Scheduling |
Real-Time Tasks in
Multiprocessor and
Distributed Systems

The use of multiprocessor and distributed systems in real-time applications is becoming

popular. One reason for this popularity of multiprocessor and distributed systems is the re-
cent drop in their prices. Now dual processor machines are available at 50 to 60,000 rupees and
the prices are set to drop even further. Besides, distributed platforms such as networked PCs are
common place. Another reason that attracts real-time system developers to deploy multiproces-
sor and distributed systems is the faster response times and fault-tolerance features of such
systems. Further, distributed processing is often suitable for applications that are naturally
distributed and the events of interest are generated at geographically distributed locations. An
example of such an application is an automated petroleum refinery, where the plant is spread
over a considerable geographic area.

As compared to scheduling real-time tasks on a uniprocessor, scheduling tasks on multi-
processor and distributed systems is much more difficult. We had seen that optimal schedulers
for a set of independent real-time tasks have polynomial complexity (in the number of tasks to
be scheduled). However, determining an optimal schedule for a set of real-time tasks on a mul-
tiprocessor or a distributed system is an NP-hard problem [12].

Multiprocessor systems are known as tightly coupled systems. This characteristic of a mul-
tiprocessor system denotes the existence of shared physical memory in the system. In contrast,
a distributed system is called a loosely coupled system and is devoid of any shared physical
memory. In a tightly coupled system, the interprocess communication (IPC) is inexpensive and
can be ignored compared to task execution times. This is so because inter-task communication
is achieved through reads and writes to the shared memory. However, the same is not true in the
case of distributed computing systems where inter-task communication times are comparable to
task execution times. Due to this, a multiprocessor system may use a centralized
dispatcher/scheduler whereas a distributed system can not. A centralized scheduler would re-
quire maintaining the state of the various tasks of the system in a centralized data structure. This
would require various processors in the system to update it whenever the state of a task changes
and consequently, would result in high communicational overheads.

Scheduling real-time tasks on distributed and multiprocessor systems consists of two sub-
problems: task allocation to processors and scheduling tasks on the individual processors. The
task assignment problem is concerned with how to partition a set of tasks and then how to as-
sign these to the processors. Task assignment can either be static or dynamic. In the static allo-
cation scheme, the allocation of tasks to nodes is permanent and does not change with time
whereas in the dynamic task assignment, tasks are assigned to nodes as they arise. Thus, in the
dynamic case, different instances of a task may be allocated to different nodes. After successfil
task assignment to the processors, we can consider the tasks on each processor individually and,
therefore, the second phase of the multiprocessor and distributed systems reduces to the sched-
uling problem in uniprocessors.

111

112

Chapter 4 Scheduling Real-Time Tasks in Distributed Systems

The task allocation to processors in multiprocessor and distributed environments is an NP-
hard problem and determining an optimal solution has exponential complexity. So, most of the
algorithms that are deployed in practice are heuristic algorithms. Task allocation algorithms can
be classified into either static or dynamic algorithms. In static algorithms all the tasks are par-
titioned into subsystems and each subsystem is assigned to a separate processor. In contrast, in
a dynamic system tasks ready for execution are placed in one common priority queue and
dispatched to processors for execution as the processors become available. It is, therefore,
possible that different instances of periodic tasks execute on different processors. Most hard
real-time systems built to date are all static in nature. However, intuitively a dynamic real-time
system can make more efficient utilization of the available resources.

This chapter is organized as follows. We first discuss task allocation schemes for multi-
processors. We next discuss dynamic allocation of tasks to processors. Finally, we address the
clock synchronization problem in distributed systems.

MULTIPROCESSOR TASK ALLOCATION

In this section we discuss a few algorithms for statically allocating real-time tasks to the proces-
sors of a multiprocessor system. We already know that in a static task allocation algorithm, al-
location is made before run time, and the allocation remains valid throughout a full run of the
system. As already mentioned, the task allocation algorithms for multiprocessors do not try to
minimize communication costs as interprocess communication time is low. This is because in
multiprocessors, communication time is the same as memory access time, due to the availabil-
ity of the shared memory. This is the reason why the task allocation algorithms that we discuss
in this section may not work satisfactorily in distributed environments. The allocation algo-
rithms that we discuss are centralized algorithms. In the following, we discuss a few important
multiprocessor task allocation algorithms.

Utilization Balancing Algorithm. This algorithm maintains the tasks.in a queue in in-
creasing order of their utilizations. It removes tasks one by one from the head of the queue and
allocates them to the least utlli_zgd processor each time. The objective of selectlng the least uti-
lized processor each time is to balance utilization of the different processors. In a perfectly bal-
anced system the utilization u; at each processor equals the overall utilization of the processors
u of the system. Here the utlllzatlon of a processor P, is the summation of the utilization of all
tasks assigned to it. If ST, is the set of all tasks as31gned to a processor P, then the utilization of
the processor P; is u, }:jm u,, where @, is the utilization due to the task 7. If PR is the set of
all processors in the systems, then jerr u However, using this algorithm I'[is very difficult to
achieve perfect balancing of utilizations across different processors for an arbltrary task set.
That is, it is very difficult to make u, = @ for each P,. The simple heuristic used in this algorithm
gives suboptlmal results. The objectlve of any good utilization balancing algorithm is to mini-
mize 2/, |(# — u,)|, where n is number of processors in the system u is average utilization of
processors, and , is utilization of processor i.

This algonthm is suitable when the number of processors in a multiprocessor is fixed. The
utilization balancing algorithm can be used when the tasks at the individual processors are
scheduled using EDF.

Next-Fit Algorithm for RMA. In this algorithm, a task set is partitioned so that each parti-
tion is scheduled on a uniprocessor using RMA scheduling. This algorlthm attempi’s to use-as

4.1 Multiprocessor Task Allocation

113

few processors as possible. Unlike the utilization balancing algorithm this algorithm does not
require the number of processors of the system to be predetermined and given before hand. It
classifies the different tasks into a few classes based on the utilization of the task. One or more
processors are assigned exclusively to each class of tasks. The essence of this algorithm is that
tasks with similar utilization values are scheduled on the same processor.

In this algorithm, tasks are classified based on their utilization according to the following
policy. If the tasks are to be d1V1ded into m classes, a task T, belongs toaclassj, 0= j<m,if

“@F—1)<efp = @ 1A 1) @.1)

Suppose, we wish to partition the tasks of a system into four classes. Then, by using
Expr. 4.1, the different classes can be formulated depending on the utilization of the tasks as

follows:) ;
Class 1: (22,-1)<C, = (2* —1) \7§\\
Class 2: (23 -N<C = (22 -1 \\
Class 3: (24 == (23 -1) S
Class4: 0 < C, = (2 — 1) ~

From the above, the utilization grid for the different classes can be found to be: class 1:
(0.41, 1), class 2: (0, 26, 0.41), class 3: (0.19, 0.26), and class 4:(0; 0.19).

We can view Expr. 4.1 as defining grids on the utilization plot of the tasks. A task is as-
signed to a grid depending on its utilization. It is not difficult to observe that the size of the grids
at higher task utilization values are coarser compared to that at low task utilization values. The
grid size of class 1 tasks is 1 — 0.41 = 0.59, whereas the grid size of the class 3 tasks is 0.07.
Simulation studies indicate that using the next fit algorithm at most 2.34 times the optimum
number of processors are required. We now illustrate the working of this task allocation method
using an example.

114

Chapter 4 Scheduling Real-Time Tasks in Distributed Systems

Bin Packing Algorithm for EDF. This algorithm attempts to allocate tasks to the proces-
sors such that the tasks on the individual processors can be successfully scheduled using EDF.
This means that tasks are to be assigned to processors such that the utilization at any processor
does not exceed 1. Bin packing is a standard algorithmic problem. We formulate the task allo-
cation problem as a bih packing problem in the following.

We are given n periodic real-time tasks. When the individual processors are to be scheduled
using the EDF algorithm, the number bins necessary can be expres?:sas [E _,u;]. The bin

packing problem is known to be NP-complete.

Several bin packing algorithms exist. The tvéro that we discuss are the fi s\t%dom algo-
rithm and the first-fit decreasing algorithm. In the first fit random algorithm, tasks are selected
randomly and assigned to processors in an arbitrary manner as long as the utilization of a
processor does not exceed 1. In this scheme, at most 1.7 fimes the optlga m number of proces-
sors are required. T

In the first-fit decreasing algorithm, the tasks are sorted in non-increasing order of their
CPU utilization in an ordered list (that is, the task with the highest utilization is assigned the
first position, and so on). The tasks are selected one by one from the ordered list and assigned
to the bin (processor) to which it can fit in (that is, does not cause the utilization to exceed 1). A
task is assigned to the processor to which it fits first. Simulation studies involving large number
of tasks and processors show that the number of processors required by this approach is 1.22~
times the optimal number of processors. e

~

2 DYNAMIC ALLOCATION OF TASKS

So far we had discussed static allocation of tasks to processors. However, in many applications
tasks arrive sporadlcally at different nodes. In such a scenario, a dynamic algorithm is needed
to handle the arriving tasks. Dynamic algorithms assume that any task can be executed on any
processor. Many of the dynamic solutions are naturally distributed and do not assume that there
is a central allocation policy running on some processor.

In the dynamic algorithms, rather than preallocating tasks to processors, the tasks are as-
signed to processors as and when they arise. Since the task allocation to nodes can be made on
the instantaneous load position of the nodes, the achievable schedulable utilization in this case
should be better than the static approaches. However, the dynamic approach incurs high run
time overhead since the allocator component running at every node needs to keep track of the

4.2 Dynamic Allocation of Tasks

115

instantaneous load position at every other node. In contrast, in a static task allocation algorithm,
tasks are permanently assigned to processors at the system initialization time and no overhead
is incurred during run time. Also, if tasks are bound to a single processor or a subset of proces-
sors, dynamic allocation would be ineffective.

In this section we discuss two popular dynamic real-time task allocation algorithms.

jﬂﬂ%wmg In this method, every processor maintains two tables

called_status table and system load table. The status table ofa processor contains information
about the tasks which it has committed to run, including informationabout the execution time
and periods of the tasks. The system load table contains the latest load information of all other
processors of the system. From the latest load information at the other processors, the surplus
computing capacity available at the different processors can be determined.

The time axis is divided into windows, which are intervals of fixed duration. At the end of
each window, each processor broadcasts to all other processors the fraction of computing power
in the next window that is currently free for it—that is, the fraction of the next window for which
it has no committed tasks, Every processor on receiving a broadcast from a node about the load
position updates the system load table. When tasks arise at a node, the node first checks whether
the task can be processed locally at the node. If it can be processed, then it updates its status table.
If not, it looks out for a processor to which it can offload the task.

While looking out for a suitable processor, the processor consults its system load table to
determine the least loaded processors in the system which can accommodate this task. It then
sends out Request for bids (RFBs) to these processors. While looking out for a processor, an
overloaded processor checks its surplus information and selects a processor (called the fo-
cussed processor). However, remember that the information (i.e., the system load table) might
be out of date. Therefore, there is a likelihood that by the time the processor with excess load
sends a task to a focussed processor, the focussed processor might have already changed its sta-
tus and become overloaded. For this reason, a processor can not simply off-load a task to an-
other node based on the information it has in the system load table.

The problem of obsolete information at the nodes is overcome using the following strategy.
A processor sends out RFBs only if it determines that the task would complete in time, even
when the time needed to get the bids from the other processors and then sending out the task to
the focussed processor. The criteria for selecting a processor may be based on factors such as
proximity to the processor, its exact load information, etc.

The focussed addressing and bidding strategy, however, incurs high communication over-
head in maintaining the system load table at the individual processors. Window size is an
important parameter determining the communication overhead incurred. If the window size is
increased, then the communication overhead decreases; however, the information at various
processors would be obsolete. This may lead to a scenario where none of the focussed proces-
sors bids due to status change in the window duration. If the window duration is too small then
the information would be reasonably uptodate at the individual processors, but the communica-
tion overhead in maintaining the status tables would be unacceptably high.

Buddy Algorithm. The buddy algorithm tries to overcome the high communication over-
head of the focussed addressing and bidding algorlthm The buddy algorlthm is very similar to
focussed addressmg and bidding algorlthm but differs in the manner in wh1ch the target
processors are found.

116

Chapter 4 Scheduling Real-Time Tasks in Distributed Systems

In this algorithm, a processor can be in any of the following two states: underloaded and
overloaded. The status of a node is underloaded if its utilization is less than some threshold
value.

That is, a processor P, is said to be underloaded if u; < Th, The processor is said to be over-
loaded if its utilization is greater than the threshold value (i.e., u; = Th).

Unlike focussed addressing and bidding, in the buddy algorithm broadcast does not occur
periodically at the end of every window. A processor broadcasts only when the status of a
processor changes either from overloaded to underloaded or vice versa. Further, whenever the
status of a processor changes, it does not broadcast this information to all processors and limits
it only to a subset of processors called its buddy set. There are several criteria on which the
buddy set of a processor design is based. First, it should be neither too large nor too small. In
multi-hop networks, the buddy set of a processor is typically the processors that are its
immediate neighbours.

§ FAULT-TOLERANT SCHEDULING OF TASKS

Task scheduling techniques can be used to achieve effective fault-tolerance in real-time
systems. This is an efficient technique as it requires very little redundant hardware resources.
Fault-tolerance can be achieved by scheduling additional ghost copies in addition to the primary
copy of a task. The ghost copies may not be identical to the primary copy but may be stripped
down versions that can be executed in shorter durations than the primary. The ghost copies of
different tasks can be overloaded on the same slot and in case of a success execution of a pri-
mary, the corresponding backup may be deallocated.

| CLOCKS IN DISTRIBUTED REAL-TIME SYSTEMS

Besides the traditional use of clocks in a computer system, clocks in a system are useful for
two main purposes: determining timeouts and time stamping. Timeouts are useful to a real-
time programmer in a variety of situations, and its use includes determining the failure of a
task due to the missing of a deadline. Timeouts at both the sender and receiver ends is espe-
cially convenient for communication in distributed environments. They can be used as indica-
tors for possible transmission faults or delays, or for non-existent receivers. Time stamping is
useful in several applications. But a prominent use of time stamping is in message communi-
cation among tasks. The idea is that the message sender would also include the current time
along a message. Time stamps not only give the receiver some idea about the age of a message,
but can also be used for ordering purposes. Time stamping relies on good real-time clock
services.

A distributed system typically has one clock at each node. Different clocks in a system tend
to diverge since it is almost impossible to have two clocks that run exactly at the same speed.
This lack of synchrony among clocks is expressed as the clock slew and determines the atten-
dant drift of the clocks with time. Lack of synchrony and drift among clocks makes the time
stamping and timeout operations in a distributed real-time system meaningless. Therefore, to
have meaningful timeouts and time-stamping spanning more than one node of a distributed sys-
tem, the clocks need to be synchronized. This makes clock synchronization a very important

4.5 Centralized Clock Synchronization

117

issue in distributed real-time systems. The following discussions are intended to provide some
basic ideas regarding clock synchronization.

4.4.1 Clock Synchronization

The goal of clock synchronization is to make all clocks in the network agree on their time val-
ues. For most distributed real-time applications, it is often sufficient to get the different clocks
of a system agree on some time value which may be different from the world time standard.
Many of you might know that the world time standard is called universal coordinated time
(UTC). UTC is based on the international atomic time (TAI) maintained at Paris by averaging
a number of atomic clocks from laboratories around the world. UTC signals can be made use of
through GPS (Global Positioning System) receivers and specialized radio stations.

When the clocks of a system are synchronized with respect to one of the clocks of the sys-
tem, it is called internal clock synchronization. When synchronization of a set of clocks with
some external clock is performed, it is called external synchronization. There are two main ap-
proaches for internal synchronization: centralized clock synchronization and distributed clock
synchronization.

BB CENTRALIZED CLOCK SYNCHRONIZATION

In centralized clock synchronization, one of the clocks is designated as the master clock. The
other clocks of the system are called slaves and are kept in synchronization with the master
clock. The master clock is also sometimes called the fime server. The arrangement of the clocks
in this scheme of clock synchronization has schematically been shown in Fig. 4.1. In Fig. 4.1,
the clocks C), . . . C, are the slave clocks that are to be synchronized with the master clock.
The server broadcasts its time to all other clocks for synchronization after every AT time
interval. Once the slave clocks receive a time broadcast from the master, they set their clock as
per the time at the master clock. The parameter AT should be carefully chosen. If AT is chosen
to be too small, then the broadcast from the master is frequent and the slaves remain in good
synchronization with the master at all times, but unnecessarily high communication overhead is
incurred. If AT is chosen to be too large, then the clocks may drift too much apart. Let us as-
sume that the maximum rate of drift between two individual clocks is restricted to p. It should
be possible to determine the maximum drift rate between any two clocks, clock manufacturers
usually specify this as one of the specification parameters of a clock. The parameter p is unit

o i f ATl

¥z Master S EiRRTe— ¢
/ 1

g} ‘ i Rmaitl gl S

¥4 \ ‘ \/ QD
\7 P/\
.55
\”@%

Ci C) 8 Bugd Cnp-1 Cp Slave Clocks

4 FIGURE 4.1
Centralized Synchronization System

118 Chapter 4 Scheduling Real-Time Tasks in Distributed Systems

less since it measures drift (time) per unit time. Suppose clocks are resynchronized after every

L AT interval. Then, the drift of any clock from the master clock will be bounded by pAT. From

‘;& thps, it can be concluded that the maximum drift between any two clocks will be limited to
Q' v p

j\ n the above calculations, we have ignored the communication time. That is, the time it

? takes for a clock time broadcast to be received at the other clocks. Similarly, we have assumed
that once the clock broadcasts are received, the clocks are set to the received time instantly.
However, in reality it takes a finite amount of time to set a clock. Therefore, unless the commu-
nication time and the time to set the clock are suitably taken care of, the synchronized time

(J/ (would become slower and slower with respect to an external clock. Though they would still re-
/ CSR main synchronized among themselves within the specified bound. However, it is very difficult

0" to compensate these two terms in practical systems. We leave this as an exercise to the reader to
determine the rate at which a centrally synchronized clock would drift with respect to an exter-
nal clock.

B8 DISTRIBUTED CLOCK SYNCHRONIZATION

The main problem with the centralized clock synchronization scheme is that it is susceptible
to single point failure. Any failure of the master clock causes breakdown of the synchro-
nization scheme. Distributed clock synchronization overcomes this severe handicap of the
centralized clock synchronization scheme. In distributed clock synchronization, there is no
master clock with respect to which all slave clocks are to be set. But, all the clocks of a sys-
tem are made to periodically exchange their clock readings among themselves. Based on the
received time readings each clock in the system computes the synchronized time, and sets its
clock accordingly (see Fig. 4.2). However, it is possible that some clocks are bad or become
bad during the system operation. Bad clocks exhibit large drifts—drifts larger than the man-
ufactured specified tolerance. Bad clocks may even stop keeping time all together. Fortu-
nately, the bad clocks can be easily identified and taken care of during synchronization by

4.6 Distributed Clock Synchronization

119

(& Cs

C3 Cy

4 FIGURE 4.2
Distributed Clock Synchronization

rejecting the time values of any clock which differs by any amount larger than the specified
bound. A more insidious problem is posed by Byzantine clocks. A Byzantine clock is-a two-
_faced clock. It can transmit different values to different clocks at the same time. In Fig. 4.3,
C, is a Byzantine clock that is sending time value ¢ + e to clock Cs and ¢t — e to clock C, at
the same time instant.

It has been proved that if less than one-third of the clocks are bad or Byzantine (i.e., no
more than one out of four are bad or Byzantine), then we can have the good clocks approxi-
mately synchronized. The following is the scheme for synchronization of the clocks. Let there
be n clocks in a system. Each clock periodically broadcasts its time value at the end of certain
interval. Assume that the clocks in the system are required to be synchronized within € time
units of each other. Therefore, if a clock receives a time broadcast that differs from its own time
value by more than € time units, then it can determine that the sending clock must be a bad one
and safely ignore the received time values. Each clock averages out all good time values re-
ceived after a broadcast step and sets its time value with this average value. This scheme has

Byzantine

4 FIGURE 4.3
Byzantine Clock is a Two Faced Clock

120

Chapter 4 Scheduling Real-Time Tasks in Distributed Systems

been presented in pseudo code form in the following. Each clock C, carries out the following
operations:

Procedure distributed clock synchronization:

good-clocks = n;

for(j = 1; j < n;j++){

if (I(e; — ¢;)I > €) good-clocks--; //Bad clock

else total-time = total-time + csi

c; = total-time/good-clocks; //set own time equal to the computed

time

}

Note that each clock of the system independently carries out the same set of steps. If all n
clocks of a distributed system carry out the above steps, and at most m clocks out of # clocks
are bad, and n > 3 * m, then we show in the following that the good clocks will be synchronized
within 2¢2 35”’ bound.

We ﬁrst show in the following theorem that a Byzantme clock can make two good clocks
differ in their computed average time by at most o

L

THEOREM 4.1 [n a distributed system wzth n clocks, a single Byzantine clock can make two ar-
bitrary clocks in a system to differ by in time value, where € represents the maximum per-
missible drift between two clocks.

PROOF: Let us consider three clocks C,, C,, C; of a distributed system as shown in Fig. 4.3.
In Fig. 4.3, C, and C; are two good clocks and C is a Byzantine clock. The clocks C, and C,
are required not to dlffer by more than e. C; belng a Byzantine clock shows two dlfferent val-
ues to C, and C,. Now, the effect of the Byzantme clock in the total time calculation is to make
the two good cIocks differ by at most 3 * € as shown in Fig. 4.4. Therefore, the effect of a sin-
gle Byzantine clock can make two arbitrary clocks in a system to differ by % in time value.
So, for m Byzantine clocks can make two good clocks differ by at most 3em in average
computation. From this it follows that from the time computation by the individual clocks, the

individual clocks will be synchronized within 2¢% 35”’
]

Let the time required for two clocks to drift from €2 36’” to € be AT.

ne — 3em

or, 2ATp =
4.2)
or, AT =

=
I ! I l

Gt @) C3 cr”

4 FIGURE 4.4
Drift Between Two Clocks in Presence of Byzantine Clocks

Exercises 121

We know that (Bm + 1)e — 3em

n X 2p

AT =

4.3)

AT = —
2np

We now illustrate the computation of the synchronization period for the distributed clock
synchronization algorithm using an example.

SUMMARY

In this chapter we first discussed how real-time tasks can be scheduled on multiprocessor
and distributed computers. Task scheduling in multiprocessor and distributed systems is a
much more complex problem than the ﬁnlprocessor scheduling problem.

* We saw that the task scheduling problem in multiprocessor and distributed systems consists
of two sub-problems: task allocation to individual processors and task scheduling at the in-
dividual processors. The task allocation problem is an NP-hard problem.

* In a distributed real-time system, it is vital to have all the clocks in the systems synchro-
nized within acceptable tolerance. We examined a centralized and a distributed clock syn-
chronization scheme.

* Centralized clock synchronization is susceptible to single point failure. On the other
hand, a distributed clock synchronization scheme can keep the good clocks in a distrib-
uted system synchronized only if no more than 25% of the clocks are bad or Byzantine.

* In the centralized synchronization scheme, unless the communication time and the time to
set the clock are suitably compensated, the synchronized time may progressively become
slower and slower with respect to the world time (UTC).

EXERCISES

1. State whether you consider the following statements TRUE or FALSE. Justify your answer in each
case.

(a) Optimal schemes for scheduling hard real-time tasks in multiprocessor computing environ-
ments have been devised by suitably extending the EDF algorithm.

122

Chapter 4 Scheduling Real-Time Tasks in Distributed Systems

(b) Using the distributed clock synchronization scheme, it is possible to keep the good clocks of a

distributed system having 12 clocks synchronized, when two of the clocks are known to be
Byzantine.

(c) Ina distributed hard real-time computing environment, task allocation to individual node; using
a bin packing algorithm in conjunction with task scheduling at the individual nodes using the
EDF algorithm can be shown to be the most proficient.

(d) The focussed addressing and bidding algorithm used for task allocation in distributed real-time
systems statically allocates tasks to nodes.

(e) The focussed addressing and bidding algorithm for task allocation can handle dynamic task ar-
rivals and is suited for use in multiprocessor-based real-time systems.

(f) Buddy algorithms require less communication overhead compared to focussed addressing and
bidding algorithms in multiprocessor real-time task scheduling.

(g) The bin-packing scheme is the optimal algorithm for allocating a set of periodic real-time tasks
to the nodes of distributed system.

(h) In a distributed system when the message communication time is non-zero and.signi.ﬁcaqt, the

simple internal synchronization sonive i ik SR niier i wchinimding s

mentally delayed by the average message transmission time after every synchronization inter-
val.

. Explain why algorithms that can be satisfactorily used to schedule real-time tasks on multiprocessors

often are not satisfactory to schedule real-time tasks on distributed systems, and vice versa?

. In a distributed system, six clocks need to be synchronized to a maximum difference of 10 mSec

between any two clocks. Assume that the individual clocks have a maximum rate of drift of 2 X 107°.
Ignore clock set-up times and communication latencies.

(a) What is the rate at which the clocks need to be synchronized using (i) a simple central time
server method? (ii) simple internal synchronization (averaging) method?

(b) What is the communication overhead in each of the two schemes?

(c) Assuming the average communication latency to be 0.1 mSec, what would be the drift of the
synchronized time with respect to the UTC for each of the two synchronization schemes?

. (a) Why is the clock resolution provided to real-time programs by different commercial real-time

operating systems rarely finer than few hundreds of milliseconds though giga hertz clocks are
used by these systems?

(b) Can clock resolution finer than milliseconds be provided to real-time programs at all? If yes,
briefly explain how.

. Why is it necessary to synchronize the clocks in a distributed real-time system? Discuss the relative

advantages and disadvantages of the centralized and distributed clock synchronization schemes.

. Describe the focussed addressing and bidding and the buddy schemes for running a set of real-time

tasks in a distributed environment. Compare these two schemes with respect to communication over-
head and scheduling proficiency.

. Suppose a distributed system has 12 clocks. Assuming that no clocks in the system are Byzantine,

determine the total number of message exchanges required per hour to keep the clocks synchronized
within 1 mSec of each other in the centralized and distributed schemes. Assume that the maximum
drift rate of the clocks is given to be 6 * 10 °.

