
 I

MEDICAL SEARCH ENGINE

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Ms Ramanpreet Kaur

By

Disha Mehta (111307)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

 II

 CERTIFICATE

This is to certify that project report entitled “Medical Search Engine”, submitted by

Disha Mehta in partial fulfillment for the award of degree of Bachelor of Technology

in Computer Science & Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Supervisor’s Name

 Designation

Signature

Date:

 III

 ACKNOWLEDGEMENT

The satisfaction that accompanies with the partial completion of any task would be

incomplete without mention of people whose ceaseless corporation made it possible,

whose constant guidance and encouragement crown all efforts with success.

I take this opportunity to express my sincere gratitude to Head of Department(CSE),

Brig. S.P. Ghrera, for co-operation in extension of all necessary facilities for the

conduct of my work, Ms Ramanpreet Kaur, my Project Supervisor, for her kind and

patient efforts in directing my project.

I would also like to thank all those who have directly or indirectly contributed to my

project. Their co-operation and support has been a vital input.

Date: Name of the student

 IV

 TABLE OF CONTENTS

Chapter No. Topic PageNo.

 Title Page I

 Certificate from the Supervisor II

 Acknowledgement III

 Table of Contents IV

 List of Abbreviations and Symbols IX

 List of Figures X

 List of Tables XI

 Abstract 1

Chapter-1 Introduction 2

Chapter-2 History of Search Engine 4

 2.1 History of Yahoo 5

 2.2 History of Ask 5

 2.3 History of Google 6

 2.4 History of MSN Search 6

Chapter-3 Literature Review 7

 3.1 Components of Search Engine 7

 3.1.1 Crawler 7

 3.1.2 Tokenization Process 8

 3.1.3 Indexer 10

 V

 3.1.4 Search 10

 3.1.5 Ranking of Result 10

 3.1.6 Page Rank Algorithm 11

 3.1.7 Performance of Search Engine 12

 3.2 Types of Search Engine 13

 3.2.1 Crawler Based 13

 3.2.2 Directories 14

 3.2.3 Hybrid Search Engine 14

 3.2.4 Miscellaneous Types 14

 Chapter-4 Tools and Techniques Used 16

 4.1 Java EE Framework 16

 4.1.1 Distributed Multi Tier 16

 4.1.2 Application Components 17

 4.1.3 Java Server Pages 18

 4.1.4 Java Servlet 19

 4.1.5 Java Features 20

 4.2 HTML 20

 4.3 MySQL Database 21

 4.3.1 MySQL Features 21

 4.3.2 MySQL Advantages 22

 4.4 PHP 22

 4.4.1 Advantages of PHP 22

 4.4.2 PHP Usage 23

 VI

 4.4.3 PHP for Web Development 24

 Chapter-5 System Requirements 26

 5.1 Requirement Analysis 26

 5.1.1 Hardware Requirements 26

 5.1.2 Software Requirements 26

 5.1.3 Functional Requirements 27

 5.1.4 Non Functional Requirements 27

 Chapter- 6 Analysis 28

 6.1 Introduction 28

 6.1.1 Logical Design 28

 6.1.2 Physical Design 28

 6.2 Use Case Diagram 29

 6.2.1 Actors Involved 29

 6.3 Sequence Diagram 30

 6.3.1 Query Processor 30

 6.3.2 Indexer 31

 6.4 Activity Diagram 31

 6.5 Data Flow Diagram 32

 6.5.1 Level-0 DFD 32

 6.5.2 Level-1 DFD 33

 Chapter- 7 Design and Implementation 34

 7.1 Design 34

 7.2 Implementation 35

 VII

 7.2.1 Pseudo Code for Crawler 35

 7.2.2 Pseudo Code for Indexer 35

 7.2.3 Pseudo Code for Search 36

 7.2.4 Pseudo Code for Ranking 36

 7.3 Screenshots 37

 7.3.1 Search Result 37

 7.3.2 Database 37

 7.3.3 Page Table 37

 7.3.4 Word Table 38

 7.3.5 Occurrence Table 38

 7.3.6 Crawler Input 39

 7.3.7 Crawler Results 39

 7.3.8 Page Rank Result 40

Chapter- 8 Results 41

 Conclusion and Future Work 42

 Reference 43

 Appendix 44

 VIII

ABBREVIATIONS AND SYMBOLS

DFD: Data Flow Diagram

 IX

LIST OF FIGURES

SNo. Title Page No.

1. Components of Search Engine 7

2. Web Crawler 8

3. Performance Parameters 13

4. J2EE Applocation Architecture 16

5. Container Architecture 18

6. Use Case Diagram 29

7. Query Processor Diagram 30

8. Indexer 31

 9. Activity Diagram 32

 10. Level -0 DFD 33

 11. Level- 1 DFD 33

 12. Methodology 34

 13. Search Result for Doctor 37

 14. Database 37

 15. Page Table 37

 16. Word Table 38

 17. Occurrence Table 38

 X

18. Crawler Input 39

19. Crawler Result 39

20. Page Rank Input 40

21. Page Rank Result 40

 XI

LIST OF TABLES

SNo. Title Page No.

1. Stop Words 10

2. Performance Parameters 41

 1

 Abstract

The project aims to develop a Search Engine that will take into account various

medical sites and search within them for the keywords entered by the user through the

search bar. The result would be displayed taking into account the occurrences of the

keywords. A search engine is a software system that is designed to search for

particular keywords on the World Wide Web. The search engine returns a list of

documents in which they were found.

Through this type of search engine it will easier for people to search for medical

information as it will only be taking into account medical sites, hence it will save time

of the users and provide accurate results.

For implementation of my project I have chosen Java as it as easy to learn and start

with language which has integrated database support of the famous database MySQL.

 2

CHAPTER-1

 Introduction

A search engine is a software system that is designed to search for particular keywords on

the World Wide Web. The search engine returns a list of documents in which they were

found, especially a commercial service that scans documents. The results may be a mix

of web pages, images, and other types of files. Some search engines also mine

data available in databases or open directories. Search engines also maintain real-

time information by running an algorithm on a web crawler.

People generally use search engines for research, shopping or entertainment. For instance

people who are using a search engine for research purposes are generally looking for

answers or at least for data with which to make a decision. They're looking for sites which

can fulfil a specific purpose. Search engines are naturally drawn to research-oriented sites

and usually consider them more relevant than shopping-oriented websites, because of

which a lot of the time, the highest listing for the average query is a Wikipedia page. A

smaller percentage of people, use a search engine in order to shop. This is where

specialized engines come into the picture. Although you can use a regular search engine to

find what it is you‘re shopping for, some people find it more efficient to use a search

engine geared directly towards buying products. Some Web sites out there are actually

search engines just for shopping. Amazon, eBay, and Shopping.com are all examples of

shopping-only engines. Research and shopping aren't the only reasons to visit a search

engine. The Internet is a vast, addictive and reliable source of entertainment, and there are

users out there who use the search engines as a means of entertaining themselves. They

look up things like videos, movie trailers, games, and social networking sites.

As we can see now that searching for medical information on the Web is a challenging

task for ordinary Internet users. Often, users are uncertain about their exact medical

situations and are unfamiliar with medical terminology, and hence have difficulty in

coming up with the right search keywords. A search engine has no way of knowing who

the searcher is - whether it is a doctor, a nurse or someone who is not in the medical field.

For a search term, a general search engine presents results that are mixtures of materials

meant for the general public and those meant for medical professionals. Moreover busy

http://en.wikipedia.org/wiki/Medical_terminology

 3

medical professionals don‘t usually have time to devote to disorganized searches on the

Internet or searches that don‘t return the information they need.

A Medical Search Engine is specifically designed to address this challenge as it is a is a

custom search engine that jumps over these layman-focused sites and returns only medical

site links on the first results page. This is done by specifically including only credible

healthcare sites. It is preferable to use Medical Search Engines for searching medical

information as they are selective in contrast to general search engines, they are

comprehensive as they store the index of all the words and medical terms corresponding to

the selected medical websites so all the medical practitioners, researchers can search full

text of all such pages with a single search, moreover they are precise and target searchers

as a Medical Search Engine examines the number of times medical terms are mentioned

in each entry, and ranks them accordingly, thus making for more precise, targeted

searches. It is also a fine tuned search, as the number of search results are limited and is

easy and fast for the user to access information. Last but not the least Medical Search

Engines are user friendly and patients/ users don‘t need to spend ages on learning it, hence

saves time.

The existing Medical Search Engines are-

OmniMedicalSearch.com

Healthline.com

For implementation of the Medical Search Engine I am using PHP 5.3.5. As PHP is a

language that is specifically designed for web programming with built-in integration with

the most popular open source database MySQL. Moreover it has many advantages like it

is easy to start with, easy to use. It has integrated database support and supports cheap

hosting.

http://en.wikipedia.org/wiki/Search_engine

 4

 CHAPTER-2

 History of Search Engine

The goal of all search engines is to find and organize distributed data found on the

Internet. Before search engines were developed, the Internet was a collection of File

Transfer Protocol (FTP) sites in which users would navigate to find specific shared files.

As the central list of web servers joining the Internet grew, and the World Wide Web

became the interface of choice for accessing the Internet, the need for finding and

organizing the distributed data files on FTP web servers grew. Search engines began due

to this need to more easily navigate the web servers and files on the Internet.

The first search engine was developed as a school project by Alan Emtage, a student at

McGill University in Montreal. Back in 1990, Alan created Archie, an index (or

archives) of computer files stored on anonymous FTP web sites in a given network of

computers (―Archie‖ rather than ―Archives‖ fit name length parameters – thus it became

the name of the first search engine). In 1991, Mark McCahill, a student at the University

of Minnesota, effectively used a hypertext paradigm to create Gopher, which also

searched for plain text references in files.

Archie and Gopher‘s searchable database of websites did not have natural language

keyword capabilities used in modern search engines. Rather, in 1993 the graphical

Mosaic web browser improved upon Gopher‘s primarily text-based interface. About the

same time, Matthew Gray developed Wandex, the first search engine in the form that we

know search engines today. Wandex‘s technology was the first to crawl the web

indexing and searching the catalog of indexed pages on the web. Another significant

development in search engines came in 1994 when WebCrawler‘s search engine began

indexing the full text of web sites instead of just web page titles.

While both web directories and search engines gained popularity in the 1990s, search

engines developed a life of their own becoming the preferred method of Internet search.

For example, the major search engines found in use today originated in development

between 1993 and 1998.

 5

2.1) History of Yahoo

David Filo and Jerry Yang started Yahoo! in 1994. Originally it was a highly

regarded directory of sites that were catalogued by human editors. This directory

provided an extensive listing of websites supported by a network of regional

directories. In 2001, Yahoo! started charging a fee for inclusion in its directory

listing. Yahoo!‘s action helped control the number of sites listed and helped

cover costs with additional revenue.

Initially, Yahoo! used secondary search engine services to support its directory.

Partnerships have included agreements with Inktomi and Google. In October

2002, Yahoo shifted to crawler-based listing for its search results. In 2004,

Yahoo! purchased Overture‘s pay-per-click service, which had only months

earlier purchased AltaVista and All the Web, and Inktomi‘s search database.

With these acquisitions, Yahoo! combined these tools to create its own search

index. Today, Overture is renamed Yahoo! Search Marketing and provides paid

search advertising revenue. The Yahoo! Directory remains one of the top indexes

powering search listings.

2.2) History of Ask

Ask was developed in 1996 by Garret Gruener and David Warthen and launched

in 1997 as Ask Jeeves. In 2006, the ―Jeeves‖ name was removed; revamping its

image after Ask Jeeves was purchased in 2005 by Barry Diller‘s InterActiveCorp

(IAC). Originally as Ask Jeeves, human editors listed the prominent sites along

with paid listings and results pulled from partner sites. Following acquisition of

Direct Hit in 2000 and Teoma in 2001, Ask commenced developing its own

search technology. With financial growth, Ask has acquired other companies

including Excite and iWon.

Today, with emphasis on paid inclusion listings, Ask struggles for market share

against Google, Yahoo!, and MSN Search.

http://www.yahoo.com/

 6

2.3) History of Google

Google was founded in 1998 as another school project at Stanford University in

California. In January 1996, Stanford PhD students Larry Page and Sergey Brin

began researching the concept of a search engine based on relevancy ranking.

Page and Brin believed that search engines should analyze and rank websites

based on the number of times search terms appeared on web pages. Likewise,

Page and Brin developed a search engine nicknamed ―BackRub.‖ BackRub

checked the number and quality of links coming back to websites in order to

estimate the value of a website. Brin and Page‘s research eventually led them to

develop the trademarked PageRank link analysis algorithm that Google‘s search

engine would use to assign a numerical weighting to hyperlinked document

elements.

In 2000, Google replaced Inktomi as the provider of search results to Yahoo! and

later AOL and Netscape. Even though Yahoo! broke away from Google in 2004,

its market share has continued to grow to account for about 70 percent of all web

searches. Google‘s market share has steadily increased over the years.

2.4) History of MSN Search (Now Windows Live)

MSN Search was a service offered as part of Microsoft‘s network of web

services. The Microsoft Network debuted as an online service and Internet

service provider in August 1995. During the 1990s, Microsoft launched Internet

Explorer as a bundled part of their operating system and software products.

MSN Search first launched in 1998 displaying search results from Inktomi and

later blending results with Looksmart. For a short time in 1999, AltaVista

search results were used instead of Inktomi. Since 2004, MSN Search began

using its own built-in search results. Since this time, MSNBot has continually

crawled the web. Today, image search is powered by Picsearch. MSN Search

was renamed Windows Live in 2006.

 7

 CHAPTER-3

 Literature Review

3.1) Components of Search Engine

 Figure: 1 Components of Search Engine

 3.1.1) Crawler

The Process or Program used by search engines to download pages from the

web for later processing by a search engine that will index the downloaded

pages to provide fast searches. It starts with a list of URLs to visit. As the

crawler visits these URLs, it identifies all the hyperlinks in the page and adds

them, to the list of visited URL‘s called the crawl frontier. URLs from the

frontier are then visited and indexed.

 a) Architecture

 URL FRONTIER: Contains URLS yet to be fetched.

 FETCH: Generally use the http protocol to fetch the URL

 PARSE: The page is parsed. Texts and Links are extracted.

 REPETITION: Test whether the webpage with the same content

has already been seen at another URL.

 8

Web crawling is a process to collect all the web pages that are interested to

search engine. It‘s a usually a challenging task for general search engine. But

web crawling is quite easy for site-specific search engine because the

developers of site-specific search engine usually have access to the web pages

of the web site. In this project, I downloaded about 10-20 most frequently

accessed web pages.

 Figure: 2 Web Crawler

3.1.2) Tokenization Process

The process of tokenization is to convert each document to a set of keywords or

tokens. A token (case insensitive) is a document word which is supposed to

represents the document theme or meaning. In SE, all words of documents, after

processing, are considered as tokens. The whole tokenization process can be

summarized in following important steps.

a) Text Extraction from HTML File

A corpus contains html documents, document need to be parsed to extract

text from html tags. First of all, to make the regular expression matching

faster, all the comments (/*…*/ and <!--…-->) are removed to reduce

document size. Mainly the text from the body part is considered for token

extraction. First of all ‗script‘ (<script>…</script>) and ‗style‘

 9

(<style>…</style>) part have been removed from the body part. After that rest

of the html tags (<…>) are replaced by empty string. This process produces

html tag free text from body part.

b) Punctuation Removal

We generally use different punctuation symbols in our text. But these symbols

themselves don‘t help in understanding document themes. So during token

extraction from texts, these punctuation symbols can be filtered out. In the

process it also reduces the number of distinct tokens like the ―world‖ and

―world?‖ end up with producing single token ―world‖ and ―?‖ is filtered out.

c) Stop Word Removal

All words from the text are not considered as token. Usually some words

occur frequently in almost all of the documents. Because of this property, their

discrimination power is negligible. These types of words are called stop words

and these words can be filtered out during tokenization.

Different types of stop word are:

 The All Am Are

 Before By Can Come

 Did Does Each Else

 For From Go Got

 Has He In Is

 Less Let Of Only

 Said So Still Take

 This Till To Via

 Table: 1 Stop words

 10

 3.1.3) Indexer

The information the search engine spider found on each page is analyzed,

building a list of the words and phrases within the document.An Index is a

database where information after being collected, parsed and processed is

stored to allow for quick retrieval. If we don‘t have the index, it will take too

much time to search through the whole site to find the document that matched

our query.Creating an index means that retrieval process is faster and the

accuracy is better. It saves on storage and makes the whole process faster.

3.1.4) Search

A web search query is a query that a user enters into a web search engine to

satisfy his or her information needs. Web search queries are distinctive in that

they are often plain text or hypertext with optional search-directives (such as

"and"/"or" with "-" to exclude).

 Term frequency: How frequently a query term appears in a document is

one of the most obvious ways of determining a document's relevance to a

query.

 Location of terms: Many search engines give preference to words found

in the title or lead paragraph or in the metadata of a document. Some

studies show that the location — in which a term occurs in a document or

on a page — indicates its significance to the document.

 Proximity of query terms: When the terms in a query occur near to each

other within a document, it is more likely that the document is relevant to

the query than if the terms occur at greater distance.

3.1.5) Ranking of Results

Search engines use complex, proprietary algorithms to determine website ranking

in the organic search results.

• Content: Search engines reward websites that contain fresh, current,

compelling, and unique content; they penalize websites that aren‘t updated

 11

regularly. Adding a blog to your website (and contributing to it on a

regular basis) is one of the best ways to get your website found in the

organic search results.

• Inbound Links: Search engines pay considerable attention to whether or

not other authoritative websites are linking back to yours. If an

authoritative website in your industry is linking back to content found on

your website, that‘s a good indication that your website is relevant.

• Activity: Search engines consider the number of visitors to your website,

the amount of time they spend, the number of pages they visit, where they

click, and where they came from, to be additional measures of your

website‘s relevance.

• Popularity and Social Sharing: Search engines are increasingly taking

into account whether or not websites are popular. Your presence on social

media, whether or not you‘ve published videos, the existence of online

reviews.

3.1.6) Page Rank Algorithm

Let us suppose page A has pages T1...Tn which point to it (i.e., are citations).

The parameter d is a damping factor which can be set between 0 and 1. We

usually set d to 0.85. There are more details about d in the next section. Also

C(A) is defined as the number of links going out of page A. The PageRank of

a page A is given as follows:

 PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

Assume a small universe of four web pages: A, B, C and D. The initial

approximation of PageRank would be evenly divided between these four

documents. Hence, each document would begin with an estimated PageRank

of 0.25. In the original form of PageRank initial values were simply 1. This

meant that the sum of all pages was the total number of pages on the web.

Later versions of PageRank (see the below formulas) would assume a

probability distribution between 0 and 1. Here we're going to simply use a

probability distribution hence the initial value of 0.25. If pages B, C, and D

 12

each only link to A, they would each confer 0.25 PageRank to A. All

PageRank PR() in this simplistic system would thus gather to A because all

links would be pointing to A.

 PR(A) = PR(B) + PR(C) + PR(D)

But then suppose page B also has a link to page C, and page D has links to all

three pages. The value of the link-votes is divided among all the outbound

links on a page. Thus, page B gives a vote worth 0.125 to page A and a vote

worth 0.125 to page C. Only one third of D's PageRank is counted for A's

PageRank (approximately 0.083).

 PR(A) = PR(B)/2 +PR(C)/1 +PR(D)/3

In other words, the PageRank conferred by an outbound link L() is equal to

the document's own PageRank score divided by the normalized number of

outbound links (it is assumed that links to specific URLs only count once per

document).

3.1.7) Performance of a Search Engine

 a) Response Time

This is the time period that starts from the point of query submission

until user gets a huge list of responded results. Response time is

directly related to activeness of the search engine and is kept as

minimum as possible. Time saving mechanism such as search result

caching and index tiering is heavily exploited, despite the risk that such

approaches may cause relevant content to be missed.

b) Total Number of Results

To find the relevant result, it is essential to cover the whole area of the

web and select the best among them. User does not prefer a huge list of

results. It is better for quality pages that fulfill the need of the user‘s

query.

 13

 c) Precision and Recall

• Recall is the fraction of relevant documents retrieved from all

relevant documents in the collection.

For example if there are 100 documents in the collection, 10 are

relevant, 12 are retrieved and out of those only 3 are relevant so the

recall is 0.3 or 30%

• Precision is the fraction of retrieved documents that are relevant.

For example if there are 100 documents in the collection, 10 are

relevant, 12 are retrieved and out of those only 3 are relevant so the

precision is 0.25 or 25%

 Figure: 3 Performance Parameter

3.2) Types of Search Engine

Although the term "search engine" is often used indiscriminately to describe crawler

based search engines, human-powered directories, and everything in between, they

are not all the same. Each type of "search engine" gathers and ranks listings in

radically different ways.

 3.2.1) Crawler Based

Crawler-based search engines, compile their listings automatically. They

"crawl" or "spider" the web and people search through their listings. These

 14

listings are what make up the search engine's index or catalogue. You can

think of the index as a massive electronic filing cabinet containing a copy of

every web page the spider finds. Because spiders scour the web on a regular

basis, any changes you make to a web site may affect your search engine

ranking.

 3.2.2) Directories

Directories such as Open Directory depend on human editors to compile their

listings. Webmasters submit an address, title, and a brief description of their

site, and then editors review the submission. Unless you sign up for a paid

inclusion program, it may take months for your web site to be reviewed. Even

then, there's no guarantee that your web site will be accepted. After a web site

makes it into a directory however, it is generally very difficult to change its

search engine ranking.

3.2.3) Mixed Results/ Hybrid Search Engine

Some search engines offer both crawler-based results and human compiled

listings. These hybrid search engines will typically favour one type of listing

over the other however. Many search engines today combine a spider engine

with a directory service. The directory normally contains pages that have

already been reviewed and accessed.

3.2.4) Miscellaneous Types

The search engine can be categorized as follows based on the application for

which they are used:

a) Primary Search Engines: They scan entire sections of the World

Wide Web and produce their results from databases of Web page

content, automatically created by computers.

b) Subject Guides: They are like indexes in the back of a book. They

involve human intervention in selecting and organizing resources, so

they cover fewer resources and topics but provide more focus and

guidance.

c) People Search Engines: They search for names, addresses,

telephone numbers and e mail address.

 15

d) Business and Services Search Engines: They essentially national

yellow page directories.

e) Employment and Job Search Engines: They either provide

potential employers access to resumes of people interested in working

for them or provides prospective employees with information on job

availability.

f) Finance-Oriented Search Engines: They facilitate searches for

specific information about companies (officers, annual reports, SEC

filings, etc.)

g) News Search Engines: They search newspaper and news web site

archives for the selected information

h) Image Search Engines: They which help you search the WWW for

images of all kinds.

i) Specialized Search Engines: They that will search specialized

databases, allow you to enter your search terms in a particularly easy

way, look for low prices on items you are interested in purchasing, and

even give you access to real, live human beings to answer your

questions.

 16

CHAPTER-4

 Tools and Techniques Used

4.1) Java EE Framework

The Java2 Platform enterprise Edition (J2EE) technology provides a component based

approach to the design, development, assembly and deployment of enterprise applications.

The J2EE platform provides a multi tier distributed application model. The ability to reuse

components, a unified security model and a flexible transaction control. Not only can you

deliver innovative customer solutions to your clients, faster than ever but your platform

independent J2EE component based solutions are not tied to the products and API‘s of any

one wonder.

 4.1.1) Distributed Multi-Tiered Applications

The J2EE Platform uses a multi-tiered distributed application model. This

means application logic is divided into components according to the functions

and the various application components that make up a J2EE application are

installed on different machines depending on which tier in the multi-tiered J2EE

environment the application component belongs. Figure below shows two multi-

tiered J2EE applications divided into tiers described in the bullet list.

 Client Tier Component run on the client machine

 Web Tier Component run on the client machine

 Business Tier Component run on the J2EE server

 Figure: 4 J2EE Application Architecture

 17

4.1.2) J2EE Application Components

A J2EE component is a self- contained functional software unit that is assembled into a

J2EE application with its related classes and filed and communicates with other

components. The J2EE specifications defines the following J2EE components.

 Application Clients and Applets are client components

 Java servlet and JavaServerPages (JSP) Technology Components are web

components

 EnterpriseJavaBean (EJB) components are Business components

J2EE components are written in java programming language and compiled in the same

way as any java programming language program. The difference when you work with

J2EE platform, is J2EE components are assembled into J2EE applications, verified that

they are well formed and in compliance with the J2EE specifications and deployed to

production when they are run and managed by J2EE server.

The deployment process installs J2EE application components in the following types of

J2EE containers.

 An EnterpriseJavaBean (EJB) container manages the execution of all enterprise

beans for one J2EE application. Enterprise beans and their container run on the

J2EE server

 A Web container manages the execution of all JSP pages and servlet

components for one J2EE application. Web components and their container run

on the J2EE server.

 An Application client container manages the execution of all application client

components for one J2EE application. Application clients and their container

run on the client machine.

 An applet container is the web browser and java plug-in combination unning on

client machine.

 18

 Figure: 5 Container Architecture J2EE

4.1.3) Java Server Pages

Architecturally, JSP may be viewed as a high-level abstraction of Java servlets.JSP

pages are loaded in the server and operated from a structured special installed Java

server packet called a Java EE Web Application, often packaged as a .war or .ear file

archive.

JSP allows Java code and certain pre-defined actions to be interleaved with static web

markup content, with the resulting page being compiled and executed on the server to

deliver a document. The compiled pages, as well as any dependent Java libraries, use

Java bytecode rather than a native software format. Like any other Java program, they

must be executed within a Java virtual machine (JVM) that integrates with the server's

host operating system to provide an abstract platform-neutral environment.

Java syntax is a fluid mix of two basic content form : Scriplet elements and markups

Markup is typically standard HTML or XML, while scriplet element are delimited

block of Java code which may be intermixed with the markup.When the page is

requested the javacode is executed and its output is added, in situ, with the

surrounding markup to create the final page.Because Java is a compiled language , not

a scripting language, JSP pages must be compiled to Java byte Code classes before

 19

they can be executed, but such compilations is needed only when a change to the

source JSP file has occurred.

Java code is not required to be complete(Self contained) within its scriplet element

block, but can straddle markup content providing the page as a whole is syntactically

correct(For example, any Java if/for/while blocks opened in one scriplet element

must be correctly closed in a later element for a page to successfully compile).This

system of split inline coding section is called step over scripting because it can wrap

around the static markup by stepping over it. Markup which falls inside a split block

of code is subject to that code , so markup inside an if block will only appear in the

output when the if conditions evaluated to true, likewise markup inside a loop

construct may appear multiple times in the output depending upon how many times

the loop body runs.

The JSP syntax adds additional XML-like tags , called JSP actions, to invoke ,build in

functionality .Additionally , the technology allows for the creation of JSP tag libraries

that act as extension to the standard HTML or XML tags. JVM operated tag libraries

provide a platform independent way of extending the capabilities of a web server.

Note that not all commercial Java servers are JAVA EE specification compliant.

Starting with the version 1.2 of JSP specification, Java Server Pages have been

developed under the Java Community Process. JSR 53 defines both the JSP 1.2 and

Servlet 2.3 specification and JSR 152 defines the JSP 2.0 specification.

The new version of JSP specification includes new features meant to improve

programmer productivity. Namely

 An Expression Language (EL) which allows developers to create Velocity-

style templates (among other things)

 A faster/Easier way to display parameter values

 A clearer way to navigate nested beans.

4.1.4) Java Servlet

A Servlet is a Java class which conforms to the Java Servlet API, a protocol by

which a Java class nay respond to HTTP requests. Thus, a software developer

may use a servlet to add dynamic contents to a Web server using Java

Platforms. The Generated contents is commonly HTML, but may be other data

 20

such as XML. Servlets are the JAVA counterpart to Non-java dynamic web

content technologies such as CGI and ASP.NET. Servlet can maintain state in

a session variables across many server transaction using HTTP cookies, or

URL rewriting.

The Servlet API, contained in the Java Package hierarchy javax.servlet,

defines the expected interactions of a web container and servlet. A web

container is essentially the component of a web server that interacts with the

servlets. The Web container is responsible for managing the lifecycle of

servlets , mapping a URL to a particular servlet and ensuring that the URL

requester has the correct access rights.

4.1.5) Java Features

Some of the important features of java are:

 Simplicity

 Object Oriented

 Platform Independent

 Security

 Robust

 High Performance

 Multi Threading

 Dynamic Linking

 Garbage Collection

One of the most important feature of java is Platform independence which makes it

famous and suitable language for World Wide Web.

4.2) HTML

Hyper Text Markup Language (HTML) is a language for describing how

pages of text , graphics , and other information are organised. Hypertext

means text stored in electronic form with cross-reference links between pages.

An HTML page contains HTML tags,which are embedded commands that

supply information about the page‘s structure ,appearance ,and contents. Web

browser use this information to determine how to display the page. The

 21

purpose of a web browser is to read HTML documents and compose them into

visual or audible web pages. The browser does not display the HTML tags, but

uses the tags to interpret the content of the page. HTML allows images and

objects to be embedded and can be used to create interactive forms. It provides

a means to create structured document by denoting structural semantic for text

such as headings, paragraph list, links, quotes and other items.

4.3) MySQL Database

MySQL is a open source Relational Database Management System. MySQL is

very fast, reliable and flexible Database Management System. It provides a

high performance and it is multi threaded and multi user Relational Database

Management System.

MySQL is one of the most popular relational database Management System on

the web. The MySQL Database has become the world‘s most popular open

source Database, because it is free and available on almost all the platforms.

MYSQL can run on UNIX, Windows and MAC OS. MYSQL is used for

internet applications as it provides good speed and is very secure. MYSQL has

developed to manage large volumes of data at very high speed to overcome

the problems of existing solutions.

4.3.1) MySQL Features

 MYSQL is very fast and much reliable for any type of application

 MYSQL is a very light weight application

 MYSQL command line tool is very powerful and can be used to run SQL

queries against database

 MYSQL supports indexing and binary objects

 It allows changes to structure of tables while server is running

 MYSQL has a wide user base

 MYSQL code can be tested with multiple compilers

 MYSQL is available as a separate program for use in a client/server network

environment

 22

4.3.2) MySQL Advantages

 Reliability and Performance

MYSQL is very reliable and high performance relational database

management system. It can be used to store many GB‘s of data in the database

 Availability of Source

MYSQL source code is available that is why you can now recompile the

source code

 Cross Platform Support

MYSQL supports more than twenty different platforms including major Linux

distribution.

 Large pool of trained and certified developers

MYSQL is very popular and it is the world‘s most popular open source

database, so it is easy to find high quality staff around the world.

4.4) PHP

4.4.1) Advantages of PHP

PHP is a language that is specifically designed for web programming with built-in

integration with the most popular open source database MySQL.

 a) Easy to start with

As a beginner it is easy to start with PHP. The user just have to add a few

PHP-tags with e.g. a for-loop in it's existing HTML-files and then upload it to

the server and see the result or an error message. Dynamic typing and

associative arrays makes it also easier to start using PHP.

 b) Easy to use

Compared to most solutions like e.g. Java, PHP doesn't need to be compiled,

so it's just to write the script and then upload it to the server and then update

the browser.

 23

 c) Integrated database support

PHP has (mostly) built-in support for the most popular databases like e.g.

MySQL, that means it is easy to start using databases, no additional drivers

needs to be installed, just to use the mysql-functions. The easy to use web

based admin tool PHPMyAdmin (released 1998) is also important to the PHP's

success in combination with MySQL.

 d) Old language (since 1995) with a big user base

PHP became popular early (1995) since it was designed for web programming.

Since then the user base has grown and now there is many web-oriented

frameworks and libraries available. Some examples are blogg-systems and e-

shopping-platforms.

 e) Cheap hosting

Since PHP has existed for long time and works good on both Linux and

Windows, and many web servers have support for it. There is no problem to

find hosting with PHP pre-installed.

4.4.2) PHP Usage

There are three main areas where PHP scripts are used.

 a) Server-side scripting

This is the most traditional and main target field for PHP. You need three

things to make this work. The PHP parser (CGI or server module), a web

server and a web browser. You need to run the web server, with a connected

PHP installation. You can access the PHP program output with a web browser,

viewing the PHP page through the server.

 b) Command line scripting

You can make a PHP script to run it without any server or browser. You only

need the PHP parser to use it this way. This type of usage is ideal for scripts

 24

regularly executed using cron (on *nix or Linux) or Task Scheduler (on

Windows). These scripts can also be used for simple text processing tasks.

 PHP can be used on all major operating systems, including Linux, many Unix

variants (including HP-UX, Solaris and OpenBSD), Microsoft Windows, Mac OS X,

RISC OS, and probably others. PHP has also support for most of the web servers

today. This includes Apache, IIS, and many others. And this includes any web server

that can utilize the FastCGI PHP binary, like lighttpd and nginx. PHP works as either

a module, or as a CGI processor.

So with PHP, you have the freedom of choosing an operating system and a web

server. Furthermore, you also have the choice of using procedural programming or

object oriented programming (OOP), or a mixture of them both.

With PHP you are not limited to output HTML. PHP's abilities include outputting

images, PDF files and even Flash movies. You can also output easily any text, such as

XHTML and any other XML file. PHP can auto generates these files, and save them

in the file system, instead of printing it out, forming a server-side cache for your

dynamic content.

One of the strongest and most significant features in PHP is its support for a wide

range of databases. Writing a database-enabled web page is incredibly simple using

one of the database specific extensions (e.g., for mysql), or using an abstraction layer

like PDO, or connect to any database supporting the Open Database Connection

standard via the ODBC extension. Other databases may utilize cURL or sockets, like

CouchDB.

PHP has useful text processing features, which includes the Perl compatible regular

expressions (PCRE), and many extensions and tools to parse and access XML

documents.

4.4.3) PHP for Web Development

 a) Perfect Database Interaction

PHP is an excellent language choice when it comes to building Dynamic

Websites that interact with Databases, as it can exchange all sorts of

information with ease.

 25

 b) Cost

Another reason why PHP website development and web development is

admired by developers is that PHP programs run on Linux, which is free.

Also, the database connectivity is less expensive as compared to that of other

programs such as ASP which is based on MS_SQL, a Microsoft product that

needs to be purchased. However, web development with PHP through MySQL

is free to use.

 c) Incredible Speed

PHP has an upper hand when it comes to speed. This is mainly because the

PHP code runs faster as it runs in its own memory space.

 26

 CHAPTER-5

System Requirements

5.1) Requirement Analysis

Information gathering is usually the first step of a project. The purpose of this phase is

to identify and document the exact requirements for the system. The user‘s request

identifies the need for a new information system. The objective is to determine

whether the request is valid and feasible before a recommendation is made to build a

new or an existing manual system.

The major steps are-

 Defining the user requirements

 Studying the present system to verify the problem

5.1.1) Hardware Requirements

There are no limits on the type of hardware used to host an installation.

However, as your needs grow, so will the need for additional resources. A

simple installation requires about 50M of free disk space and 32M of free

system memory. However, a minimum of 128M free memory available to

PHP is recommended. Disk space should be allocated according to usage.

5.1.2) Software Requirements

 The installation requires an environment running the following:

 EclipseN

 PHP version 5.1+ (PHP 5.2+ recommended)

 Mysql Server 4+ (Mysql 5 is strongly recommended)

 Web server (Apache 2+ recommended)

 Write access from the web server to some folders inside the efront

installation

 27

5.1.3) Functional Requirements

Function requirements mean the physical modules, which are going to be

produced in the proposed systems. The functional requirements of the

proposed system are described below:

 Web Crawling

 Words Extracting

 Indexing

 Ranking

 Search

 Search Results Ordering

5.1.4) Non- Functional Requirements

Non-Function requirements mean the characteristics that are not related to

system‘s physical functions.

 User Friendly- The system should be easy to use, i.e. user friendly, for

both administrator and external users. This can be done for providing

function descriptions.

 Secure. The system should be secure. If not, hackers can access the

database and undergo destruction.

 Reliable- The system must be resistant to failure.

 Maintainability- The website must be easy to maintain by the

administrator.

 Availability- The services should be available 24X7.

 The user interface screen should be loaded immediately.

 Queries shall return results as soon as possible.

 28

 CHAPTER-6

 Analysis

6.1) Introduction

The objective of the system design is to deliver the requirements as specified. System

design involves first logical design and then physical construction of the system. The

logical design describes structure and characteristics of features, such as outputs,

inputs, files, databases and procedures. The physical construction produces actual

program software, files and a working system.

System design goes through two phases of development-

 6.1.1) Logical Design

We know that a data flow diagram shows the logical flow of the

system and defines the boundary of the system. Logical design

specifies the user need at a level of details that virtually determine the

information flow into and out of the system and the required data

resources. Logical design describes the input, output, database and

procedures, all in a format that meets user requirements.

 6.1.2) Physical Design

It provides the working system by designing the design specification

that tells programmers what exactly the system must do. In short it can

state that physical design is the implementation of the logical design.

Physical system design must consist of the following-

 a) Design the physical system

 Specify input, output media

 Design the database and specify the backup

procedures

 Design physical information through the system

b) Plan system implementation

 29

6.2) Use Case Diagram

Use Case Diagram is the basic analysis diagram. It is the first analysis diagram. It

gives interaction of the system with entities outside the system. These entities are

called actors. Actors are the users of the system or other systems who give input to the

system and take output from the system. The various scenarios in the system are

called use case. They are denoted by oval. The complete system has been explained

using a basic use case diagram which shows the interaction between the main actors

and a set of use case scenarios.

The detailed use case diagrams following the basic use case diagram gives the

detailed interaction of each actor with the system.

 Figure: 6 Use Case Diagram

6.2.1) Actors Involved

 a) Searcher

 Search

 Enter search item

 View Result

 30

 b) System Administrator

 Index resources

 Updates resources

 Find resources

6.3) Sequence Diagram

It is the analysis diagram which gives the sequence of events taking place in the

system. The diagram gives the objects in the system and their interaction among each

other. The diagram also shows the messages passed between the objects.

 6.3.1) Query Processor

The main view of the system is query processing. This is the main function of

the search engine with respect to the user. The main objects involved in this

function are user, presenter, searcher and store server. The user submits a

query which is given to the presenter which in turn submits the query to the

searcher. The searcher searches for the keywords and creates a document list

which gives the address of all the URL‘s related to the mentioned keywords.

The presenter then requests the store server to return document at each URL. It

then creates a summary for each URL and presents it to the user in the form of

a list of URL‘s along with their summary.

 Figure: 7 Query Processing Sequence Diagram

 31

 6.3.2) Indexer

The indexer is another continuously running search engine program which has

the functionality after the crawler. Its main task is to index the crawled web

pages. The objects involved are indexer, store server and URL server. The

indexer requests a new page from the store server. It then scans the page and

prepares forward index for each page.

 Figure: 8 Indexer Sequence Diagram

6.4) Activity Diagram

This is another UML diagram used in object oriented analysis. This diagram gives the

list of activities being performed in the system. It starts with a filled circle and ends

with bull‘s eye. A condition can also be shown in activity diagram using a diamond

having more than one output. Activity is a particular operation of the system. Activity

diagrams are used for visualizing dynamic nature of a system. The specific usage is to

model the control flow from one activity to another. This control flow does not

include messages.

 32

 Figure: 9 Activity Diagram

6.5) Data Flow Diagram

Information is transformed as it flows through a computer based system. The system

accepts input in a variety of forms and produces output in varied forms. For depicting

this information flow in functional modelling, Data Flow Diagram (DFDs) are used.

A Data Flow Diagram is a graphical representation that depicts information flow and

the transforms that are applied as data move from input to output. The data flow

diagram may be used to represent the system or software at any level of abstraction.

DFDs may be partitioned into levels that represent increasing information flow and

functional details. The DFD provides mechanism for functional modelling as well as

information flow modelling.

6.5.1) Level – 0 DFD

A level 0 DFD, also called a fundamental system model or a context model,

represents the entire software element as a single bubble with input and output

data indicated by incoming and outgoing arrows, respectively

 33

 Figure: 10 Level-0 DFD

 6.5.2) Level – 1 DFD

Additional processes (bubbles) and information flow paths are represented as

level 0 DFD is partitioned to reveal more detail. The input and output remains

the same but the process is broken down.

 Figure: 11 Level -1 DFD

 34

Chapter-7

 Design and Implementation

7.1) Design

The design tells us how the search engine will be implemented. The following diagram

shows the design of the search engine.

Figure: 12Methodology

Data Base

Visits URLs

Collect

Words And

Make

Index

Word

Occurrences

are stored

Search is

Performed

Results Are

Displayed to

the user

 35

7.2) Implementation

 7.2.1) Pseudo Code for Crawler

Connect to database

 if connected

 do

 Get URL from form

 Trucate Records

 Processpage()

 do

 Insert URL into database

 Open the URL

 GetLink()

 Processpage(link)

 end

 DisplayURL

End

 7.2.2) Pseudo Code for Indexer

Connect to database

 if connected

 do

 Get URL from form

 if (URL)

 do

 Get the web page

 Remove HTML syntax

 Strip HTML tags, scripts, and styles

 Process the page's words

 Split the text into a word list

 For Each Word

 do

 Convert to lower case

 Remove stop words

 36

 Insert into table

 end

 end

 end

 7.2.3) Pseudo Code for Search

Connect to database

Get the query

 For query

 do

 Break the query into words using whitespace as the delimiter

 For Each Website in database

 do

 For each word in the query

 do

 Count the no of occurrences of the word

 Add count to existing count variable

 end

 Display the Website and no of occurrences

 end

 end

7.2.4) Pseudo Code for Ranking

Begin

Initialise the nodes for graph.

 Initialise the PageRank as 1/n

 Distribute the PR of each page

 Calculate the new PR using the damping factor

 Normalise the page ranks so it's all a proportion 0-1

End

 37

 7.3) Screen Shots

7.3.1) Search Result for Doctor

 Figure: 13 Search Results

7.3.2)Database

 Figure: 14 Database

7.3.3) Page Table

Page holds all indexed web pages.

 Figure: 15 Page Table

 38

7.3.4) The Word Table

Word holds all of the words found on the indexed pages.

 Figure: 16 Word Table

7.3.5) The occurrence Table

Occurrence with page and word, we can determine which pages contain a

word, as well as how many times the word occurs.

 Figure: 17 Occurrence Table

 39

7.3.6) Crawler Input

 Figure 18: Crawler Input

7.3.7) Crawler Results

 Figure 19: Crawler Result

 40

7.3.8) Page Rank Result

 Figure: 20 Page Rank Input

 Figure: 21 Page Rank Result

 41

 CHAPTER-8

 Results

Performance of Search Engine is according to the following factors:

 Number of Search Results

 Response Time

 Table:2 Performance Parameters

Number of Search Results Depends upon the number of websites

Crawled and Indexed

Response Time 0.1-0.2sec

 42

Conclusion and Future Work

With the fulfilment of the project ―Medical Search Engine‖ the user can now search for

medical related queries by visiting our web page and the results are displayed according

to the occurrences of the keywords. The user can enter its query and keywords would be

extracted from the query. A number of medical websites in my database, which would

be searched, indexed and the result would be the websites which will have combined

occurrences of the keywords, but for the websites present in the database. Further I have

also developed a crawler, which is visiting the sites and also the links inside those

websites.

In Future the project can be extended when the results are being displayed according to the

PageRank algorithm and a comparative study can be done of the two algorithms.

 43

 References

Research Papers

[1] Cody Hansen, and Feifei Li “ColumbuScout: towards building local search

engines over large databases‖ in SIGMOD Conference, page 617-620. ACM, (2012)

[2] Sergey Brin and Lawrence Page ―The Anatomy of a Large-Scale Hypertextual

Web Search Engine” in Proceedings of the Seventh International World Wide Web

Conference Volume 30, Issues 1–7, April 1998, Pages 107–117

[3] Suppawong Tuarob, Prasenjit Mitra, C. Lee Giles “Building a Search Engine for

Algorithms‖ in SIGWEB Newsletter Winter 2014

[4] Steven Bird, James R. Curran “Building a Search Engine to Drive Problem-

Based Learning” in ITiCSE‘06, June 26–28, 2006, Bologna, Italy.

Reference Links

[1] Centre for Natural Language Processing, How a Search Engine Works [online]

2001 http://www.infotoday.com/searcher/may01/liddy.htm(Accessed :12
th

 August

2014)

[2] Web Search Engine, How a Search Engine Works [online]2006
http://www.webopedia.com/DidYouKnow/Internet/HowWebSearchEnginesWork.asp

(Accessed: 17th August 2014)

[3]Searching the World Wide Web, Search Engines [online] 1998

http://www.exploratorium.edu/lc/search/searchengine.html (Accessed: 20th

September 2014)

[4] Performance Parameters, Comparing the Performance of Search Engines

[online]1998 http://moz.com/blog/comparing-search-engine-performance-how-does-

cuill-stack-up-to-google-yahoo-live-ask(Accessed: 4
th

 October 2014)

http://www.bibsonomy.org/author/Hansen
http://www.bibsonomy.org/author/Li
http://www.sciencedirect.com/science/journal/01697552/30/1

 44

 APPENDIX

Source Code for Crawler

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1" %>

<%@ page import="dbConnect.DB" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.io.*" %>

<%@ page import="java.lang.*" %>

<%@ page import="org.jsoup.*" %>

<%@ page import="org.jsoup.helper.*" %>

<%@ page import="org.jsoup.select.*" %>

<%@ page import = "org.jsoup.Jsoup" %>

<%@ page import= "org.jsoup.nodes.Document" %>

<%@ page import = "org.jsoup.nodes.Element" %>

<%@ page import = "org.jsoup.select.Elements" %>

<%@ page import = "org.apache.jasper.JasperException" %>

<%@ page import="org.jsoup.nodes.*" %>

<html>

<body style="background-color:yellow;">

<h1 style="color:blue;">Results</h1>

<%! static DB db = new DB();

static String url=null;

static String words=null;

static String URL1[]=new String[1000];

static int i=0;

%>

<% url=request.getParameter("url"); %>

<% if((words=request.getParameter("words"))==null)

words="medical"; %>

<% db.runSql2("TRUNCATE Record;");

 45

processPage("http://"+url); %>

<%! public static void processPage(String URL)

{

try{

String sql = "select * from record where URL = '"+URL+"'";

ResultSet rs = db.runSql(sql);

if(rs.next()){

}else{

sql = "INSERT INTO `m2`.`page` " + "(`page_url`) VALUES " + "(?);";

PreparedStatement stmt = db.conn.prepareStatement(sql,

Statement.RETURN_GENERATED_KEYS);

stmt.setString(1, URL);

stmt.execute();

 //get useful information

Document doc = Jsoup.connect("http://"+url+"/").get();

if(doc.text().contains(words)){

URL1[i]=URL; i++; %>

<%! System.out.println(URL);

}

Elements questions = doc.select("a[href]");

for(Element link: questions){

if(link.attr("href").contains(".net") ||

link.attr("href").contains(".com")||link.attr("href").contains(".edu")||link.attr("href").co

ntains(".in"))

{

processPage(link.attr("abs:href"));

}

}

}

}

catch(Exception e)

{

System.out.println("exception occured"+e);

}

 46

}

%>

</body>

</html>

Source Code for Search

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<%@ page import="dbConnect.DB" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.io.*" %>

<%@ page import="java.lang.*" %>

<%@ page import="org.jsoup.*" %>

<%@ page import="org.jsoup.helper.*" %>

<%@ page import="org.jsoup.select.*" %>

<%@ page import = "org.jsoup.Jsoup" %>

<%@ page import= "org.jsoup.nodes.Document" %>

<%@ page import = "org.jsoup.nodes.Element" %>

<%@ page import = "org.jsoup.select.Elements" %>

<%@ page import = "org.apache.jasper.JasperException" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

<html>

<body>

<h1 style="color:blue;">Results</h1>

<%! static DB db = new DB();

 47

String nword=null;

static String key=null;

String purl;

String[] nkey;

static String URL1[]=new String[1000];

int counter=0;

static int i=0;

int j=0;

int pid=0;

int k;

int l=0;

int m=0;

int occ=0;

%>

<% key=request.getParameter("keyword");

%>

<%

if(key!=null)

{

out.println("keyword is :"+key);

String sql = "select count(*) from page ";

ResultSet rs = db.runSql(sql);

if(rs.next())

 48

{

 pid = rs.getInt(1);

 }

for(k=1;k<=pid;k++)

{

counter=0;

for (String ret: key.split(" "))

{

String sql2 = "SELECT p.page_url AS url,COUNT(*) AS occurrences FROM page

p, word w, occurrence o where p.page_id = o.page_id AND w.word_id = o.word_id

AND w.word_word = '" + ret +"' AND p.page_id = '" + k +"' GROUP BY p.page_id";

ResultSet rs2 = db.runSql(sql2);

if(rs2.next())

{

 occ = rs2.getInt("occurrences");

 purl=rs2.getString(1);

 }

counter=counter+occ;

}

if(counter!=0)

{

out.println(purl);

out.println("occurrences : "+counter);

 49

}

counter=0;

}

}

%>

</body>

</html>

Source Code for Indexer

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<%@ page import="dbConnect.DB" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.io.*" %>

<%@ page import="java.lang.*" %>

<%@ page import="org.jsoup.*" %>

<%@ page import="org.jsoup.helper.*" %>

<%@ page import="org.jsoup.select.*" %>

<%@ page import = "org.jsoup.Jsoup" %>

<%@ page import= "org.jsoup.nodes.Document" %>

<%@ page import = "org.jsoup.nodes.Element" %>

<%@ page import = "org.jsoup.select.Elements" %>

<%@ page import = "org.apache.jasper.JasperException" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" >

 50

<html>

<body>

<%

String stopwords= "a about above across after again against all almost alone along

already also although always among an and another any anybody anyone anything

anywhere are area are as around as ask asked asking asks at away b back backed

backing backs be became because become becomes been before began behind being

beings best better between big both but by c came can cannot case cases certain

certainly clear clearly come could d div did differ different differently do does done

down down downed downing downs during e each early either end ended ending ends

enough even evenly ever every everybody everyone everything everywhere f face

faces fact facts far felt few find finds first for four from full fully further furthered

furthering furthers g gave general generally get gets give given gives go going good

goods got great greater greatest group grouped grouping groups h had has have

having he her here herself high high high higher highest him hi homepagecarouselx

content homepagecarouselx image homepagecarouselx list homepagecarouselx image

homepagecarouselx barousel nav homepagecarouselx thslide mself his how however i

if important in interest interested interesting interests into is it its itself j just k keep

keeps kind knew know known knows l large largely last later latest least less let lets

like likely long longer longest m made make making man many may me member

members men might more most mostly mr mrs much must my myself n necessary

need needed needing needs never new new newer newest next no nobody non noone

not nothing now nowhere number numbers o of off often old older oldest on once one

only open opened opening opens or order ordered ordering orders other others our out

over p part parted parting parts per perhaps place places point pointed pointing points

possible present presented presenting presents problem problems put puts q quite r

rather really right right room rooms s said same saw say says second seconds see

seem seemed seeming seems sees several shall she should show showed showing

shows side sides since small smaller smallest so some somebody someone something

somewhere state states still still such sure t take taken than that the their them then

there therefore these they thing things think thinks this those though thought thoughts

three through thus to today together too took toward turn turned turning turns two u

 51

under until up upon us use used uses v very var w want wanted wanting wants was

way ways we well wells went were what when where whether which while who

whole whose why will with within without work worked working works would x y

year years yet you young younger youngest your yours z ";

%>

<h1 style="color:blue;">Results</h1>

<%! static DB db = new DB();

String nword=null;

static String url1=null;

int i=0;

static int wid;

static int pid;

int j=0;

int k=0;

int l=0;

int m=0;

%>

<% url1=request.getParameter("url"); %>

<%

if(url1==null)

out.println("you need to define a URL");

else

if(url1.substring(0,7)!="http://")

 url1 = "http://" + url1;

 52

%>

<% out.println(url1); %>

<%

String sql = "select page_id from page where page_url = '"+url1+"'";

ResultSet rs = db.runSql(sql);

if(rs.next()){

 pid = rs.getInt("page_id");

 }

else{

sql = "INSERT INTO `m2`.`page` " + "(`page_url`) VALUES " + "(?);";

PreparedStatement stmt = db.conn.prepareStatement(sql,

Statement.RETURN_GENERATED_KEYS);

stmt.setString(1, url1);

stmt.execute();

String sql2 = "select page_id from page where page_url = '"+url1+"'";

ResultSet rs3 = db.runSql(sql2);

if(rs3.next()){

 pid = rs3.getInt("page_id");

}

}

%>

<%

Document doc = Jsoup.connect(url1+"/").get();

 53

String str = doc.text().replaceAll("[^a-zA-Z]", "");

%>

<%

for (String ret2: stopwords.split(" "))

{

if(str.contains(ret2))

{

 str = str.replaceAll(" "+ ret2 + " ", " ");

}

}

%>

 <%

for (String ret: str.split(" "))

{

nword=ret;

String sql3 = "select word_id from word where word_word = '"+nword+"'";

ResultSet rs2 = db.runSql3(sql3);

if(rs2.next()){

wid = rs2.getInt("word_id");

}

else{

sql3 = "INSERT INTO `m2`.`word` " + "(`word_word`) VALUES " + "(?);";

 54

PreparedStatement stmt = db.conn.prepareStatement(sql3,

Statement.RETURN_GENERATED_KEYS);

stmt.setString(1,nword);

stmt.execute();

String sql4 = "select word_id from word where word_word = '"+nword+"'";

ResultSet rs4 = db.runSql3(sql4);

if(rs4.next()){

wid = rs4.getInt("word_id");

}

}

sql = "INSERT INTO occurrence (word_id,page_id) "

 + "VALUES (?, ?) ";

PreparedStatement stmt = db.conn.prepareStatement(sql,

Statement.RETURN_GENERATED_KEYS);

stmt.setInt(1,wid);

stmt.setInt(2,pid);

stmt.execute();

}

 %>

</body>

</html>

Source Code for Website

<!Doctype html>

<head>

 55

<title>Demo</title>

<link rel="stylesheet" href="css/ex.css" type="text/css">

<link rel="stylesheet" type="text/css" href="style.css" media="screen" />

<body>

<div id="main_container">

<div class="header">

<div id="logo"><img src="images/se.jpg" alt="" width="162" height="80"

border="0" />

</div>

<div style="position:absolute;top:4%;left:35%;">

<h1 style="color:black;text-align:center;font-size: 65px;">MEDICINE SEARCH

</h1>

</div>

</div>

<frameset cols="25%,50%,25%">

<frame>

</frame>

<frame >

</frame>

</frame>

</frameset>

<frameset cols="25%,75%">

<frame>

</frame>

<frame >

</frame>

</frameset>

<div style="position:absolute;top:60%;left:35%;">

<form method="POST" action="search.php">

<div

<table align="center">

 56

<tr>

<td colspan="2" align="center">

<input type="text" name="keyword" id="keyword" size="60" />

</td>

</tr>

<td>

<input type="submit" value="search" />

</td>

<td>

<input type="reset" value="Clear"/>

</td>

</table>

</form>

</div>

<div style="position:absolute;top:60%;left:35%;">

<h2 style="color:black;text-align:center;font-size: 20px;">

Indexer

Pages Processed

</br>

</h2></div>

</div>

</body>

</html>

Source Code for PageRank

<?php

$links = array(

 1 => array(5),

 2 => array(4, 7, 8),

 57

 3 => array(1, 3, 4, 7, 9),

 4 => array(1, 2, 4, 8),

 5 => array(1, 6, 7, 9),

 6 => array(1, 5, 8),

 8 => array(3, 4),

 9 => array(1, 4, 6, 8)

);

?>

<?php

function calculatePageRank($linkGraph, $dampingFactor = 0.15) {

 $pageRank = array();

 $tempRank = array();

 $nodeCount = count($linkGraph);

 foreach($linkGraph as $node => $outbound) {

 $pageRank[$node] = 1/$nodeCount;

 $tempRank[$node] = 0;

 }

 $change = 1;

 $i = 0;

 while($change > 0.00005 && $i < 100) {

 $change = 0;

 $i++;

 foreach($linkGraph as $node => $outbound) {

 58

 $outboundCount = count($outbound);

 foreach($outbound as $link) {

 $tempRank[$link] += $pageRank[$node] / $outboundCount;

 }

 }

 $total = 0;

 foreach($linkGraph as $node => $outbound) {

 $tempRank[$node] = ($dampingFactor / $nodeCount)

 + (1-$dampingFactor) * $tempRank[$node];

 $change += abs($pageRank[$node] - $tempRank[$node]);

 $pageRank[$node] = $tempRank[$node];

 $tempRank[$node] = 0;

 $total += $pageRank[$node];

 }

 foreach($pageRank as $node => $score) {

 $pageRank[$node] /= $total;

 }

 }

 return $pageRank;

}

?>

