truck is to be
		CCC4	-20.673	124.876	6.458				
		DDD1	-14.343	135.71	5.977				
0 9 55	540	DDD2	-14.667	134.808	5.941	05 0	14 100	677 2	At point DDD1,width
C.S.55	540	DDD3	-28.543	131.796	6.507	95.8	14.199	677.3	truck is to be
		DDD4	-31.208	125.569	6.844				added to D12

CROSS SECTION	Distance from previous C.S.	POINT	Ν	E	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		EEE1	-23.365	139.771	6.185				
0 9 56	550	EEE2	-23.893	138.76	6.277	11/1	14.874	260.0	
C.S.56	550	EEE3	-38.094	134.335	6.814	114.1	14.874	269.0	
		EEE4	-39.957	132.394	6.937				
		FFF1	-29.723	147.538	6.289				
C C C 57	560	FFF2	-32.216	144.274	6.341	410.7	12 207	160.9	
C.S.57	560	FFF3	-45.223	141.106	6.934	410.7	13.387	160.8	
		FFF4	-46.493	140.12	6.76				
		GGG1	-36.4	157.723	6.739				
0 0 50	570	GGG2	-40.2	150.065	6.596	954.0	11 700	100.1	
C.S.58	570	GGG3	-51.835	148.829	6.954	854.9	11.700	108.1	
		GGG4	-52.684	148.16	7.639				
		HHH1	-43.428	160.871	6.735				
C.S.59	580	HHH2	-45.463	158.932	6.778	201 1	10 105	1100	
C.S.39		HHH3	-57.49	156.978	6.989	- 281.1	12.185	116.9	
		HHH4	-58.464	156.332	6.946				
		III1	-46.561	165.547	7.22				
	500	III2	-49.096	166.681	7.243		10 7 4 2	1147	
C.S.60	590	III3	-51.838	177.068	7.1	277.7	10.743	114.7	
		III4	-52.776	177.728	6.975				
		JJJ1	-56.465	175.737	7.263				
0.0.(1	COO	JJJ2	-59.012	173.975	7.505	200.7	0.005	101.4	
C.S.61	600	JJJ3	-68.882	174.802	7.182	309.7	9.905	101.4	
		JJJ4	-69.796	174.364	7.1				
		KKK1	-70.644	190.847	8.452				
	(20)	KKK2	-72.166	188.85	7.747	051.1	10.526	50.6	
C.S.62	620	KKK3	-82.692	189.317	7.591	251.1	10.536	50.6	
		KKK4	-83.083	188.996	7.528				
		LLL1	-86.209	203.132	7.95				
	C 40	LLL2	-86.374	202.933	7.949	25.0	11.056	(0.2	
C.S.63	640	LLL3	-97.625	202.599	8.113	25.9	11.256	69.3	
		LLL4	-98.026	202.034	7.963				

CROSS SECTION	Distance from previous C.S.	POINT	N	Е	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		MMM1	-100.38	216.997	8.305				
C.S.64	660	MMM2	-101.13	216.389	8.415	96.9	10.337	170.8	
C.S.04	000	MMM3	-111.44	217.182	8.537	90.9	10.557	170.8	
		MMM4	-112.71	216.042	9.23				
		NNN1	-111.87	232.813	8.607				
C.S.65	680	NNN2	-113.76	231.672	8.66	220.2	10 172	71.0	
C.S.05	080	NNN3	-123.87	232.735	8.775	220.3	10.173	71.0	
		NNN4	-124.49	232.382	8.813				
		0001	-125.09	245.341	9.111				
0566	700	0002	-122.07	246.24	9.001	2145	10.010	78.0	
C.S.66	700	0003	-113.89	240.475	9.238	314.5	10.010	78.9	
		0004	-113.13	240.692	9.319				
		PPP1	-120.58	226.071	9.557				
C S (7	720	PPP2	-118.46	226.265	9.474	212.7	0.050	90.1	
C.S.67		PPP3	-110.17	220.75	9.602	212.7	9.959	89.1	
		PPP4	-109.29	220.922	9.627				
		QQQ1	-116.04	206.724	9.696				
	740	QQQ2	-114.67	206.944	9.67	120.5	10.296	141 2	
C.S.68	740	QQQ3	-105.86	201.434	9.885	139.5	10.386	141.3	
		QQQ4	-104.52	200.991	9.895				
		RRR1	-125.45	190.571	9.854				
		RRR2	-124.86	189.916	9.861				At point RRR3,
C.S.69	760	RRR3	-124.5	181.811	10.268	87.8	8.113	303.0	
		RRR4	-122.13	179.927	10.326				be added to D23
		SSS1	-140.01	176.89	10.079				
0 0 70	700	SSS2	-139.3	176.162	10.12	101 4	0.000	112.0	
C.S.70	780	SSS3	-138.94	167.904	10.58	101.4	8.266	113.8	
		SSS4	-138.98	166.767	10.641				
		TTT1	-155.46	164.057	10.324				
0.0.71	000	TTT2	-154.68	163.478	10.317	06.5	10.000	000	
C.S.71	800	TTT3	-152.49	153.691	11.078	96.5	10.029	86.8	
		TTT4	-151.86	153.097	11.149				

CROSS SECTION	Distance from previous C.S.	POINT	N	Е	Z	D12 (cm)	D23 (m)	D34 (cm)	REMARKS
		UUU1	-173.69	157.608	10.586				
C C 7 7 2	820	UUU2	-172.85	155.875	10.621	102.0	0.740	146.2	
C.S.72	820	UUU3	-172.52	146.141	11.205	192.8	9.740	146.2	
		UUU4	-172.36	144.687	11.362				
		VVV1	-192.41	152.983	10.738				C.S.73 is marked at 1.5m ahead of
		VVV2	-192.22	152.052	11.041				the junction where the road is
C.S.73	840	VVV3	-192.33	143.725	11.248	94.9	8.328	170.0	bifercated to
		VVV4	-191.91	142.08	10.979				Shoghi's industrial area(road in downward direction)
C.S.74	890	WWW2	-147.24	186.131	11.711		15.210		
0.5.71	0,0	WWW3	-157.41	197.446	12.121		10.210		
									0.0.75
C.S.75	940	XXX2	-118.72	214.317	12.719		18.373		C.S.75 Start of
	2.0	XXX3	-127.21	230.612	12.301		101070		Taxi Stand
C.S.76	990	YYY2	-95.231	261.493	12.783		14.279		
0.5.70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	YYY3	-108.43	266.936	12.425		11.279		
C.S.77	1040	ZZZ2	-107.53	305.534	13.329		9.394		
	1010	ZZZ3	-116.87	306.549	13.476				
C C 70	1000	AAAA2	-122.56	346.295	14.334		11.074		
C.S.78	1090	AAAA3	-133.63	346.279	14.124		11.074		

APPENDIX-C DETAILED OBSERVATION TABLE FROM THE LAYOUT

STARTING CROSS SECTION	ENDING CROSS SECTION	Type-1 FIXED FIXED	Type-2 FIXED P.C.1	Type-3 FIXED P.C.2	Type-4 FIXED CANTILEVER	Type-5 P.C.1 FIXED	Type-6 P.C.1 P.C.1	Type-7 P.C.1 P.C.2	Type-8 P.C.1 CANTILEVER	Type-9 P.C.2 FIXED	Type-10 P.C.2 P.C.1	Type-11 P.C.2 P.C.2	Type-12 P.C.2 CANTILEVER	Type-13 CANTILEVER FIXED	Type-14 CANTILEVER P.C.1	Type-15 CANTILEVER P.C.2	Type-16 CANTILEVER CANTILEVER	TOTAL
C.S.1	C.S.2	5																5
C.S.2	C.S.3	5																5
C.S.3	C.S.4	1	1					1				1	1					5
C.S.4	C.S.5																5	5
C.S.5	C.S.6																5	5
C.S.6	C.S.7		1			1					1	1				1		5
C.S.7	C.S.8	3	1			1	1											6
C.S.8	C.S.9	5																5
C.S.9	C.S.10	5																5
C.S.10	C.S.11	5																5
C.S.11	C.S.12	6																6
C.S.12	C.S.13	1		1			1				1	3						7
C.S.13	C.S.14						5											5
C.S.14	C.S.15	5				1												6
C.S.15	C.S.16		1				2	1				2						6
C.S.16	C.S.17											3	1				1	5
C.S.17	C.S.18																5	5
C.S.18	C.S.19																5	5
C.S.19	C.S.20																5	5
C.S.20	C.S.21																5	5
C.S.21	C.S.22											1				1	3	5
C.S.22	C.S.23												1				4	5
C.S.23	C.S.24	1				1					1	1				1		5
C.S.24	C.S.25	5																5
C.S.25	C.S.26	2		I			-				1	2						5
C.S.26	C.S.27						2	- 1			1	2	1				2	5
C.S.27	C.S.28							1				1	1				2	5
C.S.28	C.S.29																5	5
C.S.29	C.S.30																5	5
C.S.30	C.S.31 C.S.32																5	5
C.S.31 C.S.32	C.S.32 C.S.33	3								1	1					1	3	5
C.S.32 C.S.33	C.S.33 C.S.34	2	1					1	}	1	1					1		6 4
C.S.34	C.S.34 C.S.35	4	1			1		1			1							4 6
C.S.34 C.S.35	C.S.35 C.S.36	4 5				1					1							5
C.S.36	C.S.37	3	1				2	1				1						8
C.S.30 C.S.37	C.S.37 C.S.38	5	1				2	1				4						8 4
C.S.37	C.S.39											6						6
C.S.39	C.S.40											5						5
C.S.40	C.S.41											1	1				3	5
C.S.41	C.S.42					1	1				1	1	1			1	5	5
C.S.42	C.S.42 C.S.43	4	1			1	1	1			1	1				1		6
C.S.42	C.S.44	-	1					1				4						4

contd.....

STARTING CROSS SECTION	ENDING CROSS SECTION	Type-1 FIXED FIXED	Type-2 FIXED P.C.1	Type-3 FIXED P.C.2	Type-4 FIXED CANTILEVER	Type-5 P.C.1 FIXED	Type-6 P.C.1 P.C.1	Type-7 P.C.1 P.C.2	Type-8 P.C.1 CANTILEVER	Type-9 P.C.2 FIXED	Type-10 P.C.2 P.C.1	Type-11 P.C.2 P.C.2	Type-12 P.C.2 CANTILEVER	Type-13 CANTILEVER FIXED	Type-14 CANTILEVER P.C.1	Type-15 CANTILEVER P.C.2	Type-16 CANTILEVER CANTILEVER	TOTAL
C.S.44	C.S.45											1	1				3	5
C.S.45	C.S.46																5	5
C.S.46	C.S.47																5	5
C.S.47	C.S.48																5	5
C.S.48	C.S.49																9	9
C.S.49	C.S.50																5	5
C.S.50	C.S.51																9	9
C.S.51	C.S.52	4				1	1				1	1				1	4	13
C.S.52	C.S.53	4																4
C.S.53	C.S.54	1	1					1				1						4
C.S.54	C.S.55											1	1				3	5
C.S.55	C.S.56															1	4	5
C.S.56	C.S.57	4				1					1							6
C.S.57	C.S.58	6																6
C.S.58	C.S.59	4																4
C.S.59	C.S.60	1	1															2
C.S.60	C.S.61	3				1			1		1					1	1	8
C.S.61	C.S.62	10																10
C.S.62	C.S.63	1	1				1	1				1	1				4	10
C.S.63	C.S.64																10	10
C.S.64	C.S.65					1	2				1	1				1	1	7
C.S.65	C.S.66	8																8
C.S.66	C.S.67	7																7
C.S.67	C.S.68	1	1				4	1				3	1					11
C.S.68	C.S.69																10	10
C.S.69	C.S.70																10	10
C.S.70	C.S.71																10	10
C.S.71	C.S.72						3				1	2				1	3	10
C.S.72	C.S.73						1	1				3	1				3	9
										-								
	TOTAL	124	11	2	0	10	26	10	1	1	12	53	10	0	0	10	167	437

APPENDIX-D

STAAD-EDITOR CODES

1. MODEL-1

STAAD SPACE START JOB INFORMATION **ENGINEER DATE 02-Apr-15 END JOB INFORMATION INPUT WIDTH 79** UNIT METER KN JOINT COORDINATES 1000; 2002; 31.500; 41.502; 50-0.30; 60-0.32; 71.5-0.30; 8 1.5 -0.3 2; 9 0 -0.8 0; 10 0 -0.8 2; 11 1.5 -0.8 0; 12 1.5 -0.8 2; 13 0 0 0.05; 14 1.5 0 0.05; 15 0 0 0.1; 16 1.5 0 0.1; 17 0 0 0.15; 18 1.5 0 0.15; 19 0 0 0.2; 20 1.5 0 0.2; 21 0 0 0.25; 22 1.5 0 0.25; 23 0 0 0.3; 24 1.5 0 0.3; 25 0 0 0.35; 26 1.5 0 0.35; 27 0 0 0.4; 28 1.5 0 0.4; 29 0 0 0.45; 30 1.5 0 0.45; 31 0 0 0.5; 32 1.5 0 0.5; 33 0 0 0.55; 34 1.5 0 0.55; 35 0 0 0.6; 36 1.5 0 0.6; 37 0 0 0.65; 38 1.5 0 0.65; 39 0 0 0.7; 40 1.5 0 0.7; 41 0 0 0.75; 42 1.5 0 0.75; 43 0 0 0.8; 44 1.5 0 0.8; 45 0 0 0.85; 46 1.5 0 0.85; 47 0 0 0.9; 48 1.5 0 0.9; 49 0 0 0.95; 50 1.5 0 0.95; 51 0 0 1; 52 1.5 0 1; 53 0 0 1.05; 54 1.5 0 1.05; 55 0 0 1.1; 56 1.5 0 1.1; 57 0 0 1.15; 58 1.5 0 1.15; 59 0 0 1.2; 60 1.5 0 1.2; 61 0 0 1.25; 62 1.5 0 1.25; 63 0 0 1.3; 64 1.5 0 1.3; 65 0 0 1.35; 66 1.5 0 1.35; 67 0 0 1.4; 68 1.5 0 1.4; 69 0 0 1.45; 70 1.5 0 1.45; 71 0 0 1.5; 72 1.5 0 1.5; 73 0 0 1.55; 74 1.5 0 1.55; 75 0 0 1.6; 76 1.5 0 1.6; 77 0 0 1.65; 78 1.5 0 1.65; 79 0 0 1.7; 80 1.5 0 1.7; 81 0 0 1.75; 82 1.5 0 1.75; 83 0 0 1.8; 84 1.5 0 1.8; 85 0 0 1.85; 86 1.5 0 1.85; 87 0 0 1.9; 88 1.5 0 1.9; 89 0 0 1.95; 90 1.5 0 1.95; MEMBER INCIDENCES

5 1 5; 6 2 6; 7 3 7; 8 4 8; 9 5 9; 10 6 10; 11 7 11; 12 8 12; 13 1 3; 15 2 4;

16 1 13; 17 3 14; 18 13 15; 19 14 16; 20 13 14; 21 15 17; 22 16 18; 23 15 16; 24 17 19; 25 18 20; 26 17 18; 27 19 21; 28 20 22; 29 19 20; 30 21 23; 31 22 24; 32 21 22; 33 23 25; 34 24 26; 35 23 24; 36 25 27; 37 26 28; 38 25 26; 39 27 29; 40 28 30; 41 27 28; 42 29 31; 43 30 32; 44 29 30; 45 31 33; 46 32 34; 47 31 32; 48 33 35; 49 34 36; 50 33 34; 51 35 37; 52 36 38; 53 35 36; 54 37 39; 55 38 40; 56 37 38; 57 39 41; 58 40 42; 59 39 40; 60 41 43; 61 42 44; 62 41 42; 63 43 45; 64 44 46; 65 43 44; 66 45 47; 67 46 48; 68 45 46; 69 47 49; 70 48 50; 71 47 48; 72 49 51; 73 50 52; 74 49 50; 75 51 53; 76 52 54; 77 51 52; 78 53 55; 79 54 56; 80 53 54: 81 55 57: 82 56 58: 83 55 56: 84 57 59: 85 58 60: 86 57 58: 87 59 61: 88 60 62; 89 59 60; 90 61 63; 91 62 64; 92 61 62; 93 63 65; 94 64 66; 95 63 64; 96 65 67; 97 66 68; 98 65 66; 99 67 69; 100 68 70; 101 67 68; 102 69 71; 103 70 72; 104 69 70; 105 71 73; 106 72 74; 107 71 72; 108 73 75; 109 74 76; 110 73 74; 111 75 77; 112 76 78; 113 75 76; 114 77 79; 115 78 80; 116 77 78; 117 79 81; 118 80 82; 119 79 80; 120 81 83; 121 82 84; 122 81 82; 123 83 85; 124 84 86; 125 83 84; 126 85 87; 127 86 88; 128 85 86; 129 87 89; 130 88 90; 131 87 88; 132 89 2; 133 90 4; 134 89 90;

DEFINE MATERIAL START

ISOTROPIC STEEL

E 2.05e+008

POISSON 0.3

DENSITY 76.8195

ALPHA 1.2e-005

DAMP 0.03

ISOTROPIC CONCRETE

E 2.17185e+007

POISSON 0.17

DENSITY 23.5616

ALPHA 1e-005

DAMP 0.05

END DEFINE MATERIAL

MEMBER PROPERTY INDIAN

9 TO 12 PRIS YD 0.3 ZD 0.3

MEMBER PROPERTY INDIAN

20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 -95 98 101 104 107 110 113 116 119 122 125 128 131 134 PRIS YD 0.03 ZD 0.03 5 TO 8 TABLE ST ISJC150

13 15 TO 19 21 22 24 25 27 28 30 31 33 34 36 37 39 40 42 43 45 46 48 49 51 -52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 81 82 84 85 87 88 -90 91 93 94 96 97 99 100 102 103 105 106 108 109 111 112 114 115 117 118 -120 121 123 124 126 127 129 130 132 133 TABLE ST ISA90X90X8 CONSTANTS

BETA 315 MEMB 13 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 -

46 47 49 50 52 53 55 56 58 59 61 62 64 65 67 68 70 71 73 74 76 77 79 80 82 -83 85 86 88 89 91 92 94 95 97 98 100 101 103 104 106 107 109 110 112 113 -115 116 118 119 121 122 124 125 127 128 130 131 133 134

BETA 90 MEMB 7 8

BETA 270 MEMB 5 6

MATERIAL STEEL ALL

MATERIAL CONCRETE MEMB 9 TO 12

SUPPORTS

9 TO 12 FIXED

LOAD 1 LOADTYPE None TITLE LOAD CASE 1

SELFWEIGHT Y -1 LIST 5 TO 13 16 TO 134

FLOOR LOAD

YRANGE 0 0.3 FLOAD -6 XRANGE 0 1.5 ZRANGE 0 2 GY

PERFORM ANALYSIS

PARAMETER 1

CODE IS800 LSD

CHECK CODE MEMB 5 TO 8 13 15 TO 134

PARAMETER 2

CODE IS800 LSD

STEEL TAKE OFF LIST 5 TO 8 13 15 TO 134 PERFORM ANALYSIS FINISH

2. MODEL-2

STAAD SPACE START JOB INFORMATION ENGINEER DATE 02-Apr-15 **END JOB INFORMATION INPUT WIDTH 79** UNIT METER KN JOINT COORDINATES 1000; 2002; 31.500; 41.502; 50-0.30; 60-0.32; 70.75-0.30; 8 0.75 -0.3 2; 9 0 -0.8 0; 10 0 -0.8 2; 11 0.75 -0.8 0; 12 0.75 -0.8 2; 111 0.75 0 0; 112 0.75 0 2; 113 0 0 1.95; 114 1.5 0 1.95; 115 0 0 1.9; 116 1.5 0 1.9; 117 0 0 1.85; 118 1.5 0 1.85; 119 0 0 1.8; 120 1.5 0 1.8; 121 0 0 1.75; 122 1.5 0 1.75; 123 0 0 1.7; 124 1.5 0 1.7; 125 0 0 1.65; 126 1.5 0 1.65; 127 0 0 1.6; 128 1.5 0 1.6; 129 0 0 1.55; 130 1.5 0 1.55; 131 0 0 1.5; 132 1.5 0 1.5; 133 0 0 1.45; 134 1.5 0 1.45; 135 0 0 1.4; 136 1.5 0 1.4; 137 0 0 1.35; 138 1.5 0 1.35; 139 0 0 1.3; 140 1.5 0 1.3; 141 0 0 1.25; 142 1.5 0 1.25; 143 0 0 1.2; 144 1.5 0 1.2; 145 0 0 1.15; 146 1.5 0 1.15; 147 0 0 1.1; 148 1.5 0 1.1; 149 0 0 1.05; 150 1.5 0 1.05; 151 0 0 1; 152 1.5 0 1; 153 0 0 0.95; 154 1.5 0 0.95; 155 0 0 0.9; 156 1.5 0 0.9; 157 0 0 0.85; 158 1.5 0 0.85; 159 0 0 0.8; 160 1.5 0 0.8; 161 0 0 0.75; 162 1.5 0 0.75; 163 0 0 0.7; 164 1.5 0 0.7; 165 0 0 0.65; 166 1.5 0 0.65; 167 0 0 0.6; 168 1.5 0 0.6; 169 0 0 0.55; 170 1.5 0 0.55; 171 0 0 0.5; 172 1.5 0 0.5; 173 0 0 0.45; 174 1.5 0 0.45; 175 0 0 0.4; 176 1.5 0 0.4; 177 0 0 0.350001; 178 1.5 0 0.350001; 179 0 0 0.300001; 180 1.5 0 0.300001; 181 0 0 0.250001; 182 1.5 0 0.250001; 183 0 0 0.200001; 184 1.5 0 0.200001; 185 0 0 0.150001; 186 1.5 0 0.150001; 187 0 0 0.100001; 188 1.5 0 0.100001; 189 0 0 0.0500008; 190 1.5 0 0.0500008;

MEMBER INCIDENCES

DEFINE MATERIAL START

ISOTROPIC STEEL

E 2.05e+008

POISSON 0.3

DENSITY 76.8195

ALPHA 1.2e-005

DAMP 0.03

ISOTROPIC CONCRETE

BETA 315 MEMB 164 169 172 175 178 181 184 187 190 193 196 199 202 205 208 -211 214 217 220 223 226 229 232 235 238 241 244 247 250 253 256 259 262 265 268 271 274 277 280 283 286 288 TO 290 MATERIAL STEEL MEMB 5 TO 8 164 166 TO 169 171 TO 290 MATERIAL CONCRETE MEMB 9 TO 12 **SUPPORTS** 9 TO 12 FIXED LOAD 1 LOADTYPE None TITLE LOAD CASE 1 SELFWEIGHT Y -1 LIST 5 TO 12 164 166 TO 169 171 TO 290 FLOOR LOAD YRANGE 0 0.3 FLOAD -6 XRANGE 0 1.5 ZRANGE 0 2 GY PERFORM ANALYSIS **PARAMETER 1** CODE IS800 LSD CHECK CODE MEMB 5 TO 8 164 166 TO 169 171 TO 290 **PARAMETER 2** CODE IS800 LSD **GROUP MEMB 5 TO 8** PARAMETER 3 CODE IS800 LSD **GROUP MEMB 164 PARAMETER 4** CODE IS800 LSD GROUP MEMB 166 167 PARAMETER 7 CODE IS800 LSD STEEL TAKE OFF LIST 5 TO 8 164 166 TO 169 171 TO 290 PERFORM ANALYSIS FINISH

3. MODEL-3

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 02-Apr-15

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

172 1.5 0 1.45; 173 0 0 1.5; 174 1.5 0 1.5; 175 0 0 1.55; 176 1.5 0 1.55; 177 0 0 1.6; 178 1.5 0 1.6; 179 0 0 1.65; 180 1.5 0 1.65; 181 0 0 1.7; 182 1.5 0 1.7; 183 0 0 1.75; 184 1.5 0 1.75; 185 0 0 1.8; 186 1.5 0 1.8; 187 0 0 1.85; 188 1.5 0 1.85; 189 0 0 1.9; 190 1.5 0 1.9; 191 0 0 1.95; 192 1.5 0 1.95;

MEMBER INCIDENCES

5 1 5; 6 2 6; 9 5 9; 10 6 10; 168 114 4; 170 113 3; 171 1 3; 172 2 4;

257 170 172; 258 169 170; 259 171 173; 260 172 174; 261 171 172; 262 173 175; 263 174 176; 264 173 174; 265 175 177; 266 176 178; 267 175 176; 268 177 179; 269 178 180; 270 177 178; 271 179 181; 272 180 182; 273 179 180; 274 181 183; 275 182 184; 276 181 182; 277 183 185; 278 184 186; 279 183 184; 280 185 187; 281 186 188; 282 185 186; 283 187 189; 284 188 190; 285 187 188; 286 189 191; 287 190 192; 288 189 190; 289 191 2; 290 192 4; 291 191 192;

DEFINE MATERIAL START

ISOTROPIC STEEL

E 2.05e+008

POISSON 0.3

DENSITY 76.8195

ALPHA 1.2e-005

DAMP 0.03

ISOTROPIC CONCRETE

E 2.17185e+007

POISSON 0.17

DENSITY 23.5616

ALPHA 1e-005

DAMP 0.05

END DEFINE MATERIAL

MEMBER PROPERTY INDIAN

9 10 PRIS YD 0.3 ZD 0.3

MEMBER PROPERTY INDIAN

177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 225 228 231 -

234 237 240 243 246 249 252 255 258 261 264 267 270 273 276 279 282 285 288 -

291 PRIS YD 0.03 ZD 0.03

168 170 TO 176 178 179 181 182 184 185 187 188 190 191 193 194 196 197 199 -

200 202 203 205 206 208 209 211 212 214 215 217 218 220 221 223 224 226 227 -

229 230 232 233 235 236 238 239 241 242 244 245 247 248 250 251 253 254 256 -

257 259 260 262 263 265 266 268 269 271 272 274 275 277 278 280 281 283 284 -

286 287 289 290 TABLE ST ISA90X90X8

5 6 TABLE ST ISJC150

CONSTANTS

BETA 225 MEMB 170

BETA 135 MEMB 168

BETA 270 MEMB 5 6

BETA 45 MEMB 172 173 175 178 181 184 187 190 193 196 199 202 205 208 211 214 -

217 220 223 226 229 232 235 238 241 244 247 250 253 256 259 262 265 268 271 -

274 277 280 283 286 289

BETA 315 MEMB 171 174 176 177 179 180 182 183 185 186 188 189 191 192 194 -

195 197 198 200 201 203 204 206 207 209 210 212 213 215 216 218 219 221 222 -

224 225 227 228 230 231 233 234 236 237 239 240 242 243 245 246 248 249 251 -

252 254 255 257 258 260 261 263 264 266 267 269 270 272 273 275 276 278 279 -

281 282 284 285 287 288 290 291

MATERIAL STEEL MEMB 5 6 168 170 TO 291

MATERIAL CONCRETE MEMB 9 10

SUPPORTS

9 10 113 114 FIXED

LOAD 1 LOADTYPE None TITLE LOAD CASE 1

SELFWEIGHT Y -1 LIST 5 6 9 10 168 170 TO 291

FLOOR LOAD

YRANGE 0 0.3 FLOAD -6 XRANGE 0 1.5 ZRANGE 0 2 GY

PERFORM ANALYSIS

PARAMETER 1

CODE IS800 LSD

CHECK CODE MEMB 5 6 168 170 TO 291

PARAMETER 2

CODE IS800 LSD

GROUP MEMB 5 6

PARAMETER 3

CODE IS800 LSD

GROUP MEMB 168 170

STEEL TAKE OFF LIST 5 6 168 170 TO 291

PERFORM ANALYSIS

FINISH

4. GUARD RAIL

STAAD SPACE START JOB INFORMATION ENGINEER DATE 13-May-15 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 0.3 0; 3 0 1.3 0; 4 0.1 0.3 0; 5 0.1 1.3 0; 6 0.2 0.3 0; 7 0.2 1.3 0; 8 0.3 0.3 0; 9 0.3 1.3 0; 10 0.4 0.3 0; 11 0.4 1.3 0; 12 0.5 0.3 0; 13 0.5 1.3 0; 14 0.6 0.3 0; 15 0.6 1.3 0; 16 0.7 0.3 0; 17 0.7 1.3 0; 18 0.8 0.3 0; 19 0.8 1.3 0; 20 0.9 0.3 0; 21 0.9 1.3 0; 22 1 0.3 0; 23 1 1.3 0; 24 1.1 0.3 0; 25 1.1 1.3 0; 26 1.2 0.3 0; 27 1.2 1.3 0; 28 1.3 0.3 0; 29 1.3 1.3 0; 30 1.4 0.3 0; 31 1.4 1.3 0; 32 1.5 0.3 0; 33 1.5 1.3 0; 34 1.6 0.3 0; 35 1.6 1.3 0; 36 1.7 0.3 0; 37 1.7 1.3 0; 38 1.8 0.3 0; 39 1.8 1.3 0; 40 1.9 0.3 0; 41 1.9 1.3 0; 42 2 0 0; 43 2 0.3 0; 44 2 1.3 0;

MEMBER INCIDENCES

1 1 2; 2 2 3; 3 2 4; 4 3 5; 5 4 5; 6 4 6; 7 5 7; 8 6 7; 9 6 8; 10 7 9; 11 8 9; 12 8 10; 13 9 11; 14 10 11; 15 10 12; 16 11 13; 17 12 13; 18 12 14; 19 13 15; 20 14 15; 21 14 16; 22 15 17; 23 16 17; 24 16 18; 25 17 19; 26 18 19; 27 18 20; 28 19 21; 29 20 21; 30 20 22; 31 21 23; 32 22 23; 33 22 24; 34 23 25; 35 24 25; 36 24 26; 37 25 27; 38 26 27; 39 26 28; 40 27 29; 41 28 29; 42 28 30; 43 29 31; 44 30 31; 45 30 32; 46 31 33; 47 32 33; 48 32 34; 49 33 35; 50 34 35; 51 34 36; 52 35 37; 53 36 37; 54 36 38; 55 37 39; 56 38 39; 57 38 40; 58 39 41; 59 40 41; 60 42 43; 61 40 43; 62 41 44; 63 43 44;

DEFINE MATERIAL START

ISOTROPIC STEEL

E 2.05e+008

POISSON 0.3

DENSITY 76.8195

ALPHA 1.2e-005

DAMP 0.03

END DEFINE MATERIAL

MEMBER PROPERTY INDIAN

1 TO 4 6 7 9 10 12 13 15 16 18 19 21 22 24 25 27 28 30 31 33 34 36 37 39 40 -

42 43 45 46 48 49 51 52 54 55 57 58 60 TO 63 TABLE ST ISA50X50X5

MEMBER PROPERTY INDIAN

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 PRIS YD 0.025 CONSTANTS

BETA 45 MEMB 1 2 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 62 BETA 135 MEMB 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 61 63

MATERIAL STEEL ALL

SUPPORTS

1 42 FIXED

LOAD 1 LOADTYPE None TITLE LOAD CASE 1

SELFWEIGHT Y -1 LIST 1 TO 63 PERFORM ANALYSIS PARAMETER 1 CODE IS800 LSD CHECK CODE ALL PARAMETER 2 CODE IS800 LSD STEEL TAKE OFF LIST 1 TO 63 PERFORM ANALYSIS FINISH