
i

Implementation of Distributed Shared Whiteboard Using

Web Socket Protocol

Project Report submitted in partial fulfilment of the requirement for the

degree of

Bachelor of Technology.

in

Computer Science & Engineering

Under the Supervision of

Dr. Rajni Mohana

By

Kush Aditya (111335)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Implementation Of Distributed Shared

Whiteboard Using Web socket Protocol”, submitted by Kush Aditya(111335) in

partial fulfillment for the award of degree of Bachelor of Technology in Computer

Science & Engineering to Jaypee University of Information Technology, Waknaghat,

Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: 13-05-2015 Supervisor’s Name: Dr.Rajni Mohana

 Designation: Assistant Professor (Senior Grade)

iii

Acknowledgement

Before I get into the project description, I would like to add a few heartfelt words for

the people who were a part of this project. In numerous ways, people who gave

unending support right from the stage project idea were conceived.

I sincerely expressed deep gratitude to Dr. Rajni Mohana faculty of Computer Science

and Engineering. I thank you for the moral support, benevolent guidance, helpful

suggestions and constant encouragement which make my project successful.

My sincere thanks also goes to my friends for their co-operation to achieve this goal.

Date: 13-05-2015 Name of the student: Kush Aditya(111335)

iv

Table of Content

S. No. Topics Page No.

1. Introduction to Shared Whiteboard 1

 1.1 Concept of Shared Whiteboard 1

 1.2 Advantages of Shared Whiteboard 2

 1.3 Limitations of Shared Whiteboard 3

 1.4 Different Users of Shared Whiteboard 3

2. Features of Shared Whiteboard 6

3.

4.

5.

6.

7

2.1 Common Features

2.1 Scope Of the Proposed System

Approach

Hardware/Software Reqirement

Technologies Used

5.1 Client Side Scripting/Coding

5.2 Server Side Scripting/Coding

5.3 Web Socket API

5.4 JDBC API

Web Sockets

6.1 What are Web Sockets

6.2 Uses of Web Sockets

 6.2.1 Social Feeds

 6.2.2 Multiplayer Games

 6.2.3 Collaborative Editing

 6.2.4 Multimedia Chat

 6.2.5 Online Education

6.3 How Web sockets Works

Design

7.1 Use-Case Diagram

7.2 Class Diagram

7.3 Data Flow Diagram

6

6

8

10

11

11

11

11

11

12

12

12

12

12

13

13

13

13

15

16

24

31

v

8.

9.

10.

11.

7.4 Sequence Diagram

Implementation

8.1 White Board(GUI)

8.2 Presenter and Participant(GUI)

Conclusion and Future Work

References

Appendix

34

36

36

38

45

46

47

vi

List of Figures

S No. Title Page No

Figure No:6.3 Mechanism of Hand Shaking 14

Figure No:7.1 Use-Case Diagram for Shared Whiteboard 17

Figure No:7.2.1 Class Diagram for Whiteboard Module 25

Figure No:7.2.2 Class Diagram for Chat Module 29

Figure No:7.3.1 Whiteboard System DFD Level 0 31

Figure No:7.3.2 Whiteboard System DFD Level 1 32

Figure No:7.3.3 Whiteboard DFD Level 2 32

Figure No:7.3.4 Chat Tool DFD Level 2 33

Figure No:7.4.1 Sequence Diagram for Login System 34

Figure No:7.4.2 Sequence Diagram for Whiteboard System 34

Figure No:7.4.3

Figure No:8.1

Figure No:8.2.1

Figure No:8.2.2

Figure No:8.2.3

Figure No:8.2.4

Figure No:8.2.5

Figure No:8.2.6

Figure No:8.2.7

Figure No:8.2.8

Figure No:8.2.9

Figure No:8.2.10

Figure No:8.2.11

Figure No:8.2.12

Sequence Diagram for Chat System

White Board(GUI)

Presenter’s Graphical User Interface

Participant 1 Graphical User Interface

Participant 2 Graphical User Interface

Presenter’s Graphical User Interface

Participant 1 Graphical User Interface

Participant 2 Graphical User Interface

Presenter’s Graphical User Interface

Participant 1 Graphical User Interface

Participant 2 Graphical User Interface

Presenter’s Graphical User Interface

Participant 1 Graphical User Interface

Participant 2 Graphical User Interface

35

36

38

38

39

39

40

40

41

41

42

43

43

44

vii

Abstract

Our proposal on Shared Whiteboard is the online platform bringing together the

learners either local or distant and the teachers within one class through the help of

web based system. It is referred as a web based system as it requires computer and

internet connection. Shared Whiteboard has the features of chatting as well as video

and audio conferencing between the teacher and the students. The teacher can register

new students, set the agenda i.e. what he is going to teach, he will give the brief

outline of topics to the students. Then he will start the presentation, he can also upload

the resources like images, text file etc. After giving presentation the teacher will end

the presentation by clicking on “end presentation” button, and then he will be

redirected to the login page of the system. Similarly, the students can apply for the

registration in the whiteboard system; he can attend the presentation and download the

resources which are available on the whiteboard. First student will login into the

system using username and password, after successful login he will be redirected to

the page from where he will click on the “attend class” button and then he will be

redirected to the shared whiteboard page. Both teacher and students can use different

functionality of the shared whiteboard system like both the users can use different

buttons to draw different types of figures or they can use pencil to write or draw

anything. Similarly, whiteboard is provided for the sharing of ideas or any important

messages among the teachers and students. As shared whiteboard is the representation

of real classroom virtually, students are fully benefited as per in the real classroom.

They can share the ideas, knowledge, and subject matters with the teacher and among

the other students.

1

CHAPTER 1

Introduction to Shared Whiteboard

1.1 Concept of Shared Whiteboard

Just as the term virtual means a simulation of the real thing, Shared Whiteboard is a

whiteboard shared via Internet, which provides a convenient communication

environment for distance learners just like traditional face-to-face classroom. A

Shared Whiteboard allows learners to attend a class from anywhere in the world and

aims to provides a learning experience that is similar to a real classroom.

When we go to college we have a schedule of lectures, which we must attend. Student

must arrive on time, and when he enters the classroom, he finds a teacher, fellow

learners, a blackboard or whiteboard, LCD projector, optionally a television screen

with videos. Likewise, a Shared Whiteboard session is a scheduled, online, teacher-

led training session where teachers and learners interact together using computers

linked to a network such as the Internet. A Shared Whiteboard enables to bring

learners from around the world together online in highly interactive virtual classes

while greatly reducing the travel, time, and expense of on-site teaching/training

programs. It can be used as a solution for live delivery and interaction that addresses

the entire process of creating and managing our teaching-learning process. It

facilitates instructor and student in teaching-learning events, such as a seminar, online

discussion or a live training for employees in company. As in traditional classroom,

there are professor and fellow learners present with the student; we have many

participants present in virtual classroom. They can talk with each other as in the

traditional classroom via chat. Similarly presenter uses whiteboard, gives

notes/resources, gives presentation as given in traditional one.

Thus, Shared Whiteboard can be visualized as a board on which a lecture or session is

conducted using Internet. Now, that we have some idea about Shared Whiteboard, we

will discuss some advantages that Shared Whiteboard offers over traditional

Whiteboard.

2

1.2 Advantages of Shared Whiteboard

Following are some of the advantages of Shared Whiteboard over traditional

Whiteboard model:

• Removal of geographical barriers (Anywhere learning)

A Shared Whiteboard allows learners and teachers to attend a single live training

session from any place in the world, provided they have a computer and Internet

connection.

• Sessions can be recorded

If learners miss a traditional classroom-based training session, they have very little

opportunity to engage in the learning experience that took place.

A virtual classroom has a facility to record the session so learners or teachers can

replay it afterwards. Teachers too get an opportunity to review their own or their

colleagues’ performance.

• Quicker to organize

Training can be organized more quickly than traditional classroom-based training.

Classrooms and projectors do not need to be reserved, materials do not need to be

distributed.

The sessions are easier to schedule or reschedule since attendees will not be traveling

to the venue of the session.

• One to one communication

With the help of Shared Whiteboard, learners can talk to the teacher and to each other,

and although this communication is not as rich in a traditional classroom, it still can

help learners, since it is one to one.

Due to these advantages, concept of Shared Whiteboard is getting very popular. Since

it allows learners to attend sessions from anywhere in world, it is very useful for

distant learners and for peoples who cannot meet face to face because of lack of time.

3

Though it gives lots of advantages, it has some pitfalls also. Following section

describes some limitations of Shared Whiteboard.

 1.3 Limitations of Shared Whiteboard

Following are some of the limitations of Shared Whiteboard over Traditional

Whiteboard

• Teachers and students need to become familiar with the tools:

Teachers and students are familiar with the workings of a traditional classroom, that

is, they understand the concepts of hand raising, the whiteboard, assignments, and so

forth. With a Shared Whiteboard, all attendees must become familiar with the way the

Shared Whiteboard works before training starts.

• Time dependency for Live Sessions:

Attending Shared Whiteboard training is restricted to a certain scheduled time.

• Infrastructure for the participants PC needs to be prepared:

Shared Whiteboard sessions need to be scheduled, teachers need to be invited, and

participants’ PCs need to be prepared.

• Technical Limitations:

Technical issues such as bandwidth, speed of the connection or power failure may

create problem while presentation is going on.

1.4 Different Users of Shared Whiteboard

There are different classes of users of Shared Whiteboard based on the roles that they

play. When presenter uses a Shared Whiteboard, he has different work to do than

participant. Depending on the user type, Shared Whiteboard takes different form for

each user. These forms can be categorized depending on the user’s role. These roles

are as follows:

• Presenter (or Administrator)

• Participant

4

Facilities provided by presenter interface to Faculty:

• Register new users

Presenter as an administrator has to register new users that will be attending the

session.

• Create a session

Presenter has to decide the session time, users that will be invited for the session.

While creating a session, he can specify the time and users of the particular session.

• Cancel a user registration

If any registered user does not want to attend the session, presenter cancels his

registration.

• Conduct Online presentation

As a presenter, he conducts the session for participants. During presentation he

performs various activities in the classroom. He can load the presentation slide that

will be displayed to participants.

• Share Resources

Presenter can add various resources to the session. It may be a file or just a simple

web page link that participant can download at their end.

• Conduct Poll

 He can create a poll for participants. Also he can chat with participants.

• Explain concepts using Whiteboard

He can use whiteboard to explain some of the topic, which may not be able to explain

via presentations, or to solve any particular doubt asked by the participant.

Facilities provided by participant interface to students:

• View online presentation

5

When a participant joins the session, they can view the presentation, which are

conducted by the presenter on the Shared Whiteboard. The presentation may include

the PowerPoint presentation slides or it,may also include the snapshot of the

whiteboard on which the presenter can explain the concepts to the participants.

• Public/Private Chat

The participants can have a conversation with fellow participants publicly or privately

via the chat feature available in the interface, the chat allows the participant to send

the instant messages to the participants who are also attending the session.

Participants can also send private messages to any of the participant.

• Download Resources

The resources that are been shared by the presenter can be downloaded by the

participants at their machine. The resources can be the files which may include course

material, e-book’s etc, or it may be also web links which presenter may want the

participants should refer.

6

CHAPTER 2

Features of Shared Whiteboard

2.1 Common Features

 We can extract the following common features of Shared Whiteboard.

 • Directing Messaging among participants or between presenter and participants is

possible using chat feature in Shared Whiteboard.

 • Audio and Video can be used in session. Using audio, presenter can deliver voice-

based lectures in a classroom.

 • Shared whiteboard, are used by instructors and students to view images,

presentations, or other application.

 • Resource sharing is possible between presenter and participants. Presenter uploads

files (notes) to the session. Participants at their end can download these resources.

 • Presenter creates polls. These polls are useful for presenter to get feedback from

participants.

 • Virtual hands up, to indicate that participant has questions to ask.When participant

does his hands up, presenter can chat with him.

2.2 Scope of the Proposed System

When we talk about scope, we are talking about developing a common understanding

as to what is included in, or excluded from, a project i.e. proposed system. Scope can

be defined in terms of deliverables, functionalities that the proposed system will

perform.

Scope of our system- Shared Whiteboard is defined in terms of tools or features that

the proposed system will have. The features of the proposed system can be listed as:

· Agenda:

7

Before starting the session, presenter has to create agenda for the session. Agenda

briefly describes the topics for the discussion. Thus it gives an outline of the session

to all participants

· Presentation display:

The presenter can show PowerPoint presentation in the session.For that he can load

presentation file or any other file on the whiteboard. He is able navigate between

different slides using appropriate buttons.

· Whiteboard:

Whiteboard is used to write while session is going on. Authority of using whiteboard

will be with Presenter only. As a participant in the session, he can view whiteboard

screens. Presenter can write on screen, or he can draw different geometrical shapes.

· Chat:

Using this feature presenter and participants can send short text messages to each

other. Participants are allowed to send message to presenter using Hands-up facility.

To give any message to participant,presenter can use chat tool.

· Resource Sharing:

Presenter uploads the resources that can be useful to the particular session.

Participants can download these resources. Also, presenter can give any resource link

on the web. Participants can see that web page separately at their end.

 Real Time audio: Using this feature the presenter and participants can talk to each

other using microphone.

8

CHAPTER 3

 Approach

Our approach is to build a system that would facilitate conducting classes on Internet

for participants from anywhere in world. Users can get many advantages by using

Shared Whiteboard. He can save a lot of time by using the Shared Whiteboard to

attend the session. Shared Whiteboard will have two types of users, as presenter and

participant. When a user enters in the Shared Whiteboard, he will be asked whether he

want to join the classroom as presenter or participant. Presenter is the one who

conducts the session, and participant is the one who attends the session. Presenter

when enters the classroom, he can also perform administrative functionalities. The

users of Shared Whiteboard (presenter and participant) has different interface of the

classroom, when they enter in the classroom. Depending on the user type, the features

of the classroom will be different for:

 · Presenter

 · Participant

The presenter can create the session in the beginning & will conduct online

presentation in the session. The participants can attend this session using the name of

the session and view the presentation made by the presenter. In the session of the

classroom, various functionalities that will be performed by the users are as follows

· Agenda:

The presenter creates the agenda in the beginning of the session. This agenda specifies

an outline of the session.

The participants can only view the agenda in their main window. The agenda will

give him the idea about the topics that will be covered in the session.

· Presentation Area:

In the presenter interface, the presentation area allows presenter to upload the

presentation file. It also allows him to navigate between the slides. In the participant

window, the presentation area will display the slide that the presenter is explaining.

9

· Whiteboard:

The presenter will be able to write, draw and highlight a particular area on the

whiteboard. The white board will be consists of various components such as various

shapes, lines, eraser, pointer, etc, using which he will be able explain the particular

topic to the participants.The participants can view the whiteboard in their interface,

but they will not be allowed to use it (they will not be allowed to make any changes to

whiteboard). The changes made by the presenter on the whiteboard will be displayed

to the participants.

· Shared Resources & Web links:

The presenter can share their resources using the load resource Facility that will be

present in the presenter interface. The resources will be files of type (doc, rtf, pdf) or

web links (URL).The participants can download these shared resources on their

machines, also they can refer the given web links using their web browser

· Chat:

The presenter will use the chat functionality to send text messages to the participants.

He can send a message to particular participant or to all participants.The participants

will be able to send text messages to each other.But, he will not be able to send

message to presenter directly. He can do it by using the hands-up facility.

· Participant list:

In the presenter interface, there will be the list of participants, which will consist of

the names of the participants that will be attending the session. If the presenter has to

eject any particular participant, then he can use the eject facility that will be available

in presenter interface. In the participant interface, the list of participants will only

show the names of the fellow participants that are attending the session.

10

CHAPTER 4

Software/Hardware Requirement

4.1 Hardware Requirement

 CPU.

 Free hard drive space.

 RAM.

 Internet connection.

4.2 Software Requirement

 Operating system (OS): Windows 2000/XP/Vista

 Software required:

1. Internet Explorer 6.0/7.0

2. Netbeans IDE 7.3.1, 7.4, 8.0, Java EE version

3. Java Development Kit(JDK) version 7 or 8

4. Glassfish Server open source edition 4

11

CHAPTER 5

Technologies Used

5.1 Client Side Scripting/Coding

 HTML

 CSS

5.2 Server Side Scripting/Coding

 Java

 JavaScript

5.3 Web Socket API

The Web Socket specification defines an API establishing "socket" connections

between a web browser and a server. In plain words: There is an persistent connection

between the client and the server and both parties can start sending data at any time.

5.4 JDBC API

The JDBC API allows you invoke database SQL commands from Java programming

language methods. You can use the JDBC API in a servlet, JSP technology page, or

an enterprise bean when you need to access the database. The JDBC API has two

parts: an application-level interface that application components use to access a

database and a service provider interface to attach a JDBC driver to the Java EE

platform.

12

CHAPTER 6

Web Sockets

6.1 What are Web Sockets?

Web Socket is a protocol providing full-duplex communications channels over a

single TCP connection. The Web Socket protocol was standardized by

the IETF as RFC 6455 in 2011, and the Web Socket API in Web IDL is being

standardized by the W3C.

Web Socket is designed to be implemented in web browsers and web servers, but it

can be used by any client or server application. The Web Socket Protocol is an

independent TCP-based protocol. Its only relationship to HTTP is that

its handshake is interpreted by HTTP servers as an Upgrade request. The Web Socket

protocol makes more interaction between a browser and a web site possible,

facilitating live content and the creation of real-time games. This is made possible by

providing a standardized way for the server to send content to the browser without

being solicited by the client, and allowing for messages to be passed back and forth

while keeping the connection open. In this way a two-way (bi-directional) ongoing

conversation can take place between a browser and the server. A similar effect has

been achieved in non-standardized ways using stop-gap technologies such as Comet.

In addition, the communications are done over TCP port number 80, which is of

benefit for those environments which block non-web Internet connections using

a firewall.
 [2]

6.2 Uses of Web sockets

 6.2.1 Social Feeds

One of the benefits of social apps is about knowing what all your friends are doing

when they do it. Sure, it's a little creepy, but we all love it. You don't want to wait

minutes to find out a family member won a pie-baking contest or a friend has become

engaged. You're online, so your feed should update in real time.
 [6]

 6.2.2 Multiplayer Games

http://en.wikipedia.org/wiki/Full-duplex
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://tools.ietf.org/html/rfc6455
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Web_IDL
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Handshaking
http://en.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
http://en.wikipedia.org/wiki/Comet_(programming)
http://en.wikipedia.org/wiki/Port_(computer_networking)
http://en.wikipedia.org/wiki/Firewall_(computing)

13

The Web is quickly coming into its own as a gaming platform. Without having to rely

on plug-ins, Web developers are now able to implement and experiment with high-

performance gaming in the browser. Whether you're dealing with DOM elements,

CSS animations, HTML5 canvas or you're experimenting with WebGL, efficient

interaction between players is crucial.
 [6]

 6.2.3 Collaborative Editing

We are living in the age of distributed development teams. Working on a copy of a

document used to suffice, but then you had to figure out a way to merge all the edited

copies together. With a collaborative solution like Web Sockets, we can work on the

same document and skip all the merges. It's easy to see who is editing what and if

you're working on the same portion of a document as someone else.
 [6]

 6.2.4 Multimedia Chat

While there's no substitute for holding a meeting in person, videoconferences are

about as good as it gets when we can't get everybody in the same room. The

videoconference route is plug-in heavy, though, and full of proprietary "goodness." so

using Web Sockets with API's and the HTML5 audio and video elements is an

obvious win.
 [6]

 6.2.5 Online Education

School keeps getting more expensive, while the Internet keeps getting faster and

cheaper. Online education can be a great way to learn, especially if you can interact

with teachers and other students. Web Sockets is the natural choice, allowing for

multimedia chat, text chat, and other perks like collaborative drawing on a digital

communal chalkboard.
 [6]

6.3 How Web Sockets works

Web Sockets provide a persistent connection between a client and server that both

parties can use to start sending data at any time. The client establishes a Web Socket

connection through a process known as the Web Socket handshake. This process

http://www.infoworld.com/d/application-development/200k-computer-science-degree-or-these-free-online-classes-218565

14

starts with the client sending a regular HTTP request to the server.

An Upgrade header is included in this request that informs the server that the client

wishes to establish a Web Socket connection.

Once the handshake gets complete the initial HTTP connection is replaced by a Web

Socket connection that uses the same underlying TCP/IP connection. At this point

either party can start sending data.

With Web Sockets you can transfer as much data as you like without incurring the

overhead associated with traditional HTTP requests. Data is transferred through a

Web Socket as messages, each of which consists of one or more frames containing the

data you are sending (the payload). In order to ensure the message can be properly

reconstructed when it reaches the client each frame is prefixed with 4-12 bytes of data

about the payload. Using this frame-based messaging system helps to reduce the

amount of non-payload data that is transferred, leading to significant reductions in

latency.
[1]

Figure 6.3: Mechanism of Handshaking

15

CHAPTER 7

Design

Software design is the activity where software requirements are analyzed in order to

produce a description of the internal structure and organization of the system that will

serve as the basis for its construction. There are two activities:

· Software architectural design: the top-level structure and organization of the system

is described and various components are identified (how the system is decomposed

and organized into components and must describe the interfaces between these

components.

· Software implementation design: each component is sufficiently described to allow

for its coding.The software design objectives can be listed as follows:

· To produce various models that can be analyzed and evaluated to determine if they

will allow the various requirements to be fulfilled.

· To examine and evaluate various alternative solutions and tradeoffs,

· To plan the subsequent development activities.

 Software system design results in the following products:

· A list of design goals derived from the nonfunctional requirements

· Software architecture

o Subsystem decomposition in terms of

 Responsibilities.

 Dependencies.

 Mapping to hardware.

o Major policy decision such as

 Control flow.

 Access control.

 Data storage.

 Access control.

 Boundary condition.

16

7.1 Uses-Case Diagram

A use case is a technique for capturing the potential requirements of a new system or

software change. Each use case provides one or more scenarios that convey how the

system should interact with the end user or another system to achieve a specific

business goal.

Use case diagrams depict:

· Use cases: A use case describes a sequence of actions that provide something of

measurable value to an actor and is drawn as a horizontal ellipse.

· Actors: An actor is a person, organization, or external system that plays a role in one

or more interactions with your system. Actors are drawn as stick figures.

· Associations: Associations between actors and use cases are indicated in use case

diagrams by solid lines. An association exists whenever an actor is involved with an

interaction described by a use case. Associations are modeled as lines connecting use

cases and actors to one another, with an optional arrowhead on one end of the line.

The arrowhead is often used to indicate the direction of the initial invocation of the

relationship or to indicate the primary actor within the use case.

· System boundary boxes (optional): We can draw a rectangle around the use cases,

called the system boundary box, to indicate the scope of the system. Anything within

the box represents functionality that is in scope and anything outside the box is

not.System boundary boxes are rarely used.

· Packages (optional): Packages are UML constructs that enable us to organize model

elements (such as use cases) into groups. Packages are depicted as file folders and can

be used on any of the UMLdiagrams, including both use case diagrams and class

diagrams.
 [9]

17

Figure 7.1: Use Case Diagram for Shared Whiteboard:-

As seen in use case diagram, in virtual classroom, there are two entities, Presenter and

Participant, which interacts with the system. These two entities can be identified as

actors in the System. Activities performed by the presenter:

· Registering new Users

· Create session

· Load Resources to the Session

18

· Start the Presentation

· Write/Draw on whiteboard

· Write in chat box

· Clear Screen.

· End the presentation

The functionalities of presenter are identified as use-cases in the system.

· Activities performed by the participant:

· Apply for the registration

· Attend the presentation

· Download Resources

Participant can apply for registration for the presentation, also he attends presentation.

Therefore, use-cases identified for him in the system are as apply for registration and

attend the presentation.

Use Case: Register new users

Actor: Student, Instructor

Purpose: To take the details of the new instructor or student and to register them.

Actor Actions System Response

1. The user will click on the register

Button and he will fill the form.

2. After form filling user will click

on the submit button.

 3. The new entries of the user will get

loaded into the database.

Use Case: System Login

Actor: Student, Instructor, Admin

19

Purpose: Verify UserName and Password to enter the system

Actor Actions System Response

1. The user selects the user type and

writes username and password

 2. The database is searched in order to

verify user info.

 3. If verification is OK than go to the

related page else notify user

Use Case: Clear Screen

Actor: Student, Instructor

Purpose: System allows users to clear their whiteboard area.

Actor Actions

1.User click on the clear screen

Button.

System Response

2. The whiteboard area of the users will

get cleared.

Use Case: Download Resources

Actor: Student

Purpose: If there exist available documents in the database student may download

Actor Actions System Response

1. Student selects the link

20

 2. System checks the database if there

exists available materials then lists them

3. Student downloads the desired material

Use Case: Start Presentation

Actor: Instructor

Purpose: Instructor can start presentation

Actor Actions System Response

1. Instructor clicks on the start

presentation button.

 2. System takes the instructor to the main

page i.e. the whiteboard page.

3. Instructor will start giving presentation.

 4. System will start transferring data to

the connected clients.

Use Case: Load resources

Actor: Instructor

Purpose: Instructor may put some supplementary material and homework on the

whiteboard.

Actor Actions System Response

1. Instructor selects the link

 2.System shows a dialog box

21

3. Instructor specifies the files and

uploads

 4. System will automatically upload the

document on the whiteboard.

Use Case: Start Presentation

Actor: Instructor

Purpose: The instructor starts the presentation

Actor Actions System Response

1. Instructor clicks on the “start” button

 2. System takes the instructor to the main

page

Use Case: Draw/write on the Whiteboard

Actor: Instructor, Student

Purpose: The instructor will use the whiteboard during the lecture in order to make

points more clear. If instructor gives permission to the student then student will also

use whiteboard.

Actor Actions System Response

1. Instructor selects drawing tool and

selects other options like size, color.

22

2 . Instructor draws something on the

board

 3. The events(e.g. mouse move, drawn

points coordinates) that instructor has

done recorded by the system and they are

send to all users in a certain time interval.

 4. When the packets receive to the

students their whiteboards will reflect the

changes to the student.

5. If a student raises hand the instructor

sends a signal to the server and that

student then can use whiteboard and the

same events take place.

Use Case: End Presentation

Actor: Instructor

Purpose: Instructor can end the presentation.

Actor Actions System Response

1. Instructor clicks on the end

presentation button.

 2. System takes the instructor to the login

page.

3.Instructor will again login to start the

Presentation.

Use Case: Write Something in Chat Box

Actor: Student

23

Purpose: This tool will provide a real time discussion environment.

Actor Actions System Response

1. Student writes something on the chat

console and submits “send” button

 2. Server takes the message and looks IP

of all online users.

 3. System sends the message to all online

users.

Use Case: Apply for registration.

Actor: Student

Purpose: The students will give all the details to register.

Actor Actions System Response

1. The student will click on register

button.

2. System will take the student to the

page where all details have to be filled.

3. Student will fill all the entries and then

Clicks on submit button. 4. System adds all the details to database.

Use Case: Attend Presentation

Actor: Student

Purpose: A student can attend the presentation.

Actor Actions System Response

24

1. The student will login to the system 2.System will take the student to main

page i.e. whiteboard page.

7.2 Class Diagram

A class diagram consists of a group of classes and interfaces reflecting important

entities of the business domain of the system being modelled, and the relationships

between these classes and interfaces. The classes and interfaces in the diagram

represent the members of a family tree and the relationships between the classes are

analogous to relationships between members in a family tree. Interestingly, classes in

parent class (the grand patriarch or matriarch of the family, as the case may be) and

related child classes under the parent classes. Similarly, a software application is

comprised of classes and a diagram depicting the relationship between each of these

classes would be the class diagram. Thus, a class diagram is a pictorial representation

of the detailed system design.
 [4]

25

Figure 7.2.1: Class Diagram for Whiteboard Module

This component starts when the user enters the shared whiteboard system and finishes

when the instructor or students exits the shared whiteboard system. As you can see

from the class diagram above, this component contains 4 classes.

26

Class Name: FrmMain

This class contains the variables and methods used in the creation of the form

(Buttons, labels, etc.)

Methods:

initialize (): This method initializes whiteboard.

Class Name: Network Manager

This class provides necessary methods for networking management. It controls the

server-side operations and communicates with the clients. It also stores the number of

clients connected to the server.

Attributes:

1) socketListener: Socket

2) portNumber: int

3) netMgrMode: NET_MGR_MODE
(*)

4) isListening: bool

5) hostIP: string

6) hostPort: string

7) numberOfUsers: int

Methods:

1) NetworkManager (FrmMain mForm, int portN, NET_MGR_MODE

wbMode): This is the constructor of the NetworkManager class.

2) StartListening (): This method starts listening to the port created by the

NetworkManager.

3) StopListening (): This method forces the server to stop listening to a port.

Therefore the network traffic managed by the server is broken and all the

clients connected to the server are forced to disconnect.

Class Name: Client

This class contains methods used for the client-side operations of the whiteboard.

Attributes:

1) sockClient: Socket

Methods:

27

1) Client (Socket socketClient, FrmMain ClientForm): This is the

constructor of the Client class. socketClient is the socket and ClientForm is

the form created for the use of the client.

2) ConnecttoListeningServer (string HostIP, string HostPort): This method

connects the client to the server listening to port HostPort and having the IP

address HostIP.

3) disConnectClient (): This method disconnects the client that is connected to

the server.

4) routeRequest (WBMessage
(**)

): This method maintains the singleton

property of the whiteboard that is when a user is drawing on the whiteboard,

no other users can access to the drawing methods of the whiteboard. This

method calls the method lockWBMouseEvents () of DrawingArea class to

ensure that the whiteboards of all the other users is locked when a user is

drawing on the whiteboard.

Class Name: DrawingArea

This class creates a bitmap image to store the drawings. This image is overridden each

a user draws an image.

Attributes:

1) bmpSaved: Bitmap

2) drawMode: WB_DRAW_MODE
(***)

3) isMouseDown: bool

4) ptLineStart: Point

5) ptLineEnd: Point

Methods:

1) drawBegin (): This method sends the information that a user started to draw

something on the whiteboard, to the network manager.

2) drawEnd (): This method sends the information that a user finished drawing

something on the whiteboard, to the network manager.

3) drawLine (): This method is called when the user pressed DrawLine button

on the toolbar of the whiteboard. It tells the system that the user is or will be

drawing a line.

28

4) drawEllipse ():This method is called when the user pressed DrawEllipse

button on the toolbar of the whiteboard. It tells the system that the user is or

will be drawing an ellipse.

5) DrawRectangle (): This method is called when the user pressed

DrawRectangle button on the toolbar of the whiteboard. It tells the system

that the user is or will be drawing a rectangle.

6) clearScreen ():This method is called when the user pressed clearScreen

button on the toolbar of the whiteboard. It clears the screen of the

whiteboard.

7) unlockWBMouseEvents (): This method is called to unlock the whiteboard

so that the user can access the drawing functions of the whiteboard.

8) lockWBMouseEvents (): This method is called to lock the whiteboard so

that the user cannot access the drawing functions of the whiteboard. This

method together with the lockWBMouseEvents method maintains the

singleton property of the whiteboard.

9) mouseDown (Point pt): This method stores the coordinates of the point

when the left mouse button is pressed.

10) mouseMove (): This method is called to draw on the whiteboard when the

left mouse button is pressed.

11) mouseUp ():This method stores the coordinates of the point when the left

mouse button is released, that is it stores the end point of the drawing.

12) mouseDownSentToPeers (Point pt): This method sends the coordinates of

the point when the left mouse button is pressed to the connected peers so

that the start point of the drawing is identified by the other users.

13) mouseUpSentToPeers (Point pt): This method sends the coordinates of the

point when the left mouse button is released to the connected peers so that

the end point of the drawing is identified by the other users.

29

Figure 7.2.2: Chat Module

We have designed the “chat tool” with three different class structures. The first class

is the “ClientSide” that will execute in clients and the second and third class

“ServerSide” and “UserConnection” will execute in the server side.

Class Name: ClientSide

Attributes:

1) Client:TcpClient

2) ReadBuffer: Byte[]

Methods:

1) ReadPort (): This method will read the incoming data to the ReadBuffer

array.

30

2) ProcessServerCommand (string message): This method will split the

incoming message and will determine the type of the message that is a chat

message or any information message like “x joined the class”.

3) DisplayText ():This method will show the incoming or sent message in the

clients chat console.

4) SendData (): This will send the written message to the server and server

will handle the message.

5) SendButtonClick (): This is the button event takes place when user clicks

the “send” button.

6) ConnectServer (): This is the method called when a new user connects to

the classroom.

Class Name: ServerSide

Attributes:

1) ListenThread: Thread

2) Clients: Our data structure

3) Listener: TCPListener

Methods:

1) Broadcast (string Message): Sends the message to all attached clients

2) DoListen (): This method will listen the specified port for incoming

messages from clients.

3) ConnectUser(string username, UserConnection sender) : This method

will inform all the clients if a new user joins the classroom.

4) DisconnectUser (string username, UserConnection sender): This method

will inform all the clients if a user exits the classroom.

5) ProcessClientCommand (string username, UserConnection sender):

This method will split the incoming message of a client and will act

according to that command

6) SendChat (string message, UserConnection sender): This method will

send the message to the clients with sender information.

Class Name: UserConnection

In our ServerSide class a thread will work named ListenThread and if any connection

is found a new UserConnection object will be created.

31

Attributes:

1) Client: TCPClient

2) ReadBuffer: Byte[]

3) StrName: String

Methods:

1) StreamReceiver (): This method will begin a asynchronous read from the

stream

2) SendData (string message): This method will send the message to the user.

7.3 Data Flow Diagram

7.3.1 Shared Whiteboard System DFD Level 0:

As you can see in the following graph representation of our Shared whiteboard

component, we have 3 inputs and 4 outputs. Besides that, we have one main process

of our system, which control all of the tools of the system. All process works under

this main process of our system. Our inputs of this component are student, instructor

and video/audio streaming device. And outputs are student list, chat box, whiteboard,

and audio. The important processes of this component are Whiteboard, Chat tool, and

video/audio streaming system. All of them receive some data from users than all of

them is distributed all of the members by this system.

Figure 7.3.1

32

7.3.2 Shared Whiteboard System DFD Level 1:

In this system we have 2 main processes, which are whiteboard system, chat system,

in the whiteboard instructor and student can use this tool .All of the users can use the

chat tool. We also have 2 inputs (Instructor and student) and 2 output(whiteboard and

chat box).

Figure7.3.2

7.3.3 Whiteboard DFD Level 2:

As you can see the following graphical representation of the whiteboard system, the

instructor and student can use the whiteboard. All of the drawings and writing is

saved in specific place then it is sent all of the users as an output. In the corner of the

whiteboard there is a drawing toolbar, which makes the drawing easier. Moreover,

instructor can also upload their documents, such as power point file, image or text

document, on whiteboard.

Figure 7.3.3

33

7.3.4 ChatTool DFD Level 2:

We have two main processes of this chat tool. These are general message and private

message. Only the instructor uses the private message. But general message can be

used by all of the users.

Figure 7.3.4

34

7.4 Sequence Diagram

Figure 7.4.1: Login System

Figure 7.4.2: Whiteboard System

35

Figure 7.4.3: Chat System

36

CHAPTER 8

Implementation

 8.1 White Board (GUI)

Figure: 8.1

This is the snapshot of the whiteboard system with two panels one on the left side,

other at the bottom and the white area which is shown is the whiteboard area or

drawing area on which we can draw. The left Panel contains radio buttons for

rectangle, square, circle and text. It also has one check box named as online and drop

down list for selecting dimensions of the figure. The functionality of these buttons is

as follows:

37

1. Rectangle: - This radio button is used to draw rectangle of selected length and

breadth on the whiteboard area. The figure will be drawn by clicking on the

whiteboard area.

2. Square: - This button is used to draw square of selected side.

3. Circle: - This button is used to draw circles of selected radius.

4. Text: - This button is used to write any text on the whiteboard area .The text is

first written in the text area then by clicking on the whiteboard it can be

transferred to whiteboard.

5. Online: - This checkbox is used to transfer the content of the presenter

whiteboard to the participant’s whiteboard. If it is checked then the content of

the presenter whiteboard will be transferred otherwise not.

On the bottom panel we have three buttons and one colour palette. The functionality

of each button is:-

1. Clear Screen: - This button is used to clear the whiteboard area for further

drawing/writing.

2. Reset: - Reset button is used to reset all the values to default values.

3. Send Snapshot: - This button is used to send the snapshot of the whiteboard

area to all the connected clients.

4. Select Colour: - This palette is used to choose the colour.

38

8.2 Presenter and Participant (GUI)

 Presenter’s Graphical user Interface:-

Figure: 8.2.1

Participant 1 Graphical user Interface:-

Figure: 8.2.2

39

Participant 2 Graphical User Interface:-

Figure: 8.2.3

Presenter’s Graphical User Interface:-

Figure: 8.2.4

40

Participant 1 Graphical User Interface:-

Figure: 8.2.5

Participant 2 Graphical User Interface:-

Figure: 8.2.6

41

As we can see above that we have one GUI of presenter or teacher and we have two

GUI of participants or students connected to the server, so whatever the teacher is

drawing or writing on his whiteboard area it is getting reflected to all the connected

clients or students.

Presenter’s Graphical User Interface:-

Figure: 8.2.7

Participant 1 Graphical User Interface:-

 Figure: 8.2.8

42

Participant 2 Graphical User Interface:-

Figure: 8.2.9

As we can see above that we have one GUI of presenter or teacher and we have two

GUI of participants or students connected to the server, so whatever image the teacher

is uploading on his whiteboard area it is getting reflected to all the connected clients

or students.

43

Presenter’s Graphical user Interface:-

Figure: 8.2.10

Participant 1 Graphical User Interface:-

Figure: 8.2.11

44

Participant 2 Graphical User Interface:-

Figure: 8.2.12

As we can see above that we have one GUI of presenter or teacher and we have two

GUI of participants or students connected to the server, so whatever text the teacher is

typing through the keyboard it is getting reflected to all the connected clients or

students.

45

Conclusion and Future Work

Conclusion

We have implemented most of the functionalities of the proposed Shared Whiteboard.

Our Shared Whiteboard will be used for conducting online classes. It has mainly two

users, presenter and participant. A presenter will conduct a class for participants,

which will attend the class from anywhere in the world.

Presenter can conduct classes for participants. As a presenter he can upload files to

the whiteboard, he can give presentation to participants, also he can use white board,

he can answer participants doubts using chat facility.

When participant enters in classroom, he can attend the class. He is able to download

the resources submitted by presenter; he can chat with other participants in classroom

Also the presenter can type the text using the keyboard, which will get displayed on

the whiteboard, and will also get transferred to all the connected clients.

Future Work

The Shared Whiteboard developed is quite useful in many aspects. Through this,

classes can be conducted on the Internet and participants from all over world can

attend it. Though this is currently usable, it can be improved in many dimensions. As

the facility of real time audio can also be implemented, so this system could be

extended in this dimension. It can also be extended by implementing the feature of

video chat.

46

References

1. “9 Uses of Web sockets”. [Online].Available:

http://www.infoworld.com/article/2609720/application-development/9-killer-

uses-for-websockets.html [Accessed: Dec 14, 2014].

2. “An Introduction to Web Sockets”. [Online].Available:

http://blog.teamtreehouse.com/an-introduction-to-websockets .[Accessed:

Nov 20,2014].

3. “An Online Virtual Learning Environment For Higher Education”.

[Online].Available:http://www.academia.edu/889403/An_Online_Virtual_Lea

rning_Environment_for_Higher_Education [Accessed: Nov 28, 2014].

4. “Characteristics of a Virtual Classroom”. [Online].Available:

http://www.learndash.com/characteristics-of-a-virtual-classroom/ [Accessed:

Dec 14, 2014].

5. “Common Features of a Virtual Classroom Software Program”.

[Online].Available: https://www.td.org/Publications/Newsletters/Learning-

Circuits/Learning-Circuits-Archives/2010/04/Common-Features-of-a-Virtual-

Classroom-Software-Program [Accessed: Dec 18, 2014].

6. “The UML Class Diagram: Part 1”. [Online].Available:

http://www.developer.com/design/article.php/2206791/The-UML-Class-

Diagram-Part-1.htm [Accessed: Dec 11, 2014].

7. “Visual Use case”. [Online].Available: http://www.visualusecase.com/use-

case/use-case.html [Accessed: Dec 18, 2014].

8. “Web Application Technologies”. [Online].Available:

http://www.extropia.com/presentations/birznieks/pdf/web_application_techno

logies.pdf [Accessed: Dec 11, 2014].

9. “Web Socket”. [Online].Available:http://en.wikipedia.org/wiki/WebSocket

[Accessed: Nov 20,2014].

10. “What Are Web sockets?” [Online].Available:

http://www.pubnub.com/blog/what-are-websockets/ [Accessed: Dec 18,

2014].

http://www.infoworld.com/article/2609720/application-development/9-killer-uses-for-websockets.html
http://www.infoworld.com/article/2609720/application-development/9-killer-uses-for-websockets.html
http://www.academia.edu/889403/An_Online_Virtual_Learning_Environment_for_Higher_Education
http://www.academia.edu/889403/An_Online_Virtual_Learning_Environment_for_Higher_Education
http://www.academia.edu/889403/An_Online_Virtual_Learning_Environment_for_Higher_Education
http://www.learndash.com/characteristics-of-a-virtual-classroom/
https://www.td.org/Publications/Newsletters/Learning-Circuits/Learning-Circuits-Archives/2010/04/Common-Features-of-a-Virtual-Classroom-Software-Program
https://www.td.org/Publications/Newsletters/Learning-Circuits/Learning-Circuits-Archives/2010/04/Common-Features-of-a-Virtual-Classroom-Software-Program
https://www.td.org/Publications/Newsletters/Learning-Circuits/Learning-Circuits-Archives/2010/04/Common-Features-of-a-Virtual-Classroom-Software-Program
http://www.developer.com/design/article.php/2206791/The-UML-Class-Diagram-Part-1.htm
http://www.developer.com/design/article.php/2206791/The-UML-Class-Diagram-Part-1.htm
http://www.visualusecase.com/use-case/use-case.html
http://www.visualusecase.com/use-case/use-case.html
http://www.extropia.com/presentations/birznieks/pdf/web_application_technologies.pdf
http://www.extropia.com/presentations/birznieks/pdf/web_application_technologies.pdf
http://en.wikipedia.org/wiki/WebSocket
http://www.pubnub.com/blog/what-are-websockets/

47

Appendix

Index.html

<%--

 Document : draw

 Created on : 10 Feb, 2015, 2:28:50 AM

 Author : kush

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <title>whiteboard</title>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <style>

 #header {

 background-color:black;

 color:white;

 text-align:left;

 padding:5px;

 }

 #nav {

 line-height:30px;

 background-color:#eeeeee;

 height:500px;

 width:325px;

 float:left;

 padding:5px;

 }

 #section {

 width:1000px;

 height:500px;

 // float:right;

48

 // padding:10px;

 box-shadow: -1px 5px 18px lightgreen;

 border-color: lightgray;height:500px;

 width: 990px;

 padding: 0px 0px 0px 0px;

 border-style: double;

 border-width: 3px;

 border-color: lightseagreen;

 border-radius: 2% 2% 2% 2%;

 }

 #footer {

 background-color:black;

 color:white;

 clear:both;

 text-align:center;

 padding:10px;

 }

 .button{

 text-indent: 5px;

 // text-rendering: optimizeSpeed;

 color: whitesmoke;

 background-color: cornflowerblue;

 box-shadow: -1px 1px 10px cornflowerblue;

 border-radius: 7px 7px 7px 7px;

 width: 120px;

 height: 37px;

 }

 select {

 border: 0 !important; /*Removes border*/

 -webkit-appearance: none; /*Removes default chrome and safari style*/

 // -moz-appearance: none; /* Removes Default Firefox style*/

 background-color:cornflowerblue ;

 width: 100px; /*Width of select dropdown to give space for arrow image*/

 text-indent: 0.01px; /* Removes default arrow from firefox*/

49

 text-overflow: ""; /*Removes default arrow from firefox*/ /*My custom

style for fonts*/

 color: #FFF;

 border-radius: 7px;

 padding: 2px;

 box-shadow: inset 0 0 5px rgba(000,000,000, 0.5);

 }

 </style>

 </head>

 <body>

 <div id="header">

 <h1>WebBoard</h1>

 </div>

 <div id="section" style="float:right;">

 <div id="sketch">

 <canvas id="myCanvas" width="1000" height="500" ></canvas>

 </div>

 </div>

 <form name="inputForm">

 <div id="nav" style="float: left;">

 <input type="radio" id="r1" name="figure" value="rectangle"

onclick="hidetextarea();" >Rectangle:

 <select id="mySelect1">

 <option>Select Length</option>

 <option>125</option>

 <option>150</option>

 <option>200</option>

 <option>250</option>

 <option>300</option>

 <option>350</option>

 <option>400</option>

 </select>

 <select id="mySelect2">

 <option>Select Breadth</option>

50

 <option>125</option>

 <option>150</option>

 <option>200</option>

 <option>250</option>

 <option>300</option>

 <option>350</option>

 <option>400</option>

 </select>

 <input type="radio" id="r2" name="figure" value="square"

onclick="hidetextarea();">Square:

 <select id="mySelect3">

 <option>Select Side</option>

 <option>125</option>

 <option>150</option>

 <option>200</option>

 <option>250</option>

 <option>300</option>

 <option>350</option>

 <option>400</option>

 </select>

 <input type="radio" id="r3" name="figure" value="circle"

onclick="hidetextarea();">Circle:

 <select id="mySelect4">

 <option>Select Radius</option>

 <option>25</option>

 <option>50</option>

51

 <option>60</option>

 <option>70</option>

 <option>80</option>

 <option>90</option>

 <option>100</option>

 </select>

<input type="radio" id="r4" name="figure" checked value="text"

onclick="showtextarea();">Text:

 <textarea title="textarea" rows="10" cols="44" id="x13"

name="mytextarea"></textarea>

<input type="checkbox" id="instant" value="Online" checked="true">Online:

 </div>

 <div id="nav5" style="float:right;">

 <input type="file" id="files" name="files[]" multiple />

 Select Color: <input type="color" id="myColor">

 <input type="submit" id="clear" name="cl" value="ClearScreen"

class="button" onclick="clearscreen();

 return false;">

 <button type="reset" value="Reset" class="button"

onClick="hidetextarea()">Reset</button>

 <input type="submit" value="Send Snapshot" class="button"

onclick="defineImageBinary();

 return false;">

 </div>

 </form>

 <script type="text/javascript" src="websocket.js"></script>

 <script type="text/javascript" src="whiteboard.js"></script>

 </body>

</html>

52

Websocket.js

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

var wsUri = "ws://" + document.location.host + document.location.pathname +

"whiteboardendpoint";

var websocket = new WebSocket(wsUri);

websocket.binaryType = "arraybuffer";

websocket.onmessage = function (evt) {

 onMessage(evt);

};

websocket.onerror = function (evt) {

 onError(evt);

};

function sendText(json) {

 console.log("sending text: " + json);

 websocket.send(json);

}

function cle(json1) {

 websocket.send(json1);

}

function sendBinary(bytes) {

 console.log("sending binary: " + Object.prototype.toString.call(bytes));

 websocket.send(bytes);

}

function onMessage(evt) {

 console.log("received: " + evt.data);

 if (typeof evt.data == "string") {

 drawImageText(evt.data);

 clsc(evt.data);

 } else {

53

 drawImageBinary(evt.data);

 }

}

function onError(evt) {

 writeToScreen('ERROR: ' + evt.data);

}

Whiteboard.js

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

var color = document.inputForm.myColor.value;

var canvas = document.getElementById("myCanvas");

var context = canvas.getContext("2d");

//canvas.addEventListener('touchmove', defineImageBinary, false);

canvas.addEventListener("click", defineImageBinary, false);

canvas.addEventListener("click", defineImage, false);

var text = document.getElementById("x13");

text.addEventListener('keyup', textBoxChanged, false);

text.addEventListener("keyup", defineImageBinary, false);

function textBoxChanged(e) {

 var target = e.target;

 message = target.value;

 write();

}

function write() {

 //var font1 = document.inputForm.mySelect5;

 context.font = "20px Georgia";

 context.fillStyle = "#FF0000";

 context.fillText(message, 20, 20);

}

54

function getCurrentPos(evt) {

 var rect = canvas.getBoundingClientRect();

 return {

 x: evt.clientX - rect.left,

 y: evt.clientY - rect.top

 };

}

function defineImage(evt) {

 var currentPos = getCurrentPos(evt);

 for (i = 0; i < document.inputForm.figure.length; i++) {

 if (document.inputForm.figure[i].checked) {

 var shape = document.inputForm.figure[i];

 break;

 }

 }

 var color = document.inputForm.myColor;

 var size1 = document.inputForm.mySelect1;

 var size2 = document.inputForm.mySelect2;

 var size3 = document.inputForm.mySelect3;

 var size4 = document.inputForm.mySelect4;

 var json = JSON.stringify({

 "shape": shape.value,

 "color": color.value,

 "size1": size1.value,

 "size2": size2.value,

 "size3": size3.value,

 "size4": size4.value,

 "coords": {

 "x": currentPos.x,

 "y": currentPos.y

 }

 });

 drawImageText(json);

55

 if (document.getElementById("instant").checked) {

 sendText(json);

 }

}

/*function clearscreen()

 {

 var clr = document.inputForm.clear;

 var json1 = JSON.stringify({

 "clr": clr.value

 });

 clsc(json1);

 cle(json1);

 }*/

/*function clsc(image1) {

 var json1 = JSON.parse(image1);

 if(json1.clr.value.equals("ClearScreen")){

 var canvas = document.getElementById("myCanvas");

 var context = canvas.getContext("2d");

 context.clearRect(0, 0, 1100, 500);

 }

 }*/

function drawImageText(image) {

// console.log("drawImageText");

 var json = JSON.parse(image);

 context.fillStyle = json.color;

 switch (json.shape) {

 case "rectangle":

 context.fillRect(json.coords.x, json.coords.y, json.size1, json.size2);

 // rect = {},

 // drag = false;

 //canvas.addEventListener('mousedown', startpoints, false);

 //canvas.addEventListener('mouseup', endpoints, false);

 // canvas.addEventListener('mousemove', drawrect, false);

 // function startpoints(e) {

56

 // rect.startX = e.pageX - this.offsetLeft;

 // rect.startY = e.pageY - this.offsetTop;

 // drag = true;

 //}

 // function endpoints() {

 // drag = false;

 //}

 ////function drawrect(e) {

 // if (drag) {

 // rect.w = (e.pageX - this.offsetLeft) - rect.startX;

 // rect.h = (e.pageY - this.offsetTop) - rect.startY;

 // //ctx.clearRect(0,0,canvas.width,canvas.height);

 // context.fillRect(rect.startX, rect.startY, rect.w, rect.h);

 // }

 //}

 break;

 case "square":

 default:

 context.fillRect(json.coords.x, json.coords.y, json.size3, json.size3);

 break;

 case "circle":

 context.beginPath();

 context.arc(json.coords.x, json.coords.y, json.size4, 0, 2 * Math.PI, false);

 context.fill();

 break;

 }

}

function showtextarea() {

 document.getElementById("x13").style.display = 'block';

}

function hidetextarea() {

 document.getElementById("x13").style.display = 'none';

}

57

function drawImageBinary(blob) {

 var bytes = new Uint8Array(blob);

// console.log('drawImageBinary (bytes.length): ' + bytes.length);

 var imageData = context.createImageData(canvas.width, canvas.height);

 for (var i = 8; i < imageData.data.length; i++) {

 imageData.data[i] = bytes[i];

 }

 context.putImageData(imageData, 0, 0);

 var img = document.createElement('img');

 img.height = canvas.height;

 img.width = canvas.width;

 img.src = canvas.toDataURL();

}

function defineImageBinary() {

 var image = context.getImageData(0, 0, canvas.width, canvas.height);

 var buffer = new ArrayBuffer(image.data.length);

 var bytes = new Uint8Array(buffer);

 for (var i = 0; i < bytes.length; i++) {

 bytes[i] = image.data[i];

 }

 sendBinary(buffer);

}

document.getElementById('files').addEventListener('change', doUpload, false);

function doUpload(e) {

 // The user might upload multiple files, we'll take the first

 var file = e.target.files[0];

// Check that there is a file uploaded

 if (file) {

 // We need to use a FileReader to actually read the file.

 var reader = new FileReader();

// When it's loaded, we'll send the image data to the canvas method

 reader.onload = function (event) {

 canvasLoadImage(event.target.result);

 };

58

// Pass the reader the file to read and give us the DataURL

 reader.readAsDataURL(file);

 }

}

// Handle the returned image data

function canvasLoadImage(imgData) {

 // Create a New Imgae

 var img = new Image();

// Assign the image data as the source - as we are using a data URL

 img.src = imgData;

// Always use onload with images!

 img.onload = function () {

// Load the Canvas & Context

 var canvas = document.getElementById('myCanvas');

 var context = canvas.getContext('2d');

// Draw the image

 context.drawImage(img, 0, 0, 500, 500);

 };

}

(function () {

 var canv = document.querySelector('#myCanvas');

 var ctx = canv.getContext('2d');

 var sketch = document.querySelector('#sketch');

 var sketch_style = getComputedStyle(sketch);

 canv.width = parseInt(sketch_style.getPropertyValue('width'));

 canv.height = parseInt(sketch_style.getPropertyValue('height'));

 var mouse = {x: 0, y: 0};

 /* Mouse Capturing Work */

 canv.addEventListener('mousemove', function (e) {

 mouse.x = e.pageX - this.offsetLeft;

 mouse.y = e.pageY - this.offsetTop;

 }, false);

 /* Drawing on Paint App */

59

 ctx.lineWidth = 8;

 ctx.lineJoin = 'round';

 ctx.lineCap = 'round';

 ctx.strokeStyle = "blue";

 canv.addEventListener('mousedown', function (e) {

 ctx.beginPath();

 ctx.moveTo(mouse.x, mouse.y);

 canv.addEventListener('mousemove', onPaint, false);

 }, false);

 canv.addEventListener('mouseup', function () {

 canv.removeEventListener('mousemove', onPaint, false);

 }, false);

 var onPaint = function () {

 ctx.lineTo(mouse.x, mouse.y);

 ctx.stroke();

 };

}());

Coordinate.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package whiteboardapp;

/**

 *

 * @author nb

 */

public class Coordinates {

 private float x;

60

 private float y;

public Coordinates() {

 }

 public Coordinates(float x, float y) {

 this.x = x;

 this.y = y;

 }

 public float getX() {

 return x;

 }

 public void setX(float x) {

 this.x = x;

 }

 public float getY() {

 return y;

 }

 public void setY(float y) {

 this.y = y;

 }

 }

Figure.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package whiteboardapp;

import java.io.StringWriter;

import javax.json.Json;

import javax.json.JsonObject;

/**

61

 *

 * @author nb

 */

public class Figure {

 private JsonObject json;

 public Figure() {

 }

 @Override

 public String toString() {

 StringWriter writer = new StringWriter();

 Json.createWriter(writer).write(json);

 return writer.toString();

 }

public Figure(JsonObject json) {

 this.json = json;

 }

 public JsonObject getJson() {

 return json;

 }

 public void setJson(JsonObject json) {

 this.json = json;

 }

}

FigureDecoder.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package whiteboardapp;

62

import java.io.StringReader;

import javax.json.Json;

import javax.json.JsonException;

import javax.json.JsonObject;

import javax.websocket.DecodeException;

import javax.websocket.Decoder;

import javax.websocket.EndpointConfig;

/**

 *

 * @author nb

 */

public class FigureDecoder implements Decoder.Text<Figure> {

 @Override

 public Figure decode(String string) throws DecodeException {

 System.out.println("decoding: " + string);

 JsonObject jsonObject = Json.createReader(new

StringReader(string)).readObject();

 return new Figure(jsonObject);

 }

 @Override

 public boolean willDecode(String string) {

 try {

 Json.createReader(new StringReader(string)).readObject();

 return true;

 } catch (JsonException ex) {

 ex.printStackTrace();

 return false;

 }

 }

 @Override

 public void init(EndpointConfig config) {

 System.out.println("init");

 }

63

 @Override

 public void destroy() {

 System.out.println("destroy");

 }

 }

FigureEncoder.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package whiteboardapp;

import javax.websocket.EncodeException;

import javax.websocket.Encoder;

import javax.websocket.EndpointConfig;

/**

 *

 * @author nb

 */

public class FigureEncoder implements Encoder.Text<Figure> {

@Override

 public String encode(Figure figure) throws EncodeException {

 return figure.getJson().toString();

 }

 @Override

 public void init(EndpointConfig config) {

 System.out.println("init");

 }

 @Override

 public void destroy() {

 System.out.println("destroy");

 }

64

}

MyWhiteboard.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package whiteboardapp;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.util.Collections;

import java.util.HashSet;

import java.util.Set;

import javax.websocket.EncodeException;

import javax.websocket.OnClose;

import javax.websocket.OnMessage;

import javax.websocket.OnOpen;

import javax.websocket.Session;

import javax.websocket.server.ServerEndpoint;

/**

 *

 * @author kush

 */

@ServerEndpoint(value = "/whiteboardendpoint",

 encoders = {FigureEncoder.class},

 decoders = {FigureDecoder.class})

public class MyWhiteboard {

 private static final Set<Session> peers = Collections.synchronizedSet(new

HashSet<Session>());

 @OnOpen

65

 public void onOpen(Session peer) {

 peers.add(peer);

 }

 @OnClose

 public void onClose(Session peer) {

 peers.remove(peer);

 }

@OnMessage

 public void broadcastFigure(Figure figure, Session session) throws IOException,

EncodeException {

 System.out.println("broadcastFigure: " + figure);

 for (Session peer : peers) {

 if (!peer.equals(session)) {

 peer.getBasicRemote().sendObject(figure);

 }

 }

 }

 @OnMessage

 public void broadcastSnapshot(ByteBuffer data, Session session) throws

IOException {

 System.out.println("broadcastBinary: " + data);

 for (Session peer : peers) {

 if (!peer.equals(session)) {

 peer.getBasicRemote().sendBinary(data);

 }

 }

 }

}

