
 1

A project Report on

File System Simulation

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Ms. Ruchi Verma

By

Parth Gupta (Roll No. 111431)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

 2

Certificate

This is to certify that project report entitled “File System Simulation”, submitted by

Parth Gupta in partial fulfillment for the award of degree of Bachelor of Technology

in Computer Science & Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: 15 May, 2015 Mrs. Ruchi Verma

 Assistant Professor

 3

Acknowledgement

I have taken efforts in this project. However, it would not have been possible without

the kind support and help of many individuals and organizations. I would like to

extend my sincere thanks to all of them.

I am highly indebted to Jaypee University Of Information and Technology for their

guidance and constant supervision as well as for providing necessary information

regarding the project & also for their support in completing the project.

I would like to express my gratitude towards Mrs. Ruchi Verma for her kind co-

operation and encouragement, which help me in completion of this project.

My thanks and appreciations also go to my colleagues in developing the project and

people who have willingly helped me out with their abilities.

 4

Table	
 of	
 Contents

Certificate	
 ..	
 2	

Acknowledgement	
 ..	
 3	

List	
 Of	
 Figures	
 ..	
 6	

List	
 Of	
 tables	
 ...	
 7	

Abstract	
 ..	
 8	

1.	
 INTRODUCTION	
 ..	
 9	

1.1	
 Overview	
 ...	
 9	

1.2	
 Background	
 and	
 Motivation	
 ...	
 9	

1.3	
 Objective	
 ...	
 10	

1.4	
 Methodology	
 ..	
 10	

1.5	
 Requirements	
 ..	
 10	

Hardware	
 requirements	
 ..	
 10	

Software	
 requirements	
 ...	
 11	

2.	
 File	
 System	
 ...	
 12	

2.1	
 Introductions	
 ...	
 12	

2.2	
 Types	
 Of	
 File	
 System	
 ..	
 12	

Disk	
 file	
 systems	
 ..	
 13	

Optical discs	
 ..	
 13	

Flash file systems	
 ..	
 13	

Tape file systems	
 ...	
 13	

Tape	
 formatting	
 ...	
 14	

Database	
 file	
 systems	
 ..	
 14	

Transactional	
 file	
 systems	
 ...	
 14	

Network	
 file	
 systems	
 ...	
 14	

Shared	
 disk	
 file	
 systems	
 ...	
 14	

3.	
 File	
 systems	
 and	
 operating	
 systems	
 ...	
 16	

3.1	
 Introduction	
 ...	
 16	

3.2	
 Unix-­‐like	
 operating	
 systems	
 ...	
 16	

3.3	
 Linux	
 ...	
 19	

3.4	
 Solaris	
 ...	
 19	

3.4	
 OS	
 X	
 ..	
 20	

3.5	
 PC-­‐BSD	
 ..	
 21	

3.6	
 Plan	
 9	
 ..	
 21	

3.7	
 Microsoft	
 Windows	
 ..	
 22	

3.8	
 FAT	
 ...	
 22	

3.9	
 NTFS	
 ..	
 23	

3.10	
 exFAT	
 ...	
 23	

4.	
 Aspects	
 of	
 file	
 systems	
 ...	
 24	

4.1	
 Space	
 management	
 ..	
 24	

4.2	
 Filenames	
 ..	
 25	

4.3	
 Directories	
 ..	
 25	

4.4	
 Metadata	
 ..	
 26	

4.5	
 File	
 system	
 as	
 an	
 abstract	
 user	
 interface	
 ...	
 28	

4.6	
 Utilities	
 ...	
 29	

4.7	
 Restricting	
 and	
 permitting	
 access	
 ..	
 30	

4.8	
 Maintaining	
 integrity	
 ..	
 30	

4.9	
 User	
 data	
 ..	
 31	

4.10	
 Using	
 a	
 file	
 system	
 ...	
 31	

4.11	
 Multiple	
 file	
 systems	
 within	
 a	
 single	
 system	
 ..	
 31	

 5

4.12	
 Design	
 limitations	
 ..	
 32	

5.	
 Techniques	
 for	
 File	
 System	
 Simulation	
 ..	
 34	

5.1	
 INTRODUCTION	
 ...	
 34	

5.2	
 SIMULATOR	
 OVERVIEW	
 ...	
 34	

5.3	
 Workload	
 Traces	
 ..	
 36	

5.4	
 Metadata	
 Snapshot	
 ...	
 37	

5.5	
 Scaffolding	
 ...	
 38	

5.6	
 Disk	
 simulator	
 ...	
 39	

5.7	
 File	
 system	
 simulator	
 ..	
 40	

5.8	
 Implementation	
 and	
 validation	
 ...	
 42	

5.9	
 Analysis:	
 detail	
 and	
 complexity	
 versus	
 efficiency	
 ...	
 43	

5.10	
 MODELING	
 THE	
 DISK	
 ..	
 44	

5.11	
 MODELING	
 THE	
 FILE	
 SYSTEM	
 ..	
 47	

6.	
 CODE	
 ..	
 49	

6.1	
 Main	
 Functioality	
 ..	
 49	

6.2	
 Kernal	
 Functionality	
 ..	
 57	

7.	
 RUNNING	
 PROGRAM	
 SNIPPETS	
 ...	
 58	

8.	
 BIBLIOGRAPHY	
 ..	
 61	

 6

List Of Figures

Figure 1: Example of slack space ... 25	

Figure 2: Simulator Framework .. 35	

Figure 3: Major Componenets of the disk model. .. 45	

 7

List Of tables

Table 1: Hardware Requirements ... 25	

Table 2: Software Requirements ... 35	

 8

Abstract

The project involves creation of a virtual file system. The project would require

creation and manipulation of various data structures to store the contents of the file

system. There should be a programmer-level library of functions (API) like

my_create, my_delete, my_open, my_close, my_read, my_write, etc to simulate file

system operations. The APIs will work on this simulated file system. The file system

can model an existing system such as Unix/Windows or you can invent your own.

Provide a programmer-level library of functions (API) like my_create, my_delete,

my_open, my_close, my_read, my_write, etc to simulate file system operations. The

APIs will work on a simulated file system. You could either model your file system

on an existing system (e.g. Unix, Dos, etc) or invent your own. Your system should

provide support for directory hierarchies.

 You should allocate a large file on the actual file system, and treat it as a virtual disk

for your file system simulation. In order to implement your API, you would create

and manipulate various data structures on your virtual disk to create and manage your

file system. For manipulating your file system's data on the virtual disk, you can use

C file functions such as fopen, fread, fwrite or corresponding java functions.

For demonstration of the use of your APIs, you will need to write simple user level

commands or small programs that use your APIs. The commands should allow

navigation of this file system and creation/removal/editing of entries in the file

system. A command for listing the contents of a particular node in the file system is

also required at a minimum.

You need to implement only one mechanism each for free-space management, data

access, and some simple security mechanism, but you must do the analysis for how it

compares with other alternative strategies for the same.

The file should support a hierarchical organization of data.

 9

1. INTRODUCTION

1.1 Overview

This report discusses the result of the work done in development of a "File System

Simulator" on Java Platform. It is a final year project going in Computer Science

Department, Jaypee University Of Information and Technology and aims at the

development of an application framework for providing a common platform for

facilitating the use of methodological approach, integration of various tools developed

during the execution of the project.

1.2 Background and Motivation

As processors, memories, and networks continue to speed up relative to secondary

storage, file and disk systems have increasingly become the focus of attention. The

Berkeley Log-structured File System (LFS),1 Redundant Arrays of Independent Disks

(RAID),2 and log-based fault tolerant systems3,4 are some well-known examples of the

newer innovative designs. Analysis of these systems has exposed many subtleties that

affect performance. Current technology trends lead us to believe that file system and

disk system design and analysis will continue to be one of the key areas in computer

system design.

Typical performance studies of file systems involve the control of three distinct but

related aspects: the disk, the file system, and the workload. In each of these areas,

simple models trade off accuracy for modeling ease or tractability. Although useful

early results can come from less detailed models with modest effort, these are no

longer sufficient when more careful comparisons are desired. Indeed, back-of-the-

envelope calculations or simple modeling of the software and/or the disk hardware can

yield results that are contrary to real-life performance. We cite below some cases in

point, where lack of detail or accuracy in the models led to predictions that turned out

to be at variance with actual performance.

 10

1.3 Objective

The final goal of the project was twofold.

1. An Integrated Framework was required for interaction with the various tools (like

Software/Hardware Estimation, Partitioning, Synthesis tools etc.) with the platform

specification being done in the application itself.

2. Based on the final platform configuration and bindings, an Analysis and

Visualization framework was required for getting performance metrics of the system

and for visualization of the analysis results and the target platform.

Along with above main goals , capability to design the target platform manually was

also desire

1.4 Methodology

To implement the above goals , the following methodology needs to be followed :

1. Specifying the Application and various components of the Architecture.

2. Specifying the bindings between the tasks and the resources either manually or by

the design tools.

3. Specifying the port interconnections between the resources.

4. Analysis : Extracting the data required for analysis and the doing the analysis.

1.5 Requirements

Hardware requirements

 11

Number Description Alternatives (If available)

1 PC with 2 GB hard-disk

and 256 MB RAM

Not-Applicable

Software requirements

Number Description Alternatives (If available)

1 Unix/Linux Windows

2 C/C++/Java compiler Not Applicable

 12

2. File System

2.1 Introductions

A file system (or filesystem) is used to control how data is stored and retrieved.

Without a file system, information placed in a storage area would be one large body

of data with no way to tell where one piece of information stops and the next begins.

By separating the data into individual pieces, and giving each piece a name, the

information is easily separated and identified. Taking its name from the way paper-

based information systems are named, each group of data is called a "file". The

structure and logic rules used to manage the groups of information and their names is

called a "file system".

There are many different kinds of file systems. Each one has different structure and

logic, properties of speed, flexibility, security, size and more. Some file systems have

been designed to be used for specific applications. For example, the ISO 9660 file

system is designed specifically for optical discs.

File systems can be used on many different kinds of storage devices. Each storage

device uses a different kind of media. The most common storage device in use today

is a hard drive whose media is a disc that has been coated with a magnetic film. The

film has ones and zeros 'written' on it sending electrical pulses to a magnetic "read-

write" head. Other media that are used are magnetic tape, optical disc, and flash

memory. In some cases, the computer's main memory (RAM) is used to create a

temporary file system for short term use.

Some file systems are used on local data storage devices;[1] others provide file access

via a network protocol (for example, NFS,[2] SMB, or 9P clients). Some file systems

are "virtual", in that the "files" supplied are computed on request (e.g. procfs) or are

merely a mapping into a different file system used as a backing store. The file system

manages access to both the content of files and the metadata about those files. It is

responsible for arranging storage space; reliability, efficiency, and tuning with regard

to the physical storage medium are important design considerations.

2.2 Types Of File System

 13

Disk file systems

A disk file system takes advantages of the ability of disk storage media to randomly

address data in a short amount of time. Additional considerations include the speed of

accessing data following that initially requested and the anticipation that the following

data may also be requested. This permits multiple users (or processes) access to

various data on the disk without regard to the sequential location of the data.

Examples include FAT (FAT12, FAT16, FAT32), exFAT, NTFS, HFS and HFS+,

HPFS,UFS, ext2, ext3, ext4, XFS, btrfs, ISO 9660, Files-11, Veritas File System,

VMFS, ZFS, ReiserFS and UDF. Some disk file systems are journaling file systems

orversioning file systems.

Optical discs

ISO 9660 and Universal Disk Format (UDF) are two common formats that

target Compact Discs, DVDs and Blu-ray discs. Mount Rainier is an extension to

UDF supported since 2.6 series of the Linux kernel and since Windows Vista that

facilitates rewriting to DVDs.

Flash file systems

A flash file system considers the special abilities, performance and restrictions of flash

memory devices. Frequently a disk file system can use a flash memory device as the

underlying storage media but it is much better to use a file system specifically

designed for a flash device.

Tape file systems

A tape file system is a file system and tape format designed to store files on tape in a

self-describing form. Magnetic tapes are sequential storage media with significantly

longer random data access times than disks, posing challenges to the creation and

efficient management of a general-purpose file system.

 14

Tape formatting

Writing data to a tape is often a significantly time-consuming process that may take

several hours. Similarly, completely erasing or formatting a tape can also take several

hours. With many data tape technologies it is not necessary to format the tape before

over-writing new data to the tape. This is due to the inherently destructive nature of

overwriting data on sequential media.

Database file systems

Another concept for file management is the idea of a database-based file system.

Instead of, or in addition to, hierarchical structured management, files are identified

by their characteristics, like type of file, topic, author, or similar rich metadata.

Transactional file systems

Some programs need to update multiple files "all at once". For example, a software

installation may write program binaries, libraries, and configuration files. If the

software installation fails, the program may be unusable. If the installation is

upgrading a key system utility, such as the command shell, the entire system may be

left in an unusable state.

Network file systems

A network file system is a file system that acts as a client for a remote file access

protocol, providing access to files on a server. Examples of network file systems include

clients for the NFS, AFS, SMB protocols, and file-system-like clients

for FTP and WebDAV.

Shared disk file systems

A shared disk file system is one in which a number of machines (usually servers) all have

access to the same external disk subsystem (usually a SAN). The file system arbitrates

access to that subsystem, preventing write collisions. Examples include GFS2 from Red

 15

Hat, GPFS from IBM, SFS from DataPlow, CXFS from SGI and StorNext from Quantum

Corporation.

 16

3. File systems and operating systems

3.1 Introduction

Many operating systems include support for more than one file system. Sometimes

the OS and the file system are so tightly interwoven it is difficult to separate out file

system functions.

There needs to be an interface provided by the operating system software between the

user and the file system. This interface can be textual (such as provided by acommand

line interface, such as the Unix shell, or OpenVMS DCL) or graphical (such as

provided by a graphical user interface, such as file browsers). If graphical, the

metaphor of the folder, containing documents, other files, and nested folders is often

used (see also: directory and folder).

3.2 Unix-like operating systems

Unix-like operating systems create a virtual file system, which makes all the files

on all the devices appear to exist in a single hierarchy. This means, in those

systems, there is one root directory, and every file existing on the system is

located under it somewhere. Unix-like systems can use a RAM disk or network

shared resource as its root directory.

Unix-like systems assign a device name to each device, but this is not how the

files on that device are accessed. Instead, to gain access to files on another device,

the operating system must first be informed where in the directory tree those files

should appear. This process is called mounting a file system. For example, to

access the files on a CD-ROM, one must tell the operating system "Take the file

system from this CD-ROM and make it appear under such-and-such directory".

The directory given to the operating system is called the mount point – it might,

for example, be /media. The /media directory exists on many Unix systems (as

specified in theFilesystem Hierarchy Standard) and is intended specifically for use

 17

as a mount point for removable media such as CDs, DVDs, USB drives or floppy

disks. It may be empty, or it may contain subdirectories for mounting individual

devices. Generally, only the administrator (i.e. root user) may authorize the

mounting of file systems.

Unix-like operating systems often include software and tools that assist in the

mounting process and provide it new functionality. Some of these strategies have

been coined "auto-mounting" as a reflection of their purpose.

• In many situations, file systems other than the root need to be available as

soon as the operating system has booted. All Unix-like systems therefore

provide a facility for mounting file systems at boot time. System

administrators define these file systems in the configuration

file fstab (vfstab in Solaris), which also indicates options and mount points.

• In some situations, there is no need to mount certain file systems at boot time,

although their use may be desired thereafter. There are some utilities for Unix-

like systems that allow the mounting of predefined file systems upon demand.

• Removable media have become very common with microcomputer platforms.

They allow programs and data to be transferred between machines without a

physical connection. Common examples include USB flash drives, CD-

ROMs, and DVDs. Utilities have therefore been developed to detect the

presence and availability of a medium and then mount that medium without

any user intervention.

• Progressive Unix-like systems have also introduced a concept

called supermounting; see, for example, the Linux supermount-ng project.

For example, a floppy disk that has been supermounted can be physically

removed from the system. Under normal circumstances, the disk should have

been synchronized and then unmounted before its removal. Provided

synchronization has occurred, a different disk can be inserted into the drive.

The system automatically notices that the disk has changed and updates the

mount point contents to reflect the new medium.

• An automounter will automatically mount a file system when a reference is

made to the directory atop which it should be mounted. This is usually used

for file systems on network servers, rather than relying on events such as the

 18

insertion of media, as would be appropriate for removable media.

Unix-like operating systems create a virtual file system, which makes all the files

on all the devices appear to exist in a single hierarchy. This means, in those

systems, there is one root directory, and every file existing on the system is

located under it somewhere. Unix-like systems can use a RAM disk or network

shared resource as its root directory.

Unix-like systems assign a device name to each device, but this is not how the

files on that device are accessed. Instead, to gain access to files on another device,

the operating system must first be informed where in the directory tree those files

should appear. This process is called mounting a file system. For example, to

access the files on a CD-ROM, one must tell the operating system "Take the file

system from this CD-ROM and make it appear under such-and-such directory".

The directory given to the operating system is called the mount point – it might,

for example, be /media. The /media directory exists on many Unix systems (as

specified in theFilesystem Hierarchy Standard) and is intended specifically for use

as a mount point for removable media such as CDs, DVDs, USB drives or floppy

disks. It may be empty, or it may contain subdirectories for mounting individual

devices. Generally, only the administrator (i.e. root user) may authorize the

mounting of file systems.

Unix-like operating systems often include software and tools that assist in the

mounting process and provide it new functionality. Some of these strategies have

been coined "auto-mounting" as a reflection of their purpose.

• In many situations, file systems other than the root need to be available as

soon as the operating system has booted. All Unix-like systems therefore

provide a facility for mounting file systems at boot time. System

administrators define these file systems in the configuration

file fstab (vfstab in Solaris), which also indicates options and mount points.

• In some situations, there is no need to mount certain file systems at boot time,

although their use may be desired thereafter. There are some utilities for Unix-

like systems that allow the mounting of predefined file systems upon demand.

• Removable media have become very common with microcomputer platforms.

They allow programs and data to be transferred between machines without a

 19

physical connection. Common examples include USB flash drives, CD-

ROMs, and DVDs. Utilities have therefore been developed to detect the

presence and availability of a medium and then mount that medium without

any user intervention.

• Progressive Unix-like systems have also introduced a concept

called supermounting; see, for example, the Linux supermount-ng project.

For example, a floppy disk that has been supermounted can be physically

removed from the system. Under normal circumstances, the disk should have

been synchronized and then unmounted before its removal. Provided

synchronization has occurred, a different disk can be inserted into the drive.

The system automatically notices that the disk has changed and updates the

mount point contents to reflect the new medium.

• An automounter will automatically mount a file system when a reference is

made to the directory atop which it should be mounted. This is usually used

for file systems on network servers, rather than relying on events such as the

insertion of media, as would be appropriate for removable media.

3.3 Linux

Linux supports many different file systems, but common choices for the system disk

on a block device include the ext* family (such as ext2, ext3 and ext4), XFS,

JFS,ReiserFS and btrfs. For raw flash without a flash translation layer (FTL) or

Memory Technology Device (MTD), there is UBIFS, JFFS2, and YAFFS, among

others.SquashFS is a common compressed read-only file system.

3.4 Solaris

The Sun Microsystems Solaris operating system in earlier releases defaulted to (non-

journaled or non-logging) UFS for bootable and supplementary file systems. Solaris

defaulted to, supported, and extended UFS.

 20

Support for other file systems and significant enhancements were added over time,

including Veritas Software Corp. (Journaling) VxFS, Sun Microsystems

(Clustering)QFS, Sun Microsystems (Journaling) UFS, and Sun Microsystems (open

source, poolable, 128 bit compressible, and error-correcting) ZFS.

Kernel extensions were added to Solaris to allow for bootable

Veritas VxFS operation. Logging or Journaling was added to UFS in Sun's Solaris 7.

Releases of Solaris 10, Solaris Express, OpenSolaris, and other open source variants

of the Solaris operating system later supported bootable ZFS.

Logical Volume Management allows for spanning a file system across multiple

devices for the purpose of adding redundancy, capacity, and/or throughput. Legacy

environments in Solaris may use Solaris Volume Manager (formerly known

as Solstice DiskSuite). Multiple operating systems (including Solaris) may use Veritas

Volume Manager. Modern Solaris based operating systems eclipse the need for

Volume Management through leveraging virtual storage pools in ZFS.

3.4 OS X

OS X uses a file system inherited from classic Mac OS called HFS Plus. Apple also

uses the term "Mac OS Extended” HFS Plus is a metadata-rich and case-preserving

but (usually) case-insensitive file system. Due to the Unix roots of OS X, Unix

permissions were added to HFS Plus. Later versions of HFS Plus added journaling to

prevent corruption of the file system structure and introduced a number of

optimizations to the allocation algorithms in an attempt to defragment files

automatically without requiring an external defragmenter.

Filenames can be up to 255 characters. HFS Plus uses Unicode to store filenames. On

OS X, the file type can come from the type code, stored in file's metadata, or the

filename extension.

HFS Plus has three kinds of links: Unix-style hard links, Unix-style symbolic links

and aliases. Aliases are designed to maintain a link to their original file even if they

are moved or renamed; they are not interpreted by the file system itself, but by the

File Manager code in user land.

 21

OS X also supported the UFS file system, derived from the BSD Unix Fast File

System via Next STEP. However, as of Mac OS X Leopard, OS X could no longer be

installed on a UFS volume, nor can a pre-Leopard system installed on a UFS volume

be upgraded to Leopard. As of Mac OS X Lion UFS support was completely dropped.

Newer versions of OS X are capable of reading and writing to the legacy FAT file

systems (16 & 32) common on Windows. They are also capable of reading the

newerNTFS file systems for Windows. In order to write to NTFS file systems on OS

X versions prior to 10.6 (Snow Leopard) third party software is necessary. Mac OS X

10.6 (Snow Leopard) and later allows writing to NTFS file systems, but only after a

non-trivial system setting change (third party software exists that automates this).

3.5 PC-BSD

PC-BSD is a desktop version of FreeBSD, which inherits FreeBSD's ZFS support,

similarly to FreeNAS. The new graphical installer of PC-BSD can handle / (root) on

ZFS and RAID-Z pool installs and disk encryption using Geli right from the start in

an easy convenient (GUI) way. The current PC-BSD 9.0+ 'Isotope Edition' has ZFS

filesystem version 5 and ZFS storage pool version 28.

3.6 Plan 9

Plan 9 from Bell Labs treats everything as a file, and accessed as a file would be (i.e.,

no ioctl or mmap): networking, graphics, debugging, authentication, capabilities,

encryption, and other services are accessed via I-O operations on file descriptors.

The 9P protocol removes the difference between local and remote files.

These file systems are organized with the help of private, per-process namespaces,

allowing each process to have a different view of the many file systems that provide

resources in a distributed system.

The Inferno operating system shares these concepts with Plan 9.

 22

3.7 Microsoft Windows

Windows makes use of the FAT, NTFS, exFAT and ReFS file systems (the last of

these is only supported and usable in Windows Server 2012; Windows cannot boot

from it).

Windows uses a drive letter abstraction at the user level to distinguish one disk or

partition from another. For example, the path C:\WINDOWS represents a

directory WINDOWS on the partition represented by the letter C. Drive C: is most

commonly used for the primary hard disk partition, on which Windows is usually

installed and from which it boots. This "tradition" has become so firmly ingrained that

bugs exist in many applications which make assumptions that the drive that the

operating system is installed on is C. The use of drive letters, and the tradition of

using "C" as the drive letter for the primary hard disk partition, can be traced to MS-

DOS, where the letters A and B were reserved for up to two floppy disk drives. This

in turn derived from CP/M in the 1970s, and ultimately from IBM's CP/CMS of 1967.

3.8 FAT

The family of FAT file systems is supported by almost all operating systems for

personal computers, including all versions of Windows and MS-

DOS/PC DOS and DR-DOS. (PC DOS is an OEM version of MS-DOS, MS-DOS

was originally based on SCP's 86-DOS. DR-DOS was based on Digital

Research's Concurrent DOS, a successor of CP/M-86.) The FAT file systems are

therefore well suited as a universal exchange format between computers and devices

of most any type and age.

The FAT file system traces its roots back to an (incompatible) 8-bit FAT precursor

in Standalone Disk BASIC and the short-lived MDOS/MIDAS project.

Over the years, the file system has been expanded from FAT12 to FAT16 and FAT32.

Various features have been added to the file system including subdirectories, code

page support, extended attributes, and long filenames. Third parties such as Digital

Research have incorporated optional support for deletion tracking, and

volume/directory/file-based multi-user security schemes to support file and directory

 23

passwords and permissions such as read/write/execute/delete access rights. Windows

does not support most of these extensions.

The FAT12 and FAT16 file systems had a limit on the number of entries in the root

directory of the file system and had restrictions on the maximum size of FAT-

formatted disks or partitions.

FAT32 addresses the limitations in FAT12 and FAT16, except for the file size limit of

close to 4 GB, but it remains limited compared to NTFS.

FAT12, FAT16 and FAT32 also have a limit of eight characters for the file name, and

three characters for the extension (such as .exe). This is commonly referred to as

the 8.3 filename limit. VFAT, an optional extension to FAT12, FAT16 and FAT32,

introduced in Windows 95 and Windows NT 3.5, allowed long file names (LFN) to

be stored in the FAT file system in a backwards-compatible fashion.

3.9 NTFS

NTFS, introduced with the Windows NT operating system in 1993, allowed ACL-

based permission control. Other features also supported by NTFS include hard links,

multiple file streams, attribute indexing, quota tracking, sparse files, encryption,

compression, and reparse points (directories working as mount-points for other file

systems, symlinks, junctions, remote storage links).

3.10 exFAT

exFAT is a proprietary and patent-protected file system with certain advantages over

NTFS with regard to file system overhead.

exFAT is not backward compatible with FAT file systems such as FAT12, FAT16 or

FAT32. The file system is supported with newer Windows systems, such as Windows

Server 2003, Windows Vista, Windows 2008, Windows 7, Windows 8, and more

recently, support has been added for Windows XP.[20]

exFAT is supported in Mac OS X starting with version 10.6.5 (Snow

Leopard).[19] Support in other operating systems is sparse since Microsoft has not

published the specifications of the file system and implementing support for exFAT

requires a license.

 24

4. Aspects of file systems

4.1 Space management

Example of slack space, demonstrated with 4,096-byte NTFS clusters: 100,000 files,

each 5 bytes per file, equals 500,000 bytes of actual data, but requires 409,600,000

bytes of disk space to store

File systems allocate space in a granular manner, usually multiple

physical units on the device. The file system is responsible for organizing

files and directories, and keeping track of which areas of the media

belong to which file and which are not being used. For example, in Apple

DOS of the early 1980s, 256-byte sectors on 140 kilobyte floppy disk

used a track/sector map.

This results in unused space when a file is not an exact multiple of the

allocation unit, sometimes referred to as slack space. For a 512-byte

allocation, the average unused space is 256 bytes. For 64 KB clusters, the

average unused space is 32 KB. The size of the allocation unit is chosen

when the file system is created. Choosing the allocation size based on the

average size of the files expected to be in the file system can minimize

the amount of unusable space. Frequently the default allocation may

provide reasonable usage. Choosing an allocation size that is too small

results in excessive overhead if the file system will contain mostly very

large files.

 25

Figure 1: Example of slack space

4.2 Filenames

A filename (or file name) is used to identify a storage location in the file system.

Most file systems have restrictions on the length of filenames. In some file systems,

filenames are not case sensitive (i.e., filenames such as FOO and foo refer to the

same file); in others, filenames are case sensitive (i.e., the names FOO, Fooand foo

refer to three separate files).

Most modern file systems allow filenames to contain a wide range of characters from

the Unicode character set. Most file system interface utilities, however, have

restrictions on the use of certain special characters, disallowing them within filenames

(the file system may use these special characters to indicate a device, device type,

directory prefix, or file type). However, these special characters might be allowed by,

for example, enclosing the filename with double quotes ("). For simplicity, special

characters are generally discouraged within filenames.

4.3 Directories

File systems typically have directories (also called folders) which allow the user to

group files into separate collections. This may be implemented by associating the file

name with an index in a table of contents or an inode in a Unix-like file system.

Directory structures may be flat (i.e. linear), or allow hierarchies where directories

may contain subdirectories. The first file system to support arbitrary hierarchies of

 26

directories was used in the Multics operating system.[3] The native file systems of

Unix-like systems also support arbitrary directory hierarchies, as do, for example,

Apple's Hierarchical File System, and its successor HFS+ in classic Mac OS (HFS+ is

still used in Mac OS X), the FAT file system in MS-DOS 2.0 and later and Microsoft

Windows, the NTFS file system in the Windows NT family of operating systems, and

the ODS-2 (On-Disk Structure-2) and higher levels of the Files-11 file system in

OpenVMS.

File systems typically have directories (also called folders) which allow the user to

group files into separate collections. This may be implemented by associating the file

name with an index in a table of contents or an inode in a Unix-like file system.

Directory structures may be flat (i.e. linear), or allow hierarchies where directories

may contain subdirectories. The first file system to support arbitrary hierarchies of

directories was used in the Multics operating system.[3] The native file systems of

Unix-like systems also support arbitrary directory hierarchies, as do, for example,

Apple's Hierarchical File System, and its successor HFS+ in classic Mac OS (HFS+ is

still used in Mac OS X), the FAT file system in MS-DOS 2.0 and later and Microsoft

Windows, the NTFS file system in the Windows NT family of operating systems, and

the ODS-2 (On-Disk Structure-2) and higher levels of the Files-11 file system in

OpenVMS.

4.4 Metadata

Other bookkeeping information is typically associated with each file within a file

system. The length of the data contained in a file may be stored as the number of

blocks allocated for the file or as a byte count. The time that the file was last modified

may be stored as the file's timestamp. File systems might store the file creation time,

the time it was last accessed, the time the file's metadata was changed, or the time the

file was last backed up. Other information can include the file's device type (e.g.

block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access

permissions and other file attributes (e.g. whether the file is read-only,executable,

etc.).

 27

A file system stores all the metadata associated with the file—including the file name,

the length of the contents of a file, and the location of the file in the folder

hierarchy—separate from the contents of the file.

Most file systems store the names of all the files in one directory in one place—the

directory table for that directory—which is often stored like any other file. Many file

systems put only some of the metadata for a file in the directory table, and the rest of

the metadata for that file in a completely separate structure, such as the inode.

Most file systems also store metadata not associated with any one particular file. Such

metadata includes information about unused regions -- free space bitmap, block

availability map—and information about bad sectors. Often such information about an

allocation group is stored inside the allocation group itself.

Additional attributes can be associated on file systems, such as NTFS, XFS, ext2,

ext3, some versions of UFS, and HFS+, using extended file attributes. Some file

systems provide for user defined attributes such as the author of the document, the

character encoding of a document or the size of an image.

Some file systems allow for different data collections to be associated with one file

name. These separate collections may be referred to as streams or forks. Apple has

long used a forked file system on the Macintosh, and Microsoft supports streams in

NTFS. Some file systems maintain multiple past revisions of a file under a single file

name; the filename by itself retrieves the most recent version, while prior saved

version can be accessed using a special naming convention such as "filename;4" or

"filename(-4)" to access the version four saves ago.

See comparison of file systems#Metadata for details on which file systems support

which kinds of metadata.

Other bookkeeping information is typically associated with each file within a file

system. The length of the data contained in a file may be stored as the number of

blocks allocated for the file or as a byte count. The time that the file was last modified

may be stored as the file's timestamp. File systems might store the file creation time,

the time it was last accessed, the time the file's metadata was changed, or the time the

file was last backed up. Other information can include the file's device type (e.g.

block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access

permissions and other file attributes (e.g. whether the file is read-only,executable,

etc.).

 28

A file system stores all the metadata associated with the file—including the file name,

the length of the contents of a file, and the location of the file in the folder

hierarchy—separate from the contents of the file.

Most file systems store the names of all the files in one directory in one place—the

directory table for that directory—which is often stored like any other file. Many file

systems put only some of the metadata for a file in the directory table, and the rest of

the metadata for that file in a completely separate structure, such as the inode.

Most file systems also store metadata not associated with any one particular file. Such

metadata includes information about unused regions -- free space bitmap, block

availability map—and information about bad sectors. Often such information about an

allocation group is stored inside the allocation group itself.

Additional attributes can be associated on file systems, such as NTFS, XFS, ext2,

ext3, some versions of UFS, and HFS+, using extended file attributes. Some file

systems provide for user defined attributes such as the author of the document, the

character encoding of a document or the size of an image.

Some file systems allow for different data collections to be associated with one file

name. These separate collections may be referred to as streams or forks. Apple has

long used a forked file system on the Macintosh, and Microsoft supports streams in

NTFS. Some file systems maintain multiple past revisions of a file under a single file

name; the filename by itself retrieves the most recent version, while prior saved

version can be accessed using a special naming convention such as "filename;4" or

"filename(-4)" to access the version four saves ago.

See comparison of file systems#Metadata for details on which file systems support

which kinds of metadata.

4.5 File system as an abstract user interface

In some cases, a file system may not make use of a storage device but can be used to

organize and represent access to any data, whether it is stored or dynamically

generated (e.g. procfs).

 29

4.6 Utilities

The difference between a utility and a built-in core command function is arbitrary,

depending on the design of the operating system, and on the memory and space

limitations of the hardware. For example, Microsoft MS-DOS uses a utility for

formatting and a built-in command for simple file copying, while in the Apple

DOSformatting is a built-in command and simple file copying is performed by using a

utility.

File systems include utilities to initialize, alter parameters of and remove an instance

of the file system. Some include the ability to extend or truncate the space allocated to

the file system.

Directory utilities may be used to create, rename and delete directory entries, which

are also known as dentries (singular: dentry), and to alter metadata associated with a

directory. Directory utilities may also include capabilities to create additional links to

a directory (hard links in Unix), to rename parent links (".." in Unix-likeoperating

systems),[clarification needed] and to create bidirectional links to files.

File utilities create, list, copy, move and delete files, and alter metadata. They may be

able to truncate data, truncate or extend space allocation, append to, move, and

modify files in-place. Depending on the underlying structure of the file system, they

may provide a mechanism to prepend to, or truncate from, the beginning of a file,

insert entries into the middle of a file or delete entries from a file.

Utilities to free space for deleted files, if the file system provides an undelete

function, also belong to this category.

Some file systems defer operations such as reorganization of free space, secure

erasing of free space, and rebuilding of hierarchical structures by providing utilities to

perform these functions at times of minimal activity. Included in this category is the

infamous defragmentation utility.

Some of the most important features of file system utilities involve supervisory

activities which may involve bypassing ownership or direct access to the underlying

device. These include high-performance backup and recovery, data replication and

reorganization of various data structures and allocation tables within the file system.

 30

4.7 Restricting and permitting access

There are several mechanisms used by file systems to control access to data. Usually

the intent is to prevent reading or modifying files by a user or group of users. Another

reason is to ensure data is modified in a controlled way so access may be restricted to

a specific program. Examples include passwords stored in the metadata of the file or

elsewhere and file permissions in the form of permission bits, access control lists, or

capabilities. The need for file system utilities to be able to access the data at the media

level to reorganize the structures and provide efficient backup usually means that

these are only effective for polite users but are not effective against intruders.

Methods for encrypting file data are sometimes included in the file system. This is

very effective since there is no need for file system utilities to know the encryption

seed to effectively manage the data. The risks of relying on encryption include the

fact that an attacker can copy the data and use brute force to decrypt the data. Losing

the seed means losing the data.

4.8 Maintaining integrity

One significant responsibility of a file system is to ensure that, regardless of the

actions by programs accessing the data, the structure remains consistent. This includes

actions taken if a program modifying data terminates abnormally or neglects to

inform the file system that it has completed its activities. This may include updating

the metadata, the directory entry and handling any data that was buffered but not yet

updated on the physical storage media.

Other failures which the file system must deal with include media failures or loss of

connection to remote systems.

In the event of an operating system failure or "soft" power failure, special routines in

the file system must be invoked similar to when an individual program fails.

The file system must also be able to correct damaged structures. These may occur as a

result of an operating system failure for which the OS was unable to notify the file

system, power failure or reset.

The file system must also record events to allow analysis of systemic issues as well as

problems with specific files or directories.

 31

4.9 User data

The most important purpose of a file system is to manage user data. This includes

storing, retrieving and updating data.

Some file systems accept data for storage as a stream of bytes which are collected and

stored in a manner efficient for the media. When a program retrieves the data it

specifies the size of a memory buffer and the file system transfers data from the media

to the buffer. Sometimes a runtime library routine may allow the user program to

define a record based on a library call specifying a length. When the user program

reads the data the library retrieves data via the file system and returns a record.

Some file systems allow the specification of a fixed record length which is used for all

write and reads. This facilitates updating records.

An identification for each record, also known as a key, makes for a more

sophisticated file system. The user program can read, write and update records

without regard to their location. This requires complicated management of blocks of

media usually separating key blocks and data blocks. Very efficient algorithms can be

developed with pyramid structure for locating records.

4.10 Using a file system

Utilities, language specific run-time libraries and user programs use file system APIs

to make requests of the file system. These include data transfer, positioning, updating

metadata, managing directories, managing access specifications, and removal.

4.11 Multiple file systems within a single system

Frequently retail systems are configured with a single file system occupying the entire

hard disk.

Another approach is to partition the disk so that several file systems with different

attributes can be used. One file system, for use as browser cache, might be configured

 32

with a small allocation size. This has the additional advantage of keeping the frantic

activity of creating and deleting files typical of browser activity in a narrow area of

the disk and not interfering with allocations of other files. A similar partition might be

created for email. Another partition, and file system might be created for the storage

of audio or video files with a relatively large allocation. One of the file systems may

normally be set read-only and only periodically be set writable.

A third approach, which is mostly used in cloud systems, is to use "disk images" to

house additional file systems, with the same attributes or not, within another (host)

file system as a file. A common example is virtualization: one user can run an

experimental Linux distribution (using the ext4 file system) in a virtual machine

under his/her production Windows environment (using NTFS). The ext4 file system

resides in a disk image, which is treated as a file (or multiple files, depending on the

hypervisor and settings) in the NTFS host file system.

Having multiple file systems on a single system has the additional benefit that in the

event of a corruption of a single partition, the remaining file systems will frequently

still be intact. This includes virus destruction of the system partition or even a system

that will not boot. File system utilities which require dedicated access can be

effectively completed piecemeal. In addition, defragmentation may be more effective.

Several system maintenance utilities, such as virus scans and backups, can also be

processed in segments. For example it is not necessary to backup the file system

containing videos along with all the other files if none have been added since the last

backup. As for the image files, one can easily "spin off" differential images which

contain only "new" data written to the master (original) image. Differential images

can be used for both safety concerns (as a "disposable" system - can be quickly

restored if destroyed or contaminated by a virus, as the old image can be removed and

a new image can be created in matter of seconds, even without automated procedures)

and quick virtual machine deployment (since the differential images can be quickly

spawned using a script in batches).

4.12 Design limitations

All file systems have some functional limit that defines the maximum storable data

capacity within that system. These functional limits are a best-guess effort by the

 33

designer based on how large the storage systems are right now and how large storage

systems are likely to become in the future. Disk storage has continued to increase at

near exponential rates (see Moore's law), so after a few years, file systems have kept

reaching design limitations that require computer users to repeatedly move to a newer

system with ever-greater capacity.

File system complexity typically varies proportionally with the available storage

capacity. The file systems of early 1980s home computers with 50 KB to 512 KB of

storage would not be a reasonable choice for modern storage systems with hundreds

of gigabytes of capacity. Likewise, modern file systems would not be a reasonable

choice for these early systems, since the complexity of modern file system structures

would quickly consume or even exceed the very limited capacity of the early storage

systems.

 34

5. Techniques for File System Simulation

5.1 INTRODUCTION

Because file and disk systems are such critical components of modern computer

systems, understanding and improving their performance is of great importance.

Several techniques can be used to assess the performance of these systems, including

abstract performance models, functional simulations, and measurements of a complete

implementation. All have their place; we concentrate here on the use of simulations

for detailed ‘What if?’ performance studies. The main advantage of using abstract

models as opposed to detailed simulation is their ability to provide adequate answers

to many performance questions without the need to represent a great deal of system

detail. However, abstract models make simplifying assumptions about aspects of the

system that may be important, particularly in the later stages of a study when the

design space has been narrowed and subtle issues are being considered. The work we

describe here came about when we were doing some design studies of the interactions

between current file system designs and new disk systems. In this environment, direct

measurement was of course not possible, and we felt that an analytic model would be

inadequate for our needs, at least partly because it would have difficulty representing

the interactions between performance non-linearity’s in the disk system and the file

system layout and request-sequencing policies.

5.2 SIMULATOR OVERVIEW

This section introduces the components that comprise our simulation environment for

file and disk systems. Our approach is to derive workloads from I/O traces gathered

from real systems, and feed these into real file system code sitting on top of a detailed

disk model that has been calibrated against real disks. Additional software, which we

refer to as scaffolding, holds all this together. Figure below shows how these

components interact.

 35

We use the term ‘simulator’ in this paper to refer collectively to all the components

shown on the right side of Figure below, while we use the term ‘file system

simulator’ to refer to the component that mimics just the behavior of the file system

code.

Figure 2: Simulator Framework

As Figure above suggests, we first gather traces from the real system running a real

workload. At beginning of the trace period, we take a snapshot of the file system

metadata on the disk or disks being studied. This is the information kept by the file

system to map <file, offset> pairs into disk block addresses. The trace is optionally

used to derive a set of additional traces. Trace requests are supplied to the simulator.

Within the simulator, the scaffolding component replays these to create a workload

for the file system simulator. The file system simulator, in turn, emits requests to

the disk model, which usually just performs timing calculations. In addition, if the

request is a read to the metadata, the scaffolding intercepts the request and satisfies

 36

it from the previously-recorded snapshot; a metadata write is used to update the

snapshot.

The remainder of this section provides an overview of each simulator component; they

are discussed in greater detail in the subsequent three sections.

5.3 Workload Traces

The accuracy of any performance study depends on both the quality of the model and

on the quality of the workload representation that is used. The two usual sources for

simulation studies are traces and synthetic workload models.

Synthetic workloads are considered more flexible than traces, and do not require

significant storage because they are generated on the fly. However, in order to be

realistic, synthetic workload models tend to be elaborate, difficult to parameterize,

and specific to a single environment. One sample of a synthetic NFS-workload

generator13 uses 24 parameters to describe the workload—a wealth of detail that is not

easy to gather.

Instead, our approach is to use trace-driven workloads, but to extend their utility

through a technique known as bootstrapping, which is described further in the next

section. This allows us to collect a single set of traces, and to generate additional

sets while retaining certain statistical guarantees with respect to the original.

For investigating file systems that do caching, the most useful results are obtained by

tracing requests at the system-call level: byte-aligned reads and writes, plus various

control calls, such as file open and close, change directory, and so on.

We did our work on the HP-UX operating system, a POSIX-compliant Unix� system

that runs on HP 9000 PA-RISC series 800 and series 700 systems.14 The HP-UX

system has a built-in measurement facility that can be used selectively to trace system

events; several other operating systems have similar facilities, or one can be added

relatively easily given access to the system’s source code.

 37

For our case study, we asked the kernel measurement system to gather information

about all file-system related system calls, fork and exit system calls, and context

switches. Together, these allowed our simulation scaffold to replay essentially exactly

the sequence of events that took place in the original system.

There are a few important attributes of such trace-gathering systems for work of

this kind: the traces must be complete (no records must be missed), they must be

accurate (not contain invalid data), they must have precise timestamps (resolution of

a few microseconds is acceptable), and gathering them must not disturb the system

under test very much. The HP-UX trace facility met all these needs well: its

timestamp resolution is 1 µsecond, and the running time for the tests we conducted

increased by less than 5%—at least partly because we did trace compaction and

analysis off-line.

The next section describes one of the contributions of this paper: a method called

‘boot- strapping’ for on-the-fly generation of additional traces from a previously

collected set of traces. However, from the point of view of the simulator itself, each

derived trace is handled the same way, so we will defer further discussion of this

aspect for now.

5.4 Metadata Snapshot

Before tracing is begun, a snapshot is made of the metadata on each of the file

systems used by the workload being traced. This snapshot includes a copy of the file

systems’ naming hierarchy, i.e., the directories, overall size information, and a copy of

the layout information. In our case, the HP-UX file system uses a slightly modified

version of the original 4.2BSD Fast File System,15 so this data included inode and

cylinder-group maps.

The metadata snapshot is a copy of the data needed by the file system itself. The

snapshot allows the scaffolding to provide the file system code under test the same

data that it would have had access to, had it been running on the real system. In

 38

particular, the file system reads the directory data to do name lookups, and uses the

layout information to turn user-level reads and writes into disk operations. As the

simulation progresses, the file system under test modifies the metadata as a result of

trace-driven user-level requests, and the scaffolding faithfully performs the requested

updates so that future requests to the metadata will return the correct data.

Since the snapshot contains no data files, it is of modest size: a few percent of the total

disk

space being simulated. This is possible because we do not simulate the contents of

user-data blocks, just their movement. Accesses to the metadata snapshot by the

simulator scaffolding go though the real file system of the machine used to run the

simulation, and so are subject to caching, which improves the elapsed simulation time.

5.5 Scaffolding

The scaffolding is the glue that binds together the entire simulation. It provides the

following facilities:

1. Lightweight threads, i.e., execution contexts, which are used to simulate processes

making file system calls and the concurrent execution of activities inside our disk

simulator.

2. Time-advance and other mechanisms needed for the discrete-event simulation

being performed.

3. Emulation of the kernel procedures that are accessed by the real file system. For

example,

sleep and wakeup calls are mapped onto synchronization primitives derived from the

underlying lightweight thread library.

4. Software to access the metadata snapshot when requested by the file system code.

5. Software to manage the correct replay of an input trace.

At a high level, the working of the scaffolding is quite straightforward. The

scaffolding uses one lightweight thread to simulate each independent process

encountered in the trace. It then reads trace records that are fed to threads simulating

 39

user processes until the trace is exhausted, or the simulation has reached a sufficiently

stable state that the desired confidence intervals have been achieved.

Each trace record is handed to the thread that is emulating the appropriate process.

Most of these requests are read or write operations, which turn into calls on the file

system code, and perhaps generate one or more simulated disk requests. Whenever the

real process would have spent real time—e.g., while waiting for a disk access to

complete—the thread is blocked, and waits for simulated time to advance to the

appropriate point before it is allowed to proceed again. Once the request has been

completed the thread goes back to wait for the next request for it to simulate.

If the operation being simulated is a fork, a new thread is created and associated with

the child process, which then proceeds to accept and process requests, while the parent

continues. Asynchronous disk requests do not cause the thread to delay.

Occasionally, the metadata snapshot needs to be consulted, and real data needs to be

transferred between the snapshot and the buffer cache used by the file system code

being run in the simulation. This is usually the result of a directory lookup or inode

update. Note that the file system only invokes this mechanism when the needed

metadata is not already in the simulated buffer cache. As a result, most reads and

writes only do simulated data movement.

5.6 Disk simulator

Since we were interested in exploring the interaction between file systems and future

disk designs, we chose to construct a disk model that could easily be tuned to reflect

design changes extrapolated from current performance characteristics. We took some

pains to calibrate this model against current real disks, and in particular, to include the

effects of caching in the disk drive, which prior work had shown to be an important part

of getting good agreement between a model and reality.8,16 As a result, we were able to

achieve differences between the real disk and the modeled one, i.e., the model demerit

figure, of only 5%.8

 40

The first component of our disk model is a buffer cache, which is used to keep track of

data that has been read, read-ahead, or written. Appropriate replacement policies

allow us to alter the behavior of this cache for different experiments. In addition, we

modeled the physical disk mechanism—the rotating media and the moving disk head

and arm—and the DMA engine used to transfer data from the disk cache to and from

the disk-to-host bus. By making each of these lightweight tasks, we were able to

model the overlap between disk accesses and data transfers to and from the host

system that occurs in real disks.

Our model uses replaceable modules for each of these components, so it is relatively

easy

to make changes to explore different design choices. For example, enhancing the disk

model to predict the effects of making its buffer cache non-volatile, to be described in

the case study, took less than a day.

5.7 File system simulator

The other important component we were interested in modeling was the file system.

One approach to modeling a file system is to construct a simplified simulation of the

file system code. By making suitable assumptions, the resulting complexity and

development time could be kept within reasonable bounds. However, this is a process

fraught with difficulties, as our examination of the LFS development process suggests.

Ensuring that the right simplifications are made is difficult, doubly so because the

expectations of the experimenter can often bias the choices in favor of the set of

assumptions made during the design of the file system that is being investigated.

We believe that it is possible to do better. In fact, our approach is to use the real file

system code instead of an imperfect model of it, thereby eliminating any possibility

of incorrect assumptions. To do this, we bring the file system out of its normal

execution environment, which is the operating system kernel or a trusted address

space. We do this by providing a set of scaffolding that looks—as far as the file

system is concerned—just like the kernel environment in which it normally runs,

down to and including the synchronization primitives the code is written to invoke.

The entire ensemble runs as a regular, untrusted, user-level application.

 41

File system designers have used this technique before to run kernel-level code at user-

level to simplify debugging during program development, but not, to our knowledge,

explicitly for performance studies.

Our approach allows the file system implementation and an understanding of its

performance to develop together. For example, in addition to providing functionality

stubs for incomplete

portions of the code, we can provide performance stubs as well. Running the new

design in a user-space scaffolding, as in our approach, combines the advantages of

easier development, faster turnaround time, and more flexible debugging with early

access to performance data.

In the case study we conducted, we used the production HP-UX file system code as

the file system simulator.

The other important component we were interested in modeling was the file system.

One approach to modeling a file system is to construct a simplified simulation of the

file system code. By making suitable assumptions, the resulting complexity and

development time could be kept within reasonable bounds. However, this is a process

fraught with difficulties, as our examination of the LFS development process suggests.

Ensuring that the right simplifications are made is difficult, doubly so because the

expectations of the experimenter can often bias the choices in favor of the set of

assumptions made during the design of the file system that is being investigated.

We believe that it is possible to do better. In fact, our approach is to use the real file

system code instead of an imperfect model of it, thereby eliminating any possibility

of incorrect assumptions. To do this, we bring the file system out of its normal

execution environment, which is the operating system kernel or a trusted address

space. We do this by providing a set of scaffolding that looks—as far as the file

system is concerned—just like the kernel environment in which it normally runs,

down to and including the synchronization primitives the code is written to invoke.

The entire ensemble runs as a regular, untrusted, user-level application.

File system designers have used this technique before to run kernel-level code at user-

level to simplify debugging during program development, but not, to our knowledge,

explicitly for performance studies.

 42

Our approach allows the file system implementation and an understanding of its

performance to develop together. For example, in addition to providing functionality

stubs for incomplete

portions of the code, we can provide performance stubs as well. Running the new

design in a user-space scaffolding, as in our approach, combines the advantages of

easier development, faster turnaround time, and more flexible debugging with early

access to performance data.

In the case study we conducted, we used the production HP-UX file system code as

the file system simulator.

5.8 Implementation and validation

In our implementation, bootstrap generation is done as a three stage software pipeline.

The first stage rolls a die multiple times to choose a set of processes that are to be

included in the bootstrap. The second stage deletes the traces of the processes that are

not part of the bootstrap. The final stage duplicates the traces of processes as

necessary; new process identifiers and sequence numbers are created at this stage.

Recall that creating a bootstrap involves selection with replacement. This process

allows the individual elements to execute independently of one another.

Duplicated records have the same time-stamps as the original records they are derived

from. This could lead to increased contention for file and disk resources. In our

experiments, this has not been a significant issue for the average case behavior

because of the filtering performed by the user-level file cache in the file system

simulation.

For a given trace, we generate multiple bootstraps and run the simulator on each

bootstrap,

and then aggregate the performance data that results across these runs. Bootstrapping

theory tells us that bootstrap distribution of a particular statistic closely approximates

the true, but not directly measurable, distribution of the statistic in the real population.

Thus on the average, the performance of the simulator on the bootstraps will be

similar to what would have been seen if it had been run on real traces, i.e., samples

from the real population.

 43

The entire process of generating bootstraps can be done on-the-fly. It is also

repeatable, if

the same pseudo-random number generator is used for the selection process. This

means that exactly the same bootstraps can be generated several times if so desired,

e.g., for runs with different simulation parameters.

The main value of using bootstrapping in simulation studies is to extend existing trace

data on-the-fly while retaining certain statistical guarantees. As long as the original

trace data.

5.9 Analysis: detail and complexity versus efficiency

We argue here for the use of detailed models for file system and disk system

components. Our contention is that such models lead to increased confidence and

increased accuracy, without an excessive increase in execution time or complexity.

Consider first the degree of detail that is desired in modeling the system. Obviously, if

the real system is available to test, it is usually best to measure that system, since this

minimizes the uncertainty. One of the strengths of our approach is the use of real file

system code as the file system simulator, which removes one major cause of

uncertainty; another is the use of real traces rather than synthetic ones; a third is the

calibration of the disk system against real disks.

Consider next the degree of detail that is required to model the system. Work in disk

drive modeling has shown that detailed models are a necessity there: ignoring caching

effects, which in turn depends on modeling rotation position in the disk, can result in

mean simulated times as much as a factor of two larger than they should be.8 So,

sufficient detail is essential if useful results are to be acquired.

Of course, it is not always possible to determine which features of the model will

prove to be the most important—indeed, these may change as a function of what is

being modeled. For example, a file system that did not make rotational-position

layout optimizations or use the disk’s aggressive write caching would be much less

sensitive to caching effects in the disk. Thus, we believe it prudent to err on the side

of caution.

Finally, consider the cost of detailed models. We believe that the approach we

advocate is not particularly costly: our disk simulator is able to process about 2000

 44

requests per second on a 100 MHz PA-RISC processor; the file system code runs at

full processor speed; and—just as in real life—the metadata snapshot information is

frequently cached by the underlying real file system that the simulator is hosted on.

The result is that the elapsed time for executing the simulations is much less than that

required to execute the real system executing the traced workload. Furthermore, as

processors speed up relative to I/O, this disparity in performance is likely to increase.

A significant benefit of our approach is confidence in the results. In the final stages

of design, omitting a crucial detail may be potentially dangerous. Our approach makes

it easy to construct a detailed model that avoids this pitfall.

We feel the accuracy and confidence offered by our approach far outweigh the small

investment in time to build the scaffolding. This is a one-time cost that can be

amortized over many studies. In our experience, the code to implement a detailed disk

model and the bootstrap generator proved fairly straightforward. By simply dropping

the real file system code into the simulator, our development time for this portion of

our model was zero.

On the other hand, a potential drawback to our scheme is that it assumes the

availability of the file system code. Sometimes this might not be case, e.g., when

designing a new file system from scratch. However, even in these cases, many aspects

of the our system, e.g., the disk model, workload characterization, and parts of the

scaffolding, may be used independently.

5.10 MODELING THE DISK

Although there are some exceptions, much of the prior work on disk modeling has

not accurately reflected the considerable concurrency that occurs in modern disk

drives, nor the actual operational characteristics of the disk itself, including non-linear

seek versus distance times, bus transfer effects, and caching. We endeavored to

address these issues in our model. Its calibration has been described elsewhere; here,

we concentrate on a description of the elements that go to make up the model.

 45

Figure 3: Major Componenets of the disk model.

Figure above shows the components of our model. The major components are as

follows; in our implementation, each is a C++ object:

1. The disk controller is a data structure that binds together the other elements, and

provides a placeholder for them. It also provides the management code for the disk’s

actions, and a number of parameters used to control modeling of aspects like controller

overhead.

2. The disk cache represents the on-board cache memory in the disk. It can be

managed as a simple speed-matching buffer, or segmented and used to cache data

before or after it is explicitly referred to by the host. Here are two examples of the

caching policies that

our model supports. If the disk is idle, and the last request was a read, the controller

may choose to continue doing a speculative read-ahead into the cache in case the host

is making sequential transfers. If the last request is a write, the controller may allow

data transfer across the bus into the disk in parallel with the execution of the last

request; this is known as immediate reporting, and allows efficient writes to

consecutive disk addresses.

 46

3. The disk mechanism task models the rotating media and the disk heads attached

to a moving arm. In practice, most of the code is concerned with translating logical

addresses into physical ones, taking into account details of the disk drive geometry such

as zoning, which allows more sectors on the outer tracks than the inner ones spare

sectors, and head- and track-sector skew, which minimize rotation delays on head and

track-switches.

4. The DMA engine task models the transfer of data across the interface between the

disk and the bus connecting it to the host system. The bus is acquired and released

according to policies determined by the design of the disk controller, parameters that

can be set by the host system, and the availability of data or space in the disk cache.

This allows contention between multiple disks on the same bus to be modeled

correctly.

5. The request-scheduling policy determines, in combination with the cache-

management policies, which request will be executed next if the disk drive has been

passed more than one. For example, this allows the command queueing of SCSI-2 to

be modeled.

We found it convenient to have each task call into the disk controller code to request

work for it to do, blocking if there was none. This allowed each task to be a simple

get-work— execute-it loop, and let us concentrate the complexities of handling the

interactions between the cache management and the request scheduling in one place.

While this model might appear complex, it is in fact quite easy to implement. Our

scaf- folding provides lightweight threads, synchronization objects such as

semaphores, and queue abstractions. The disk elements are implemented as

independent threads that send messages to each other through queues and synchronize

as needed using semaphores. The model has been parameterized for several different

disks using a combination of manufacturer-supplied data and direct measurements.

The simulation is tuned to minimize error in the transfer size range, typically 4–8

kbytes, commonly used by current file system designs. Calibration against real disk

performance under a range of workloads yields excellent agreement, within 5%. The

total code required to achieve this level of accuracy is modest—a little over 3000 lines

of C++. The particular disk model that we describe here has been extensively used in

other studies.

 47

A separate paper8 contains quantitative information of how different portions of the

model contribute to its accuracy and how it compares with typical simple models.

Undoubtedly, an accurate model like ours is more complicated than a simpler, less

accurate, model. On the other hand, we can quantify and bound its deviations from

the behavior of real disks, and we know that it does a good job of modeling

components of disk behavior that are growing in importance as file system designs

attempt to adapt to, and take advantage, of exactly these performance non-linearities.

5.11 MODELING THE FILE SYSTEM

Since we were particularly interested in exploring the effects of changing disk

technology on file system behavior and performance, we developed techniques that

allowed us to use the actual file system code rather than an imperfect abstract model

of it. By comparison with an abstract model, our approach increased our confidence

in the results, and also ensured that we did not have to continually adjust the

parameters of the file system model as a result of different workloads or disk

behaviors.

We found it straightforward to adapt the file system code running in the kernel to run

as an untrusted user application within the simulator. The infrastructure requirements of

a file system are typically straightforward: some multitasking, simple memory

management, and access to physical devices and user memory space—usually

through a very stylized, well-controlled interface. The multitasking support usually

has to include some form of threads and a set of synchronization primitives. All these

are relatively easy to emulate in a user-space scaffolding. For example, the device-

driver routines can easily be provided by a set of procedures that invoke the interface

provided by the disk simulator. Processes in the original system can be treated as

independent threads each with per address space structures imitating those of the

original system. Though we happened to use the HP-UX file system as a base for

our case study, these techniques are applicable in exporting code from other systems

to run at user level.

As a specific example, for the case study to be described later, the entire HP-UX file

system,14 which is derived from the 4.2BSD Fast File System,15 was run at user level

without modification. In this case study, almost all the code in the file system simulator

 48

was taken from a copy of the HP-UX product source code. Additional code that was

needed to make it execute correctly at user level was quite minimal—about 3000

lines of C. This represents code that is implemented once; the actual code for the

various file systems under test runs unchanged. This represents a huge saving in

work, because typical file system implementations are quite large. Most of the code

we added is required to provide the right kernel-level abstractions and the correct

device interface at user level and can be reused without any change to simulate other

file systems.

To validate our file system simulator implementation against a real kernel, we

compared the block requests issued by the real file system running inside the

operating system kernel and the simulator. There were no significant differences

between the two systems on a set of several different programs. This is not too

surprising: we were executing the same code in both cases, but we found that it

inspired our confidence in our results.

 49

6. CODE

6.1 Main Functioality

package filesystem.core;

import java.io.*;

import java.util.Vector;

public class FileSystem

{

 protected static final String FILE_SYSTEM_PATH = "c:\\filesystem.fs";

 private RandomAccessFile raf;

 public static String ERROR = "";

 public FileSystem()

 {

 }

 protected RandomAccessFile OpenFile() throws Exception

 {

 if(raf != null)

 {

 throw new Exception("File is already Opened");

 }

 else

 {

 raf = new RandomAccessFile(FILE_SYSTEM_PATH, "rw");

 return raf;

 }

 }

 public void closeFile() throws Exception

 50

 {

 raf.close();

 raf = null;

 }

 public RandomAccessFile getRAF()

 {

 return raf;

 }

 protected void writeRootNode(Node n, long offset) throws Exception

 {

 raf.seek(offset);

 raf.write(n.getNodeNamebytes());

 raf.writeByte(n.getNodeType());

 raf.writeLong(n.getOffset());

 raf.writeLong(n.getNodeLink());

 raf.writeLong(n.getSizeOnDisk());

 raf.writeLong(n.getFreeSpace());

 raf.writeLong(n.getLastNodeWritten());

 }

 protected Node readRootNode(long offset) throws Exception

 {

 raf.seek(offset);

 Node rootNode = new Node();

 raf.read(rootNode.nodeName);

 rootNode.setNodeType(raf.readByte());

 rootNode.setOffset(raf.readLong());

 rootNode.setNodeLink(raf.readLong());

 rootNode.setSizeOnDisk(raf.readLong());

 rootNode.setFreeSpace(raf.readLong());

 rootNode.setLastNodeWritten(raf.readLong());

 return rootNode;

 }

 51

 protected Object[] readRoots() throws Exception

 {

 Vector v = new Vector();

 Node n = new Node();

 n = readRootNode(0);

 while(n.getNodeLink() != 0)

 {

 v.add(n);

 n = readRootNode(n.getNodeLink());

 }

 if(n.getNodeName() != null || n.getNodeName().length() != 0)

 v.add(n);

 return v.toArray();

 }

 protected void writeDirectory(Node dNode, long offset)throws Exception

 {

 raf.seek(offset);

 raf.write(dNode.getNodeNamebytes());

 raf.writeByte(dNode.getNodeType());

 raf.writeLong(dNode.getOffset());

 raf.writeLong(dNode.getNodeLink());

 raf.writeByte(dNode.getStatus());

 raf.writeLong(dNode.getChildNode());

 }

 protected byte getNodeType(long offset)throws Exception

 {

 raf.seek(offset);

 raf.skipBytes(Node.MAX_NODE_LENGTH);

 byte b = raf.readByte();

 return b;

 52

 }

//this method will either return directory or file depends upon when it finds

 protected Node readNode(long offset) throws Exception

 {

 Node n = new Node();

 if (getNodeType(offset)==Kernel.DIRECTORY)

 {

 n = readDirectory(offset);

 }

 else if(getNodeType(offset)==Kernel.FILE)

 {

 //read file code goes here

 n = readFile(offset);

 }

 return n;

 }

 //return true if there is no file or directory exists in the root

 protected boolean isRootEmpty(Node root) throws Exception

 {

 raf.seek(root.getOffset()+Kernel.ROOT_SIZE+1);

 raf.skipBytes(Node.MAX_NODE_LENGTH);

 byte b = raf.readByte();

 if(b > 0)

 return false;

 else

 return true;

 }

 protected boolean isFileSystemEmpty()

 {

 try

 {

 OpenFile();

 53

 raf.seek(0);

 raf.skipBytes(Node.MAX_NODE_LENGTH);

 byte b = raf.readByte();

 closeFile();

 if(b <= 0)

 return true;

 }

 catch(Exception ex){

 try{closeFile();}catch(Exception e){return true;} return true;}

 return false;

 }

 protected Object[] readRoot(Node root)throws Exception

 {

 if(!isRootEmpty(root))

 {

 Vector v = new Vector();

 long offset = root.getOffset() + Kernel.ROOT_SIZE + 1;

 Node tmp = readNode(offset);

 //set the parent node of this node

 tmp.setParentNode(root);

 tmp.setPreviousNode(root);

 tmp.setParentDirectory(root);

 //if(tmp.getStatus()!= Kernel.IS_DELETED)

 v.add(tmp);

 while(tmp.getNodeLink() >0)

 {

 //OpenFile();

 Node previousNode = tmp;

 tmp = readNode(tmp.getNodeLink());

 tmp.setPreviousNode(previousNode);

 tmp.setParentNode(root);

 tmp.setParentDirectory(root);

 //if(tmp.getStatus()!= Kernel.IS_DELETED)

 v.add(tmp);

 54

 //closeFile();

 }

 return v.toArray();

 }

 else

 return null;

 }

 protected Node readDirectory(long offset) throws Exception

 {

 raf.seek(offset);

 Node tmp = new Node();

 raf.read(tmp.nodeName);

 tmp.setNodeType(raf.readByte());

 tmp.setOffset(raf.readLong());

 tmp.setNodeLink(raf.readLong());

 tmp.setStatus(raf.readByte());

 tmp.setChildNode(raf.readLong());

 return tmp;

 }

 protected boolean deleteNode(Node n)

 {

 try

 {

 n.setStatus(Kernel.IS_DELETED);

 this.writeDirectory(n,n.getOffset());

 //Node previousNode = n.getPreviousNode();

 //make connection b

 //previousNode.setNodeLink(n.getNodeLink());

 }

 catch(Exception ex)

 {

 System.out.println("Unable to delete file: " + ex.getMessage());

 ex.printStackTrace();

 55

 return false;

 }

 return true;

 }

 //return the last node in the root

 protected Node getLastRootNode(Node root)

 {

 try

 {

 long offset = root.getOffset() + Kernel.ROOT_SIZE + 1;

 Node n = this.readNode(offset);

 if(n.getOffset() == 0)

 return null;

 while(n.getNodeLink() >0)

 n = this.readNode(n.getNodeLink());

 return n;

 }

 catch(Exception ex)

 {

 System.out.println("Unable to get last root directory"+ex.getMessage());

 return null;

 }

 }

 //write the file

 protected void writeFile(Node aFile)throws Exception

 {

 try

 {

 raf.seek(aFile.getOffset());

 raf.write(aFile.getNodeNamebytes());

 raf.writeByte(aFile.getNodeType());

 raf.writeByte(aFile.getStatus());

 raf.writeByte(aFile.getFileAttributes());

 raf.writeLong(aFile.getOffset());

 56

 raf.writeLong(aFile.getNodeLink());

 raf.writeLong(aFile.getSizeOnDisk());

 raf.writeLong(aFile.getLastModified());

 }

 catch(Exception ex)

 {

 throw new Exception(ex.getMessage(),ex);

 }

 }

 public void writeFileContents(byte b)throws Exception

 {

 try

 {

 raf.write(b);

 }catch(Exception ex)

 {

 throw new Exception ("Unable to write file contents: ",ex);

 }

 }

 protected Node readFile(long offset) throws Exception

 {

 raf.seek(offset);

 Node tmp = new Node();

 raf.read(tmp.nodeName);

 tmp.setNodeType(raf.readByte());

 tmp.setStatus(raf.readByte());

 tmp.setFileAttributes(raf.readByte());

 tmp.setOffset(raf.readLong());

 tmp.setNodeLink(raf.readLong());

 tmp.setSizeOnDisk(raf.readLong());

 tmp.setLastModified(raf.readLong());

 return tmp;

 }

}

 57

6.2 Kernal Functionality

package filesystem.core;

public class Kernel

{

 public static final byte ROOT = 1;

 public static final byte DIRECTORY = 2;

 public static final byte FILE = 3;

 public static final int ROOT_SIZE = 49; //in bytes

 public static final int DIRECTORY_SIZE = 34; //in bytes

 public static final int FILE_SIZE = 35; //in bytes

 public static final byte IS_DELETED = 1;

 public Kernel()

 {

 }

}

 58

7. RUNNING PROGRAM SNIPPETS

 59

 60

 61

8. BIBLIOGRAPHY

1. Mendel Rosenblum and John K. Ousterhout, ‘The design and implementation of a

log-structured file system’, ACM Transactions on Computer Systems, 10, (1), 26–52,

(February 1992).

2. David Patterson, Garth Gibson, and Randy Katz, ‘A case for redundant arrays of

inexpensive disks (RAID)’, ACM SIGMOD 88, 109–116, (June 1988).

3. David J. DeWitt, Randy H. Katz, Frank Olken, L.D. Shapiro, Mike R.

Stonebraker, and David Wood, ‘Implementation techniques for main memory

database systems’, Proceedings of SIGMOD 1984, June 1984, pp. 1–8.

4. Robert B. Hagmann, ‘A crash recovery scheme for a memory-resident database

system’, IEEE Transactions on Computers, 35, (9), 839–843, (September 1986).

5. Mark Holland and Garth A. Gibson, ‘Parity declustering for continuous operation in

redundant disk arrays’, Proceedings of the 5th International Conference on

Architectural Support for Programming Languages and Operating Systems, October

1992, pp. 23–35.

