ANALYSIS AND DESIGN OF SINGLE COLUMN BUILDING USING STAAD PRO

Α

PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision

0f

Mr. CHANDRA PAL GAUTAM

(ASSISTANT PROFESSOR)

By

AKSHAY PATHANIA (171659)

HARDIK NAGPAL (171620)

То

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN – 173234 HIMACHAL PRADESH, INDIA

MAY-2021

STUDENT'S DECLARATION

I hereby declare that the work presented in the Project report entitled "ANALYSIS AND DESIGN OF SINGLE COLUMN BUILDING USING STAAD PRO" submitted for partial fulfilment of the requirements for the degree of Bachelor of Technology in Civil Engineering at Jaypee University of Information Technology, Waknaghat is an authentic record of my work carried out under the supervision of Mr. CHANDRA PAL GAUTAM. This work has not been submitted elsewhere for the reward of any other degree/diploma. I am fully responsible for the contents of my project report.

Student's signature

Assnay

Akshay Pathania 171659 far

Hardik Nagpal 171620

Department of Civil Engineering

Jaypee University of Information Technology, Waknaghat

MAY, 2021

CERTIFICATE

This is to certify that the work which is being presented in the project report titled ""ANALYSIS AND DESIGN OF SINGLE COLUMN BUILDING USING STAAD PRO" in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Akshay Pathania (171659), Hardik Nagpal (171620) during a period from August, 2020 to May,2021 under the supervision of Mr. Chandra Pal Gautam Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat.

The above statement made is correct to the best of our knowledge.

Date: MAY 2021

Chandra Pal

Mr. Chandra Pal Gautam Assistant Professor Department of Civil engineering JUIT, Waknaghat Dr. Ashok Kumar Gupta Professor & Head of Department Department of Civil Engineering JUIT, Waknaghat

External Examiner

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our project guide "**Mr**. **CHANDRA PAL GAUTAM**" for his continuous support and able guidance which helped us in research and writing this report. We would like to thank him for lending his precious time. We would like to thank the **JUIT Department of Civil Engineering** for providing user friendly environment for the project. Special thanks to **Dr. ASHOK KUMAR GUPTA, Head of Civil Engineering Department JUIT** for cooperating with us in this time of pandemic.

Date: MAY 2021

ABSTRACT

The main purpose of this project is to study and construct a multi-story structure (G+3) on a single column using STAAD PRO and compare it with multiple column building. The design involves dead load, live load and floor load and analyzing the whole structure by STAAD PRO. STAAD PRO has a cutting-edge user interface, visualization tools, and advanced analysis and design engines. From model generation, analysis and design to results in post processing, STAAD PRO is the best in the market.

It has an easy-to-use user interface that allows users to draw any structure and enter load values and dimensions. STAAD PRO also gives the option of selecting the material of structure and analyzing it from over 80 codes recognized all over the world. A rough plan was drawn and then selected for STAAD PRO. We have used only dead load, live load and floor load on single column building and compared the results for the general column building. The study and design of a [G+ 3] RCC frame under various load combinations was our final project.

TABLE OF CONTENT

Chapter No.	Particulars	Page No.
	Students Declaration	i
	Certificate	ii
	Acknowledgement	iii
	Abstract	iv
	List of Tables	V
	List of Figures	vi
	List of Acronyms and Abbreviations	vii
1	Introduction	6
	1.1 Introduction	6
	1.2 Objectives	7
	1.3 Scope	7
	1.4 Background	8
	1.5 About our project	8
2	Literature review	10
	2.1 Journals	10
	2.2 Design codes	11
3	Staad. Pro	13
	3.1 Introduction to Staad. Pro	13
	3.2 Tools in Staad. Pro	14
4	Working with staad.pro	20
	4.1 Types of Structures	20
	4.2 Supports	21
	4.3 Loads	21
	4.4 Design parameters	23

	4.5 Design of beam	23
	4.6 Design of Columns	24
	4.7 General Observations	24
	4.8 Allowable Stresses	25
	4.9 Various Analyses	25
	4.10 Stability Requirements	25
	4.11 Deflection test	26
	4.12 Code Checking	26
5	Analysis of g+3 RCC framed	27
	5.1 Column	27
	5.2 Beams	28
	5.3 Slabs	29
6	Loading of structure	31
	6.1 Types of loads	31
7	Analysis of structure	40
	7.1 Concrete design	40
	7.2 Run analysis command	42
	7.3 Post processing mode	43
8	Foundation design on staad foundation	47
	8.1 Steps involved in foundation design	47
9	Comparison of single column structure with multiple columns structure of same dimensions	55
	9.1 Comparison of deflection of single column with general column	56
10	Observations	63
11	Result	65
12	Conclusion	74
13	Future Scope	75
14	References	76

LIST OF TABLES

TABLE NO.	TITLE	PAGENO.
1.1	Input Parameters	8
7.1	Concrete design parameter	41
10.1	Comparison of both structures	63
10.2	Volume of concrete and weight of bars for single column structure	64
10.3	Weight of structure and volume of concrete for multiple columns structure	64

LIST OF FIGUERS

FIGURE NO.	TITLE	PAGE NO.
1.1	Base plan of structure	9
3.1	Move command	15
3.2	Move command in Staad pro	15
3.3	Types of cursors	16
3.4	Ways to select the members	16
3.5	Mirror command	17
3.6	Translational repeat	17
3.7	Circular repeat command	18
3.8	Analysis window showing post processing mode	18
3.9	Staad pro connect editor window	19
3.10	Types of staad software.	19
4.1	Generation of structure through gui	20
4.2	Member load configuration	22
5.1	Column dimensions	27
5.2	Columns 3d rendered view	28
5.3	Beam dimensions	29
5.4	3d rendered view of beams	29
5.5	Slabs 3d rendered view	30
6.1	Self-weight in -y direction	31
6.2	Wall load of -6.25 kn/m on structure	32
6.3	Floor finish of -1.5 k n/m^2	32
6.4	Live load of -2.5 k n/m ² on structure	33
6.5	Top view of live load	34
6.6	Input parameters for wind load	34

6.7	Main building data for wind load	35
6.8	Wind load in +x direction	35
6.9	Wind load in -x direction	36
6.10	Wind load in +z direction	36
6.11	Figure 6.11 Wind load in -z direction	37
6.12	Seismic parameters for structure	38
6.13	Seismic parameters for structure	38
6.14	Auto generating load combinations as per is	39
7.1	Parameters for concrete desig	40
7.2	Analysis window showing zero errors and warnings	42
7.3	Deflection of structure	43
7.4	Shear force in x direction	43
7.5	Shear force in y direction	44
7.6	Shear force in z direction	44
7.7	Moment in x direction	45
7.8	Moment in y direction	45
7.9	Moment in z direction	46
7.10	Plate stress	46
8.1	Selecting major loads for staad foundation advanced.	47
8.2	Figure 8.2 load combination generation table	48
8.3	Various loads and their combinations descriptions	48
8.4	Creating job profile and selecting load cases.	49
8.5	Concrete and reinforcement parameters	50
8.6	Cover and soil input parameters	50
8.7	Footing geometry parameters	51

8.8	Figure 8.8 sliding and overturning parameters	51
8.9	Analysis window showing zero errors with the dimensions of footing	52
8.10	Elevation of isolated footing	53
8.11	Plan of isolated footing	53
8.12	Reinforcement summary of foundation	54
9.1	Single column building and multiple columns building used for comparison in project.	55
9.2	Deflection of single column building	56
9.3	Deflection of multiple column building.	56
9.4	Shear force diagram of fx of single column building(front view)	57
9.5	Shear force diagram of fx of multiple column building(front view)	57
9.6	Front view of fy of single column building	58
9.7	Front view of fy of multiple columns building	58
9.8	Shear force in z direction for single column building (3d view)	59
9.9	Shear force in z direction for multiple columns building (3d view)	59
9.10	Moment in x direction for single column building(top view)	60
9.11	Moment in x direction for multiple columns building(top view)	60
9.12	Moment in y direction for single column structure(view from - x))	61
9.13	Moment in y direction for multiple columns structure (view from -x)	61
9.14	Moment in z direction for single column structure (front view)	62
9.15	Moment in z direction for multiple columns structure (front view)	62
11.1	Maximum and minimum values at nodes	65

11.2	Results of reactions at node	65
11.3	Results of moments in beams and columns	66
11.4	Results of plates	66
11.5	Shear bending of beam 301	67
11.6	Deflection of beam 30	67
11.7	Concrete design of beam 301	68
11.8	Shear bending of beam 170	68
11.9	Deflection of beam 170	69
11.10	Concrete design of beam 170	69
11.11	Shear bending of beam 51	70
11.12	Deflection of beam 51	70
11.13	Concrete design of beam 51	71
11.14	Beam 276 geometry	71
11.15	Beam 276 property	72
11.16	Beam 276 shear bending	72
11.17	Deflection of beam 276	73
11.18	Concrete design of beam 276	73

LIST OF ACRONYMS AND ABBREVIATIONS

a	Coefficient of thermal expansion
Е	Modulus of Elasticity
Fx	Shear force in X direction
F y	Shear force in Y direction
Fz	Shear force in Z direction
G	Shear modulus
nu	Poisson's ratio
DL	Dead Load
LL	Live Load
WL	Wind Load
EL	Earthquake Load
M x	Moment in X direction
Му	Moment in Y direction
M z	Moment in Z direction

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

A commercial building is one that is primarily used for business purposes. Office buildings, warehouses, and retail (convenience stores, "big box" stores, shopping malls, and so on) are all examples of different types.

A commercial building in a city often combines residential and commercial uses. Local governments frequently enforce strict commercial zoning regulations and have the authority to designate any zoned area as such. A commercial area or an area zoned at least partially for commerce is required for a business to be located.

These modern reinforced concrete structures may appear to be extremely complicated in design. The majority of these structures, on the other hand, are made up of a variety of basic structural elements such as beams, columns, slabs, walls, and foundations.

As a result, the designer must become acquainted with the design of these fundamental reinforced concrete elements. After that, the joints and connections are meticulously developed. Reinforced concrete structures were first designed using a purely empirical approach at the turn of the century.

The so-called rigorous elastic theory followed, in which stress levels in concrete and steel were reduced and stress-deformations were believed to be linear. The limit state form, while being a semi-empirical technique, has been found to be the best for designing reinforced concrete structures.

The main aim of the project is to use Staad Pro to analyse and design an RCC structure. Beams, Columns, Staircase, and Slab are the major structural components of this building, with beams and columns designed using Staad software and slab and staircase designs done manually using I.S Codes. Various loads, such as dead load, live load, and earthquake load, are acting on this structure. I.S Codes can be used to calculate these loads. The acting of these loads is caused by a variety of factors.

1.2 OBJECTIVES

 To study the effects of various loads like (dead load, live load, wind load, seismic load) on a single column building(G+3) and compare it with a normal column building on STAAD PRO.

1.3 SCOPE

The key aim of this project is to apply what we've learned in class to create a real-world RCC framework. These structures necessitate large, open spaces that are not obstructed by columns. The large floor area provides enough flexibility and space for future expansion. Change in the production layout that does not necessitate significant structural changes. The construction of a two-story business building with a large seminar hall for training participants was the subject of this Major Qualifying Project.

The project team's goal is to create a structural system that is both cost-effective and safe, as well as adaptable to the intended use. Based on the building's anticipated business use, the project team creates an architectural layout and floor plan. After that, the group created a structural framing system to model. Beams, girders, columns, connections, and foundation elements will all be designed, as will all major structural members. Both steel and concrete construction are investigated in frame designs. Both materials were then compared and analysed, with one of the materials being used to create a final, cost-effective structural frame.

The team compared a variety of structural strategies and materials to see how they affected the structure's economics, performance, and constructability.

1.4 BACKGROUND

The research base that contributed to the development of this Major Qualifying Project is discussed in this section of the background. The information gathered about the various elements of the building, as well as the structural design and analysis, is presented in the sections below.

1.5 ABOUT OUR PROJECT

Due to rapid urbanization and globalization there is a continuous rise of high rise buildings which are not only safe but also provide better ground utilization and look pleasant to the eyes as well.

Our project also deals with the analysis and design of a multi storey building (G+3) on a single column and analyzing it on STAAD PRO and comparing it on various parameters with a general column building.

PARAMETER	VALUE
SINGLE COLUMN	2.6m*2.6m
COLUMNS	0.61m*0.61m
BEAMS	0.61m*0.61m
PLATES THICKNESS	0.1 m
COMPRESSIVE STRENGTH	40000 Kn/m^2

YIELD STRENGTH FOR MAIN REINFORCEMENT	500000 Kn/ m^2
MAXIMUM SEC. REINFORCEMENT	12 mm
MAXIMUM MAIN REINFORCEMENT	20 mm
LOCATION OF BUILDING	District Kangra Himachal Pradesh

Table 1.1 Input Parameters

Figure 1.1 Base Plan of Structure

CHAPTER 2 LITERATURE REVIEW

2.1 Journals

1. Babu and Venkatesh (2016) reported that a single column supports the entire structure, while the other members serve as cantilevers. On STAAD PRO, the structure was evaluated for different loading conditions.

2. Arora et al. (2017) studied that earthquake Resistant Design and reported that present paper deals with the advantages and the future trends in earthquake resistant design of the structures.

3. Saleem and Kumar (2017) reported that STAAD Pro is a convenient software that allows users to create mounts and load values for specific dimensions. They also analysed the differences between manual and software design, which led to an improvement in design quality and accuracy.

4. Nagaraju1 et al. (2018) reported that the Limit state method was used to build the column, beam, rectangular footing, and staircase, which is secure than working stress method. They also concluded that structural members such as columns and beams have been engineered for ductility, so lateral forces at member joints will be minimal and torsion will be avoided.

5. Trivedi and Pahwa (2018) done Wind Analysis and Design of G+11 Storied Building Using STAAD-Pro. They concluded that Wind loads can be measured in a specific region using a zone factor.

6. Falak Vats (2019) concluded that high-rise structures STAAD Pro can be used to calculate loads and their combinations, analyse the structure, and construct the structure based on the analysis.

7. Irfan and Vimala (2019) in their paper collapse mechanism of 5,12,15 storey buildings are analyzed. Base shear, displacement increases with increase in SCWB. In low rise buildings hinge formations involved only beams whereas high rise involved beams and columns.

8. Kunal et al. (2019) In paper comprises of seismic analysis and design of G+7 RCC building. Various loads and load combinations were applied and analyzed using STAAD PRO. It is a very adaptable software having ability for determine seismic analysis.

9. Savadi and Hosur (2019) showed that cost of the Composite is least as compared to RCC and steel. Bending Moment and shear force is also least in composite due to decreased dead load. Composite structure is best solution for the multi storied structure.

10. Sahu et al. (2020) studied the STAAD Pro, with its latest features, outperformed its predecessors and competitors, and that its data sharing capabilities with other major applications, such as AutoCAD, set it apart from the competition. and it was also accurate in designs.

2.2 Design Codes

2.2.1 IS 456:2000

Indian Standard plain and reinforced concrete code of practice. The main code for the design of all reinforced concrete (RC) structures, IS 456:2000, has added new dimensions to the current situation, and its importance in building earthquake-resistant structures must be considered in full. IS 456:2000 suggests that earthquake resistant structures be detailed using IS 13920: 1993 and IS 4326: 1993.

2.2.2 IS 1893 (Part I):2002

Indian Standard Criteria for Earthquake Resistant Design of Structures.

This norm includes requirements that are wide in scope and apply to all types of structures. It also has clauses that are only applicable to houses. Apart from seismic zoning map and seismic coefficients of important cities, map showing epicenters, map showing epicenters, and dynamic analysis, it includes general principles and design parameters, variations, design scope, key attributes of buildings, and dynamic analysis.

2.2.3 IS 875 (Part 1):1987

Code of practice for design loads (other than earthquake) for buildings and structures – Dead loads

IS 875 (Part 1) deals with the different live loads that must be taken into account when designing buildings. The weights of walls, partitions, floor finishes, false ceilings, false floors, and other permanent constructions in buildings make up the dead load. The dead load loads can be measured using the dimensions and unit weights of different members. Simple concrete and reinforced concrete have different unit weights.

2.2.4 IS 875 (Part 2):1987

Code of practice for design loads (other than earthquake) for buildings and structures -Imposed loads.

IS 875 (Part 2) deals with the different live loads that must be taken into account when designing buildings. The weight of movable partitions, dispersed and concentrated loads, load due to impact and vibration, and dust loads are all examples of imposed loads caused by the intended use or occupation of a building. Wind, seismic activity, snow, and temperature-related loads are not included in the enforced loads.

2.2.4 IS 875 (Part 3):1987

Code of practice for design loads (other than earthquake) for buildings and structures -Wind Loads

Wind loads must be considered when designing buildings, structures, and materials, according to IS 875 (Part 3). This specification specifies the wind forces and their effects (static and dynamic) that should be considered when constructing building structures, as well as the force exerted by the horizontal aspect of the wind. Wind loads are determined by the speed of the wind.

CHAPTER 3 STAAD. PRO

3.1 Introduction to Staad. Pro

STAAD Pro. V8i is the most commonly used structural engineering programme for model generation, analysis, and multi-material design. It has a graphical user interface that is intuitive and easy to use, as well as visualisation tools, efficient analysis and design features, and seamless integration with a range of other modelling and design software products.

STAAD Pro was chosen because of the benefits it provides:

- Easy-to-use interface
- Compliance with Indian Standard Codes
- Adaptability in solving a wide range of problems
- Accuracy of the solution

It is made up of the various components:

STAAD.Pro GUI is used to create the perfect which is then analysed with the STAAD engine. The GUI can also be used to view the results graphically after the analysis and design have been completed.

The STAAD analysis and design engine is comprised of the following components: It's a structural analysis and integrated aluminium, concrete, timber and steel construction calculation engine.

To starting, we solved some sample problems with STAAD Pro and double-checked the accuracy of the results using manual calculations. The outcomes were fulfilment and exact. During the initial stages of our project, we calculated building loadings as well as seismic and wind loads.

In order to do an effective analysis, a structural engineer must first assess structural stresses, geometry, support conditions, and material properties. Support reactions, stresses, and

displacements are common outcomes of this type of investigation. After that, the data is compared to criteria that indicate failure conditions. Dynamic response, stability, and non-linear behaviour are all things that advanced structural analysis can look into. The goal of design is to achieve a reasonable probability that the structures being designed will perform satisfactorily for the duration of their intended lives. With the appropriate level of education.

They should be able to withstand all normal construction and use loads and deformations, as well as have sufficient durability and resistance to seismic and wind effects. In most cases, the Limit State Method should be used to design the structure and structural elements. Accepted theories, experimentation, and experience should all be considered, as well as the need to design for long-term use.

The entire design process, including durability design, construction, and use in service, should be taken into account. The accomplishment of design goals necessitates adherence to precisely established criteria for materials, manufacturing, workmanship, as well as maintenance and usage of the structure in operation.

The design of the building is regulated by the Indian Standard Codes' minimum standards. Minimum construction loads for dead loads, forced loads, and other external loads that the structure must withstand are established to address the minimum standards for structural protection in buildings.

It is hoped that strict adherence to the loading standards recommended in this code will ensure not only the structural safety of the buildings being designed, but also the structural safety of the buildings themselves.

3.2 TOOLS IN STAAD PRO

3.2.1 MOVE TOOL

This tool is used to move a particular member or a whole structure in STAAD PRO.

Figure 3.1 Move command

Figure 3.2 Move command in staad pro

3.2.2 TYPES OF CURSORS IN STAAD PRO

There are generally 4 types of cursors in STAAD PRO which are following:

- NODE CURSOR used for selecting the nodes.
- BEAM CURSOR used for selecting the beams
- PLATE CURSOR used for selecting the plates.
- SOLID CURSOR used for selecting any other solid material

Figure 3.3 Types of cursors

3.2.3 SELECTING THE MEMBERS

STAAD PRO gives us the option of selecting the members like nodes, beams, plates, solids in a particular direction. The image below showcases it.

All Parallel ▼ Inverse Connected ▼ List Shiphight	All All Supports Inverse List	All Image: Parallel ▼ Image: Inverse Image: Connected ▼ Image: List Image: Parallel ▼	See All Parallel ▼ See Inverse See Connected ▼ See List See Connected ▼	 All Connected ▼ Inverse List 	
Geometry	Nodes	Beams	Plates	Solids	

Figure 3.4 Ways to select the members

3.2.4 MIRROR COMMAND

STAAD PRO allows the user to mirror the structure in any direction as they want. Whether along the x axis , y axis , z axis respectively.

	di 4	× 1	💀 🔻				F	FINAL Y
	Selec	t	Specification	Loading		Analysis	and De	sign
		q	Move Node *		×	🔒 Beam	Layout	**
€	< M	irro	r]_ Insert	Node	St.
	놀 Cr	eate	geometry by mirr	oring the		🖁 Stretc	h Beam	-8
	se	lecti ane.	ed geometry about	a specifie	d	Be	am	
	44	6	🛃 Analytical Model	ing: S	jeo	metry	Prope	erties
				IECT 2 V	Albe	ale Struct		
			TINAL TEAK PRO	JECT -2 - V	write	Sie Struct	ure	

Figure 3.5 Mirror command

3.2.5 TRANSLATIONAL REPEAT

As the name suggests this command is used to repeat the structure in any direction. This command is preferred for high rise buildings.

Figure 3.6 Translational repeat

3.2.6 CIRCULAR REPEAT

This command is used to prepare circular or dome structures.

Figure 3.7 Circular repeat command

3.2.7 POST PROCESSING MODE

This mode is used after analysis shows zero errors and zero warnings. This mode displays all the results of the structure. From shear force to bending moment to displacement to plate stress this mode covers all the results for each member.

```
0 Error(s), 0 Warning(s), 1 Note(s)
```

++ End STAAD.Pro Run Elapsed Time = 2 Secs C:\Users\Hardik02\Desktop\STAADP~1\FINAL YEAR PROJEC....anl

```
۲
```

- O View Output File
- Go to Post Processing Mode
- Stay in Modeling Mode

Figure 3.8 Analysis window showing post processing mode

3.2.8 STAAD PRO CONNECT EDITOR

This option is used as a coding in STAAD PRO and is a very effective tool to correct the errors. However it needs to be used very carefully and only after the user is well versed with the interface and the use of software.

Figure 3.9 Staad pro connect editor window

3.2.9 VARIOUS TYPES OF STAAD SOFTWARE

There are many types of staad software available which are included in the connect edition like staad foundation, rcdc connect edition, staad building planner, ssdn connection client etc.

Figure 3.10 Types of staad softwar

CHAPTER - 4 WORKING WITH STAAD. *PRO*

The STD input file is how the Graphical User Interface interacts with the STAAD.pro research engine. The input file is a text that includes a sequence of commands that must be run in the correct order. The commands are either recommendations or orders.

The STAAD input file can also be created using a text editor or the GUI Modelling facility. In general, any text editor can be used to edit/create the STD input file. The GUI Modelling facility creates the input file using an integrated menu-driven graphics-oriented interface.

4.1 Types of Structures

An assemblage of elements can be described as a structure. Structures made up of frame, plate/shell, and solid elements can be analysed and designed using STAAD.Pro. STAAD can analyse almost any type of structure. Software designed for professionals. a structure in space,

A three-dimensional framed structure with loads applied in any plane is the most general structure. A plane structure is bound by a global X-Y coordinate scheme when loads are in the same plane. Truss members can only withstand axial member forces and cannot bend in a TRUSS system.

A floor arrangement is a two-dimensional or three-dimensional structure that has no horizontal (global X or Z) movement [all FX, FZ, and MY joints are restrained]. The floor framing (in the global X-Z plane) of a building is a good example of a floor structure.

Figure 4.1 Generation of structure through gui

4.2 Supports

It can be pinned, fixed, or fixed with different releases. A pinned support has no restraints against rotational movement but does have limits against all translational movement. To put it another way, a pinned support will elicit responses but will not be able to withstand any moments. The restraints on a fixed support are in place to prevent movement in all directions. It's also possible to specify translational and rotational springs. To reflect the springs, the spring constants are used. The translational spring constant is the force needed to displace a support joint one length unit in the defined global direction. On the other hand, a rotational spring constant is known as the force needed to rotate the support joint one degree around the given global direction.

4.3 Loads

Joint loads, member loads, temperature loads, and fixed end member loads are all types of loads that can be specified in a structure. STAAD is an acronym for "Standardized Transportation Authority.

In addition, Pro can calculate the structure's self-weight and practise it in analysis as uniformly distributed member loads.

4.3.1 Joint loads

Any free joint of a structure can be subjected to joint loads, which include both forces and moments.

The structure's global coordinate system is affected by these loads. The positive coordinate directions are acted upon by positive forces. A single joint can have any number of loads applied to it, and the loads will be additive on that joint.

4.3.2 Members load

There are three different kinds of member loads that can be assigned to the members of a system. These types of loads include uniformly spaced loads, clustered loads, and linearly varying loads (including trapezoidal). The full or partial length of a member is affected by uniform loads.

Concentrated loads have an effect at any intermediate, pre-determined location. Loads that vary linearly act across the entire length of a member. Trapezoidal linearly differing loads work over the whole length of a member or a part of it, and are transformed into a uniform load and multiple clustered loads.

In any independent loading condition, any number of loads can be specified to act on a member. The member coordinate system or the global coordinate system can be used to specify the member loads. Member loads that are uniformly distributed in the global coordinate system can be specified to act along the entire or projected length of the member.

Figure 4.2 Member load configuration

4.3.3 Floor load

A uniformly distributed load is often applied to a floor (bounded by the X-Z plane).

4.3.4 Generator of Seismic Loads:

The equivalent lateral load analysis procedure is followed by the STAAD seismic load generator. The lateral loads are assumed to be applied in the X and Z directions, with the gravity loads being applied in the Y direction. As a result, the Y axis will be perpendicular to the floors

and will point upward in a building model (all Y joint coordinates positive). The user must supply seismic zone coefficients, importance factors, and soil characteristic parameters in order to generate loads in accordance with the codes. Rather than using the approximation. The programme calculates the period using the Raleigh quotient technique, using code-based formulas to estimate the building period in a specific direction. Following that, the seismic coefficient C is calculated using this period. Following the calculation of the base shear using the appropriate equation, it is distributed among the various levels and roofs in accordance with the specifications. Lateral loads are applied to the structure as a result of the distributed base shears. These loads can then be used for analysis and design as standard load cases.

4.3.5 Generator for Wind Loads:

From user-specified wind intensities and exposure factors, the STAAD Wind Load generator can calculate wind loads on joints of a structure. For different height zones of the structure, different wind intensities can be specified. Exposure factors can be used to simulate openings in a structure. The exposure factor of each structure joint is defined as the fraction of the impact area on which the wind load works. Built-in algorithms measure the exposed area based on the areas bounded by members (plates and solids are ignored), calculate wind loads based on the speed and exposure data, and distribute the loads as lateral joint loads.

4.4 Design Parameters

A range of parameters are included in the code that are needed for IS 13920 architecture. It agrees all of the parameters required to complete a specification in accordance with IS: 456. It also has a few additional parameters that are only available when the design follows IS: 13920. The default parameter values were selected to be numbers that are often found in standard design specifications.

4.5 Design of Beams

Flexure, shear, and torsion resistance are also built into beams. If required, the influence of the axial force may be considered. To determine the critical load cases at different parts of the beams, all active beam loadings are pre-scanned for all of these forces. To be constructed according to IS: 13920, the width of the member must not be less than 200mm.

4.6 Design of Columns

IS 456:2000 specifies the design of columns for axial forces and biaxial moments. Shear forces are also taken into account when designing columns. All major requirements for choosing longitudinal and transverse reinforcement as defined by is 456 have been taken into account in the staad column design

Advantages of following clauses, however, have been met in order to incorporate IS 13920 provisions:

1. Concrete should have a minimum grade of M20.

2. Only steel reinforcements of grade Fe415 or less are permitted.

3. The column member must have a minimum dimension of 200 mm. The shortest dimension of a column with an unsupported length greater than 4m must not be less than 300 mm.

4. The shortest cross-sectional dimension to the perpendicular dimension ratio should preferably be greater than 0.

5. Hoops must be spaced no more than half the column's shortest lateral dimension, unless special confining reinforcement is provided.

6. Through each joint face to mid-span, and on either side of any segment where flexural yielding can occur, special confining reinforcement shall be given. The length lo must be greater than a) the wider lateral dimension of the member at the segment where yielding occurs, b) 1/6 of the transparent span of the member, and c) 450 mm.

7. Hoops used as special confining reinforcement must have a spacing of no more than 14 of the minimum member size, but no less than 75 mm or more than 100 mm.

4.7 General Observations

This portion contains general statements about how the Indian standard code of practice (is: 800-1984) for structural steel design is implemented in staad.pro. The principles of allowable stress design guide the design philosophy and procedural logistics for member selection and code checking. Overstressing failure and failure due to stability considerations are two major failure modes. The sections that flow describe the key aspects of the calculated allowable

stresses and the stability criteria. Members are proportioned to withstand design loads without exceeding permissible stresses, and the least-costly segment is selected based on the least weight requirements. The code testing portion of the software looks at specifications for reliability and strength, as well as vital loading conditions and governing code parameters.

4.8 Allowable Stresses

Staad.pro uses allowable stress method of design as defined by is: 800 for member design and code checking. It's a method for proportioning structural members under service conditions based on design loads and forces, allowable stresses, and design limitations for the appropriate material. This manual would not be able to cover every aspect of is: 800. However, the main types of the allowable stresses specified by is: 800 and implemented in staad.pro will be discussed in this section.

4.9 Various Analyses

Multiple analyses in a single run may be required for structural analysis and design. Staad.pro helps the user to modify input such as member resources, help requirements, and so on in an input file to enable numerous analyses in the same run. The findings of different analyses can be integrated for design purposes. In systems with bracing, it might be possible to render those members inactive for one load case and then allow them for another. This method of study necessitates the use of staining.

4.10 Stability Requirements:

All members' slenderness ratios are calculated and compared to the appropriate maximum values. The maximum slenderness ratios for different types of members are summarised in is: 800. A proper maximum slenderness ratio for each member can be provided in the staad implementation of is: 800.

4.11 Deflection Test

This feature enables the user to use deflection as a criterion in code checking and member selection. Three parameters can be used to control the deflection check. Other strength and stability-related criteria are used in addition to deflection. The local deflection is calculated using the most recent analysis results.

4.12 Code Checking

The main aim is to determine if the specified section will satisfy the specifications of the specification code. the codes are verified using the is: 800 (1984) standards. forces and moments at various parts of the participants are used in the code checking equations. to designate sections, use the beam parameter or the segment order.

Chapter-5

ANALYSIS OF G+3 RCC FRAMED

5.1 COLUMN

A column is a structural structure that supports axial compressive loads and has a height of at least three times its lateral dimension. The material thickness, cross section form and scale, and length and degree of proportional and dedicational limitations at the ends of a column decide its strength.

CENTRAL COLUMN DIMENSIONS OF 2.6m*2.6m

Figure 5.1 Column dimensions

Figure 5.2 Columns 3d rendered view

5.2 BEAMS

Beams are used to transfer weight from slabs to columns. bending is built into the design of beams. The beams are generally: single and double. the perimeters and geometry of the beams are assigned in the same way that they are for columns.

The design beam command has been assigned, and the analysis has been completed; now the reinforcement details are being collected. Loads should be able to cause tensile, compressive, and shear stress in a reinforced concrete beam.

Loads on a reinforced concrete beam should be able to cause shear, tensile and compressive in the beam.

Figure 5.3 beam dimensions

Figure 5.4 3d rendered view of beams

5.3 SLABS

Slabs are plate elements with a much smaller depth than the other two dimensions.

They usually carry a load that is evenly distributed throughout the building's floors and roof. It's called Restricted Slab. Which is only supported by the column. IS 456:2000 was used to design the reinforced concrete slab.

The building uses 140 mm thick slabs that are designed as two-way slabs. For slab design, M30 concrete grade is used.

🔒 🖻 🛤 🔻	Tools FINAL YEAR PROJECT -2.STD - STAAD.Pro CONNECT Edition	– 🗗 ×
Select Specification Loading Analysis and Design Utilities	Plate Tools	🕜 Search 🔎 🙇 🗧 🚣
Image: Structure Image: Structure	iew Views d Objects Management Views Options Cascade Cascade Cascade Set Structure Colors Set Set Set Set Set Set Set Set Set Set	• Only D B Rendering
F R Analytical Modeling: Geometry Properties Materia	ls Specifications Supports Loading Analysis Design	
FINAL YEAR PROJECT -2 - Whole Structure		🗉 🔀 🖬 FINAL YEAR PROJECT -2 - Beams 🗖 🔲 🔀
AL YEAR PROJECT -2 - Rendered View		Beam Node A Node B Property Refn. Ma^^ 355 93 96 4 CONK 118 4 CONK 122 4 CONK
		123 4 CONC
		Properties - Whole Structure X
		Ref Secton Material
		1 Effets 391 2 Rect 78 AVR2 74 CONCRETE 3 Rect 19 56/10 56 CONCRETE 4 Rect 15 75x11.81 CONCRETE
		Highlight Assigned Geometry
		Edit Delete
		Materials Thickness User Table
	124 R4 R4 R4 3.000m R0 R4	Assignment Method
Ľx z	· · · ·	Load 1 Assign Close Help
	Analytical Modeling Workflow	Load : 1: DEAD LOAD Input Units : kN-m

Figure 5.5 Slabs 3d rendered view

CHAPTER-6

LOADING OF STRUCTURE

6.1 TYPES OF LOADS

6.1.1 Self-weight:

STAAD can be used to calculate the structure's self-weight. Use the self-weight command in the load case column to help yourself out. Dead load from walls: STAAD can also generate dead load from walls. By indicating the thickness of the walls, you can be more professional. The weight of the wall was taken into account when calculating the load per m. The weight of the inner walls would be twice that of the outer walls when measuring the weight of the walls with a stair case or elevator.

Figure 6.1 Self-weight in -y direction

Figure 6.2 Wall load of -6.25 kn/m on structure.

6.1.2 FLOOR FINISH

Figure 6.3 Floor finish of -1.5 k n/m²

6.1.3 LIVE LOAD

Each floor was given a live load of 2.0 kN/m2, while the terrace level was given a live load of 1.0 kN/m2. The live loads in each floor were produced in the same way as the dead loads in the previous case. This can be done by using the participant load button in the load case column.

Figure 6.4 Live load of -2.5 k n/m² on structure

Figure 6.5 Top view of live load

6.1.4 WIND LOAD

The wind load values were formed by the code in accordance with IS 875. The group wind load given the concept of wind load in the describe load command section. Wind intensities were manually measured and entered into the programme at various heights. Based on those values, it calculates the wind load at various floors.

Figure 6.6 Input parameters for wind load

Figure 6.7 Main building data for wind load

Figure 6.8 Wind load in +x direction

Figure 6.9 Wind load in -x direction

Figure 6.10 Wind load in +z direction

Figure 6.11 Wind load in -z direction

6.1.5 SEISMIC LOAD

IS 1893-2002 was used to determine the seismic load values, In accordance with the IS code,

STAAD. Pro has a seismic load generator.

SEISMIC PARAMETERS

- Z= Zone factor which depends upon the location of building. It is given in IS 1893 Table no. 3 Seismic Zone factor on page no. 10.
- The next parameter is Response Reduction parameter denoted by R. It tells about the type of building. It is given on Table 9 Clause 7.2.6
- Third parameter is Importance factor which tells about the use of building. It is denoted by I and is given on Table 8 Clause 7.2.3
- Fourth parameter is Design Acceleration Coefficient denoted by (Sa/g) which denotes the type of soil and is given on Clause 6.4
- The last parameter is time period denoted by Ta and is given on Clause 7.6.2.

Edit: X Seismic Parameters Ø Vehicle Definitions Type: Include Accidental Load Generate Ø Vehicle Definitions Type: Include Accidental Load Importance factor (0) 15 Include Accidental Load Response reduction Factor (0) 15 Include Accidental Load Response reduction Factor (0) 15 Include Accidental Load Type of structure (51) 1 Include Accidental Load Vehicle Definitions Ø Vehicle Definitions Importance factor (0) 15 Seismic Definition Response reduction Factor (0) 15 Include Accidental Load Parameters Vehicle Definitions Importance factor (0) 15 Include Accidental Load Response reduction Factor (0) 15 Include Accidental Load Importance factor (0) 15 Include Accidental Load Vehicle Definitions Include Accidental Load Importance factor (0) 15 Include Accidental Load Type of structure (51) 1 Include Accidental Load Importance factor (0) 15 Include Accidental Load Importance factor (0) 15 Include Accidental Load Importance factor (0) 15 Include Accidental Load </th <th>Specificati</th> <th>ions Supports</th> <th>Loading</th> <th>Analysis</th> <th>Design</th> <th></th> <th></th>	Specificati	ions Supports	Loading	Analysis	Design		
Modiły Close Help Ossan To Assign Ossan To Edit List	Specificat	Edit : Seismic Param Type : Indian3S 18 Param Response reduc Imp Rock and soi " Type " Period in " Copph - Call " Multiplying F Zone Factor	Loading Loading eters 93 (Part 1):2016 eters 20ne tion Factor (RF) portance factor (QF) ef structure (ST) meing ratio (DM) i acter for SA (DF) acceleration (CT) acceleration (SA)	Analysis Analysis Value 0.36 3 1 6 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0	Design Ude Accidental Load Generate Unit seconds m m Close Help	Load & Definition Vehicle Definitions Wind Definitions Wind Definitions Wind Definitions Wind Definitions Sow Definition Reference Load Definitions Sow Definition Reference Load Definitions Sow Definition Reference Load Definitions D Seismic Definition Seismic Definition D Starting Load Definition D Direct Analysis Definition D Starting Load Definition D St	2016) 1 DM 0 05

Figure 6.12 Seismic parameters for structure

pecifications	Supports	Loading	Analysis	Design	
	IL : 1893 Seismic Parar International Science Sector Response Reduction F Ric buildings with On Importance Factor Importance Factor Importance Factor Importance Factor Structure Type	meters iput Factor dinary Moment Medium Soil RC MRF Buil	Resisting F V V I V dings	2 = 0.36]].5	Load & Definition Load & Definitions Load & Definitions Load & Definitions Load & Definitions D TYPE 1: WIND 1 Snow Definition D TYPE 1: WIND 1 Snow Definition D Reference Load Definitions D Seismic Definitions D ZONE 0.36 RF 311.5 S3 2 ST 1 DM 0.05 D Pushover Definitions D Direct Analysis Definition D Starting Load Definition Load Cases Details Load Envelopes
	Damping Ratio	5 % 0.5 Generate	Foundation Period in Cancel Modify	n Depth 5 Z (sec) 0.5 Close He	New Add Edit Delete. Toggle Load Assignment Method Assign To Selected Beams Assign To View Use Cursor To Assign Assign To Edit List

Figure 6.13 Seismic parameters for structure

6.1.6 LOAD COMBINATIONS

The structure has been evaluated for auto load case, which takes into account all previous loads in a proper ratio and generates a load combination code in accordance with Indian code for general structures in the load combination category.

Rules for Combining:

Each load category can be set with one of three rules for each Code/Category: -

- a. All cases should be combined.
- b. Each case has a different combination.
- c. All combinations are possible.

It will be loaded with a mix of earthquake, wind, self-weight, dead load, and live loads.

Add New : Load Cases	Load & Definition X
Primary Auto Load Combination Select Load Combination Code: IS:456/IS:800 Auto Load Combination Category: IS:456/IS:800 Select Load Combination Category: IS:456/IS:800 Select Load Combination No: 60 Generate Loads Discarded Load Combination No: Discarded Load Combinations Selected Load Combinations Create Repeat Load Cases Include Notional Load?	2 Load Cases Details I 1:EOX I 1:EOX I 1:EOX I 2:EO×X I 3:EOZ I 4:EO-X I 3:EOZ I 5:DEADLOAD I 0:EVELOAD I 0:EVELOAD I 0:WINDLOAD X I 0:WINDLOAD X I 0:WINDLOAD Z I 0:WINDLOAD X I 1:WILC.12 DEAD +12 LIVE +12 WIND (2) I 1:WILC.12 DEAD +12 LIVE +12 WIND I I I 1:UIC.12 DEAD +12 LIVE +12
Analytical Modeling Workflow Load	: 1: EQX Input Units : kN-m

Figure 6.14 Auto generating load combinations as per is 456.

CHAPTER 7

ANALYSIS OF STRUCTURE

7.1 CONCRETE DESIGN

Concrete D	Design - Whole Structure	\times
Current Code:	IS456	~
LOAD LOAD LOAD LOAD LOAD PERF STAR STAR STAR STAR STAR STAR STAR STAR	COMB 56 ULC. 0.9 DEAD + -1.5 3 COMB 57 ULC. 0.9 DEAD + -1.5 3 COMB 58 ULC. 0.9 DEAD + -1.5 3 COMB 59 ULC. 0.9 DEAD + -1.5 3 COMB 59 ULC. 0.9 DEAD + -1.5 3 CORM ANALYSIS PRINT ALL T CONCRETE DESIGN ODE INDIAN C 40000 YMAIN 500000 YSEC 500000 ESIGN BEAM ESIGN COLUMN ONCRETE TAKE IAXSEC 12 IAXMAIN 20 ESIGN ELEMENT ND CONCRETE DESIGN	*
Toggle Assig	gn	
Select Parameters	Parameters Commands	s
Assignment Me	ethod	
Assign T	Fo Selected Beams	
Assign T Use Curr	sor To Assign	
Assign T	Fo Edit List Select Group/Dec	:k
Assign	Close Help	

Figure 7.1 Parameters for concrete design

TABLE 7.1 CONCRETE DESIGN PARAMETERS

CODE	IS 456
COMPRESSIVE STRENGTH OF CONCRETE	40000 kN/m^2
YIELD STRENGTH FOR MAIN REINFORCEMENT	500000 KN/m^2
YIELD STRENGTH FOR SHEAR REINFORCEMENT	500000KN/m^2
MAXIMUM SECONDARY REINFORCEMENT	12 mm
MAXIMUM MAIN REINFORCEMENT	20 mm
CLEAR COVER	30 mm

7.2 RUN ANALYSIS COMMAND

Analysis is performed by clicking on the top Run Analysis Command on the top. The following picture shows that there are zero errors and zero warning for the given structure. The analysis window gives three options as to Go to Output file or Go to post processing mode or to modelling mode.

Figure 7.2 Analysis window showing zero errors and warnings.

7.3 POST PROCESSING MODE

Figure 7.3 Deflection of structure

Figure 7.4 Shear force in x direction

Figure 7.5 Shear force in y direction

Figure 7.6 Shear force in z direction

🕘 🛞 💌 📕 📂 🧰 🗞 🛷 🖪 🕫 🛒 🔻	L YEAR PROJECT -2.STD - STAAD.Pro CON	NECT Edition							- 8	×
File View Select Results Utilities						0	Search		P 🔤	
	City Open View	Bisplay Options	Cascade	🐴 Struc	ture Only					
	S New View	Set Structure Colors	Tile Horiz	ontal III Table	s N					
Settings Window Whole Structure 🔊 💿 🚮 👩 😋 🐺	Selected Objects Management	Structural Tooltip Options	Tile Vertic	al Window	s * Rend	lering				
Labels Tools	Views	Options		Windows						
Workflow • Postprocessing: Displacements Reactions	Beam Results Plate Results	Solid Results Dynamics	Reports							TB
Analytical Modeling				LYEAR PROJECT	-2 - Node Disp	(acements:				23
				T / Ni / Sull	Horizontal	Vertical	Horizontal	Resultant		Re ^
Physical Modeling			Node	1/0	X	Y	Z		rX	_
	The second s		1		mm 0.023	mm -35.369	mm 0.023	mm 35 369	deg .0.024	-
	ALL ALL		<u> </u>	2 LIVE LOAD	0.0023	-11.407	0.023	11.407	-0.001	
Building Planner				3 FLOOR LOA	0.001	-5.704	0.001	5.704	-0.001	
			2	1 DEAD LOAD	0.044	-30,709	0.190	30.709	-0.029	
Piping Riping		*		2 LIVE LOAD	0.005	-11.093	0.046	11.093	-0.005	
Set I have a set of the set of th		<u>*</u>		3 FLOOR LOA	0.002	-5.546	0.023	5.546	-0.003	
		E all		2 LIVELOAD	0.000	-28.345	0.372	10 674	-0.043	
Ridge Deck		THE		3 FLOOR LOA	0.000	-5.337	0.063	5.337	-0.006	
		51 () () () () () () () () () (4	1 DEAD LOAD	-0.044	-30.709	0.190	30.709	-0.029	
				2 LIVE LOAD	-0.005	-11.093	0.046	11.093	-0.005	
Postprocessing		2		3 FLOOR LOA	-0.002	-5.546	0.023	5.546	-0.003	~
		and the second se	<) al
Foundation Design			E FINA							×
			1010	All Relati	ve Displacer	nent Max R	elative Displ	acements /		
Steel AutoDrafter			Beam	1/0	Dist	x	у	z	Resultant	^
		志 ,	Deam	DC	m	mm	mm	mm	mm	
			1	1 DEAD LOAD	0.000	0.000	0.000	0.000	0.000	
Connection Design		and the second			1.500	-0.000	-0.337	-0.020	0.078	
		11 I I I I I I I I I I I I I I I I I I			2.250	-0.000	0.228	0.002	0.228	
		Bar			3.000	0.000	0.000	0.000	0.000	
Advanced Concrete Desi		- The second sec		2 LIVE LOAD	0.000	0.000	0.000	0.000	0.000	
		The second			0.750	0.000	-0.041	-0.006	0.041	
Advanced Slab Design					1.500	-0.000	-0.037	-0.004	0.038	
	A A A A A A A A A A A A A A A A A A A				2.250	0.000	0.007	0.000	0.008	
A CONTRACT OF A CONTRACT. A CONTRACT OF A CONTRACT. A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. A CONTRACT OF A CONTRACT. A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. A CONTRACT OF A CONTRACT. A CONTRACTACTACTACTACTACTACTACTACTACTACTACTACTA	ILELI Tangate			3 FLOOR LOA	0.000	0.000	0.000	0.000	0.000	
Earthquake					0.750	-0.000	-0.020	-0.003	0.021	
5×		I and A. Toulo			1.500	-0.000	-0.019	-0.002	0.019	
		Load 1 : Torsio			2.250	-0.000	-0.004	-0.000	0.004	~
Click on nodes to select (Ctrl+click to toggle selection)		Postpr	ocessing Work	flow	Load :	1: DEAD LOAD		Input	Units : kN-m	
	- + / -					~		G da Para	12:39	
C Li C		<u> </u>				Q) ~ • • •	(78 419) ENG	04-12-2020	8

Figure 7.7 Moment in x direction

Figure 7.8 Moment in y direction

Figure 7.9 Moment in z direction

Figure 7.10 Plate stress

CHAPTER 8

FOUNDATION DESIGN ON STAAD FOUNDATION

8.1 STEPS INVOLVED IN FOUNDATION DESIGN

1. The first step in foundation design is to select the important load cases from STAAD model which are to be included in STAAD FOUNDATION.

	Foundation Design
Bentley	Supports for Foundation Design
	Load Cases and Combinations Select Envelope
STAAD Foundation Advanced	Excluded from design 11: ULC, 1.5 DEAD + 1.5 LIVE 12: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (1) 13: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (2) 14: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (3) 15: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (4) 16: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (1) 17: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (2) 18: ULC, 1.2 DEAD + 1.2 LIVE + 1.2 WIND (3)
9.5.0.62 Protected by US and international copyright laws as described in "Help About" Copyright © 2021, Bentley Systems, incorporated. All rights reserved.	10: ULC, 1.2 DEAD + 1.2 LIVE + -1.2 WIND (4) * Include Include All To be included in design 5: DEAD LOAD 6: LIVE LOAD *
	Exclude All

Figure 8.1 Selecting major loads for STAAD FOUNDATION ADVANCED.

2. The second step is to generate load combination according to the desired recommended codes

Main Navigator 🛛 🗘 🛪	Load Co	mbir	nation Input							×
General Foundation Mode General Foundation General Foundation Mode General Foundation Mode G	ST	4,4	AD Four	ndation /	Advance	d		LOA	AD COMBIN	ATION
Create New Load Case def Column Reaction Load B Add a Column Reaction Load D Add Load for Mat Foundation	Load Co Service I	mbir Load	ation Table IND		I	1		[Update Table	🕒 Delete
Add Member Load (for Mat only)	Index		Dead Load	Live Load	Wind Load X	Wind Load Z	Seismic Load X	Seismic Load Z	Fluid Load	Snow Lo
FS Sliding and Overturning Factors	1 2	<u>v</u>	1.000 1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Create New Load Combination	3	◄	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000
Generate Load Combination	4	•	1.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000
🗸 Remove Load Case	5		1.000	0.000	-1.000	0.000	0.000	0.000	0.000	0.000
🗈 📉 Soil Properties	<									>
 ⊕ (3) Job Setup ⊖ (4) Isolated Footing Job ⊖ (5) Design Parameters → (2) Concrete & Reinforcement → (2) Concrete & Soil (2) Exection Comments 	Load C Ultimate	Load	nation No 1001					[Generate Load Update Table 	Combination
Sliding & Overturning	Index		Dead Load	Live Load	Wind Load X	Wind Load Z	Seismic Load X	Seismic Load Z	Fluid Load	
Detailed Output	1	7	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bei ottenen output	2	~	1.500	1.500	0.000	0.000	0.000	0.000	0.000	0.000
	3	₹	1.500	0.000	1.500	0.000	0.000	0.000	0.000	0.000
	4	v	1.500	0.000	0.000	1.500	0.000	0.000	0.000	0.000
	. 5	2	1.500	0.000	-1.500	0.000	0.000	0.000	0.000	0.000
	< Load (Comb	ination No 2001						e Generate Loa	> d Combination

Figure 8.2 Load combination generation table

Lo	ad Description		174	\times
	Load Description Load Case 5 Load Case 5 Load Comb	on Tree : (Primary) : DEA : (Primary) : LIVE 1001 : SL:1.000 × 1002 : SL:1.000 × 1003 : SL:1.000 × 1005 : SL:1.000 × 1006 : SL:1.000 × 1007 : SL:1.000 × 1008 : SL:1.000 ×		×
<	E - C Load Comb	1010 : SL:1.000 ×		~
	Add Assig	n to View	~	4551
	Column List:			_
	Load Case No	2079		-
	Load Title			
	Load Case Type	Primary		
	Loading Type	Dead Load		
	Copy Load	News		
	Load Case No	None		

Figure 8.3 Various loads and their combinations descriptions

3. The third step is to create a job profile describing about the name and the type of footing.

- JOB NAME single footing 11 May. 21
- JOB TYPE Isolated
- DESIGN CODE Indian
- DEFAULT UNIT TYPE- SI

Data	Input Pane	д ×
Job	Info	A
	Job Info	
	Job Name	single footing 11 m
	Job Type	Isolated
	Design Code	Indian
	Default Unit Type	SI
	Supports Assign	Assign to Listed Su
	Listed Supports	126
Loa	dina	*
	unig	
	valiable Load Cases	5.
9	elected Load Cases	:
L D	1001 (Service) : SL	1 000 x DI +1 000 x I +
	1002 :(Service) : SL:	1.000 x DL+1.000 x [
	1003 :(Service) : SL:	1.000 x DL+1.000 x [
	1004 :(Service) : SL: 1005 :(Carries) : SL:	1.000 x DL+1.000 x [
	1000 :[Service] : SL: 1000 :(Carrian) - CL	1.000 X DL+1.000 X L
	🙆 Eda	Current Job
	Edit	Current 00D

Figure 8.4 Creating job profile and selecting load cases

4. The next step is to input parameters of footing which includes Concrete and reinforcement parameters, Cover and soil parameters, footing geometry parameters, sliding and overturning.

Data Input Pane	ф×
Concrete and Reinforcement	-
Unit weight of concrete	25
Minimum bar spacing	50
Maximum bar spacing	450
Strength of Concrete (fck)	40
Yield strength of steel	500
Min Bar Size - Footing Bottom	32
Max Bar Size - Footing Bottom	40
Min Bar Size - Footing Top	32
Max Bar Size - Footing Top	40
Minimum Pedestal Bar Size	8
Maximum Pedestal Bar Size	40
Pedestal Tie Bar Size	8
Minimum Pedestal Bar	75
Spacing	
Maximum Pedestal Bar	300
Spacing	
Set as Default	No

Figure 8.5 Concrete and reinforcement parameters

Data Input Pane		ф. Э
Cover and Soil		-
Pedestal Clear Cover	50	m
Bottom clear cover	50	m
Unit weight of Soil	22	kľ
Base Value of Soil bearing capacity	400	kF
Multiplier on Soil Bearing Capacity For Ultimate Loads	1.7	
Depth of Soil above footing	500	m
Type of Depth	Fixed To	p
Surcharge Pressure	0	kħ
Depth of Water Table	2000	m
Phi value of soil Ø (in Degree)	0	
Min % of Contact Area for Service Loads	0	
Minimum % of Contact Area For Ultimate Loads	0	
Set as Default	No	

Figure 8.6 Cover and soil input parameters

Footing Geometry	*
Footing Type	Uniform Th
Design Type	Calculate [
Type of Calcutation for	User S
dimensions of footing	C Equal F
Minimum Length(FI)	1000
Minimum Width(Fw)	1000
Minimum Thickness(Ft)	3500
Maximum Length(FI)	8200
Maximum Width(Fw)	8200
Maximum Thickness(Ft)	5000
Dim Increment Along Global X	100
Dim Increment Along Global Z	100
Thickness Increment	50
Offset X Direction(Oxd)	0
Offset Z Direction(Ozd)	0
Set as Default	No

Figure 8.7 Footing geometry parameters

D	ata Input Pane		. 다
	Sliding and Overturning		*
	Coefficient of friction	0.5	
	Factor of safety against sliding	1.5	
	Factor of safety against overturning	1.5	
	Consider Passive Earth Pressure	No	
	Consider Cohesion Effect	No	

Figure 8.8 Sliding and overturning parameters

Figure 8.9 Analysis window showing zero errors with the dimensions of footing

Isolated Footing 126

Figure 8.10 Elevation of isolated footing

Figure 8.11 Plan of isolated footing

Figure 8.12 Reinforcement summary of foundation

CHAPTER 9

COMPARISON OF SINGLE COLUMN STRUCTURE WITH MULTIPLE COLUMNS STRUCTURE OF SAME DIMENSIONS

The comparisons of both structures have been made for a particular LOAD CASE that is 1.5(DL+LL) so that all major loads are included for simplicity. However STAAD PRO gives us flexibility to select any load for results and analysis.

Figure 9.1 Single column building and multiple columns building used for comparison in project.

9.1 COMPARISON OF DEFLECTION OF SINGLE COLUMN WITH GENERAL COLUMN

Figure 9.2 Deflection of single column building

Figure 9.3 Deflection of multiple column building.

9.2 COMPARISON OF SHEAR FORCE IN X DIRECTION FOR BOTH STRUCTURES

Figure 9.4 Shear force diagram of Fx of single column building(FRONT VIEW)

Figure 9.5 Shear force diagram of Fx of multiple column building(FRONT VIEW)

9.3 COMPARISON OF SHEAR FORCE IN Y DIRECTION Fy OF BOTH STRUCTURES

Figure 9.6 Front view of Fy of single column building

Figure 9.7 Front view of Fy of multiple columns building

`9.4 COMPARISON OF Fz FOR BOTH STRUCTURES

Figure 9.8 Shear force in Z direction for single column building (3D view)

Figure 9.9 Shear force in Z direction for multiple columns building (3D view)

9.5 COMPARISON OF Mx FOR BOTH STRUCTURES

Figure 9.10 Moment in x direction for single column building(TOP VIEW)

Figure 9.11 Moment in X direction for multiple columns building(TOP VIEW)

9.6 COMPARISON OF MOMENT IN Y DIRECTION FOR BOTH STRUCTURES

Figure 9. 12 Moment in Y direction for single column structure(VIEW FROM -X)

Figure 9.13 Moment in Y direction for multiple columns structure (VIEW FROM -X)

9.7 COMPARISON OF Mz FOR BOTH STRUCTURES

Figure 9.14 Moment in Z direction for single column structure (FRONT VIEW)

Figure 9.15 Moment in Z direction for multiple columns structure (FRONT VIEW)

CHAPTER 10

OBSERVATIONS

Table 10.1 Comparison Of Both Structures

DESCRIPTION	LOCATION FOR BOTH STRUCTURE S	LOAD CASE FOR MAXIMUM LOAD FOR BOTH	SINGLE COLUMN BUILDING	MULTIPLE COLUMNS BUILDING	PERCENTAG E DIFFERENCE IN VALUES	
DISPLACEMEN T IN X(cm)	NODE 115, NODE 111	LOAD CASE NO. 53,52	0.355	2.620	86%	
DISPLACEMEN T IN Y(cm)	NODE 111,NODE 66	2 EQ-X, 1EQX	0.118	0.123	4%	
DISPLACEMEN T IN Z(cm)	NODE 123, NODE 103	LOAD CASE NO. 39,38	0.596	2.642	77%	
MAX SHEAR FORCE IN X DIRECTION	NODE 126, NODE 126	LOAD CASE NO. 36,53	623.705	618.956	0.8%	
MAX SHEAR FORCE IN Y DIRECTION	NODE 126,NODE 130	LOAD CASE NO. 11,38	27751.2951	3689.537	87%	
MAX SHEAR FORCE IN Z DIRECTION	NODE 126,NODE 126	LOAD CASE NO. 38,39	623.705	619.255	0.8%	
MAX MOMENT IN X DIRECTION	NODE 126,NODE 126	LOAD CASE NO. 54,55	5149.170	1053.934	80%	
MAX MOMENT IN Z DIRECTION	NODE 126,NODE 126	LOAD CASE NO. 53,52	5149.015	1053.934	80%	

Table 10.2 Volume Of Concrete And Weight Of Bars For Single Column Structure

DESCRIPTION		DL+LL	DL+LL+WL+EL	DL+LL+WL+EL+LOAD COMBINATIONS
WEIGHT STRUCTURE(Kn)	OF	136612	210836	366831
		199.3	260.3	425.5
VOLUME	OF			
CONCRETE				
(m^3)				

Table 10.3 Weight Of Structure And Volume Of Concrete For Multiple Columns

 Structure

DESCRIPTION	DL +LL	DL+LL+WL+EL	DL+LL+WL+EL+LOAD COMBINATIONS
WEIGHT OF STRUCTURE(Kn)	108592	108592	252913
VOLUME OF CONCRETE (m^3)	153.6	153.6	333.7
CHAPTER 11

RESULTS

Pos 🔿	stprocessing:	Displace	ments Re	actions	Beam Results	Plate Res	ults Solid	d Results	Dynamics	Reports
K I I	⊢) I (<mark>A</mark> II) S	ummary /								
			Horizontal	Vertical	Horizontal	Resultant		Rotational		
	Node	L/C	X	Y	Z		rX	rY	٢Z	
			cm	cm	cm	cm	rad	rad	rad	
Max X	115	53 ULC, 0.9 D	0.355	-1.456	0.090	1.501	0.000	-0.000	-0.001	
Min X	111	36 ULC, 1.5 D	-0.596	-2.476	0.150	2.551	0.000	0.000	0.001	
Max Y	111	2 EQ-X	0.278	0.118	0.000	0.302	0.000	0.000	-0.000	
Min Y	121	11 ULC, 1.5 D	-0.154	-3.001	0.154	3.009	0.001	-0.000	0.001	
Max Z	123	39 ULC, 1.5 D	-0.150	-2.476	0.596	2.551	0.001	-0.000	0.000	
Min Z	103	54 ULC, 0.9 D	-0.090	-1.456	-0.355	1.501	-0.001	0.000	0.000	
Max rX	18	11 ULC, 1.5 D	0.006	-1.696	-0.029	1.696	0.003	0.000	0.000	
Min rX	8	11 ULC, 1.5 D	0.006	-1.616	0.040	1.616	-0.003	-0.000	0.000	
Max rY	102	38 ULC, 1.5 D	-0.155	-2.471	-0.258	2.489	-0.001	0.000	0.001	
Min rY	120	37 ULC, 1.5 D	0.258	-2.471	0.155	2.489	0.001	-0.000	-0.001	
Max rZ	12	11 ULC, 1.5 D	0.029	-1.696	-0.006	1.696	0.000	-0.000	0.003	
Min rZ	14	11 ULC, 1.5 D	-0.040	-1.616	-0.006	1.616	0.000	0.000	-0.003	
Max Rst	121	11 ULC, 1.5 D	-0.154	-3.001	0.154	3.009	0.001	-0.000	0.001	

Figure 11. 1 Maximum and minimum values at nodes

🔿 Pos	stprocessing:	Displacer	ments Re	actions	Beam Results	Plate Res	ults Solid	Results	Dynamics	Reports
K I I	⊢) I All	ummary / Ei	nvelope /							
			Horizontal	Vertical	Horizontal		Moment			
	Node	L/C	Fx kN	Fy kN	Fz kN	Mx kN-m	My kN-m	Mz kN-m]	
Max Fx	126	36 ULC, 1.5 D	623.705	25051.294	0.000	-1406.118	0.017	-7399.218		
Min Fx	126	37 ULC, 1.5 D	-623.705	25051.294	0.000	-1406.118	-0.017	4586.464		
Max Fy	126	11 ULC, 1.5 D	0.000	27751.295	0.000	-1406.091	-0.000	-1406.404		
Min Fy	126	3 EQZ	-0.000	-0.000	415.803	3995.227	-0.011	-0.000		
Max Fz	126	38 ULC, 1.5 D	0.000	25051.294	623.705	4586.723	-0.017	-1406.377		
Min Fz	126	39 ULC, 1.5 D	0.000	25051.294	-623.705	-7398.959	0.017	-1406.377		
Max Mx	126	54 ULC, 0.9 D	0.000	15030.777	623.705	5149.170	-0.017	-843.826		
Min Mx	126	39 ULC, 1.5 D	0.000	25051.294	-623.705	-7398.959	0.017	-1406.377		
Max My	126	36 ULC, 1.5 D	623.705	25051.294	0.000	-1406.118	0.017	-7399.218		
Min My	126	37 ULC, 1.5 D	-623.705	25051.294	0.000	-1406.118	-0.017	4586.464		
Max Mz	126	53 ULC, 0.9 D	-623.705	15030.777	0.000	-843.671	-0.017	5149.015		
Min Mz	126	36 ULC, 1.5 D	623.705	25051.294	0.000	-1406.118	0.017	-7399.218		

Figure 11.2 Results of reactions at nodes

🛛 🔿 Pos	stprocessing:	Displacer	nents	Reactions	Beam Results	Plate Res	ults Solid	I Results	Dynamics	Reports
K I I	⊢ ⊨ ∖ All	ummary (Er	nvelope /							
	Beam	L/C	Node	Fx kN	Fy kN	Fz kN	Mx kN-m	My kN-m	Mz kN-m	
Max Fx	301	11 ULC, 1.5 D	126	27751.295	-0.000	-0.000	-0.000	1406.091	1406.404	
Min Fx	170	37 ULC, 1.5 D	112	-942.559	-889.958	5.209	- <mark>6</mark> .056	-6.999	-1135.928	
Max Fy	73	11 ULC, 1.5 D	38	-134.787	1300.814	0.052	-9.622	-0.251	2083.915	
Min Fy	50	11 ULC, 1.5 D	38	-134.790	-1300.820	-0.052	9.622	-0.251	2083.920	
Max Fz	218	11 ULC, 1.5 D	18	201.279	4.907	778.746	1.027	-1265.704	7.615	
Min Fz	213	39 ULC, 1.5 D	13	20215.934	-142.073	-798.834	0.013	5381.035	-1334.471	
Max Mx	29	11 ULC, 1.5 D	14	465.670	-327.537	-31.433	119.662	-48.743	560.746	
Min Mx	7	11 ULC, 1.5 D	8	465.673	327.539	31.432	-119.662	-48.742	560.750	
Max My	301	39 ULC, 1.5 D	126	25051.294	-0.000	623.705	0.017	7398.959	1406.377	
Min My	301	54 ULC, 0.9 D	126	15030.777	-0.000	-623.705	-0.017	-5149.170	843.826	
Max Mz	301	36 ULC, 1.5 D	126	25051.294	-623.705	-0.000	0.017	1406.118	7399.218	
Min Mz	213	36 ULC, 1.5 D	13	20215.934	-798.861	-142.046	0.013	1334.224	-5381.282	

Figure 11.3 Results of moments in beams and columns

🕐 Pos	tprocessing:	Displace	ments Re	actions	Beam Results	Plate Resu	lts Solid	Results	Dynamics	Reports
	Shear	r, Membrane	e and Bendi	ng)			Summ	ary /		
			Princ	ipal	Von	Mis	Tres	ca		
	Plate	L/C	Top psi	Bottom psi	Top psi	Bottom psi	Top psi	Bottom psi		
Max Prin	306	11 ULC, 1.5 D	39.522	14.945	39.522	14.945	39.522	14.945		
Min Prin	302	11 ULC, 1.5 D	-14.971	-39.512	2 14.971	39.512	14.971	39.512		
Max Prin	306	11 ULC, 1.5 D	39.522	14.945	39.522	14.945	39.522	14.945		
Min Prin	302	11 ULC, 1.5 D	-14.971	-39.512	14.971	39.512	14.971	39.512		
Max Von	306	11 ULC, 1.5 D	39.522	14.945	3 9.522	14.945	39.522	14.945		
Min Von	302	1 EQX	-0.000	-0.000	0.000	0.000	0.000	0.000		
Max Von	302	11 ULC, 1.5 D	-14.971	-39.512	2 14.971	39.512	14.971	39.512		
Min Von	302	1 EQX	-0.000	-0.000	0.000	0.000	0.000	0.000		
Max Tre	306	11 ULC, 1.5 D	39.522	14.945	39.522	14.945	39.522	14.945		
Min Tres	302	1 EQX	-0.000	-0.000	0.000	0.000	0.000	0.000		
Max Tre	302	11 ULC, 1.5 D	-14.971	-39.512	2 14.971	39.512	14.971	39.512		
Min Tres	302	1 FOX	-0 000	-0.000	0 000	0 000	0 000	0.000		

Figure 11.4 Results of plates

Figure 11.5 Shear bending of beam 301

Figure 11.6 Deflection of beam 301

Figure 11.8 Shear bending of beam 170

Figure 11.10 Concrete design of beam 170

Figure 11.12 Deflection of beam 51

Figure 11.13 Concrete design of beam 51

	×
FINAL YEAR PROJECT - 2 - Beam × Geometry Property Loading Shear Bending Deflection Concrete Design Beam no. = 276. Section: Rect 24.02x24.02 0 0.610 Length = 2.99997 0.610 0.610 Length = 2.99997 UNIT: m Additional Info Beta Angle: 0 UNIT: m Additional Info Beta Angle: 0 Start Fire Proofing: Radius of Curvature: Start Gamma Angle: deg Change Releases At Start Desit Change Releases At End	
Print Close	d 1
Analytical Modeling Workflow Load : 1: EQX	(

Figure 11.14 Beam 276 geometry

Figure 11.15 Beam 276 property

Figure 11.16 Beam 276 shear bending

FINAL YEAR PROJECT -2 - Beam	×					
Geometry Property Loading Shear Bending	Deflection Concrete Design					
 Beam No = 276						
Deflection 1.7499849671 0.082 1.7499849671 0.084 2.2499806721 0.084 2.2499806721 0.085 2.4999785245 0.087 2.7499763770 0.088 2.999742294 0.090 Vote: For load cases/combinations with a response to refer to the output file for global to refer to the out	Dist Disp. m Disp. m 0.000 Selection Type 1.EQX Global Deflection © X Dir Cucal Deflection Z Dir see spectrum load included. and displacements.					
	Print Close					
	Load 1					
Analytical Model	ing Workflow Load : 1: EQX					

Figure 11.17 Deflection of beam 276

Figure 11.18 Concrete design of beam 276

Chapter-12

CONCLUSION

1. Single column building has been designed successfully to withstand dead load, live load, floor finish, wind load, earthquake load and all possible load combinations as per IS 456:2000.

2. On comparing the MAX DISPLACEMENTS IN X,Y, Z respectively ,the maximum values are found to be 70-80% more for multiple columns building as compared to single column building.

3. The Shear force values of Fx,Fy,Fz are found to be more in single column building as compared to multiple columns building.

4. The Moment values of Mx,Mz are found to be more in single column building as compared to multiple columns building.

5. For comparing the cost the values of Volume of concrete required and weight of structure have been used.

6. The volume of concrete and weight of structure for both structures increases as the load increases.

7. In terms of volume of concrete the single column structure is found to be (425.5-333.7)/425.5*100=21.5% more expensive than multiple column structure.

8. In terms of weight of structure the single column structure is found to be (366831-252913)/366831*100=31.05% more expensive than multiple columns structure.

9. Detailing of each member can be obtained in STAAD PRO.

10. Single column building gives better architectural view and ground space utilization.

Chapter-13

FUTURE SCOPE

There is a need to accommodate the influx of people into urban areas as the population of cities grows. However, because of the rapid rise in land prices and the scarcity of land, multi-story buildings are becoming increasingly popular. When compared to a structure supported by multiple columns, a single column provides a better architectural view. They save ground space by requiring less space for foundation and allowing for more parking. Mono column structure is unique. RCC or steel can be used to construct single column structures. In comparison to structures supported by multiple columns, this structure on a single column provides a large amount of usable floor space. They save ground space by requiring less space for foundation and allowing for more parking less space for foundation and space by requiring less space for foundation is structure on a single column provides a large amount of usable floor space. They save ground space by requiring less space for foundation and allowing for more parking. When the maximum amount of space is used, the serviceability is maximised.

Chapter-13

REFERENCES

Article in Journal (paginated by issue)

[1] V. Nagaraju1, N. Vedakala, Y. Purnima, Ajay Kumar, Y Sudheer Babu, "Analysis and design of multi - storey building under load combination" *International Research Journal of Engineering and Technology*, Vol. 5,no. 3, Mar, ISO 9001:2008,2018

[2] Vikrant Trivedi, Sumit Pahwa, "Wind Analysis and Design of G+11 Storied Building Using STAAD-Pro", *International Research Journal of Engineering and Technology*, Vol. 5, no. 3, Mar-2018.

[3] SK Saleem, B. Ravi Kumar, "Analysis and Design of Multi Storeyed Building by Using STAADPRO", Anveshana's *International Journal of Research in Engineering and Applied Sciences*, Vol. 2, no. 1, Jan, ISSN-2455-6300, 2017.

[4] Falak Vats, "Review paper on design and analysis of multi- storey building by the use of Staad Pro", *International Journal of Advance Research, Ideas and Innovations in Technology*, Vol. 5, no. 3, ISSN 2454:132X, 2019.

Article in journal (unpublished)

[5] Arjun Sahu, Anurag Verma, Ankit Singh, Aryan Pal, Mohd. Shariq, "Design & analysis of multistorey (g+3) residential building using staad.pro & AutoCAD", 2020

[6] IS 456 2000, Plain and Reinforced Concrete Design – Bureau of Indian Standards, New Delhi

[7] IS 875 (Part 1) and (Part 2) 1987 Code of Practice for design of loads (other than earthquake loads)

[8] Indian Standard Code of Practice for Design Loads, "IS 857 (Part 1): 1987", Bureau of Indian Standards, 1987.

[9] Indian Standard Code of Practice for Design Loads, "IS 857 (Part 2): 1987", Bureau of Indian Standards, 1987.

[10] Indian Standard Code of Practice for Design Loads, "IS 857 (Part 3): 1987", Bureau of Indian Standards, 1987.

[11] Indian Standard Code of Practice for Earthquake Resistance, "IS 893 (Part 1): 2002", Bureau of Indian Standards, 2002.

[12] Indian Standard Plain and Reinforced Concrete - Code of Practice, "IS 456: 2000", Bureau of Indian Standards, 2000.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT PLAGIARISM VERIFICATION REPORT

Type of Document (Tick): PhD Thesis M	.Tech Dissertat	ion/ Report	B.Tech Project Report Paper					
Name: HARDIK NAGPAL , AKSHAY PATHANIA	_Department:	CIVIL	Enrolment No <u>171620,17165</u> 9					
Contact No. 9107682000, 9418799130	E-mail.	171620@juitsol	an.in , 171659@juitsolan.in					
Name of the Supervisor: <u>MR. CHANDRAPA</u>	AL GAUTAM							
Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ANALYSIS AND DESIGN OF								

SINGLE COLUMN BUILDING ON STAAD . PRO.

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and copyright violations in the above thesis/report even after award of degree, the University reserves the rights to withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document mentioned above.

Complete Thesis/Report Pages Detail:

Total No. of Pages = 85

Date: 16-05-2021

- Total No. of Preliminary pages = 12
- Total No. of pages accommodate bibliography/references = 2

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at¹⁸.......(%). Therefore, we are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be handed over to the candidate.

Chandra Val

(Signature of Guide/Supervisor)

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on	Excluded	Similarity Index (%)	Generated Plagiarism R (Title, Abstract & C	eport Details hapters)		
	• All Preliminary		Word Counts			
Report Generated on	Pages Bibliography/Ima 		Character Counts	eport Details hapters)		
	ges/Quotes 14 Words String 	Submission ID	Total Pages Scanned			
			File Size			

Checked by Name & Signature

Librarian

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File) through the supervisor at plagcheck.juit@gmail.com

.....

Abshay (Signature of Student)

Signature of HOD

HOD CE DEPT