
Intelligent Train Reservation and

Prediction System

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology

in

Information Technology

Under the Supervision of

Dr. Pooja Jain

By

Shagun Garg (111425)

To

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

Page | ii

Certificate

This is to certify that project report entitled Intelligent Train Reservation and Prediction

System, submitted by Shagun Garg in partial fulfillment for the award of degree of

Bachelor of Technology in Information Technology to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date: Dr. Pooja Jain

 Assistant Professor (Senior Grade)

 JUIT, Waknaghat

Page | iii

Acknowledgement

On the very outset of this report, I would like to extend my sincere & heartfelt obligation

towards all the personages who have helped me in this endeavor. Without their active

guidance, help, cooperation & encouragement, I would not have made headway in the

project.

I would like to show my greatest appreciation to Dr. Pooja Jain. I feel motivated every

time I get her encouragement. For her coherent guidance throughout the tenure of the

project, I feel fortunate to be taught by Dr. Pooja Jain, who gave me her unwavering

support. Besides being my mentor, she taught me that there is no substitute for hard work.

I express my gratitude and sincere thanks to Prof. R.M.K. Sinha, Dean, Department of

Computer Science and Engineering. for allowing me to undertake this project.

I deeply express my sincere thanks to Brig. (Retd.) S. P. Ghrera, Head of Department,

Department of Computer Science and Engineering, for encouraging and allowing me to

present this project

I would also thank my parents Mr. Sanjay Garg and Mrs. Alpana Garg for teaching me

how to be successful and how to achieve my goal which helped in completing this project.

They have supported me in every step of my life.

Date: Shagun Garg

Page | iv

Table of Content
Chapter 1. An Overview 1

 1.1 Introduction 1

 1.2 Motivation 2

1.3 Objective 2

 1.4 Approach Used 2

1.5 Scope 3

Chapter 2. Literature survey 4

 2.1 Geographic Coordinate System 4

 2.1.1 Latitudes and Longitudes 4

 2.2 Distance Calculation 5

 2.2.1 Flat Earth Model 6

 2.2.2 Spherical Earth Model 8

 2.3 Positioning Representation 9

 2.3.1 Standard Position Representation 10

 2.3.1.1 Cartesian 3D Vector 10

 2.3.1.2 Spherical Horizontal and Vertical

 Component 11

 2.4 Prediction 12

 2.4.1 Case based Reasoning 12

 2.4.2 Association Rule 14

 2.5 Probability 15

 2.5.1 Conditional Probability 16

 2.5.2 Bayes Theorem 17

 2.5.3 Bayesian Probability 18

Chapter 3. Application Designing 19

 3.1 Feasibility Study 19

 3.1.1 Operational Feasibility 19

 3.1.2 Technical Feasibility 19

 3.1.3 Social Feasibility 20

 3.2 Basic Design 20

 3.2.1 Railway System 20

 3.2.2 Prediction System 23

 3.3 UML Diagrams 25

Page | v

 3.3.1 Use Case 25

 3.3.2 Sequence Diagram 25

 3.3.3 Data Flow Diagram 27

 3.4 Code Snippets 29

 3.5 Database Design 48

 3.6 Snapshots 56

Chapter 4. Conclusion and Future Work 61

References 62

Page | vi

List of Tables

Table 1: Symbols used to describe basic relations between

two coordinate frames. 10

Table 2: user_detail 48

Table 3: train_detail 49

Table 4: lat_long 50

Table 5: station_code 51

Table 6: train_code 52

Table 7: user 53

Table 8: probabilities 54

Table 9: trip_details 55

Page | vii

List of Figures

Figure 1: Latitude- Longitude 5

Figure 2: Flat Earth Model 6

Figure 3: Latitude Length 8

Figure 4: Longitude Length 8

Figure 5: Flat and Spherical Earth Model 9

Figure 6: Use case 25

Figure 7: Sequence Diagram for registration 26

Figure 8: Sequence Diagram for Booking Ticket 26

Figure 9: DFD level 0 27

Figure 10: DFD level 1 28

Figure 11: Database User_detail 48

Figure 12: Database train_detail 49

Figure 13: Database lat_long 50

Figure 14: Database station_code 51

Figure 15: Database train_route 52

Figure 16: Database user_details 53

Figure 17: Database probabilities 54

Figure 18: Database trip_details 55

Figure 19: Sign Up 56

Figure 20: Successfully Registered 56

Figure 21: Login 57

Figure 22: Forgot Password 57

Figure 23: User home (Direct Route Example) 58

Figure 24: Trains Output (Direct Route Example) 58

Figure 25: User home (No Direct Route Example) 59

Figure 26: Trains Output (Direct Route Example) 59

Figure 27: Prediction output 60

Page | viii

Abstract

Time and ease of work are the most important things that one wants while doing some

work. Everyone wishes to minimize the effort in doing his/her work and also wants to

reduce the time that work is taking.

Talking about Indian Railways, the largest railway network in the world. There are lakhs

of people who book their tickets electronically via irctc.co.in, indianrailways.gov.in or

some other website. The existing websites only show the trains between the two directly

connected stations only that means if both the stations have a direct train between them.

Now suppose if we have a person who wants to go from a source to destination which are

not directly the existing systems shows “No Train Exists”.

This project is designed to overcome the above drawback of the existing system. Removing

this drawback of existing system of showing the message No Train Exists this system will

tell the route between the two stations, like an intermediate station where you can switch

train for the destination.

This was one part of saving time. Secondly for a person with a tight schedule, he/she

sometimes forget to get his/her tickets done on time and stucked at last time with no other

option of paying higher amount then required. Here comes the second feature of this

system, Prediction System. It will keep a past record of all journeys made by the user In

last three years and based on this past record, it will predict the future journey of user and

send an alert mail to the respective user reminding him/her about the journey and asking if

he/she is willing to make the trip or not and if yes, then to get the tickets done on time.

Thus saving the headache of remembering the dates before as users will have a remainder

system and can save their money and time.

Page | 1

Chapter 1: An Overview

1.1 Introduction

Indian Railways, one of the largest railway network of the world. There are around 23

million people that travel daily out which half are suburban passengers (Delhi, Mumbai,

Kolkata metro etc.). There are 7,172 railway stations in India out of which only

1500(approx.) stations provide reservation facility. We have 12,617 passenger trains

running across the network and only 2,578 trains have reservation coaches like the trains

Rajdhani Express, Shatabdi Express, Mail/Superfast Express etc.

For getting a reservation in trains initially we used stand in long queues on railway station

to get a reserved ticket. But with advancement of time and technology, railways started

online reservation facility using various sites like irctc.co.in, indianrail.gov.in etc. and

making it easy for passengers to get their tickets done by paying a little bit higher prices

for saving their time and for ease of work.

All the websites for online reservation first ask for the stations to travel between and then

show all the trains between those two stations and user can then select any train that suits

him/her. And in case if there is no train between those two, a message is prompted that No

Train Exists. That means that there is no direct train between those two stations. In such

cases we first need to look for all the intermediate stations between those two using google

search. After this we need to look for the trains that we can have for those intermediate

stations and that suits our timings also like we need to wait for the minimum time during

changing trains and also the shortest route which can follow. This work consumes a lot of

time and a headache for the user. And this a loop hole in present online reservation system

which needs to be overcome and cleared off.

For a person with a busy schedule and does not have time to remember about his tickets to

be done for a journey that he makes every year or every month on same dates or nearby

dates. At the time of journey or a day or two before the journey, they realize that their

tickets are not done or are still pending or are in waiting state faces a problem. For such

people their needs to be remainder sort of thing that could remind them to getting their

Page | 2

tickets done right on time so that they can make their journey easily. For such thing I have

a Prediction system. This system will have a past record, a record of past three years of all

the users and based on this record their future journeys will be predicted and an email will

send to them as a remainder to get their tickets done on right time.

1.2 Motivation

The motivation of this project comes from the above explained loop hole in present system.

This loop hole is a big problem for people who have less knowledge about railways and

are not frequent travelers and totally relay on the website they are using. In the case of no

direct train between the stations they have to travel, they get confused and for them a

question arrives, What to do next? To solve this dilemma I thought of making such a system

that could solve this loop hole and removes the above question and helps the people to ease

out their work.

The motivation for the second part comes from live experiences we face when we forget

to get our tickets on time, so a prediction system can help us in reminding about the

journey’s that are likely to be made.

1.3 Objective

The Project aims in building an Intelligent Train Reservation Prediction System. The

system will focus on two things:

• To show the route and trains between the stations that are not directly connected to

each other.

• To predict the future journeys of the user’s based on their past journeys.

1.4 Approach Used

In this system we need to find the cities that lie between the source and destination. For

this purpose we could different ways but the one that I used is the Latitude and Longitude

of the cities. I took the latitudes and longitudes of the source and destination and the look

for all the cities whose lats and longs lie between the lats and longs of the source and

Page | 3

destination cities. Now I looked that which all cities have reservation facility. Then finally

finding the train connectivity between all the cities that we calculated on basics on lats and

longs. And the result is shown to the user.

For the second the approach followed is as follows

For each user, the dates of all the journey’s made in previous three years are stored. Each

time a user is picked whose future journey’s has to be predicted. The system fetches the

stored data of particular user i.e. the previous year dates, compares them to one another

that the dates are same or nearby dates (nearby dates are defined as ±3 days). Accordingly

each user is given the probability about his/her prediction. Then the user with a minimum

threshold probability will be send an alert mail reminding the user to get the tickets done

if he/she is interested for the journey.

1.5 Scope

The scope of this application can be very wide. If the system is designed accurately and

exactly of what is thought to be design then it can solve a big problem of existing system.

This system could give a big assistance or could be a huge add on to the present system.

This will help all those who possess less knowledge about railway network and wants to

do their works on click.

Page | 4

Chapter 2: Literature survey

2.1 Geographic Coordinate system

A geographic coordinate system (GCS) uses a three-dimensional spherical surface to define

locations on the earth. A GCS is often incorrectly called a datum, but a datum is only one

part of a GCS. A GCS includes an angular unit of measure, a prime meridian, and a datum

(based on a spheroid).

A point is referenced by its longitude and latitude values. Longitude and latitude are angles

measured from the earth's center to a point on the earth's surface. The angles often are

measured in degrees (or in grads). The following illustration shows the world as a globe

with longitude and latitude values.

In the spherical system, horizontal lines, or east–west lines, are lines of equal latitude, or

parallels. Vertical lines, or north–south lines, are lines of equal longitude, or meridians.

These lines encompass the globe and form a gridded network called a graticule

2.1.1 Latitude and Longitude

The line of latitude midway between the poles is called the equator. It defines the line of

zero latitude. The line of zero longitude is called the prime meridian. For most geographic

coordinate systems, the prime meridian is the longitude that passes through Greenwich,

England. Other countries use longitude lines that pass through Bern, Bogota, and Paris as

prime meridians. The origin of the graticule (0,0) is defined by where the equator and prime

meridian intersect. The globe is then divided into four geographical quadrants that are

based on compass bearings from the origin. North and south are above and below the

equator, and west and east are to the left and right of the prime meridian.

Latitude and longitude values are traditionally measured either in decimal degrees or in

degrees, minutes, and seconds (DMS). Latitude values are measured relative to the equator

and range from -90° at the South Pole to +90° at the North Pole. Longitude values are

measured relative to the prime meridian. They range from -180° when traveling west to

180° when traveling east. If the prime meridian is at Greenwich, then Australia, which is

south of the equator and east of Greenwich, has positive longitude values and negative

Page | 5

latitude values. It may be helpful to equate longitude values with X and latitude values with

Y. Data defined on a geographic coordinate system is displayed as if a degree is a linear

unit of measure.

Although longitude and latitude can locate exact positions on the surface of the globe, they

are not uniform units of measure. Only along the equator does the distance represented by

one degree of longitude approximate the distance represented by one degree of latitude.

This is because the equator is the only parallel as large as a meridian. (Circles with the

same radius as the spherical earth are called great circles. The equator and all meridians

are great circles.)

Above and below the equator, the circles defining the parallels of latitude get gradually

smaller until they become a single point at the North and South Poles where the meridians

converge. As the meridians converge toward the poles, the distance represented by one

degree of longitude decreases to zero. On the Clarke 1866 spheroid, one degree of

longitude at the equator equals 111.321 km, while at 60° latitude it is only 55.802 km.

Because degrees of latitude and longitude don't have a standard length, you can’t measure

distances or areas accurately or display the data easily on a flat map or computer screen.

Figure 1: Latitude- Longitude

2.2 Distance Calculation

The current FCC Rules for distance calculations use two methods: flat-earth and spherical-

earth. The flat earth method assumes the distance between two points to be the hypotenuse

of a right triangle whose sides are determined by the difference in latitude and longitude of

the starting and ending points, multiplied by the length per degree of latitude and longitude

Page | 6

at the mid-latitude of the two points, as shown in Figure below. The flat-earth term is not

meant to be disparaging, and merely refers to the use of a right triangle to calculate the

distance. Because the lengths of a degree of longitude and a degree of latitude used in the

flat earth method are derived from an ellipsoid rather than a spheroid model of the earth,

the flat-earth method is actually more accurate than the spherical-earth method for short to

moderate distances.

The spherical-earth method uses conventional spherical trigonometry to determine the

distance. Section 73.208 of the FCC Rules now requires that the flat-earth method be used

for distances up to and including 475 km. Distances greater than 475 km must be calculated

using the spherical-earth method, which becomes more accurate than the flat-earth method

for large distances.

Figure 2: Flat Earth Method

2.2.1 Flat Earth Method

In FCC Docket 80-90, formulas were substituted for the tables previously used for

determining the length of a degree of latitude or of longitude as a function of latitude.

However, the coefficients adopted in Docket 80-90 truncated to only two terms the

trigonometric series used to generate the tables and “adjusted” the coefficients by a factor

of (1.609/1.609347) because of the Docket 80-90 decision to define the conversion factor

Page | 7

from U.S. statute miles to kilometers as 1.609, rather than the value of (5,280 ft/mile) *

(1200/3937 m/ft) * (1/1000 km/m), or 1.609347219 km/mile (approximately).

In the Second Report and Order to Docket 86-144, the FCC corrected these problems by

adopting the full precision, non-truncated trigonometric series for the arc length formulas

given in the 1966 edition of U.S. Naval Hydrographic Office Publication Number 9 (H.O.

9) or the American Practical Navigator or simply Bowditch after Nathaniel Bowditch

(1773–1838), its original author. These trigonometric series are based upon a binomial

theorem expansion of an ellipsoid model of the earth corresponding to the Clarke spheroid

of 1866, upon which topographic maps in the United States are currently based.6

The trigonometric series defining the length of one degree of latitude and one degree of

longitude for the Clarke spheroid of 1866 are:

dLat = 111.13209 - 0.56605 cos(2L)+ 0.00120 cos(4L)

dLong = 111.41513 cos(L) - 0.09455 cos(3L)+ 0.00012 cos(5L)

where, dLat is the length in kilometers of one degree of latitude at latitude L and dLong is

the length in kilometers of one degree of longitude, again at latitude L.

The latitude, L, is taken as the mid-latitude of the two points between which the distance is

to be calculated, as follows:

L = (Latitude1 + Latitude2)/2

Where, Latitude1 and Latitude2 are the latitudes of the starting and ending points. Similarly,

Longitude1 and Longitude2 are the longitudes of the starting and ending points. In all cases,

north latitudes are treated as positive and south latitudes as negative, and west longitudes

are treated as positive and east longitudes as negative.

The distance between two points is then given by the Pythagorean Theorem:

D = ([(dLat)(Lat1-Lat2)]
2+[(dLong)(Long1-Long2)]

2)1/2

Plots showing how the lengths of one degree of latitude and longitude vary with latitude

are given in Figures 3 and 4.

Page | 8

Figure 3: Latitude Length

Figure 4: Longitude Length

2.2.2 Spherical Earth Method

The formula for the spherical-earth distance, or great-circle distance, is:

D = K cos-1[(sin Lat1)(sin Lat2)+ (cos Lat1)(cos Lat2) cos(Long2 - Long1)]

The constant K is in km/degree and is determined by the radius of the sphere being

modeled. The FCC has never defined the earth radius to be used for spherical earth

calculations. The example given in Section 73.185(d) of the FCC Rules suggests an earth

radius of 6,365 km (K = 111.090 km/degree). A 6,373 km radius (K = 111.230 km/degree)

is implied by the 5,280-mile 4/3-earth radius given in Section 73.684(c)(1) of the FCC

Rules. This 4/3-earth radius was also used in FCC Report No. R-6410, “Elevation and

Depression Angle Tables,” September 15, 1964. An earth radius of 6,367 km (K =

111.125 km/degree) can be deduced from the 1,852-meter definition of a nautical mile.

Page | 9

Finally, an earth radius of 6,371 km (K = 111.195 km/degree) corresponds to the mean

radius of the Clarke spheroid of 1866.

Until such time as the FCC so specifies, the author suggests using the mean Clarke

spheroid value of 6,371 km (K 4 111.195 km/degree).

Figure 5: Flat and Spherical Earth Model

2.3 Position Representation

Position calculations, e.g. adding, subtracting, interpolating, and averaging positions,

depend on the representation used, both with respect to simplicity of the written code and

accuracy of the result. The latitude/longitude representation is widely used, but near the

pole singularities, this representation has several complex properties, such as error in

latitude leading to error in longitude. Longitude also has a discontinuity at t180x. These

properties may lead to large errors in many standard algorithms. Using an ellipsoidal Earth

model also makes latitude/longitude calculations complex or approximate. Other common

representations of horizontal position include UTM and local Cartesian ‘flat Earth’

Page | 10

approximations, but these usually only give approximate answers, and are complex to use

over larger distances. The normal vector to the Earth ellipsoid (called n-vector) is a non-

singular position representation that turns out to be very convenient for practical position

calculations. This paper presents this representation, and compares it with other

alternatives, showing that n-vector is simpler to use and gives exact answers for all global

positions, and all distances, for both ellipsoidal and spherical Earth models. In addition,

two functions based on n-vector are presented, that further simplify most practical position

calculations, while ensuring full accuracy.

2.3.1 Standard Position Representation

Quantity Symbol Description

Position

vector

~pAB A vector whose length and direction is such that

it goes from the origin of frame A to the origin

of frame B, i.e. the position of B relative to A.

Velocity

vector

~vAB The velocity of the origin of frame B, relative to

frame A. The underline indicates that both the

position and orientation of A is relevant (whereas

only the position of B matters).

Rotation

matrix

RAB A 3x3 direction cosine matrix (DCM)

describing the orientation of frame B relative

to frame A.

Angular

velocity

v~AB The angular velocity of frame B relative to frame

A.

Table 1: Symbols used to describe basic relations between two coordinate frames.

2.3.1.1 Cartesian 3D vector

When representing the position of a general coordinate frame B relative to a reference

coordinate frame A, the most intuitive quantity to use is the position vector from A to B,

decomposed in A, pA
AB. We can represent the position of a body frame (B) relative to the

Page | 11

Earth (E), by using pE
EB. This (Cartesian) vector is often referred to as Earth Centered Earth

Fixed (ECEF) vector. While this representation is non-singular and intuitive, there are

many situations where other representations are more practical when positioning an object

relative to the Earth reference ellipsoid.

2.3.1.2 Separating horizontal and vertical components

For many position calculations, it is desirable and most intuitive to treat horizontal and

vertical positions independently. This is for instance useful in a navigation system, where

horizontal and vertical position are usually measured by different sensors at different points

in time, or in a vehicle autopilot, where horizontal and vertical position are often controlled

independently. In such applications, we usually compare two horizontal positions, and thus

we need a quantity for representing horizontal position independently of the vertical

height/depth. It should thus be possible to represent horizontal position without considering

the vertical position, and vice versa. If the vector pE
EB is used, the horizontal and vertical

positions are not separated as desired.

Latitude and longitude

A common solution for obtaining separate horizontal and vertical positions is the use of

latitude, longitude and height/depth. However, this representation has a severe limitation;

the two singularities at latitudes t90x, where longitude is undefined. In addition, when

getting close to the singularities, the representation exhibits considerable non-linearity and

extreme latitude dependency, leading to reduced accuracy in many algorithms. Thus, these

coordinates are not suitable for algorithms that should be able to calculate positions far

north or far south. In addition, calculations near t180x longitude become complicated due

to the discontinuity.

UTM and UPS

Horizontal position can also be represented by defining an Earth fixed coordinate system

based on a map projection (i.e., a mapping of points on a curved surface to a plane) valid

in a limited geographical area. One such system is Universal Transverse Mercator (UTM),

specifying 60 longitude zones, covering the globe except for the Polar Regions (Snyder,

Page | 12

1987). For the Polar Regions, a similar system, Universal Polar Stereographic (UPS),

defines horizontal positions (Hager et al., 1989). While these systems are well-defined and

the coordinate values approximately correspond to meters, they have an inherent distortion

due to the projection and thus a corresponding error in many calculations (e.g. a difference

vector between two UTM coordinates will give a length (in meters) and direction (relative

to north) that both have errors compared to the true values). In addition, general

calculations get very complex when crossing zones (Hager et al., 1989).

Rotation matrix

In a set of navigation equations, integrating measurements from an inertial measurement

unit, horizontal position is often stored together with an azimuth angle in a rotation matrix

(Savage, 2000). Although it has nice properties with respect to the pole singularities

(similar to n-vector), this matrix representation is not suited for pure horizontal position

representation.

2.4 Prediction

A prediction or forecast is a statement about the way things will happen in the future, often

but not always based on experience or knowledge. While there is much overlap

between prediction and forecast, a prediction may be a statement that some outcome is

expected, while a forecast is more specific, and may cover a range of possible outcomes.

A "prediction" may be contrasted with a "projection", which is explicitly dependent on

stated assumptions.

Although guaranteed accurate information about the future is in many cases impossible,

prediction can be useful to assist in making plans about possible developments

2.4.1 Case based reasoning

Case-based reasoning (CBR), broadly construed, is the process of solving new problems

based on the solutions of similar past problems. An auto mechanic who fixes an engine by

recalling another car that exhibited similar symptoms is using case-based reasoning.

http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Engine
http://en.wikipedia.org/wiki/Automobile

Page | 13

A lawyer who advocates a particular outcome in a trial based on legal precedents or a judge

who creates case law is using case-based reasoning. So, too, an engineer copying working

elements of nature (practicing biomimicry), is treating nature as a database of solutions to

problems. Case-based reasoning is a prominent kind of analogy making.

It has been argued that case-based reasoning is not only a powerful method for computer

reasoning, but also a pervasive behavior in everyday human problem solving; or, more

radically, that all reasoning is based on past cases personally experienced. This view is

related to prototype theory, which is most deeply explored in cognitive science.

Process

Case-based reasoning has been formalized for purposes of computer reasoning as a four-

step process.

1. Retrieve: Given a target problem, retrieve from memory cases relevant to solving

it. A case consists of a problem, its solution, and, typically, annotations about how

the solution was derived. For example, suppose Fred wants to prepare

blueberry pancakes. Being a novice cook, the most relevant experience he can

recall is one in which he successfully made plain pancakes. The procedure he

followed for making the plain pancakes, together with justifications for decisions

made along the way, constitutes Fred's retrieved case.

2. Reuse: Map the solution from the previous case to the target problem. This may

involve adapting the solution as needed to fit the new situation. In the pancake

example, Fred must adapt his retrieved solution to include the addition of

blueberries.

3. Revise: Having mapped the previous solution to the target situation, test the new

solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred

adapted his pancake solution by adding blueberries to the batter. After mixing, he

discovers that the batter has turned blue – an undesired effect. This suggests the

following revision: delay the addition of blueberries until after the batter has been

ladled into the pan.

http://en.wikipedia.org/wiki/Lawyer
http://en.wikipedia.org/wiki/Trial_(law)
http://en.wikipedia.org/wiki/Legal
http://en.wikipedia.org/wiki/Precedent
http://en.wikipedia.org/wiki/Case_law
http://en.wikipedia.org/wiki/Engineer
http://en.wikipedia.org/wiki/Biomimicry
http://en.wikipedia.org/wiki/Analogy
http://en.wikipedia.org/wiki/Computer_reasoning
http://en.wikipedia.org/wiki/Computer_reasoning
http://en.wikipedia.org/wiki/Problem_solving
http://en.wikipedia.org/wiki/Prototype_theory
http://en.wikipedia.org/wiki/Cognitive_science
http://en.wikipedia.org/wiki/Computer_reasoning
http://en.wikipedia.org/wiki/Pancakes

Page | 14

4. Retain: After the solution has been successfully adapted to the target problem, store

the resulting experience as a new case in memory. Fred, accordingly, records his

new-found procedure for making blueberry pancakes, thereby enriching his set of

stored experiences, and better preparing him for future pancake-making demands.

2.4.2 Association rule

Association rule learning is a popular and well researched method for discovering

interesting relations between variables in large databases. It is intended to identify strong

rules discovered in databases using different measures of interestingness. Based on the

concept of strong rules, association rules were introduced for discovering regularities

between products in large-scale transaction data recorded by point-of-sale (POS) systems

in supermarkets. For example, the rule {onions,patotao} => {burger} found in the sales

data of a supermarket would indicate that if a customer buys onions and potatoes together,

they are likely to also buy hamburger meat. Such information can be used as the basis for

decisions about marketing activities such as, e.g., promotional pricing or product

placements. In addition to the above example from market basket analysis association rules

are employed today in many application areas including Web usage mining, intrusion

detection, Continuous production, and bioinformatics. In contrast with sequence mining,

association rule learning typically does not consider the order of items either within a

transaction or across transactions.

An association rule has two parts, an antecedent (if) and a consequent (then). An antecedent

is an item found in the data. A consequent is an item that is found in combination with the

antecedent.

Association rules are created by analyzing data for frequent if/then patterns and using the

criteria support and confidence to identify the most important relationships. Support is an

indication of how frequently the items appear in the database. Confidence indicates the

number of times the if/then statements have been found to be true. In data mining,

association rules are useful for analyzing and predicting customer behavior. They play an

Page | 15

important part in shopping basket data analysis, product clustering, and catalog design and

store layout. Programmers use association rules to build programs capable of machine

learning. Machine learning is a type of artificial intelligence (AI) that seeks to build

programs with the ability to become more efficient without being explicitly programmed.

Process

Association rules are usually required to satisfy a user-specified minimum support and a

user-specified minimum confidence at the same time. Association rule generation is

usually split up into two separate steps:

1. First, minimum support is applied to find all frequent itemsets in a database.

2. Second, these frequent itemsets and the minimum confidence constraint are used to

form rules.

While the second step is straightforward, the first step needs more attention.

Finding all frequent itemsets in a database is difficult since it involves searching all

possible itemsets (item combinations). The set of possible item sets is the power

set over and has size (excluding the empty set which is not a valid itemset).

Although the size of the powerset grows exponentially in the number of items in ,

efficient search is possible using the downward-closure property of support which

guarantees that for a frequent itemset, all its subsets are also frequent and thus for an

infrequent itemset, all its supersets must also be infrequent. Exploiting this property,

efficient algorithms can find all frequent itemsets.

2.5 Probability

Probability is the measure of the likeliness that an event will occur. Probability is

quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates

certainty). The higher the probability of an event, the more certain we are that the event

will occur. These concepts have been given an axiomatic mathematical formalization

Page | 16

in probability theory (see probability axioms), which is used widely in such areas of

study as mathematics, statistics, finance, gambling, science (in particular physics), artificial

intelligence/machine learning, computer science, and philosophy to, for example, draw

inferences about the expected frequency of events. Probability theory is also used to describe

the underlying mechanics and regularities of complex systems.

2.5.1 Conditional Probability

In probability theory, a conditional probability measures the probability of an event given

that (by assumption, presumption, assertion or evidence) another event has occurred. For

example, the probability that any given person has a cough on any given day may be only

5%. But if we know or assume that the person has a cold, then they are much more likely

to be coughing. The conditional probability of coughing given that you have a cold might

be a much higher 75%. The concept of conditional probability is one of the most

fundamental and one of the most important concepts in probability theory. But conditional

probabilities can be quite slippery and require careful interpretation. For example, there

need not be a causal or temporal relationship between A and B.

Given two events A and B from the sigma-field of a probability space with P(B) > 0, the

conditional probability of A given B is defined as the quotient of the probability of the

joint of events A and B, and the probability of B:

If the event of interest is A and the event B is known or assumed to have occurred, "the

conditional probability of A given B", or "the probability of A under the condition B", is

usually written as P(A|B), or sometimes PB(A).

In general, it cannot be assumed that P(A|B) = P(B|A). This can be an insidious error, even

for those who are highly conversant with statistics. The relationship between P(A|B)

and P(B|A) is given by Bayes’ theorem.

Page | 17

2.5.2 Bayes’ Theorem

In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule)

relates current probability to prior probability. It is important in the mathematical

manipulation of conditional probabilities. When applied, the probabilities involved in

Bayes' theorem may have different interpretations. In one of these interpretations, the

theorem is used directly as part of a particular approach to statistical inference. In

particular, with the Bayesian interpretation of probability, the theorem expresses how a

subjective degree of belief should rationally change to account for evidence: this

is Bayesian inference, which is fundamental to Bayesian statistics. However, Bayes'

theorem has applications in a wide range of calculations involving probabilities, not just in

Bayesian inference.

Bayes' theorem is stated mathematically as the following equation:

Where A and B are events.

 P(A) and P(B) are the probabilities of A and B independent of each other.

 P(A | B), a conditional probability, is the probability of A given that B is true.

 P(B | A), is the probability of B given that A is true.

For example: Let Ai denote the event that a randomly chosen item was made by the ith

machine (for i = 1,2,3). Let B denote the event that a randomly chosen item is defective.

Then, we are given the following information:

P(A1) = 0.2, P(A2) = 0.3, P(A3) = 0.5.

If the item was made by machine A1, then the probability that it is defective is 0.05; that

is, P(B | A1) = 0.05. Overall, we have

P(B | A1) = 0.05, P(B | A2) = 0.03, P(B | A3) = 0.01.

To answer the original question, we first find P(B). That can be done in the following way:

P(B) = Σi P(B | Ai) P(Ai) = (0.05)(0.2) + (0.03)(0.3) + (0.01)(0.5) = 0.024.

Page | 18

Hence 2.4% of the total output of the factory is defective.

2.5.3 Bayesian Probability

Bayesian probability is one interpretation of the concept of probability. The Bayesian

interpretation of probability can be seen as an extension of propositional logic that

enables reasoning with hypotheses, i.e., the propositions whose truth or falsity is uncertain.

Bayesian probability belongs to the category of evidential probabilities; to evaluate the

probability of a hypothesis, the Bayesian probabilistic specifies some prior probability,

which is then updated in the light of new, relevant data (evidence). The Bayesian

interpretation provides a standard set of procedures and formulae to perform this

calculation. In contrast to interpreting probability as the "frequency" or "propensity" of

some phenomenon, Bayesian probability is a quantity that we assign for the purpose of

representing a state of knowledge, or a state of belief. In the Bayesian view, a probability

is assigned to a hypothesis, whereas under the frequentist view, a hypothesis is

typically tested without being assigned a probability.

Page | 19

Chapter 3: Application Designing

3.1 Feasibility Study

“FEASIBILTY STUDY” is a test of system proposal according to its workability, impact

of the organization, ability to meet needs and effective use of the resources. The feasibility

of the project is analyzed in this phase. During system analysis the feasibility study of the

proposed system is to be carried out. This is to ensure that the proposed environment must

be feasible. For feasibility analysis, some understanding of the major requirements for

system is essential.

The key objective of the feasibility study is to weigh up two types of feasibility. They are:

 Operational feasibility

 Technical feasibility

 Social feasibility

3.1.1 Operational feasibility

Operational feasibility is necessary as it ensures that the project developed is a successful

one. As the execution process of the proposed work is very much user friendly, the

operational feasibility of the project is high.

3.1.2 Technical feasibility

Technical feasibility analysis makes a comparison between the level of technology

available and that is needed for the project development of the project. The level of

technology consists of the factors like software tools, machine environment, and platform

developed and so on.

Page | 20

3.1.3 Social feasibility

The aspect of study is to check the level of acceptance of the system by the user. This

includes the process of training the user to use the system efficiently. The user must not

feel threatened by the system, instead must accept it as a necessity. His level of

confidence must be raised so that he is also able to make some constructive criticism,

which is welcomed, as he is the final user of the system

3.2 Basic Design

3.2.1 Railway system

The basic design of this system focuses on finding the route between two stations. For the

route we need to have the list of cities/stations that lie between them. We have many ways

to get this list. Few of them are:

 Using Google Maps

 Creating a network of cities

 Using Latitudes and Longitudes

Using Google Maps

In this method I need to integrate Google Maps into my system. The source and destination

would be the input to the Google Map API and the list of cities that lie between them would

be my output. In this my system would totally relay on the Maps. Any error or any

disturbance or any kind of change in format of API working or any other changes to the

working of Google Maps would affect my system and a result the system would fail to

work. Moreover for using this API I would need a continuous Internet connection

connected to my system and if I don’t have any connection this system will not work. And

depending on the speed of Internet the processing speed of my system will be affected

making it slow in giving the output.

By creating a network of cities

Page | 21

In this method a large network of all the cities that have reservation facility around 1500

cities needs to created, That roughly means a database graph with 1500 cities that would

be stored in a matrix form of size 1500*1500. This task needs a big database and a huge

processing time in comparing all the values of the matrix. We first need to look for the

cities that are closer to the source and then for all those cities we need to check whether

they have a direct route to destination or not. If not, then we need to go back to database

again look for some cities connected to source and follow the same process for all those

until we find the a city that we a direct connectivity with destination also. This whole task

takes a huge memory space, rather memory is not a constraint these days, But it was taking

a long time in accessing the database many times and hence was slower.

The above two methods have their own drawbacks and hence are not implemented in this

system. What is implemented here is the third option described below.

Using Latitudes and Longitudes

In this method I have used a database of all major cities with their latitudes and longitudes.

First the latitudes and longitudes of the source and destination were fetched and stored.

Then one by one all the cities with their latitudes and longitudes are fetched and compared

with the stored latitudes and longitudes. If the new fetched coordinates lie between the

stored one then this city have a possibility of lying between the route between source and

destination and is stored. After checking for all the cities, all the cities which satisfy this

condition are stored in an array. Each city from the array list is then checked for having a

direct connectivity and as soon as we find such a city the system shows the result with all

the trains rom source to the intermediate city found above and from that city to destination.

For example:

1) We have two stations Chandigarh (cdg) and Deoband (dbd), these two stations

don’t have any direct train between them so in such cases this method works.

Latitude and Longitude of cdg are: 30°43'N and 76°47'E

Latitude and Longitude of dbd are: 29°42'N and 77°43'E

Now we will look for the lats and longs that lie between these two coordinates.

Page | 22

AMBALA CANT JN 30°23'N 76°56'E

Jagadhri 30°10'N 77°20'E

Karnal 29°42'N 77°02'E

Saharanpur 29°58'N 77°33'E

So all these cities have lats and longs in relation with given stations. So now the system

will check for the trains between the source and the cities in the list one by one. Once we

have train between source and any city the system start checking the train between that city

and destination, if we get some trains between the city and destination, the system will

show the output making that city as intermediator city. As in this the intermediator city will

be Ambala Cant Jn and the output will all the trains between source and Ambala cant and

the trains between Ambala cant and destination will be shown as final output.

2) We have two stations Chandigarh (cdg) and Hapur (hpu), these two stations don’t

have any direct train between them so in such cases this method works.

Latitude and Longitude of cdg are: 30°43'N and 76°47'E

Latitude and Longitude of hpu are: 28°45'N and 77°45'E

Now we will look for the lats and longs that lie between these two coordinates.

AMBALA CANT JN 30°23'N 76°56'E

Chandigarh 30°43'N 76°47'E

Deoband 29°42'N 77°43'E

Hapur 28°45'N 77°45'E

Jagadhri 30°10'N 77°20'E

Kandhla 29°18'N 77°19'E

Karnal 29°42'N 77°02'E

Khatauli 29°17'N 77°43'E

Khekra 28°52'N 77°20'E

Meerut City 29°01'N 77°42'E

Muzaffarnagar 29°26'N 77°40'W

Panipat JN 29°25'N 77°02'E

Page | 23

Saharanpur 29°58'N 77°33'E

Sonipat 29°0'N 77°5'E

So all these cities have lats and longs in relation with given stations. So now the system

will check for the trains between the source and the cities in the list one by one. Once we

have train between source and any city the system start checking the train between that city

and destination, if we get some trains between the city and destination, the system will

show the output making that city as intermediator city. As in this the intermediator city will

be Saharanpur and the output will all the trains between source and Saharanpur and the

trains between Saharanpur and destination will be shown as final output.

 3.2.2 Prediction System

The basic design of this part focuses on fetching data, comparing data, assigning

probabilities and sending alert based on probabilities.

First the stored data of a particular user is fetched i.e. the dates of his/her previous journeys.

These dates are compared through various cases. According to the case matched they are

assigned a probability of making a journey in next year and if the user has a probability

greater than threshold probability, an alert/remainder mail is sent to the user.

There are many cases to be checked upon like

1. If the previous journeys are all on same exact date.

2. If two of previous journeys are on same date and third one on different date but in

same month.

3. If all three journeys are on different dates but in same month.

4. If all three journeys are on different dates but two of them in same month and third

one in different month.

5. If all three journeys are on different dates and in different months.

6. If there are only two journeys i.e. the user skips any year among the three previous

years, then in this case with two journeys all above 5 cases will be checked.

7. If there is only one journey in any of the year, well in this case no other condition

has to checked.

Page | 24

If user has same date of all the journeys then the predicted date will also be same.

But if any of the date differs from other two or all three dates are different, then the date of

most recent journey will be set as predicted date for next year. Also in this case of different

date, if dates are nearby i.e. with a difference of ±3 are considered.

For example: if we have Jan 2,2013 and Jan 4, 2014, these two dates will be considered as

a valid case since they have a difference of 2 days and the same goes for cases like Jan

31,2013 and Feb 1,2014.

But if, we have something like Jan 4,2013 and Jan 8,2014, this cases will not be considered

as it has a difference of 4 days.

Calculation of probability

There are three previous years 2013, 2013, 2014 and the next year for which journey has

to be predicted is 2015. Let the previous years be A1, A2, A3. And predicted year be B.

The user will either go In previous years or not, so the probability of journeys in previous

is either 0 or 1 i.e. P(A1) = 0 or 1 and same for other two.

Now considering conditional probability that if user has gone in 2012 and will go in 2015

has a probability of 0.15 and for year 2013 and 2015 has 0.35 and for the year 2014 and

2015 it is 0.45.

Means, P(B/A1) = 0.15

 P(B/A2) = 0.35

 P(B/A3) = 0.45

Now, by law of total probability and Bayes theorem,

 P(B) = P(B/A1)*P(A1) + P(B/A2)*P(A2) + P(B/A3)*P(A3)

Suppose we have P(A1)=1, P(A2)=0, P(A3)=1 then P(B),

 P(B) = 0.15*1+0.35*0+0.45*1

 P(B) = 0.6.

Page | 25

After calculating the probability of each user, the probability is checked with threshold

probability and if calculated probability is greater, an alert email is sent to the user..

3.3 UML Diagrams

3.3.1 Use Case

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral

diagram defined by and created from a Use-case analysis. Its purpose is to present a

graphical overview of the functionality provided by a system in terms of actors, their goals

(represented as use cases), and any dependencies between those use cases.

Figure 6: Use case

3.3.2 Sequence diagram

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram

that shows how processes operate with one another and in what order. It is a construct of a

Message Sequence Chart. Sequence diagrams are sometimes called event diagrams, event

scenarios, and timing diagrams.

Page | 26

Figure 7: Sequence Diagram for registration

Figure 8: Sequence Diagram for Booking Ticket

Page | 27

3.3.3 Data Flow diagram

The DFD is also called as bubble chart. It is a simple graphical formalism that can be used

to represent a system in terms of input data to the system, various processing carried out

on this data, and the output data is generated by this system.

The data flow diagram (DFD) is one of the most important modeling tools. It is used to

model the system components. These components are the system process, the data used by

the process, an external entity that interacts with the system and the information flows in

the system.

Figure 9: DFD level 0

Page | 28

Figure 10: DFD level 1

Page | 29

3.4 Code Snippet

No_direct Module

try

 {

 String source=request.getParameter("source");

 String dest=request.getParameter("dest");

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con=DriverManager.getConnection("jdbc:odbc:log1");

 Statement stmt=con.createStatement();

 ResultSet rs = null;

 //getting station names using station codes

 q="select * from station_code where station_code='"+source+"'";

 q1="select * from station_code where station_code='"+dest+"'";

 rs=stmt.executeQuery(q);

 while(rs.next())

 sname=rs.getString("station_name");

 rs=stmt.executeQuery(q1);

 while(rs.next())

 dname=rs.getString("station_name");

 //Getting lat and long of station name

 q="select * from lat_long where station_name='"+sname+"'";

 q1="select * from lat_long where station_name='"+dname+"'";

 rs=stmt.executeQuery(q);

 while(rs.next()) {

 slat=rs.getString("lat");

 slong=rs.getString("long");

 }

 rs=stmt.executeQuery(q1);

 while(rs.next()) {

Page | 30

 dlat=rs.getString("lat");

 dlong=rs.getString("long");

 }

 //converting lat and long to double array

 s=calculate(slat,slong,out);

 d=calculate(dlat,dlong,out);

 //Getting nearby lat and long points

 i=1;

 while(i<=1635) {

 q="select * from lat_long where id="+i;

 i++;

 rs=stmt.executeQuery(q);

 while(rs.next()) {

 tname=rs.getString("station_name");

 tlat=rs.getString("lat");

 tlong=rs.getString("long");

 t=calculate(tlat,tlong,out);

 if((s[0]<=t[0]&&t[0]<=d[0])&&(s[1]<=t[1]&&t[1]<=d[1]))

 tlist[j++]=tname;

 else if((s[0]<=t[0]&&t[0]<=d[0])&&(s[1]>=t[1]&&t[1]>=d[1]))

 tlist[j++]=tname;

 else if((s[0]>=t[0]&&t[0]>=d[0])&&(s[1]>=t[1]&&t[1]>=d[1]))

 tlist[j++]=tname;

 else if((s[0]>=t[0]&&t[0]>=d[0])&&(s[1]<=t[1]&&t[1]<=d[1]))

 tlist[j++]=tname;

 }

 }

 //getting train codes from train name

 for(i=0;i<j;i++) {

 q="select * from station_code where station_name='"+tlist[i]+"'";

Page | 31

 rs=stmt.executeQuery(q);

 while(rs.next())

 tcodelist[i]=rs.getString("station_code");

 }

 //getting the trains

 flag=0;

 for(i=0;i<j;i++) {

 m=flag=k=0;

 while(m<50) {

 m++;

 n=0;

 while(n<50) {

 n++;

 if(n>m) {

 q="select train_no from train_route where

station"+m+"='"+source+"'and station"+n+"='"+tcodelist[i]+"'";

 rs=stmt.executeQuery(q);

 while(rs.next()) {

 list[k++]=rs.getString(1);

 flag=1; //checks if direct train is available or not.

 index=i;

 } } } }

 if(flag==1) {

 m=0;

 while(m<50) {

 m++;

 n=0;

 while(n<50) {

 n++;

 if(n>m) {

Page | 32

 q="select train_no from train_route where

station"+m+"='"+tcodelist[i]+"'and station"+n+"='"+dest+"'";

 rs=stmt.executeQuery(q);

 while(rs.next()) {

 list1[k1++]=rs.getString(1);

 flag=2; //checks if direct train is available or not.

 } } } } }

 if(flag==2)

 break;

 }

 }

 catch(Exception e) {

 out.print(e);

 }

 }

 double[] calculate(String a,String b, PrintWriter out)

 {

 double []s=new double[2];

 char[]c = a.toCharArray();

 char[]d = b.toCharArray();

 s[0]=((double)c[0]-48)*10+((double)c[1]-48)+((double)c[3]-48)/10+((double)c[4]-

48)/100;

 s[1]=((double)d[0]-48)*10+((double)d[1]-48)+((double)d[3]-48)/10+((double)d[4]-

48)/100;

 return s;

 }

}

Explanation:

Page | 33

This module is the heart of this system. This module finds out the transit station or an

intermediate station where we can change our train to reach out our destination. In this

module first the input from the user are taken and then the latitudes and longitudes are

fetched from Db which are in string format and are converted to double format so that they

can be easily compared. Next all the latitudes and longitudes of all the cities are fetched

one by one and compared to the coordinates of source and destination. If the fetched

coordinates lie between the stored one, the fetched one are saved in a list along with the

city names. At end of this loop we have a list of cities that could lie on the way to destination

from source.

Now all these cities are one by one checked whether they can be served as transit station

or not. First the source is checked for having a direct train with these cities, if such a city

is found then that city is checked with destination, if trains are between this city and

destination then this city will serve as transit station and all the trains from source to transit

city and from transit city to destination are stored in different list and the train details are

fetched using the method in the servlet Userhome.java. And if there is no train from that

city to destination then we look for another city from city list which can have direct from

source and the process is repeated until we find a complete route. And the result is shown

to the user. The last function calculate() is used to convert the lat and long which are saved

as strings in Database to double values which are used for comparison.

Prediction Module

public class prediction_new

{

 public static void main(String[] args)

 {

 float p_2015=0.0f;

 float p_15_12=0.15f,p_15_13=0.30f,p_15_14=0.45f; //baye's probability

 float res[]=new float[100];

 int i=0,j=0,k=0,l=0,diff=0,diff1=0,diff2=0;

Page | 34

 int d[]=new int[3];

 int m[]=new int[3];

 int y[]=new int[3];

 int q[]=new int[3];

 String str,str1,str2,str3,e_d=null;

 String username[]=new String[100];

 String doj[]=new String[5];

 String src[]=new String[5];

 String dst[]=new String[5];

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con=DriverManager.getConnection("jdbc:odbc:predict_db");

 Statement stmt=con.createStatement();

 ResultSet rs,rs1=null,rs2=null;

 str="select * from user";

 str1="drop table probabilities";

 str2="create table probabilities (user_name varchar(20), prob float, expected_date

varchar(20))";

 stmt.execute(str1);

 stmt.execute(str2);

 rs=stmt.executeQuery(str);

 while(rs.next())

 {

 username[i++]=rs.getString(1);

 }

 // i has total number of users and username has all the names

 while(j<i)

 {

 k=0;

Page | 35

 str="select * from trips_total where user_name='"+username[j]+"'";

 rs=stmt.executeQuery(str);

 while(rs.next())

 {

 doj[k]=rs.getString(3); //in m/d/yyyy

 src[k]=rs.getString(4);

 dst[k]=rs.getString(5);

 System.out.println(username[j]+" "+doj[k]+" "+src[k]+" "+dst[k]);

 q=change(doj[k]);

 m[k]=q[0];

 d[k]=q[1];

 y[k]=q[2];

 //System.out.println(username[j]+" "+d[k]+"/"+m[k]+"/"+y[k]+" "+src[k]+"

"+dst[k]);

 k++;

 }

 //rs.close();

 while(true)

 {

 p_2015=0.0f;

 e_d=doj[k-1];

 if(k==1)

 {

 if(y[k-1]==2014)

 p_2015=p_15_14;

 else if(y[k-1]==2013)

 p_2015=p_15_13;

 else if(y[k-1]==2012)

 p_2015=p_15_12;

 break;

Page | 36

 }

 else if(k==2)

 {

 if(y[k-1]==2014&&y[k-2]==2013)

 {

 if((m[k-1]==m[k-2])&&(d[k-1]==d[k-2])) //both same

 {

 p_2015=p_15_14+p_15_13;

 }

 else if((m[k-1]==m[k-2])&&(d[k-1]!=d[k-2])) //same month different

dates

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 if(diff<=3)

 p_2015=p_15_14+p_15_13;

 else

 p_2015=0.0f;

 }

 else if((m[k-1]!=m[k-2])&&(d[k-1]!=d[k-2])) //both different

 {

 if((int)abs((double)(m[k-1]-m[k-2]))==1)

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 if(m[k-1]==2&&m[k-2]==3)

 if(diff>=25&&diff<=27)

 p_2015=p_15_14+p_15_13;

 else

 p_2015=0.0f;

 else

 if(diff>=28&&diff<=30)

Page | 37

 p_2015=p_15_14+p_15_13;

 else

 p_2015=0.0f;

 }

 }

 break;

 }

 else if(y[k-1]==2014&&y[k-2]==2012)

 {

 if((m[k-1]==m[k-2])&&(d[k-1]==d[k-2])) //both same

 {

 p_2015=p_15_14+p_15_12;

 }

 else if((m[k-1]==m[k-2])&&(d[k-1]!=d[k-2])) //same month different

dates

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 if(diff<=3)

 p_2015=p_15_14+p_15_12;

 else

 p_2015=0.0f;

 }

 else if((m[k-1]!=m[k-2])&&(d[k-1]!=d[k-2])) //both different

 {

 if((int)abs((double)(m[k-1]-m[k-2]))==1)

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 if((m[k-1]==2&&m[k-2]==3)||(m[k-2]==2&&m[k-1]==3))

 if(diff>=26&&diff<=28)

 p_2015=p_15_14+p_15_12;

Page | 38

 else

 p_2015=0.0f;

 else

 if(diff>=28&&diff<=30)

 p_2015=p_15_14+p_15_12;

 else

 p_2015=0.0f;

 }

 }

 break;

 }

 else if(y[k-1]==2013&&y[k-2]==2012)

 {

 if((m[k-1]==m[k-2])&&(d[k-1]==d[k-2])) //both same

 {

 p_2015=p_15_13+p_15_12;

 }

 else if((m[k-1]==m[k-2])&&(d[k-1]!=d[k-2])) //same month different

dates

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 if(diff<=3)

 p_2015=p_15_13+p_15_12;

 else

 p_2015=0.0f;

 }

 else if((m[k-1]!=m[k-2])&&(d[k-1]!=d[k-2])) //both different

 {

 if((int)abs((double)(m[k-1]-m[k-2]))==1)

 {

Page | 39

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 if((m[k-1]==2&&m[k-2]==3)||(m[k-2]==2&&m[k-1]==3))

 if(diff>=26&&diff<=28)

 p_2015=p_15_13+p_15_12;

 else

 p_2015=0.0f;

 else

 if(diff>=28&&diff<=30)

 p_2015=p_15_13+p_15_12;

 else

 p_2015=0.0f;

 }

 else

 {

 p_2015=0.0f;

 break;

 }

 }

 break;

 }

 break;

 }

 else if(k==3) //user making trips in all 3 years

 {

 if((m[k-1]==m[k-2])&&(m[k-2]==m[k-3])) //all three in same month

 {

 if((d[k-1]==d[k-2])&&(d[k-2]==d[k-3])) // all three on same dates

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

Page | 40

 }

 else if((d[k-1]==d[k-2])||(d[k-2]==d[k-3])||(d[k-3]==d[k-1])) //same

month and 2 on same date, 3rd diff date

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else // same months but all different dates

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 diff1=(int)abs((double)(d[k-3]-d[k-2]));

 diff2=(int)abs((double)(d[k-1]-d[k-3]));

if((diff<=3&&diff1<=3)||(diff2<=3&&diff1<=3)||(diff<=3&&diff2<=3))

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else

 {

 p_2015=0.0f;

 break;

 }

 }

 }

 else if((m[k-1]==m[k-2])||(m[k-2]==m[k-3])||(m[k-3]==m[k-1])) //two in

same month and third in different

 {

 if((d[k-1]==d[k-2])&&(d[k-2]==d[k-3])) // all same date (two same trips

and third diff)

 {

Page | 41

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else if(((int)abs((double)(m[k-1]-m[k-2]))==1)||((int)abs((double)(m[k-

3]-m[k-2]))==1)||((int)abs((double)(m[k-1]-m[k-3]))==1))

 {

 if((d[k-1]==d[k-2])||(d[k-2]==d[k-3])||(d[k-3]==d[k-1])) //2 on same

date, 3rd diff date

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 diff1=(int)abs((double)(d[k-3]-d[k-2]));

 diff2=(int)abs((double)(d[k-1]-d[k-3]));

 if(((m[k-1]==2&&m[k-2]==3)||(m[k-2]==2&&m[k-

1]==3))||((m[k-3]==2&&m[k-2]==3)||(m[k-2]==2&&m[k-3]==3))||((m[k-1]==2&&m[k-

3]==3)||(m[k-3]==2&&m[k-1]==3)))

 {

if(((diff==0)&&(diff1==diff2)&&(diff2>=26&&diff2<=28))||((diff1==0)&&(diff==diff2

)&&(diff>=26&&diff<=28))||((diff2==0)&&(diff1==diff)&&(diff1>=26&&diff1<=28)))

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else

 {

 p_2015=0.0f;

 break;

 }

 }

 else

 {

Page | 42

if(((diff==0)&&(diff1==diff2)&&(diff2>=28&&diff2<=30))||((diff1==0)&&(diff==diff2

)&&(diff>=28&&diff<=30))||((diff2==0)&&(diff1==diff)&&(diff1>=28&&diff1<=30)))

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else

 {

 p_2015=0.0f;

 break;

 }

 }

 }

 else

 {

 diff=(int)abs((double)(d[k-1]-d[k-2]));

 diff1=(int)abs((double)(d[k-3]-d[k-2]));

 diff2=(int)abs((double)(d[k-1]-d[k-3]));

if((diff<=3&&diff1<=3)||(diff2<=3&&diff1<=3)||(diff<=3&&diff2<=3))

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else if(((m[k-1]==2&&m[k-2]==3)||(m[k-2]==2&&m[k-

1]==3))||((m[k-3]==2&&m[k-2]==3)||(m[k-2]==2&&m[k-3]==3))||((m[k-1]==2&&m[k-

3]==3)||(m[k-3]==2&&m[k-1]==3)))

 {

if((diff2>=26&&diff2<=28&&diff>=26&&diff<=28)||(diff1>=26&&diff1<=28&&diff2

>=26&&diff2<=28)||(diff1>=26&&diff1<=28&&diff>=26&&diff<=28))

Page | 43

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else

 {

 p_2015=0.0f;

 break;

 }

 }

 else

if((diff2>=28&&diff2<=30&&diff>=28&&diff<=30)||(diff1>=28&&diff1<=30&&diff2

>=28&&diff2<=30)||(diff1>=28&&diff1<=30&&diff>=28&&diff<=30))

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else

if((diff2>=28&&diff2<=30&&diff<=3)||(diff1>=28&&diff1<=30&&diff2<=3)||(diff1>=

28&&diff1<=30&&diff<=3))

 {

 p_2015=p_15_14+p_15_13+p_15_12;

 break;

 }

 else

 {

 p_2015=0.0f;

 break;

 }

 }

 }

Page | 44

 }

 else //all three in different months

 {

 p_2015=0.0f;

 break;

 }

 }

 }

 if(p_2015==0.0)

 e_d=null;

 if(e_d!=null)

 {

 int len=e_d.length();

 char c[]=e_d.toCharArray();

 c[len-1]=(char)53;

 e_d=new String(c);

 }

 if(e_d!=null)

 System.out.println("The probability of "+username[j]+" of making a trip in

2015 is "+p_2015+" on "+e_d);

 else

 System.out.println("The probability of "+username[j]+" of making a trip in

2015 is "+p_2015);

 str3="Insert into probabilities (user_name,prob,expected_date) values

('"+username[j]+"',"+p_2015+",'"+e_d+"')";

 stmt.execute(str3);

 j++;

 }

 str="select probabilities.user_name, probabilities.prob,

probabilities.expected_date, user.emailid from user inner join probabilities on

user.user_name = probabilities.user_name";

Page | 45

 rs2=stmt.executeQuery(str);;

 //sending emails to the predicted users corresponding to system date

 String u,da,ei;

 float prob;

 while(rs2.next())

 {

 u=rs2.getString(1);

 prob=rs2.getFloat(2);

 da=rs2.getString(3);

 ei=rs2.getString(4);

 if(prob>=0.6)

 {

 //send an alert email

 final String uname = "uihand10@gmail.com";

 final String password = "continent";

 String Receiver=ei;

 //System.out.println(Receiver);

 /*Properties props = new Properties();

 props.put("mail.smtp.auth", "true");

 props.put("mail.smtp.ssl.enable", "true");

 props.put("mail.smtp.host", "smtp.gmail.com");

 props.put("mail.smtp.port", "465");

 props.put("mail.smtp.user", "username");

 props.put("mail.smtp.password", "password");

 Session session;

 session = Session.getDefaultInstance(props,new javax.mail.Authenticator()

 {

 @Override

 protected PasswordAuthentication getPasswordAuthentication()

 {

Page | 46

 return new PasswordAuthentication(uname,password);

 }

 });

 session.setDebug(true);

 Message message=new MimeMessage(session);

 message.setFrom(new InternetAddress("uihand10@gmail.com"));

 message.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(Receiver));

 message.setSubject("Hello");

 message.setText(u+" would u like to make a trip on "+da+".");

 Transport.send(message);*/

 }

 }

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 System.out.println("Complete!!!");

 }

 static int[] change(String s)

 {

 int d[]=new int[3];

 char c[]=s.toCharArray();

 int q=s.length();

 d[0]=((int)c[0]-48);

 d[1]=((int)c[2]-48);

 if(c[3]=='/')

 d[2]=(((int)c[q-4]-48)*1000)+(((int)c[q-3]-48)*100)+(((int)c[q-2]-

48)*10)+((int)c[q-1]-48);

Page | 47

 else

 {

 d[1]*=10;

 (d[1])+=((int)c[3]-48);

 }

 if(d[2]==0)

 d[2]=(((int)c[q-4]-48)*1000)+(((int)c[q-3]-48)*100)+(((int)c[q-2]-

48)*10)+((int)c[q-1]-48);

 return d;

 }

}

Page | 48

3.5 Database Design

There are five tables used in first system and three tables in second system whose

specifications are as follows:

Table 2: User_detail

Field Name Data type

username Short text

password Short text

email Short text

phone Short text

Primary key: username

Figure 11: Database User_detail

Page | 49

Table 3: train_detail

Field name Data Type

train_no Short text

train_name Short text

src Short text

src_time Short text

dst Short text

dst_time Short text

Primary key: train_no

Figure 12: Database train_detail

Page | 50

Table 4: lat_long

Field Name Data type

id Auto number

station_name Short text

lat Short text

long Short text

Primary key: id

Figure 13: Database lat_long

Page | 51

Table 5: station_code

Field Name Data type

station_code Short text

station_name Short text

Primary key: station_code

Figure 14: Database station_code

Page | 52

Table 6: train_route

Field Name Data type

train_no Short text

station1 Short text

station2 Short text

: :

: :

Station120 Short text

Primary key: train_no

Figure 15: Database train_route

Page | 53

Table 7: user

Field Name Data type

User_name Short text

emailid Short text

phone Short text

password Short text

Figure 16: Database userdetails

Page | 54

Table 8: probabilities

Field Name Data type

User_name Short text

prob Float

Expected_date Short text

Figure 17: Database probabilities

Page | 55

Table 9: trip_details

Field name Data Type

id integer

user_name Short text

doj Short text

src Short text

dst Short text

Figure 18: Database trips_total

Page | 56

3.6 Snapshots

Figure 19: Sign Up

Figure 20: Successfully Registered

Page | 57

Figure 21: Login

Figure 22: Forgot Password

Page | 58

Figure 23: User Home (Direct Route Example)

Figure 24: Trains Output (Direct Route Example)

Page | 59

Figure 25: User Home (No Direct Route Example)

Figure 26: Trains Output (Direct Route Example)

Page | 60

Figure 27: Prediction Output

Page | 61

Chapter 4: Conclusion and Future Work

The first objective of this project has nearly come to an End. The system now shows the

trains between the directly connected stations and also between the stations that are not

directly connected by finding an intermediate station where passenger can change the train.

This shows all the trains between the source to intermediate station and all trains from that

intermediate station to destination.

The second objective is almost completed that is the journeys are predicted based on the

previous three years journeys and an alert mail is being sent to the selected users.

In future I would like add some graphical representation of the route in first objective. In

second objective, I will like to add some more refinements to the cases used for

prediction like weekends situation.

Page | 62

References

1. Kenneth Gade, A Non-singular Horizontal Position Representation, THE

JOURNAL OF NAVIGATION (2010), 63, 395–417.

2. Dane e. Ericksen, p.e., cstre, distance and bearing calculations, hammett & edison,

inc., consulting engineers, san francisco, california.

3. ANSI/IEEE Standard 268-1982, Metric Practice, Page 31, Note 14.

4. FCC Public Notice “FCC Interim Procedure for the Specification of Geographic

Coordinates,” March 14, 1988.

5. Britting, K.R, Inertial Navigation Systems Analysis. Wiley Interscience. 1971.

6. A. Aamodt, E. Plaza (1994); Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches, AI Communications, IOS

Press Vol 7: 1 pp 39-59..

7. Piero P. Bonissone, Ramon Lopez de Mantaras, Fuzzy Case-Based Reasoning

System.

8. Tomas Olsson, Daniel Gillblad, Peter Funk, and Ning Xiong: Case-Based

Reasoning for Explaining Probabilistic Machine Learning, School of Innovation,

Design, and Engineering, Mälardalen University, Västerås, Sweden SICS Swedish

ICT.

9. Inza, Iñaki, et al. "Feature subset selection by Bayesian network-based

optimization." Artificial intelligence 123.1 (2000): 157-184.

10. Zhang, Nevin L., and David Poole. "A simple approach to Bayesian network

computations." Proc. of the Tenth Canadian Conference on Artificial Intelligence.

1994.

11. Schiaffino, Silvia N., and Analía Amandi. "User profiling with Case-Based

Reasoning and Bayesian Networks." IBERAMIA-SBIA 2000 open discussion

track. 2000.

12. Langley, Pat, and Stephanie Sage. "Induction of selective Bayesian

classifiers." Proceedings of the Tenth international conference on Uncertainty in

artificial intelligence. Morgan Kaufmann Publishers Inc., 1994.

