FEASIBILITY OF SIDEWALK ALONG THE AMBALA-SHIMLA

 NATIONAL HIGHWAY NO.-5 AT SHOGHI, SHIMLA, HIMACHAL PRADESH: DESIGN \& ANALYSIS
A PROJECT

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN
CIVIL ENGINEERING
Under the supervision of
Mr. Ashish Kumar \& Mr. Mani Mohan
By
Akshay Sharma (111649)
Pankaj Sharma (111673)
Jigme Wangdi (111692)
to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

May, 2015

CERTIFICATE

This certify that the work which is being presented in the project title "FEASIBILITY OF SIDEWALK ALONG THE AMBALA-SHIMLA NATIONAL HIGHWAY NO. -5 AT SHOGHI, SHIMLA, HIMACHAL PRADESH: DESIGN AND ANALYSIS" in partial fulfillment of the requirements for the award of the degree of Bachelor of technology and submitted in Civil Engineering Department, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Mr.Akshay Sharma(111649), Mr.Pankaj Sharma(111673) and Mr.Jigme Wangdi (111692) during a period from August 2014 to May2015 under the supervision of Mr. Ashish Kumar and Mr. Mani Mohan, Assistant Professors, Civil Engineering Department, Jaypee University of information Technology, Waknaghat.

The above statement made is correct to the best of my knowledge.

Date:- \qquad

Prof. Dr. Ashok Kumar Gupta
Professor \& Head of Department
Civil Engineering Department
JUIT Waknaghat

Mr. Mani Mohan
Assistant Professor
Civil Engineering Department
JUIT Waknaghat

Abstract

ACKNOWLEDGEMENT

This report would not have been possible without the essential and gracious support of Mr. Ashish Kumar. His willingness to motivate us contributed tremendously to our report. We also would like to thank him for giving us his valuable time, showing us the path to achieve our objectives and goals and for being there whenever we needed his expert guidance.

Also, we are highly grateful for the support and guidance of Mr. Mani Mohan who guided us in the absence of Mr. Ashish Kumar. He not only guided us but also provide us with unique and efficient solutions whenever we were in problem.

Besides, we would like to thank our Head of Department Prof. Dr. Ashok Kumar Gupta for providing us good environment and facilities to complete this project. Also we would like to take this opportunity to thank Jaypee University of Information Technology for offering this project.

Finally, we would like to thank our faculty members, lab assistants,family and friends for their understandings and supports towards us for completing this report.

Date: -

Abstract

From several years Shoghi is in great need of a parking facility and facility for pedestrians to walk upon. Our project 'Design of sidewalk at Shoghi' is a project that will not only addresses to these problems but also challenges us to apply our knowledge gained by us in the previous year's along with gaining of on-site work experience.

In the first chapter of this report we have given a brief introduction about Shoghi, its problems and possible solutions we have tried to find out. Also here we have discussed about the code IRC-103-1988 and which we have followed thus making the guidelines from the code as our base for the project. The second chapter gives us the details of the surveys which were performed by us. We have conducted both photographic and total station survey. Photographic survey has given us the fair idea of the problems faced by pedestrians and from the total station survey we collected data points that helped us to make a layout of the 1.1 km long stretch.

In the third chapter the procedure for making the layout of the stretch by the use of software's likes AutoCAD and MS-Excel has been provided. The layouts laid the foundation of the designing part of the project where we plotted the sidewalk as well as came to know about the types of supports by allocation of concrete footings along the side walk. The fourth chapter of this report contains the designing and analysis of the sections chosen by us to serve as the sidewalk using STAAD.Pro and MACROS feature of MS-Excel. Initially, upto Cross-Section No. 73 we designed steel sidewalk and for the rest of the stretch we used concrete sidewalk.

In the fifth chapter we have provided the estimate and cost analysis for carrying out the whole project and in final sixth chapter we have recommended some amendments that can be carried out for more safety of pedestrians.
Finally the results and discussions are drawn and the project is brought to its conclusion.

KEYWORDS:-AutoCAD, Concrete Sidewalk, MACROS, STAAD.Pro, Steel Sidewalk, Total Station Survey.

CONTENTS

Page No.

Acknowledgement i
Abstract ii
Lists of Figures vi
List of Tables viii
CHAPTERS \& APPENDICES

1. Introduction 1-5
1.1 Shoghi 1
1.2 Problems at Shoghi 2
1.3 About the Project 3
1.3.1 Objectives 4
1.3.2 About the code (IRC-103-1988) 4
2. Surveying 6-15
2.1 General 6
2.2 Photographic survey 7
2.3 Total station survey 8
2.3.1 Total station 8
2.3.2 Advantages of total station 9
2.3.3 Disadvantages 9
2.3.4 Types of total station survey. 9
2.3.5 Components of total station 10
2.3.6 Leveling of total station 12
2.3.7 Accessories of total station 14
2.3.8 How survey was done at shoghi 15
3. Modeling 16-22
Page No.
3.1 General 16
3.2 Procedure 16
4. Designing and Analysis 23-40
4.1 General 23
4.2 Design of Steel Sidewalk 23
4.2.1 Type of Steel Sections 24
4.2.1.1 Model 1(Fixed-Fixed) Support section. 27
4.2.1.2 Model 2(P.C.2-P.C.2) Support section 28
4.2.1.3 Model 3(Cantilever-Cantilever) Support section 29
4.2.1.4 Guard Rail 30
4.3 Design of concrete Sidewalk 32
4.4 Calculation of Length of Weld 34
4.5 Calculation of Development Length 36
5. Estimation and Costing 41-45
5.1 General 41
5.2 Estimate of Quantities 41
5.3 Estimate of Cost 44
6. Proposed Amendments 46-50
6.1 Provisions for Zebra-Crossings at Shoghi 46
6.2 Provisions for Speed Breakers at Shoghi 47
6.3 Provisions for Sign Posts and Markings 50
7. Results and Discussions 51-52
7.1 Results 51
7.2 Discussions 52

Abstract

CONCLUSIONS53

REFERENCES 54
APPENDIX-A Photographic Survey 55
APPENDIX-B Total Station Survey Data and Calculated Distances 62
APPENDIX-C Detailed Observations Table from the Layout 72
APPENCIX-D STAAD-EDITOR CODES 74

LIST OF FIGURES

Page No.
1.1 People walking on carriage way. 2
1.2 Bypass road for heavy vehicles at Shoghi 3
1.3 Traffic Jams at bypass road 3
2.1 Components of Total Station 10
2.2 Basic Key Operations 11
2.3 Menu Pages of Total Station. 11
2.4 Tripod Setup 12
2.5 Mounting of Total Station 12
2.6 Focusing of Survey Point 12
2.7 Leveling-A 13
2.8 Leveling-B 13
2.9 Leveling-C. 13
2.10 Verifying of Leveling 14
2.11 Accessories of Total Station 14
2.12 Various distances by total station survey 15
3.1 Snapshot 1 from Auto-CAD 17
3.2 Snapshot2 from Auto-CAD 17
3.3 Snapshot3 from Auto-CAD 18
3.4 Line diagram of Shoghi road obtained from total station survey data 20
3.5 Line diagram of Shoghi road showing cross-sections of survey data 21
3.6 Line diagram of Shoghi road showing steel section offsets 22
4.1 Loading Conditions 24
4.2 Model-1 Showing Dimensions 27
4.3 Model-1 Showing Member Properties 27
4.4 Model-2 Showing Dimensions 28
4.5 Model-2 Showing Member Properties 28
4.6 Model-3 Showing Dimensions 29
4.7 Model-3 Showing Member Properties 29
4.8 Guard Rail-I 30
4.9 Guard Rail-II 31
4.10 Guard Rail-Joint Sections 31
4.11 Transverse Section of the Concrete Sidewalk 33
6.1 Zebra-Crossings near the Housing Board Colony at Gate No-2 46
6.2 Zebra-Crossings at the main Market. 47
6.3 Speed Breaker near the Curve where Sight Distance is not visible 47
6.4 Speed Breaker near at 50 m before the Zebra-Crossings near the Housing Board Colony at Gate No-2 48
6.5 Speed Breaker near at 50m ahter the Zebra-Crossings (cross-section 56) 48
6.6 Speed Breaker near at 100 m away from Bustand 49
6.7 Longitudinal Cross-section of Speed Breaker. 49
6.8 Signpost 50

LIST OF TABLES

Page No.
1.1 Capacity of side walks 4
1.2 Types of total station survey 9
4.1 Loading condition summary 25
4.2 Specification table 26
4.3 Length of Weld for Model-1 36
4.4 Development Length of Model-1 40
5.1 Quantity Estimate for Steel Section Sidewalk 41
5.2 Quantity Estimate for Concrete Section Sidewalk 44
5.3 Abstract of Cost 44

CHAPTER-1

INTRODUCTION

1. 1 SHOGHI

Shoghi is a small suburb of Shimla, Himachal Pradesh, India. It is about 13 kilometers before Shimla on the Ambala Shimla national highway (NH-22). The road to the Taradevi temple (hilltop) goes from here which is about 5 km . Shoghi is also famous for bus halts for food as there are many dhabas (local name for food outlets) here. HIMUDA (Himachal Pradesh Urban Development Authority) has also constructed many flats here.

Nestled in the quaint, lush, green hills of Himachal Pradesh just 13 kilometers short of Shimla (The queen of hills), captivating building blocks of pinks and yellows with sloping tin roofs add a touch of natural grandeur to the picturesque surroundings. As you veer off the national highway towards the blocks, you realise you are entering the Housing Board Colony at Shoghi.

The colony was set up in the cozy hamlet of Shoghi in early 2001 by HIMUDA for meeting the housing needs of so many people. Not only accessible, the colony is far from the madding crowd situated on a knoll overlooking hills rising one after another to meet the insurmountable skies from a deep vale just across the road. You can go to Shoghi, and back to nature, without running into traffic jams, a characteristic of Shimla.

But over the years, the colony has lost most of its charm. The metalled road gives way to streets of cobbled stones, as your huffing and panting car wheezes its way up the hillock towards the rising blocks of flats.

Look down the slopes, along the colony streets, and you find the greenery suffocating under the thick layers of rubbish. Carelessly tossed wrappers of potato chips, aluminum foils and empty soda bottles not only narrate the tales of not-so-quiet evenings enjoyed with drinks, but also of sheer disrespect for the nature and inability of the authorities to
prevent the littering. The housing board society is now making attempts to clean up the mess, but the dirty picture's end is nowhere in sight.

It doesn't take you much time to realise that the colony has been left to fend for itself otherwise also. The concrete road signs, spelling out the location of the blocks, too seem to have crooked under their own weight. Security too is an issue. The colony precincts have not been demarcated; and in the absence of fencing, it's free for all. Water meters are stolen, and the open spaces in the campus have metamorphosised themselves into free public parking lots for the "outsiders".

Shoghi offers a beautiful option for a stay near Shimla with lots of nature activities. ${ }^{[8]}$

1.2 PROBLEMS AT SHOGHI

The main problem at Shoghi is from housing board colony gate-2 to Shimla bypass for heavy vehicles which is of 1.1 km stretch, within this stretch there is H.P.C.L (Hindustan Petroleum Corporation Limited) Shimla depot, police barrier, primary health center, a Government School, entrance gate towards Hosing Board colony, market place which contains taxi stand, Bus stand, DAV Public School and various kinds of shops and dhabas. For all these places to visit walking is a prime mode transport for the locals. In this stretch there are ample of space for the people to walk but there are always plenty of vehicles parked on the road and other available space making it

Fig.1.1 People walking on carriage way difficult and forcing people to walk on the carriage way.

Usually on this road, vehicles travel at an average speed of $50 \mathrm{~km} / \mathrm{h}$ and people walking along the road risks their life increasing the probability of accidents. Shimla being the hot-spot for tourists and trekkers the vehicle density on NH-22 is increasing day by day leading to the congestion on NH-22 and the authorities at Shimla tried to relieve this congestion by making a bypass at shoghi via Mehli for the heavy vehicles, at that time Shoghi was not that populated and vehicle density was also not that high but now both have drastically increased.

As there is no proper facility to walk and cross the road, it makes unsafe for the people.

Fig.1.2 Bypass road for heavy vehicles

Fig.1.3 Traffic jams at Bypass road at Shoghi

1.3 ABOUT THE PROJECT

In this project we have designed the side walk. Since people walking towards their daily work and destination faces lots of problem and the safety of the people is the biggest concern we decided to take up our final year project on side walk design. The foot path we designed is a raised foot path of 30 cm from the carriage way level. Also we have
provided proper openings where ever necessary. For the people to cross from one road to another road we decided to provide zebra crossings and speed breaker to lower the speed of the moving vehicles. In this project we followed the IS 103-1988 for the guidelines.

1.3.1 OBJECTIVES

- To provide a safe walking area to the pedestrians of Shoghi.
- To design a feasible and economical sidewalk that can bear maximum load and can serve for at least 30years.
- To apply our knowledge of civil engineering gained by us in our B.Tech course.

1.3.2 ABOUT THE CODE (IRC-103-1988)

Walking is an important mode of transport. Significant trips up to 2 km are on foot and every journey start / end with a walk. Requirements are partly covered in IRC: 70-1977 "Guideline on regulation and control of mixed traffic in urban areas" and IRC: 86-1983 "Geometric design standards for urban roads in plains".

Width of side walk (meters)	Capacity (Number of persons per hour)	
1.50	All in one direction	In both the directions
2.00	1200	800
2.50	2400	1600
3.00	3600	2400
4.00	4800	3200
	6000	4000

Table 1.1 Capacity of side walks

- General Principles:

1. Pedestrian facilities should be planned in an integrated manner to ensure continuous flow.
2. Reduce conflict between pedestrian and vehicles.
3. Convenience is paramount. ${ }^{[3]}$

- Footpath/Sidewalk:

1. Should be on both sides.
2. Minimum Width of 1.5 meters.
3. There are criteria based on pedestrians per hour (as shown in Table1.1)
4. In shopping areas, width should be increased by 1 m (to be treated as dead width).
5. When adjacent to buildings, fences - dead width has to be 0.5 meters. ${ }^{[3]}$

- Guard Rails:

1. Two aspects which need special consideration are:-
a. The height of hand-rail.
b. The obstruction to visibility.
2. The design should be neat, simple in appearance and as far as possible, vandal proof. ${ }^{[3]}$

- Zebra Crossing:

1. Width: -2 to 4 meters.
2. Nit within 150 meters from each other.
3. Median strip should be of adequate width (this is only reference to pedestrian refugee). ${ }^{[3]}$

- What is missing?

1. No mention of right of way for pedestrians at non-signal controlled zebra crossings (though Delhi Police website says so)
2. No mention on height of footpaths.
3. No mention on dipped kerbs and gradients
4. No mention of slip free tilting (needed usually on dipped kerbs).
5. No mention on pedestrian refugee and types
6. Signal phases are mentioned but no guideline on timings.
7. No mention with regards width around street furniture (bus stops, trees, benches, bins, electricity meter boxes, post boxes, signage poles, street lightning).

CHAPTER-2

SURVEYING

2.1 GENERAL

Surveying is the art of determining the relative position of points on, above or beneath the surface of the earth by means of direct or indirect measurement of distance direction and elevation. It includes the art of establishing points by predetermined angular and linear measurements.

The knowledge of surveying is advantageous in many phases of engineering. The earlier surveys were made in connection with land surveying. Practically every engineering project such as road, water supply and irrigation schemes, railroads and transmission lines, mines, bridges and buildings etc. require surveys. Before plans and estimates are prepared, boundaries should be determined and the topography of the site should be ascertained. After the plans are made, the structure must be staked out in the ground. As the work progresses, lines and grades must be given. ${ }^{[3][4]}$

In surveying all measurements of lengths are horizontal, or else are subsequently reduced horizontal distances. The object of a survey is to prepare plan or map so that it may represents the area on a horizontal plane. A plan or map is horizontal projection of an area and shows only horizontal distances of points. ${ }^{[1][7]}$

In this project, we have performed two types of survey:-

1. Photographic Survey
2. Total Station Survey

2.2 PHOTOGRAPHIC SURVEY

It is the basic kind of survey in which the surveyor visits the area to be surveyed, takes the photograph of the area under consideration to get idea of the topography, surroundings which helps the surveyor to plan his survey camp and helps him to choose
the method of surveying. Also, if necessary the surveyor can also talk to the local residents of the area.

In our photographic survey we tried to identify the major problems at Shoghi (as shown in figures). While doing the survey we talked to several residents of Shoghi who told us that there is no proper space for pedestrians to walk along the road neither there are any zebra crossing for the people. Also, there is no parking space for the parking of vehicles and thus the drivers park their vehicles along the side of the road causing the pedestrians to walk on the carriage way which may lead to any kind of accident at any point of time.

The photos of the photographic survey are shown in APPENDIX-A.
From the pictures we deduce that:-

1. There is encroachment by the locals.
2. Parking of vehicles is done along the road.
3. Loading and unloading of the goods and people is done by encroaching the areas which are meant for people to walk upon alongside the road.

According to a survey where no sidewalks are provided, or where sidewalks are in poor repair or have missing sections, the following conditions often result in :-

1. People being forced to walk in the carriage way, resulting in increased pedestrian/motor vehicle collisions. About 8 percent of all pedestrian crashes involve people walking along the road.
2. Without a safe and well-maintained place to walk, people are discouraged and, in extreme cases, prevented from walking. For example, children have a difficult time walking to school and seniors cannot access nearby shops.
3. The absence of sidewalks can eliminate access to all destinations for some people with disabilities. Even short gaps in sidewalk facilities make nearby destinations completely inaccessible to these individuals.
4. Not providing a safe place to walk does not accommodate the needs of people who rely on walking as a mode of travel.

Hence, there is a great need of sidewalk at Shoghi and until it is not provided over there a saying will always be there that " आगे की बजाए पीछे देख के चलना चाहिए।"

2.3 TOTAL STATION SURVEY

2.3.1 TOTAL STATION

A form of an electronic theodolite combined with an electronic distance measuring device (EDM), the primary function is to measure slope distance, vertical angle, and horizontal angle from a setup point to a foresight point most total stations use a modulated near-infrared light emitting diode which sends a beam from the instrument to a prism.

The prism reflects this beam back to the instrument. The portion of the wavelength that leaves the instrument and returns is assessed and calculated. Distance measurements can be related to this measurement.

The accuracy of a total station is dependent on instrument type. Angle Accuracy (Horizontal or Vertical) can range from 2" to $5 "$. Distance Accuracy can range from: $+/-(0.8+1 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$ to $+/-(3+3 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$ Where, $\mathrm{D}=$ distance measured. Accuracy is highly dependent on leveling the instrument. Thus two leveling bubbles are provided on the instrument and are referred to the circular level and the plate level. Circular level is located on the tribrack while plate level is on horizontal axis of instrument just below scope of the total station. Sensitivity of Circular Level $=10^{\prime} / 2 \mathrm{~mm}$. Sensitivity of Plate Level $=30^{\prime \prime} / 2 \mathrm{~mm}$.

Although taping and theodolites are used regularly on site - total stations are also used extensively in surveying, civil engineering and construction because they can measure both distances and angles. The appearance of the total station is similar to that of an electronic theodolite, but the difference is that it is combined with a distance measurement component which is fitted into the telescope. Because the instrument combines both angle and distance measurement in the same unit, it is known as an
integrated total station which can measure horizontal and vertical angles as well as slope distances.

2.3.2 ADVANTAGES OF TOTAL STATION

1. Relatively quick collection of information.
2. Multiple surveys can be performed at one set-up location.
3. Easy to perform distance and horizontal measurements with simultaneous calculation of project coordinates (Northing, Easting, and Elevations).
4. Layout of construction site quickly and efficiently.
5. Digital design data from CAD programs can be uploaded to data collector.
6. Daily Survey Information can also be quickly downloaded into CAD which eliminates data manipulation time required using conventional survey techniques.

2.3.3 DISADVANTAGES OF TOTAL STATION

1. Vertical elevation accuracy is not as accurate as using conventional survey level and rod technique.
2. Horizontal coordinates are calculated on a rectangular grid system. However, the real world should be based on a spheroid and rectangular coordinates must be transformed to geographic coordinates if projects are large scale.
3. As with any computer-based application "Garbage in equals Garbage out". However, in the case of inaccurate construction surveys "Garbage in equals lawsuits and contractors claims for extras."

2.3.4 TYPES OF TOTAL STATION SURVEYING

Slope Staking	Areas
Topographic Surveys	Intersections
Construction Project Layout	Point Projections
Leveling	Road (Highway) surveys
Resections	Taping from baseline
Traverse Surveys and adjustments	Building Face surveys

TABLE2.1 Types of total station surveying

2.3.5 COMPONENTS OF TOTAL STATION

Fig.2.1 Components of Total Station
[䦽"5.1 Basic Key Operation"

Fig.2.2 Basic Key Operations
Menu Pages:-

Fig.2.3 Мепи Pages of Total Station

2.3.6 LEVELING OF TOTAL STATION

Leveling the Total station must be accomplished to sufficient accuracy otherwise the instrument will not report results. Before starting leveling the instrument it should be made sure that all the targets can be seen from the station point. After ensuring the leveling process should be started by following steps:-

1. Tripod Setup

Tripod legs should be equally spaced. The tripod head should be approximately leveled .also care should be taken that the head should be directly over survey point.

Fig.2.4 Tripod Setup
2. Mount Total station on tripod

Place instrument on Tripod .Secure with centering screw bracing the instrument with the other hand. Don't forget to insert the battery in Total station before leveling.

Fig.2.5 Mounting of Total Station

3. Focus on Survey Point

For this, use the optical plummet on the survey point.

Fig.2.6 Focusing of Survey Point
4. Leveling

Adjust the leveling foot screws to center the survey point in the optical plummet reticle. Center the bubble in the circular level by adjusting the tripod legs.

Fig.2.7 Leveling-A

Loosen the horizontal clamp and turn instrument until plate level is level to two of the leveling foot screws. Center the bubble using the leveling screwsthe bubble moves towards the screw that is turned clockwise.

Fig.2.8 Leveling- B

Rotate the instrument 90 degrees and level using the third leveling screw.

Fig.2.9 Leveling-C

Observe the survey point in the optical plummet and center the point by loosening the centering screw and sliding the entire instrument. After re-tightening the centering screw check to make sure that the plate level bubble is level in several directions.
5. Electronically Verify Leveling

Turn on the instrument by pressing and holding the "ON" button (you should hear an audible beep).The opening screen will be the "MEAS" screen. Select the [TILT] function. Adjust the foot level screws to exactly center the electronic "bubble". Rotate the instrument 90° and repeat.

Fig.2.10 Verifying of Leveling
2.3.7 ACCESSORIES OF TOTAL STATION

2.3.8 HOW SURVEY WAS DONE AT SHOGHI?

The main aim of doing survey at Shoghi was to prepare a layout of the 1.1 Km long stretch so that we could plan our design of sidewalk accordingly as well as to identify the areas where we have to give the zebra crossings and where we have to leave opening spaces.Through, total station we measured three Distances as shown in the figure namely $\mathrm{D}_{12}, \mathrm{D}_{23}$ and D_{34}.

Fig.2.12 The various distances by total station survey
Where,
D_{12} - Distance between the left side's outer most point and the left side of the road (black top).
D_{23} - Width of the carriage way at several cross sections.
D_{23} - Distance between the right side's outer most point and the right side of the road (black top). ('NOTE- these distances are measured while moving from housing board colony GateNo.2, Shoghi TO 'The Starting of Bye Pass Road to Mehli from Shoghi.

The Data Sheets of the survey are shown in APPENDIX-B.

CHAPTER-3

MODELLING

3.1 GENERAL

In modeling, we have used the AUTO CAD software to prepare a layout of the 1.1 Km long highway stretch by using the data points which were obtained from the Total Station Survey as discussed in the previous Chapter-2.

Though Auto Cad provides a large number of functions and tools to the users but here to prepare the layout we have used the basic commands such as

1. Drawing Commands: - To draw objects like Line, Poly line, Circle, Hatch etc.
2. Modifying Commands: - To edit the orientation of the objects commands like Copy, Paste, Rotate, Move, Mirror, Trim, Extend and Offset have been used.
3. Other Commands:-
a. LAYERS - These allow the user to assign different line types and colours to named layers. For example, a layer may for red continuous lines, another may be for green hidden lines, and yet another for blue centre lines.
b. UNITS - This command allows the user to set the insertion scale for the drawing and also helps to set the 'Length' and 'Angle' type and precision.
c. DIMALIGNED
d. DIMLINEAR
e. DCLINEAR
f. DCALIGNED
g. MTEXT

3.2 PROCEDURE

Here, in Auto Cad we have to prepare the layout using the total survey data points. So here we imported these data points to get the layout by following steps:-

Step1:- Before importing the points and draw the layout we set the units and layers of the lines to be drawn. For this to be done we used 'UNITS' and the 'LAYER' commands. On entering the units command a pop window comes on the screen where we set the insertion units to 'Meters' and angle type to 'Surveyor's Units'.

Fig.3.1 Snapshot-1 from Auto-CAD

After then type the 'LAYER' command and then add new layers of different colors.
For Example:-

Fig.3.3 Snapshot-3 from Auto-CAD

Step2:- Since the drawing conditions are set and the adequate layer is 'on' in Auto CAD. It's time to import. Type the command 'LINE' and then move to the EXCEL SHEET where you have prepared the data points in the required (X, Y) format.

In the EXCEL Sheet select the points that are falling in one line, copy them and then paste them in the command line of Auto CAD. The Auto CAD will join all the points by making a line between two consecutive points.

Here, we achieved the whole layout by joining drawings made in the same fashion upto each change of station of Total Station. After then hatching was done with solid colour to show the carriage way.

Step3:- After the layout has been made select the different layer to show the cross section lines and then name them using the 'MTEXT' command. Here, to represent the Cross sections we have used the letters "C.S." followed by the corresponding numeral of the cross section. For example, the first cross section which was at the starting point of the survey is represented as C.S. 1 and the last cross section which was at 1090 m is represented as C.S. 78 .

Step4:- As the cross sections have been made and it has been decided that the sidewalk 1.5 m wide will be provided at the left hand side of the carriage way (while moving from H.B. Colony Gate No. 2 to Shoghi Bye Pass Road) and the length of each section of side walk will be 2.0 m which is supported by 3 I-beam girders equidistant from each other. Then, to show the alignment of sidewalk along the stretch we have taken 'OFFSET' of the left hand side of the carriage way line first at $0.20 \mathrm{~m} ; 0.575 \mathrm{~m} ; 0.950 \mathrm{~m} ; 1.325 \mathrm{~m}$; 1.700 m . (Measuring from the left side carriage way line) using a different layer and 'POLYLINE'.

Step5:- After the sidewalk alignment is made, the cross-sections of sidewalk which are at 2.0m apart from each other are made using the 'CIRCLE', 'LINE', 'TRIM' and 'EXTEND' commands of Auto CAD. For this also a separate layer should be used.

Step6:- In this step concrete column placement was find out in two steps:-
a) Drawing of concrete columns of size 0.3 mx 0.3 m at each intersection of sidewalk lines and sidewalk cross section lines by again using the 'OFFSET', 'TRIM', 'EXTEND' commands.
b) Removal of those concrete columns which fall beyond the outermost left side of the carriage way (while moving from H.B. Colony Gate No. 2 to Shoghi Bye Pass Road)using the erase command.

Note:- DIMALIGNED, DIMLINEAR, DCLINEAR, DCALIGNED commands were used to view the aligned and linear distances while drawing the layout.

So, by these six simple steps the modeling from total station data was completed and designing is started all along. (All these steps are shown below in layout diagrams).

Fig.3.4 LINE DIAGRAM OF SHOGHI ROAD OBTAINED FROM TOTALSTATION SURVEY DATA

S.No.	Line Description	SYMBOL
1.	Outter most points at the Left side	LINE-1
2.	Left side of the road (black top)	LINE-2
3.	Right side of the road (black top)	LINE-3
4.	Outter most points at the Right side	LINE-4
Note:-		
Moving from 'Housing board colony Gate No.2,Shoghi' 'The Starting of Bye Pass Road to Mehli from Shoghi').		

Fig.3.5 LINE DIAGRAM OF SHOGHI ROAD SHOWING CROSS-SECTIONS OF SURVEY DATA

S.No.	Line Description	SYMBOL
1.	Outter most points at the Left side	LINE-1
2.	Left side of the road (black top)	LINE-2
3.	Right side of the road (black top)	LINE-3
4.	Outter most points at the Right side	LINE-4
5.	Cross-Section Line	LINE-5
Note:-(Moving from 'Housing board colony Gate No.2,Shoghi' TO 'The Starting of Bye Pass Road to Mehli from Shoghi').		

CHAPTER-4

DESIGNING \& ANALYSIS

4.1 GENERAL

In the designing part we decided that we will be doing the designing of the sidewalk in two parts:-

PART I- Providing steel sections from Cross Section No. 1 (Housing Board Colony Gate No.-1) to the Cross section No. 73 (At the junction of village road with the National Highway before the start of Shoghi market).

PART II- Providing concrete sidewalk from Cross Section No. 73 to Cross Section No. 78

4.2 DESIGN OF STEEL SIDEWALK:-

Here we have decided to take a section of $2.0 \mathrm{~m} \times 1.5 \mathrm{~m}$ for our sidewalk which will be raised from the earth/road surface at a height of 30 cm fitted with the supports made of concrete columns of initial proposed height 0.5 m and dimensions $0.3 \mathrm{~m} \times 0.3 \mathrm{~m}$. Our main goal is to make the structure light as far as possible without compromising the load carrying capacity of the structure so that the pedestrians can walk upon the sidewalk without any fear and worry of safety.

The section of $2.0 \mathrm{~m} \times 1.5 \mathrm{~m}$ is a simple frame structure (which is differentiated on the basis of supports) consisting of ISA90x90x8 and steel strips of $2 \times 5 \mathrm{~cm}$ as horizontal members, ISJC150 of length 0.3 m are used as columns for the transferring of loads to the concrete supports buried in the soil. Here, we are taking a load of $6 \mathrm{KN} / \mathrm{m}^{2}$ acting on the section along with the self-weight of the members present in the section and for the analysis of the section we are using 'STAAD.Pro V8i' version 2007.

Fig.4.1Loading Conditions

4.2.1 TYPES OF STEEL SECTIONS

Based on the support conditions we have classified the section into 16 categories as follows:-

TYPE No.	STARTING SUPPORT OF CROSS-SECTION	ENDING SUPPORT OF CROSS-SECTION	NUMBER OF CROSS-SECTION ACCORDING TO APPENDIX-C
1.	FIXED	FIXED	124
2.	FIXED	P.C.1	11
3.	FIXED	P.C.2	2
4.	FIXED	CANTILEVER	0
5.	P.C.1	FIXED	10
6.	P.C.1	P.C.1	26
7.	P.C. 1	P.C.2	10
8.	P.C.	CANTILEVER	1

TYPE No.	STARTING SUPPORT OF CROSS-SECTION	ENDING SUPPORT OF CROSS-SECTION	NUMBER OF CROSS-SECTION ACCORDING TO APPENDIX-C
9.	P.C.2	FIXED	1
10.	P.C.2	P.C.1	12
11.	P.C.2	P.C.2	53
12.	P.C.2	CANTILEVER	10
13.	CANTILEVER	FIXED	0
14.	CANTILEVER	P.C.1	0
15.	CANTILEVER	P.C.2	10
16.	CANTILEVER	CANTILEVER	167

Table 4.1 Loading Condition Summary
Where,

1. P.C. 1 i.e. Propped Cantilever 1:-

Fixed Support is at 1.125 m from the starting end moving transversely on sidewalk along 1.5 m .
2. P.C. 2 i.e. Propped Cantilever 2:-

Fixed Support is at 0.75 m from the starting end moving transversely on sidewalk along 1.5 m .

Though the designing of these types of sections was easy but it would be very difficult for the manufacturer to create and fix these 16types of sections. So we decided to take only three of the sections and replace the others with them. The sections chosen as models were:-

1. TYPE-1 (FIXED-FIXED) Support Section (124No.)
2. TYPE-11 (P.C.2-P.C.2) Support Section (146No.)
3. TYPE-16 (CANTILEVER-CANTILEVER) Support Section (167No.)

Also we have to provide openings, for example near the Good Luck Restaurant at cross section 26-28, near the road to Primary Health Center at cross section 38-39 and at the road to primary school at cross section 52-53. All these openings are accounted in the following estimate part of report. The Staad-Editor code are given in APPENDIX-D.

In all the models to maintain uniformity we have used the following specifications:-

S.No.	NAME OF ITEM	DIMENSIONS	LENGTH	MATERIAL	USED IN
01.	Concrete Column	0.3 mx 0.3 m	0.5 m	Concrete	All the sections accordingly
02.	Horizontal Strips	0.2 mx 0.5 m	1.5 m	Steel	All the Sections
03.	ISA 90x90x8 ${ }^{[6]}$	90 mmx 90 mmx 8 mm	1.5 m	Steel	All the Sections
			0.81 m		Model 2
			2.12 m		Model 3
04.	ISJC150 ${ }^{[6]}$	$\begin{aligned} & \mathrm{h}=150 \mathrm{~mm} \\ & \mathrm{~b}=55 \mathrm{~mm} \\ & \mathrm{t}_{\mathrm{t}}=6.9 \mathrm{~mm} \\ & \mathrm{t}_{\mathrm{w}}=3.6 \mathrm{~mm} \end{aligned}$	0.3 m	Steel	All the Sections
05.	ISA 50x50x5 ${ }^{[6]}$	50 mmx 50 mmx 5 mm	2.0m	Steel	Guard Rail
			1.3m		
06.	Steel Bars	20mm- ϕ	1.0 m	Steel	Guard Rail

Table 4.2 Specifications Table
4.2.1.1 MODEL-1 (FIXED-FIXED) Support Section (124 No.):-

Fig.4.2Model-1 Showing Dimensions

Fig.4.3 Model-1 showing member properties
4.2.1.2 MODEL-2 (P.C.2-P.C.2) Support Section (146No.):-

Fig.4.4 Model-2 Showing Dimensions

Fig.4.5 Model-2 showing member properties
4.2.1.3 MODEL-3 (CANTILEVER-CANTILEVER) Support Section (167No.):-

Fig.4.6 Model-3 Showing Dimensions

Fig.4.7 Model-3 showing member properties

4.2.1.4 GUARD RAIL:-

Pedestrian guard rails are an important design element

1. To prevent indiscriminate crossing and
2. To prevent spilling over of pedestrians on to the carriage way.

The design of guard rails should be neat; simple in appearance and as far as possible should be vandal proof. Two aspects which need special consideration are the height of hand rail and the obstruction to visibility. The visibility of the approaching vehicles by the pedestrians as well as the visibility of the pedestrians by the drivers of the approaching vehicles should be adequate. The guard rails should be sturdy but slender design.

Pedestrian guard rails could normally be considered under the following situations:-
(a) Hazardous locations on straight stretches
(b) At Junctions/Intersections
(c) Schools
(d) Bus Stops, Railway Stations, etc.
(e) Over pass, Subway, etc.
(f) Central reserves.

Provision of Guard-Rails:-

Fig.4.9 Guard Rail-II
Here we'll be providing a section of length $2.0 \mathrm{~m} \times 1.3 \mathrm{~m}$ as shown in Fig.4.8 and Fig.4.9. In the section all the joints are made by welding the members to each other. And the whole sections are joined to each other as shown in Fig4.10.

Fig.4.10 Guard Rail-Joint Section

Other Considerations:-

- There will be no gaps in between the guard rails.
- Also, guard rails will be providing on both the sides of the sidewalk.

4.3 DESIGN OF CONCRETE SIDEWALK ${ }^{[6]}$:-

The concrete sidewalk will be provided from the Cross-Section No. 73 to Cross-Section No. 78 i.e. for the whole market area. Following are the few considerations:-

- Width of the Sidewalk $=2.0 \mathrm{~m}$
- Height of the Sidewalk $=30 \mathrm{~cm}$
- Transverse Slope of the Side Walk $=1: 15$
- Grade of Concrete Used $=$ M20 (1:1.5:3)
- Water/Cement Ratio= 0.5
- Calculation of dry materials:-
- Ratio=1:1.5:3
- Sum $=1+1.5+3=5.5$
- Total dry mortar for $1 \mathrm{~m}^{3}$ of cement concrete $=1.20 \mathrm{~m}^{3}$
(Considering a wastage of 20\%)
- Therefore the materials required for $1 \mathrm{~m}^{3}$ of cement concrete are:-
- \quad Cement $=\frac{\mathbf{1 * 1 . 2 0 * 2 8 . 8}}{\mathbf{5 . 5}}=6.284$ bags
- \quad Sand $=\frac{2.65 * 1.20}{5.5}=0.578 \mathrm{~m}^{3}$
- Aggregates $=\frac{\mathbf{2 . 8} * \mathbf{1 . 2 0}}{5.5}=0.611 \mathrm{~m}^{3}$
- Volume of Water for $1 \mathrm{~m}^{3}$ of Concrete $=\frac{6.284 \times 0.5 \times 50}{1000}=0.1571 \mathrm{~m}^{3}$

Fig.4.11 Transverse Section of the concrete sidewalk

- Determination of Length of Sidewalk covered with $1 \mathrm{~m}^{3}$ of concrete:-
- Area of Cross-Section as shown in Fig.4.11 $=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{x}(0.3+0.4) \times 1.5=\mathbf{0 . 5 2 5} \mathbf{m}^{\mathbf{2}}$
- $0.525 \mathrm{~m}^{2} \mathrm{x}$ (Length of Sidewalk) $=1 \mathrm{~m}^{3}$
\Longrightarrow Length of Sidewalk $=\frac{1}{0.525}=1.905 \mathrm{~m}$
- Total volume of concrete required for sidewalk of width 1.5 m and length 150 m

$$
=\frac{150}{1.905} \mathrm{~m}^{3}=78.74 \mathrm{~m}^{3}
$$

- Also concrete required to make the supports columns (656 No .) of length 0.5 m and dimensions $0.3 \mathrm{mx} 0.3 \mathrm{~m}=656 \times 0.3 \times 0.3 \times 0.5=\mathbf{2 9 . 5 2} \mathbf{m}^{\mathbf{3}}$
- So net volume of concrete required $=29.52+78.74=\mathbf{1 0 8 . 2 6} \mathbf{~ m}^{\mathbf{3}}$

4.4 CALCULATION OF LENGTH OF WELD ${ }^{[5]}$

We calculated the length of Weld using the MACROS feature of MS-Excel in which we used as follows:-

Sub WELDED()
'Enter data
$\mathrm{fu}=\operatorname{Cells}(3,5)$
$\mathrm{fy}=\operatorname{Cells}(4,5)$
$\mathrm{Gmw}=\operatorname{Cells}(5,5)$
'thickness of plate t '
$\mathrm{t}=\operatorname{Cells}(6,5)$
'Angle of Weld A'
$\mathrm{A}=\operatorname{Cells}(7,5)$
'Force to be handled F'
$\mathrm{F}=\operatorname{Cells}(8,5)$

Smin $=0$
'Size of Weld,S'
If $0<t$ And $t<=10$ Then

$$
\operatorname{Smin}=3
$$

ElseIf $11<\mathrm{t}$ And $\mathrm{t}<=20$ Then

$$
\operatorname{Smin}=5
$$

ElseIf $21<\mathrm{t}$ And $\mathrm{t}<=32$ Then
Smin $=6$
ElseIf $33<\mathrm{t}$ And $\mathrm{t}<=50$ Then
Smin $=8$
GoTo Skip1
End If

Skip1:
$\operatorname{Cells}(10,5)=\operatorname{Smin}$
$\mathrm{TT}=0$
'Throat thickness TT'
If $60<=$ A And A <= 90 Then $\mathrm{TT}=0.7$ * Smin

ElseIf $91<=$ A And A <= 100 Then

$$
\mathrm{TT}=0.65 * \operatorname{Smin}
$$

ElseIf $101<=$ A And A <= 106 Then $\mathrm{TT}=0.6 * \operatorname{Smin}$

ElseIf $107<=$ A And A <= 113 Then $\mathrm{TT}=0.55 * \operatorname{Smin}$

ElseIf $114<=$ A And A <= 120 Then $\mathrm{TT}=0.5 * \operatorname{Smin}$

Else
GoTo Skip2
End If

Skip2:
$\operatorname{Cells}(11,5)=\mathrm{TT}$
'Length of Weld L'
$\mathrm{L}=\left(\mathrm{F} *\left((3)^{\wedge} 0.5\right) * \mathrm{Gmw}\right) /(\mathrm{fu} * \mathrm{TT})$
$\operatorname{Cells}(13,5)=\mathrm{L}$
'Total Length of Weld'
$\mathrm{TL}=\mathrm{L}+(2$ * Smin$)$
$\operatorname{Cells}(14,5)=\mathrm{TL}$

End SubExample data is shown in Table 4.3

7	Minimum Size of Weld	S	$=$	3
mm				
8	Throat Thickness	T	$=$	2.1
mm				

| 9 | Length of Weld | L | $=18.5$ | mm |
| :---: | :--- | :---: | :---: | ---: | :--- |
| 10 | Total Length of Weld | L+2S | $=24.5$ | mm |

Table 4.3 Length of Weld for Model-1

4.5 CALCULATION OF DEVELOPMENT LENGTH ${ }^{[4][5]}$

We calculated the length of Weld using the MACROS feature of MS-Excel in which we used as follows:-

Sub DevelopmentLength()
'Enter Data
'Area of Cross Section,A
$\mathrm{A}=\operatorname{Cells}(3,5)$
'perimeter of Cross Section,p
$\mathrm{P}=\operatorname{Cells}(4,5)$
$\mathrm{fvd}=\operatorname{Cells}(5,5)$

If Cells(6, 5) $=$ "YES" And Cells(7, 5) $=$ "M10" Then

$$
\mathrm{Tbd}=1.2
$$

Else

GoTo Skip0

End If

Skip0:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M20" Then

$$
\operatorname{Tbd}=1.2+(0.2 * 1.2)
$$

Else

GoTo Skip1

End If

Skip1:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M25" Then

$$
\operatorname{Tbd}=1.4+(0.2 * 1.4)
$$

Else

GoTo Skip2

End If

Skip2:
If Cells(6, 5) = "YES" And Cells(7, 5) = "M30" Then

$$
\operatorname{Tbd}=1.5+(0.2 * 1.5)
$$

Else

GoTo Skip3

End If

Skip3:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M35" Then

$$
\mathrm{Tbd}=1.7+(0.2 * 1.7)
$$

Else

GoTo Skip4

End If

Skip4:

If Cells(6, 5) = "YES" And Cells(7, 5) = "M40" Then

$$
\operatorname{Tbd}=1.9+(0.2 * 1.9)
$$

Else

GoTo Skip5

End If

Skip5:
If Cells $(6,5)=$ "NO" And Cells $(7,5)=$ "M20" Then $\mathrm{Tbd}=1.2$

Else

GoTo Skip6

End If

Skip6:

If Cells $(6,5)=$ "NO" And Cells $(7,5)=$ "M25" Then
$\mathrm{Tbd}=1.4$

Else

GoTo Skip7

End If

Skip7:

If Cells $(6,5)=$ "NO" And Cells(7, 5) $=$ "M30" Then $\mathrm{Tbd}=1.5$

Else

GoTo Skip8

End If

Skip8:

If Cells $(6,5)=$ "NO" And Cells(7, 5) $=$ "M35" Then
$\mathrm{Tbd}=1.7$

Else

GoTo Skip9

End If

Skip9:

If Cells $(6,5)=$ "NO" And Cells(7,5) $=$ "M40" Then
$\mathrm{Tbd}=1.9$

End If
$\operatorname{Cells}(8,5)=\operatorname{Tbd}$
'Development Length,Ld
$\mathrm{Ld}=(\mathrm{A} * \mathrm{fvd}) /(\mathrm{Tbd} * \mathrm{P})$
$\operatorname{Cells}(10,5)=\operatorname{Ld}$
'Force in the Member,F
$\mathrm{F}=\operatorname{Cells}(12,5)$
'Required Development Length,RLd
$\operatorname{RLd}=(\mathrm{A} * \mathrm{~F}) /(\mathrm{Tbd} * \mathrm{P})$
$\operatorname{Cells}(13,5)=\operatorname{RLd}$

End Sub

Example data is shown in Table 4.4

S.No.	ENTITY	SYMBOLS	VALUES	UNITS		
1	Area of Cross Section	A	$=$	1265	$\mathrm{~mm}^{2}$	
2	Perimeter of Cross Section	P	$=$	512.8	mm	
3	f_{vd}		$=$	250	$\mathrm{~N} / \mathrm{mm}^{2}$	
4	Whether it is a compression member?		$=$	YES		
5	Grade of concrete		$=$	M 20		
6	$\tau_{\text {bd }}{ }^{[4]}$		$=$	1.44	$\mathrm{~N} / \mathrm{mm}^{2}$	

7	Maximum Development Length	L_{d}	$=428.27$	mm

8	Stress in the member	F	$=45.404$	$\mathrm{~N} / \mathrm{mm}^{2}$
9	Required Development Length	L_{d} required	$=77.8$	mm

Table 4.4 Development Length for Model-1

CHAPTER-5

ESTIMATION \& COSTING

5.1 GENERAL

In this chapter we have done quantity estimation and based on that we have calculated the cost for the whole project using the 'Standard Schedule of Rates 2009 - HIMACHAL PRADESH PUBLIC WORKS DEPARTMENT (Building Civil Works)'.

5.2 ESTIMATE OF QUANTITIES

Detail of Measurements								
Name of Work- Proposed Sidewalk along the Ambala-Shimla National Highway-5 at Shoghi , Himachal Pradesh of Length 1.1 Km .								
S.No.	Description of Items	Nos.		$\begin{gathered} \mathbf{L} \\ (\mathbf{m}) \end{gathered}$	$\underset{(\mathbf{m})}{\text { B }}$	$\begin{gathered} \mathbf{H} / \mathbf{D} \\ (\mathbf{m}) \end{gathered}$	QTY. (m)	REMARKS
		SEC.	SIDE					

1	AMOUNT OF STEEL IN WELDED BUILT-UP SECTIONS FOR STEEL SIDE WALK

(a)	MODEL 1					
(i)	ST ISJC150	122	1.2	146.4	Rmt.	$122 * 1.2$
(ii)	ST ISA90*90*8	122	7	854	"	122 * 7
(iii)	$\begin{aligned} & \text { PRISMATIC STEEL } \\ & \text { (39strips per section) } \\ & (0.03 \times 0.03 \mathrm{~m}) \end{aligned}$	122	58.5	7137	"	$122 * 58.5$

S.No.	Description of Items	Nos.		$\begin{gathered} \mathbf{L} \\ (\mathbf{m}) \end{gathered}$	$\begin{gathered} \text { B } \\ (\mathbf{m}) \end{gathered}$	$\begin{gathered} \mathbf{H} / \mathbf{D} \\ (\mathbf{m}) \end{gathered}$	QTY. (m)	REMARKS
		SEC.	SIDE					

(c)	MODEL 3								
(i)	ST ISJC150	155		0.6			93	$"$	$155 * 0.6$
(ii)	ST ISA90*90*8	155		11.24			1742.2	$"$	$155 * 11.24$
(iii)	PRISMATIC STEEL $(39$ strips per section) $(0.03 \times 0.03 \mathrm{~m})$	155		58.5			9067.5	"	$155 * 58.5$

(d)	GUARD RAIL								
(i)	ST ISA50*50*5	810		6.6			5346	$"$	$810 * 6.6$
(ii)	Steel bar of 20 mm dia	810		19			15390	$"$	$810 * 19$

S.No.	Description of Items	Nos.		$\begin{gathered} \mathbf{L} \\ (\mathbf{m}) \end{gathered}$	$\begin{gathered} \mathbf{B} \\ (\mathbf{m}) \end{gathered}$	$\begin{gathered} \text { H/D } \\ (\mathbf{m}) \end{gathered}$	QTY. (m)		REMARKS
		SEC.	SIDE						
	Between the strips \& the angle	6045	2	0.0269			325.221	'	$\begin{gathered} \hline 39 * 155 * 2 * \\ 0.0269 \\ \hline \end{gathered}$
	Between the slant angle \& horizontal angle	155	2	0.0269			8.339	"	$\begin{aligned} & 155 * 2 * \\ & 0.0269 \end{aligned}$
(iv) Guard rail									
	20mm dia bars connected to ISA50*50*8	19	2	0.1256			4.773	"	$19 * 2 * 0.1256$

(g)	NUMBER OF BOLTS (MS20mm DIA) USED IN GUARD RAIL CONNECTIONS	810	1				810	No.	

NET QUANTITY ESTIMATE FOR STEEL SIDEWALK									
	Description of Items	Nos.		QTY.		WT./ MTR. (Kg/ Rmt.)	$\begin{aligned} & \text { NET } \\ & \text { QTY. } \end{aligned}$		REMARKS
S.No.		SECT.	SIDE						
1	ST ISJC150	405		393	Rmt.	9.9	3891	Kg	393*9.9
2	ST ISA90*90*8	405		3699.56	Rmt.	10.8	39955	Kg	$\begin{aligned} & \hline 3699.568^{*} \\ & 10.8 \end{aligned}$
3	PRISMATIC STEEL (39strips per section) ($0.03 \times 0.03 \mathrm{~m}$)	405		23692.5	Rmt.	7.065	167388	Kg	$\begin{aligned} & 23692.4^{*} \\ & 7.065 \end{aligned}$
4	ST ISA50*50*5	810		5346	Rmt.	3.8	20314.8	Kg	$\begin{aligned} & \hline 5346^{*} \\ & 3.8 \end{aligned}$
5	Steel bar of 20 mm dia	810		15390	Rmt.	2.47	38013.3	Kg	15390*2.47
6	Welding Rods (No.) 45 cm long \& 4mm thick			950.5224	Rmt.		2112	RODS	$\begin{aligned} & \hline 1156.41 / \\ & 0.45 \end{aligned}$
7	MS 20mm-dia Bolts	810		810	No.		810	No.	

Table 5.1 Quantity estimate for steel section sidewalk

Earlier in Chapter-4 we calculated that $1 \mathrm{~m}^{3}$ of concrete can be used for 1.905 m length of sidewalk and whole length will require a total volume of $78.74 \mathrm{~m}^{3}$ and steel section requires $29.52 \mathrm{~m}^{3}$ of concrete of Grade M20.So, the required weight of concrete's constituents are shown in Table5.2

| NET QUANTITY ESTIMATE FOR CONCRETE SIDEWALK | | | | | |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| S.No. | Description of Items | $\begin{array}{c}\text { QTY. USED } \\ \text { PER } \mathbf{~}^{3} \\ \text { OF }\end{array}$ | $\begin{array}{c}\text { NET QTY. } \\ \text { For } \\ \text { CO8.26m }\end{array}$ | of | REMARKS |
| Concrete | | | | | |$]$

Table 5.2 Quantity estimate for concrete section sidewalk

5.3 ESTIMATE OF COST

ABSTRACT OF COST $^{[10]}$					
Name of Work- Proposed Sidewalk along the Ambala-Shimla National Highway-5 at Shoghi , Himachal Pradesh of Length 1.1 Km.					
S.No.	PARTICULARS	Quantity	Unit	Rate	Amount (Rs.)
1	ST IS JC150	3891	Kg	Rs.43/Kg	167313
2	ST ISA90*90*8	39955	Kg	Rs.43/Kg	1718065
3	Prismatic Steel (0.03mx0.03m)	167388	Kg	Rs.43/Kg	7197684
4	ST ISA50*50*5	20314.8	Kg	Rs.43/Kg	873536.4
5	Steel Bar of 20mm dia.	38013.3	Kg	Rs.43/Kg	1634572
6	Welding Rod(45 cm long and 4 mm thick)	2112	Rods	Rs5/rod	10560
7	MS 20mm-dia Bolts	810	Bolts	Rs45/10Bolts	3645
8	Cement Bags	680	$\mathrm{Bags}^{\text {Rs.310/Bag }}$	210800	
9	Coarse Aggregates	63	$\mathrm{~m}^{3}$	Rs.581/m ${ }^{3}$	30793
10	Fine Aggregates	66	$\mathrm{~m}^{3}$	Rs.300/m ${ }^{3}$	19800
11	Water	17	$\mathrm{~m}^{3}$	1.5% to 2% of total cost of concrete	5227.86

S.No.	PARTICULARS	Quantity	Unit	Rate	Amount (Rs.)

12	Contractor's Profit	TOTAL	11871996

Cost of the project =One Crore Thirty Lacs Fifty Nine Thousand One Hundred Ninety Six Rupees only.

Table 5.3 Abstract of Cost

CHAPTER-6

PROPOSED AMMENDEMENTS

6.1 PROVISION FOR ZEBRA CROSSINGS AT SHOGHI ${ }^{[3]}$

We are proposing two zebra crossings at the Shoghi highway. It will be provided at the major points where there is an immense need for the pedestrian to cross the road.

- LOCATION OF ZEBRA CROSSINGS
- Near the housing board colony gate no 2 (between cross section 50-51)
- Main market along the bus stand.(between cross section 74-75)
- WIDTH OF ZEBRA CROSSINGS
- Near the housing board colony gate no 2 (between cross section 50-51) 2 m
- Main market along the bus stand.(between cross section 74-75) 3.5 m
- WIDTH OF BLACK AND WHITE STRIPS IN ZEBRA CROSSINGS
- $30-50 \mathrm{~cm}$

Fig.6.1 Zebra-Crossing near the housing board colony at Gate No. 2 (between cross section 50-51)

Fig.6.2 Zebra-Crossing at the main market (between cross section 74-75)

6.2 PROVISION FOR SPEED-BREAKERS AT SHOGHI ${ }^{[2]}$

- LOCATION OF SPEED-BREAKERS:-
- The curve where visibility is less (Between cross section 30-31).
- 50 m before the zebra crossing i.e. near the housing board colony gate no. 2 (Between cross-sections 45-46).
- 50m after zebra crossing (At cross-section 56).
- 100m away from bus stand (Between cross-sections 76-77).

Fig.6.3 Speed-Breaker near the curve where sight distance is not visible

Fig.6.4 Speed-Breaker at 50m before the zebra crossing, near the housing board colony gate no. 2 (Between cross-section45-46)

Fig.6.5 Speed Breaker at 50 m after zebra crossing (At cross-section 56)

Fig.6.6 Speed-Breaker at 100m away from bus stand
(Between Cross-Section 76-77)

- DESIGN OF SPEED BREAKERS:-
- Speed breakers are formed basically by providing around it (of 17 m radius) hump of 3.7 m width and 10 cm height for the preferred crossing speed of $25 \mathrm{~km} / \mathrm{h}$ for general traffic.
- To facilitate appreciable and comfortable passage for larger and heavier vehicle humps may be modified with 1.5 m long ramps ($1: 20$) at each edge.
- The distance between one hump to another can vary from (100-120) m centre to centre.

Fig.6.7 Longitudinal Cross-Section of Speed-Breaker

6.3 PROVISION FOR SIGN POST AND MARKINGS ${ }^{[2]}$

- DRIVERS SHOULD BE WARNED OF THE presence of speed breakers by posting suitable advanced warning signs. The sign should have definition plate with the words 'SPEED BREAKER' and should be located 40m in advance of the first speed breaker.
- Speed breakers should be painted with alternate black and white bands.

Embedded cat-eyes can also be used to enhance night visibility.

- SIGN DETAILS:-

- Lateral Placement Left :-
- 0.60 m on kerbed roads.
- 2.3 m on unkerbed roads.
- Mounting Height :-
- 2.0 m on kerbed roads.
- 1.5 m on unkerbed roads.
- Use reflective paint or strip.
- Side of triangle- 60 cm or 90 cm (standard).
- Red Strip width- 4.5 cm or 7.0 cm .
- Post Height- $8 \mathrm{~cm} \times 8 \mathrm{~cm} \times 0.8 \mathrm{~cm}$.
- T-Iron to be painted white and black in alternate 25 cm bands.

Fig.6.8 Sign Post

CHAPTER-7

RESULTS AND DISCUSSIONS

7.1 RESULTS

- From the Total-Station survey the whole stretch of 1.1 Km was divided into a total number of 78 cross-sections of length $10 \mathrm{~m}, 20 \mathrm{~m}$ and 50 m respectively. Also, the data points were obtained in (x, y) format for the layout formation from the totalstation survey.
- After preparing the layout in AUTO-CAD, 16 support based models were identified and total number of 437 sections of dimensions $2.0 \mathrm{~m} \times 1.5 \mathrm{~m}$ were classified under these support based models.(up to Cross-Section No.-73).
- A maximum load intensity of $6 \mathrm{KN} / \mathrm{m}^{2}$ was chosen and to make the design as simple as possible, the 16 support based models were incorporated into 3 support based model namely,
- MODEL-1 (FIXED-FIXED) Support Section (124 No.)
- MODEL-2 (P.C.2-P.C.2) Support Section (146 No.)
- MODEL-3 (CANTILEVER-CANTILEVER) Support Section (167 No.) which were analyzed for feasibility on Staad.Pro and MS-Excel (Macros).
- The total estimated quantity cost after considering the openings in the side walk for the project came out to be Rs. One Crore Thirty Lacs Fifty Nine Thousand One Hundred Ninety Six Rupees only. Of which 55.11% of the total cost is due to the prismatic steel sections of dimensions $(0.03 \mathrm{~cm} \times 0.03 \mathrm{~cm})$ which are 39 in number per section.
- To provide additional safety features for pedestrian recommendations were provided for zebra-crossing and speed breakers. A total of 2 zebra-crossings and 4 speed-breakers are proposed in the report.

7.2 DISCUSSIONS

The layout obtained from the data points is similar to the 'Google-Earth' maps. So we can say that our obtained layout is correct.

For designing and analysis of the sidewalk a load of $6 \mathrm{KN} / \mathrm{m}^{2}$ was taken which was more than the specified maximum load in IS $875: 1987$ (Part-2) i.e. $5 \mathrm{KN} / \mathrm{m}^{2}$. It was taken $6 \mathrm{KN} / \mathrm{m}^{2}$ in order to accumulate the load from the pedestrians and for the static load coming from guard rail along with the dynamic load (minor) caused due to the movement of vehicles near the guard rails.

Also the high cost of the project is due to prime condition for maintaining a simple, uniform design. For fulfillment of this condition we have to use heavy sections like ISA90x90x8 and ISJC150 along with prismatic steels members of dimensions 1.5 mx 0.03 mx 0.03 m and if observed carefully about 55.11% of the cost of the project is due to the prismatic steel member.

But had we used a smaller section as prismatic steel member, all sections were failing under the condition of 'Slenderness Ratio' when the design was checked in reference to IS 800:2007 (for Limit State Design). A steel section rather than 0.03 mx 0.03 m which was not failing under this criteria was 0.02 mx 0.05 m which was adding an additional cost of Rs.28,50,335/- (Rupees Twenty eight lac fifty thousand three hundred thirty five only). So we can say that our designed sidewalk can safely bear a load of $6 \mathrm{KN} / \mathrm{m}^{2}$ and is safe according to the checks of IS 800:2007.

CONCLUSIONS

At the end of this project report we would like to conclude that our designed steel and concrete sidewalk will be able to bear a live load of $6\left(\mathrm{KN} / \mathrm{m}^{2}\right)$ safely and efficiently without needing any maintenance atleast for the next 20-25 years. We have designed the sidewalk keeping the future perspective in our mind i.e. population increase, increasing locality, schools, hospitals etc as Shoghi is expanding by leaps and bounds.

Also, after surveying the total stretch of 1.1 Km we found that there was not enough space for lying of concrete throughout the stretch. It was only the market place where the concrete sidewalk can be used as by using steel sidewalk we not only increased the cost for the project but also the noise pollution for the area. So we switched for our use of steel sections for the remaining 810 m . Though this increased the cost of the project but to have a safe, efficient, uniform and according to code design it was the price we had to pay.

Thus, we would like to conclude that we were able to fulfill our objectives except for giving an economical design but this project taught us a lot. We not only used our knowledge of subjects like surveying, design of steel structures and concrete technology but also helped us to explore more about these subjects and softwares being used in civil engineering like AutoCAD, Staad.Pro , Tekla Structures etc.

FUTURE SCOPE OF WORK

Though much work cannot be done in the surveying and modeling part of the project but there is a scope for doing future work in the design optimization of this project.

Rather than using grating of prismatic steel, the girder and thin chequered plate can be used so as to optimize the cost of the project as our design had 55.11% of total cost of the project because of the use of prismatic steel members. Also one could work on the possibility for making a sidewalk wholly of concrete and reduce the cost to its minimal level.

REFERENCES

[1] Dr. B.C. Punmia , Ashok Kr. Jain \& Arun Kr. Jain, Surveying Vol.1,16 ${ }^{\text {th }}$ edn. 2005, Laxmi Publications Private Limited ,New Delhi,1965,pp.1-5 .
[2] IRC 99-1988, Tentative Guidelines on the Provision of Speed Breakers for control of Vehicular Speeds on Minor Roads, Reprinted $1^{\text {st }}$ edn. 1996, The Indian Road Congress, 1988, pp.5,10
[3] IRC 103-1988, Guidelines for Pedestrian Facilities, $1^{\text {st }}$ edn. , The Indian Road Congress, 1989, pp. 3
[4] IS 456:2000, Plain \& Reinforced Concrete -Code of Practice (Fourth Revision), Bureau of Indian Standards, July 2000, pp. 43
[5] IS 800:2007, General Construction in Steel -Code of Practice (Third Revision), Bureau of Indian Standards, December 2007, pp. 78-82
[6] M.S.Shetty, Concrete Technology -Theory and Practice, $7^{\text {th }}$ Revised edn. 2013, S.Chand \& Company Private Limited ,1982, pp.-492-436
[7]N. N. Basak, Surveying and Levelling , $1^{\text {st }}$ edn., 42nd Reprint 2012, Tata McGraw Hill Education Private Limited, New Delhi, 1994, pp. 1-3
[8] Saurabh Malik , HOUSING BOARD COLONY AT SHOGHI-Residents wait for HIMUDA to restore its lost glory, The Tribune ,October 16, 2012.
[9] SP:6(1)-1964 (Reaffirmed1988),Handbook for structural Engineers-1.Structural Steel, $19^{\text {th }}$ edn.1998, Bureau of Indian Standards, November 1974,pp.6-11
[10] Standard Schedule of Rates2009 -Building (Civil Works), 1st edn.2009,Government of Himachal Pradesh Public Works Department, pp. 57

APPENDIX-A

PHOTOGRAPHIC SURVEY

FigA. 1 Pedestrian walking along the road

Fig.A. 2 Children walking towards school

Fig.A. 3 Bus moving closely to the unpaved shoulder

Fig.A. 4 Motorcycles parked on the road

Fig.A. 5 Encroachment by the shopkeepers on the carriage way

Fig.A. 6 Loading and unloading on the carriage way

Fig.A. 7 Repair work of vehicles on the along the road

Fig.A. 8 Open drainage along the road

Fig.A. 9 Snapshot of bus station

Fig.A. 10 No space to walk for the pedestrian

FigA. 11 Snapshot of open drainage

Fig.A. 12 traffic jam at Shoghi bypass

Fig.A. 13 Vehicles parked along the road

APPENDIX-B

TOTAL STATION SURVEY DATA AND CALCULATED DISTANCES

$\begin{gathered} \text { CROSS } \\ \text { SECTION } \end{gathered}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \text { D12 } \\ & \text { (cm) } \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & (\mathrm{cm}) \end{aligned}$	REMARKS
C.S. 1	0	A1	-0.672	-1.588	0.132	278.0	6.725	174.0	
		A2	0.459	0.952	0.003				
		A3	3.039	7.162	0.035				
		A4	3.755	8.748	0.092				
C.S. 2	10	B1	8.171	-6.46	0.255	310.7	7.045	319.3	
		B2	9.426	-3.618	0.072				
		B3	12.55	2.696	0.019				
		B4	14.123	5.475	0.041				
C.S. 3	20	C1	17.241	-10.263	0.298	248.8	7.149	393.3	
		C2	18.254	-7.991	0.202				
		C3	21.183	-1.47	0.123				
		C4	22.908	2.065	0.088				
C.S. 4	30	D1	26.562	-13.565	0.22	100.5	7.405	332.1	
		D2	27.063	-12.694	0.251				
		D3	29.974	-5.885	0.21				
		D4	31.683	-3.038	0.222				
C.S. 5	40	E1	35.299	-18.214	0.281	80.8	7.617	292.3	
		E2	35.732	-17.532	0.283				
		E3	38.798	-10.559	0.353				
		E4	40.182	-7.984	0.356				
C.S. 6	50	F1	43.726	-23.298	0.554	85.3	7.405	295.1	
		F2	44.217	-22.6	0.383				
		F3	47.164	-15.807	0.604				
		F4	48.618	-13.239	0.365				
C.S. 7	60	G1	49.921	-30.441	0.636	251.5	7.604	406.7	
		G2	51.864	-28.844	0.532				
		G3	55.01	-21.921	0.832				
		G4	57.529	-18.728	0.718				

$\begin{aligned} & \text { CROSS } \\ & \text { SECTION } \end{aligned}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \text { D12 } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & \text { (cm) } \end{aligned}$	REMARKS
C.S. 8	70	H1	61.225	-31.542	0.695	308.9	8.284	471.8	
		H2	61.951	-28.54	0.745				
		H3	60.159	-20.452	0.942				
		H4	61.5	-15.929	0.804				
C.S. 9	80	I1	71.166	-33.453	0.914	276.6	8.524	270.2	
		I2	71.711	-30.741	1.028				
		I3	70.047	-22.381	0.928				
		I4	70.835	-19.796	0.895				
C.S. 10	90	J1	81.092	-35.358	1.292	270.7	8.570	164.5	
		J2	81.362	-32.664	1.5				
		J3	79.774	-24.242	1.09				
		J4	80.105	-22.631	0.891				
C.S. 11	100	K1	91.145	-37.24	1.678	315.2	8.309	114.7	
		K2	91.312	-34.092	1.872				
		K3	89.62	-25.957	1.36				
		K4	89.66	-24.811	1.305				
C.S. 12	110	L1	101.317	-36.598	2.086	322.4	8.133	103.9	
		L2	101.288	-33.374	2.157				
		L3	99.572	-25.424	1.568				
		L4	99.538	-24.386	1.47				
C.S. 13	120	M1	106.23	-25.705	2.499	187.6	8.174	151.5	
		M2	104.404	-25.276	2.331				
		M3	96.904	-22.026	1.727				
		M4	95.453	-21.591	1.617				
C.S. 14	130	N1	108.522	-15.853	2.515	197.0	8.631	188.7	
		N2	106.567	-15.607	2.45				
		N3	98.634	-12.208	1.919				
		N4	96.776	-11.877	1.741				
C.S. 15	140	O1	110.099	-5.561	2.697	283.2	8.928	171.6	
		O2	107.267	-5.564	2.593				
		O3	99.025	-2.133	2.03				
		O4	97.311	-2.209	1.923				

$\begin{aligned} & \text { CROSS } \\ & \text { SECTION } \end{aligned}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \text { D12 } \\ & \text { (cm) } \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & \text { (cm) } \end{aligned}$	REMARKS
C.S. 16	150	P1	102.731	3.156	2.754	140.4	9.305	66.3	
		P2	101.751	2.15	2.692				
		P3	92.561	0.693	2.147				
		P4	92.024	0.304	2.251				
C.S. 17	160	Q1	95.223	9.924	2.696	117.4	9.208	53.5	
		Q2	94.445	9.045	2.564				
		Q3	85.353	7.588	2.296				
		Q4	85.121	7.106	2.404				
C.S. 18	170	R1	87.56	16.334	2.476	119.1	9.627	97.3	
		R2	86.8	15.417	2.472				
		R3	77.363	13.512	2.385				
		R4	77.006	12.607	2.408				
C.S. 19	180	S1	79.534	22.438	2.376	109.7	9.599	1640	
		S2	78.941	21.515	2.404				
		S3	69.553	19.514	2.484				
		S4	68.56	3.143	2.194				
C.S. 20	190	T1	71.514	28.232	2.414	76.1	9.390	525.5	
		T2	71.088	27.601	2.331				
		T3	61.852	25.905	2.623				
		T4	56.948	27.792	2.684				
C.S. 21	200	U1	63.974	34.764	2.396	70.6	9.064	134.6	
		U2	63.565	34.189	2.259				
		U3	54.606	32.813	2.57				
		U4	53.583	31.938	2.43				
C.S. 22	210	V1	57.424	42.193	2.425	137.8	8.726	215.3	
		V2	56.419	41.25	2.253				
		V3	47.774	40.061	2.417				
		V4	46.151	38.646	2.168				
C.S. 23	220	W1	50.309	49.04	2.335	73.2	8.555	220.5	
		W2	49.726	48.598	2.349				
		W3	41.229	47.605	2.272				
		W4	39.661	49.155	2.304				

$\begin{aligned} & \text { CROSS } \\ & \text { SECTION } \end{aligned}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \text { D12 } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & (\mathrm{cm}) \end{aligned}$	REMARKS
C.S. 40	390	OO1	3.313	59.409	3.738	137.0	26.000	177.7	$\begin{gathered} \mathrm{D} 23 \text { is } \\ \text { increased } \\ \text { because of the } \\ \text { sharp curvature } \\ \text { at the police } \\ \text { barrier } \end{gathered}$
		OO2	2.325	60.358	3.741				
		OO3	12.593	84.245	3.956				
		OO4	10.985	85.002	4.007				
C.S. 41	400	PP1	9.863	67.061	3.958	107.2	26.340	136.4	$\begin{gathered} \text { D23 is } \\ \text { increased } \\ \text { because of the } \\ \text { sharp curvature } \\ \text { at the police } \\ \text { barrier } \end{gathered}$
		PP2	9.031	67.737	3.894				
		PP3	17.934	92.527	4.077				
		PP4	16.831	93.329	4.179				
C.S. 42	410	QQ1	17.069	74.394	4.295	209.7	17.246	116.3	$\begin{gathered} \text { D23 is } \\ \text { incrased } \\ \text { because of the } \\ \text { sharp curvature } \\ \text { at the police } \\ \text { barrier } \end{gathered}$
		QQ2	15.263	75.459	4.165				
		QQ3	17.887	92.504	4.099				
		QQ4	16.915	93.142	4.18				
C.S. 43	420	RR1	23.182	82.585	4.428	241.3	17.837	79.0	D23 isincreasedbecause of thesharp curvatureat the policebarrier
		RR2	21.027	83.671	4.36				
		RR3	22.597	101.439	4.223				
		RR4	21.864	101.734	4.065				
C.S. 44	430	SS1	30.56	85.626	4.59	144.3	18.184	137.4	D23 isincreasedbecause of thesharp curvatureat the policebarrier
		SS2	30.838	87.042	4.509				
		SS3	46.042	97.017	4.549				
		SS4	45.732	98.356	4.663				
C.S. 45	440	TT1	40.481	87.686	4.608	98.9	18.562	166.5	$\begin{gathered} \text { D23 is } \\ \text { increased } \\ \text { because of the } \\ \text { sharp curvature } \\ \text { at the police } \\ \text { barrier } \end{gathered}$
		TT2	40.323	88.662	4.574				
		TT3	55.728	99.017	4.852				
		TT4	55.558	100.673	4.935				
C.S. 46	450	UU1	50.158	90.129	4.679	83.5	18.132	181.3	D23 isincreasedbecause of thesharp curvatureat the policebarrier
		UU2	49.985	90.946	4.623				
		UU3	65.59	100.18	5.014				
		UU4	65.6	101.993	5.137				
C.S. 47	460	VV1	60.074	91.55	4.756	101.5	17.777	98.2	$\begin{gathered} \text { D23 is } \\ \text { increased } \\ \text { because of the } \\ \text { sharp curvature } \\ \text { at the police } \\ \text { barrier } \end{gathered}$
		VV2	59.844	92.539	4.726				
		VV3	75.618	100.737	5.159				
		VV4	75.789	101.704	5.291				

$\begin{aligned} & \text { CROSS } \\ & \text { SECTION } \end{aligned}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \mathrm{D} 12 \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & (\mathrm{cm}) \end{aligned}$	REMARK S
C.S. 48	470	WW1	23.964	88.603	4.434	77.9	17.301	79.5	D23 inincreasedbecause of thesharpcurvature atte policebarrier
		WW2	23.188	88.673	4.43				
		WW3	18.659	105.371	4.792				
		WW4	17.887	105.559	4.95				
C.S. 49	480	XX1	25.458	98.363	4.626	53.2	17.248	72.4	D23 isincreasedbecause of thesharpcurvature atthe policebarrier
		XX2	24.937	98.469	4.628				
		XX3	20.555	115.151	4.93				
		XX4	19.837	115.245	4.895				
C.S. 50	490	YY1	27.239	108.085	4.826	66.2	16.989	257.8	D23 isincreasedbecause of thesharpcurvature atte policebarrier
		YY2	26.644	108.376	4.838				
		YY3	22.878	124.942	5.05				
		YY4	20.302	125.041	5.143				
C.S. 51	500	ZZ1	29.081	118.069	5.094	53.0	16.640	288.5	D23 isincreasedbecause of thesharpcurvature atthe policebarrier
		ZZ2	28.568	118.202	5.086				
		ZZ3	25.355	134.529	5.413				
		ZZ4	22.644	135.516	5.533				
C.S. 52	510	AAA1	14.594	135.708	5.312	424.2	16.676	305.4	D23 isincreasedbecause of thesharpcurvature atthe policebarrier
		AAA2	14.963	131.482	5.411				
		AAA3	-0.061	124.246	5.804				
		AAA4	-0.082	121.192	5.976				
C.S. 53	520	BBB1	4.801	134.36	5.658	273.5	16.385	50.2	$\|$At point BBB4, width of truck is to 193 17RUCK
		BBB2	4.966	131.63	5.548				
		BBB3	-10.044	125.06	6.101				
		BBB4	-10.054	124.558	6.127				
C.S. 54	530	CCC1	-4.779	133.615	5.739	139.3	15.806	210.2	
		CCC2	-5.057	132.25	5.735				
		CCC3	-19.906	126.833	6.365				
		CCC4	-20.673	124.876	6.458				
C.S. 55	540	DDD1	-14.343	135.71	5.977	95.8	14.199	677.3	$\begin{array}{\|c} \text { At point } \\ \text { DDDI width } \\ \text { truck is to be } \\ \text { ander to Do } \end{array}$
		DDD2	-14.667	134.808	5.941				
		DDD3	-28.543	131.796	6.507				
		DDD4	-31.208	125.569	6.844				

$\begin{aligned} & \text { CROSS } \\ & \text { SECTION } \end{aligned}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \text { D12 } \\ & \text { (cm) } \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & (\mathrm{cm}) \end{aligned}$	REMARKS
C.S. 56	550	EEE1	-23.365	139.771	6.185	114.1	14.874	269.0	
		EEE2	-23.893	138.76	6.277				
		EEE3	-38.094	134.335	6.814				
		EEE4	-39.957	132.394	6.937				
C.S. 57	560	FFF1	-29.723	147.538	6.289	410.7	13.387	160.8	
		FFF2	-32.216	144.274	6.341				
		FFF3	-45.223	141.106	6.934				
		FFF4	-46.493	140.12	6.76				
C.S. 58	570	GGG1	-36.4	157.723	6.739	854.9	11.700	108.1	
		GGG2	-40.2	150.065	6.596				
		GGG3	-51.835	148.829	6.954				
		GGG4	-52.684	148.16	7.639				
C.S. 59	580	HHH1	-43.428	160.871	6.735	281.1	12.185	116.9	
		HHH2	-45.463	158.932	6.778				
		HHH3	-57.49	156.978	6.989				
		HHH4	-58.464	156.332	6.946				
C.S. 60	590	IIII	-46.561	165.547	7.22	277.7	10.743	114.7	
		III2	-49.096	166.681	7.243				
		III3	-51.838	177.068	7.1				
		III4	-52.776	177.728	6.975				
C.S. 61	600	JJJ1	-56.465	175.737	7.263	309.7	9.905	101.4	
		JJJ2	-59.012	173.975	7.505				
		JJJ3	-68.882	174.802	7.182				
		JJJ4	-69.796	174.364	7.1				
C.S. 62	620	KKK1	-70.644	190.847	8.452	251.1	10.536	50.6	
		KKK2	-72.166	188.85	7.747				
		KKK3	-82.692	189.317	7.591				
		KKK4	-83.083	188.996	7.528				
C.S. 63	640	LLL1	-86.209	203.132	7.95	25.9	11.256	69.3	
		LLL2	-86.374	202.933	7.949				
		LLL3	-97.625	202.599	8.113				
		LLL4	-98.026	202.034	7.963				

CROSS SECTION	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \mathrm{D} 12 \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { D23 } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & \text { (cm) } \end{aligned}$	REMARKS
C.S. 64	660	MMM1	-100.38	216.997	8.305	96.9	10.337	170.8	
		MMM2	-101.13	216.389	8.415				
		MMM3	-111.44	217.182	8.537				
		MMM4	-112.71	216.042	9.23				
C.S. 65	680	NNN1	-111.87	232.813	8.607	220.3	10.173	71.0	
		NNN2	-113.76	231.672	8.66				
		NNN3	-123.87	232.735	8.775				
		NNN4	-124.49	232.382	8.813				
C.S. 66	700	OOO1	-125.09	245.341	9.111	314.5	10.010	78.9	
		0002	-122.07	246.24	9.001				
		0003	-113.89	240.475	9.238				
		OOO4	-113.13	240.692	9.319				
C.S. 67	720	PPP1	-120.58	226.071	9.557	212.7	9.959	89.1	
		PPP2	-118.46	226.265	9.474				
		PPP3	-110.17	220.75	9.602				
		PPP4	-109.29	220.922	9.627				
C.S. 68	740	QQQ1	-116.04	206.724	9.696	139.5	10.386	141.3	
		QQQ2	-114.67	206.944	9.67				
		QQQ3	-105.86	201.434	9.885				
		QQQ4	-104.52	200.991	9.895				
C.S. 69	760	RRR1	-125.45	190.571	9.854	87.8	8.113	303.0	
		RRR2	-124.86	189.916	9.861				
		RRR3	-124.5	181.811	10.268				
		RRR4	-122.13	179.927	10.326				
C.S. 70	780	SSS1	-140.01	176.89	10.079	101.4	8.266	113.8	
		SSS2	-139.3	176.162	10.12				
		SSS3	-138.94	167.904	10.58				
		SSS4	-138.98	166.767	10.641				
C.S. 71	800	TTT1	-155.46	164.057	10.324	96.5	10.029	86.8	
		TTT2	-154.68	163.478	10.317				
		TTT3	-152.49	153.691	11.078				
		TTT4	-151.86	153.097	11.149				

$\begin{aligned} & \text { CROSS } \\ & \text { SECTION } \end{aligned}$	Distance from previous C.S.	POINT	N	E	Z	$\begin{aligned} & \mathrm{D} 12 \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { D23 } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { D34 } \\ & \text { (cm) } \end{aligned}$	REMARKS
C.S. 72	820	UUU1	-173.69	157.608	10.586	192.8	9.740	146.2	
		UUU2	-172.85	155.875	10.621				
		UUU3	-172.52	146.141	11.205				
		UUU4	-172.36	144.687	11.362				
C.S. 73	840	VVV1	-192.41	152.983	10.738	94.9	8.328	170.0	C.S. 73 is marked at 1.5 m ahead of the junction where the road is bifercated to Shoghi's industrial area(road in direction)
		VVV2	-192.22	152.052	11.041				
		VVV3	-192.33	143.725	11.248				
		VVV4	-191.91	142.08	10.979				
C.S. 74	890	WWW2	-147.24	186.131	11.711		15.210		
		WWW3	-157.41	197.446	12.121				
C.S. 75	940	XXX2	-118.72	214.317	12.719		18.373		C.S. 75 Start of Taxi Stand
		XXX3	-127.21	230.612	12.301				
C.S. 76	990	YYY2	-95.231	261.493	12.783		14.279		
		YYY3	-108.43	266.936	12.425				
C.S. 77	1040	ZZZ2	-107.53	305.534	13.329		9.394		
		ZZZ3	-116.87	306.549	13.476				
C.S. 78	1090	AAAA2	-122.56	346.295	14.334		11.074		
		AAAA3	-133.63	346.279	14.124				

DETAILED OBSERVATION TABLE FROM THE LAYOUT

STARTING CROSS SECTION	ENDING CROSS SECTION	Type-1 FIXED FIXED	Type-2 FIXED P.C. 1	Type-3 FIXED P.C. 2	$\begin{gathered} \text { Type-4 } \\ \text { FIXED } \\ \text { CANTILEVER } \end{gathered}$	$\begin{gathered} \text { Type-5 } \\ \text { P.C. } 1 \\ \text { FIXED } \end{gathered}$	$\begin{gathered} \text { Type-6 } \\ \text { P.C. } 1 \\ \text { P.C. } 1 \end{gathered}$	$\begin{gathered} \text { Type-7 } \\ \text { P.C. } 1 \\ \text { P.C. } 2 \end{gathered}$	$\begin{gathered} \text { Type-8 } \\ \text { P.C. } 1 \\ \text { CANTILEVER } \end{gathered}$	$\begin{gathered} \text { Type-9 } \\ \text { P.C. } 2 \\ \text { FIXED } \end{gathered}$	$\begin{array}{\|c} \text { Type-10 } \\ \text { P.C. } 2 \\ \text { P.C. } 1 \end{array}$	$\begin{array}{\|c} \hline \text { Type-11 } \\ \text { P.C. } 2 \\ \text { P.C. } 2 \end{array}$	Type-12 P.C. 2 CANTILEVER	Type-13 CANTILEVER FIXED	$\begin{gathered} \text { Type-14 } \\ \text { CANTILEVER } \\ \text { P.C. } 1 \end{gathered}$	Type-15 CANTILEVER P.C. 2	Type-16 CANTILEVER CANTILEVER	TOTAL
C.S. 1	C.S. 2	5																5
C.S. 2	C.S. 3	5																5
C.S. 3	C.S. 4	1	1					1				1	1					5
C.S. 4	C.S. 5																5	5
C.S. 5	C.S. 6																5	5
C.S. 6	C.S. 7		1			1					1	1				1		5
C.S. 7	C.S. 8	3	1			1	1											6
C.S. 8	C.S. 9	5																5
C.S. 9	C.S. 10	5																5
C.S. 10	C.S. 11	5																5
C.S. 11	C.S. 12	6																6
C.S. 12	C.S. 13	1		1			1				1	3						7
C.S. 13	C.S. 14						5											5
C.S. 14	C.S. 15	5				1												6
C.S. 15	C.S. 16		1				2	1				2						6
C.S. 16	C.S. 17											3	1				1	5
C.S. 17	C.S. 18																5	5
C.S. 18	C.S. 19																5	5
C.S. 19	C.S. 20																5	5
C.S. 20	C.S. 21																5	5
C.S. 21	C.S. 22											1				1	3	5
C.S. 22	C.S. 23												1				4	5
C.S. 23	C.S. 24	1				1					1	1				1		5
C.S. 24	C.S. 25	5																5
C.S. 25	C.S. 26	2		1								2						5
C.S. 26	C.S. 27						2				1	2						5
C.S. 27	C.S. 28							1				1	1				2	5
C.S. 28	C.S. 29																5	5
C.S. 29	C.S. 30																5	5
C.S. 30	C.S. 31																5	5
C.S. 31	C.S. 32																5	5
C.S. 32	C.S. 33	3								1	1					1		6
C.S. 33	C.S. 34	2	1					1										4
C.S. 34	C.S. 35	4				1					1							6
C.S. 35	C.S. 36	5																5
C.S. 36	C.S. 37	3	1				2	1				1						8
C.S. 37	C.S. 38											4						4
C.S. 38	C.S. 39											6						6
C.S. 39	C.S. 40											5						5
C.S. 40	C.S. 41											1	1				3	5
C.S. 41	C.S. 42					1	1				1	1				1		5
C.S. 42	C.S. 43	4	1					1										6
C.S. 43	C.S. 44											4						4

STARTING CROSS SECTION	ENDING CROSS SECTION	Type-1 FIXED FIXED	Type-2 FIXED P.C. 1	Type-3 FIXED P.C. 2	$\begin{gathered} \text { Type-4 } \\ \text { FIXED } \\ \text { CANTILEVER } \end{gathered}$	Type-5 P.C. 1 FIXED	$\begin{aligned} & \text { Type-6 } \\ & \text { P.C. } 1 \\ & \text { P.C. } 1 \end{aligned}$	$\begin{aligned} & \text { Type-7 } \\ & \text { P.C. } 1 \\ & \text { P.C. } 2 \end{aligned}$	$\begin{gathered} \text { Type-8 } \\ \text { P.C. } 1 \\ \text { CANTILEVER } \end{gathered}$	$\begin{gathered} \text { Type-9 } \\ \text { P.C. } 2 \\ \text { FIXED } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Type-10 } \\ \text { P.C. } 2 \\ \text { P.C. } 1 \end{array}$	$\begin{array}{\|c\|} \hline \text { Type-11 } \\ \text { P.C. } 2 \\ \text { P.C. } 2 \end{array}$	Type-12 P.C. 2 CANTILEVER	Type-13 CANTILEVER FIXED	$\begin{gathered} \text { Type-14 } \\ \text { CANTILEVER } \\ \text { P.C. } 1 \end{gathered}$	Type-15 CANTILEVER P.C. 2	Type-16 CANTILEVER CANTILEVER	TOTAL
C.S. 44	C.S. 45											1	1				3	5
C.S. 45	C.S. 46																5	5
C.S. 46	C.S. 47																5	5
C.S. 47	C.S. 48																5	5
C.S. 48	C.S. 49																9	9
C.S. 49	C.S. 50																5	5
C.S. 50	C.S. 51																9	9
C.S. 51	C.S. 52	4				1	1				1	1				1	4	13
C.S. 52	C.S. 53	4																4
C.S. 53	C.S. 54	1	1					1				1						4
C.S. 54	C.S. 55											1	1				3	5
C.S. 55	C.S. 56															1	4	5
C.S. 56	C.S. 57	4				1					1							6
C.S. 57	C.S. 58	6																6
C.S. 58	C.S. 59	4																4
C.S. 59	C.S. 60	1	1															2
C.S. 60	C.S. 61	3				1			1		1					1	1	8
C.S. 61	C.S. 62	10																10
C.S. 62	C.S. 63	1	1				1	1				1	1				4	10
C.S. 63	C.S. 64																10	10
C.S. 64	C.S. 65					1	2				1	1				1	1	7
C.S. 65	C.S. 66	8																8
C.S. 66	C.S. 67	7																7
C.S. 67	C.S. 68	1	1				4	1				3	1					11
C.S. 68	C.S. 69																10	10
C.S. 69	C.S. 70																10	10
C.S. 70	C.S. 71																10	10
C.S. 71	C.S. 72						3				1	2				1	3	10
C.S. 72	C.S. 73						1	1				3	1				3	9
	TOTAL	124	11	2	0	10	26	10	1	1	12	53	10	0	0	10	167	437

APPENDIX-D

STAAD-EDITOR CODES

1. MODEL-1

STAAD SPACE

START JOB INFORMATION
ENGINEER DATE 02-Apr-15
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES

$$
1000 ; 200 \text { 2; } 31.500 ; 41.50 \text { 2; } 50 \text {-0.3 0; } 60 \text {-0.3 2; } 71.5 \text {-0.3 0; }
$$

8 1.5-0.3 2; 90 -0.8 0; 100 -0.8 2; 11 1.5-0.8 0; 12 1.5-0.8 2;
13000.05 ; 141.500 .05 ; 15000.1 ; 16 1.500.1; 17000.15 ;
$181.500 .15 ; 19000.2 ; 201.500 .2 ; 21000.25 ; 221.500 .25$;
2300 0.3; 24 $1.500 .3 ; 25000.35 ; 261.500 .35 ; 27000.4 ; 281.500 .4$;
29000.45 ; 301.500 .45 ; 31000.5 ; 321.500 .5 ; 33000.55 ;
$341.500 .55 ; 35000.6 ; 361.500 .6 ; 37000.65 ; 381.500 .65$;
39000.7 ; 401.500 .7 ; 41000.75 ; 42 1.5 00.75 ; 43000.8 ; 44 1.5 00.8 ;
45000.85 ; 461.500 .85 ; 4700 0.9; 481.500 .9 ; 49000.95 ;
501.50 0.95; 51001 ; $521.501 ; 5300$ 1.05; 541.50 1.05; 5500 1.1;
561.50 1.1; 5700 1.15; 581.50 1.15; 5900 1.2; 601.50 1.2;

6100 1.25; 621.50 1.25; 6300 1.3; 641.50 1.3; 6500 1.35;
661.50 1.35; 6700 1.4; 681.50 1.4; 6900 1.45; 701.501 .45 ;

7100 1.5; 721.50 1.5; 7300 1.55; 741.50 1.55; 7500 1.6; 761.50 1.6;
7700 1.65; 781.50 1.65; 7900 1.7; 801.50 1.7; 8100 1.75;
821.50 1.75; 8300 1.8; 841.50 1.8; 8500 1.85; 861.501 .85 ;

8700 1.9; 881.50 1.9; 8900 1.95; 901.50 1.95;
MEMBER INCIDENCES
$515 ; 626 ; 737$; 84 8; 95 9; 106 10; 117 11; 128 12; 1313 ; 1524 ;

161 13; 173 14; 1813 15; 1914 16; 2013 14; 2115 17; 2216 18; 2315 16; 2417 19; 2518 20; 2617 18; 2719 21; 2820 22; $291920 ; 3021$ 23; 3122 24; 3221 22; 3323 25; 3424 26; 3523 24; 3625 27; 3726 28; 3825 26; 3927 29; 4028 30; 4127 28; 4229 31; 4330 32; 4429 30; 4531 33; 4632 34; 4731 32; 4833 35; 4934 36; 5033 34; 5135 37; 5236 38; 5335 36; 5437 39; 5538 40; 5637 38; 5739 41; 5840 42; 5939 40; 6041 43; 6142 44; 6241 42; 6343 45; 6444 46; 6543 44; 6645 47; 6746 48; 6845 46; 6947 49; 7048 50; 7147 48; 7249 51; 7350 52; 7449 50; 7551 53; 7652 54; 7751 52; 7853 55; 7954 56; 8053 54; 8155 57; 8256 58; 8355 56; 8457 59; 8558 60; 8657 58; 8759 61; 8860 62; 8959 60; 9061 63; 9162 64; 9261 62; 9363 65; 9464 66; 9563 64; 96 65 67; 9766 68; 9865 66; 9967 69; 10068 70; 10167 68; 10269 71; 1037072 ; $1046970 ; 1057173 ; 1067274$; 1077172 ; 1087375 ; 1097476 ; 11073 74; 1117577 ; $1127678 ; 1137576 ; 1147779 ; 11578$ 80; 1167778 ; 11779 81; 11880 82; 11979 80; 12081 83; 12182 84; $1228182 ; 1238385$; 12484 86; 12583 84; 12685 87; 12786 88; 12885 86; 12987 89; 13088 90; 13187 88; 13289 2; 13390 4; 13489 90;

DEFINE MATERIAL START
ISOTROPIC STEEL
E $2.05 \mathrm{e}+008$
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
ISOTROPIC CONCRETE
E $2.17185 \mathrm{e}+007$
POISSON 0.17
DENSITY 23.5616
ALPHA 1e-005
DAMP 0.05
END DEFINE MATERIAL
MEMBER PROPERTY INDIAN

9 TO 12 PRIS YD 0.3 ZD 0.3
MEMBER PROPERTY INDIAN
20232629323538414447505356596265687174778083868992 9598101104107110113116119122125128131134 PRIS YD 0.03 ZD 0.03 5 TO 8 TABLE ST ISJC150

1315 TO 19212224252728303133343637394042434546484951 52545557586061636466676970727375767879818284858788 90919394969799100102103105106108109111112114115117118 120121123124126127129130132133 TABLE ST ISA90X90X8 CONSTANTS

BETA 315 MEMB 1317192022232526282931323435373840414344

46474950525355565859616264656768707173747677798082 -
8385868889919294959798100101103104106107109110112113 -
115116118119121122124125127128130131133134
BETA 90 MEMB 78
BETA 270 MEMB 56
MATERIAL STEEL ALL
MATERIAL CONCRETE MEMB 9 TO 12

SUPPORTS

9 TO 12 FIXED
LOAD 1 LOADTYPE None TITLE LOAD CASE 1
SELFWEIGHT Y-1 LIST 5 TO 1316 TO 134

FLOOR LOAD

YRANGE 0 0.3 FLOAD -6 XRANGE 0 1.5 ZRANGE 02 GY
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
CHECK CODE MEMB 5 TO 81315 TO 134
PARAMETER 2
CODE IS800 LSD

STEEL TAKE OFF LIST 5 TO 81315 TO 134
PERFORM ANALYSIS
FINISH

2. MODEL-2

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 02-Apr-15
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
$1000 ; 2002 ; 31.500 ; 41.502 ; 50-0.30 ; 60-0.32 ; 70.75-0.30$;
80.75 -0.3 2; 90 -0.8 0; 100 -0.8 2; 110.75 -0.8 0; 120.75 -0.8 2;
$1110.7500 ; 1120.7502$ 2; 11300 1.95; 1141.50 1.95; 11500 1.9;
1161.50 1.9; 117001.85 ; 1181.501 .85 ; 11900 1.8; 1201.50 1.8;
121001.75 ; 1221.501 .75 ; 123001.7 ; 1241.501 .7 ; 125001.65 ;
$1261.501 .65 ; 12700$ 1.6; 1281.50 1.6; 12900 1.55; 1301.50 1.55;
13100 1.5; 1321.50 1.5; 13300 1.45; 1341.50 1.45; 13500 1.4;
1361.50 1.4; 13700 1.35; 1381.50 1.35; 13900 1.3; 1401.50 1.3; 14100 1.25; 1421.50 1.25; 14300 1.2; 1441.50 1.2; 14500 1.15; 1461.501 .15 ; 14700 1.1; 1481.50 1.1; 14900 1.05; 1501.501 .05 ; 151001 ; 1521.501 ; 153000.95 ; 1541.500 .95 ; 155000.9 ; 1561.500 .9 ; 157000.85 ; 1581.500 .85 ; 159000.8 ; 1601.500 .8 ; 161000.75 ; 1621.500 .75 ; 163000.7 ; 164 1.5 00.7 ; 165000.65 ;
1661.500 .65 ; 167000.6 ; 1681.500 .6 ; 169000.55 ; 1701.500 .55 ; 171000.5 ; 1721.500 .5 ; 173000.45 ; 1741.500 .45 ; 175000.4 ; $1761.500 .4 ; 177000.350001 ; 1781.500 .350001$; 179000.300001 ; 1801.500 .300001 ; 181000.250001 ; 1821.500 .250001 ; 183000.200001 ; 1841.500 .200001 ; 185000.150001 ; 1861.500 .150001 ; 187000.100001 ; $1881.500 .100001 ; 189000.0500008 ; 1901.500 .0500008$;

MEMBER INCIDENCES

51 5; 62 6; 7111 7; 8112 8; 95 9; 106 10; 117 11; 128 12; 164111 3; 1668 4; 1673 7; 1681 189; 1693 190; 171113 2; 172114 4; 173113114 ;
174115 113; 175116 114; 176115 116; 177117 115; 178118 116; 179117118 ; 180119 117; 181120 118; 182119 120; 183121 119; 184122 120; 185121 122; 186123 121; 187124 122; 188123 124; 189125 123; 190126 124; 191125 126; 192127 125; 193128 126; 194127 128; 195129 127; 196130 128; 197129 130; 198131 129; 199132 130; 200131 132; 201133 131; 202134 132; 203133 134; 204135 133; 205136 134; 206135 136; 207137 135; 208138 136; 209137 138; 210139 137; 211140 138; 212139 140; 213141 139; 214142 140; 215141 142; 216143 141; 217144 142; 218143 144; 219145 143; 220146 144; 221145 146; 222147 145; 223148 146; 224147 148; 225149 147; 226150 148; 227149 150; 228151 149; 229152 150; 230151 152; 231153 151; 232154 152; 233153 154; 234155 153; 235156 154; 236155 156; 237157 155; 238158 156; 239157 158; 240159 157; 241160 158; 242159 160; 243161 159; 244162 160; 245161 162; 246163 161; 247164 162; 248163 164; 249165 163; 250166 164; 251165 166; 252167 165; 253168 166; 254167 168; 255169 167; 256170 168; 257169 170; 258171 169; 259172 170; 260171 172; 261173 171; 262174 172; 263173 174; 264175 173; 265176 174; 266175 176; 267177 175; 268178 176; 269177 178; 270179 177; 271180 178; 272179 180; 273181 179; 274182 180; 275181 182; 276183 181; 277184 182; 278183 184; 279185 183; 280186 184; 281185 186; 282187 185; 283188 186; 284187 188; 285189 187; 286190 188; 287189 190; 2881 111; 2894 112; 290112 2;

DEFINE MATERIAL START

ISOTROPIC STEEL
E $2.05 \mathrm{e}+008$
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
ISOTROPIC CONCRETE

E $2.17185 \mathrm{e}+007$
POISSON 0.17
DENSITY 23.5616
ALPHA 1e-005
DAMP 0.05
END DEFINE MATERIAL
MEMBER PROPERTY INDIAN
9 TO 12 PRIS YD 0.3 ZD 0.3
MEMBER PROPERTY INDIAN
5 TO 8 TABLE ST ISJC150
MEMBER PROPERTY INDIAN
173176179182185188191194197200203206209212215218221224227

230233236239242245248251254257260263266269272275278281284

287 PRIS YD 0.03 ZD 0.03
164166 TO 169171172174175177178180181183184186187189190192

193195196198199201202204205207208210211213214216217219220

222223225226228229231232234235237238240241243244246247249

250252253255256258259261262264265267268270271273274276277

279280282283285286288 TO 290 TABLE ST ISA90X90X8 CONSTANTS

BETA 135 MEMB 166167
BETA 180 MEMB 8
BETA 0 MEMB 7
BETA 270 MEMB 56

BETA 315 MEMB 164169172175178181184187190193196199202205 208-

211214217220223226229232235238241244247250253256259262265

268271274277280283286288 TO 290
MATERIAL STEEL MEMB 5 TO 8164166 TO 169171 TO 290
MATERIAL CONCRETE MEMB 9 TO 12
SUPPORTS
9 TO 12 FIXED
LOAD 1 LOADTYPE None TITLE LOAD CASE 1
SELFWEIGHT Y-1 LIST 5 TO 12164166 TO 169171 TO 290
FLOOR LOAD
YRANGE 0 0.3 FLOAD -6 XRANGE 0 1.5 ZRANGE 02 GY
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
CHECK CODE MEMB 5 TO 8164166 TO 169171 TO 290
PARAMETER 2
CODE IS800 LSD
GROUP MEMB 5 TO 8
PARAMETER 3
CODE IS800 LSD
GROUP MEMB 164
PARAMETER 4
CODE IS800 LSD
GROUP MEMB 166167
PARAMETER 7
CODE IS800 LSD
STEEL TAKE OFF LIST 5 TO 8164166 TO 169171 TO 290
PERFORM ANALYSIS
FINISH

3. MODEL-3

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 02-Apr-15

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

$1000 ; 200$ 2; 31.500 ; 41.50 2; 50 -0.3 0; 60 -0.3 2; 90 - 0.80 ; 100 -0.8 2; 1130 -1.5 0; $1140-1.52 ; 115000.05 ; 1161.500 .05$;
117000.1 ; 1181.500 .1 ; 119000.15 ; 1201.500 .15 ; 121000.2 ;
1221.500 .2 ; 123000.25 ; 1241.500 .25 ; 125000.3 ; 1261.500 .3 ;
127000.35 ; 1281.500 .35 ; 129000.4 ; 1301.500 .4 ; 131000.45 ;
$1321.500 .45 ; 133000.5 ; 1341.500 .5 ; 135000.55$; 1361.500 .55 ;
137000.6 ; 1381.500 .6 ; 139000.65 ; 1401.500 .65 ; 141000.7 ;
1421.500 .7 ; 143000.75 ; 1441.500 .75 ; 145000.8 ; 1461.500 .8 ;
147000.85 ; 1481.500 .85 ; 149000.9 ; 1501.500 .9 ; 151000.95 ;
$1521.500 .95 ; 153001$; 1541.501 ; $155001.05 ; 1561.501 .05$;

15700 1.1; 1581.50 1.1; 15900 1.15; 1601.50 1.15; 16100 1.2;
1621.50 1.2; 163001.25 ; 1641.501 .25 ; 16500 1.3; 1661.50 1.3;
$167001.35 ; 1681.501 .35 ; 169001.4 ; 1701.501 .4$; 171001.45 ;
$1721.501 .45 ; 173001.5 ; 1741.501 .5 ; 175001.55$; 1761.501 .55 ;
$177001.6 ; 1781.501 .6 ; 17900$ 1.65; 1801.50 1.65; 18100 1.7;
1821.501 .7 ; 183001.75 ; 1841.501 .75 ; 185001.8 ; 1861.50 1.8;

18700 1.85; 1881.50 1.85; 18900 1.9; 1901.50 1.9; 191001.95 ;
1921.501 .95 ;

MEMBER INCIDENCES

$515 ; 626 ; 959 ; 10610 ; 1681144 ; 170113$ 3; 17113 ; 17224 ;

1731 115; 1743 116; 175115 117; 176116 118; 177115 116; 178117119 ; 179118 120; 180117 118; 181119 121; 182120 122; 183119 120; 184121 123; 185122 124; 186121 122; 187123 125; 188124 126; 189123 124; 190125 127; 191126 128; 192125 126; 193127 129; 194128 130; 195127 128; 196129 131; 197130 132; 198129 130; 199131 133; 200132 134; 201131 132; 202133135 ; 203134 136; 204133 134; 205135 137; 206136 138; 207135 136; 208137 139; 209138 140; 210137 138; 211139 141; 212140 142; 213139 140; 214141 143; 215142 144; 216141 142; 217143 145; 218144 146; 219143 144; 220145 147; 221146 148; 222145 146; 223147 149; 224148 150; 225147 148; 226149 151; 227150 152; 228149 150; 229151 153; 230152 154; 231151 152; 232153155 ; 233154 156; $234153154 ; 235155$ 157; 236156 158; 237155 156; 238157 159; 239158 160; 240157 158; 241159 161; 242160 162; 243159 160; 244161 163; 245162 164; 246161 162; 247163 165; 248164 166; 249163 164; 250165 167; 251166 168; 252165 166; 253167 169; 254168 170; 255167 168; 256169 171;

257170 172; 258169 170; 259171 173; 260172 174; 261171 172; 262173 175; 263174 176; 264173 174; 265175 177; 266176 178; 267175 176; 268177 179; 269178 180; 270177 178; 271179 181; 272180 182; 273179 180; 274181 183; 275182 184; 276181 182; 277183 185; 278184 186; 279183 184; 280185 187; 281186 188; 282185 186; 283187 189; 284188 190; 285187 188; 286189 191; 287190 192; 288189 190; 289191 2; 290192 4; 291191 192;

DEFINE MATERIAL START
ISOTROPIC STEEL

E $2.05 \mathrm{e}+008$

POISSON 0.3

DENSITY 76.8195

ALPHA 1.2e-005

DAMP 0.03
ISOTROPIC CONCRETE

E $2.17185 \mathrm{e}+007$

POISSON 0.17

DENSITY 23.5616

ALPHA 1e-005

DAMP 0.05
END DEFINE MATERIAL

MEMBER PROPERTY INDIAN

910 PRIS YD 0.3 ZD 0.3
MEMBER PROPERTY INDIAN

177180183186189192195198201204207210213216219222225228231

234237240243246249252255258261264267270273276279282285288
-

291 PRIS YD 0.03 ZD 0.03

168170 TO 176178179181182184185187188190191193194196197199 -

200202203205206208209211212214215217218220221223224226227

229230232233235236238239241242244245247248250251253254256

257259260262263265266268269271272274275277278280281283284

286287289290 TABLE ST ISA90X90X8
56 TABLE ST ISJC150
CONSTANTS

BETA 225 MEMB 170

BETA 135 MEMB 168

BETA 270 MEMB 56

BETA 45 MEMB 172173175178181184187190193196199202205208 211214 -

217220223226229232235238241244247250253256259262265268271

274277280283286289

BETA 315 MEMB 171174176177179180182183185186188189191192 194 -

195197198200201203204206207209210212213215216218219221222
-

224225227228230231233234236237239240242243245246248249251

252254255257258260261263264266267269270272273275276278279

281282284285287288290291

MATERIAL STEEL MEMB 56168170 TO 291

MATERIAL CONCRETE MEMB 910

SUPPORTS

910113114 FIXED

LOAD 1 LOADTYPE None TITLE LOAD CASE 1

SELFWEIGHT Y -1 LIST 56910168170 TO 291

FLOOR LOAD

YRANGE 0 0.3 FLOAD -6 XRANGE 0 1.5 ZRANGE 02 GY

PERFORM ANALYSIS

PARAMETER 1

CODE IS800 LSD

CHECK CODE MEMB 56168170 TO 291

PARAMETER 2
CODE IS800 LSD
GROUP MEMB 56

PARAMETER 3
CODE IS800 LSD

GROUP MEMB 168170

STEEL TAKE OFF LIST 56168170 TO 291

PERFORM ANALYSIS

FINISH

4. GUARD RAIL

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 13-May-15
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
$1000 ; 200.30 ; 301.30 ; 40.10 .30 ; 50.11 .30 ; 60.20 .30$;
$70.21 .30 ; 80.30 .30 ; 90.31 .30 ; 100.40 .30 ; 110.41 .30$;
$120.50 .30 ; 130.51 .30 ; 140.60 .30 ; 150.61 .30 ; 160.70 .30$;
$170.71 .30 ; 180.80 .30 ; 190.81 .30 ; 200.90 .30 ; 210.91 .30$;
$2210.30 ; 2311.30 ; 241.10 .30 ; 251.11 .30 ; 261.20 .30 ; 271.21 .30 ;$
281.30 .3 0; $291.31 .30 ; 301.40 .30 ; 311.41 .30 ; 321.50 .30$;
$331.51 .30 ; 341.60 .30 ; 351.61 .30 ; 361.70 .30 ; 371.71 .30$;
$381.80 .30 ; 391.81 .30 ; 401.90 .30 ; 411.91 .30 ; 42200 ; 4320.30$;
4421.30 ;

MEMBER INCIDENCES
$112 ; 223 ; 324 ; 435 ; 545 ; 646 ; 757 ; 867 ; 968 ; 1079 ; 1189$;
128 10; $13911 ; 141011 ; 151012 ; 161113 ; 171213 ; 181214 ; 191315$;
2014 15; 2114 16; 2215 17; 2316 17; 2416 18; 2517 19; 2618 19; 2718 20; 2819 21; 2920 21; 302022 ; 3121 23; 3222 23; 3322 24; 3423 25; 352425 ;
3624 26; 3725 27; 3826 27; 3926 28; 4027 29; 4128 29; 4228 30; 4329 31;
4430 31; 4530 32; 4631 33; 4732 33; 4832 34; 4933 35; 5034 35; 513436 ;
5235 37; 5336 37; 5436 38; 5537 39; 5638 39; 5738 40; 5839 41; 594041 ;
6042 43; 6140 43; 6241 44; 6343 44;
DEFINE MATERIAL START
ISOTROPIC STEEL
E $2.05 \mathrm{e}+008$
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
END DEFINE MATERIAL
MEMBER PROPERTY INDIAN
1 TO 4679101213151618192122242527283031333436373940 -
42434546484951525455575860 TO 63 TABLE ST ISA50X50X5
MEMBER PROPERTY INDIAN
581114172023262932353841444750535659 PRIS YD 0.025
CONSTANTS
BETA 45 MEMB 1247101316192225283134374043464952555862
BETA 135 MEMB 369121518212427303336394245485154576061 63

MATERIAL STEEL ALL
SUPPORTS
142 FIXED
LOAD 1 LOADTYPE None TITLE LOAD CASE 1

SELFWEIGHT Y-1 LIST 1 TO 63
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
CHECK CODE ALL
PARAMETER 2
CODE IS800 LSD
STEEL TAKE OFF LIST 1 TO 63
PERFORM ANALYSIS
FINISH

