
1.

Fire Management System using Raspberry Pi and

Android App

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology.

in

Computer Science and Engineering

under the Supervision of

Ms. Reema Aswani

By

Sancheeta Kaushal (111273)

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2.

Certificate

This is to certify that project report entitled “Fire Management system using

Raspberry Pi and Android App”, submitted by Sancheeta Kaushal in partial

fulfillment for the award of degree of Bachelor of Technology in Computer Science

and Engineering to Jaypee University of Information Technology, Waknaghat, Solan

has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: Supervisor’s Name : Ms. Reema Aswani

3.

Acknowledgement

I would like to express my gratitude and appreciation to all those who gave me the

perfect environment for completion of this report. A special thanks to my final year

project supervisor, Ms. Reema Aswani, whose stimulating suggestions and

encouragement, helped me to get to the thrust of my topic and understanding the

importance of the project. I would also like to acknowledge with much appreciation

the crucial role of the staff of Computer Laboratory, who provided me with the lab

facilities as and when required.

Additionally, I appreciate the guidance given by the panels especially during the

previous project presentation which made me realize the various dimensions I was

probably missing out and hence, they gave away a room for improvement in the

project. Again a special thanks to my friends who gave me valuable suggestions

regarding the project.

Date : Sancheeta Kaushal

 111273

4.

Table of Content

Topic Page No.

Certificate i
Acknowledgment ii
Table of Content iii
List of Figures iv
List of Tables v
List of Abbreviations vi
Abstract vii

1. Introduction 1-5.
1.1 Significance 1.
1.2 Attributes 2.
1.3 History 3.
1.4 Motivation 4-5.

2. Literature Survey 6-8.
2.1 Existing Systems 6.
2.2 Scope of Improvement 7.
2.3 Feasibility Study 8.

3. Project Design 9-17.
3.1 Overall Design 9.
3.2 Components 10-15.
3.3 Flow Diagram 16.
3.4 System Requirements 17.
3.5 Gantt Chart 17.

4. Implementation 18-19.
4.1 Phases 18.
4.2 Proposed Methodology 19.

5. Conclusion 20.
6. Future Work 21.
7. Appendix-I 22-33.
8. References 34.

5.

List of Figures

S.No. Title Page No.

1.1 Pie chart depicting alarm effectiveness 12.

1.2 Pie chart depicting Alarm Status 13.

3.1 Overall Design 19.

3.2 Diagrammatic view of Raspberry Pi 20.

3.3 Bottom view of Raspberry Pi 21.

3.4 Top view of Raspberry Pi 22.

3.5 Top view of on-board pins 23.

3.6 Bottom view of sensor DS18B20 24.

3.7 Flow Diagram 27.

3.8 GCM Flow Diagram 28.

3.9 GCM Architecture Diagram 29.

6.

List of Tables

S.No. Title Page No.

1.1 Fire statistics for 10 years in Delhi 14.

7.

List of Abbreviations

● IoT – Internet of Things

● PaaS – Platform as a Service

● IBM – International Business Machines

● MAC Address – Media Access Control Address

● MQQT – Message Queue Telemetry Transport

● SSH – Secured Shell

● Telnet – Telecommunication Network

● TCP – Transmission Control Protocol

● IP – Internet Protocol

● GCM – Google Cloud Messaging

8.

Abstract

Events of fire pose threat to human life and property. Hence, there is a need to have

fire management systems that incorporate real-time survillence, monitoring and on

time detection in case of fire such that the fire can be controlled before it spreads and

causes huge losses. In this project we use IoT to achieve this.

The Internet of Things (IoT) is a rapidly emerging field and refers to the

interconnection of uniquely identifiable embedded computing devices within the

existing Internet infrastructure. This field has seen a sharp rise because of the

increasing number of computing devices which every individual has these days.

Therefore, there is a huge potential for early detection and early alert generation in

case of fire.

This project thus aims for detection and alarming of the critical events of fire in a

building using the IoT technology including Raspberry Pi and an Android App.The

main objective is to build a system where in case of fire or undue rise in temperature

in a room, the notification is sent to the concerned authority.Additionally, considering

the case where an individual is struck in the fire and needs to notify it to nears and

dears.In addition to this, the struck person can find the safest possible route to exit

excluding the paths affected by fire.

If implemented properly, this system can also help in detection of the cause of fire

based on the location of raspberry pi which reports the fire.

This system is unique in the sense that from the time immemorial, the fire mangement

systems were typically the legacy systems and such systems were properitory in their

use and hence only a few had the capability to use the then technology for fire

detection. With the time, technology changed but the properiotory nature of the fire

industry remained same which only increased the cost of fire management solutions.

This project shows how to build better cost effective systems.

9.

1. INTRODUCTION

In this project, we will get the data from the sensor and the CPU using Raspberry Pi

and send that data to IBM Bluemix Cloud. This data will be checked continuously for

the anomalous values. Then a cloud service notification will be sent to concerned

authorities in case the sensor detects a temperature rise.

Secondly, in case a person is struck at such a place then this system sends notification

to nears and dears whose numbers were saved when app was installed.

Thirdly, the app helps to find the safest exit by excluding the path on which the fire

took place.

This fire management system falls under the category of Building Management

System (BMS) or a (more recent terminology) Building Automation System (BAS)

which is a computer-based control system installed in buildings that controls and

monitors the building’s mechanical and electrical equipment. BMS consists of

software and hardware configured to generate proper signals and respond to them in

near real time.

A fire alarm system is a set of electric/electronic devices/equipment working together

to detect and alert people through visual and audio appliances when smoke/fire is

present. These alarms may be activated from smoke detectors, heat detectors, water

flow sensors, which are automatic or from a manual fire alarm pull station.

1.1 Significance:

● Most cost effective compact system.

● Easy to track locations vulnerable to fire.

● Easy to track locations out of easy human reach i.e. 24*7 presence of

human is not possible.

● Easy to track labs which involve working with highly inflammable

substances.

● Integration with cloud and app is an added advantage and gives a room

for more tinkering with data from the sensor.

10.

● Additional information about the environment can be known.

1.2 Attributes

● Real time monitoring and surveillance – Pi measures the data in real time

and it can be observed while we are sending data to the cloud there is

hardly any observable latency.This critical real-time system, in which

timeliness (i.e., the ability of a system to meet time constraints such as

deadlines) is significant.

● Reliable – In its literal meaning, reliability means being consistently good

in quality or performance and to be able to be trusted. The system is

highly reliable since any loss in wifi signal can be detected via cloud and

notification will be sent immediately.

● Extensible nature – The system proposed involves greater flexibility and

can be extended and operated upon by various types of algorithms at a

later stage.

● Efficient in terms data processing – The cloud storage of streaming data

provides a chance to process data on the cloud and that very efficiently.

● Sensitivity of the sensor - The digital sensor has a high degree of tolerance

and very wide range over which the temperature can be measured.

● Good response time of sensor – The response tme is the time taken for a

circuit or measuring device, when subjected to a change in input signal, to

change its state by a specified fraction of its total response to that change.

The sensor response time is quiet good.

● Scalable system – Right now we are having just one module to sense the

temperature. We can scale the system by adding more sensors one at each

vulnerable point in the room and make them communicate wirelessly.

● No false alarms – Since we are also measuring the temperature of the

C.P.U. of the Raspberry Pi, we can detect any circumstances where the Pi

is not functioning properly and is generating false alarms.

11.

1.3 History

Events of fire occurred since the beginning of human civilizations. But with the

increase in population and settlements we saw an increase in the losses due to fire.

● First fire alarms were illustrated by roving watchmen using hand bell-ringers

or church sextons ringing church bells or factory steam whistles which alerted

the fire brigades.

● Telegraph was later invented by Sam Morse in 1840’s and led to faster and

accurate fire reporting systems.

● In March, 1851 Municipal fire alarm system was installed in Boston which

communicated alarm to all the fire centers across the city.

● On April 30, 1852 first alarm was transmitted.

● In March 1855, Gamewell bought rights to construct Public Fire Alarm

Systems in USA.

● By early 1870’s, Watkins has developed remotely monitored fire alarm

systems using heat detectors.

● The first electric fire detector was developed in Brooklyn, NY in 1863 by

Alexander Ross.

● In 1873, first private fire alarm company was established.

● Proposed Fire Research Program In 1959, Committee on Fire Research and

the Fire Research Conference of the Division Of Engineering of the National

Research Council.

● In 1968, Fire Research and Safety Act was formed in U.S.A.

● In the mid-1970’s the National Bureau of Standards (Now the National

Institute of

Standards and Technology – NIST) contracted with Illinois Institute of

Technology Research Institute and Underwriter’s Laboratories to obtain data

regarding the performance of smoke detectors and their effectiveness in

residential environments.

12.

● In 1968, Minnesota Fire Department resulted in conclusions nearly identical to

the results of the Dunes Tests.

● In August of 1997, FDI requested for a proposal to research on Duct smoke

detector research.

1.4 Motivation:

Fig. 1.1 Pie chart depicting alarm effectiveness

13.

Fig. 1.2 Pie chart depicting Alarm Status whether determined or not in time

As of 2012 annual data, fires caused an estimated average of 25 injuries, $21 million

property loss and 5 deaths in U.S.A.It has been a well known fact that a working

smoke detector in the house goes a long way toward protecting the lives of

individuals.But astonishingly, not all homes have these detectors.

According to Delhi Service Fire report:

S.No. Year No. of
Calls

Approx.
Loss
 in Lakhs

Property
Saved
 in Lakhs

Injured Deaths Medium Serious Major

1 2003-04 14595 5874 8750 1334 235 17 5 -

2 2004-05 14208 4681 6629 1687 272 27 5 -

3 2005-06 16340 4720 6457 2191 470 16 1 -

4 2006-07 14291 5587 14903 1743 303 16 3 -

5 2007-08 15718 5922 29369 2057 351 09 2 -

14.

6 2008-09 16452 5902 29471 2225 380 06 2 -

7 2009-10 21314 - - 2598 423 10 02 -

8 2010-11 22187 - - 243 447 10 03

9 2011-12 18143 - - 2132 357 13 1 -

10 2012-13 22581 - - 1979 285 9 2 -

Table 1.1 Fire statistics for 10 years in Delhi

The figure in terms of injuries, deaths and loss of property is really alarming.The

situation becomes more difficult due to the negligence of people. Indian households

never showed any interests towards fire alarm systems the reason being high cost and

difficult maintainence. This drove the motivation for the current project scenario.The

reason for high ocsts invlolved is the hardware and the proprieotry nature of the

industry.

These statistics also prove that the situation is not improving with time rather it’s

almost constant in terms of death and injury tolls. Hence, I feel that this area demands

immediate attention.

15.

2. LITERATURE SURVEY

2.1 Existing Systems:

a.) Fire Alarms:

• Manual Fire Alarm: Such systems need human input to indicate an event of

fire. The issue is that they are not automated.

• Automatic Fire Alarms: These are automated systems using wired sensors and

generate warning in case the sensor values go beyond a threshold limit. Such

systems cost very high due to involvement of highly technical systems. The

microprocessors being used are not that easy to handle both for the customer

and the manufacturer and the programmer.

• Wireless sensor networks: These sensors have wireless capabilities and

provide low cost solutions for such applications. They consist of small size,

low-power and low cost devices integrated with limited computation, sensing

and communication capabilities.

• Simulation Systems: These systems help in simulating real life situations

where loss can be major. These systems prove to be of great in situations

where the probability of fire event is very high. For example, Beijing Olymics

may be considered for such a situation. This system used multi-dimensional

integration model. Two types of studies were done one where we analysed fire

resistant behaviours of whole structure.Second one being the study on fire

evaluation and emergency rescue of campus based Geography Information

System (GIS).

• Computer vision Systems: Such systems can also be used as a type of multi-

function sensor. Computer vision applications have included building

security, improving response rate, sensing and control and monitoring a fire.

Additional fire detection capability can therefore be added with minimal cost

through changes in software and correlating results between the computer

vision system and other. Using combination of video cameras, computers, and

artificial intelligence techniques, it processes multiple spectral images in real

16.

time to reliably detect a small fire at large distances in a very short time. It

can also identify the location of a fire, track its growth and monitor fire

suppression. Further combined with radiation sensors (UV and IR) to enhance

its detection capabilities or a CCD camera to automatically evaluate the scene

through identification of bright regions associated with the fire radiation and

increase system reliability.

b.) Notification Systems:

• GCM: Google Cloud Messaging (GCM) for Android is a service that allows

you to send data from your server to your users' Android-powered device, and

also to receive messages from devices on the same connection. The GCM

service handles all aspects of queuing of messages and delivery to the target

Android application running on the target device, and it is completely free.

• Rabbit MQ: RabbitMQ is open source message broker software (sometimes

called message-oriented middleware) that implements the Advanced Message

Queuing Protocol (AMQP). The RabbitMQ server is written in the Erlang

programming language and is built on the Open Telecom Platform framework

for clustering and failover. Client libraries to interface with the broker are

available for all major programming languages.

• Others: This includes Tokodu Notification, Parse Library and Deacon Project.

c.) Approaches to find Location:

• Map of building

• Fused Location Provider API: It is a simple, power efficient API which is

known for it’s versatile nature and immediate availability.

• Geolocation API: The Google Maps Geolocation API returns a location and

accuracy radius based on information about cell towers and WiFi nodes that

the mobile client can detect.

http://en.wikipedia.org/wiki/Message_broker
http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://en.wikipedia.org/wiki/Erlang_\(programming_language\)
http://en.wikipedia.org/wiki/Erlang_\(programming_language\)
http://en.wikipedia.org/wiki/Open_Telecom_Platform

17.

2.2 Scope of Improvement:

• Fire systems are really cost extensive. Since, the chances of a fire mishap

taking place are very rare so the cost is important.

• But, this rare event may also cost lives and huge losses if we compromise on

system's quality.

• So, we need to strike a balance between cost and quality.

• Lastly, the microcontrollers have less memory involved.

• Thus, sensor data cannot be stored and analyzed in on chip memory.

• Since there cannot be on chip storage we definitely need to have cloud

services.

• Most of the sensors are analog sensors and hence required complex circuitry.

• A lot of systems require multiple sensors for detection of fire which is

complex in the sense that the computation gets doubled and the cost and

complexity of getting appropriate results is relatively higher.

• Also, in some wireless sensors the operating frequency of sensor interferes

with the frequency of the processor leading to time delays in the results.

• Wireless sensors only possess low computation capabilities while in case of

fire we need computation intensive sensors. In addition to this, we need

repeaters which increase the cost.

2.3 Feasibility Study:

The feasibility study concerns with the consideration made to verify whether the

system is fit to be developed in all terms. Once an idea to develop software is put

forward the question that arises first will pertain to the feasibility aspects.

There are different aspects in the feasibility study:

● Operational Feasibility:

18.

There is no difficulty in using the system, since the system will be made available as

an

Android App and since apps are a common feature these days. Therefore, it is

assumed that he will not face any problem in running the system. As users are

responsible for initiating the development of a new system this is rooted out.

● Technical Feasibility:

Technical feasibility deals with the study of function, performance, and constraints

like resources availability, technology, development risk that may affect the ability to

achieve an acceptable system and as we know handling Raspberry Pi is quiet easy a

task than use complicated microcontrollers. Even IBM Bluemix has a rich variety of

resources already available so as to make the task of a technical person easier.

● Economic Feasibility:

One of the factors, which affect the development of a new system, is the cost it would

incur. The proposed system involves Raspberry Pi which is really cost effective in

front of other microcontroller. Additionally, the sensor is cheap and IBM Bluemix

costs zero to us. Hence, very little cost has to beincurred to develop the system.

Thereby decreasing the cost of the system to be sold which is one of the reasons that

makes this system a better one.

19.

3. PROJECT DESIGN

The project design involved various designing the system and software after realizing

the components that were required. The overall system architecture was built and

analysed.These system designs will serve as input to next phase of the model.

3.1 Overall Diagram:

Fig 3.1 Overall system diagram

● In our system design, we generate data using temperature sensor which is

interfaced to Raspberry Pi.

● The data is being sent to the cloud so that notification can be triggered in case

of anomalous values.

● The notifications are being sent to the owner so that appropriate actions can

be taken.

● Also, an emergency situation can be reported using the same android app.

20.

● Lastly, in case of an emergency situation, the best possible route to exit will

be determined.

3.2 Components:

1. Raspberry Pi:

Fig. 3.2 Diagrammatic view of Raspberry Pi

● Raspberry Pi is a credit card-sized single-board computer which can be used

for wide variety of applications from General Purpose Computing to Project

Platform.

● Also known as Device for Makers it allows bare metal computer hacking, it

has a Broadcom System on a chip.

● The model being used is Model B constituting ARM based processor , 512

MB RAM, GPU, 700mA power input, 16 GB Class 10 Memory Card, 2 USB

Ports and 1 Ethernet Port and 26 pin GPIO.

● The Operating System configuration being installed is Raspabian which is a

stock OS and is a flavor of Linux.

21.

● The GPIO is expandable and can be interfaced to another microcontroller like

Arduino for analog sensors since there is no analog to digital interface on the

pi.

Fig 3.3 Bottom view of Raspberry Pi

22.

Fig 3.4 Top view of Raspberry Pi

A. Processor: At the heart of the Raspberry Pi is the same processor found in the

iPhone 3G and the Kindle 2. This chip is a 32 bit, 700 MHz System on a Chip,

which is built on the ARM11 architecture. The Model B has 512MB of RAM.

B. Secure Digital Card Slot: Everything on Pi is stored on SD Card so there is

nothing like hard disk for storage.

C. The USB Port: On model B there are two USB 2.0 ports.

D. Ethernet Port: The model B has a standard RJ45 Ethernet port. The port on

the Model B is actually an onboard USB to Ethernet adapter. WiFi connectivity

via a USB dongle is another option.

E. HDMI Connector: The HDMI port provides digital video and audio output.14

different video resolutions are supported.

F. Status LED’s:

● ACT - Green - Lights when the SD card is accessed

● PWR - Red - Hooked up to 3.3V power

● FDX - Green - On if network adapter is full duplex

23.

● LNK - Green - Network activity light

● 100 - Yellow- On if the network connection is 100Mbps

G. Analog Audio Output: This is a standard 3.5mm mini analog audio jack,

intended to drive high impedance loads (like amplified speakers). Headphone

or unpowered speakers won’t sound very good.

H. Composite Video Out: This is a standard RCA-type jack that provides

composite NTSC or PAL video signals. This video format is extremely low-

resolution compared to HDMI. Prefer to use a HDMI television or monitor,

rather than a composite television.

I. Power Input: There is no power switch on the Pi. This microUSB connector is

used to supply power (this isn’t an additional USB port; it’s only for power).

MicroUSB was selected because the connector is cheap USB power supplies

are easy to find.

Fig 3.5 Top view of on-board pins

A. General Purpose Input and Output: These pins to read buttons and

switches and control actuators like LEDs, relays, or motors.

24.

B. Display Serial Interface: This connector accepts a 15 pin flat ribbon

cable that can be used to communicate with a LCD or OLED display

screen.

C. Camera Serial Interface: This port allows a camera module to be

connected directly to the board.

D. P2 and P3 headers: These two rows of headers are the JTAG testing

headers for the Broadcom chip (P2) and the LAN9512 networking chip

(P3).

2. DS18B20 Temperature Sensor

Fig 3.6 Bottom view of sensor DS18B20

● DS18B20 Temperature Sensor is a digital thermometer which provides 9 to 12

bit Celsius temperature measurement.

25.

● With only 1 data line, it measures temperatures from -55°C to +125°C (-67°F

to +257°F). It has a tolerance of ±0.5°C and its accuracy is maximum over the

range -10°C to +85°C.

● This sensor can derive power directly from data line using the concept of

parasite power and thereby eliminates the need of an external power supply.

3. PuTTY

PuTTY is an SSH and telnet client. As a free and open source terminal emulator,

serial console and network fiile transfer application.It supports several network

protocols including SCP, SSH, Telnet, rlogin and raw socket connection. In this

project it will be used for SSH login.

4. Wifi module and LAN cable:

The concept of network bridging is used in the project. Network bridging is the action

taken by network equipment to create an aggregate network from either two or more

communication, or two or more network segments. Bridging is distinct

from routing which allows the networks to communicate independently as separate

networks. Also, if one or more segments of the network are wireless, it is known

as bridging. A network bridge is a network device that connects multiple network

segments. In the OSI model bridging acts in the first two layers, below the network

layer. The wifi signal is bridged to Raspberry Pi using LAN Cable.

5. IBM Bluemix:

Bluemix is an open standards, cloud based platform for building, managing and

running apps of all types, such as web, mobile, big data and smart devices.

Capabilities include Java, mobile back-end development and application monitoring,

as well as features from ecosystem partners and open-source all provided as a service

in the cloud.

Being an enterprise Platform as a Service (PaaS), the services provided are helpful for

integration of data from Raspberry pi with the cloud. It supports several programming

languages and services[1]as well as integrated DevOps to build, run, deploy and

manage applications on the cloud. Bluemix is based on Cloud Foundry open

http://en.wikipedia.org/wiki/Network_equipment
http://en.wikipedia.org/wiki/Network_segment
http://en.wikipedia.org/wiki/Router_\(computing\)
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Network_layer
http://en.wikipedia.org/wiki/Network_layer
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Bluemix#cite_note-1
http://en.wikipedia.org/wiki/DevOps

26.

technology and runs on SoftLayer infrastructure. Bluemix

supports Java, Node.js, Ruby and can be extended to support other languages such

as PHP, Python or Scala. In February 2014,Bluemix was one of the largest Cloud

Foundry deployments in the world.

6. MQTT :

Message Queue Telemetry Transport is publish - subscribe based light weight

messaging protocol for use on top of the TCP/IP protocol. Having designed for

connections with remote locations where a small code footprint is required and

network bandwidth is limited. The Publish-Subscribe messaging pattern requires a

message broker. The broker is responsible for distributing messages to interested

clients based on topic of a message.

7. Notification Based Strategies:

a.) Push Strategy: Push notifications let our application notify a user of new messages

or events even when the user is not actively using your application. On Android

devices, when a device receives a push notification, your application's icon and a

message appear in the status bar. When the user taps the notification, they are sent to

your application. Notifications can be broadcast to all users, such as for a marketing

campaign, or sent to just a subset of users, to give personalized information.

b.) Pull Strategy: It is referred to as "polling" where the phone will periodically ask a

server for new information or content.

http://en.wikipedia.org/wiki/SoftLayer
http://en.wikipedia.org/wiki/Java_\(programming_language\)
http://en.wikipedia.org/wiki/Node.js
http://en.wikipedia.org/wiki/Ruby_\(programming_language\)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python_\(programming_language\)

27.

3.3 Flow Diagram:

Fig 3.7 Data Flow Diagram

28.

3.4 System Requirements:

1.Hardware Requirements:

● Raspberry Pi

CPU : 700 MHz

RAM : 512 MB

Display : 1024*768 Monitor

SD Card Slot : 16 GB

● Sensor

● Android Phone(for installation of App)

2.Software Requirements:

● OS : Raspbian

● Software : Eclipse

● Cloud Service : IBM Bluemix

3.5 GCM Flow Diagram:

Fig 3.7 GCM Flow Diagram

29.

3.6 GCM Architecture:

Fig 3.8 GCM Architecture Diagram

4. IMPLEMENTATION

4.1 Phases:

The project will be done in two phases:

● First phase –

1. Getting data from sensor using Raspberry Pi

2. Sending the data to the cloud using IBM Bluemix and building a service to

ensure communication between the Raspberry Pi and the Cloud.

● Second phase –

1. A cloud service notification in case of rise in temperature to the concerned

authorities. Concerned authorities being administration and lab assistants in

case of an institution and in case of houses, the owner is concerned authority.

 2. In case, you are struck at such a place then this system allows you to send

notifications to near and dear ones.

30.

3.We will use push notification strategy since it saves power consumption,

time and other resources.

4. GCM will be required both for downstream and upstream notifications.

5. Downstream Notifications from BlueMix Cloud via GCM

6.Upstream Notifications to nears and dears via GCM

4.2 Proposed Methodology and Algorithm:

The following things were done in sequence to achieve an executable version of the

project:

● Raspabian OS was installed on the Raspberry Pi.

● The DS18B20 sensor was mounted on breadboard. It was then connected to

GPIO on Raspberry Pi. The left pin of sensor is connected to ground which is

3rd pin on right. The middle data pin of sensor is connected to 4th GPIO pin on

left. The right pin of the sensor is connected to 1st pin on the left. All these

references are made with respect to the flat face of the sensor.

● Raspberry Pi is connected to power supply. Fist two status LED’s start

blinking.

● The wifi was connected to laptop and the Ethernet cable was connected to

Raspberry Pi from Laptop and these two connections were bridged. Rest three

LED’s also start blinking.

● Using PuTTY, we access the Raspberry Pi terminal and using modprobe

commands we activate the sensor to get the sensor output on the terminal.

● We then make changes to our code and debuild the current file to form a .deb

file which is a binary only file.

● Using the dpkg command we then run the service.

● Once the service is running check the status and get the device id.

● Go to IBM Bluemix Cloud platform, put the device id and check the streaming

data son NodeRed Editor.

● We can also visualize the data streaming graph.

● Finally, this data will be further put to use when we build Android App.

31.

5. CONCLUSION

From the project done till now, we can conclude that this system can prove to be a

promising system. If implemented on large scale, streaming data can provide us

interesting statistics. But as of now, the data sent to cloud can be used to detect

alarming situations by using triggers if the temperature goes beyond a certain limit.

Additionally, this system can detect false alarms, which is very crucial these days.

Furthermore, the data from this sensor can improvise the results in simulation systems

by giving us a general idea of the surrounding temperature thereby telling the optimal

temperature range and the threshold temperature in a much better way. Lastly, I

conclude that first phase of the project is complete in its form such that it deployed

next semester as the input data for the Android App.

32.

6. FUTURE WORK

Several approaches can be followed to improvise the current system

● If integrated with camera module we can very precisely reason about the cause

of fire in the room. Additionally, the camera module can help us in knowing

the exact location of fire.

● We can also use augmented reality and neural network algorithms to enhance

the efficiency of our system.

● The sensor data has a potential to be used in fire simulation techniques. It can

be used to determine the threshold temperature value depending on various

circumstances where each circumstance may lead to a situation responsible for

generation of false alarms.

33.

7. APPENDIX – I

● iotmain.c

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <math.h>

#include <signal.h>

#include "iot.h"

#include "MQTTAsync.h"

#include <syslog.h>

char configFile[50] = "/etc/iotsample-raspberrypi/device.cfg";

float PI = 3.1415926;

float MIN_VALUE = -1.0;

float MAX_VALUE = 1.0;

char clientId[MAXBUF];

char publishTopic[MAXBUF] = "iot-2/evt/status/fmt/json";

char subscribeTopic[MAXBUF] = "iot-2/cmd/reboot/fmt/json";

//flag to check if running in registered mode or quickstart mode

// registered mode = 1

// quickstart mode = 0

int isRegistered = 0;

MQTTAsync client;

//config file structure

struct config {

34.

 char org[MAXBUF];

 char type[MAXBUF];

 char id[MAXBUF];

 char authmethod[MAXBUF];

 char authtoken[MAXBUF];

};

int get_config(char* filename, struct config * configstr);

void getClientId(struct config * configstr, char* mac_address);

float sineVal(float minValue, float maxValue, float duration, float count);

void sig_handler(int signo);

int reconnect_delay(int i);

//cpustat.c

float getCPUTemp();

float GetCPULoad();

//mac.c

char *getmac(char *iface);

//jsonator.c

char * generateJSON(JsonMessage passedrpi);

//mqttPublisher.c

int init_mqtt_connection(MQTTAsync* client, char *address, int isRegistered,

 char* client_id, char* username, char* passwd);

int publishMQTTMessage(MQTTAsync* client, char *topic, char *payload);

int subscribe(MQTTAsync* client, char *topic);

int disconnect_mqtt_client(MQTTAsync* client);

int reconnect(MQTTAsync* client, int isRegistered,

 char* username, char* passwd);

int main(int argc, char **argv) {

35.

 char* json;

 int lckStatus;

 int res;

 int sleepTimeout;

 struct config configstr;

 char *passwd;

 char *username;

 char msproxyUrl[MAXBUF];

 //setup the syslog logging

 setlogmask(LOG_UPTO(LOGLEVEL));

 openlog("iot", LOG_PID | LOG_CONS, LOG_USER);

 syslog(LOG_INFO, "**** IoT Raspberry Pi Sample has started ****");

 // register the signal handler for USR1-user defined signal 1

 if (signal(SIGUSR1, sig_handler) == SIG_ERR)

 syslog(LOG_CRIT, "Not able to register the signal handler\n");

 if (signal(SIGINT, sig_handler) == SIG_ERR)

 syslog(LOG_CRIT, "Not able to register the signal handler\n");

 //read the config file, to decide whether to goto quickstart or registered mode

of operation

 isRegistered = get_config(configFile, &configstr);

 if (isRegistered) {

 syslog(LOG_INFO, "Running in Registered mode\n");

 sprintf(msproxyUrl,

"ssl://%s.messaging.internetofthings.ibmcloud.com:8883", configstr.org);

 if(strcmp(configstr.authmethod ,"token") != 0) {

36.

 syslog(LOG_ERR, "Detected that auth-method is not token.

Currently other authentication mechanisms are not supported, IoT process will exit.");

 syslog(LOG_INFO, "**** IoT Raspberry Pi Sample has ended

****");

 closelog();

 exit(1);

 } else {

 username = "use-token-auth";

 passwd = configstr.authtoken;

 }

 } else {

 syslog(LOG_INFO, "Running in Quickstart mode\n");

 strcpy(msproxyUrl,"tcp://quickstart.messaging.internetofthings.ibmcloud.com:

1883");

 }

 // read the events

 char* mac_address = getmac("eth0");

 getClientId(&configstr, mac_address);

 //the timeout between the connection retry

 int connDelayTimeout = 1; // default sleep for 1 sec

 int retryAttempt = 0;

 // initialize the MQTT connection

 init_mqtt_connection(&client, msproxyUrl, isRegistered, clientId, username,

passwd);

 // Wait till we get a successful connection to IoT MQTT server

 while (!MQTTAsync_isConnected(client)) {

 connDelayTimeout = 1; // add extra delay(3,60,600) only when

reconnecting

 if (connected == -1) {

37.

 connDelayTimeout = reconnect_delay(++retryAttempt);

 //Try to reconnect after the retry delay

 syslog(LOG_ERR,

 "Failed connection attempt #%d. Will try to

reconnect "

 "in %d seconds\n", retryAttempt,

connDelayTimeout);

 connected = 0;

 init_mqtt_connection(&client, msproxyUrl, isRegistered,

clientId, username,

 passwd);

 }

 fflush(stdout);

 sleep(connDelayTimeout);

 }

 // resetting the counters

 connDelayTimeout = 1;

 retryAttempt = 0;

 // count for the sine wave

 int count = 1;

 sleepTimeout = EVENTS_INTERVAL;

 //subscribe for commands - only on registered mode

 if (isRegistered) {

 subscribe(&client, subscribeTopic);

 }

 while (1) {

 JsonMessage json_message = { DEVICE_NAME, getCPUTemp(),

sineVal(

 MIN_VALUE, MAX_VALUE, 16, count),

GetCPULoad() };

38.

 json = generateJSON(json_message);

 res = publishMQTTMessage(&client, publishTopic, json);

 syslog(LOG_DEBUG, "Posted the message with result code = %d\n",

res);

 if (res == -3) {

 //update the connected to connection failed

 connected = -1;

 while (!MQTTAsync_isConnected(client)) {

 if (connected == -1) {

 connDelayTimeout =

reconnect_delay(++retryAttempt); //Try to reconnect after the retry delay

 syslog(LOG_ERR, "Failed connection attempt

#%d. "

 "Will try to reconnect in %d "

 "seconds\n", retryAttempt,

connDelayTimeout);

 sleep(connDelayTimeout);

 connected = 0;

 reconnect(&client, isRegistered,

username,passwd);

 }

 fflush(stdout);

 sleep(1);

 }

 // resetting the counters

 connDelayTimeout = 1;

 retryAttempt = 0;

 }

 fflush(stdout);

 free(json);

 count++;

 sleep(sleepTimeout);

39.

 }

 return 0;

}

//This generates the clientID based on the tenant_prefix and mac_address(external Id)

void getClientId(struct config * configstr, char* mac_address) {

 char *orgId;

 char *typeId;

 char *deviceId;

 if (isRegistered) {

 orgId = configstr->org;

 typeId = configstr->type;

 deviceId = configstr->id;

 } else {

 orgId = "quickstart";

 typeId = "iotsample-raspberrypi";

 deviceId = mac_address;

 }

 sprintf(clientId, "d:%s:%s:%s", orgId, typeId, deviceId);

// sprintf(clientId, "%s:%s", TENANT_PREFIX,mac_address);

}

//This function generates the sine value based on the interval specified and the

duration

float sineVal(float minValue, float maxValue, float duration, float count) {

40.

 float sineValue;

 sineValue = sin(2.0 * PI * count / duration) * (maxValue - minValue) / 2.0;

 return sineValue;

}

// Signal handler to handle when the user tries to kill this process. Try to close down

gracefully

void sig_handler(int signo) {

 syslog(LOG_INFO, "Received the signal to terminate the IoT process. \n");

 syslog(LOG_INFO,

 "Trying to end the process gracefully. Closing the MQTT

connection. \n");

 int res = disconnect_mqtt_client(&client);

 syslog(LOG_INFO, "Disconnect finished with result code : %d\n", res);

 syslog(LOG_INFO, "Shutdown of the IoT process is complete. \n");

 syslog(LOG_INFO, "**** IoT Raspberry Pi Sample has ended ****");

 closelog();

 exit(1);

}

/* Reconnect delay time

 * depends on the number of failed attempts

 */

int reconnect_delay(int i) {

 if (i < 10) {

 return 3; // first 10 attempts try within 3 seconds

 }

 if (i < 20)

 return 60; // next 10 attempts retry after every 1 minute

 return 600; // after 20 attempts, retry every 10 minutes

}

41.

//Trimming characters

char *trim(char *str) {

 size_t len = 0;

 char *frontp = str - 1;

 char *endp = NULL;

 if (str == NULL)

 return NULL;

 if (str[0] == '\0')

 return str;

 len = strlen(str);

 endp = str + len;

 while (isspace(*(++frontp)))

 ;

 while (isspace(*(--endp)) && endp != frontp)

 ;

 if (str + len - 1 != endp)

 *(endp + 1) = '\0';

 else if (frontp != str && endp == frontp)

 *str = '\0';

 endp = str;

 if (frontp != str) {

 while (*frontp)

 *endp++ = *frontp++;

 *endp = '\0';

 }

42.

 return str;

}

// This is the function to read the config from the device.cfg file

int get_config(char * filename, struct config * configstr) {

 FILE* prop;

 char str1[10], str2[10];

 prop = fopen(filename, "r");

 if (prop == NULL) {

 syslog(LOG_INFO,"Config file not found. Going to Quickstart

mode\n");

 return 0; // as the file is not present, it must be quickstart mode

 }

 char line[256];

 int linenum = 0;

 while (fgets(line, 256, prop) != NULL) {

 char* prop;

 char* value;

 linenum++;

 if (line[0] == '#')

 continue;

 prop = strtok(line, "=");

 prop = trim(prop);

 value = strtok(NULL, "=");

 value = trim(value);

 if (strcmp(prop, "org") == 0)

 strncpy(configstr->org, value, MAXBUF);

 else if (strcmp(prop, "type") == 0)

43.

 strncpy(configstr->type, value, MAXBUF);

 else if (strcmp(prop, "id") == 0)

 strncpy(configstr->id, value, MAXBUF);

 else if (strcmp(prop, "auth-token") == 0)

 strncpy(configstr->authtoken, value, MAXBUF);

 else if (strcmp(prop, "auth-method") == 0)

 strncpy(configstr->authmethod, value,

MAXBUF);

 }

 return 1;

}

● cpustat.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int PATHSIZE = 255;

int SIZE = 8;

char cputemploc[255] = "/sys/class/thermal/thermal_zone0/temp";

char cpuloadloc[255] = "/proc/loadavg";

float getCPUTemp();

float GetCPULoad();

float getCPUTemp() {

 FILE * cputemp = NULL;

 char buffer [SIZE];

 long tempinmillic;

 float tempinc;

44.

 memset(buffer, 0, sizeof(buffer));

 cputemp = fopen(cputemploc, "r");

 fgets(buffer, SIZE, cputemp);

 tempinmillic = atol(buffer);

 tempinc = tempinmillic * 1.0 / 1000.0;

 fclose(cputemp);

 return tempinc;

}

float GetCPULoad() {

 FILE *f1;

 float load1,load5,load15;

 f1 = fopen(cpuloadloc, "r");

 fscanf(f1, "%f\t%f\t%f\t", &load1, &load5, &load15);

 fclose(f1);

 return (load1);

}

 jsonator.c

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "iot.h"

char * generateJSON(JsonMessage passedrpi) {

 char * jsonReturned;

 // 2 braces, 4 colons, 3 commas, 10 double-quotes makes it 19

 jsonReturned = calloc(1, sizeof passedrpi + sizeof(char) * 25);

45.

 strcat(jsonReturned, "{\"d\":");

 strcat(jsonReturned, "{");

 strcat(jsonReturned, "\"myName\":\"");

 strcat(jsonReturned, passedrpi.myname);

 strcat(jsonReturned, "\",");

 char buffer[10];

 strcat(jsonReturned, "\"cputemp\":");

 sprintf(buffer, "%.2f", passedrpi.cputemp);

 strcat(jsonReturned, buffer);

 strcat(jsonReturned, ",");

 strcat(jsonReturned, "\"cpuload\":");

 sprintf(buffer, "%.2f", passedrpi.cpuload);

 strcat(jsonReturned, buffer);

 strcat(jsonReturned, ",");

 strcat(jsonReturned, "\"sine\":");

 sprintf(buffer, "%.2f", passedrpi.sine);

 strcat(jsonReturned, buffer);

 strcat(jsonReturned, "}");

 strcat(jsonReturned, "}");

 return jsonReturned;

● RegisterActivity.java

package com.androidexample.gcm;

import android.app.Activity;

import android.content.Intent;

46.

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

public class RegisterActivity extends Activity {

 // UI elements

 EditText txtName;

 EditText txtEmail;

 // Register button

 Button btnRegister;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_register);

 //Get Global Controller Class object (see application tag in

AndroidManifest.xml)

 final Controller aController = (Controller)

getApplicationContext();

 // Check if Internet Connection present

 if (!aController.isConnectingToInternet()) {

 // Internet Connection is not present

 aController.showAlertDialog(RegisterActivity.this,

 "Internet Connection Error",

 "Please connect to working Internet

connection", false);

47.

 // stop executing code by return

 return;

 }

 // Check if GCM configuration is set

 if (Config.YOUR_SERVER_URL == null ||

Config.GOOGLE_SENDER_ID == null ||

Config.YOUR_SERVER_URL.length() == 0

 || Config.GOOGLE_SENDER_ID.length() ==

0) {

 // GCM sernder id / server url is missing

 aController.showAlertDialog(RegisterActivity.this,

"Configuration Error!",

 "Please set your Server URL and GCM

Sender ID", false);

 // stop executing code by return

 return;

 }

 txtName = (EditText) findViewById(R.id.txtName);

 txtEmail = (EditText) findViewById(R.id.txtEmail);

 btnRegister = (Button) findViewById(R.id.btnRegister);

 // Click event on Register button

 btnRegister.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 // Get data from EditText

48.

 String name = txtName.getText().toString();

 String email = txtEmail.getText().toString();

 // Check if user filled the form

 if(name.trim().length() > 0 &&

email.trim().length() > 0){

 // Launch Main Activity

 Intent i = new

Intent(getApplicationContext(), MainActivity.class);

 // Registering user on our server

 // Sending registraiton details to

MainActivity

 i.putExtra("name", name);

 i.putExtra("email", email);

 startActivity(i);

 finish();

 }else{

 // user doen't filled that data

 aController.showAlertDialog(RegisterActivity.this, "Registration

Error!", "Please enter your details", false);

 }

 }

 });

 }

}

49.

● MainActivity.java

package com.androidexample.gcm;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.AsyncTask;

import android.os.Bundle;

import android.util.Log;

import android.widget.TextView;

import android.widget.Toast;

import com.google.android.gcm.GCMRegistrar;

public class MainActivity extends Activity {

 // label to display gcm messages

 TextView lblMessage;

 Controller aController;

 // Asyntask

 AsyncTask<Void, Void, Void> mRegisterTask;

 public static String name;

 public static String email;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

50.

 //Get Global Controller Class object (see application tag in

AndroidManifest.xml)

 aController = (Controller) getApplicationContext();

 // Check if Internet present

 if (!aController.isConnectingToInternet()) {

 // Internet Connection is not present

 aController.showAlertDialog(MainActivity.this,

 "Internet Connection Error",

 "Please connect to Internet connection",

false);

 // stop executing code by return

 return;

 }

 // Getting name, email from intent

 Intent i = getIntent();

 name = i.getStringExtra("name");

 email = i.getStringExtra("email");

 // Make sure the device has the proper dependencies.

 GCMRegistrar.checkDevice(this);

 // Make sure the manifest permissions was properly set

 GCMRegistrar.checkManifest(this);

 lblMessage = (TextView) findViewById(R.id.lblMessage);

51.

 // Register custom Broadcast receiver to show messages on

activity

 registerReceiver(mHandleMessageReceiver, new IntentFilter(

 Config.DISPLAY_MESSAGE_ACTION));

 // Get GCM registration id

 final String regId = GCMRegistrar.getRegistrationId(this);

 // Check if regid already presents

 if (regId.equals("")) {

 // Register with GCM

 GCMRegistrar.register(this,

Config.GOOGLE_SENDER_ID);

 } else {

 // Device is already registered on GCM Server

 if (GCMRegistrar.isRegisteredOnServer(this)) {

 // Skips registration.

 Toast.makeText(getApplicationContext(),

"Already registered with GCM Server", Toast.LENGTH_LONG).show();

 } else {

 // Try to register again, but not in the UI thread.

 // It's also necessary to cancel the thread

onDestroy(),

 // hence the use of AsyncTask instead of a raw

thread.

52.

 final Context context = this;

 mRegisterTask = new AsyncTask<Void, Void,

Void>() {

 @Override

 protected Void doInBackground(Void...

params) {

 // Register on our server

 // On server creates a new user

 aController.register(context,

name, email, regId);

 return null;

 }

 @Override

 protected void onPostExecute(Void

result) {

 mRegisterTask = null;

 }

 };

 // execute AsyncTask

 mRegisterTask.execute(null, null, null);

 }

 }

 }

 // Create a broadcast receiver to get message and show on screen

53.

 private final BroadcastReceiver mHandleMessageReceiver = new

BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String newMessage =

intent.getExtras().getString(Config.EXTRA_MESSAGE);

 // Waking up mobile if it is sleeping

 aController.acquireWakeLock(getApplicationContext());

 // Display message on the screen

 lblMessage.append(newMessage + "\n");

 Toast.makeText(getApplicationContext(), "Got

Message: " + newMessage, Toast.LENGTH_LONG).show();

 // Releasing wake lock

 aController.releaseWakeLock();

 }

 };

 @Override

 protected void onDestroy() {

 // Cancel AsyncTask

 if (mRegisterTask != null) {

 mRegisterTask.cancel(true);

 }

 try {

54.

 // Unregister Broadcast Receiver

 unregisterReceiver(mHandleMessageReceiver);

 //Clear internal resources.

 GCMRegistrar.onDestroy(this);

 } catch (Exception e) {

 Log.e("UnRegister Receiver Error", "> " +

e.getMessage());

 }

 super.onDestroy();

 }

}

● GCMIntentService.java

package com.androidexample.gcm;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.Context;

import android.content.Intent;

import android.util.Log;

import com.google.android.gcm.GCMBaseIntentService;

public class GCMIntentService extends GCMBaseIntentService {

 private static final String TAG = "GCMIntentService";

 private Controller aController = null;

55.

 public GCMIntentService() {

 // Call extended class Constructor GCMBaseIntentService

 super(Config.GOOGLE_SENDER_ID);

 }

 /**

 * Method called on device registered

 **/

 @Override

 protected void onRegistered(Context context, String registrationId) {

 //Get Global Controller Class object (see application tag in

AndroidManifest.xml)

 if(aController == null)

 aController = (Controller) getApplicationContext();

 Log.i(TAG, "Device registered: regId = " + registrationId);

 aController.displayMessageOnScreen(context, "Your device registred

with GCM");

 Log.d("NAME", MainActivity.name);

 aController.register(context, MainActivity.name, MainActivity.email,

registrationId);

 }

 /**

 * Method called on device unregistred

 * */

 @Override

 protected void onUnregistered(Context context, String registrationId) {

 if(aController == null)

 aController = (Controller) getApplicationContext();

 Log.i(TAG, "Device unregistered");

56.

 aController.displayMessageOnScreen(context,

getString(R.string.gcm_unregistered));

 aController.unregister(context, registrationId);

 }

 /**

 * Method called on Receiving a new message from GCM server

 * */

 @Override

 protected void onMessage(Context context, Intent intent) {

 if(aController == null)

 aController = (Controller) getApplicationContext();

 Log.i(TAG, "Received message");

 String message = intent.getExtras().getString("price");

 aController.displayMessageOnScreen(context, message);

 // notifies user

 generateNotification(context, message);

 }

 /**

 * Method called on receiving a deleted message

 * */

 @Override

 protected void onDeletedMessages(Context context, int total) {

 if(aController == null)

 aController = (Controller) getApplicationContext();

 Log.i(TAG, "Received deleted messages notification");

57.

 String message = getString(R.string.gcm_deleted, total);

 aController.displayMessageOnScreen(context, message);

 // notifies user

 generateNotification(context, message);

 }

 /**

 * Method called on Error

 * */

 @Override

 public void onError(Context context, String errorId) {

 if(aController == null)

 aController = (Controller) getApplicationContext();

 Log.i(TAG, "Received error: " + errorId);

 aController.displayMessageOnScreen(context,

getString(R.string.gcm_error, errorId));

 }

 @Override

 protected boolean onRecoverableError(Context context, String errorId) {

 if(aController == null)

 aController = (Controller) getApplicationContext();

 // log message

 Log.i(TAG, "Received recoverable error: " + errorId);

 aController.displayMessageOnScreen(context,

getString(R.string.gcm_recoverable_error,

 errorId));

 return super.onRecoverableError(context, errorId);

58.

 }

 /**

 * Create a notification to inform the user that server has sent a message.

 */

 private static void generateNotification(Context context, String message) {

 int icon = R.drawable.ic_launcher;

 long when = System.currentTimeMillis();

 NotificationManager notificationManager = (NotificationManager)

 context.getSystemService(Context.NOTIFICATION_SERVICE);

 Notification notification = new Notification(icon, message, when);

 String title = context.getString(R.string.app_name);

 Intent notificationIntent = new Intent(context, MainActivity.class);

 // set intent so it does not start a new activity

 notificationIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP |

 Intent.FLAG_ACTIVITY_SINGLE_TOP);

 PendingIntent intent =

 PendingIntent.getActivity(context, 0, notificationIntent, 0);

 notification.setLatestEventInfo(context, title, message, intent);

 notification.flags |= Notification.FLAG_AUTO_CANCEL;

 // Play default notification sound

 notification.defaults |= Notification.DEFAULT_SOUND;

 //notification.sound = Uri.parse("android.resource://" +

context.getPackageName() + "your_sound_file_name.mp3");

 // Vibrate if vibrate is enabled

 notification.defaults |= Notification.DEFAULT_VIBRATE;

 notificationManager.notify(0, notification);

59.

 }

}

● Controller.java

package com.androidexample.gcm;

import java.io.IOException;

import java.io.OutputStream;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Random;

import java.util.Map.Entry;

import com.google.android.gcm.GCMRegistrar;

import android.app.AlertDialog;

import android.app.Application;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.net.ConnectivityManager;

import android.net.NetworkInfo;

import android.os.PowerManager;

import android.util.Log;

public class Controller extends Application{

60.

 private final int MAX_ATTEMPTS = 5;

 private final int BACKOFF_MILLI_SECONDS = 2000;

 private final Random random = new Random();

 // Register this account with the server.

 void register(final Context context, String name, String email, final String

regId) {

 Log.i(Config.TAG, "registering device (regId = " + regId + ")");

 String serverUrl = Config.YOUR_SERVER_URL;

 Map<String, String> params = new HashMap<String, String>();

 params.put("regId", regId);

 params.put("name", name);

 params.put("email", email);

 long backoff = BACKOFF_MILLI_SECONDS + random.nextInt(1000);

 // Once GCM returns a registration id, we need to register on our server

 // As the server might be down, we will retry it a couple

 // times.

 for (int i = 1; i <= MAX_ATTEMPTS; i++) {

 Log.d(Config.TAG, "Attempt #" + i + " to register");

 try {

 //Send Broadcast to Show message on screen

 displayMessageOnScreen(context, context.getString(

 R.string.server_registering, i, MAX_ATTEMPTS));

61.

 // Post registration values to web server

 post(serverUrl, params);

 GCMRegistrar.setRegisteredOnServer(context, true);

 //Send Broadcast to Show message on screen

 String message = context.getString(R.string.server_registered);

 displayMessageOnScreen(context, message);

 return;

 } catch (IOException e) {

 // Here we are simplifying and retrying on any error; in a real

 // application, it should retry only on unrecoverable errors

 // (like HTTP error code 503).

 Log.e(Config.TAG, "Failed to register on attempt " + i + ":" + e);

 if (i == MAX_ATTEMPTS) {

 break;

 }

 try {

 Log.d(Config.TAG, "Sleeping for " + backoff + " ms before

retry");

 Thread.sleep(backoff);

 } catch (InterruptedException e1) {

 // Activity finished before we complete - exit.

 Log.d(Config.TAG, "Thread interrupted: abort remaining

retries!");

62.

 Thread.currentThread().interrupt();

 return;

 }

 // increase backoff exponentially

 backoff *= 2;

 }

 }

 String message = context.getString(R.string.server_register_error,

 MAX_ATTEMPTS);

 //Send Broadcast to Show message on screen

 displayMessageOnScreen(context, message);

 }

 // Unregister this account/device pair within the server.

 void unregister(final Context context, final String regId) {

 Log.i(Config.TAG, "unregistering device (regId = " + regId + ")");

 String serverUrl = Config.YOUR_SERVER_URL + "/unregister";

 Map<String, String> params = new HashMap<String, String>();

 params.put("regId", regId);

 try {

 post(serverUrl, params);

 GCMRegistrar.setRegisteredOnServer(context, false);

 String message = context.getString(R.string.server_unregistered);

 displayMessageOnScreen(context, message);

 } catch (IOException e) {

63.

 // At this point the device is unregistered from GCM, but still

 // registered in the our server.

 // We could try to unregister again, but it is not necessary:

 // if the server tries to send a message to the device, it will get

 // a "NotRegistered" error message and should unregister the device.

 String message = context.getString(R.string.server_unregister_error,

 e.getMessage());

 displayMessageOnScreen(context, message);

 }

 }

 // Issue a POST request to the server.

 private static void post(String endpoint, Map<String, String> params)

 throws IOException {

 URL url;

 try {

 url = new URL(endpoint);

 } catch (MalformedURLException e) {

 throw new IllegalArgumentException("invalid url: " + endpoint);

 }

 StringBuilder bodyBuilder = new StringBuilder();

 Iterator<Entry<String, String>> iterator = params.entrySet().iterator();

 // constructs the POST body using the parameters

 while (iterator.hasNext()) {

 Entry<String, String> param = iterator.next();

 bodyBuilder.append(param.getKey()).append('=')

64.

 .append(param.getValue());

 if (iterator.hasNext()) {

 bodyBuilder.append('&');

 }

 }

 String body = bodyBuilder.toString();

 Log.v(Config.TAG, "Posting '" + body + "' to " + url);

 byte[] bytes = body.getBytes();

 HttpURLConnection conn = null;

 try {

 Log.e("URL", "> " + url);

 conn = (HttpURLConnection) url.openConnection();

 conn.setDoOutput(true);

 conn.setUseCaches(false);

 conn.setFixedLengthStreamingMode(bytes.length);

 conn.setRequestMethod("POST");

 conn.setRequestProperty("Content-Type",

 "application/x-www-form-urlencoded;charset=UTF-8");

 // post the request

 OutputStream out = conn.getOutputStream();

 out.write(bytes);

 out.close();

 // handle the response

 int status = conn.getResponseCode();

65.

 // If response is not success

 if (status != 200) {

 throw new IOException("Post failed with error code " + status);

 }

 } finally {

 if (conn != null) {

 conn.disconnect();

 }

 }

 }

 // Checking for all possible internet providers

 public boolean isConnectingToInternet(){

 ConnectivityManager connectivity =

 (ConnectivityManager) getSystemService(

 Context.CONNECTIVITY_SERVICE);

 if (connectivity != null)

 {

 NetworkInfo[] info = connectivity.getAllNetworkInfo();

 if (info != null)

 for (int i = 0; i < info.length; i++)

 if (info[i].getState() == NetworkInfo.State.CONNECTED)

 {

 return true;

 }

 }

 return false;

66.

 }

 // Notifies UI to display a message.

 void displayMessageOnScreen(Context context, String message) {

 Intent intent = new Intent(Config.DISPLAY_MESSAGE_ACTION);

 intent.putExtra(Config.EXTRA_MESSAGE, message);

 // Send Broadcast to Broadcast receiver with message

 context.sendBroadcast(intent);

 }

 //Function to display simple Alert Dialog

 public void showAlertDialog(Context context, String title, String message,

 Boolean status) {

 AlertDialog alertDialog = new

AlertDialog.Builder(context).create();

 // Set Dialog Title

 alertDialog.setTitle(title);

 // Set Dialog Message

 alertDialog.setMessage(message);

 if(status != null)

 // Set alert dialog icon

 alertDialog.setIcon((status) ? R.drawable.success :

R.drawable.fail);

 // Set OK Button

67.

 alertDialog.setButton("OK", new

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which)

{

 }

 });

 // Show Alert Message

 alertDialog.show();

 }

 private PowerManager.WakeLock wakeLock;

 public void acquireWakeLock(Context context) {

 if (wakeLock != null) wakeLock.release();

 PowerManager pm = (PowerManager)

context.getSystemService(Context.POWER_SERVICE);

 wakeLock = pm.newWakeLock(PowerManager.FULL_WAKE_LOCK |

 PowerManager.ACQUIRE_CAUSES_WAKEUP |

 PowerManager.ON_AFTER_RELEASE, "WakeLock");

 wakeLock.acquire();

 }

 public void releaseWakeLock() {

 if (wakeLock != null) wakeLock.release(); wakeLock = null;

 }

}

68.

● Config.java

package com.androidexample.gcm;

public interface Config {

 // CONSTANTS

 static final String YOUR_SERVER_URL =

"YOUR_SERVER_URL/gcm_server_files/register.php";

 // YOUR_SERVER_URL : Server url where you have placed your

server files

 // Google project id

 static final String GOOGLE_SENDER_ID = "9432966778899"; // Place

here your Google project id

 /**

 * Tag used on log messages.

 */

 static final String TAG = "GCM Android Example";

 static final String DISPLAY_MESSAGE_ACTION =

 "com.androidexample.gcm.DISPLAY_MESSAGE";

 static final String EXTRA_MESSAGE = "message";

}

● Config.php

<?php

/**

69.

 * Database config variables

 */

define("DB_HOST", "localhost");

define("DB_USER", "YOUR-DATABASE-USER");

define("DB_PASSWORD", "YOUR-DATABASE-PASSWORD");

define("DB_DATABASE", "gcm");

/*

 * Google Cloud Messaging API Key

 */

define("GOOGLE_API_KEY", "XXXXXXXXXXXXXXXXXXXXXX"); //

Place your Google API Key

?>

● Function.php

<?php

 //Storing new user and returns user details

 function storeUser($name, $email, $gcm_regid) {

 // insert user into database

 $result = mysql_query("INSERT INTO gcm_users(name, email,

gcm_regid, created_at) VALUES('$name', '$email', '$gcm_regid', NOW())");

 // check for successful store

 if ($result) {

 // get user details

 $id = mysql_insert_id(); // last inserted id

70.

 $result = mysql_query("SELECT * FROM gcm_users WHERE id =

$id") or die(mysql_error());

 // return user details

 if (mysql_num_rows($result) > 0) {

 return mysql_fetch_array($result);

 } else {

 return false;

 }

 } else {

 return false;

 }

 }

 /**

 * Get user by email

 */

 function getUserByEmail($email) {

 $result = mysql_query("SELECT * FROM gcm_users WHERE email =

'$email' LIMIT 1");

 return $result;

 }

 // Getting all registered users

 function getAllUsers() {

 $result = mysql_query("select * FROM gcm_users");

 return $result;

 }

 // Validate user

 function isUserExisted($email) {

71.

 $result = mysql_query("SELECT email from gcm_users WHERE

email = '$email'");

 $NumOfRows = mysql_num_rows($result);

 if ($NumOfRows > 0) {

 // user existed

 return true;

 } else {

 // user not existed

 return false;

 }

 }

 //Sending Push Notification

 function send_push_notification($registatoin_ids, $message) {

 // Set POST variables

 $url = 'https://android.googleapis.com/gcm/send';

 $fields = array(

 'registration_ids' => $registatoin_ids,

 'data' => $message,

);

 $headers = array(

 'Authorization: key=' . GOOGLE_API_KEY,

 'Content-Type: application/json'

);

 //print_r($headers);

 // Open connection

 $ch = curl_init();

72.

 // Set the url, number of POST vars, POST data

 curl_setopt($ch, CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_POST, true);

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 // Disabling SSL Certificate support temporarly

 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($fields));

 // Execute post

 $result = curl_exec($ch);

 if ($result === FALSE) {

 die('Curl failed: ' . curl_error($ch));

 }

 // Close connection

 curl_close($ch);

 echo $result;

 }

?>

● Index.php

<?php

 require_once('loader.php');

 $resultUsers = getAllUsers();

 if ($resultUsers != false)

 $NumOfUsers = mysql_num_rows($resultUsers);

 else

73.

 $NumOfUsers = 0;

?>

<!DOCTYPE html>

<html>

<head>

<title></title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<script

src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js"></script

>

<script type="text/javascript">

 $(document).ready(function(){

 });

 function sendPushNotification(id){

 var data = $('form#'+id).serialize();

 $('form#'+id).unbind('submit');

 $.ajax({

 url: "send_push_notification_message.php",

 type: 'GET',

 data: data,

 beforeSend: function() {

 },

 success: function(data, textStatus, xhr) {

 $('.push_message').val("");

 },

 error: function(xhr, textStatus, errorThrown) {

 }

 });

 return false;

74.

 }

</script>

<style type="text/css">

 h1{

 font-family:Helvetica, Arial, sans-serif;

 font-size: 24px;

 color: #777;

 }

 div.clear{

 clear: both;

 }

 textarea{

 float: left;

 resize: none;

 }

</style>

</head>

<body>

<table width="910" cellpadding="1" cellspacing="1" style="padding-

left:10px;">

<tr>

<td align="left">

<h1>No of Devices Registered: <?php echo $NumOfUsers; ?></h1>

<hr/>

</td>

</tr>

<tr>

75.

<td align="center">

<table width="100%" cellpadding="1" cellspacing="1" style="border:1px

solid #CCC;" bgcolor="#f4f4f4">

<tr>

<?php

 if ($NumOfUsers > 0) {

 $i=1;

 while ($rowUsers = mysql_fetch_array($resultUsers)) {

 if($i%3==0)

 print "</tr><tr><td

colspan='2'> </td></tr><tr>";

 ?>

<td align="left">

<form id="<?php echo $rowUsers["id"] ?>" name="" method="post"

onSubmit="return sendPushNotification('<?php echo $rowUsers["id"] ?>')">

<label>Name:</label><?php echo $rowUsers["name"]

?>

<div class="clear"></div>

<label>Email:</label><?php echo $rowUsers["email"]

?>

<div class="clear"></div>

<div class="send_container">

<textarea rows="3" name="message" cols="25" class="push_message"

placeholder="Type push message here"></textarea>

<input type="hidden" name="regId" value="<?php echo

$rowUsers["gcm_regid"] ?>"/>

<input type="submit" value="Send Push Notification" onClick=""/>

</div>

</form>

</td>

<?php }

76.

 } else { ?>

<td>

 User not exist.

</td>

<?php } ?>

</tr>

</table>

</td>

</tr>

</table>

</body>

</html>

● Loader.php

<?php

require_once('config.php');

require_once('function.php');

// connecting to mysql

$conn = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD);

// selecting database

if(!mysql_select_db(DB_DATABASE))

 print "Not connected with database.";

?>

● Register.php

<?php

require_once('loader.php');

77.

// return json response

$json = array();

$nameUser = $_POST["name"];

$nameEmail = $_POST["email"];

$gcmRegID = $_POST["regId"]; // GCM Registration ID got from device

/**

 * Registering a user device in database

 * Store reg id in users table

 */

if (isset($nameUser) && isset($nameEmail) && isset($gcmRegID)) {

 // Store user details in db

 $res = storeUser($nameUser, $nameEmail, $gcmRegID);

 $registatoin_ids = array($gcmRegID);

 $message = array("product" => "shirt");

 $result = send_push_notification($registatoin_ids, $message);

 echo $result;

} else {

 // user details not found

}

?>

● Send_push_notification.php

<?php

 require_once('loader.php');

78.

 $gcmRegID = $_GET["regId"]; // GCM Registration ID got from

device

 $pushMessage = $_GET["message"];

 if (isset($gcmRegID) && isset($pushMessage)) {

 $registatoin_ids = array($gcmRegID);

 $message = array("price" => $pushMessage);

 $result = send_push_notification($registatoin_ids, $message);

 echo $result;

 }

?>

79.

8. REFERENCES

8.1 Books:

● Matt Richardson & Shawn Wallace, “Getting Started with Raspberry

Pi”,O’Reilly Media, December 2012 , First Edition.

8.2 Research Paper:

● Lei Zang, Gaofeng Wang, “Design and Development of Automatic Fire Alarm

System based on Wireless Sensor Networks”, Proceedings of 2009

International Symposium on Information Processing, August 21-23 ,2009, pp.

410-413

● Shi, Jianyong ,”Application of computer integration technology for the fire

safety analysis”,Tsinghua Science and Technology Journal, Volume 13 , 2008,

pp. 387-392

● Z.Liu, J.Makar and A.K. Kim, “Development of Fire Detection Systems in the

Intelligent Building”, 12th International Conference on Automatic Fire

detection, March 25-28, 2001, pp. 1-14

● Huber Flores, Mobile Cloud Messaging Supported by XMPP Primitives,

ACM Digital Library, pp. 17-24, 2013.

● Dmitry Namiot, Local Area Messaging for Smartphones, International Journal

of Open Information Technologies, 2013

8.3 Technical Report/Article:

● Fire Alarm System Research – Where it’s been and where it’s going

8.4 Official Reports (By respective Govt. for statistics):

● Sushil Gupta , RMSI, “Fire Hazard and Risk Analysis in the country for

Revamping the Fire Services in the Country”, Directorate General NDRF &

Civil Defence (Fire), Ministry of Home Affairs, New Delhi , November 2012.

● Tropical Fire Report Series, “Thanksgiving Day Fires in Residential

Buildings”, Department of Homeland Security, U.S. Fire Administration,

National Fire Center , Emmitsburg Maryland, November 2010 , Volume 2,

Issue 5

80.

8.5 Web References:

● Fire statistics :

http://www.delhi.gov.in/wps/wcm/connect/doit_fire/FIRE/Home/About+Us/St

atistical+Report+of+Delhi+Fire

● Interfacing sensor to Raspberry Pi :https://learn.adafruit.com/adafruits-

raspberry-pi-lesson-11-ds18b20-temperature-sensing?view=all

8.6 Official Documentation:

● Raspberry Pi : http://www.raspberrypi.org/documentation/

● IBM Bluemix Cloud: https://www.ng.bluemix.net/docs/#

● Android Developer Docs: https://developer.android.com/

● GCM Docs : https://developer.android.com/google/gcm/index.html

● Android Developer Location Docs:

https://developer.android.com/google/play-services/location.html

http://www.delhi.gov.in/wps/wcm/connect/doit_fire/FIRE/Home/About+Us/Statistical+Report+of+Delhi+Fire
http://www.delhi.gov.in/wps/wcm/connect/doit_fire/FIRE/Home/About+Us/Statistical+Report+of+Delhi+Fire
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-ds18b20-temperature-sensing?view=all
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-ds18b20-temperature-sensing?view=all
http://www.raspberrypi.org/documentation/
http://www.raspberrypi.org/documentation/
https://www.ng.bluemix.net/docs/
https://developer.android.com/
https://developer.android.com/google/gcm/index.html
https://developer.android.com/google/play-services/location.html

	Computer Science and Engineering
	Ms. Reema Aswani
	Sancheeta Kaushal (111273)
	Certificate

