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ABSTRACT 

 

 
 Alzheimer's disease is currently at the forefront of scientific research. The global epidemic 

burden of AD is expected to exceed $2 trillion by 2030, entailing early diagnosis. However, 

research revealed that one out of every three cases of dementia can be avoided if detected early 

enough before profound brain loss happens. 

AD is a gradual, irreversible brain disease that deteriorates a patient's memory, cognitive 

functions and shrinks the brain's size, eventually leading to death. However, for the most part, 

symptoms do not escalate. In reality, the signs can be transient or reversible in some cases. Based 

on a person's early symptoms, it can be impossible to predict an Alzheimer's diagnosis. This 

makes it challenging to diagnose AD early, as subjects who are affected have the greatest 

probability of benefiting from the few interventions and drug therapies available.  

Faced with these obstacles, a significant research work is focusing on developing technologies 

that can detect cases earlier and more accurately, particularly in the elderly who are undergoing 

some cognitive impairment. Thus, diagnosis of AD is mainly based on clinical evaluation as well 

as cognitive assessment using neuropsychological tests which might assist in advancing and 

assessing peculiar medication. Early detection and classification of divergent phases of AD are 

done through ML with AI techniques that can be applied to EHR to provide accurate and 

comprehensive diagnosis to improve the quality and productivity of healthcare. ML models that 

use numerous optimization and probabilistic approaches may be used to make this diagnosis.  

In this article, a multi-modality procedure is followed. The data is acquired from ADNI-

TADPOLE grand challenge and UNIPROT inclusive of cross-sectional, longitudinal (baseline) 

datasets and sequence datasets. The numerical data as a whole includes clinical scans (MRI, PET, 

FDG), cognitive scores (MMSE, ADAS-Cog, ADAS-11, ADAS-13) demographic attributes 

(Age, Race) and sequence of AD/non AD-related genes. The four diverse classifiers employed 

for classification and prediction of AD are RF, SVM, ANN, RF+SVM. The primary goal of our 

study is to identify the most relevant biomarkers and features that can contribute to reliable, 

accurate, effective and timely diagnosis of AD. Thus, to escalate patient’s quality of life and 

forbid high medical expenses, an automated, persistent, and unobtrusive pre - clinical detection 

system will be enforced. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 General 

 
Alzheimer’s disease is a progressive neurodegenerative disorder that demolishes 

cognitive dysfunction. Recent research derived that AD is the third leading cause of death. 

According to recent estimates in 2021 about 6.2 million Americans aged 65 and older are 

already suffering from AD in both developed and developing nations [1]. It is also reported 

that the incidence of AD will increase to every 33 seconds by 2050 and the rate at which AD 

occurs currently is every 65 seconds in the USA [2].  

Unfortunately, there is currently no treatment for AD. Though there are certain drugs 

available but, medications only help patient’s conditions for a short time. The most recently 

accepted treatment is just a mixture of two previously approved anti-medications, 

Alzheimer's Donepezil and Memantine. Despite significant attempts to discover a treatment 

for AD, clinical trials for AD treatments have a 99.6% failure rate.
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1.2 History 

 
Alzheimer's syndrome was first identified in 1906 by German psychiatrist Dr. Alois 

Alzheimer, who described "a peculiar disease" characterized by severe cognitive impairment 

and subtle brain changes. [2]. The disease is an inoperable, irreversible and progressive 

neurodegenerative disease that disrupts neurons and their associations in areas of the brain 

that are important in memory processing and this includes the cerebral cortex, entorhinal 

cortex, hippocampus and lobes. Changes in cognitive skills in Alzheimer's patients often 

begin slowly and accelerate with time. As a result, affects regions of the cerebral cortex 

involved in grammar, reasoning, and social behavior. In due course, damaging supplementary 

parts of the brain and thus proving to be an inevitable disease. Some of the risk factors 

associated with AD include family history, cardiovascular disease, Down's syndrome, head 

injuries, age and sedentary lifestyle [3].  

 

 

Figure 1.1: Representation of healthy and AD brain [4] 

 

1.3 Diagnosis 

 
Diagnosis of AD at primary onset may delay the progression of the disease. The 

diagnosis primarily relies on cognitive assessment and clinical evaluation using a 

neuropsychological test which includes Mini-Mental State Examinations(MMSE), 
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Alzheimer’s disease Assessment Scale Cognitive (ADAS-11, ADAS-13), and Clinical 

Dementia Rating (CDR). The radical brain image acquisition techniques such as 

Computerized Tomography (CT), Functional Magnetic Resonance Imaging (fMRI), Positron 

Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) are used as clinical 

biomarkers that can effectively diagnose breakthrough of AD [5]. The genetic biomarkers and 

risk factors play a vital role as well.  

PET imaging with precise tracers and cerebrospinal fluid biomarkers can be used to test 

in vivo the two pathological hallmarks of AD, amyloid beta plaques and neurofibrillary tau 

angles, which signify the existence of rare abnormal protein deposits [6]. Based on the 

gradual progression of AD, it is divided into different stages such as Dementia, MCI (mild 

cognitive impairment) and CN (cognitively normal). This distinction is important because 

patients with different stages of AD need different treatments and the same drug cannot be 

used by all of them [7]. Hence, classification of different stages is crucial for the achievement 

of the goal that it will increase the patient's quality of life by allowing for appropriate 

symptom care.   

 

1.4 Machine Learning Techniques used in Alzheimer’s disease 

 
Machine Learning (ML) is computational and non-traditional approach that aims to 

organize, interpret and analyze different kinds of datasets.  It is a subcategory of artificial 

intelligence that includes a number of techniques for making mathematical, probabilistic 

decisions based on prior knowledge. It classifies new events and predicts new trends based on 

previous learning. Features can be extracted and categorized without involving any experts 

thanks to the advancement of ML models. 

 The use of contemporary computing technology and resources is becoming a boon to 

new trends in healthcare and diagnosis. Electronic Health Record (EHR) is setting a gauge to 

record patient’s data electronically through the replacement of conventional methods that 

comprises a collection of data in paper-based form [7]. Although diagnosing AD at an initial 

stage remains a challenging task. The trend of ML and EHR to anticipate and visualize illness 

is particularly prevalent toward predictive and personalized prescribing.  ML algorithms that 

use numerous optimization and probabilistic techniques may be used to make this diagnosis. 
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The potential of ML techniques to acquire relevant patterns within data and provide 

automated classifications and forecasts makes them especially appealing. Wide databases of 

patients with multimodal data have been made public in recent years. The Alzheimer's 

Disease Neuroimaging Initiative (ADNI) is the most well-known publically accessible 

software, however there are other widely accessible databases, such as the Open Access 

Series of Imaging Studies and the Australian Imaging, Biomarker, and Lifestyle Flagship 

Study of Ageing. This would significantly accelerate the advancement of ML approaches to 

aid in the diagnosis and prognosis of AD. [6] 

 

 

1.5 Single and Multiple Modality Approach 

 
Despite substantial studies and advancements in clinical practice, only about half of AD 

patients had their pathology and disease development correctly diagnosed relying on their 

clinical symptoms. Clinical symptoms, demographic characteristics, neurological assessments 

and ratings, such as MMSE scores, are supplemented by imaging, molecular, and protein 

biomarkers in the study of AD. The majority of these studies use single-modality data to 

classify biomarkers, which limits a holistic evaluation of AD disease progression. 

While the use of various single biomarkers yields positive outcomes, they are intended to 

characterize group distinctions rather than to classify individuals [8] developed a mechanism 

for distinguishing between stable and AD participants by combining the three biomarkers for 

Alzheimer's disease diagnosis, such as MRI, PET, and CSF. [9] 

 

 

1.6 Stages of Progression of Disease 

 
The four stages of AD are pre-dementia (up to 20 years), early, moderate (2-10 years) 

and advanced (1-5 years). A description of stages is explained in the context below.  

Pre-Dementia Stage: It is marked by symptoms such as memory loss which are often 

mistaken as aging or stress. Early-stage Alzheimer's disease is characterized primarily by 

encoding and retrieval problems, which result in acute memory impairment and a reduced 
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ability to acquire new information. The cognitive symptoms include subtle episodic memory 

loss and executive abilities. The patients might face behaviors such as irritability, apathy and 

dysphoria. 

Early and Moderate Stage: The increasing impairment of learning and memory eventually 

leads to the early stage. The stage feature limited vocabulary and decreased word fluency. 

Moreover, speech and motor skills are progressively lost. The cognitive symptoms include 

episodic memory loss, misplacing items, disorientation and decreased executive abilities such 

as problem-solving and decision making. 

Advanced Stage: Mental function continues to deteriorate in the late stages of Alzheimer's 

disease, known as advanced-stage related to Alzheimer's disease. The disease has a rising 

influence on mobility and physical abilities. The major challenge is loss of “self”. The 

patients might face behaviors such as agitation and insomnia. 

 

 

Figure 1.2: Different Stages of progression of AD. 
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1.7 Objectives 

 
Prognosis of AD on available data is a cutting-edge challenge. The thesis presents the 

performance and analysis of AD through a multi-dimensional format which includes 

neuroimaging and sequence data. The main objectives of this study are: 

I. It focuses on the prediction of progression of subjects which are at distinct stages 

of AD by applying machine learning techniques on the ADNI-TADPOLE 

challenge data  

II. It uses ADNI-TADPOLE data with baseline as well as non-baseline features 

achieving considerable accuracies.  

III. We used multi-modal approach which includes both ADNI-TADPOLE data 

(clinical, cognitive, and demographic) as well as sequence data (genetic). 

IV. Target was to identify the most distinguishing and imperative biomarkers in both 

types of datasets used. The available data is explored in the subsections. 

 

1.8 Research Structure 

 
This research study is distributed into five chapters. A short description of each chapter is 

provided here. 

Chapter 1 Introduction: This chapter provides insights about the topic, discusses the 

objective, provides the purpose and scope of this study, and defines the AD, stages of 

progression and diagnosis. 

 

Chapter 2 Literature Review: This chapter can be pondered as the back bone of this report. 

It provides the facts and data gathered by former researchers on the topic of an amalgam of 

AD and AI published in diverse reputed journals papers, books and articles. The findings of 

these research articles provide knowledge of various techniques to detect AD at its initial 

phase. 

Chapter 3 Methodology: Discussion of the pipeline implemented and its relative data 

collection used for this research methodology is enlisted in this particular chapter. Data 
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availability exploration, preprocessing, proposed pipeline, cross-validation and ML 

algorithms are thoroughly described in this chapter. 

Chapter 4 Results and Discussions: From the analysis of the pipeline proposed, all the 

results of various datasets were embodied in tabular form in an overall manner as well as in their 

respective category. The ROC curves, accuracies of different classifiers were enlisted in the 

form of figures in this chapter. 

Chapter 5 Conclusions and Future Scope: On the basis of methodology proposed by the 

analysis of data and literature review, conclusions and future scopes are formulated for all the 

available data. This chapter also concludes this entire study and provides meaningful 

information. 

Appendix: In this section codes performed in Python using machine learning is provided in 

ipython notebook format which can be open in Jupyter-notebook. 

 



8 

 

CHAPTER 2 

LITERATURE REVIEW 
 

 

2.1 General 

Evaluation of literature is considered as the foundation of any research study. Stronger 

the foundation, the more ambitious goals we can achieve. Similarly, if the literature review of 

the research study is thorough and systematic, it will define the aim of the research very 

clearly and makes the research very reliable. In this chapter a brief summary of various 

prestigious journals’ research work is discussed on ML and AI techniques to forecast AD and 

its progression.  

2.2 Review of Literature 

 
There are significant studies involving usage of the TADPOLE repository generated 

from ADNI. In 2020, Thushara A. et al. [5] conducted a study on the data collected from the 

TADPOLE repository, which includes biomarkers for clinical and neuroimaging applications. 

Due to the partial nature of the data set, the RF ascription protocol was used to replace the 

missing parameters. Thus, enhancing the classification accuracy because this technique 

brimmed the high-dimensional incomplete data more precisely than the mean or median 

form. 486 attributes were chosen at random manually through feature selection, and the Gini 

index was calculated for each one. The characteristics are rated based on the final value, and 

the top 21 features were chosen using the RF algorithm. The data collection obtained after the 

feature selection procedure was subjected to the RF classification technique. The RF 

classification model was operated to analyze the records acquired during the attribute 

selection procedure. However, It was reported that the classifier had an accuracy of 69.33%, 

as well as macro averaged precision, sensitivity, and F-score value of 69.33%, 40.9%, and 

51.4%, respectively. The best results were obtained by the NC class (F-score 65.15%, 

sensitivity 58.09%, and precision 74.17%), while the lowest results were obtained by the MCI 

class (F-score 1.36%, Sensitivity 0.79% and, precision 5%). In contrast, the RF Classification 

model was compared with the reference dataset obtained after using the Genetic algorithm 
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with a 66 percent break and 20 trees to pick features. Overall precision is 57.54 percent. The 

best and worst classification accuracy is attained by NC and MCI, respectively. The poor 

precision in MCI is due to a lower number of patient’s data in that class, as per the data set 

analysis. The results revealed that the RF selection and prediction model outperformed the 

GA-based selection and prediction model in terms of classification accuracy. Limitations 

were also highlighted in this article such as the accuracy in the multiclass grouping is a 

problem in the analysis of AD. In this paper, a four-class grouping challenge for AD is 

investigated. OVR, SAEZEROMASK, SVM are compared to the proposed system. The 

accuracy of the data, however, is on the low scale. In contrast to the proposed approach, the 

range of accuracies in OVR, SAEZEROMASK and SVM was smaller. As a result, the 

suggested approach is a viable option for AD classification (multiple) problems. 

  

 

A study was conducted by Ji. Hwan Park [10] et al. in 2020 on the data collected from 

the Korean National Health Insurance Service database between 2002 and 2010, consisting of 

4,894 clinical features such as ICD-10, drug codes, laboratory data, the background of family 

,personal disease, and demographics of individuals.  To define incident AD, they used 

definite AD with codes for diagnosis and drugs for dementia, and probable AD with just a 

diagnosis. RF, SVM, and logistic regression were used to train and test random forest, and 

forecast event AD in 1, 2, 3, and 4 years. The ML models demonstrated fair results in the first 

year of prediction in bootstrapping having AUCs of 0.775 (definite AD) and 0.759(probable 

AD). In second year, 0.730(definite AD) and 0.693(probable AD); in third year, 

0.677(definite AD) and 0.644(probable AD); in fourth year, 0.725(definite AD) and 

0.683(probable AD). When the whole unbalanced samples were utilized, the findings in the 

study were identical. Urine protein level, hemoglobin level, and age were all mandatory 

clinical features chosen in the model of logistic regression. RF, SVM with linear kernel, and 

logistic regression were carried out as ML algorithms. Nested stratified 5-fold cross-

validation with 5 iterations was implemented for model preparation, validation, and testing of 

data. The variance threshold method38 was used to pick features inside train sets. Validation 

sets were used to optimize hyper parameters. Tuned hyper-parameters includes the least 

number of data samples wanted at a leaf node and the number of trees in the forest for RF; 
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linearization strength for SVM; and the converse of linearization strength for logistic 

regression. RF performed best in predicting the zero-year incidence of AD, with a precision 

of 0.823 and an AUC of 0.898. The features that were positively linked to incident AD were 

defined using logistic regression. This included age, increased urine protein, Zotepine 

prescriptions, and characteristics that were negatively linked to attribute of incident AD, like 

reduced hemoglobin, Nicametate, Citrate prescriptions, diagnosis of the external ear and other 

degenerative disorders. This research sheds light on the usefulness of a data-driven ML model 

based on large-scale health data in predicting the risk of AD, which could ameliorate patient 

selection. 

 

 

In another study held out by Shahbaz.et.al [7] in the year 2019 TADPOLE data were 

collected from both male and female participants, including those with a moderate cognitive 

disability, the elderly, and Alzheimer's patients; there are 1,907 features in the dataset for 

1,737 respondents. These individuals were classified into five categories depending on their 

diagnoses: SMC, LMCI, AD, EMCI, CN. The 41 features with sufficient data were subjected 

to an evaluation to eliminate redundancy. For this case, 28 attributes were chosen after pre-

processing and data analysis. The dataset is split into two parts: a training dataset (which 

accounts for 70% of the total) and test datasets (which account for 30% of the total) (30 

percent of the entire dataset). The 2,164 investigation records have been employed for data 

mining model preparation, while the 927 examination records have been used for model 

research, according to this distribution. Six different data mining algorithms and machine 

learning including DT, KNN, DL algorithm, Naive Bayes, GLM, and rule induction, are used 

to identify the five stages of AD in this study based on the ADNI dataset. Rapidminer studio, 

a well-known data mining method, is used to execute all of these techniques in this research. 

Herein, all classification models in this analysis were trained using a 10-fold cross-validation 

method on the preparing dataset. The CDRSB cognitive exam, which emerges at the cork of 

the decision tree, is the most distinguishing trait for the five phases of AD, according to the 

rule induction models and decision tree.  The patient's lifespan is the most distinctive 

demographic feature, while the quantity of the entire brain is the most characteristic clinical 

evaluation feature. The generalized linear model correctly categorized the majority of the 
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predicted unknown occurrences of LMCI, AD, EMCI, and CN classes, with division recalls 

of 86.01%, 100.00%, 90.62%, 94.44 and rank accuracy of 79.45%, 100.00%, 98.12%, 

889.16% respectively, out of all classifiers. 

 

 

In another study conducted by A. Kumar.et.al [11] in the year 2019 Alzheimer’s 

Biomarkers Comprehensive Database was developed. ABCD is built and written in MySQL, 

with a web interface refined in PHP on the phpMyAdmin framework and hosted on an 

Apache web server. It is a repository of choice for the scientific community due to its 

comprehensiveness, uniformity, free availability, ease of use, and support for various user 

accounts. The data in the database was gathered from the previous publications and online 

sources such as NCBI, Google Scholar, PubMed, Medical Literature Analysis and Retrieval 

System Online (MEDLINE), and PMC. ABCD is made up of SNPs, proteins, genes, and 

microRNAs (miRNAs), all of which work together to offer gene regulatory input to 

researchers. The user can access verifiable data on miRNAs from miRBASE software. A 

bespoke PHP script that used the Entrez API to retrieve molecular data via NCBI sites was 

used here. Chembank as well as other databases were used to get drug information. The latest 

version of the ABCD has data availability from 843 literature sources that describe 404 

medications, 499 genes, and 767 miRNAs. Advanced search, gene regulatory information 

related search, protein search, and gene search are the primary ABCD interface components. 

Users can query the system using genes and proteins in the search area. Users may search 

ABCD by miRNA, mitochondrial gene, pathways, co-expressed gene, Transcription factors 

(TF), Single Nucleotide Polymorphisms (SNPs), and pharmacological target in the 

progressive search. The data distribution and frequency are as follows: biological processes 

(1473), clinical trials (1608), miRNA (767), mitochondrial genes (36), SNP’s (132), drugs 

(404), TF’s (1538), proteins (259), genes (499), pathway (8), animal models (17), brain 

images (35), molecular functions (125), cellular components (148), co-expressed genes 

(4428). 
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G. Virar.et.al [12] in 2018 conducted their study on multimodal attributes from CSF, 

PET, MRI, and DTI. To construct the graph, the author mounts all quantitative aspects from 

this repository with the markers and encompasses age and gender. The problem of matrix 

completion is used in the methodology. This article explains the use of meta-information 

from these rows or columns to create the graph, or it can employ the row or column paths of 

the matrix to measure an identical metric among the set of vertices. Therefore, they suggest 

solving the multi-modal disease classification as a geometric matrix completion problem in 

this paper. On a dataset with partly observed features and marks, the author uses a Separable 

Recurrent GCNN (sRGCNN) to forecast the disorder and ascribe missing attributes at the 

same time. Thus, the author created the graph using meta-data from the subjects, as in their 

gender and age, since these factors are considered to be possible causes for AD. This study 

contrasts two approaches to creating row graphs using a stratified 10-fold cross-validation 

approach: one using a similarity metric to combine gender and age information, and the other 

using Euclidian distance-based KNN to combine gender and age information only. Thus, 

Hyper parameters were amended using Hyperopt and nested cross-validation on a hold-out 

validation collection which was set at 10% in every fold of training input, aiming for 

classification failure (binary cross-entropy). The author concluded that the finest performing 

technique, which uses a graph framework based on gender and age, attains classification 

accuracy of 87% with an AUC value of 0.950 at the baseline. Moreover, at all stages of 

matrix completeness, this approach surpasses definitive classifiers SVC, RF, and MLP. 

 

C. Krittanawong.et.al [13] done the  study in 2017 highlighting the upcoming future of 

AI techniques like ML, DL, and Cognitive assessment which may play a crucial part in CVD 

medicine and ameliorate patient care quality, increase cost efficiency, and lower readmission 

and death rates. This would further result in a paradigm shift towards accurate CVD 

medicine. Big data analytics using AI and their algorithms can allow precision medicine. Big 

data includes genetics, social media, environmental, and lifestyle-related factors or "omics" 

data that can be preserved through EHR's or precision medicine frameworks and thus 

accessed with other physicians or researchers through safe cloud systems. In the big data 

realm, ML revolutionizes CVD risk thus automating score prediction.ML can be divided into 

3 categories: 1. Supervised Learning which involves the use of a dataset labeled by subjects 
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to forecast the desired outcome. It can be used in both classification and regression problems. 

It includes (i) ANN (ii) SVM (iii) DT (iv) RF (v) Naïve Bayes (vi) Fuzzy logic (vii) KNN. 2. 

Unsupervised Learning aims to find new disease pathways, genotypes, or phenotypes in data 

that are obscured or complex. It can be divided into the following categories: (I) Algorithms 

for clustering (ii) Algorithms for learning association rules. 3. Reinforcement learning 

combines supervised and unsupervised learning techniques. Its objective is to use trial and 

error to boost algorithm accuracy. 

 

A study in India by Rao et al. [14] in 2008 gathered 74 proteins that are thought to be 

linked in AD pathogenesis. NCBI was used to extract functional protein sequence data in 

FASTA format for these proteins. ClustalW is given these sequences for Multiple Sequence 

Alignment, which determines the best fit for the chosen sequences and sets them up so that 

the names, distinctions, and variations can be seen. Out of 74 proteins identified as essential 

pathological proteins during the progression of AD, bioinformatics research demonstrates 

three significant proteins. The current bioinformatics research discovered that the proteins 

PS-1 and PS-2, as well as APP, play significant parts in the pathogenesis of AD. 

 

 

Another study in the USA conducted in 2007 by Hamed et al. [15] with emphasis on 

biomarker selection for prognosis of AD is discussed. The Alzheimer’s disease Prediction of 

Longitudinal Evolution (TADPOLE) challenge provided the record for this investigation. The 

goal of this challenge is to evaluate several algorithms for future Alzheimer’s disease 

predictions of individuals. The study combined the findings of cognitive tests with 

quantitative biomarkers such as MRI measures. Cognitive exams are neuropsychological 

exams that are overseen by clinical professionals. The study uses 1568 samples from each of 

the three distinct groups (AD, EMCI, and CN) for a total of 4704 samples and 11 

characteristics (6 MRI measures and 5 cognitive tests). The utilized mean imputation in this 

study, which replaces absent values with the mean of a single attribute among all subjects. 

Normalization techniques or standardization are required after assigning the NaN values to 

prevent any impartialities that might also alter the final results due to the various ratios of the 

attributes in the TADPOLE dataset. The authors employed the normalizing approach to 
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rescale all the features between 0 and 1 in this article since one of the overall feature selection 

methods deals with nonnegative estimates. In this study, six feature selection procedures 

across three different categories are used. Tree-based, RFE, and Chi-Square methodology can 

categorize features by significance. The forward feature selection approach, on the other 

hand, is unable to rate feature significance directly. Modifying the number of chosen 

characteristics from 1-11 allows the attributes to be sorted in order of significance to the 

algorithm. The AdaBoost classifier with multiclassification capacity is employed in this work 

since the major purpose is to choose the relevant characteristics that might cause the 

distinction between three distinct groups (AD, EMCI, and CN). AdaBoost is a machine 

learning meta-algorithm that may be employed to improve the execution of other learning 

algorithms. By turning weak learners into strong learners, this technique might provide higher 

accuracy than traditional machine learning methods. To train and test the classifier in the 

work, a multiclass categorization strategy with 5-fold cross-validation was utilized. This 

implies that the classifier is instructed with 80% of the data in each fold and evaluated on the 

remaining data (i.e., 20 percent). The accuracy measure was used to assess the relevance and 

divisibility of the selected characteristics in the three distinct groups (AD, CN and EMCI). 

The various approaches used are- The Pearson correlation coefficient heatmap, which is 

among the filter feature selection methods inclusive of all the cognitive tests and the 

biomarkers, indicates that ADAS11 and ADAS13 are very connected, therefore one of them 

may be excluded from the dataset. Finally, the nine chosen characteristics RAVLT, MMSE, 

CDRSB, MidTemp, Fusiform, Whole-Brain, Entorhinal, Hippocampus, and Ventricles 

remain. Each feature is assigned a score by the Chisquare, and the greater the value, the more 

important the feature is. Four features, ADAS11, RAVLT, CDRSB, and ADAS13, are 

considered more essential features using the Chi-Square approach. Grounded on these 

findings and comparability with the Pearson’s correlation approach, Chisquare doesn’t 

provide information regarding the dataset’s redundancy. Both ADAS 11 and ADAS 13 are 

considered crucial characteristics, as can be seen. 

All characteristics are prioritized in the Wrapper-based technique based on their 

coefficients and significance. The Entorhinal cortex was selected as the best characteristic for 

classifying AD, EMCI, and CN patients. The other four key features are the MMSE, 

ADAS13, CDRSB and Hippocampus, which are ranked from 2 - 5. With the LASSO 
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regularization strategy, there is no clear way to prioritize the relevance of the features in the 

Embedded technique. The sparsity parameter is the sole factor that may be used to choose 

lasso features. The lower the sparsity, the lesser features are chosen. Only the MMSE is used 

as a feature in this investigation since the sparsity is set at 0.001. As a result, we may deduce 

that Lasso deems this attribute to be more important than the others. When the sparsity was 

reduced to 0.02, the additional characteristics picked were RAVLT, ADAS13, and CDRSB, 

but no ranking information was obtained. 

The Gini importance is used by the extra tree classifier to assign a rating to each feature. 

MMSE, ADAS13, CDRSB, RAVLT, and ADAS11 are the top five characteristics chosen, in 

that order. ADAS11 and ADAS13 were also regarded as essential features by the additional 

tree classifier; nevertheless, these two features are closely connected. In the feature 

combination approach, each feature must be evaluated individually, as well as all conceivable 

combinations, before being sent to a ML algorithm. For classification between the AD, 

EMCI, and CN groups, MidTemp, which wasn’t picked as an essential feature via standard 

feature selection techniques, but had the best accuracy (91.12%), even, surpassing the feature 

CDRSB. Furthermore, among all possible combinations for distinguishing between the AD, 

EMCI, and CN, the amalgam of the CDRSB and MidTemp obtained an accuracy of 92.86%. 

The findings show that traditional feature selection approaches aren’t always trustworthy, and 

that they might overlook certain critical biomarkers throughout the feature selection route. As 

a result, fusion-based feature selection may be thought of as a beyond more trustworthy 

strategy for identifying the utmost important biomarkers in AD research.  

 

 

One of the studies conducted in 2004 by Ramesh.et.al [16] was conducted in the UK, in 

which the author concluded AI is capable of analyzing complex medical data, with the ability 

to be harnessed in each and every field of medicine. It's also used to derive concrete 

relationships from a data base, which can be used for prediction, treatment, and diagnosis in a 

variety of clinical scenarios. In this review paper published, an outline of various AI 

algorithms is explained along with mandatory clinical applications. There are mainly 4 kinds 

of techniques used in the research article (i) ANN (Artificial Neural Network (ii) Fuzzy 

expert system (iii) Evolutionary Computation (iv) Hybrid Intelligent Systems. 
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2.3 Summary of Literature 

 

The development of software that exploits the ability of human intelligence, including 

certain making decisions, thought, and training, has been aided by advances in computer 

technology. The article highlights the potential of AI techniques for web-based medical 

diagnosis, prediction, and implementation. Combining AI and medicine has the potential to 

minimize costs, time, human expertise, and medical error. As a result, physicians can use it to 

help with decision-making, diagnosis, and prediction. Telemedicine and electronic health 

records (EHR) are used to provide health care over the internet. These advances may improve 

conventional records, allow for faster storage and retrieval, facilitate telemedicine, and 

encourage medical research. For the interface between the database and the clinician, 

electronic records could be stored and updated on a regular basis. The author’s model is a 

web-based medical diagnosis and prediction system with four parts: databases, prediction 

module, diagnosis module, and user interface. [17]  

The databases are of two types: patient database which stores patient information and 

patients-disease database which comprises diseases, treatments and other attributes about 

tests and therapies. The training and test datasets are taken from the patients-disease database, 

and the training weight is saved to predict new data fed into the system. The second main 

feature of the diagnosis module is a hybrid (expert-fuzzy system) that performs diagnosis 

tasks by combining expert systems and fuzzy logic. AD is a progressive neurological disorder 

marked mainly by amyloid-beta plaques and NFT’s resulting in the death of neurons [18].  

The protein-forming deposits are central to disease and its progression. The three genes 

are beta-amyloid precursor gene, PS-1; PS-2 located on chromosome number 21, 14 and 1 

respectively. Artificial intelligence in medicine chiefly involves the use of computer 

techniques to diagnose, treat and predict the results. The art of AI has highly measurable 

improvements as compared to previous systems. The authors devised findings of 11 papers 

that demonstrated the performance of medical AI [19].  

The purpose of this article is to present best practices for writing and reviewing AI for 

medical image analysis articles [20]. Proof of technological viability, expert-level results, and 
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clinical performance are all possible evidence goals for accepting conclusions. Tasks 

involving image processing include the classification which is as follows: (binary, 

multiclass). Regression, Localization: Return localization to the particular image. 

Segmentation: Classifies pixel as or not as a part of an object. Learning approach involves-

Supervised Learning, Unsupervised Learning. Data collection and processing- Collection: 

Description of data includes whether the collection was retrospective or prospective, 

sampling is consecutive or convenience and Processing. The division into subsets: Division 

of datasets includes training and testing set of the algorithm. Since there are a small number 

of experts available to provide correct picture labels, data labeling is performed on test sets. 

Radiology reports, expert consensus, and reference standards are examples of these. Model 

training involves hardware and software’s. Hyper parameters include numeric parameters; 

examples of this include learning rate, regularization variables. Quality evaluation. The -F1 

score is used to determine summary measurements for binary classification: Precision is the 

average predictive value, while recall is the sensitivity, with a range of 0-1. The Youden J 

index considers both false negatives and positives to be unfavorable. ROC AUC curve: used 

as a single metric to summarize a classifier’s entire output range. Summary measures for 

Multi-class classification-By averaging macro average and micro average. Thus, AI in the 

infant stages for application of medical imaging, patient’s safety demands. 

The goal of this study was to look for direct components and associated qualities that are 

believed to be entangled in AD pathogenesis. The PSEN2, PSEN1 genes and APP are 

presently thought to be implicated in genetic forms of AD. However, only the APOE gene 

has been firmly linked to the exposure of AD. Weka 3.6.9, RapidMiner Studio 6.2.0, and 

enrichment analysis for functional gene categorization with the David tool were used to 

classify gene dataset. The web-based GEne SeT AnaLysis Toolkit (WebGestalt) was used to 

conduct the gene ontology (GO) analysis. The C4.5 algorithm, which is used in the 

RapidMiner toolset, interprets missing data differently from regular data. Weka Tool was 

used to build association rules, which were decided by numerous attributes. The author used 

Alzheimer's genome data from a variety of typical internet resources, including NCBI, 

AlzGene, ensembl gene and GenCard. They chose 2111 raw genes that are known to be 

significant to AD. The dataset comprises 14 features that describe distinct aspects of AD 
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genes. Chi-squared characteristic analysis and gain ratio were used. The model was validated 

using the 10-fold cross-validation deployment operator. Descriptions of gene data include 

MMSE score, chromosomal location, association score, and gene name. This gene collection 

was also subjected to enrichment analysis in order to classify genes based on similarity that 

used a clustering technique. Stringency was retained for more strongly related genes in each 

group by maintaining the kappa threshold at 0.3, as anything underneath this level has a high 

likelihood of being noisy. The categorization of data was accomplished via a J48 algorithm 

developed in Weka, while C4.5 was employed in RapidMiner. This study yields the accurate 

categorization of 950 of 2111 genes. The information gain criteria revealed that Huge 

navigator and MMSE were the most informative variables in this gene collection. The 

specificity, sensitivity, and DT accuracy, were calculated to be 81%, 86% and 

71% respectively. Enrichment analysis affects gene function in terms of GO, phenotype 

analysis, illness association, pathway analysis, drug association, and gene functional 

categorization. According to gene functional categorization assessment, the major genes that 

are highly related with AD include APOE, ACE, GRN, PSEN1, BCHE, IL1A, and PRNP 

[21]. 
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CHAPTER 3  

METHODOLOGY 

 

 

3.1 General 

 
This chapter discusses the methodology adopted for this research work. In this section we 

will discuss about the data collection which encompasses availability description and 

preprocessing of data followed by pipeline, analysis of data, cross-validation and methods 

used in the analysis of data. This chapter thoroughly explains each and every step taken for 

the completion of this research study and also explains the analysis methods used in this 

study. 

 

3.2 Data Availability 

 
In this research work, we utilized the TADPOLE grand challenge data generated from 

ADNI. ADNI is a multicenter study aimed to improve the genetic biomarkers and 

neuroimaging data for early diagnosis of AD. A standard set of procedures and protocols is 

followed during ADNI data collection, to avoid any inconsistencies in the data [7]. The data 

consists of demographic attributes, clinical assessment and cognitive scores, genetic 

biomarkers and multi-modal MRI data.  

The collection of sequence data is performed via UNIPROT. The AD-related genes are 

labeled as positive dataset and Non AD-related genes are labeled as the negative dataset. We 

retrieved sequences from each set of 72 AD and Non-AD related genes.  

  

 

3.3 Data Description and Exploration 

 
The TADPOLE challenge is categorized into training, prediction and testing dataset 

namely D1, D2 (Longitudinal data) and D3 (cross-sectional data). The number of patients 

recorded in longitudinal data and cross-sectional data is 12741 and 896 respectively. The D1 

and D2 longitudinal training and prediction sets contain data from rollover individuals who 
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were asked to provide forecasts. The number of patients recorded here are 12741 with an age 

range of 54.4-94.4. The stages of progression of disease provided in the dataset are: LMCI 

(Late mild cognitive impairment), EMCI (Early mild cognitive impairment), SMC 

(Subjective Memory Complaint), CN (Cognitively Normal), and AD (Alzheimer’s disease) 

with a total count of 4644, 2319, 3821, 1568 and 389 respectively. [22]. 

 

In contrast, the cross-sectional prediction set (D3) consists of a limited set of variables 

and single time point from each rollover participant of the training dataset. The number of 

individuals here is 896 with an age range of 55.0-99.3. The stages of progression of disease 

provided in the dataset are NL to MCI, NL, MCI, MCI to NL, MCI to Dementia, Dementia to 

MCI and Dementia with values of 8, 292, 250, 8, 39, 3 and 142 respectively.[22] 

 

The raw sequence data consists of 72 sets of AD-related and NON-AD related genes. 

The initial number of sequences in the positive dataset is 493. While, negative dataset holds 

610 sequences.  

 

3.4  Data Preprocessing  

 

3.4.1 Feature Selection 

 

When generating a predictive model, attribute selection is the process of minimizing the 

amount of input variables. The quantity of input variables should be condensed to lower the 

expense of modelling computation and, in some situations, to escalate the model's 

performance. By improving the model's generalization, this strategy lowers the problem of 

over fitting. As a result, it aids in improved data interpretation, enhances prediction 

performance, and reduces the computing time and space necessary to execute the algorithm. 

 

The first group of attributes is demographics, which includes individual’s broad 

measurable traits. Clinical evaluation attributes, which include important biomarkers for 

Alzheimer's disease, constitute the second group. Following each participant's clinical 

assessment, these characteristics were noted. Finally, there is the cognitive assessment 
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attributes category, which includes qualities that indicate a participant's cognitive behavior. 

Various cognitive evaluation tests are conducted for this purpose, and scores are issued to 

individuals depending on their cognitive ability.  

The features extracted from TADPOLE data are selected manually through a profound 

understanding of the literature. The demographic, clinical and cognitive attributes along with 

description are illustrated in table 3.1, 3.2, 3.3. The features selected from longitudinal and 

cross-sectional data are 36 and 18 respectively 

 

 

Table 3.1: Demographic Features and their respective description. 

DEMOGRAPHIC ATTRIBUTES 

FEATURES DESCRIPTION 

RID Participant Roster ID 

VISCODE Visit Code 

SITE Where visit took place 

DX_bl Baseline diagnosis from the first visit 

AGE Individual Age at baseline(bl) 

PTGENDER Individual Sex 

PTRACCAT Race 

PTETHCAT Individual Ethnicity 

PTMARRY Individual Marital status at baseline 

DX Clinical diagnosis(current and baseline) 

Years_bl Years from baseline 
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Month_bl Months from baseline 

Month Months from baseline( to nearest 6 months, as a factor) 

 

 

Table 3.2: Clinical Assessment and their respective description. 

CLINICAL ATTRIBUTES 

FEATURES DESCRIPTION 

APOE4 Gene APOE4(Risk Factor) 

Ventricles 

Measures of brain structural integrity(MRI ,DTI measures) 

Hippocampus 

WholeBrain 

Entorhinal 

Fusiform 

Midtemp 

ICV 

Midtemp_bl 

Measures of brain structural integrity(MRI , DTI measures) at 

baseline 

ICV_bl  

Fusiform_bl  

Entorhinal_bl 

WholeBrain_bl 

Ventricles_bl 

Hippocampus_bl 

FDG  
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AV45_bl  

FDG_bl Avg FDG-PET(angular , temporal , posterior) at baseline 

PIB_bl Avg PIB (cortex, anterior , parietal, frontal) at baseline 

 

 

 

Table 3.3: Cognitive Scores and their respective description. 

COGNITIVE ATTRIBUTES 

FEATURES DESCRIPTION 

CDRSB Clinical Dementia Rating scale Sum of Boxes score 

ADAS11 AD Assessment Scale - 11 

ADAS13 AD Assessment Scale – 13 

MMSE Mini Mental State Examination 

RAVLT Rey Auditory Verbal Learning Test 

RAVLT_immediate Rey Auditory Verbal Learning Test(sum of 5) 

FAQ Functional Activities Questionnaire 

MOCA Montreal Cognitive Assessment 

EcogPtMem Everyday Cognition Participant Memory 

EcogPtLang Everyday Cognition Participant Language 

EcogPtVisspat Everyday Cognition Participant finding ability 

EcogPtPlan Everyday Cognition Participant Plans 

EcogPtTotal Everyday Cognition Participant Total Score 

EcogPtMem_bl Everyday Cognition Participant Memory at baseline 
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EcogPtLang_bl Everyday Cognition Participant Language at baseline 

EcogPtVisspat_bl Everyday Cognition Participant finding ability at baseline 

EcogPtPlan_bl Everyday Cognition Participant Plans at baseline 

EcogPtTotal_bl Everyday Cognition Participant Total Score at baseline 

CDRSB_bl Clinical Dementia Rating scale Sum of Boxes score at baseline 

ADAS11_bl AD Assessment Scale – 11 at baseline 

ADAS13_bl AD Assessment Scale – 13 at baseline 

MMSE_bl Mini Mental State Examination at baseline 

RAVLT_bl Rey Auditory Verbal Learning Test at baseline 

RAVLT_immediate_bl Rey Auditory Verbal Learning Test(sum of 5) at baseline 

FAQ_bl Family history Questionnaire at baseline 

 

 

On the other hand, the features selected for sequence data involve the use of Cluster 

Database at High Identity with Tolerance using a sequence identity of 80%. CD-HIT is 

employed to lower the overall content of the database by only eliminating 'redundant' 

sequences. As a result, from a given FASTA sequence database, it produces a collection of 

closely related protein families. The total number of retrieved sequences from CD-HIT from 

set of 72 AD and Non AD genes is 110 (for each positive and negative dataset). Further, the 

obtained sequences are used as a file to run on a python package; iFeature.  

iFeature is a toolkit for creating numerical feature representation schemes for protein 

sequences that is written in Python3. To reflect numerical sequence profiles, it primarily 

extracts structural and physiochemical properties from sequence data. We applied 19 different 

types of descriptors on both positive and negative data, which is demonstrated in table 3.4. 
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Table 3.4: Descriptors and their respective description. 

I-FEATURE DESCRIPTORS DESCRIPTION 

AAC Amino acid Comp 

APPAC Amphillic Amino Acid Comp 

CKSAAGP Comp of K-spaced Amino Acid Group pair 

CTDC Comp Descriptor 

CTDD Distribution Descriptor 

CTDT Transition Descriptor 

CTriad Conjoint Triad 

DDE Di-peptide Deviation from Expected Mean 

DPC Di-Peptide Comp 

GAAC Grouped Amino-Acid Comp 

GDPC Grouped Di-Peptide Comp 

Geary Autocorrelation Descriptors 

Moran Autocorrelation Descriptors 

NMBroto Normalized Moreau-Broto 

PAAC Pseudo Amino Acid Comp 

QSOrder Quasi-Seq Order 

SOCNumber Seq Order Coupling Number 

TPC Tri-Peptide Comp 

CKSAAP Comp of K-spaced Amino Acid Pairs 
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 3.4.2 Data Normalization 

 

The original data had various missing and redundant values. Since, high dimensional 

data and extreme variance of features are loopholes for prediction in machine learning, we 

followed up with the approach of data normalization.  

To overcome the sparseness in provided data, we performed Feature Scaling techniques 

such as Label Encoder and Min-Max Scalar. Similarly, to load the null values a mean for the 

particular cell was generated from the overall column. Subsequently, an additional procedure 

was followed for sequence data named ‘bfill ()’ technique. The function bfill () is used to 

backfill the dataset's redundant data. It will fill the NaN values in the pandas data frame in 

reverse order.  

Further, the TADPOLE and Sequential dataset is divided into training (80% of the entire 

dataset) set and test (20% of the entire dataset) set. To make the algorithms consistent and 

validate their performance similarity 5-fold cross-validation is deployed in both TADPOLE 

and sequence dataset. 

 

3.4.2.1 Min-Max Scalar 

 

The data is scaled to a defined range - generally 0 to 1 - in this method. The cost of 

having this constrained range is that we will end up with lower standard deviations, which 

can dampen the influence of outliers. Min-Max Scalar is denoted by the following equation. 

 

      

         
 

 

3.4.2.2 Label Encoder 

 

We frequently work with datasets in machine learning that include numerous labels in 

one or more columns. Labels in the set of words or numbers can be used. The training data is 

frequently labeled in words to make it intelligible or human-readable. The method of 
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converting labels into the numeric form so that computers can read them is known as label 

encoding. Machine learning algorithms, on the other hand, will make better choices about 

how to use those names. It is a key pre-processing stage for the organized dataset in 

supervised learning. 

 

3.5 Proposed Pipeline 

 
In our research work, we implemented four different types of algorithms comprising of 

RF, SVM, RF+SVM and ANN on TADPOLE to facilitate the classification of different 

stages of AD. While, the purpose of algorithms used in Sequence data measures the best-

indicated descriptor to classify AD progression. The variation of datasets cleaves the pipeline 

into two sections i.e., the framework of TADPOLE data and the Sequence data which further 

assist in the early prediction of AD. 

 

3.5.1 TADPOLE Data 

 

 The pipeline proposed in our study of TADPOLE data comprises of assorted biomarkers 

which aid in the prognosis of AD. To express the pipeline, Fig. 3.1 is illustrated. 
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Figure 3.1: Pipeline suggested for TADPOLE challenge Data. 

 
 

3.5.2 Sequence Data 

 The framework of the available gene sets and classifiers precisely predicts the stages of 

AD. To emphasize the plan of sequence data, Fig 3.2 is illustrated below.  

 

 

                  

 

Figure 3.2: Pipeline suggested for Sequence data extracted from UNIPROT. 
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3.6 Cross Validation 

 
Cross-validation is a series of techniques for measuring a method's efficiency on 

unknown data while minimizing the estimation's bias. This is accomplished by using two 

separate sets of data: a training set and a test set. The most common cross-validation approach 

is to divide the data into k partitions (generally, k ranges from 2 to 10). We utilized the 5-fold 

validation on each dataset. The output of each of these k-folds is then averaged through folds, 

with the union of the other folds serving as the test set.  

 

3.7 Random Forest 

 
RF is the category of supervised learning technique. Ensemble learning intends to 

generate an approach that integrates a range of simpler models of varying strengths. From the 

available dataset, a set of classifiers is trained, and then an amalgamation of them is built. 

Each of the distinct classifiers sheds a weighted vote, and the sum of the outcomes decides 

the subject's expected period. Moreover, it holds an upper hand over handling missing values 

and reduces over fitting in the model. Additionally, the algorithm classifies the categorical 

values of the dataset precisely.   

 

3.8 Support Vector Machines 

 
SVM is a type of supervised learning technique that can be exercised in both 

classification and regression problems. Mostly SVM is availed for classification problems. It 

can perform both linear and non-linear classification (through Kernel). The Kernel Function 

is used to convert n-dimensional input to m-dimensional input, where m is much greater than 

n, and then efficiently find the dot product in higher dimensions. The aim of SVM is to pick 

the ideal separating hyperplane for setting a threshold between points of separate categories. 

In high dimensions, the method is considered to be reliable.  
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The RBF (Radial Basis Kernel) forms the basis of the SVM classification in this study. It 

is used to find a non-linear classifier or regression line in machine learning. The mathematical 

expression of the kernel is as follows:  

 

 (    )     ( 
||    ||

 

   
) 

 

      Here,    and   are vectors in fixed dimension space. 

 

 

 

3.9 RF+SVM 

 
RF+SVM hybrid algorithm is employed to refine the results of SVM classifiers. Here RF 

is used as an auxiliary algorithm. The comprehensive analysis of the classifiers depicts their 

feasibility to increase the efficiency of SVM algorithm. RF-SVM can effectively predict data 

with very high dimensions and thus is highly accurate, generalizes better, and interpretable.  

 

3.10 Artificial Neural Network 

 
ANNs are useful data-driven modeling tools broadly employed for nonlinear systems and 

thus are a type of both supervised and unsupervised learning algorithm. The application 

includes solving obstacles related to text, image and tabular data. A neural network's general 

purpose is generating an output outline in response to a specific input design that is closely 

connected to how the brain works. These mappings are learned in the same way that the brain 

does. There are many types of neural networks, but the multi-layer perceptron has been 

encountered in this study. Multilayer Perceptron Artificial Neural Networks are 

computational prototypes that are widely employed to model and find designs in complex 

relationships amid inputs and outputs. The MLP period of neural networks includes a 

collection of training models in order to deduce a classifier that can anticipate a valid output 

cost in supervised learning. Mathematically, MLP can be written as:  
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    Where,   is the weights vector,   is the inputs vector,   denotes the bias, and   

represents the activation function. 
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

 

 

4.1 General 

 
This chapter reviews the outcomes of this study. After analysis the results of ML 

algorithms using neuroimaging, sequence and clinical data, their respective accuracies, 

sensitivity (recall), specificity, precision, recall F1-score are listed in this chapter. Relatively 

their feature importance and ROC curve, AUC score is also indicated herewith. This chapter 

also discusses the most relevant biomarker in the early diagnosis of AD. 

4.2 Feature Importance 

 
To overcome high dimensionality data and predict the relevant features, a score is 

assigned to input features, which mark the feature importance of a model. This strategy aids 

in the better performance of models. Fig 4.1 and Fig 4.2 demonstrates the feature importance. 

From the results obtained, we conclude that the most relevant feature used for early detection 

of AD is cognitive scores in TADPOLE datasets.  

4.2.1 Results of TADPOLE Longitudinal Data 

The results below indicate that the most vital attribute for early diagnosis of AD using 

TADPOLE longitudinal data is Cognitive attribute in contrast to Demographic and Clinical. 

Here, in Figure 4.1 CDRSB_bl has the highest feature importance of 0.27, in comparison to 

all features. Second, the most essential feature is ADAS13_bl followed by RID and 

MMSE_bl respectively. 
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Figure 4.1: Feature Importance for Longitudinal Dataset (baseline). 

 

4.2.2 Results of TADPOLE Cross-Sectional Data 

The results below indicate that the most crucial attribute for early diagnosis of AD using 

TADPOLE Cross-Sectional data is Cognitive attribute rather than Demographic and Clinical. 

Here, in Figure 4.2 ADAS13 has the highest feature importance of 0.23, in contrast to all 

features. Second, the most essential feature is RID followed by RID and AGE respectively.   
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Figure 4.2: Feature Importance for Cross-Sectional Dataset (non-baseline). 

 

4.3 Model Evaluation 

In this study, four different models are evaluated based on their performance and 

accuracy scores. The model with maximum accuracy, precision and recall score is considered 

ideal for AD prognosis. The evaluation of models and respected scores are demonstrated in 

Fig 4.3 and Fig 4.4.  

4.3.1 Results of Model Evaluation of TADPOLE Longitudinal Data 

The results below indicate that the most decisive algorithm for early diagnosis of AD 

using TADPOLE Longitudinal data is the Random Forest algorithm rather than SVM, ANN 

and RF+SVM combined. Here, Figure 4.3 RF has the achieved the highest accuracy of 

99.8%, in contrast to all techniques. Second, the most essential method is RF+SVM followed 

by ANN and SVM with accuracies of 97%, 96%, and 55.6% respectively.   
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Figure 4.3: Evaluation of different classifiers in Longitudinal Dataset. 

 

 

4.3.2 Results of Model Evaluation of TADPOLE Cross-Sectional Data 

The results below indicate that the most imperative algorithm for early diagnosis of AD 

using TADPOLE Cross-Sectional data is the Random Forest algorithm rather than SVM, 

ANN and RF+SVM combined. Here, in the Figure 4.4 RF has achieved highest accuracy of 

67.2%, in contrast to all techniques. Second, the most essential method is RF+SVM followed 

by SVM and ANN with accuracies of 66.7%, 58.3% and 48.3% respectively.   
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 Figure 4.4: Evaluation of different classifiers in Cross-Sectional Dataset. 
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4.4 Performance Metrics 

As an output of the classification, we report the balanced accuracy, area under the ROC 

curve (AUC), accuracy, sensitivity and specificity. Additionally, to calculate other desired 

metrics with this data, the expected class for each subject is computed.  

 

          
                

                                    
 

 

 

         
                                   

                                                                         
 

 

 

                   
                

                                   
 

 

 

            
                 

                                    
 

 

 

           
                

                
 

 

4.4.1 Results of Classifiers in Longitudinal data with their Relative Performance 

Metrics 

The results below indicate that the most imperative algorithm to forecast distinct stages 

for early diagnosis of AD using TADPOLE Longitudinal data. The Random Forest algorithm 

has attained the utmost accuracy rather than SVM, ANN and RF+SVM combined. Here, table 

4.1 represents distinctive stages along with their respective accuracies, precision, recall, F1 

score for all the classifiers employed for baseline attributes.    
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Table 4.1: Classifiers and their respective Stages, Precision, Recall, F1 score, Accuracy. 

CLASSIFIERS STAGES PRECISION RECALL F1-SCORE ACCURACY 

RANDOM FOREST 

AD 1.0 1.0 1.0 

99.88% 

CN 1.0 1.0 1.0 

EMCI 1.0 1.0 1.0 

LMCI 1.0 1.0 1.0 

SMC 1.0 1.0 1.0 

ANN 

AD 0.99 0.96 0.98 

97.01% 

CN 0.97 0.97 0.97 

EMCI O.97 0.96 0.96 

LMCI 0.96 0.98 0.97 

SMC 0.99 0.88 0.93 

SVM 

AD 1.0 0.09 0.16 

55.00% 

CN 1.0 0.45 0.62 

EMCI 1.0 0.18 0.3 

LMCI 0.45 1.0 0.62 

SMC 1.0 0.01 0.02 

RF+SVM 

AD 1.0 1.0 1.0 

96.58% 

CN 1.0 1.0 1.0 

EMCI 1.0 1.0 1.0 

LMCI 0.92 1.0 0.96 

SMC 1.0 0.01 0.02 
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4.4.2 Results of Classifiers in Cross-Sectional data with their Relative Performance 

Metrics 

The results below indicate that the most significant algorithm to forecast distinct stages 

for early diagnosis of AD using TADPOLE Cross-Sectional data. The Random Forest 

algorithm has attained the utmost accuracy rather than SVM, ANN and RF+SVM combined. 

Here, table 4.2 represents distinctive stages along with their respective accuracies, precision, 

recall, F1 score for all the classifiers employed for baseline attributes.    

 

 

Table 4.2: Classifiers and their respective Stages, Precision, Recall, F1 score, Accuracy. 

CLASSIFIERS STAGES PRECISION RECALL F1-SCORE ACCURACY 

RANDOM FOREST 

NL 0.71 0.82 0.76 

67.22% 

MCI 0.65 0.63 0.64 

DEMENTIA 0.62 0.71 0.67 

MCI to DEMENTIA 0 0 0 

MCI to NL 0 0 0 

NL to MCI 0 0 0 

DEMENTIA to MCI 0 0 0 

ANN 

NL 0.67 0.34 0.45 

48.33% 

MCI 0.42 0.69 0.52 

DEMENTIA 0.52 0.76 0.62 

MCI to DEMENTIA 0 0 0 

MCI to NL 0 0 0 

NL to MCI 0 0 0 

DEMENTIA to MCI 0 0 0 

SVM 

NL 0.59 0.84 0.7 

58.33% MCI 0.55 0.48 0.51 

DEMENTIA 0.67 0.29 0.4 
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MCI to DEMENTIA 0 0 0 

MCI to NL 0 0 0 

NL to MCI 0 0 0 

DEMENTIA to MCI 0 0 0 

RF+SVM 

NL 0.75 0.77 0.76 

66.66% 

MCI 0.61 0.68 0.64 

DEMENTIA 0.58 0.71 0.64 

MCI to DEMENTIA 0 0 0 

MCI to NL 0 0 0 

NL to MCI 0 0 0 

DEMENTIA to MCI 0 0 0 

 

 

4.4.3 Results of Classifiers in Sequence data with their Relative Performance Metrics 

The results below indicate that the most significant algorithm to estimate distinct stages 

for early diagnosis of AD using UNIPROT Sequence data. The CKSAAP, DPC, NMBroto, 

TPC have attained the utmost accuracy rather than other 19 descriptors used.  

Here, the table 4.21 displays maximum accuracy of TPC descriptor using ANN, SVM, 

and RF which are 86.36%, 84.09%, 81.81%. Second maximum accuracy is achieved by 

CKSAAP descriptor using ANN, RF which is 84.09% and 81.81%.  Relatively, third highest 

accuracy is acquired by NMBroto descriptor using RF which is 81.81%. Similarly, fourth 

accuracy is of DPC descriptor with 79.54% accuracy using ANN technique. 

The results are shown in the tables (4.3-4.21) below with their classifier, descriptors, F1 

score, precision, recall (sensitivity), and specificity. The 0 stage represents AD related genes , 

while 1 indicates non AD related genes. 
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Table 4.3: Classifiers and their respective AAC Descriptor, Stages, Precision, Recall, F1 

score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

AAC 

SVM 

0 0.69 0.41 0.51 

0.409 61.36% 

1 0.58 0.82 0.68 

RANDOM FOREST 

0 0.7 0.64 0.67 

0.636 68.18% 

1 0.67 0.73 0.7 

ANN 

0 0.68 0.59 0.63 

0.59 65.90% 

1 0.64 0.73 0.68 

 

 

Table 4.4: Classifiers and their respective APAAC Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL 
F1-

SCORE 
SPECIFICITY ACCURACY 

APAAC 

SVM 

0 0.40 0.18 0.25 

0.181 45.45% 

1 0.47 0.73 0.57 

RANDOM 
FOREST 

0 0.65 0.5 0.56 

0.5 61.36% 

1 0.59 0.73 0.65 

ANN 

0 0.72 0.59 0.65 

0.59 68.18% 

1 0.65 0.77 0.71 
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Table 4.5: Classifiers and their respective CKSAAGP Descriptor, Stages, Precision, 

Recall, F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

CKSAAGP 

SVM 
0 0.63 0.55 0.59 

0.545 61.36% 
1 0.6 0.68 0.64 

RANDOM FOREST 
0 0.75 0.68 0.71 

0.681 72.72% 
1 0.71 0.77 0.74 

ANN 
0 0.74 0.77 0.76 

0.772 75% 
1 0.76 0.73 0.74 

 

 

Table 4.6: Classifiers and their respective CKSAAP Descriptor, Stages, Precision, 

Recall, F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

CKSAAP 

SVM 

0 0.57 1.00 0.73 

1.00 72.72% 

1 1.00 0.57 0.73 

RANDOM FOREST 

0 0.70 0.88 0.78 

0.875 81.81% 

1 0.92 0.79 0.85 

ANN 

0 0.71 0.94 0.81 

0.9375 84.09% 

1 0.96 0.79 0.86 
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Table 4.7: Classifiers and their respective CTDC Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

CTDC 

SVM 
0 0.46 0.27 0.34 

0.272 47.72% 
1 0.48 0.68 0.57 

RANDOM FOREST 
0 0.75 0.55 0.63 

0.545 68.18% 
1 0.64 0.82 0.72 

ANN 
0 0.68 0.59 0.63 

0.590 65.90% 
1 0.64 0.73 0.68 

 

 

Table 4.8: Classifiers and their respective CTDD Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

CTDD 

SVM 

0 0.00 0.00 0.00 

0.00 43.18% 

1 0.43 1.00 0.60 

RANDOM FOREST 

0 0.62 0.52 0.57 

0.52 54.54% 

1 0.48 0.58 0.52 

ANN 

0 0.00 0.00 0.00 

0.00 38.63% 

1 0.40 0.89 0.56 
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Table 4.9: Classifiers and their respective CTDT Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

CTDT 

SVM 

0 0.87 0.52 0.65 

0.52 68.18% 

1 0.59 0.89 0.71 

RANDOM FOREST 

0 0.73 0.76 0.75 

0.76 70.45% 

1 0.67 0.63 0.65 

ANN 

0 0.85 0.68 0.76 

0.68 75.00% 

1 0.67 0.84 0.74 

 

 

Table 4.10: Classifiers and their respective CTriad Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

CTriad 

SVM 

0 0.59 0.56 0.57 

0.55 65.90% 

1 0.7 0.73 0.72 

RANDOM FOREST 

0 0.44 0.61 0.51 

0.61 52.27% 

1 0.63 0.46 0.53 

ANN 

0 0.63 0.67 0.65 

0.66 70.45% 

1 0.76 0.73 0.75 
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Table 4.11: Classifiers and their respective DDE Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

DDE 

SVM 

0 0.68 0.72 0.70 

0.72 75.00% 

1 0.80 0.77 0.78 

RANDOM FOREST 

0 0.62 0.72 0.67 

0.72 70.45% 

1 0.78 0.69 0.73 

ANN 

0 0.67 0.78 0.72 

0.77 75.00% 

1 0.83 0.73 0.78 

 

 

Table 4.12: Classifiers and their respective DPC Descriptor, Stages, Precision, Recall, F1 

score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

DPC 

SVM 

0 0.81 0.59 0.68 

0.59 72.72% 

1 0.68 0.86 0.76 

RANDOM FOREST 

0 0.74 0.64 0.68 

0.63 70.45% 

1 0.68 0.77 0.72 

ANN 

0 0.81 0.77 0.79 

0.77 79.54% 

1 0.78 0.82 0.80 
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Table 4.13: Classifiers and their respective GAAC Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

GAAC 

SVM 

0 0.69 0.38 0.49 

0.37 56.81% 

1 0.52 0.8 0.63 

RANDOM FOREST 

0 0.68 0.71 0.69 

0.70 65.90% 

1 0.63 0.60 0.62 

ANN 

0 0.67 0.58 0.62 

0.58 61.36% 

1 0.57 0.65 0.6 

 

 

Table 4.14: Classifiers and their respective GDPC Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

GDPC 

SVM 

0 0.41 0.39 0.4 

0.38 52.27% 

1 0.59 0.62 0.6 

RANDOM FOREST 

0 0.4 0.56 0.47 

0.55 47.72% 

1 0.58 0.42 0.49 

ANN 

0 0.53 0.44 0.48 

0.44 61.36% 

1 0.66 0.73 0.69 

 



 

 

48  

Table 4.15: Classifiers and their respective Geary Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

Geary 

SVM 

0 0.75 0.78 0.77 

0.78 75.00% 

1 0.75 0.71 0.73 

RANDOM FOREST 

0 0.70 0.70 0.70 

0.69 68.18% 

1 0.67 0.67 0.67 

ANN 

0 0.67 0.78 0.72 

0.78 68.18% 

1 0.71 0.57 0.63 

 

Table 4.16: Classifiers and their respective Moran Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

Moran 

SVM 

0 0.70 0.86 0.78 

0.86 75.00% 

1 0.82 0.64 0.72 

RANDOM FOREST 

0 0.67 0.73 0.70 

0.72 68.18% 

1 0.70 0.64 0.67 

ANN 

0 0.74 0.77 0.76 

0.77 75.00% 

1 0.76 0.73 0.74 
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Table 4.17: Classifiers and their respective NMBroto Descriptor, Stages, Precision, 

Recall, F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

NMBroto 

SVM 

0 0.62 0.75 0.68 

0.75 68.18% 

1 0.75 0.62 0.68 

RANDOM FOREST 

0 0.80 0.80 0.80 

0.80 81.81% 

1 0.83 0.83 0.83 

ANN 

0 0.75 0.75 0.75 

0.75 77.27% 

1 0.79 0.79 0.79 

 

 

Table 4.18: Classifiers and their respective PAAC Descriptor, Stages, Precision, Recall, 

F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

PAAC 

SVM 

0 0.50 0.85 0.63 

0.85 54.54% 

1 0.70 0.29 0.41 

RANDOM FOREST 

0 0.52 0.60 0.56 

0.60 56.81% 

1 0.62 0.54 0.58 

ANN 

0 0.69 0.90 0.78 

0.90 77.27% 

1 0.89 0.67 0.76 
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Table 4.19: Classifiers and their respective QSOrder Descriptor, Stages, Precision, 

Recall, F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

QSOrder 

SVM 

0 0.82 0.32 0.46 

0.32 52.27% 

1 0.42 0.88 0.57 

RANDOM FOREST 

0 0.83 0.54 0.65 

0.53 63.63% 

1 0.50 0.81 0.62 

ANN 

0 0.88 0.54 0.67 

0.53 65.90% 

1 0.52 0.88 0.65 

 

 

Table 4.20: Classifiers and their respective SOCNumber Descriptor, Stages, Precision, 

Recall, F1 score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

SOCNumber 

SVM 

0 0.00 0.00 0.00 

0.00 40.90% 

1 0.41 1.00 0.58 

RANDOM FOREST 

0 0.82 0.69 0.75 

0.69 72.72% 

1 0.64 0.78 0.70 

ANN 

0 0.44 0.15 0.23 

0.15 38.63% 

1 0.37 0.72 0.49 
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Table 4.21: Classifiers and their respective TPC Descriptor, Stages, Precision, Recall, F1 

score, Specificity Accuracy 

DESCRIPTOR CLASSIFIERS GENES PRECISION RECALL F1-SCORE SPECIFICITY ACCURACY 

TPC 

SVM 

0 0.75 1.00 0.86 

1.00 84.09% 

1 1.00 0.70 0.82 

RANDOM FOREST 

0 0.74 0.95 0.83 

0.95 81.81% 

1 0.94 0.70 0.80 

ANN 

0 0.80 0.95 0.87 

0.95 86.36% 

1 0.95 0.78 0.86 

 

 

4.5 Biomarker 

A biomarker is a set of quantitative features that signal the body's biological processes 

and can be used to detect disease early.  It can be used as a valuable indication for tracking 

the development of MCI to AD. Biomarker identification is critical for each dataset. Thus, we 

found that PS-1, PS-2 and APP are the most relevant biomarkers in sequence datasets through 

a profound understanding of the literature. 

In addition, cross-sectional dataset feature importance reveals that ADAS-13 is the most 

relevant biomarker followed by RID. Although, the cognitive score holds the highest 

relevance, it seems that demographics are also identified as important biomarkers. 

In contrast, the longitudinal dataset shows that CDRSB_bl and ADAS-13_bl are 

significant biomarkers. Although, the cognitive scores outperform in biomarker relevance, the 

clinical attributes are also imperative biomarkers. 
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4.6 ROC Curves and AUC Scores 

ROC (Receiver Operating Characteristic) Curve is a plot of the FPR (x-axis) versus the 

TPR (y-axis) for numerous threshold values amid 0.0 and 1.0. It is a statistical estimator 

which is used to analyze the performance of classification models. Thus, ROC curves are a 

very robust and intuitive choice for illustrating and analyzing classification models, as well as 

supporting the selection of cut-off points to maximize phenomenon categorization. 

AUC (Area under ROC curve) compares different classifiers and further summarizes the 

performance of each classifier into a single measure. Additionally, the AUC is the product of 

integrating all of the points along the curve's course, and it computes sensitivity and 

specificity at the same time, providing an estimator of a test's performance characteristics and 

accuracy.  

4.6.1 ROC Curve for Longitudinal Data 

The results below display the ROC curve extracted from longitudinal data using ML 

techniques. The ROC represented, consists of four different algorithms. Here, the x-axis 

signifies a false-positive rate, whereas the y-axis denotes true positive rate. The figure 4.5 

clearly indicates that RF and RF+SVM possess better performance followed by ANN and 

SVM. 
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Figure 4.5: ROC for Longitudinal Data. 

 

 

 

4.6.2 ROC Curve for Sequence Data using 19 Descriptors 

The results below display ROC curves extracted from sequence data using ML 

techniques. The ROC represented, consists of three different algorithms. Here, the x-axis 

signifies a false-positive rate, whereas the y-axis denotes true positive rate. 
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Figure 4.6: ROC Curve for AAC Descriptor 
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Figure 4.7: ROC Curve for APAAC Descriptor 
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Figure 4.8: ROC Curve for CKSAAGP Descriptor 
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Figure 4.9: ROC Curve for CKSAAP Descriptor 
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Figure 4.10: ROC Curve for CTDC Descriptor 
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Figure 4.11: ROC Curve for CTDD Descriptor 

 

 

 

 



 

 

60  

 
 

 

 

Figure 4.12: ROC Curve for CTDT Descriptor 
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Figure 4.13: ROC Curve for CTriad Descriptor 
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Figure 4.14: ROC Curve for DDE Descriptor 

 

 

 



 

 

63  

 
 

 

 

Figure 4.15: ROC Curve for DPC Descriptor 
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Figure 4.16: ROC Curve for GAAC Descriptor 

 

 

 

 



 

 

65  

 
 

 

 

Figure 4.17: ROC Curve for GDPC Descriptor 
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Figure 4.18: ROC Curve for Geary Descriptor 
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Figure 4.19: ROC Curve for Moran Descriptor 
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Figure 4.20: ROC Curve for NMBroto Descriptor 
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Figure 4.21: ROC Curve for SOCNumber Descriptor 
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Figure 4.22: ROC Curve for QSOrder Descriptor 
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Figure 4.23: ROC Curve for PAAC Descriptor 
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Figure 4.24: ROC Curve for TPC Descriptor 
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CHAPTER 5 

CONCLUSIONS AND FUTURE SCOPE 

 

 

5.1 General 

 
The conclusion, based on the preceding literature analysis and practical facts, appears of to 

apply state-of-the-art computational approaches employed in AI to health care and biomedical 

concerns. Affected individuals will be more likely to benefit from present treatments if new 

technologies can properly anticipate results five or six years in the future. While additional data 

is needed, researchers hope that these algorithms will someday find their way into clinics, 

allowing for faster diagnoses and better care for the millions of people who suffer from this 

intensifying and irrevocable degenerative disease. 

 

In a nutshell, our strategy is more sensitive than past attempts because it is multimodal i.e.  

Using various forms of data rather than relying solely on a single predictor type. Primary 

detection of AD patients may be critical for the administration of disease-modifying medications. 

As a result, future research should focus on predicting AD before prominent symptoms appear. 

Traditional slow, subjective, and data-poor evaluations will be reinstated by rapid, objective, and 

data-rich digital assessments in the future [17]. Moreover, the industry's transition to outcome-

based services will be aided by technology. Approximately 85% of respondents believe in the 

use of intelligent hardware, sensors, and devices. As a result, the industry will be able to 

transition from selling drugs to selling outcomes. 

 

5.2 Conclusions and Crucial Outcomes of the Study 

 
In this research study, we proposed the analysis of the available data with ML techniques. 

Longitudinal data and Cross-sectional data involve demographic, clinical, and cognitive 

attributes, which correspond to baseline and regular features respectively. The evaluation of 

models demonstrates RF algorithm has the best accuracy and performance compared to other 
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classifiers in the case of the TADPOLE dataset. The stages of AD with performance are assessed 

which further aid in the detection of the Alzheimer’s appropriate phase. In addition, we came up 

with the best feature used to predict AD progression. In the case of longitudinal data, CDRSB_bl 

is the most relevant feature for prediction in the early diagnosis of AD. While, in the cross-

sectional data ADAS-13 holds the highest relevance. Considering other factors in feature 

importance, we concluded that cognitive scores are an imperative biomarker towards early 

detection. 

In contrast, the results of sequence data help to precisely classify AD and NON-AD diseases 

for a given protein sequence. We conclude that TPC, CKSAAP descriptors are most relevant for 

the prediction of diseases. The accuracy of TPC and CKSAAP predictors is highest in the ANN 

classifier and their numerical accuracies are 86.36% and 89.03% respectively. We proposed all 

these options as potent choices as critical biomarkers for the early detection or prediction of AD. 

 

 

5.3 Future Scope 

 
The potential for assessing neurodegenerative disease may rest in the devices we each carry 

in our pockets where our psychological state, cognitive capability and clinical processes are 

pervasively and consistently tracked by the digital footprint we leave beyond. [17] 

Furthermore, the future vision of our research work is to develop an AI-Based application to 

predict accurate results using multi-modal data which would serve as an augment in the 

prognosis of the disease. It is anticipated that the proposed pipeline on the provided dataset will 

be beneficial to the academic and scientific community to explore and manage the world of 

neurological disorders including AD.  

 

. 
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