
Page | i

PHOTO EDITING ANDROID APPLICATION

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Mrs. Sanjana Singh

By

Ankit Mehta (111254)

To

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

Page | ii

CERTIFICATE

This is to certify that project report entitled “PHOTO EDITING ANDROID

APPLICATION”, submitted by “Ankit Mehta” in partial fulfillment for the award

of degree of Bachelor of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under

my supervision.

This work has not been submitted partially or fully to any other University or Ins titute

for the award of this or any other degree or diploma.

Date: 8/05/2015 Sanjana Singh

Assistant Professor

Page | iii

ACKNOWLEDGEMENT

It gives me immense pleasure in presenting project report on the topic Photo Editing

Android Application. Apart from the efforts of me, the success of my project

depends largely on the encouragement and guidelines of many others. I take this

opportunity to express my gratitude to the people who have been instrumental in the

successful completion of this project.

I would like to show my greatest appreciation to my project in-charge, Mrs. Sanjana

Singh. I can’t say thank you enough for the tremendous support and help. I feel

motivated and encouraged every time I attend her meeting. Without her

encouragement and guidance this project work would not have materialized.

Date: 08/05/2015 Ankit Mehta

 (111254)

Page | iv

TABLE OF CONTENTS

S. No. Topic Page No

1. Introduction ………………………………………………………...........1

1.1 General Introduction ...…….……………………………………..1

1.2 Problem Statement …..…….……………………………………..1

2. Working Environment ………………………...………………………....2

2.1 About Android ...…….…………………………………………...2

2.2 Understanding Android …..…….………………………………...2

2.2.1 Applications ………………………………………….3

2.2.2 Application Framework …………………………......4

2.2.3 Libraries ……………………………………………...5

2.2.4 Android Runtime …………………………………….5

2.2.5 Kernel ………………………………………………..6

3. Literature Survey …………..…………………………………………….7

3.1 Summary of Papers ……………………………………………....7

3.2 Terminology and terms used .…..……………………………….14

3.2.1 Image Editing as Graph Labeling ……..…………….14

3.2.2 Image Retargeting …….………………………….....14

3.2.3 Image Rearrangement ……………………………….15

4. Algorithms Implemented ………………………………………………...17

4.1 Image Convolution ….………………………………….….…….17

4.1.1 An Example ………………………………………….17

4.1.2 Pseudocode ………………………………………......19

5. UML Diagrams …………………………………………………..……....20

Page | v

5.1 Class Diagram …………………………………………………...20

5.2 Use-Case Diagram …………………………………………...….21

6. Implementation ………………...…………….…………………………..22

6.1 Coding and Design ……………………………………………….22

6.2 Screenshots ……….……………..………………………………..24

7. Findings & Conclusion...……...…………………………………………..27

7.1 Findings …………………………………………………………..27

7.2 Limitations of Solution ………………………………………….27

7.3 Future Work …………………………………………………….28

7.4 Conclusion……………………………………………………….28

8. Testing & Debugging …………………………………………………….29

8.1 Introduction………………………………………………………29

8.2 Mobile Device Testing ……………………………………………30

8.2.1 Key Challenges In Mobile Application Testing ...……30

8.2.2 Types Of Mobile Application Testing ……………….31

8.2.3 Some Mobile Application Testing Tools .……………34

8.3 Android Automated Testing ……………………………………..37

8.3.1 Android Test Strategy………………………………...37

8.3.2 How To Test Android Application …………………..37

8.3.3 What To Test On Android Application……………....38

8.4 Testing & Evaluation …………………………………………….39

8.4.1 Testing Plan …………………………………………..39

8.4.2 List Of Test Cases ……………………………………41

9. References………………………………………………………………..43

10. Appendices ………………………………………………………………44

10.1 Appendix A – Description Of Tools …………………….44

Page | vi

LIST OF FIGURES

S. No. Title Page No

Fig 1.1 Architectural Diagram ………..………………………………...…….3

Fig 1.2(a) Gaussian Blur …………………..………………………………...…..8

Fig 1.2(b) Sharpen Image ………..………………………………...…………….8

Fig 1.3 Comparison of a few retargeting methods ………………………….10

Fig 1.4 Changing Weather …….……………………………………………..13

Fig 1.5 Image Retargeting ……………………………………………………16

Fig 1.6 Image Rearrangement ……………………………………………….16

Fig 1.7 Example of Convolution Matrix …………………………………….17

Fig 1.8 Class Diagram ………………………………………………………..20

Fig 1.9 Use-Case Diagram …………………...21

Fig.1.10 (a) MainActivity.java …………………………………………………..22

Fig.1.10 (b) Activity_main.xml ………………..23

Fig.1.11 (a) Pick Image …………………………………………………………..24

Fig.1.11 (b) Grey …………………………………………………………………24

Fig.1.11 (c) Snowy ……………………………………………………………….25

Fig.1.11 (d) Reflection ……………………………………………………………25

Fig.1.11 (e) Rotate ……………………………………………………………….26

Fig.1.11 (f) Sepia……. ……………………………………………………………26

Fig.1.12 Difference Between Testing & Debugging ……………………………..29

Fig.1.13Test Android Application ………………………………………………..37

Page | vii

LIST OF TABLES

S. No. Title Page No

1. Areas To Test……………………………………………………………….38

2. Type Of Test ………..………………………………...…………………..39

3. Test Cases …………………..………………………………...…………...41

4. Module Tests ………..………………………………...…………………..42

Page | viii

LIST OF SYMBOLS & ACRONYMS

GUI – Graphical User Interface

ADT - Android Development Tools

IDE - Integrated Development Environment

AVD – Android Virtual Device

OEM – Original Equipment Manufacturer

DDMS - Dalvik Debug Monitor Server

ADB - Android Debug Bridge

SDK – Software Development Kit

Page | ix

ABSTRACT

Photo editing can be a challenging task, and it becomes even more difficult on the

small, portable screens of mobile devices that are now frequently used to capture and

edit images. To address this problem I present Photo Editor, a photo editing interface

for direct manipulation.

Through this application user can easily and quickly edit there pictures with the help

of the features provided in the application.

Some of the features of the application are: - One tap Auto Enhance, Ability to Crop,

rotate and straighten your photo, Adjust brightness, contrast and saturation, adding

effects like blur, snowy, emboss, engrave, etc.

All the coding has been done in JAVA language using a plugin of Eclipse IDE i.e.

Android Development Tools (ADT).

ADT is designed to provide an integrated environment in which to build Android

applications. ADT extends the capabilities of Eclipse to let developers set up new

Android projects, create an application UI, add packages based on the Android

Framework API, debug their applications using the Android SDK tools, and export

signed (or unsigned) .apk files in order to distribute their applications. It is a freeware

available to download.

Through this software we can run the code either directly in our android device or by

using AVD (Android virtual device) manager to create an AVD.

Page | 1

CHAPTER 1 INTRODUCTION

1.1. General Introduction

The project named “PHOTO EDITING ANDROID APPLICATION” is developed

using Eclipse IDE and Android SDK manager using JAVA language. This project has

been developed in partial fulfillment of Requirements for the degree of

B.TECH.(CSE) from JUIT, Waknaghat.

Developed for busy customers, Photo Editor is an easy to use Android application

through which customers can easily edit photos using various features provided in the

application. Its graphical user interface is designed in a manner to attract wide variety

of people varying from age group of 18 years to 55 years.

The editing methods are optimized in such a way so that user can quickly and easily

edit there photographs without wasting much of their time. Hence it's quick, easy and

efficient.

1.2. Problem statement

To develop a Photo editing Android application with a quick and easy way to edit

photos having both basic and advance level features to edit your photographs.

Page | 2

CHAPTER 2 WORKING ENVIRONMENT

2.1. About Android

Android is an open source operating system, created by Google, and available to all

kinds of developers with various expertise levels, ranging from rookie to professional.

From a developer's perspective, Android is a Linux-based operating system for

smartphones and tablets. It includes a touch screen user interface, widgets, camera,

network data monitoring and all the other features that enable a cell phone to be called

a smartphone. Android is a platform that supports various applications, available

through the Android Play Store. The Android platform also allows end users to

develop, install and use their own applications on top of the Android framework. The

Android framework is licensed under the Apache License, with Android application

developers holding the right to distribute their applications under their customized

license.

2.2. Understanding android

To begin development on Android even at the application level, it is paramount to

understand the basic internal architecture. Knowing how things are arranged inside

helps us understand the application framework better, so we can design the

application in a better way.

Android is an OS based on Linux. Hence, deep inside, Android is pretty similar to

Linux. To understand Android internals, let us look at an architectural diagram.

Page | 3

Fig.1.1

Source:http://www.cprogramming.com/android/android_getting_started.html

The above diagram illustrates the Android architecture. As you can see, it is a

software stack above the hardware that is provided by the OEMs. Let's start with the

topmost layer, i.e., the applications.

 2.2.1 Applications

 The diagram shows four basic apps (App 1, App 2, App 3 and App 4), just to

give the idea that there can be multiple apps sitting on top of Android. These apps are

like any user interface you use on Android; for example, when you use a music

player, the GUI on which there are buttons to play, pause, seek, etc is an application.

Similarly, is an app for making calls, a camera app, and so on. All these apps are not

necessarily from Google. Anyone can develop an app and make it available to

everyone through Google Play Store. These apps are developed in Java, and are

installed directly, without the need to integrate with Android OS.

http://www.cprogramming.com/android/android_getting_started.html

Page | 4

 2.2.2 Application Framework

 Scratching further below the applications, we reach the application

framework, which application developers can leverage in developing Android

applications. The framework offers a huge set of APIs used by developers for various

standard purposes, so that they don't have to code every basic task. The framework

consists of certain entities; major ones are:

1. Activity Manager

 This manages the activities that govern the application life cycle and has

several states. An application may have multiple activities, which have their own life

cycles. However, there is one main activity that starts when the application is

launched. Generally, each activity in an application is given a window that has its own

layout and user interface. An activity is stopped when another starts, and gets back to

the window that initiated it through an activity callback.

2. Notification Manager

 This manager enables the applications to create customized alerts

3. Views

 Views are used to create layouts, including components such as grids, lists,

buttons, etc.

4. Resource Managers

 Applications do require external resources, such as graphics, external strings,

etc. All these resources are managed by the resource manager, which makes them

available in a standardized way.

5. Content Provider

Page | 5

 Applications also share data. From time to time, one application may need

some data from another application. For example, an international calling application

will need to access the user's address book. This access to another application's data is

enabled by the content providers.

 2.2.3 Libraries

 This layer holds the Android native libraries. These libraries are written in

C/C++ and offer capabilities similar to the above layer, while sitting on top of the

kernel. A few of the major native libraries include

 Surface Manager: manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications.

 System C Libraries: Standard C library like libc targeted for ARM or

embedded devices.

 OpenGL ES Libraries : These are the graphics libraries for rendering 2D and

3D graphics.

 SQLite : A database engine for Android.

2.2.4 Android Runtime

The Android runtime consists of the Dalvik Virtual Machine. It is basically a

virtual machine for embedded devices, which like any other virtual machine,

is a bytecode interpreter. When we say it is for embedded devices, it means it

is low on memory, comparatively slower and runs on battery power. Besides

the Dalvik Virtual Machine, it also consists of the core libraries, which are

Java libraries and are available for all devices.

Page | 6

 2.2.5 Kernel

 The Android OS is derived from Linux Kernel 2.6 and is actually created from

Linux source, compiled for mobile devices. The memory management, process

management etc. are mostly similar. The kernel acts as a Hardware Abs traction Layer

between hardware and the Android software stack.

Page | 7

CHAPTER 3 LITERATURE SURVEY

3.1. Summary of Papers

Title of Paper Image Convolution

Author Jamie Ludwig

Year of Publication 2013

Publishing Details

Satellite Digital Image Analysis, 581

Portland State University

Summary This paper focuses on Image Convolution method in editing

photographs. Through Image Convolution various editing

effects like Smooth, Sharpen, Intensify and Enhancement of

image etc is achieved.

Convolution is a general purpose filter effect for images.

It works by determining the value of a central pixel by adding

the weighted values of all its neighbors together. The output is

a new modified filtered image.

A convolution is done by multiplying a pixel’s and its

neighboring pixels color value by a matrix. A kernel matrix is

used for that purpose.

A kernel is a (usually) small matrix of numbers that is used in

image convolutions. Differently sized kernels containing

different patterns of numbers produce different results under

convolution. The size of a kernel is arbitrary

but 3x3 is often used.

Web Link

http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Stude

nts/Ludwig_ImageConvolution.pdf

http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_ImageConvolution.pdf
http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_ImageConvolution.pdf

Page | 8

 Fig.1.2

(a) Fig.1.2 (b)

Page | 9

Title of Paper Shift-Map Image Editing

Authors Yael Pritch, Eitam Kav-Venaki and Shmuel Peleg.

Year of Publication 2009

Publishing Details

IEEE 12th International Conference on Computer Vision

(ICCV)

Summary This paper focuses on Shift-Map Image editing method

which is done using geometric rearrangement. Geometric

rearrangement of images includes operations such as

image retargeting, inpainting, or object rearrangement.

Each such operation can be characterized by a shift map:

The relative shift of every pixel in the output image from

its source in an input image.

They described a new representation of these operations as

an optimal graph labeling, where the shift-map represents

the selected label for each output pixel. Two terms were

used in computing the optimal shift-map:

(i) A data term which indicated constraints such as the

change in image size, object rearrangement, a possible

saliency map, etc.

 (ii) A smoothness term, which minimized the new

discontinuities in the output image caused by

discontinuities in the shift-map.

This graph labeling problem could be solved using graph

cuts. Efficient hierarchical solutions for graph-cuts were

presented, and operations on 1M images could take only a

few seconds.

Web Link www.cs.huji.ac.il/~peleg/papers/iccv09-shiftmap.pdf

../Android/www.cs.huji.ac.il/~peleg/papers/iccv09-shiftmap.pdf

Page | 10

Fig.1.3 Comparison of a few retargeting methods

Page | 11

Title of Paper

Photo editing algorithm changes weather, seasons

automatically

Authors

Hays, Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, and

Chao Qian.

Year of Publication 2014

Publishing Details Kevin Stacey, Brown University, Providence, Rhode Island.

Summary This paper focuses on a computer algorithm being developed

by Brown University researchers, which enables the users to

instantly change the weather, time of day, season, or other

features in outdoor photos with simple text commands. All

this is made possible with machine learning and a clever

database.

To start the project, Hays and his team defined a list of

transient attributes that users might want to edit. They settled

on 40 attributes that range from the simple (cloudy, sunny,

snowy, rainy, or foggy) to the subjective (gloomy, bright,

sentimental, mysterious, or calm).

The next step was to teach the algorithm what these attributes

look like. To do that, the researchers compiled a database

consisting of thousands of photos taken by 101 stationary

webcams around the world. The cameras took pictures of the

same scenes in varying of conditions — different times of day,

different seasons and in all kinds of weather. The researchers

then asked workers on Mechanical Turk, to annotate more

than 8,000 photos according to which of the 40 attributes are

present in each. Those annotated photos were then fed through

a machine learning algorithm.

Armed with the knowledge of what each attribute looks like,

the algorithm can apply that knowledge to new photos. It does

so by making what Hays refers to as “local color transforms.”

Page | 12

It splits the picture into regions (clusters of pixels) and draws

on the database to determine how colors in those regions

should change with a given attribute. The participants

preferred the new results around 70 percent of the time

compared to the output of traditional approaches.

The paper also mentioned the limitations to what the program

can do at this point, however. It can’t reproduce attributes that

require new structures to be added to the photo.

Web Link https://news.brown.edu/articles/2014/08/photo

https://news.brown.edu/articles/2014/08/photo

Page | 13

Fig.1.4 Changing weather

Page | 14

3.2. Terminology and Terms Used

The terminology related to the use of some terms in the above mentioned papers has

been described briefly for the proper understanding of the basics and to get proper

knowledge.

 3.2.1 Image Editing as Graph Labeling

 The relationship between an input image I(x, y) and an output image R(u, v) in

image rearrangement and retargeting is defined by a shift-map M(u, v) = (tx, ty). The

output pixel R(u, v) will be derived from the input pixel I(u + tx, v + ty). The optimal

shift-map is defined as a graph labeling, where the nodes are the pixels of the output

image, and each output pixel can be labeled by a shift (tx, ty). The optimal shift-map

M minimizes the following cost function:

 where Ed is a data term providing external requirements, and Es is a

smoothness term defined over neighboring pixels N. α is a user defined weight

balancing the two terms, and in all our examples we used α = 1. Each term will now

be defined in detail. Once the graph is given, the shift-map labeling is computed using

multi- label graph cuts.

 3.2.2 Image Retargeting

 Image retargeting is the change of image size, which is typically done in only

a single direction in order to change the image aspect ratio. We will assume that the

change is in image width, but we could also address changing both image dimensions.

Page | 15

 3.2.3 Image Rearrangement

 Image rearrangement consists of moving an object to a new image location, or

deleting part of the image, while keeping some of the content of the image unchanged.

The user selects a region to move, and specifies the location at which the selected

region will be placed. A new image is generated satisfying this constraint. This

application was demonstrated and gave impressive results in many cases.

 In image rearrangement pixels can be relocated by a large displacement,

creating a possible computational complexity.

Page | 16

 Fig.1.5

 Fig.1.6

Source: www.cs.huji.ac.il/~peleg/papers/iccv09-shiftmap.pdf

../Android/www.cs.huji.ac.il/~peleg/papers/iccv09-shiftmap.pdf

Page | 17

CHAPTER 4 ALGORITHMS IMPLEMENTED

Some algorithm(s) have been implemented to carry out photo editing and they are

mentioned below:

4.1 Image Convolution

Convolution filtering is used to modify the spatial frequency characteristics of an

image. It is a matrix applied to an image and a mathematical operation comprised of

integers. It works by determining the value of a central pixel by adding the weighted

values of all its neighbors together. The output is a new modified filtered image.

Through Image Convolution various effects like Smooth, Sharpen, Intensify and

Enhancement of image etc is achieved.

 4.1.1 Example

 For the following image shown below:

Fig.1.7

 Source:http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Lud wig_ImageConvolution.pdf

http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_ImageConvolution.pdf

Page | 18

Convolution Formula:

 Where:

 fij =the coefficient of convolution kernel at position i,j (in the kernel)

 Dij = the data value of the pixel that corresponds to fij.

 Q = the dimension of the kernel, assuming a square kernel (if q=3, the kernel

 is 3X3).

 F = either the sum of coefficients of the kernel, or 1 if the sum of coefficients

 is 0.

 V = the output pixel value

 In cases where V is less than 0, V is clipped to 0.

Page | 19

 4.1.2 Pseudo-code

 for each image row in output image:

 for each pixel in image row :

 set accumulator to zero

 for each kernel row in kernel:

 for each element in kernel row :

 if element position corresponding* to pixel position then

 multiply element value corresponding* to pixel value

 add result to accumulator

 endif

 set output image pixel to accumulator

*corresponding input image pixels are found relative to the kernel's origin.

Page | 20

CHAPTER 5 UML DIAGRAMS

5.1 Class Diagram

A class diagram in the Unified Modeling Language (UML) is a type of static

structure diagram that describes the structure of a system by showing the

system's classes, their attributes, operations (or methods), and the relationships among

objects.

In the diagram, classes are represented with boxes which contain three parts:

 The top part contains the name of the class. It is printed in bold and centered,

and the first letter is capitalized.

 The middle part contains the attributes of the class. They are left-aligned and

the first letter is lowercase.

 The bottom part contains the methods the class can execute. They are also left-

aligned and the first letter is lowercase.

Page | 21

Fig.1.8

5.2 Use-Case Diagram

A use case diagram at its simplest is a representation of a user's interaction with the

system and depicting the specifications of a use case. A use case diagram can portray

the different types of users of a system and the case and will often be accompanied by

other types of diagrams as well.

Fig.1.9

Page | 22

CHAPTER 6 IMPLEMENTATION

6.1 Coding & Design

Fig.1.10 (a) MainActivity.java

Page | 23

Fig. 1.10 (b) Activity_main.xml

Page | 24

6.2 Screenshots

 Fig. 1.11 (a) Pick Image Fig. 1.11 (b) Grey

Page | 25

Fig. 1.11 (c) Snowy Fig. 1.11 (d) Reflection

Page | 26

Fig. 1.11 (e) Rotate Fig. 1.11 (f) Sepia

Page | 27

CHAPTER 7 FINDINGS & CONCLUSION

7.1 Findings

From the literature survey and the books I have read, I have understood that making

an android application may look simple but it involves a lot of testing and debugging.

Also it needs to be tested on various android devices running different android

versions so as to check if the application is compatible with those versions and aren’t

facing any difficulties or lag. Also proper updating of the application will be must in

order for the application to survive in this huge android app market

Android is a huge market and everyday tons of apps are added into the play store but

only some of them survive. The key to a successful app is its impressive GUI and

smooth running without any crashes. Also it shouldn’t take too much of space.

7.2 Limitations of Solution

Currently this application of mine does have some limitation. Which have been

mentioned below:

i. Integration with social Networking websites like Facebook, twitter,

instagram etc is not available.

ii. Limited editing options.

iii. Adding layers and editing different layers separately is not yet

available.

Page | 28

7.3 Future Work

The Future Work for the Application will include the following:

1. Adding more photo editing packages.

2. Integration with social networking websites like Facebook, Twitter etc

3. Layers functionality like in that of Adobe Photoshop.

7.4 Conclusion

This app gives user the power to edit their picture easily and efficiently. Its an

application which can be used by people of all ages who knows how to use a

smartphone. The application uses minimum CPU memory and doesn’t compromise

with its performance. The editing is fast and smooth and its GUI is easy to use. There

are many features which can be added to the app and those features will be added time

to time with its regular updates.

Page | 29

CHAPTER 8 TESTING & DEBUGGING

8.1 Introduction

Testing activity is carried down by a team of testers, in order to find the defect in the

software. Test engineers run their tests on the piece of software and if they encounter

any defect (i.e. actual results don't match expected results), they report it to the

development team. Along with the nature of defect, testers also have to report at what

point the defect occurred and what happened due the occurrence of that defect. All

this information will be used by development team to DEBUG the defect.

Debugging is the activity which is carried out by the development team (or

developer), after getting the test report from the testing team about defect(s) (you may

note defects can also be reports by the client). The developer then tries to find the

cause of the defect, in this quest he may need to go through lines of code and find

which part of code in causing that defect. After finding out the bug, he tries to modify

that portion of code and then he rechecks if the defect has been finally removed. After

fixing the bug, developers send the software back to testers.

Source: http://www.ianswer4u.com/2012/06/testing-and-debugging.html#axzz3ZTw4LMuu

Fig 1.12

http://www.ianswer4u.com/2012/06/testing-and-debugging.html#axzz3ZTw4LMuu

Page | 30

8.2 Mobile Device Testing

Mobile application testing is a process by which application software developed for

hand held mobile devices is tested for its functionality, usability and

consistency. Mobile application testing can be automated or manual type of testing.

Mobile applications either come pre-installed or can be installed from mobile

software distribution platforms. Mobile devices have witnessed a phenomenal growth

in the past few years.

 8.2.1 Key Challenges in Mobile Application Testing

1. Variety of Mobile Devices- Mobile devices differ in screen sizes, input methods

(QWERTY, touch, normal) with different hardware capabilities.

2. Diversity in Mobile Platforms/OS- There are different Mobile Operating

Systems in the market. The major ones are Android, IOS, Symbian, Windows Phone,

and BlackBerry (RIM). Each operating system has its own limitations. Testing a

single application across multiple devices running on the same platform and every

platform poses a unique challenge for testers.

3. Mobile network operators- There are over 400 mobile network operators in the

world; out of which some are CDMA, some GSM, whereas others use less common

network standards like FOMA, and TD-SCDMA. Each network operator uses a

different kind network infrastructure and this limits the flow of information.

4. Scripting- The variety of devices makes executing the test script (Scripting) a key

challenge. As devices differ in keystrokes, input methods, menu structure and display

properties single script does not function on every device.

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/QWERTY
http://en.wikipedia.org/wiki/Mobile_operating_system
http://en.wikipedia.org/wiki/Mobile_operating_system
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/IOS
http://en.wikipedia.org/wiki/Symbian
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/BlackBerry
http://en.wikipedia.org/wiki/CDMA
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/FOMA
http://en.wikipedia.org/wiki/TD-SCDMA

Page | 31

 8.2.2 Types of Mobile Application Testing

 1. Functional Testing- Functional testing ensures that the application is

working as per the requirements. Most of the test conducted for this is driven by the

user interface and call flows.

 2. Laboratory Testing- Laboratory testing, usually carried out by network

carriers, is done by simulating the complete wireless network. This test is performed

to find out any glitches when a mobile application uses voice and/or data connection

to perform some functions.

 3. Performance Testing- This testing process is undertaken to check the

performance and behavior of the application under certain conditions such as low

battery, bad network coverage, low available memory, simultaneous access to

application’s server by several users and other conditions. Performance of an

application can be affected from two sides: application’s server side and client’s

side. Performance testing is carried out to check both.

 4. Memory Leakage Testing- Memory leakage happens when a computer

program or application is unable to manage the memory it is allocated resulting in

poor performance of the application and the overall slowdown of the system. As

mobile devices have significant constraints of available memory, memory leakage

testing is crucial for the proper functioning of an application

http://en.wikipedia.org/wiki/Software_performance_testing

Page | 32

 5. Interrupt Testing- An application while functioning may face several

interruptions like incoming calls or network coverage outage and recovery. The

different types of interruptions are:

i. Incoming and Outgoing SMS and MMS

ii. Incoming and Outgoing calls

iii. Incoming Notifications

iv. Battery Removal

v. Cable Insertion and Removal for data transfer

vi. Network outage and recovery

vii. Media Player on/off

viii. Device Power cycle

An application should be able to handle these interruptions by going into a suspended

state and resuming afterwards.

 6. Usability testing- Usability testing is carried out to verify if the application

is achieving its goals and getting a favorable response from users. This is important as

the usability of an application is its key to commercial success (it is nothing but user

friendliness).

 7. Certification Testing- To get a certificate of compliance, each mobile

device needs to be tested against the guidelines set by different mobile platforms.

 The Certified Mobile Application Tester popularly known as CMAT

certification exam is offered by the Global Association for Quality Management

(GAQM) via Pearson Vue Testing Center worldwide to benefit the Mobile

Application Testing Community.

http://en.wikipedia.org/wiki/SMS
http://en.wikipedia.org/wiki/Multimedia_Messaging_Service

Page | 33

 8. Installation testing- Certain mobile applications come pre- installed on the

device whereas others have to be installed from the store. Installation testing verifies

that the installation process goes smoothly without the user having to face any

difficulty. This testing process covers installation, updating and uninstalling of an

application.

Page | 34

 8.2.3 Some Mobile Application Testing Tools

 Some tools that are being used to test code quality in general for mobile

applications are as follows:

 Cross-Platform (Android and iOS)

1. Appium - Mobile device automation for functional testing

Link : http://appium.io

2. Calabash - Mobile device automation for functional testing

Link : http://calaba.sh

3. Testdroid - Mobile App and Game test automation on real Android and iOS devices

Link : http://www.testdroid.com/

4. Perfecto Mobile - Mobile device automation for functional testing

 Link : http://www.perfectomobile.com

5. SOASTA TouchTest - Mobile test automation for functional testing of native &

hybrid apps

Link : http://www.soasta.com/products/touchtest/

6. Testin - This tool let you test your apps across 300+ devices. This cloud based

solution comes with automated testing features such as automated compatibility,

functionality, UI & performance testing.

Link : http://www.itestin.com/

http://appium.io/
http://calaba.sh/
http://en.wikipedia.org/wiki/Testdroid
http://www.testdroid.com/
http://www.perfectomobile.com/
http://www.soasta.com/products/touchtest/
http://www.itestin.com/

Page | 35

7. Ubertesters - This is a freemium tool which helps you conduct more structured and

well organized Mobile QA process. Some of the features of Ubertesters are In-app

bug editing, marking, reporting and user feedback, Multi-platform support, Over-the-

air (OTA) app distribution, Build management etc. Ubertesters also offers in-the-wild

app testing services with its global community of professional testers.

Link : http://ubertesters.com/

8. Crashlytics - This is a free tool available for both- iOS and Android devices.

Link : http://try.crashlytics.com/

9. Ranorex - This is a cross device app testing tool through which you can record one

test and run it on multiple devices and languages. You can test your iOS, Android and

Windows 8 Apps with this tool.

Link : http://www.ranorex.com/mobile-automation-testing.html

10. Experitest - Mobile device automation for functional testing

 Link : http://www.experitest.com

11. Remote TestKit - A device cloud for mobile application testing

Link : https://appkitbox.com/en/testkit/

12. Test Fairy - Mobile application testing with video recording

Link : https://www.testfairy.com/

http://en.wikipedia.org/w/index.php?title=Ubertesters&action=edit&redlink=1
http://ubertesters.com/
http://try.crashlytics.com/
http://www.ranorex.com/mobile-automation-testing.html
http://www.experitest.com/
https://appkitbox.com/en/testkit/
https://www.testfairy.com/

Page | 36

13. EggPlant - Image based solution

Link : http://www.testplant.com/eggplant/testing-tools/

 For Android

1. Android Lint - This is integrated with Eclipse IDE for Android. This will point out

potential bugs, performance problems

 Link : http://developer.android.com/tools/help/lint.html

2. Find Bugs - This is an open source library for static analysis in Java code

Link : https://code.google.com/p/findbugs-for-android/

3. Maveryx - Maveryx for Android is an automated testing tool for functional,

regression, GUI, and data-driven testing of Android mobile application

Link : http://www.maveryx.com

http://www.testplant.com/eggplant/testing-tools/
http://developer.android.com/tools/help/lint.html
https://code.google.com/p/findbugs-for-android/
http://www.maveryx.com/

Page | 37

8.3 Android automated testing

 8.3.1 Android test strategy

 Automated testing of Android applications is especially important because of

the huge variety of available devices. As it is not possible to test Android application

on all possible device configurations, it is common practice to run Android test on

typical device configurations.

 Having reasonable test coverage for your Android application helps you to

enhance and maintain the Android application.

8.3.2 How to test Android applications

Android testing is based on JUnit. Testing for Android can be classified into tests

which require only the JVM and tests which require the Android system.

Source: http://www.vogella.com/tutorials/AndroidTesting/article.html

If possible, you should prefer to run your unit tests directly on the JVM as the test

execution is much faster compared to the time required to deploy and run the test on

an Android device.

Fig. 1.13

http://www.vogella.com/tutorials/AndroidTesting/article.html

Page | 38

8.3.3 What to test on Android applications

The following tables list the important areas you should test in your Android

applications.

(Table 1) Areas to test

Test Area Description

Activity life cycle events You should test if you activity handles the

Android life cycle events correctly. You should

also test if the configuration change events are

handled well and if instance state of your user

interface components is restored.

File system and database operations Write and read access from and to the file

system should be tested including the handling

of databases.

Different device configurations You should also test if your application

behaves well on different device

configurations.

Page | 39

8.4 Testing & Evaluation

 8.4.1 Testing Plan

(Table 2)

Type Of Test Will Test be

performed

Comments/ Explanation

Requirement Testing

The test has been performed on

various mobile devices like Moto

G2, Moto X2, Nexus 5, Nexus 4

etc

Unit Testing

Unit testing will test individual

units/code modules of our Project

like testing of the individual

modules.

Integration Testing

Integration Testing will be useful

for testing the project as a whole.

The integrated testing involves the

combination of various unit

modules testing.

Performance Testing

Performance testing will be done

for checking the overall

performance of the application.

It will be analyzed through the

performance measures, response

time, how successfully the

database handles the information

of various users that use the

application, and how well it is

presented to the user with the help

Page | 40

of an extensive GUI.

Stress Testing

Stress testing will be performed to

make predictions about expected

load levels. A high stress

environment will be created in the

application to test till what size the

application can pick an image.

Security Testing

User will be able to do authorized

functions only.

Volume Testing

It is testing the application with

large volume of data in the

database to find out memory leaks.

Page | 41

8.4.2 List of Test Cases

(Table 3)

Test Case ID Input Expected Output Status

1. Picking Image Size

upto 1 MB size.

No Error Pass

2. Picking Image Size

upto 5 MB size.

No Error Pass

3. Picking

JPG,PNG,JPEG

Image format

No Error Pass

4. Picking GIF image

format

No Error Pass

5. Editing

JPG,PNG,JPEG

Image format

No Error Pass

6. Editing GIF image

format

Error Fail

7. Editing Image Size

Upto 5 MB size

No Error Pass

8. View the Image

before Editing

No Error Pass

9. View the Image

after Editing

No Error Pass

Page | 42

(Table 4)

Module Input Expected Output Status

Convolution Matrix

algorithm

Connected Connect Pass

SeekBar Movement Connected Connect Pass

Colour

Manipulations

Connected Connect Pass

Apply Editing

Filters

Connected Connect Pass

Pick Image Connected Connect Pass

Page | 43

CHAPTER 9 REFERENCES

[1] Ryan Cohen and Tao Wang, GUI Design for Android App, 2014.

[2] Hays, Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, and Chao Qian, Photo

editing algorithm changes weather, seasons automatically, Brown University, 2014.

[3] Jamie Ludwig, Image Convolution, Portland State University, 2013.

[4] Reto Meier, Professional Android 4 Application Development, 2012.

[5] Michael Burton and Donn Felker, Android Application Development For

Dummies, 2nd Edition, 2012.

[6] Yael Pritch, Eitam Kav-Venaki and Shmuel Peleg, Shift-Map Image Editing, The

Hebrew University of Jerusalem, 2009.

[7] Lei Zhang, Yanfeng Sun, Mingjing Li, Hongjiang Zhang, automated red-eye

detection and correction in digital photographs, Microsoft Research Asia, 2007

http://isbn.directory/author/reto_meier

Page | 44

APPENDIX A

Description of Tools

ECLIPSE

In computer programming, Eclipse is an integrated development environment (IDE).

It contains a base workspace and an extensible plug- in system for customizing the

environment. Written mostly in Java, Eclipse can be used to develop applications.

By means of various plug- ins, Eclipse may also be used to develop applications in

other programming languages:

 Ada, ABAP, C, C++, COBOL, Fortran, Haskell, JavaScript, Lasso, Lua, Natural, Perl

, PHP, Prolog, Python, R, Ruby, Scala, Clojure, Groovy, Scheme, and Erlang. It can

also be used to develop packages for the software Mathematica. Development

environments include the Eclipse Java development tools (JDT) for Java and Scala,

Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others.

The initial codebase originated from IBM VisualAge. The Eclipse software

development kit (SDK), which includes the Java development tools, is meant for Java

developers. Users can extend its abilities by installing plug- ins written for the Eclipse

Platform, such as development toolkits for other programming languages, and can

write and contribute their own plug- in modules.

Released under the terms of the Eclipse Public License, Eclipse SDK is free and open

source software (although it is incompatible with the GNU General Public License). It

was one of the first IDEs to run under GNU Classpath and it runs without problems

under IcedTea.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Workspace
http://en.wikipedia.org/wiki/Plug-in_(computing)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/ABAP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Lasso_(programming_language)
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://en.wikipedia.org/wiki/NATURAL
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/R_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Scala_(programming_language)
http://en.wikipedia.org/wiki/Clojure
http://en.wikipedia.org/wiki/Groovy_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/wiki/Codebase
http://en.wikipedia.org/wiki/IBM_VisualAge
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Eclipse_Public_License
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_Classpath
http://en.wikipedia.org/wiki/IcedTea

Page | 45

Eclipse ADT (Android Development Tools)

Android Development Tools (ADT) is a Google-provided plugin for the Eclipse IDE

that is designed to provide an integrated environment in which to build Android

applications. ADT extends the capabilities of Eclipse to let developers set up new

Android projects, create an application UI, add packages based on the Android

Framework API, debug their applications using the Android SDK tools, and export

signed (or unsigned) .apk files in order to distribute their applications. It is free

download. It was the official IDE for Android but was replaced by Android

Studio (based on IntelliJ IDEA Community Edition).

Android SDK

The Android software development kit (SDK) includes a comprehensive set of

development tools.[8] These include a debugger, libraries, a handset emulator based

on QEMU, documentation, sample code, and tutorials. Currently supported

development platforms include computers running Linux (any modern desktop Linux

distribution), Mac OS X 10.5.8 or later, and Windows XP or later. As of March 2015,

the SDK is not available on Android itself, but the software development is possible

by using specialized Android applications.

Until around the end of 2014, the officially supported integrated development

environment (IDE) was Eclipse using the Android Development Tools (ADT) Plugin,

though IntelliJ IDEA IDE (all editions) fully supports Android development out of the

box, andNetBeans IDE also supports Android development via a plugin. As of

2015, Android Studio, made by Google and powered by IntelliJ, is the official IDE;

however, developers are free to use others. Additionally, developers may use any text

editor to edit Java and XML files, then use command line tools (Java Development

Kit and Apache Ant are required) to create, build and debug Android applications as

well as control attached Android devices (e.g., triggering a reboot, installing software

package(s) remotely).

http://en.wikipedia.org/wiki/Android_Studio
http://en.wikipedia.org/wiki/Android_Studio
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Android_software_development#cite_note-8
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Software_library
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/QEMU
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/List_of_Linux_distributions
http://en.wikipedia.org/wiki/List_of_Linux_distributions
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Eclipse_(software)
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Android_Studio
http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Java_Development_Kit
http://en.wikipedia.org/wiki/Java_Development_Kit
http://en.wikipedia.org/wiki/Apache_Ant

Page | 46

Enhancements to Android's SDK go hand in hand with the overall Android platform

development. The SDK also supports older versions of the Android platform in case

developers wish to target their applications at older devices. Development tools are

downloadable components, so after one has downloaded the latest version and

platform, older platforms and tools can also be downloaded for compatibility testing.

Android applications are packaged in .apk format and stored under /data/app folder

on the Android OS (the folder is accessible only to the root user for security reasons).

APK package contains .dex files (compiled byte code files called Dalvik executables),

resource files, etc.

Android Debug Bridge

The Android Debug Bridge (ADB) is a toolkit included in the Android SDK package.

It consists of both client and server-side programs that communicate with one another.

The ADB is typically accessed through the command-line interface,[18] although

numerous graphical user interfaces exist to control ADB.

http://en.wikipedia.org/wiki/APK_(file_format)
http://en.wikipedia.org/wiki/Dalvik_Virtual_Machine
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Android_software_development#cite_note-ADBdev-18
http://en.wikipedia.org/wiki/Graphical_user_interface

