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Abstract 

The project involves creation of a virtual file system. The project would require 

creation and manipulation of various data structures to store the contents of the file 

system. There should be a programmer-level library of functions (API) like 

my_create, my_delete, my_open, my_close, my_read, my_write, etc to simulate file 

system operations. The APIs will work on this simulated file system. The file system 

can model an existing system such as Unix/Windows or you can invent your own. 

Provide a programmer-level library of functions (API) like my_create, my_delete, 

my_open, my_close, my_read, my_write, etc to simulate file system operations. The 

APIs will work on a simulated file system. You could either model your file system 

on an existing system (e.g. Unix, Dos, etc) or invent your own. Your system should 

provide support for directory hierarchies. 

 You should allocate a large file on the actual file system, and treat it as a virtual disk 

for your file system simulation. In order to implement your API, you would create 

and manipulate various data structures on your virtual disk to create and manage your 

file system. For manipulating your file system's data on the virtual disk, you can use 

C file functions such as fopen, fread, fwrite or corresponding java functions.  

For demonstration of the use of your APIs, you will need to write simple user level 

commands or small programs that use your APIs. The commands should allow 

navigation of this file system and creation/removal/editing of entries in the file 

system. A command for listing the contents of a particular node in the file system is 

also required at a minimum. 

You need to implement only one mechanism each for free-space management, data 

access, and some simple security mechanism, but you must do the analysis for how it 

compares with other alternative strategies for the same. 

The file should support a hierarchical organization of data. 
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1. INTRODUCTION 

 

1.1 Overview 

This report discusses the result of the work done in development of a "File System 

Simulator" on Java Platform. It is a final year project going in Computer Science 

Department, Jaypee University Of Information and Technology and aims at the 

development of an application framework for providing a common platform for 

facilitating the use of methodological approach, integration of various tools developed 

during the execution of the project. 

 

1.2 Background and Motivation 

As processors, memories, and networks continue to speed up relative to secondary 

storage, file and disk systems have increasingly become the focus of attention. The 

Berkeley Log-structured File System (LFS),1  Redundant Arrays of Independent Disks 

(RAID),2  and log-based fault tolerant systems3,4 are some well-known examples of the 

newer innovative designs. Analysis of these systems has exposed many subtleties that 

affect performance. Current technology trends lead us to believe that file system and 

disk system design and analysis will continue to be one of the key areas in computer 

system design. 

Typical performance studies of file systems involve the control of three distinct but 

related aspects: the disk, the file system, and the workload. In each of these areas, 

simple models trade off accuracy for modeling ease or tractability. Although useful 

early results can come from less detailed models with modest effort, these are no 

longer sufficient when more careful comparisons are desired. Indeed, back-of-the-

envelope calculations or simple modeling of the software and/or the disk hardware can 

yield results that are contrary to real-life performance. We cite below some cases in 

point, where lack of detail or accuracy in the models led to predictions that turned out 

to be at variance with actual performance. 
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1.3 Objective 

The final goal of the project was twofold. 

1.  An Integrated Framework was required for interaction with the various tools (like 

Software/Hardware Estimation, Partitioning, Synthesis tools etc.) with the platform 

specification being done in the application itself. 

 

2. Based on the final platform configuration and bindings, an Analysis and 

Visualization framework was required for getting performance metrics of the system 

and for visualization of the analysis results and the target platform. 

 

Along with above main goals , capability to design the target platform manually was 

also desire 

1.4 Methodology 

 

To implement the above goals , the following methodology needs to be followed  : 

 

1.  Specifying the Application and various components of the Architecture. 

2.  Specifying the bindings between the tasks and the resources either manually or by 

the design tools. 

3.   Specifying the port interconnections between the resources. 

4.  Analysis : Extracting the data required for analysis and the doing the analysis.  

 

1.5 Requirements 

 

 

Hardware requirements 
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Number Description Alternatives (If available) 

1 PC with 2 GB hard-disk 

and 256 MB RAM 

Not-Applicable 

   

 

Software requirements 

 

Number Description Alternatives (If available) 

1 Unix/Linux Windows 

2 C/C++/Java compiler Not Applicable 

 



 12 

2. File System 

 

2.1 Introductions 

A file system (or filesystem) is used to control how data is stored and retrieved. 

Without a file system, information placed in a storage area would be one large body 

of data with no way to tell where one piece of information stops and the next begins. 

By separating the data into individual pieces, and giving each piece a name, the 

information is easily separated and identified. Taking its name from the way paper-

based information systems are named, each group of data is called a "file". The 

structure and logic rules used to manage the groups of information and their names is 

called a "file system". 

There are many different kinds of file systems. Each one has different structure and 

logic, properties of speed, flexibility, security, size and more. Some file systems have 

been designed to be used for specific applications. For example, the ISO 9660 file 

system is designed specifically for optical discs. 

File systems can be used on many different kinds of storage devices. Each storage 

device uses a different kind of media. The most common storage device in use today 

is a hard drive whose media is a disc that has been coated with a magnetic film. The 

film has ones and zeros 'written' on it sending electrical pulses to a magnetic "read-

write" head. Other media that are used are magnetic tape, optical disc, and flash 

memory. In some cases, the computer's main memory (RAM) is used to create a 

temporary file system for short term use. 

Some file systems are used on local data storage devices;[1] others provide file access 

via a network protocol (for example, NFS,[2] SMB, or 9P clients). Some file systems 

are "virtual", in that the "files" supplied are computed on request (e.g. procfs) or are 

merely a mapping into a different file system used as a backing store. The file system 

manages access to both the content of files and the metadata about those files. It is 

responsible for arranging storage space; reliability, efficiency, and tuning with regard 

to the physical storage medium are important design considerations. 

 

2.2 Types Of File System 
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Disk file systems 

 

A disk file system takes advantages of the ability of disk storage media to randomly 

address data in a short amount of time. Additional considerations include the speed of 

accessing data following that initially requested and the anticipation that the following 

data may also be requested. This permits multiple users (or processes) access to 

various data on the disk without regard to the sequential location of the data. 

Examples include FAT (FAT12, FAT16, FAT32), exFAT, NTFS, HFS and HFS+, 

HPFS,UFS, ext2, ext3, ext4, XFS, btrfs, ISO 9660, Files-11, Veritas File System, 

VMFS, ZFS, ReiserFS and UDF. Some disk file systems are journaling file systems 

orversioning file systems. 

 

Optical discs 

ISO 9660 and Universal Disk Format (UDF) are two common formats that 

target Compact Discs, DVDs and Blu-ray discs. Mount Rainier is an extension to 

UDF supported since 2.6 series of the Linux kernel and since Windows Vista that 

facilitates rewriting to DVDs. 

 

Flash file systems 

A flash file system considers the special abilities, performance and restrictions of flash 

memory devices. Frequently a disk file system can use a flash memory device as the 

underlying storage media but it is much better to use a file system specifically 

designed for a flash device. 

 

Tape file systems 

A tape file system is a file system and tape format designed to store files on tape in a 

self-describing form. Magnetic tapes are sequential storage media with significantly 

longer random data access times than disks, posing challenges to the creation and 

efficient management of a general-purpose file system. 
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Tape formatting 

Writing data to a tape is often a significantly time-consuming process that may take 

several hours. Similarly, completely erasing or formatting a tape can also take several 

hours. With many data tape technologies it is not necessary to format the tape before 

over-writing new data to the tape. This is due to the inherently destructive nature of 

overwriting data on sequential media. 

 

Database file systems 

Another concept for file management is the idea of a database-based file system. 

Instead of, or in addition to, hierarchical structured management, files are identified 

by their characteristics, like type of file, topic, author, or similar rich metadata. 

 

Transactional file systems 

Some programs need to update multiple files "all at once". For example, a software 

installation may write program binaries, libraries, and configuration files. If the 

software installation fails, the program may be unusable. If the installation is 

upgrading a key system utility, such as the command shell, the entire system may be 

left in an unusable state. 

 

Network file systems 

A network file system is a file system that acts as a client for a remote file access 

protocol, providing access to files on a server. Examples of network file systems include 

clients for the NFS, AFS, SMB protocols, and file-system-like clients 

for FTP and WebDAV. 

 

Shared disk file systems 

A shared disk file system is one in which a number of machines (usually servers) all have 

access to the same external disk subsystem (usually a SAN). The file system arbitrates 

access to that subsystem, preventing write collisions. Examples include GFS2 from Red 
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Hat, GPFS from IBM, SFS from DataPlow, CXFS from SGI and StorNext from Quantum 

Corporation. 
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3. File systems and operating systems 

 

 

3.1 Introduction 

Many operating systems include support for more than one file system. Sometimes 

the OS and the file system are so tightly interwoven it is difficult to separate out file 

system functions. 

 

There needs to be an interface provided by the operating system software between the 

user and the file system. This interface can be textual (such as provided by acommand 

line interface, such as the Unix shell, or OpenVMS DCL) or graphical (such as 

provided by a graphical user interface, such as file browsers). If graphical, the 

metaphor of the folder, containing documents, other files, and nested folders is often 

used (see also: directory and folder). 

 

3.2 Unix-like operating systems 

Unix-like operating systems create a virtual file system, which makes all the files 

on all the devices appear to exist in a single hierarchy. This means, in those 

systems, there is one root directory, and every file existing on the system is 

located under it somewhere. Unix-like systems can use a RAM disk or network 

shared resource as its root directory. 

Unix-like systems assign a device name to each device, but this is not how the 

files on that device are accessed. Instead, to gain access to files on another device, 

the operating system must first be informed where in the directory tree those files 

should appear. This process is called mounting a file system. For example, to 

access the files on a CD-ROM, one must tell the operating system "Take the file 

system from this CD-ROM and make it appear under such-and-such directory". 

The directory given to the operating system is called the mount point – it might, 

for example, be /media. The /media directory exists on many Unix systems (as 

specified in theFilesystem Hierarchy Standard) and is intended specifically for use 
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as a mount point for removable media such as CDs, DVDs, USB drives or floppy 

disks. It may be empty, or it may contain subdirectories for mounting individual 

devices. Generally, only the administrator (i.e. root user) may authorize the 

mounting of file systems. 

Unix-like operating systems often include software and tools that assist in the 

mounting process and provide it new functionality. Some of these strategies have 

been coined "auto-mounting" as a reflection of their purpose. 

• In many situations, file systems other than the root need to be available as 

soon as the operating system has booted. All Unix-like systems therefore 

provide a facility for mounting file systems at boot time. System 

administrators define these file systems in the configuration 

file fstab (vfstab in Solaris), which also indicates options and mount points. 

• In some situations, there is no need to mount certain file systems at boot time, 

although their use may be desired thereafter. There are some utilities for Unix-

like systems that allow the mounting of predefined file systems upon demand. 

• Removable media have become very common with microcomputer platforms. 

They allow programs and data to be transferred between machines without a 

physical connection. Common examples include USB flash drives, CD-

ROMs, and DVDs. Utilities have therefore been developed to detect the 

presence and availability of a medium and then mount that medium without 

any user intervention. 

• Progressive Unix-like systems have also introduced a concept 

called supermounting; see, for example, the Linux supermount-ng project. 

For example, a floppy disk that has been supermounted can be physically 

removed from the system. Under normal circumstances, the disk should have 

been synchronized and then unmounted before its removal. Provided 

synchronization has occurred, a different disk can be inserted into the drive. 

The system automatically notices that the disk has changed and updates the 

mount point contents to reflect the new medium. 

• An automounter will automatically mount a file system when a reference is 

made to the directory atop which it should be mounted. This is usually used 

for file systems on network servers, rather than relying on events such as the 



 18 

insertion of media, as would be appropriate for removable media. 

Unix-like operating systems create a virtual file system, which makes all the files 

on all the devices appear to exist in a single hierarchy. This means, in those 

systems, there is one root directory, and every file existing on the system is 

located under it somewhere. Unix-like systems can use a RAM disk or network 

shared resource as its root directory. 

Unix-like systems assign a device name to each device, but this is not how the 

files on that device are accessed. Instead, to gain access to files on another device, 

the operating system must first be informed where in the directory tree those files 

should appear. This process is called mounting a file system. For example, to 

access the files on a CD-ROM, one must tell the operating system "Take the file 

system from this CD-ROM and make it appear under such-and-such directory". 

The directory given to the operating system is called the mount point – it might, 

for example, be /media. The /media directory exists on many Unix systems (as 

specified in theFilesystem Hierarchy Standard) and is intended specifically for use 

as a mount point for removable media such as CDs, DVDs, USB drives or floppy 

disks. It may be empty, or it may contain subdirectories for mounting individual 

devices. Generally, only the administrator (i.e. root user) may authorize the 

mounting of file systems. 

Unix-like operating systems often include software and tools that assist in the 

mounting process and provide it new functionality. Some of these strategies have 

been coined "auto-mounting" as a reflection of their purpose. 

• In many situations, file systems other than the root need to be available as 

soon as the operating system has booted. All Unix-like systems therefore 

provide a facility for mounting file systems at boot time. System 

administrators define these file systems in the configuration 

file fstab (vfstab in Solaris), which also indicates options and mount points. 

• In some situations, there is no need to mount certain file systems at boot time, 

although their use may be desired thereafter. There are some utilities for Unix-

like systems that allow the mounting of predefined file systems upon demand. 

• Removable media have become very common with microcomputer platforms. 

They allow programs and data to be transferred between machines without a 
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physical connection. Common examples include USB flash drives, CD-

ROMs, and DVDs. Utilities have therefore been developed to detect the 

presence and availability of a medium and then mount that medium without 

any user intervention. 

• Progressive Unix-like systems have also introduced a concept 

called supermounting; see, for example, the Linux supermount-ng project. 

For example, a floppy disk that has been supermounted can be physically 

removed from the system. Under normal circumstances, the disk should have 

been synchronized and then unmounted before its removal. Provided 

synchronization has occurred, a different disk can be inserted into the drive. 

The system automatically notices that the disk has changed and updates the 

mount point contents to reflect the new medium. 

• An automounter will automatically mount a file system when a reference is 

made to the directory atop which it should be mounted. This is usually used 

for file systems on network servers, rather than relying on events such as the 

insertion of media, as would be appropriate for removable media. 

 

3.3 Linux 

Linux supports many different file systems, but common choices for the system disk 

on a block device include the ext* family (such as ext2, ext3 and ext4), XFS, 

JFS,ReiserFS and btrfs. For raw flash without a flash translation layer (FTL) or 

Memory Technology Device (MTD), there is UBIFS, JFFS2, and YAFFS, among 

others.SquashFS is a common compressed read-only file system. 

 

3.4 Solaris 

The Sun Microsystems Solaris operating system in earlier releases defaulted to (non-

journaled or non-logging) UFS for bootable and supplementary file systems. Solaris 

defaulted to, supported, and extended UFS. 
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Support for other file systems and significant enhancements were added over time, 

including Veritas Software Corp. (Journaling) VxFS, Sun Microsystems 

(Clustering)QFS, Sun Microsystems (Journaling) UFS, and Sun Microsystems (open 

source, poolable, 128 bit compressible, and error-correcting) ZFS. 

 

Kernel extensions were added to Solaris to allow for bootable 

Veritas VxFS operation. Logging or Journaling was added to UFS in Sun's Solaris 7. 

Releases of Solaris 10, Solaris Express, OpenSolaris, and other open source variants 

of the Solaris operating system later supported bootable ZFS. 

 

Logical Volume Management allows for spanning a file system across multiple 

devices for the purpose of adding redundancy, capacity, and/or throughput. Legacy 

environments in Solaris may use Solaris Volume Manager (formerly known 

as Solstice DiskSuite). Multiple operating systems (including Solaris) may use Veritas 

Volume Manager. Modern Solaris based operating systems eclipse the need for 

Volume Management through leveraging virtual storage pools in ZFS. 

 

3.4 OS X 

OS X uses a file system inherited from classic Mac OS called HFS Plus. Apple also 

uses the term "Mac OS Extended” HFS Plus is a metadata-rich and case-preserving 

but (usually) case-insensitive file system. Due to the Unix roots of OS X, Unix 

permissions were added to HFS Plus. Later versions of HFS Plus added journaling to 

prevent corruption of the file system structure and introduced a number of 

optimizations to the allocation algorithms in an attempt to defragment files 

automatically without requiring an external defragmenter. 

Filenames can be up to 255 characters. HFS Plus uses Unicode to store filenames. On 

OS X, the file type can come from the type code, stored in file's metadata, or the 

filename extension. 

HFS Plus has three kinds of links: Unix-style hard links, Unix-style symbolic links 

and aliases. Aliases are designed to maintain a link to their original file even if they 

are moved or renamed; they are not interpreted by the file system itself, but by the 

File Manager code in user land. 
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OS X also supported the UFS file system, derived from the BSD Unix Fast File 

System via Next STEP. However, as of Mac OS X Leopard, OS X could no longer be 

installed on a UFS volume, nor can a pre-Leopard system installed on a UFS volume 

be upgraded to Leopard. As of Mac OS X Lion UFS support was completely dropped. 

Newer versions of OS X are capable of reading and writing to the legacy FAT file 

systems (16 & 32) common on Windows. They are also capable of reading the 

newerNTFS file systems for Windows. In order to write to NTFS file systems on OS 

X versions prior to 10.6 (Snow Leopard) third party software is necessary. Mac OS X 

10.6 (Snow Leopard) and later allows writing to NTFS file systems, but only after a 

non-trivial system setting change (third party software exists that automates this). 

 

3.5 PC-BSD 

PC-BSD is a desktop version of FreeBSD, which inherits FreeBSD's ZFS support, 

similarly to FreeNAS. The new graphical installer of PC-BSD can handle / (root) on 

ZFS and RAID-Z pool installs and disk encryption using Geli right from the start in 

an easy convenient (GUI) way. The current PC-BSD 9.0+ 'Isotope Edition' has ZFS 

filesystem version 5 and ZFS storage pool version 28. 

 

3.6 Plan 9 

Plan 9 from Bell Labs treats everything as a file, and accessed as a file would be (i.e., 

no ioctl or mmap): networking, graphics, debugging, authentication, capabilities, 

encryption, and other services are accessed via I-O operations on file descriptors. 

The 9P protocol removes the difference between local and remote files. 

These file systems are organized with the help of private, per-process namespaces, 

allowing each process to have a different view of the many file systems that provide 

resources in a distributed system. 

The Inferno operating system shares these concepts with Plan 9. 
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3.7 Microsoft Windows 

Windows makes use of the FAT, NTFS, exFAT and ReFS file systems (the last of 

these is only supported and usable in Windows Server 2012; Windows cannot boot 

from it). 

Windows uses a drive letter abstraction at the user level to distinguish one disk or 

partition from another. For example, the path C:\WINDOWS represents a 

directory WINDOWS on the partition represented by the letter C. Drive C: is most 

commonly used for the primary hard disk partition, on which Windows is usually 

installed and from which it boots. This "tradition" has become so firmly ingrained that 

bugs exist in many applications which make assumptions that the drive that the 

operating system is installed on is C. The use of drive letters, and the tradition of 

using "C" as the drive letter for the primary hard disk partition, can be traced to MS-

DOS, where the letters A and B were reserved for up to two floppy disk drives. This 

in turn derived from CP/M in the 1970s, and ultimately from IBM's CP/CMS of 1967. 

 

3.8 FAT 

The family of FAT file systems is supported by almost all operating systems for 

personal computers, including all versions of Windows and MS-

DOS/PC DOS and DR-DOS. (PC DOS is an OEM version of MS-DOS, MS-DOS 

was originally based on SCP's 86-DOS. DR-DOS was based on Digital 

Research's Concurrent DOS, a successor of CP/M-86.) The FAT file systems are 

therefore well suited as a universal exchange format between computers and devices 

of most any type and age. 

The FAT file system traces its roots back to an (incompatible) 8-bit FAT precursor 

in Standalone Disk BASIC and the short-lived MDOS/MIDAS project. 

Over the years, the file system has been expanded from FAT12 to FAT16 and FAT32. 

Various features have been added to the file system including subdirectories, code 

page support, extended attributes, and long filenames. Third parties such as Digital 

Research have incorporated optional support for deletion tracking, and 

volume/directory/file-based multi-user security schemes to support file and directory 
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passwords and permissions such as read/write/execute/delete access rights. Windows 

does not support most of these extensions. 

The FAT12 and FAT16 file systems had a limit on the number of entries in the root 

directory of the file system and had restrictions on the maximum size of FAT-

formatted disks or partitions. 

FAT32 addresses the limitations in FAT12 and FAT16, except for the file size limit of 

close to 4 GB, but it remains limited compared to NTFS. 

FAT12, FAT16 and FAT32 also have a limit of eight characters for the file name, and 

three characters for the extension (such as .exe). This is commonly referred to as 

the 8.3 filename limit. VFAT, an optional extension to FAT12, FAT16 and FAT32, 

introduced in Windows 95 and Windows NT 3.5, allowed long file names (LFN) to 

be stored in the FAT file system in a backwards-compatible fashion. 

 

3.9 NTFS 

NTFS, introduced with the Windows NT operating system in 1993, allowed ACL-

based permission control. Other features also supported by NTFS include hard links, 

multiple file streams, attribute indexing, quota tracking, sparse files, encryption, 

compression, and reparse points (directories working as mount-points for other file 

systems, symlinks, junctions, remote storage links). 

3.10 exFAT 

exFAT is a proprietary and patent-protected file system with certain advantages over 

NTFS with regard to file system overhead. 

exFAT is not backward compatible with FAT file systems such as FAT12, FAT16 or 

FAT32. The file system is supported with newer Windows systems, such as Windows 

Server 2003, Windows Vista, Windows 2008, Windows 7, Windows 8, and more 

recently, support has been added for Windows XP.[20] 

exFAT is supported in Mac OS X starting with version 10.6.5 (Snow 

Leopard).[19] Support in other operating systems is sparse since Microsoft has not 

published the specifications of the file system and implementing support for exFAT 

requires a license. 
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4. Aspects of file systems 

 

4.1 Space management 

Example of slack space, demonstrated with 4,096-byte NTFS clusters: 100,000 files, 

each 5 bytes per file, equals 500,000 bytes of actual data, but requires 409,600,000 

bytes of disk space to store 

File systems allocate space in a granular manner, usually multiple 

physical units on the device. The file system is responsible for organizing 

files and directories, and keeping track of which areas of the media 

belong to which file and which are not being used. For example, in Apple 

DOS of the early 1980s, 256-byte sectors on 140 kilobyte floppy disk 

used a track/sector map. 

This results in unused space when a file is not an exact multiple of the 

allocation unit, sometimes referred to as slack space. For a 512-byte 

allocation, the average unused space is 256 bytes. For 64 KB clusters, the 

average unused space is 32 KB. The size of the allocation unit is chosen 

when the file system is created. Choosing the allocation size based on the 

average size of the files expected to be in the file system can minimize 

the amount of unusable space. Frequently the default allocation may 

provide reasonable usage. Choosing an allocation size that is too small 

results in excessive overhead if the file system will contain mostly very 

large files. 
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Figure 1: Example of slack space  

 

 

4.2 Filenames 

A filename (or file name) is used to identify a storage location in the file system. 

Most file systems have restrictions on the length of filenames. In some file systems, 

filenames are not case sensitive (i.e., filenames such as FOO and foo refer to the 

same file); in others, filenames are case sensitive (i.e., the names FOO, Fooand foo 

refer to three separate files). 

Most modern file systems allow filenames to contain a wide range of characters from 

the Unicode character set. Most file system interface utilities, however, have 

restrictions on the use of certain special characters, disallowing them within filenames 

(the file system may use these special characters to indicate a device, device type, 

directory prefix, or file type). However, these special characters might be allowed by, 

for example, enclosing the filename with double quotes ("). For simplicity, special 

characters are generally discouraged within filenames. 

 

4.3 Directories 

File systems typically have directories (also called folders) which allow the user to 

group files into separate collections. This may be implemented by associating the file 

name with an index in a table of contents or an inode in a Unix-like file system. 

Directory structures may be flat (i.e. linear), or allow hierarchies where directories 

may contain subdirectories. The first file system to support arbitrary hierarchies of 
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directories was used in the Multics operating system.[3] The native file systems of 

Unix-like systems also support arbitrary directory hierarchies, as do, for example, 

Apple's Hierarchical File System, and its successor HFS+ in classic Mac OS (HFS+ is 

still used in Mac OS X), the FAT file system in MS-DOS 2.0 and later and Microsoft 

Windows, the NTFS file system in the Windows NT family of operating systems, and 

the ODS-2 (On-Disk Structure-2) and higher levels of the Files-11 file system in 

OpenVMS. 

 

File systems typically have directories (also called folders) which allow the user to 

group files into separate collections. This may be implemented by associating the file 

name with an index in a table of contents or an inode in a Unix-like file system. 

Directory structures may be flat (i.e. linear), or allow hierarchies where directories 

may contain subdirectories. The first file system to support arbitrary hierarchies of 

directories was used in the Multics operating system.[3] The native file systems of 

Unix-like systems also support arbitrary directory hierarchies, as do, for example, 

Apple's Hierarchical File System, and its successor HFS+ in classic Mac OS (HFS+ is 

still used in Mac OS X), the FAT file system in MS-DOS 2.0 and later and Microsoft 

Windows, the NTFS file system in the Windows NT family of operating systems, and 

the ODS-2 (On-Disk Structure-2) and higher levels of the Files-11 file system in 

OpenVMS. 

 

 

4.4 Metadata 

Other bookkeeping information is typically associated with each file within a file 

system. The length of the data contained in a file may be stored as the number of 

blocks allocated for the file or as a byte count. The time that the file was last modified 

may be stored as the file's timestamp. File systems might store the file creation time, 

the time it was last accessed, the time the file's metadata was changed, or the time the 

file was last backed up. Other information can include the file's device type (e.g. 

block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access 

permissions and other file attributes (e.g. whether the file is read-only,executable, 

etc.). 
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A file system stores all the metadata associated with the file—including the file name, 

the length of the contents of a file, and the location of the file in the folder 

hierarchy—separate from the contents of the file. 

Most file systems store the names of all the files in one directory in one place—the 

directory table for that directory—which is often stored like any other file. Many file 

systems put only some of the metadata for a file in the directory table, and the rest of 

the metadata for that file in a completely separate structure, such as the inode. 

Most file systems also store metadata not associated with any one particular file. Such 

metadata includes information about unused regions -- free space bitmap, block 

availability map—and information about bad sectors. Often such information about an 

allocation group is stored inside the allocation group itself. 

Additional attributes can be associated on file systems, such as NTFS, XFS, ext2, 

ext3, some versions of UFS, and HFS+, using extended file attributes. Some file 

systems provide for user defined attributes such as the author of the document, the 

character encoding of a document or the size of an image. 

Some file systems allow for different data collections to be associated with one file 

name. These separate collections may be referred to as streams or forks. Apple has 

long used a forked file system on the Macintosh, and Microsoft supports streams in 

NTFS. Some file systems maintain multiple past revisions of a file under a single file 

name; the filename by itself retrieves the most recent version, while prior saved 

version can be accessed using a special naming convention such as "filename;4" or 

"filename(-4)" to access the version four saves ago. 

See comparison of file systems#Metadata for details on which file systems support 

which kinds of metadata. 

 

Other bookkeeping information is typically associated with each file within a file 

system. The length of the data contained in a file may be stored as the number of 

blocks allocated for the file or as a byte count. The time that the file was last modified 

may be stored as the file's timestamp. File systems might store the file creation time, 

the time it was last accessed, the time the file's metadata was changed, or the time the 

file was last backed up. Other information can include the file's device type (e.g. 

block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access 

permissions and other file attributes (e.g. whether the file is read-only,executable, 

etc.). 
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A file system stores all the metadata associated with the file—including the file name, 

the length of the contents of a file, and the location of the file in the folder 

hierarchy—separate from the contents of the file. 

Most file systems store the names of all the files in one directory in one place—the 

directory table for that directory—which is often stored like any other file. Many file 

systems put only some of the metadata for a file in the directory table, and the rest of 

the metadata for that file in a completely separate structure, such as the inode. 

Most file systems also store metadata not associated with any one particular file. Such 

metadata includes information about unused regions -- free space bitmap, block 

availability map—and information about bad sectors. Often such information about an 

allocation group is stored inside the allocation group itself. 

Additional attributes can be associated on file systems, such as NTFS, XFS, ext2, 

ext3, some versions of UFS, and HFS+, using extended file attributes. Some file 

systems provide for user defined attributes such as the author of the document, the 

character encoding of a document or the size of an image. 

Some file systems allow for different data collections to be associated with one file 

name. These separate collections may be referred to as streams or forks. Apple has 

long used a forked file system on the Macintosh, and Microsoft supports streams in 

NTFS. Some file systems maintain multiple past revisions of a file under a single file 

name; the filename by itself retrieves the most recent version, while prior saved 

version can be accessed using a special naming convention such as "filename;4" or 

"filename(-4)" to access the version four saves ago. 

See comparison of file systems#Metadata for details on which file systems support 

which kinds of metadata. 

 

 

4.5 File system as an abstract user interface 

In some cases, a file system may not make use of a storage device but can be used to 

organize and represent access to any data, whether it is stored or dynamically 

generated (e.g. procfs). 
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4.6 Utilities 

The difference between a utility and a built-in core command function is arbitrary, 

depending on the design of the operating system, and on the memory and space 

limitations of the hardware. For example, Microsoft MS-DOS uses a utility for 

formatting and a built-in command for simple file copying, while in the Apple 

DOSformatting is a built-in command and simple file copying is performed by using a 

utility. 

File systems include utilities to initialize, alter parameters of and remove an instance 

of the file system. Some include the ability to extend or truncate the space allocated to 

the file system. 

Directory utilities may be used to create, rename and delete directory entries, which 

are also known as dentries (singular: dentry), and to alter metadata associated with a 

directory. Directory utilities may also include capabilities to create additional links to 

a directory (hard links in Unix), to rename parent links (".." in Unix-likeoperating 

systems),[clarification needed] and to create bidirectional links to files. 

File utilities create, list, copy, move and delete files, and alter metadata. They may be 

able to truncate data, truncate or extend space allocation, append to, move, and 

modify files in-place. Depending on the underlying structure of the file system, they 

may provide a mechanism to prepend to, or truncate from, the beginning of a file, 

insert entries into the middle of a file or delete entries from a file. 

Utilities to free space for deleted files, if the file system provides an undelete 

function, also belong to this category. 

Some file systems defer operations such as reorganization of free space, secure 

erasing of free space, and rebuilding of hierarchical structures by providing utilities to 

perform these functions at times of minimal activity. Included in this category is the 

infamous defragmentation utility. 

Some of the most important features of file system utilities involve supervisory 

activities which may involve bypassing ownership or direct access to the underlying 

device. These include high-performance backup and recovery, data replication and 

reorganization of various data structures and allocation tables within the file system. 
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4.7 Restricting and permitting access 

There are several mechanisms used by file systems to control access to data. Usually 

the intent is to prevent reading or modifying files by a user or group of users. Another 

reason is to ensure data is modified in a controlled way so access may be restricted to 

a specific program. Examples include passwords stored in the metadata of the file or 

elsewhere and file permissions in the form of permission bits, access control lists, or 

capabilities. The need for file system utilities to be able to access the data at the media 

level to reorganize the structures and provide efficient backup usually means that 

these are only effective for polite users but are not effective against intruders. 

Methods for encrypting file data are sometimes included in the file system. This is 

very effective since there is no need for file system utilities to know the encryption 

seed to effectively manage the data. The risks of relying on encryption include the 

fact that an attacker can copy the data and use brute force to decrypt the data. Losing 

the seed means losing the data. 

 

4.8 Maintaining integrity 

One significant responsibility of a file system is to ensure that, regardless of the 

actions by programs accessing the data, the structure remains consistent. This includes 

actions taken if a program modifying data terminates abnormally or neglects to 

inform the file system that it has completed its activities. This may include updating 

the metadata, the directory entry and handling any data that was buffered but not yet 

updated on the physical storage media. 

Other failures which the file system must deal with include media failures or loss of 

connection to remote systems. 

In the event of an operating system failure or "soft" power failure, special routines in 

the file system must be invoked similar to when an individual program fails. 

The file system must also be able to correct damaged structures. These may occur as a 

result of an operating system failure for which the OS was unable to notify the file 

system, power failure or reset. 

The file system must also record events to allow analysis of systemic issues as well as 

problems with specific files or directories. 
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4.9 User data 

The most important purpose of a file system is to manage user data. This includes 

storing, retrieving and updating data. 

Some file systems accept data for storage as a stream of bytes which are collected and 

stored in a manner efficient for the media. When a program retrieves the data it 

specifies the size of a memory buffer and the file system transfers data from the media 

to the buffer. Sometimes a runtime library routine may allow the user program to 

define a record based on a library call specifying a length. When the user program 

reads the data the library retrieves data via the file system and returns a record. 

Some file systems allow the specification of a fixed record length which is used for all 

write and reads. This facilitates updating records. 

An identification for each record, also known as a key, makes for a more 

sophisticated file system. The user program can read, write and update records 

without regard to their location. This requires complicated management of blocks of 

media usually separating key blocks and data blocks. Very efficient algorithms can be 

developed with pyramid structure for locating records. 

 

4.10 Using a file system 

Utilities, language specific run-time libraries and user programs use file system APIs 

to make requests of the file system. These include data transfer, positioning, updating 

metadata, managing directories, managing access specifications, and removal. 

 

4.11 Multiple file systems within a single system 

Frequently retail systems are configured with a single file system occupying the entire 

hard disk. 

Another approach is to partition the disk so that several file systems with different 

attributes can be used. One file system, for use as browser cache, might be configured 



 32 

with a small allocation size. This has the additional advantage of keeping the frantic 

activity of creating and deleting files typical of browser activity in a narrow area of 

the disk and not interfering with allocations of other files. A similar partition might be 

created for email. Another partition, and file system might be created for the storage 

of audio or video files with a relatively large allocation. One of the file systems may 

normally be set read-only and only periodically be set writable. 

A third approach, which is mostly used in cloud systems, is to use "disk images" to 

house additional file systems, with the same attributes or not, within another (host) 

file system as a file. A common example is virtualization: one user can run an 

experimental Linux distribution (using the ext4 file system) in a virtual machine 

under his/her production Windows environment (using NTFS). The ext4 file system 

resides in a disk image, which is treated as a file (or multiple files, depending on the 

hypervisor and settings) in the NTFS host file system. 

Having multiple file systems on a single system has the additional benefit that in the 

event of a corruption of a single partition, the remaining file systems will frequently 

still be intact. This includes virus destruction of the system partition or even a system 

that will not boot. File system utilities which require dedicated access can be 

effectively completed piecemeal. In addition, defragmentation may be more effective. 

Several system maintenance utilities, such as virus scans and backups, can also be 

processed in segments. For example it is not necessary to backup the file system 

containing videos along with all the other files if none have been added since the last 

backup. As for the image files, one can easily "spin off" differential images which 

contain only "new" data written to the master (original) image. Differential images 

can be used for both safety concerns (as a "disposable" system - can be quickly 

restored if destroyed or contaminated by a virus, as the old image can be removed and 

a new image can be created in matter of seconds, even without automated procedures) 

and quick virtual machine deployment (since the differential images can be quickly 

spawned using a script in batches). 

 

4.12 Design limitations 

All file systems have some functional limit that defines the maximum storable data 

capacity within that system. These functional limits are a best-guess effort by the 
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designer based on how large the storage systems are right now and how large storage 

systems are likely to become in the future. Disk storage has continued to increase at 

near exponential rates (see Moore's law), so after a few years, file systems have kept 

reaching design limitations that require computer users to repeatedly move to a newer 

system with ever-greater capacity. 

File system complexity typically varies proportionally with the available storage 

capacity. The file systems of early 1980s home computers with 50 KB to 512 KB of 

storage would not be a reasonable choice for modern storage systems with hundreds 

of gigabytes of capacity. Likewise, modern file systems would not be a reasonable 

choice for these early systems, since the complexity of modern file system structures 

would quickly consume or even exceed the very limited capacity of the early storage 

systems. 
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5. Techniques for File System Simulation 

 

5.1 INTRODUCTION 

Because file and disk systems are such critical components of modern computer 

systems, understanding and improving their performance is of great importance. 

Several techniques can be used to assess the performance of these systems, including 

abstract performance models, functional simulations, and measurements of a complete 

implementation. All have their place; we concentrate here on the use of simulations 

for detailed ‘What if?’ performance studies. The main advantage of using abstract 

models as opposed to detailed simulation is their ability to provide adequate answers 

to many performance questions without the need to represent a great deal of system 

detail. However, abstract models make simplifying assumptions about aspects of the 

system that may be important, particularly in the later stages of a study when the 

design space has been narrowed and subtle issues are being considered. The work we 

describe here came about when we were doing some design studies of the interactions 

between current file system designs and new disk systems. In this environment, direct 

measurement was of course not possible, and we felt that an analytic model would be 

inadequate for our needs, at least partly because it would have difficulty representing 

the interactions between performance non-linearity’s in the disk system and the file 

system layout and request-sequencing policies.  

 

5.2 SIMULATOR OVERVIEW 

This section introduces the components that comprise our simulation environment for 

file and disk systems. Our approach is to derive workloads from I/O traces gathered 

from real systems, and feed these into real file system code sitting on top of a detailed 

disk model that has been calibrated against real disks. Additional software, which we 

refer to as scaffolding, holds all this together. Figure below shows how these 

components interact. 
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We use the term ‘simulator’ in this paper to refer collectively to all the components 

shown on the right side of Figure below, while we use the term ‘file system 

simulator’ to refer to the component that mimics just the behavior of the file system 

code. 

 

 
Figure 2: Simulator Framework 

 

 

 

As Figure above suggests, we first gather traces from the real system running a real 

workload. At beginning of the trace period, we take a snapshot of the file system 

metadata on the disk or disks being studied. This is the information kept by the file 

system to map <file, offset> pairs into disk block addresses. The trace is optionally 

used to derive a set of additional traces. Trace requests are supplied to the simulator. 

Within the simulator, the scaffolding component replays these to create a workload 

for the file system simulator. The file system simulator, in turn, emits requests to 

the disk model, which usually just performs timing calculations. In addition, if the 

request is a read to the metadata, the scaffolding intercepts the request and satisfies 
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it from the previously-recorded snapshot; a metadata write is used to update the 

snapshot.  

The remainder of this section provides an overview of each simulator component; they 

are discussed in greater detail in the subsequent three sections. 

 

5.3 Workload Traces 

The accuracy of any performance study depends on both the quality of the model and 

on the quality of the workload representation that is used. The two usual sources for 

simulation studies are traces and synthetic workload models. 

Synthetic workloads are considered more flexible than traces, and do not require 

significant storage because they are generated on the fly. However, in order to be 

realistic, synthetic workload models tend to be elaborate, difficult to parameterize, 

and specific to a single environment. One sample of a synthetic NFS-workload 

generator13  uses 24 parameters to describe the workload—a wealth of detail that is not 

easy to gather. 

 

Instead, our approach is to use trace-driven workloads, but to extend their utility 

through a technique known as bootstrapping, which is described further in the next 

section. This allows us to collect a single set of traces, and to generate additional 

sets while retaining certain statistical guarantees with respect to the original. 

 

For investigating file systems that do caching, the most useful results are obtained by 

tracing requests at the system-call level: byte-aligned reads and writes, plus various 

control calls, such as file open and close, change directory, and so on. 

 

We did our work on the HP-UX operating system, a POSIX-compliant Unix� system 

that runs on HP 9000 PA-RISC series 800 and series 700 systems.14  The HP-UX 

system has a built-in measurement facility that can be used selectively to trace system 

events; several other operating systems have similar facilities, or one can be added 

relatively easily given access to the system’s source code. 
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For our case study, we asked the kernel measurement system to gather information 

about all file-system related system calls, fork and exit system calls, and context 

switches. Together, these allowed our simulation scaffold to replay essentially exactly 

the sequence of events that took place in the original system. 

 

There are a few important attributes of such trace-gathering systems for work of 

this kind: the traces must be complete (no records must be missed), they must be 

accurate (not contain invalid data), they must have precise timestamps (resolution of 

a few microseconds is acceptable), and gathering them must not disturb the system 

under test very much. The HP-UX trace facility met all these needs well: its 

timestamp resolution is 1 µsecond, and the running time for the tests we conducted 

increased by less than 5%—at least partly because we did trace compaction and 

analysis off-line. 

 

The next section describes one of the contributions of this paper: a method called 

‘boot- strapping’ for on-the-fly generation of additional traces from a previously 

collected set of traces. However, from the point of view of the simulator itself, each 

derived trace is handled the same way, so we will defer further discussion of this 

aspect for now. 

 

 

 

5.4 Metadata Snapshot 

Before tracing is begun, a snapshot is made of the metadata on each of the file 

systems used by the workload being traced. This snapshot includes a copy of the file 

systems’ naming hierarchy, i.e., the directories, overall size information, and a copy of 

the layout information. In our case, the HP-UX file system uses a slightly modified 

version of the original 4.2BSD Fast File System,15 so this data included inode and 

cylinder-group maps. 

The metadata snapshot is a copy of the data needed by the file system itself. The 

snapshot allows the scaffolding to provide the file system code under test the same 

data that it would have had access to, had it been running on the real system. In 
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particular, the file system reads the directory data to do name lookups, and uses the 

layout information to turn user-level reads and writes into disk operations. As the 

simulation progresses, the file system under test modifies the metadata as a result of 

trace-driven user-level requests, and the scaffolding faithfully performs the requested 

updates so that future requests to the metadata will return the correct data. 

Since the snapshot contains no data files, it is of modest size: a few percent of the total 

disk 

space being simulated. This is possible because we do not simulate the contents of 

user-data blocks, just their movement. Accesses to the metadata snapshot by the 

simulator scaffolding go though the real file system of the machine used to run the 

simulation, and so are subject to caching, which improves the elapsed simulation time. 

 

5.5 Scaffolding 

 

The scaffolding is the glue that binds together the entire simulation. It provides the 

following facilities: 
 

1. Lightweight threads, i.e., execution contexts, which are used to simulate processes 

making file system calls and the concurrent execution of activities inside our disk 

simulator. 

2. Time-advance and other mechanisms needed for the discrete-event simulation 

being performed. 

3. Emulation of the kernel procedures that are accessed by the real file system. For 

example, 

sleep and wakeup calls are mapped onto synchronization primitives derived from the 

underlying lightweight thread library. 

4. Software to access the metadata snapshot when requested by the file system code. 

5. Software to manage the correct replay of an input trace. 
 

At a high level, the working of the scaffolding is quite straightforward. The 

scaffolding uses one lightweight thread to simulate each independent process 

encountered in the trace. It then reads trace records that are fed to threads simulating 
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user processes until the trace is exhausted, or the simulation has reached a sufficiently 

stable state that the desired confidence intervals have been achieved. 

 

Each trace record is handed to the thread that is emulating the appropriate process. 

Most of these requests are read or write operations, which turn into calls on the file 

system code, and perhaps generate one or more simulated disk requests. Whenever the 

real process would have spent real time—e.g., while waiting for a disk access to 

complete—the thread is blocked, and waits for simulated time to advance to the 

appropriate point before it is allowed to proceed again. Once the request has been 

completed the thread goes back to wait for the next request for it to simulate.  

 

If the operation being simulated is a fork, a new thread is created and associated with 

the child process, which then proceeds to accept and process requests, while the parent 

continues. Asynchronous disk requests do not cause the thread to delay. 

 

Occasionally, the metadata snapshot needs to be consulted, and real data needs to be 

transferred between the snapshot and the buffer cache used by the file system code 

being run in the simulation. This is usually the result of a directory lookup or inode 

update. Note that the file system only invokes this mechanism when the needed 

metadata is not already in the simulated buffer cache. As a result, most reads and 

writes only do simulated data movement. 
 

 

5.6 Disk simulator 

 

Since we were interested in exploring the interaction between file systems and future 

disk designs, we chose to construct a disk model that could easily be tuned to reflect 

design changes extrapolated from current performance characteristics. We took some 

pains to calibrate this model against current real disks, and in particular, to include the 

effects of caching in the disk drive, which prior work had shown to be an important part 

of getting good agreement between a model and reality.8,16 As a result, we were able to 

achieve differences between the real disk and the modeled one, i.e., the model demerit 

figure, of only 5%.8 



 40 

The first component of our disk model is a buffer cache, which is used to keep track of 

data that has been read, read-ahead, or written. Appropriate replacement policies 

allow us to alter the behavior of this cache for different experiments. In addition, we 

modeled the physical disk mechanism—the rotating media and the moving disk head 

and arm—and the DMA engine used to transfer data from the disk cache to and from 

the disk-to-host bus. By making each of these lightweight tasks, we were able to 

model the overlap between disk accesses and data transfers to and from the host 

system that occurs in real disks. 

Our model uses replaceable modules for each of these components, so it is relatively 

easy 

to make changes to explore different design choices. For example, enhancing the disk 

model to predict the effects of making its buffer cache non-volatile, to be described in 

the case study, took less than a day. 
 

 

5.7 File system simulator 

 

The other important component we were interested in modeling was the file system. 

One approach to modeling a file system is to construct a simplified simulation of the 

file system code. By making suitable assumptions, the resulting complexity and 

development time could be kept within reasonable bounds. However, this is a process 

fraught with difficulties, as our examination of the LFS development process suggests. 

Ensuring that the right simplifications are made is difficult, doubly so because the 

expectations of the experimenter can often bias the choices in favor of the set of 

assumptions made during the design of the file system that is being investigated. 

We believe that it is possible to do better. In fact, our approach is to use the real file 

system code instead of an imperfect model of it, thereby eliminating any possibility 

of incorrect assumptions. To do this, we bring the file system out of its normal 

execution environment, which is the operating system kernel or a trusted address 

space. We do this by providing a set of scaffolding that looks—as far as the file 

system is concerned—just like the kernel environment in which it normally runs, 

down to and including the synchronization primitives the code is written to invoke. 

The entire ensemble runs as a regular, untrusted, user-level application. 
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File system designers have used this technique before to run kernel-level code at user-

level to simplify debugging during program development,  but not, to our knowledge, 

explicitly for performance studies. 

Our approach allows the file system implementation and an understanding of its 

performance to develop together. For example, in addition to providing functionality 

stubs for incomplete 

portions of the code, we can provide performance stubs as well. Running the new 

design in a user-space scaffolding, as in our approach, combines the advantages of 

easier development, faster turnaround time, and more flexible debugging with early 

access to performance data. 

In the case study we conducted, we used the production HP-UX file system code as 

the file system simulator. 

 

The other important component we were interested in modeling was the file system. 

One approach to modeling a file system is to construct a simplified simulation of the 

file system code. By making suitable assumptions, the resulting complexity and 

development time could be kept within reasonable bounds. However, this is a process 

fraught with difficulties, as our examination of the LFS development process suggests. 

Ensuring that the right simplifications are made is difficult, doubly so because the 

expectations of the experimenter can often bias the choices in favor of the set of 

assumptions made during the design of the file system that is being investigated. 

We believe that it is possible to do better. In fact, our approach is to use the real file 

system code instead of an imperfect model of it, thereby eliminating any possibility 

of incorrect assumptions. To do this, we bring the file system out of its normal 

execution environment, which is the operating system kernel or a trusted address 

space. We do this by providing a set of scaffolding that looks—as far as the file 

system is concerned—just like the kernel environment in which it normally runs, 

down to and including the synchronization primitives the code is written to invoke. 

The entire ensemble runs as a regular, untrusted, user-level application. 

  

File system designers have used this technique before to run kernel-level code at user-

level to simplify debugging during program development,  but not, to our knowledge, 

explicitly for performance studies. 
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Our approach allows the file system implementation and an understanding of its 

performance to develop together. For example, in addition to providing functionality 

stubs for incomplete 

portions of the code, we can provide performance stubs as well. Running the new 

design in a user-space scaffolding, as in our approach, combines the advantages of 

easier development, faster turnaround time, and more flexible debugging with early 

access to performance data. 

In the case study we conducted, we used the production HP-UX file system code as 

the file system simulator. 

 

 

5.8 Implementation and validation 

 

In our implementation, bootstrap generation is done as a three stage software pipeline. 

The first stage rolls a die multiple times to choose a set of processes that are to be 

included in the bootstrap. The second stage deletes the traces of the processes that are 

not part of the bootstrap. The final stage duplicates the traces of processes as 

necessary; new process identifiers and sequence numbers are created at this stage. 

Recall that creating a bootstrap involves selection with replacement. This process 

allows the individual elements to execute independently of one another. 

Duplicated records have the same time-stamps as the original records they are derived 

from. This could lead to increased contention for file and disk resources. In our 

experiments, this has not been a significant issue for the average case behavior 

because of the filtering performed by the user-level file cache in the file system 

simulation. 

For a given trace, we generate multiple bootstraps and run the simulator on each 

bootstrap, 

and then aggregate the performance data that results across these runs. Bootstrapping 

theory tells us that bootstrap distribution of a particular statistic closely approximates 

the true, but not directly measurable, distribution of the statistic in the real population. 

Thus on the average, the performance of the simulator on the bootstraps will be 

similar to what would have been seen if it had been run on real traces, i.e., samples 

from the real population. 
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The entire process of generating bootstraps can be done on-the-fly. It is also 

repeatable, if 

the same pseudo-random number generator is used for the selection process. This 

means that exactly the same bootstraps can be generated several times if so desired, 

e.g., for runs with different simulation parameters. 

The main value of using bootstrapping in simulation studies is to extend existing trace 

data on-the-fly while retaining certain statistical guarantees. As long as the original 

trace data. 

 

5.9 Analysis: detail and complexity versus efficiency 

We argue here for the use of detailed models for file system and disk system 

components. Our contention is that such models lead to increased confidence and 

increased accuracy, without an excessive increase in execution time or complexity. 

Consider first the degree of detail that is desired in modeling the system. Obviously, if 

the real system is available to test, it is usually best to measure that system, since this 

minimizes the uncertainty. One of the strengths of our approach is the use of real file 

system code as the file system simulator, which removes one major cause of 

uncertainty; another is the use of real traces rather than synthetic ones; a third is the 

calibration of the disk system against real disks. 

Consider next the degree of detail that is required to model the system. Work in disk 

drive modeling has shown that detailed models are a necessity there: ignoring caching 

effects, which in turn depends on modeling rotation position in the disk, can result in 

mean simulated times as much as a factor of two larger than they should be.8 So, 

sufficient detail is essential if useful results are to be acquired. 

Of course, it is not always possible to determine which features of the model will 

prove to be the most important—indeed, these may change as a function of what is 

being modeled. For example, a file system that did not make rotational-position 

layout optimizations or use the disk’s aggressive write caching would be much less 

sensitive to caching effects in the disk. Thus, we believe it prudent to err on the side 

of caution. 

Finally, consider the cost of detailed models. We believe that the approach we 

advocate is not particularly costly: our disk simulator is able to process about 2000 



 44 

requests per second on a 100 MHz PA-RISC processor; the file system code runs at 

full processor speed; and—just as in real life—the metadata snapshot information is 

frequently cached by the underlying real file system that the simulator is hosted on. 

The result is that the elapsed time for executing the simulations is much less than that 

required to execute the real system executing the traced workload. Furthermore, as 

processors speed up relative to I/O, this disparity in performance is likely to increase. 

A significant benefit of our approach is confidence in the results. In the final stages 

of design, omitting a crucial detail may be potentially dangerous. Our approach makes 

it easy to construct a detailed model that avoids this pitfall. 

We feel the accuracy and confidence offered by our approach far outweigh the small 

investment in time to build the scaffolding. This is a one-time cost that can be 

amortized over many studies. In our experience, the code to implement a detailed disk 

model and the bootstrap generator proved fairly straightforward. By simply dropping 

the real file system code into the simulator, our development time for this portion of 

our model was zero. 

 

On the other hand, a potential drawback to our scheme is that it assumes the 

availability of the file system code. Sometimes this might not be case, e.g., when 

designing a new file system from scratch. However, even in these cases, many aspects 

of the our system, e.g., the disk model, workload characterization, and parts of the 

scaffolding, may be used independently. 

 

5.10 MODELING THE DISK 

Although there are some exceptions, much of the prior work on disk modeling has 

not accurately reflected the considerable concurrency that occurs in modern disk 

drives, nor the actual operational characteristics of the disk itself, including non-linear 

seek versus distance times, bus transfer effects, and caching. We endeavored to 

address these issues in our model. Its calibration has been described elsewhere;  here, 

we concentrate on a description of the elements that go to make up the model. 
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Figure 3: Major Componenets of the disk model. 

 

Figure above shows the components of our model. The major components are as 

follows; in our implementation, each is a C++ object: 
 

1. The disk controller is a data structure that binds together the other elements, and 

provides a placeholder for them. It also provides the management code for the disk’s 

actions, and a number of parameters used to control modeling of aspects like controller 

overhead. 

2. The disk cache represents the on-board cache memory in the disk. It can be 

managed as a simple speed-matching buffer, or segmented and used to cache data 

before or after it is explicitly referred to by the host. Here are two examples of the 

caching policies that 

our model supports. If the disk is idle, and the last request was a read, the controller 

may choose to continue doing a speculative read-ahead into the cache in case the host 

is making sequential transfers. If the last request is a write, the controller may allow 

data transfer across the bus into the disk in parallel with the execution of the last 

request; this is known as immediate reporting, and allows efficient writes to 

consecutive disk addresses. 
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3. The disk mechanism task models the rotating media and the disk heads attached 

to a moving arm. In practice, most of the code is concerned with translating logical 

addresses into physical ones, taking into account details of the disk drive geometry such 

as zoning, which allows more sectors on the outer tracks than the inner ones spare 

sectors, and head- and track-sector skew, which minimize rotation delays on head and 

track-switches. 

4. The DMA engine task models the transfer of data across the interface between the 

disk and the bus connecting it to the host system. The bus is acquired and released 

according to policies determined by the design of the disk controller, parameters that 

can be set by the host system, and the availability of data or space in the disk cache. 

This allows contention between multiple disks on the same bus to be modeled 

correctly. 

5. The request-scheduling policy determines, in combination with the cache-

management policies, which request will be executed next if the disk drive has been 

passed more than one. For example, this allows the command queueing of SCSI-2 to 

be modeled. 
 

We found it convenient to have each task call into the disk controller code to request 

work for it to do, blocking if there was none. This allowed each task to be a simple 

get-work— execute-it loop, and let us concentrate the complexities of handling the 

interactions between the cache management and the request scheduling in one place. 

While this model might appear complex, it is in fact quite easy to implement. Our 

scaf- folding provides lightweight threads, synchronization objects such as 

semaphores, and queue abstractions. The disk elements are implemented as 

independent threads that send messages to each other through queues and synchronize 

as needed using semaphores. The model has been parameterized for several different 

disks using a combination of manufacturer-supplied data and direct measurements. 

The simulation is tuned to minimize error in the transfer size range, typically 4–8 

kbytes, commonly used by current file system designs. Calibration against real disk 

performance under a range of workloads yields excellent agreement, within 5%. The 

total code required to achieve this level of accuracy is modest—a little over 3000 lines 

of C++. The particular disk model that we describe here has been extensively used in 

other studies. 
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A separate paper8  contains quantitative information of how different portions of the 

model contribute to its accuracy and how it compares with typical simple models. 

Undoubtedly, an accurate model like ours is more complicated than a simpler, less 

accurate, model. On the other hand, we can quantify and bound its deviations from 

the behavior of real disks, and we know that it does a good job of modeling 

components of disk behavior that are growing in importance as file system designs 

attempt to adapt to, and take advantage, of exactly these performance non-linearities. 

 

5.11 MODELING THE FILE SYSTEM 

 

Since we were particularly interested in exploring the effects of changing disk 

technology on file system behavior and performance, we developed techniques that 

allowed us to use the actual file system code rather than an imperfect abstract model 

of it. By comparison with an abstract model, our approach increased our confidence 

in the results, and also ensured that we did not have to continually adjust the 

parameters of the file system model as a result of different workloads or disk 

behaviors. 

We found it straightforward to adapt the file system code running in the kernel to run 

as an untrusted user application within the simulator. The infrastructure requirements of 

a file system are typically straightforward: some multitasking, simple memory 

management, and access to physical devices and user memory space—usually 

through a very stylized, well-controlled interface. The multitasking support usually 

has to include some form of threads and a set of synchronization primitives. All these 

are relatively easy to emulate in a user-space scaffolding. For example, the device-

driver routines can easily be provided by a set of procedures that invoke the interface 

provided by the disk simulator. Processes in the original system can be treated as 

independent threads each with per address space structures imitating those of the 

original system. Though we happened to use the HP-UX file system as a base for 

our case study, these techniques are applicable in exporting code from other systems 

to run at user level. 

As a specific example, for the case study to be described later, the entire HP-UX file 

system,14 which is derived from the 4.2BSD Fast File System,15 was run at user level 

without modification. In this case study, almost all the code in the file system simulator 
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was taken from a copy of the HP-UX product source code. Additional code that was 

needed to make it execute correctly at user level was quite minimal—about 3000 

lines of C. This represents code that is implemented once; the actual code for the 

various file systems under test runs unchanged. This represents a huge saving in 

work, because typical file system implementations are quite large. Most of the code 

we added is required to provide the right kernel-level abstractions and the correct 

device interface at user level and can be reused without any change to simulate other 

file systems. 

To validate our file system simulator implementation against a real kernel, we 

compared the block requests issued by the real file system running inside the 

operating system kernel and the simulator. There were no significant differences 

between the two systems on a set of several different programs. This is not too 

surprising: we were executing the same code in both cases, but we found that it 

inspired our confidence in our results. 
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6. CODE 

6.1 Main Functioality 

package filesystem.core; 

 

import java.io.*; 

import java.util.Vector; 

 

public class FileSystem 

{ 

  protected static final String FILE_SYSTEM_PATH = "c:\\filesystem.fs"; 

  private RandomAccessFile raf; 

 

  public static String ERROR = ""; 

 

  public FileSystem() 

  { 

  } 

 

  protected RandomAccessFile OpenFile() throws Exception 

  { 

    if(raf != null) 

    { 

      throw new Exception("File is already Opened"); 

    } 

    else 

    { 

      raf = new RandomAccessFile(FILE_SYSTEM_PATH, "rw"); 

      return raf; 

    } 

  } 

 

  public void closeFile() throws Exception 
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  { 

    raf.close(); 

    raf = null; 

  } 

  public RandomAccessFile getRAF() 

  { 

    return raf; 

  } 

 

  protected void writeRootNode(Node n, long offset) throws Exception 

  { 

    raf.seek(offset); 

    raf.write(n.getNodeNamebytes()); 

    raf.writeByte(n.getNodeType()); 

    raf.writeLong(n.getOffset()); 

    raf.writeLong(n.getNodeLink()); 

    raf.writeLong(n.getSizeOnDisk()); 

    raf.writeLong(n.getFreeSpace()); 

    raf.writeLong(n.getLastNodeWritten()); 

  } 

 

  protected Node readRootNode(long offset) throws Exception 

  { 

    raf.seek(offset); 

    Node rootNode = new Node(); 

    raf.read(rootNode.nodeName); 

    rootNode.setNodeType(raf.readByte()); 

    rootNode.setOffset(raf.readLong()); 

    rootNode.setNodeLink(raf.readLong()); 

    rootNode.setSizeOnDisk(raf.readLong()); 

    rootNode.setFreeSpace(raf.readLong()); 

    rootNode.setLastNodeWritten(raf.readLong()); 

    return rootNode; 

  } 
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  protected Object[] readRoots() throws Exception 

  { 

    Vector v = new Vector(); 

    Node n = new Node(); 

    n = readRootNode(0); 

    while(n.getNodeLink() != 0) 

    { 

      v.add(n); 

      n = readRootNode(n.getNodeLink()); 

    } 

    if(n.getNodeName() != null || n.getNodeName().length() != 0) 

      v.add(n); 

    return v.toArray(); 

  } 

 

  protected void writeDirectory(Node dNode, long offset)throws Exception 

  { 

    raf.seek(offset); 

    raf.write(dNode.getNodeNamebytes()); 

    raf.writeByte(dNode.getNodeType()); 

    raf.writeLong(dNode.getOffset()); 

    raf.writeLong(dNode.getNodeLink()); 

    raf.writeByte(dNode.getStatus()); 

    raf.writeLong(dNode.getChildNode()); 

  } 

  protected byte getNodeType(long offset)throws Exception 

  { 

 

    raf.seek(offset); 

    raf.skipBytes(Node.MAX_NODE_LENGTH); 

    byte b = raf.readByte(); 

 

    return b; 
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  } 

//this method will either return directory or file depends upon when it finds 

  protected Node readNode(long offset) throws Exception 

  { 

 

    Node n = new Node(); 

    if (getNodeType(offset)==Kernel.DIRECTORY) 

    { 

      n = readDirectory(offset); 

    } 

    else if(getNodeType(offset)==Kernel.FILE) 

    { 

      //read file code goes here 

      n = readFile(offset); 

    } 

 

    return n; 

  } 

  //return true if there is no file or directory exists in the root 

  protected boolean isRootEmpty(Node root) throws Exception 

  { 

      raf.seek(root.getOffset()+Kernel.ROOT_SIZE+1); 

      raf.skipBytes(Node.MAX_NODE_LENGTH); 

      byte b = raf.readByte(); 

      if(b > 0) 

        return false; 

      else 

        return true; 

  } 

  protected boolean isFileSystemEmpty() 

  { 

    try 

    { 

      OpenFile(); 
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      raf.seek(0); 

      raf.skipBytes(Node.MAX_NODE_LENGTH); 

      byte b = raf.readByte(); 

      closeFile(); 

      if(b <= 0) 

        return true; 

    } 

    catch(Exception ex){ 

      try{closeFile();}catch(Exception e){return true;} return true;} 

    return false; 

  } 

  protected Object[] readRoot(Node root)throws Exception 

  { 

    if(!isRootEmpty(root)) 

    { 

      Vector v = new Vector(); 

      long offset = root.getOffset() + Kernel.ROOT_SIZE + 1; 

      Node tmp = readNode(offset); 

      //set the parent node of this node 

      tmp.setParentNode(root); 

      tmp.setPreviousNode(root); 

      tmp.setParentDirectory(root); 

      //if(tmp.getStatus()!= Kernel.IS_DELETED) 

        v.add(tmp); 

      while(tmp.getNodeLink() >0) 

      { 

        //OpenFile(); 

        Node previousNode = tmp; 

        tmp = readNode(tmp.getNodeLink()); 

        tmp.setPreviousNode(previousNode); 

        tmp.setParentNode(root); 

        tmp.setParentDirectory(root); 

        //if(tmp.getStatus()!= Kernel.IS_DELETED) 

          v.add(tmp); 
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        //closeFile(); 

      } 

      return v.toArray(); 

    } 

    else 

      return null; 

  } 

  protected Node readDirectory(long offset) throws Exception 

  { 

    raf.seek(offset); 

    Node tmp = new Node(); 

    raf.read(tmp.nodeName); 

    tmp.setNodeType(raf.readByte()); 

    tmp.setOffset(raf.readLong()); 

    tmp.setNodeLink(raf.readLong()); 

    tmp.setStatus(raf.readByte()); 

    tmp.setChildNode(raf.readLong()); 

    return tmp; 

  } 

  protected boolean deleteNode(Node n) 

  { 

    try 

    { 

      n.setStatus(Kernel.IS_DELETED); 

      this.writeDirectory(n,n.getOffset()); 

 

      //Node previousNode = n.getPreviousNode(); 

      //make connection b 

      //previousNode.setNodeLink(n.getNodeLink()); 

    } 

    catch(Exception ex) 

    { 

      System.out.println("Unable to delete file: " + ex.getMessage()); 

      ex.printStackTrace(); 
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      return false; 

    } 

    return true; 

  } 

  //return the last node in the root 

  protected Node getLastRootNode(Node root) 

  { 

    try 

    { 

      long offset = root.getOffset() + Kernel.ROOT_SIZE + 1; 

      Node n = this.readNode(offset); 

      if(n.getOffset() == 0) 

        return null; 

      while(n.getNodeLink() >0) 

        n = this.readNode(n.getNodeLink()); 

      return n; 

    } 

    catch(Exception ex) 

    { 

      System.out.println("Unable to get last root directory"+ex.getMessage()); 

      return null; 

    } 

  } 

  //write the file 

  protected void writeFile(Node aFile)throws Exception 

  { 

    try 

    { 

      raf.seek(aFile.getOffset()); 

      raf.write(aFile.getNodeNamebytes()); 

      raf.writeByte(aFile.getNodeType()); 

      raf.writeByte(aFile.getStatus()); 

      raf.writeByte(aFile.getFileAttributes()); 

      raf.writeLong(aFile.getOffset()); 
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      raf.writeLong(aFile.getNodeLink()); 

      raf.writeLong(aFile.getSizeOnDisk()); 

      raf.writeLong(aFile.getLastModified()); 

    } 

    catch(Exception ex) 

    { 

      throw new Exception(ex.getMessage(),ex); 

    } 

  } 

  public void writeFileContents(byte b)throws Exception 

  { 

    try 

    { 

      raf.write(b); 

    }catch(Exception ex) 

    { 

      throw new Exception ("Unable to write file contents: ",ex); 

    } 

  } 

  protected Node readFile(long offset) throws Exception 

  { 

    raf.seek(offset); 

    Node tmp = new Node(); 

    raf.read(tmp.nodeName); 

    tmp.setNodeType(raf.readByte()); 

    tmp.setStatus(raf.readByte()); 

    tmp.setFileAttributes(raf.readByte()); 

    tmp.setOffset(raf.readLong()); 

    tmp.setNodeLink(raf.readLong()); 

    tmp.setSizeOnDisk(raf.readLong()); 

    tmp.setLastModified(raf.readLong()); 

    return tmp; 

  } 

} 
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6.2 Kernal Functionality 

 

package filesystem.core; 

 

public class Kernel 

{ 

  public static final byte ROOT = 1; 

  public static final byte DIRECTORY = 2; 

  public static final byte FILE = 3; 

 

 

  public static final int ROOT_SIZE = 49; //in bytes 

  public static final int DIRECTORY_SIZE = 34; //in bytes 

  public static final int FILE_SIZE = 35; //in bytes 

 

  public static final byte IS_DELETED = 1; 

 

  public Kernel() 

  { 

  } 

 

} 
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7. RUNNING PROGRAM SNIPPETS 
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