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Abstract 

 
 

Recommender systems are a hot topic in this age of immense data and web marketing. 

Shopping online is ubiquitous, but online stores, while eminently searchable, lack the 

same browsing options as the brick-and-mortar variety.  Visiting a DVD store in person, 

a customer can wander over to the science fiction section and casually look around 

without a particular author or title in mind. Online stores often offer a browsing option, 

and even allow browsing by genre, but often the number of options available is still 

overwhelming. 

Commercial sites try to counteract this overload by showing special deals, new options, 

and staff favorites, but the best marketing angle would be to recommend items that the 

user is likely to enjoy or need. Unless online stores want to hire psychics, they need a 

new technology. The field of data mining has a developing field of research in 

recommender systems, which fits the bill. 

 

“Recommender systems are systems that based on information about a user's past 

patterns and consumption patterns in general, recommend new items to the user.― 

 

The research in this scope has discovered many methods to get, through the opinion of 

otherpeople, the relevant items for a specific person. The most of these methods work 

around theidea of finding similarities in the taste of the people, using Social Network 

platforms, such as Facebook and Twitter. Then, the prediction for a specific person is 

based in the opinion of the most similaruser to the person present in the network. This 

procedure is known as Collaborative Filtering. 

 

In the last years, the importance of the social networks is growing and they become 

relevant forresearch studies. The information provided by users in social networks is a 



 

 

powerful source ofinformation for the recommender systems in the user’s profiles and 

also in the links that exist inthe structure of the network. 

 

 

The idea of this project is to analyze different algorithms devised for making predictions 

to users of the Social Networks, where some use similarity between users and some 

between items, and then to devise and implement an efficient algorithm which counters 

the short-comings of the existing algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1. RECOMMENDER SYSTEMS 
 

 

1.1 Introduction 

Recommender Systems are best known for their use on e-commerce Websites, where 

they use input about a customer’s interests to generate a list of recommended items. 

Many applications use only the items that customers purchase and explicitly rate to 

represent their interests, but they can also use otherattributes, including items viewed, 

demographic data, subject interests, and favorite artists. 

 

These systems use recommendation algorithms to personalize the online store for each 

customer. The store radically changes based on customer interests, showing programming 

titles to a software engineer and baby toys to a new mother. The click-through and 

conversion rates — two important measures of Web-based and email advertising 

effectiveness — vastly exceed those of untargeted content such as banner advertisements 

and top-seller lists. 

 

In fact, there are several reasons as to why service providers and e-commerce websites 

may want to exploit this technology: 

 Increase the number of items sold. 

 Increase user satisfaction. 

 Increase user fidelity. 

 Better understanding of what the user wants. 

 

 

 

 

 

 

 



 

 

1.2 Challenges 

E-commerce recommendation algorithms often operate in a challenging environment. For 

example: 

• A large retailer might have huge amounts of data, tens of millions of customers and 

millions of distinct catalog items. 

• Many applications require the results set to be returned in real-time, in no more than 

half a second, while still producing high-quality recommendations. 

• New customers typically have extremely limited information, based on only a few 

purchases or product ratings. 

• Older customers can have a glut of information, based on thousands of purchases and 

ratings. 

• Customer data is volatile: Each interaction provides valuable customer data, and the 

algorithm must respond immediately to new information. 

 

 

 

1.3 Categories 

To tackle the above mentioned challenges, two major categories of Recommendation 

Systems include: 

 Content Based Filtering 

 Collaborative Filtering 

 

 

 

 

 

 

 



 

 

2. CONTENT BASED FILTERING 

The system learns to recommend items that are similar to theones that the user liked in 

the past. The similarity of items is calculated based on thefeatures associated with the 

compared items.In a content-based recommender system, keywords are used to describe 

the items; beside, a user profile is built to indicate the type of item this user likes. 

 

For example, if a user has positivelyrated a movie that belongs to the Sci-fi genre, then 

the system can learn to recommend other movies from this genre. 

 

 

   Fig 2.1: Content Based Filtering 

 

If the user has few purchases or ratings, content based recommendation algorithms scale 

and perform well. For users with thousands of purchases,however, it’s impractical to base 

a query on all theitems. The algorithm must use a subset or summary of the data, 

reducing quality. In all cases, recommendation quality is relatively poor. The 

recommendations are often either too general (suchas best-selling drama DVD titles) or 

too narrow(such as all books by the same author). Recommendations should help a 

customer find and discover new, relevant, and interesting items. Popular items by the 

same author or in the same subjectcategory fail to achieve this goal. 

 

 



 

 

 

  Fig 2.2: Content Based Filtering Algorithm 

 

The main problem with the Content Based Filtering approach is twofold:  

1. Domain and problem dependency: for each application area one has to select the 

appropriate metadata describing the contents the best and ensure its availability. The 

availability of the right metadata content may not always be guaranteed, for instance, 

when the sites aggregate contents of different content providers, or products of numerous 

sellers/retailers. Typical examples are auction or classified sites.  

 

2. Scalability: if the catalog is large (millions of content items) then the selection of the 

right content requires comparing the user profile with all available content, which may 

take relatively long time. 

 

 

 

 

 

 

 

 



 

 

3. COLLABORATIVE FILTERING 

The collaborative filtering is a technique for recommender systems that generates 

recommendations using the preferences and tastes given by others users of the system. 

Thistechnique tries to simulate the collaboration in the real world between users that 

shareopinions about recommendations and reviews. 

 

In many cases, people have to choose between different alternatives without a complete 

knowledge of them. In these cases, the people believe in the recommendation of other 

familiarpeople or people whose opinion is valued by them. 

 

The collaborative filtering systems use this idea, trying to get the users of the system that 

havethe best opinion about an item for a user (based in his or her taste) and calculate the 

utilityofthe items for the specific user, using the opinion of the other users. 

 

3.1 Appropriate scenarios to use Collaborative Filtering 

The collaborative filtering can be applied in many domains, but to work properly it is 

better toapply it in scenarios with some characteristics. 

 

The most important is that the evaluation of the items is based on subjective criteria (e.g. 

movies)or when the items have a lot of objective criteria and they need a subjective 

weight to choosebetween them (e.g. computers). In these situations, the collaborative 

filtering is very powerful, but if the recommendations are only based on objective 

criteria, the collaborative filtering doesnot make sense. It does not mean that the items 

have no objectives criteria to be evaluated. Itmeans that the objective criteria are very 

similar, and they differ only in subjective criteria. 

 

It is important too, that each user can find others users with similar tastes, because the 

rating ofthese similar users will be an important component of recommendations. The 

taste of the usercannot change a lot in short time, because then the previous ratings of this 

user do notrepresent his or her preferences and they become useless for predictions. 

And about the data that is necessary in one scenario to use a Collaborative Filtering 



 

 

system, it isimportant that there are many ratings per item, to ensure a good inference of 

recommendationand predictions and that each user rates multiple items. The system 

needs enough informationto provide recommendations with high quality. 

 

 

3.2Collaborative Filtering Algorithms 

Most recommendation algorithms start by findinga set of customers whose purchased and 

rateditems overlap the user’s purchased and rateditems. The algorithm aggregates items 

from thesesimilar customers, eliminates items the user hasalready purchased or rated, and 

recommends theremaining items to the user. Two popular versionsof these algorithms are 

collaborative filtering andcluster models. Other algorithms — including 

search-based methods — focus on finding similaritems, not similar customers. For each 

of the user’spurchased and rated items, the algorithm attemptsto find similar items. It 

then aggregates the similar items and recommends them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3.2.1 Traditional Collaborative Filtering 

A traditional collaborative filtering algorithm represents a customer as an N-dimensional 

vector ofitems, where N is the number of distinct catalogitems. The components of the 

vector are positivefor purchased or positively rated items and negative for negatively 

rated items. To compensate for best-selling items, the algorithm typically multiplies the 

vector components by the inverse frequency (the inverse of the number of customerswho 

have purchased or rated the item), making lesswell-known items much more relevant. For 

almostall customers, this vector is extremely sparse. 

The algorithm generates recommendationsbased on a few customers who are most 

similar tothe user. It can measure the similarity of two customers, A and B, in various 

ways; a commonmethod is to measure the cosine of the anglebetween the two vectors: 

 

 

 

The algorithm can select recommendations fromthe similar customer’s items using 

various methods as well; a common technique is to rank eachitem according to how many 

similar customerspurchased it. 

 

Using collaborative filtering to generate recommendations is computationally expensive. 

It isO(MN) in the worst case, where M is the numberof customers and N is the number of 

product catalog items, since it examines M customers and upto N items for each 

customer. However, becausethe average customer vector is extremely sparse,the 

algorithm’s performance tends to be closer toO(M + N). Scanning every customer is 

approximately O(M), not O(MN), because almost all customer vectors contain a small 

number of items,regardless of the size of the catalog. But there area few customers who 

have purchased or rated asignificant percentage of the catalog, requiringO(N) processing 

time. Thus, the final performanceof the algorithm is approximately O(M + N). Evenso, 

for very large data sets — such as 10 million ormore customers and 1 million or more 

catalogitems — the algorithm encounters severe performance and scaling issues. 



 

 

 

It is possible to partially address these scalingissues by reducing the data size. We can 

reduce Mby randomly sampling the customers or discarding customers with few 

purchases, and reduce Nby discarding very popular or unpopular items. It is alsopossible 

to reduce the number of items examinedby a small, constant factor by partitioning the 

itemspace based on product category or subject classification. Dimensionality reduction 

techniques suchas clustering and principal component analysis canreduce M or N by a 

large factor. 

 

Unfortunately, all these methods also reducerecommendation quality in several ways: 

 If the algorithm examines only a small customer sample, the selected customers 

will be less similar to the user. 

 Item-space partitioning restricts recommendations to a specific product or subject 

area. 

 If the algorithm discards the most popular or unpopular items, they will never 

appear as recommendations, and customers who have purchased only those items 

will not get recommendations. 

 

 

 

 

 

 

 

 

 

 

 



 

 

3.2.2 Cluster-Model Collaborative Filtering 

To find customers who are similar to the user, cluster models divide the customer base 

into many segments and treat the task as a classification problem. The algorithm’s goal is 

to assign the user to the segment containing the most similar customers. It then uses the 

purchases and ratings of the customers in the segment to generate recommendations. 

 

The segments typically are created using a clustering or other unsupervised learning 

algorithm,although some applications use manually determined segments. Using a 

similarity metric, a clustering algorithm groups the most similar customerstogether to 

form clusters or segments. Becauseoptimal clustering over large data sets is impractical, 

most applications use various forms ofgreedy cluster generation. These algorithms 

typically start with an initial set of segments, whichoften contain one randomly selected 

customereach. They then repeatedly match customers to theexisting segments, usually 

with some provision forcreating new or merging existing segments. For very large data 

sets - especially those with high dimensionality - sampling or dimensionalityreduction is 

also necessary. 

 

Once the algorithm generates the segments, itcomputes the user’s similarity to vectors 

that summarize each segment, then chooses the segmentwith the strongest similarity and 

classifies the useraccordingly. Some algorithms classify users intomultiple segments and 

describe the strength ofeach relationship. Classification can be done on the basis of 

Euclidean Distance: 

 

The rating will be the summation of ratings of the item by the users in thecluster divided 

by the number of users in the cluster: 

 

 



 

 

Cluster models have better online scalabilityand performance than collaborative filtering 

because they compare the user to a controllednumber of segments rather than the entire 

customer base. The complex and expensive clusteringcomputation is run offline.  

However, recommendation quality is low. Cluster models groupnumerous customers 

together in a segment, matcha user to a segment, and then consider all customers in the 

segment similar customers for thepurpose of making recommendations. Because the 

similar customers that the cluster models find arenot the most similar customers, the 

recommendations they produce are less relevant. It is possibleto improve quality by using 

numerous finegrained segments, but then online user–segmentclassification becomes 

almost as expensive as finding similar customers using collaborative filtering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3.2.3 User-Based Collaborative Filtering 

In this method, we predict the user behavior against a certain item using the weighted 

sum ofdeviations from mean ratings of users that previously rated this item and the user 

mean rate. 

 

 

 

 

   Fig 3.2.3.1: User Based Filtering 

 

 First, wecalculate the user mean rate using the following formula: 

 

 

 

 

 

 



 

 

The weight that we previously mentioned can be calculated using Pearson correlation 

accordingto the following formula: 

 

 

 

The prediction formula is stated as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3.2.4 Item-Based Collaborative Filtering 

E-commerce websites extensively uses recommendationalgorithms to personalize its Web 

site to each customer’s interests. Because existing recommendationalgorithms cannot 

scale to tens ofmillions of customers and products, item-to-item collaborativefiltering, 

scales to massive data sets and produceshigh-quality recommendations in real time. 

Rather than matching the user to similar customers, item-to-item collaborative filtering 

matches each of the user’s purchased and rated items tosimilar items, then combines 

those similar itemsinto a recommendation list. 

 

 

 

  Fig: 3.2.4.1: Item Based Filtering 

To determine the most-similar match for a givenitem, the algorithm builds a similar-items 

table byfinding items that customers tend to purchasetogether. We could build a product-

to-productmatrix by iterating through all item pairs and computing a similarity metric for 

each pair. However,many product pairs have no common customers, 

and thus the approach is inefficient in terms ofprocessing time and memory usage. 

 

It’s possible to compute the similarity between twoitems in various ways, but a common 

method is touse the cosine measure we described earlier, in whicheach vector 



 

 

corresponds to an item rather than acustomer, and the vector’s Mdimensions correspond 

to customers who have purchased that item. 

 

This offline computation of the similar-items stable is extremely time intensive, with 

O(N
2
M) asworst case. In practice, however, it’s closer toO(NM), as most customers have 

very few purchases. Sampling customers who purchase best-sellingtitles reduces runtime 

even further, with littlereduction in quality. 

 

Given a similar-items table, the algorithm findsitems similar to each of the user’s 

purchases andratings, aggregates those items, and then recommends the most popular or 

correlated items. Thiscomputation is very quick, depending only on thenumber of items 

the user purchased or rated. 

 

Item-Based collaborative filtering can be further enhanced by the following techniques: 

 

Significance Weighting: It is common for the active user to have highly correlated 

neighbors that are based on very few co-rated (overlapping) items. Theseneighbors based 

on a small number of overlapping items tend to be bad predictors. One approach to tackle 

this problem is to multiply the similarity weight bya Significance Weighting factor, which 

devalues the correlations based on few co-rated items. 

 

Default Voting: An alternative approach to dealing with correlations based on 

very few co-rated items is to assume a default value for the rating for items that 

have not been explicitly rated. In this way we can now compute correlation using the 

union of items rated by users being matched (Ia ∩ Iu), as opposed to theintersection. Such 

a default voting strategy has been known to improve Collaborative Filtering. 

 

Inverse User Frequency: When measuring the similarity between users, items 

that have been rated by all (and universally liked or disliked) are not as useful as 

less common items. The notionof inverse user frequency, which is computed as fi = log 

n/ni, where ni is thenumber of users who have rated item i out of the total number ofn 



 

 

users. To applyinverse user frequency while using similarity-based CF we transform the 

originalrating for i by multiplying it by the factor fi. The underlying assumption of this 

approach is that items that are universally loved or hated are rated more frequently 

than others. 

 

Case Amplification: In order to favor users with high similarity to the active 

user,case amplification this transforms the original weights in 

w′a,u = wa,u · |wa,u|
 ρ−1

 

where ρ is the amplification factor, and ρ ≥ 1. 

  



 

 

4. PROJECT IMPLEMENTATION 

The application segment developed and mentioned further is for generating 

recommendations for movies. For the development, the MovieLens dataset is being used 

consisting of info about 100,000 ratings (1-5) from 943 users on 1682 movies. 

 

As we discussed earlier the traditional user based collaborative filtering will firstly 

calculate co-relation/similarity between each pair of user that will amount to a 943*943 

computations. Further predictions for each unrated movie for each user will amount to 

approximately 1600*943 computations. As we can observe that this is a lot of work load 

for the application program to handle. 

 

Initial test on the above application shows us that to generate an overall recommendation 

to all the movies in the dataset will take about 20-30 minutes. So, to improve the time 

complexity I am going to use the following devised algorithm for real-time 

recommendations for a specific genre. 

 

Part-I: Genre specialized - User-Based Collaborative filtering:  

 

In this approach the traditional ―User-Based Collaborative filtering‖ has been modified to 

generate Genre specific recommendations. The algorithm asks the user for a specific 

genre on which he/she wants to get recommendations on, and then only calculate the 

predictions for the movies belonging to that category. This approach provides a speed-up 

of nearly 5, i.e., it is 5-times faster than the actual traditional approach but with a trade-

off that it will generate specialized recommendations for only the selected category. 

 

Part-II: Social Network Integration 

 

The part-I of the application involves a considerable amount of interaction of the user 

with the application. This interaction time can be reduced as well as the predictions can 

be made more personalized using social network integration. 

 



 

 

 

4.1 Application Overview 

 

 

 

 

USER            

            

            

            

 

 

      Fig 4.1.1: System Architecture 

 

The personalized recommender system works as follows: 

 

Step 1: The user opens the application and interacts with the GUI home screen to browse 

and rate the movies he/she has already watched. The home screen GUI also categorizes 

movie based on genre. 

 

Step 2: After rating the watched movies the user will switch to ―My Recommendations‖ 

tab and can then query for recommendation of a specialized genre based on its selection. 

 

Step 3: This will now invoke the ―Recommendation Engine‖ to generate the desired 

recommendation for the user using the proposed algorithm and display it through the UI. 

 

 

Application GUI 

Recommendation 

Engine 

Knowledge Base 

MySQL Database 



 

 

 

4.2 Requirements and Prerequisites of System 

Before building the recommendation framework, the requirements and prerequisites of 

system ought to be prepared. The aim of the proposed in this thesis solution is to provide 

personalized recommendations. This requires that systems should fulfill particular 

functional and quality requirements. The functional requirements are as follow: 

• Appropriate data preparation 

• Creation of personalized method of recommendation 

• Minimize the number of false–positive recommendations  

 

Right data about users ought to be gathered and analyzed. However data acquisition is 

not done only once. The data about users changes over time and this causes that it should 

be monitored all the time. Moreover, sufficient data preparation, that includes 

classification of data in several components, which create user profile should be done in 

order to create relevant recommendation.  

 

The crucial element is the description that shows how to cope with empty data. Missing 

data is a big problem because it limits the opportunity to create relevant 

recommendations. Not only has the correct data decided about the quality of the 

recommendation, but also the method that is used to investigate the similarity between 

members of the community. Next requirement is to create function that enables to 

measure the similarity between the users. Based on this function the person who suits to 

current user is recommended. This similarity function should take into consideration 

demographic and interest data, as well as measurements of activity and strength of 

relationships maintained by members of social networks. This function should be 

periodically recalculated and enables to pinpoint k–nearest neighbor of the person to 

whom the recommendation is created. 

 

 The proposed framework should minimize the number of false–positive 

recommendations. It means, that we cannot recommend people who do not match current 

user’s profile. It is safer not to recommend the person who suits current user (false–



 

 

negative recommendation) than provides many false–positive suggestions, which can be 

the source of irritation and lack of satisfaction of person who receives the 

recommendation. 

 The quality requirements that should be fulfilled at the highest level by the framework 

are: 

• Performance – the calculations, especially these made online should not last long, 

because users will be irritated if they have to wait for the recommendations. Thus, the 

high performance is required. 

 

• Maintainability – the improvements in user profile (e.g. the extension of user profile 

by adding new components and attributes) and in method of recommendation should be 

easy to introduce. It will help to ensure high level of the next quality requirement for this 

system, it means availability. Moreover, the level of adaptability of the system should 

enable to apply the recommendation framework in different social networks (e.g. 

MySpace, Friendster, or Orkut). 

 

• Availability – the system should be available for most of the time that users spend in 

the network. It will cause that participant will be accustomed to have the 

recommendations nearby. This helps to create the bond between the user and system and 

leads to increase the loyalty of the user. 

  



 

 

4.3Database Design 

MOVIE table:  

The movie table consists of all the details related to a particular movie. 

 

  Fig 4.3.1: MOVIE table 

PROFILE table: 

This table will contain the correlation values of each user to each genre. 

 



 

 

 

 

PRS table: 

This table will contain the ratings given by 943 users on 1682 movies on a scale of 1 to 5 

with a time-stamp of the rating provided. 

 

  Fig 4.3.3: PRS table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.4 Software Architecture 

Database: MySQL  

Development Environment: Eclipse LUNA IDE 4.4.1 

JAVA: JDK 1.7 
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   Fig 4.4: Software Architecture     
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4.5 Modular Description 

The application has been developed in the form of following modules: 

 User-Interface 

 Database Engine 

 User and Item Profiling 

 Recommendation Engine 

 Driver Program 

 

4.5.1 User-Interface 

The GUI to interact with the application is developed using Swings in JAVA. 

The GUI provides the user with options to: 

 View and Rate movies 

 View Genre-specific recommendations 

 View Help – to tackle nominal problems. 

 

 

Fig 4.5.1.1: UI to browse and rate movies 

 

 



 

 

 

 

Fig 4.5.1.2: UI to view and compute recommendations 

 

 

Fig 4.5.1.3: Help Screen 

 

 

 



 

 

4.5.2 Database Engine 

The application uses this module to control interactions with the datasets present in the 

MySQL database server, using the JDBC driver. 

 

Some of the sub-modules are: 

 DBConnectionManager.java : 

This JAVA class is used to establish and close connections with the MySQL 

server and return the connection object to the driver program. 

 

The standard function covered by this module are : 

o getConnection(); 

o establishConnection(); 

o testConnection(); 

o closeConnection(); 

 

 

 DBReader.java : 

This JAVA class is used to basically perform all the read operations on the tables 

present in the MySQL database and return the results in List type to the calling 

module. 

 

The standard function covered by this module are : 

o setConnection(); 

o getRecommendations(String genre); 

o getMovies(String genre); 

o getMovies(int UserId,String genre); 

o getUsers(int movieId); 

o getAvgRating(int userId); 

o getCorrCoff(int userId,String genre); 

o getAvgUserRating(String genre); 

o getMovieRateCount(); 



 

 

 

 DBWriter.java : 

This JAVA class is mainly responsible to perform all the Update and Write 

information in the tables present in the MySQL database server. 

 

The standard function covered by this module are : 

o setConnection(); 

o saveRating(int Rating,movieObj obj); 

o savePrediction(int movieId,int prediction); 

o saveCorrelation(double corr,int userId,String genre); 

 

4.5.3 User and Item Profiling 

This module deals with the Item and User profiling to their respective objects for easy 

and systematic access and use of the data. 

 movieObj.java : 

This class is responsible to parse the required movie’s data into their respective 

objects so that they may be further used by the driver program. 

 

 userObj.java : 

This class is responsible to parse the user’s info/data into their respective objects 

for easy access to driver program. 

 

 

 

 

 

 

 

 

 

 



 

 

 

4.5.4 Recommendation Engine 

This is the most important module of the application which is actually responsible for 

generating the recommendations. This recommendation engine uses the Genre specific – 

User-Based Collaborative Filtering algorithm. 

 

RecomEngineMain.java: 

Firstly, the correlations of the active users with users who have liked/rated movies of the 

specified genre are calculated. The correlation calculations are done using the Pearson’s 

Correlation Co-efficient (Pearson's correlation coefficient is the covariance of the two 

variables divided by the product of their standard deviations. The form of the definition 

involves a "product moment", that is, the mean (the first moment about the origin) of the 

product of the mean-adjusted random variables; hence the modifier product-moment in 

the name.): 

 

 

Then after selecting the K most similar users the predictions are calculated as: 

 

 

 

 

 

http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations


 

 

The Correlations are calculated as given: 

 

publicstaticvoid calculateCorrelations(String genreMain) { 

//get all movies for a specific genre X. 

ArrayListlistMoviesPerGenre = DBReader.getMovies(genreMain); 

 

//there are 943 users in the movielensdataset. lets start with user A. 

for (inti = 1; i< 944; i++) { 

ArrayListalstUser = newArrayList(); 

ArrayListalstFetch = newArrayList(); 

floatuser = 0; 

floatfetch = 0; 

 

//get all movies for user A belonging to a genre X. 

ArrayListlistMoviesPerUserPerGenre = DBReader.getMovies(i, genreMain); 

 

// find similar ratings between user and database 

for (intx = 0; x<listMoviesPerGenre.size(); x++) { 

movieObj moviePerGenre = (movieObj) listMoviesPerGenre.get(x); 

for (inty = 0; y<listMoviesPerUserPerGenre.size(); y++) { 

movieObj moviePerUserPerGenre = (movieObj) listMoviesPerUserPerGenre.get(y); 

if (moviePerGenre.getId() == moviePerUserPerGenre.getId() 

&&moviePerGenre.getRating() != 99) { 

alstUser.add(Integer.valueOf(moviePerGenre.getRating())); 

user = user + moviePerGenre.getRating(); 

alstFetch.add(Integer.valueOf(moviePerUserPerGenre.getRating())); 

fetch = fetch + moviePerUserPerGenre.getRating(); 

} 

} 

} 

 

// find average 

user = user / alstUser.size(); 

fetch = fetch / alstFetch.size(); 

 

// calculate numerator 

floatnumerator = 0, denominator1 = 0, denominator2 = 0; 

for (inta = 0; a<alstUser.size(); a++) { 

Integer x = (Integer) alstUser.get(a); 

Integer y = (Integer) alstFetch.get(a); 

numerator = numerator + ((x.floatValue() - user) * (y.floatValue() - fetch)); 

denominator1 = denominator1 + ((x.floatValue() - user) * (x.floatValue() - user)); 

denominator2 = denominator2 + ((y.floatValue() - fetch) * (y.floatValue() - fetch)); 

} 

 



 

 

floatcorrelation = (float) (numerator / (Math.sqrt(denominator1) * 

Math.sqrt(denominator2))); 

System.out.println("correlation is ::: " + correlation); 

if (Double.isNaN(correlation)) { 

correlation = 99; 

} 

DBWriter.saveCorrelation(correlation, i, genreMain); 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

The Predictions are calculated as given: 

 

publicstaticvoid calcualtePredictions(String genreMain) { 

System.out.println(">>> " + DBReader.getAvgUserRating(genreMain)); 

if (genreMain != null) { 

ArrayListalstMovies = DBReader.getMovies(genreMain); 

for (inti = 1; i<alstMovies.size(); i++) { 

movieObj obj = (movieObj) alstMovies.get(i); 

ArrayListalstUsers = DBReader.getUsers(obj.getId()); 

floatprediction = 99; 

floatnumerator = 0; 

floatdenominator = 0; 

intavg = DBReader.getAvgUserRating(genreMain); 

 

for (intj = 0; j<alstUsers.size(); j++) { 

userObj usr = (userObj) alstUsers.get(j); 

floatcorr = DBReader.getCorrCoff(usr.getId(), genreMain); 

if (!Double.isNaN(corr)) { 

floatusrAvg = DBReader.getAvgRating(usr.getId()); 

numerator = numerator + ((usr.getRate() - usrAvg) * corr); 

if (corr< 0) { 

denominator = denominator + (-1 * corr); 

} else { 

denominator = denominator + (1 * corr); 

} 

prediction = avg + (numerator / denominator); 

} else { 

prediction = 99; 

} 

} 

DBWriter.savePrediction(obj.getId(), (int) prediction); 

System.out.println(obj.getId() + " prediciton is >>>  " + (int) prediction); 

} 

} 

} 

} 

 

4.5.5 Driver Program 

This module is the main class of the applications responsible for running the application 

and controlling the various modules specified above. 

 

 



 

 

4.6 Facebook Integration 

The application developed till uses a static interface for getting user’s interests and 

ratings. So, to actually use this prototype the user has to spend a considerable amount of 

time interacting with the application to actually get some considerable recommendations. 

Further this prototype does not involve the preferences of the user’s friends and close 

ones. 

 

This part will hence involve the integration of a social networking site to consider the 

preferences of the friends of the user, because of the factor of trust involved with social 

network’s friends, and will hence enhance the recommendations for the user. 

Moreover the integration of the social network in the application will further enable the 

algorithm to analyze the overall/general pattern of preference of the social network users 

towards a particular item, in this case movies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.6.1 Part-II System Design 

 

We stated above that the user is spending a considerable amount of time to interact with 

the application to browse and rate some movies so as the system is further able to 

compute recommendations. We can actually enhance this process and also make it 

efficient by just mining the movies rated by the users on the social network. Social 

networks like Facebook provides the RestFB API to mine user’s personal info like likes, 

photos and other demographic info. 

 

In social networks like Twitter, all the articles, posts etc. can be referenced through tags 

assigned through them. These tags can be mined from Twitter, using Scalding, an open-

source API provided by twitter, to find relevant posts related to the movies rated by the 

user. These posts will enable us to find the users who also have posted on those movies 

and then calculating the movie-movie similarity/correlation score using the co-sine 

similarity metrics between the movie vectors. 

 

 

 

 

 

 

   Fig 6.1: Part-2 System Design 



 

 

 

 

We will now feed the above mined data to the recommendation engine and perform the 

prediction operation using Similarity functions to generate the desired recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.6.2 Requirements and Prerequisites 

 

The quality requirements that should be fulfilled at the highest level by the framework 

are: 

• Performance – the calculations, especially these made online should not last long, 

because users will be irritated if they have to wait for the recommendations. Thus, the 

high performance is required. 

 

• Maintainability – the improvements in user profile (e.g. the extension of user profile 

by adding new components and attributes) and in method of recommendation should be 

easy to introduce. It will help to ensure high level of the next quality requirement for this 

system, it means availability. Moreover, the level of adaptability of the system should 

enable to apply the recommendation framework in different social networks (e.g. 

MySpace, Friendster, or Orkut). 

 

• Availability – the system should be available for most of the time that users spend in 

the network. It will cause that participant will be accustomed to have the 

recommendations nearby. This helps to create the bond between the user and system and 

leads to increase the loyalty of the user. 

 

 

 

 

 

 

 

 

 



 

 

4.6.3 RestFB – Introduction 

 

RestFB is a simple and flexible Facebook Graph API client and old REST API client 

written in Java. 

It is open source software released under the terms of MIT license. 

The motivations to use RestFB as the API are: 

Design goals: 

 Minimal public API 

 Maximal extensibility 

 Robustness in the face of frequent Facebook API changes 

 Simple metadata-driven configuration 

 Zero dependencies 

Non-goals: 

 Support for non-Graph/non-REST API parts of the Facebook Platform 

 Providing a mechanism for obtaining session keys or OAuth access tokens 

 Using XML as a data transfer format in addition to JSON 

 Formally-typed versions of all Facebook API methods, error codes, etc. 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.6.3 RestFB – FQL (Facebook Query Language) 

 

Facebook Query Language, or FQL, enables you to use a SQL-style interface to query the 

data exposed by the Graph API. It provides advanced features not available in the Graph 

API. 

 

Queries are of the form SELECT [fields] FROM [table] WHERE [conditions]. Unlike 

SQL, the FQL FROM clause can contain only a single table. You can use the IN keyword 

in SELECT or WHEREclauses to do subqueries, but the subqueries cannot reference 

variables in the outer query's scope. Your query must also be indexable, meaning that it 

queries properties that are marked as indexable in the documentation below. 

FQL can handle simple math, basic boolean operators, AND or NOT logical operators, 

and ORDER BY and LIMIT clauses. ORDER BY can contain only a single table. 

For any query that takes a uid, you can pass me() to return the logged-in user. For 

example: 

SELECT name FROM user WHERE uid = me()  

Other functions that are available are now(), strlen(), substr() and strpos(). 

 

Here's an example of a subquery that fetches all user information for the active user and 

friends: 

SELECT uid, name, pic_square FROM user WHERE uid = me() 

OR uid IN (SELECT uid2 FROM friend WHERE uid1 = me()) 

 

 

 

 

 

https://developers.facebook.com/docs/reference/api/


 

 

 

 Multi-query evaluates a series of FQL (Facebook Query Language) queries in one call 

and returns the data at one time. 

This method takes a JSON-encoded dictionary called ''queries'' where the individual 

queries use the exact same syntax as a simple query. However, this method allows for 

more complex queries to be made. You can fetch data from one query and use it in 

another query within the same call. The WHERE clause is optional in the latter query, 

since it references data that’s already been fetched. To reference the results of one query 

in another query within the same call, specify its name in the FROM clause, preceded by 

#. 

For example, say you want to get some data about a user attending an event. Normally, 

you’d have to perform two queries in a row, waiting for the results of the first query 

before running the second query, since the second query depends on data from the first 

one. But with fql.multiquery, you can run them at the same time, and get all the results 

you need, giving you better performance than running a series of fql.query calls. First, 

you need to get the user ID and RSVP status of each attendee, so you’d formulate the first 

query – query1 – like this: 

"query1":"SELECT uid, rsvp_status FROM event_member WHERE eid=12345678" 

Then to get each attendee’s profile data (name, URL, and picture in this instance), you’d 

make a second query – query2 – which references the results from query1.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Initialization 

DefaultFacebookClient is the FacebookClient implementation that ships with 

RestFB. You can customize it by passing in custom JsonMapper and 

WebRequestor implementations, or simply write your own FacebookClient 

instead for maximum control. 

 

FacebookClient facebookClient = new DefaultFacebookClient(MY_ACCESS_TOKEN); 

 

It's also possible to create a client that can only access publicly-visible data - no 

access token required. Note that many of the examples below will not work unless 

you supply an access token!  
 
FacebookClient publicOnlyFacebookClient = new DefaultFacebookClient(); 

 

 

 Fetching 

For all API calls, you need to tell RestFB how to turn the JSONreturned by 

Facebook into Java objects. In this case, the datawe get back should be mapped to 

the User and Page types, respectively. You can write your own types too! 

 
User user = facebookClient.fetchObject("me", User.class); 
 
Page page = facebookClient.fetchObject("cocacola", Page.class);  
 
out.println("User name: " + user.getName()); 
 
out.println("Page likes: " + page.getLikes()); 

 

 

 

 

 

 

 

 

 

 

 

 

http://restfb.com/javadoc/com/restfb/DefaultFacebookClient.html
http://restfb.com/javadoc/com/restfb/FacebookClient.html
http://restfb.com/javadoc/com/restfb/JsonMapper.html
http://restfb.com/javadoc/com/restfb/WebRequestor.html
http://restfb.com/javadoc/com/restfb/types/User.html
http://restfb.com/javadoc/com/restfb/types/Page.html


 

 

4.6.4 RestFB – Fetching User’s liked Movies 

 

package restfbtest; 

import com.restfb.*;  

importcom.restfb.batch.*; 

import com.restfb.exception.*; 

importcom.restfb.json.*; 

import com.restfb.types.*; 

importcom.restfb.util.*; 

import java.io.*; 

/** 

 * 

 * @authorakash 

 */ 

publicclass FacebookConnector { 

 

/* Variables */ 

privatestaticfinal String pageAccessToken = 

"CAACEdEose0cBAKzNijkEyOipyCAN57feFo4fpQJAc5Ei22oCUcVD24ZBpxrWrJKn

ORqizKi2dD1HhZBZAhzuXvzX9r2UYN46SlfYvTDe2vY3Xac8QcIwX08X7IBkpFUEj

ORF7ZBsr2RHtO9RHwAC1gUfB8Vz1jZBGo6fHKw49mZA2hcOYiEAvHebJKrojbIX

dv0SiZCf0vtmh9ZB83NyGaKo"; 

//private final String pageID = "THIS_TOO"; 

privatestatic FacebookClient fbClient; 

privatestatic User myuser = null;    //Store references to your user and page 

privatestatic Page mypage = null;    //for later use. In this answer's context, these 

//references are useless. 

 

 

publicstaticvoid main(String args[])throws IOException { 

intcounter=0; 

 try { 

 

fbClient = new DefaultFacebookClient(pageAccessToken); 

myuser = fbClient.fetchObject("me", User.class); 

//      mypage = fbClient.fetchObject(pageID, Page.class); 

counter = 0; 

            Connection<Page>fetchConnection = fbClient.fetchConnection( "me/movies", 

Page.class ); 

 

for ( Page page : fetchConnection.getData() ) 

            { 

                System.out.println( page.getName() ); 

 

//System.out.println( page.getLikes() ); 

                System.out.println( "************" ); 



 

 

            } 

 

 

/*System.out.println("posts:  \n\n"); 

 

 

Connection<Post>fetchpost = fbClient.fetchConnection( "me/feed", Post.class ); 

 

            for ( Post u : fetchpost.getData() ) 

            { 

                System.out.println( u.getDescription() ); 

                System.out.println( " \\"  ); 

            } 

 

            */ 

 

 

        } catch (FacebookException ex) {     //So that you can see what went wrong 

ex.printStackTrace(System.err);  //in case you did anything incorrectly 

        } 

//makeTestPost(counter); 

    } 

 

/*public static void makeTestPost(int counter) { 

        fbClient.publish("me/feed", FacebookType.class, Parameter.with("message", 

Integer.toString(counter) + ": Killer Avenger!")); 

        counter++; 

    }*/ 

 

} 

 

 

 

 

 

 

 

 



 

 

5. CONCLUSION 

Recommendation algorithms provide an effectiveform of targeted marketing by creating 

a personalized shopping experience for each customer. Forlarge retailers like 

Amazon.com, a good recommendation algorithm is scalable over very largecustomer 

bases and product catalogs, requires onlysub second processing time to generate online 

recommendations, is able to react immediately tochanges in a user’s data, and makes 

compellingrecommendations for all users regardless of thenumber of purchases and 

ratings. Unlike otheralgorithms, item-to-item collaborative filtering isable to meet this 

challenge. 

 

In the future, we expect the retail industry tomore broadly apply recommendation 

algorithms fortargeted marketing, both online and offline. Whilee-commerce businesses 

have the easiest vehicles forpersonalization, the technology’s increased conversion rates 

as compared with traditional broad-scaleapproaches will also make it compelling to 

offlineretailers for use in postal mailings, coupons, andother forms of customer 

communication. 
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