
Extant: The COVID-19 Employee Attendance System

Project report submitted in partial fulfilment of the requirement for the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

By

Ananya Shukla (171038)
Sushant Singh (171041)

UNDER THE GUIDANCE OF

Mr. Pradeep Garg

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

December 2020

1



TABLE OF CONTENTS

TITLE PAGE NO.

DECLARATION 4
ACKNOWLEDGEMENT 5
LIST OF FIGURES 6
ABSTRACT 7

CHAPTER-1: INTRODUCTION

1.1 Problem Statement 8
1.2 Objectives 8
1.3 Methodology 9

CHAPTER-2: THE COVID-19 PANDEMIC

2.1 A Brief Summary 10

2.1.1 The Origin 10
2.1.2 The Symptoms 11
2.1.3 The Spread 11

2.2 Technological Advances to Battle COVID-19

2.2.1 3D Printing Supplies 11
2.2.2 Google and DeepMind 13

CHAPTER-3: ARTIFICIAL NEURAL NETWORKS

3.1 Introduction 14
3.2 The Learning Process 14
3.3 Forward and Backward Propagation 15

3.3.1 Model Initialisation 16
3.3.2 Forward Propagation 16
3.3.3 The Loss Function 16
3.3.4 Differentiation 18
3.3.5 Backward Propagation 19
3.3.6 Updating the Weights 20
3.3.7 Iteration 21

CHAPTER-4: CONVOLUTIONAL NEURAL NETWORKS

4.1 Introduction 22
4.2 The Program 22

2



4.2.1 Importing all required libraries 22
4.2.2 Data Preprocessing 23
4.2.3 Data Augmentation 24
4.3.4 Building the CNN 24
4.3.5 Training the model 27
4.3.6 Visualization 28

4.3 The Results 28

CHAPTER-5 : IMPLEMENTATION OF DASHBOARD

5.1 Introduction
5.2 Technologies Used

REFERENCES
APPENDIX A

3



DECLARATION

We hereby declare that the work reported in the B.Tech Project Report entitled “Extant: The
COVID-19 Employee Attendance System” submitted at Jaypee University of Information
Technology, Waknaghat, India is an authentic record of our work carried out under the supervision
of Mr. Pradeep Garg. We have not submitted this work elsewhere for any other degree or diploma.

Ananya Shukla Sushant Singh

(171038) (171041)

This is to certify that the above statement made by the candidates is correct to the best of my
knowledge.

Mr. Pradeep Garg

Department of Electronics and Communication

Dr. Rajiv Kumar

Head of Department

4

Stamp

Stamp

Administrator
Stamp



Date: 3rd December 2020

Acknowledgement

I'd want to take this opportunity to thank and express my heartfelt gratitude to Mr. Pradeep Garg, my

mentor and project guide, for his unwavering support and invaluable direction, without which we

would not have been able to get to this point in our final year project.

I am grateful for the excellent support provided by Prof. Dr. Rajiv Kumar, Head of Electronics &

Communication Department. We would also like to thank all professors and other supporting

members for their generous support in various ways to complete this work. The Department of

Electronics and Communication. I am also grateful for your valuable support to all my faculty

members in their respective fields which helped me achieve my project at this phase.

Date: 3rd December 2020

5



LIST OF FIGURES

Figure 1.1: Flowchart of the Project

Figure 2.1: An Image of the Novel Corona Virus SARS-CoV-2

Figure 2.2: a 3D Printer Employed to print PPEs

Figure 2.3: A 3D Printed PPE Mask

Figure 3.1: A Pictorial Representation of an Artificial Neural Network

Figure 3.2: Block Diagram of Forward and Backward Propagation

Figure 3.3: MSE Formula

Figure 3.4: MAE Formula

Figure 3.5: MBE Formula

Figure 3.6: SVM Loss Formula

Figure 3.7: CE Loss Formula

Figure 3.8: The function of derivatives

Figure 3.9: Gradient Descent

Figure 4.1: Representation of out CNN Model

Figure 4.2: Accuracy v. Epochs

Figure 4.3: Loss v. Epochs

Figure 4.4: Stored data from the program

6



ABSTRACT

Automation is the future of technology. Tedious work will soon be taken over by intelligent

machines, which will be able to do the same task with precision and in lesser time.

Our project aims at improving the lives of business owners in the current pandemic situation by using

current technologies which help in keeping their employees safe and healthy. We hope to provide an

all-in-one solution for keeping the business premises safe from the COVID-19 virus.

Our project uses state of the art Neural Networks to distinguish whether an employee is wearing a

mask or not. This information is then fed into a database, which can be checked by the employer, and

can potentially raise an alert when an irregular entry happens.

Using a robust Convolutional Neural Network to determine if an employee is following the proper

safety precautions is an efficient and feasible method as most computing machines are able to do

mathematical calculations involving Neural Networks.

We plan to include facial detection as well as a User Interface so that it can become a standalone

program with no dependencies on ID cards or Roll Numbers.

7



CHAPTER 1

INTRODUCTION

1.1 Problem Statement

In the current times, nothing is predictable. The COVID-19 has impacted all of our lives in a major

way, and it has dealt a huge blow to small to medium scale businesses.

In a country with a population of more than 133 crore people, it is not an easy task to manage a

pandemic. Realistically, even with harsh measures like lockdowns and quarantines, the virus has

spread rapidly throughout the whole country, and as the 2nd wave is on the brink, small businesses

need a lot of help, especially in safety measures to protect their employees and their customers from

COVID-19.

It is both potentially dangerous to personally check if everyone around you is following the correct

safety precautions, not to mention the monotonous and stressful nature of the task.

To counter this problem, we decided to create a solution that does this work for us, in a systemized

and tabular manner.

1.2 Objectives

Our objective with Extant is to take attendance systems to the next step and make them completely

independent.

We aim to help local and small to medium scale business get back up on their feet without worrying

about the pandemic affecting their place of business. The state-of-the-art Mask Detection algorithm

ensures that no employee or customer walks into the building without a mask, eliminating the need

for a person to constantly keep an eye out for defaulters.

8



The web interface dashboard can also serve as a performance indicator for the employees, which can

contain extra information, for example, the clock in-clock out time can be used to calculate how

many hours an employee worked, which can help in major decisions.

1.3 Methodology

Figure 1.1: Flowchart of the project

9



CHAPTER 2

THE COVID-19 PANDEMIC

2.1 A Brief Summary

2.1.1 The Origin

A new strain of coronavirus, SARS-CoV-2, was initially found in December 2019 in Wuhan, a city in

China's Hubei Province with a population of 11 million people, following an outbreak of pneumonia

with no apparent reason. The virus has already spread to over 200 countries and territories around the

world, prompting the World Health Organization (WHO) to declare it a pandemic on March 11,

2020.

It is a member of the coronaviridae family of single-stranded RNA viruses, a widespread type of

virus that affects mammals, birds, and reptiles.

Where the virus has originated from is still unknown. The virus was initially understood to have

originated in the Wuhan food market and eventually transmitted from animals to humans. The most

common theory is that it was transmitted from a bat to a human.

Figure 2.1: An image of the Novel Corona Virus SARS-CoV-2

10



2.1.2 The Symptoms

In humans, it causes small diseases similar to the common cold, and it accounts for 10-27 percent of

upper respiratory tract infections in adults. Coronaviruses can cause gastrointestinal and neurologic

illnesses, but more severe infections are rare. The incubation period for coronavirus varies, but it

usually lasts two weeks.

2.1.3 The Spread

The numbers of reported diagnoses have shown the person-to-person dissemination of SARS-CoV-2

exists, particularly in healthcare professionals. The preliminary number of reproductions (i.e. the total

number of cases caused by a single case over the duration of its infectious period) is currently

expected to be between 1.4 and 2.5, indicating that between 1.4 and 2.5 individuals may be infected

by each infected individual.

MERS and SARS are spread through respiratory droplets, which are created when an infected person

sneezes or coughs, in the same way as other common respiratory tract illnesses are. Steps to

safeguard against infection work with the current assumption that SARS-CoV-2 is transmitted in the

same way.

2.2 Technological Advances to Battle COIVD-19

2.2.1 3D Printing Supplies

People have been producing all sorts of useful things since 3D printers became mainstream for

hobbyists. 3D printers are proving particularly effective in the aftermath of the COVID-19 pandemic.

A Canadian boy scout named Quinn Callander learned that medical practitioners were experimenting

for ways to alleviate ear pressure from wearing masks every day at a nearby hospital. He wanted to

make an ear guard that sits behind the head and retains the strips of elastic that will typically go

around the ears of a human.

11



The ear guard is a plain, flat plastic piece with four notches on each side, enabling doctors and nurses

to change their mask's tightness and bypass their ears.

For physicians and nurses on the front lines, 3D printing firms are now stepping in to render PPE.

Fuel, Prusa Science, and Formlabs 3D Systems, 3D printer manufacturers are manufacturing face

shields at a rapid pace so far. Around 7,500 masks have already been produced and production is

expected to increase dramatically.

To help out as far as possible, high school students even make face shields and even masks using 3D

printers.

Although 3D printed face shields are legally not FDA-approved, these homemade face shields and

masks are not recommended against being used. However they are advising individuals that 3D

printed face shields do not have the same degree of protection for fluid barrier or air filtration that

FDA-approved PPE offers.

Figure 2.2: A 3D Printer Employed to print PPEs

12



Figure 2.3: A 3D Printed PPE Mask

2.2.2 Google and DeepMind

In two big ways, Google is using technologies to battle COVID-19. First the organisation is

partnering with the government of the United States to develop an educational platform on

COVID-19 to host resources. The aim is to build a single place where without having to sift through

confusion, people can find all the right stuff.

The firm also contributed its DeepMind software to its AlphaFold framework as part of Google's

battle against COVID-19. Both systems are part of Google's artificial intelligence solutions, although

the inclusion of DeepMind is intended to anticipate the SARS-CoV-2 virus-related protein structures

that cause COVID-19 in order to build successful therapies.

An Alphabet-owned business called Verily is creating a wear patch for COVID-19 patients that

senses a fever and connects with a phone app to capture an early COVID-19 or flu diagnosis.

Inspired by Google and our desire to help the world as an engineer, we decided to use Deep Learning

to help out people in the pandemic in ways that keep them safe.

13



CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

Human minds comprehend the meaning of real-world events in a way that algorithms cannot.
Neural networks were first developed in the 1950s to overcome this challenge. An artificial neural
network is a computer programme that attempts to recreate the neuron network that makes up a
human brain so that it can learn information and make decisions in a human-like manner. ANNs are
created by programming conventional computers to act like interconnected brain cells.

Figure 3.1: Pictorial Representation of an Artificial Neural Network.

14



3.2 The ‘Learning’ Process

To make sense of the data it is served, artificial neural networks use multiple levels of statistical
computation. An artificial neural network usually has hundreds to millions of artificial neurons
organised in a sequence of layers, called units. From the outside world, the input layer absorbs
different types of information. This is the information that the network is attempting to comprehend
or think about. One or more hidden units travel through the results from the input unit. The secret
unit's job is to convert the input into something that the output unit can understand.

From one layer to another the bulk of neural networks are entirely connected. These relations are
weighted; the higher the amount, equivalent to a human brain, the greater the impact one unit has on
another. The network learns more about the data as the data goes into each unit. On the other side of
the network are the output units, which are where the network responds to the data it has been given
and analysed.

Since computer scientists tried the original artificial neural networks first, the human brain has been
discovered by computer neuroscientists. One of the points they found is that it is the task of different
sections of the brain to find multiple aspects of knowing and this is hierarchically arranged. Feedback
therefore enters the brain, and every neuronal level provides information and the data are transferred
to the next, higher level. This is exactly the process that ANNs try to reproduce.

They should receive an enormous amount of material, called a training package, to remind ANNs. In
order to continue understanding the network, the instructions would have thousands of photographs
on the dog as you are trying to show an ANN how to distinguish cat from dog. If the large volume of
information is conditioned, it will try to identify potential data around the different units based on
what it feels it sees (or hearing, depending on the data set). The computer's performance is compared
with what should be observed during the training process in human terms.

3.3 Forward and Backward Propagation

Every complex structure can be simplistically absorbed or at least divided into its core abstract
components. Uncertainty emerges through the aggregation of many basic layers. This article seeks to
clarify how neural networks operate in the simplest abstraction. We'll try to distil the machine
learning process in NN down to its most fundamental components. In opposition to other posts that
describe neural networks and concentrate exclusively on high level abstract principles, we would like
to use the smallest possible number of mathematical equations and codes.

The learning process takes the inputs and desired outputs and adjusts its internal state suitably so that
the measured output approaches the required outcome as closely as feasible. The forecasting method
requires an input and generates the best feasible result based on previous "training experience" with
the internal state. That's why machine learning is also referred to as model fitting.

Following are the steps involved in building an Artificial Neural Network.

15



Figure 3.2: Block Diagram of Forward and Backward Propagation

3.3.1 Model Initialisation

The first level of learning is the original hypothesis, starting from everywhere. Neural networks, like
in genetic algorithms and the theory of development, can start from anywhere. It is thus common
practise to randomly initialise the model. The notion is that we can acquire the pseudo-ideal
paradigm from any starting point if we are persistent and learn in an iterative fashion.

3.3.2 Forward Propagation

The next natural step upon haphazardly initialising the system is to evaluate its performance. We start
with the data we have, send it via the network layer, and then calculate the model's real output in a
straightforward manner.

This stage is named forward-propagation because the calculation stream is moving in the usual
progressive manner from the input to the neural network to the output.

3.3.3 The Loss Function

At this moment, we have the genuine output of our haphazardly initialised neural network in one
hand. We do, however, have a required outcome for the network to learn.

To be able to generalise to every query, we describe what we term a loss function. Essentially, it's a
measure of how successfully the NN completes the goal of creating outputs that are as close to the
goal values as possible.

Simply put, loss = the simplest loss function is (desired output: real output). This loss function
however returns positive values when undermining the network and negative values when overdoing
the network (pronouncing > desired output). If we want the loss feature to describe an absolute
output mistake irrespective of whether it is overshooting or undershooting, we can define it as:

Loss = (desired — actual) Absolute value.

Nonetheless, a variety of circumstances might result in the same total number of errors: for example,
a series of minor errors or a series of significant errors can add up to the same total number of errors.

16



It is more advantageous to provide a spread with multiple modest errors rather than a few significant
ones if we want the forecast to work under all conditions.

The loss function can be defined as the sum of squares of absolute mistakes to allow the NN to
converge in such a situation (which is the most famous loss function in NN). In this way, minor
errors are considered much less than severe errors!

To conclude, the loss function is an error metric that indicates how much accuracy we lose when we
substitute the real output with the actual output produced by our trained neural network model. It is
for this reason that it is referred to as the loss function.

Types of loss functions are:

1. Mean Square Error: It's calculated by squaring the average variance between projections
and actual measurements. It doesn't matter which path they take; all that matters is the
average degree of mistake. Predictions that are distant from real values, in contrast to less
deviating forecasts, are heavily penalised due to squaring. MSE has good mathematical
qualities that make measuring gradients easier.

Figure 3.3: MSE Formula

2. Mean Absolute Error: It is calculated the total number of absolute discrepancies between
forecasts and actual observations. This, like the MSE, calculates the extent of mistake without
taking into account the course of the error. Unlike MSE, MAE uses more sophisticated
methods to measure gradients, such as linear programming. MAE is more resistant to outliers
because it does not use the square.

Figure 3.4: MAE Formula

3. Mean Bias Error: This is much less prominent in the field of machine learning compared to
its predecessor. This is the same as MSE, with the only exception that absolute values are not
taken by us. Clearly, as positive and negative errors can cancel each other out, there is a need
for caution. In reality, although less precise, it could decide if the model has positive bias or
negative bias.

Figure 3.5: MBE Formula

4. SVM Loss: In basic words, the score of the correct category by any safety margin should be
higher than the sum of the scores of all incorrect categories (usually one). And hinge failure,

17



especially for support vector machines, is therefore used for maximum-margin classification.
While not differentiated, it is a convex function that makes it simple to work with common
convex optimizers used in the field of machine learning.

Figure 3.6: SVM Loss Formula

5. Cross Entropy Loss: This is the most prevalent situation in which classification issues arise.
As the projected likelihood differs from the actual label, cross-entropy loss grows.

6.

Figure 3.7: CE Loss Formula

3.3.4 Differentiation

Obviously, any optimal solution that modifies the inner weights of neural networks can be utilised to
minimise the previously mentioned total loss function. These strategies can be used in genetic
algorithms, greedy search, or even a simple brute-force search:

In our basic numerical example, we will check from -1000.0 to +1000.0 step 0.001, where W has the
smallest number of squares of errors over the dataset, with only one weight parameter to maximise
W.

This might work if the model contains very little parameters and the accuracy is not very great.
However, we can quickly hit millions-weight models to refine the NN via a range of 600x400 inputs,
and the brute force cannot even be imagined because this is pure machine energy waste.

Fortunately for us, there is a useful theory in mathematics called differentiation that can teach us how
to maximise the weights. The derivative of the loss function is essentially dealt with. In mathematics,
the derivative of a function at a given position expresses the pace or intensity with which that
function's values vary at that location.

We should ask ourselves the following question in order to see the influence of the derivative: how
much the overall error can change if we change the inner weight of the neural network to a certain
small value of δW. δW=0.0001 would be taken into account for the sake of convenience. It should be
even smaller in fact.

By calculating the derivative of the loss function we could have guessed this rate. It is much faster
and more accurate to calculate the benefit of utilising mathematical derivation.

18



Figure 3.8: The function of derivatives.

Performing a derivative check:

If it's positive, which means that increasing the weights increases the mistake, we can lower the
weight. If it's negative, which means that increasing the weights minimises the mistake, we can
increase the weight.

We don't do anything if it's 0; we've reached our steady state. In a nutshell, we're creating a technique
that mimics gravity. Regardless of where we haphazardly launch the ball on this error function path,
there is a force field that forces the ball back to the lowest energy state of ground 0.

Figure 3.9: Gradient Descent.

3.3.5 Backward Propagation

Within the neural network, we just employed one layer between the inputs and outputs.In some cases,
additional layers are required to achieve further changes in neural network control.

Over the entire layers of the network, we can only establish one complicated feature that describes
the composition. For instance, if layer 1 does: 3.x to produce a secret output z, and layer 2 does: z2 to
generate the final output, (3.x)2 = 9.x2 would be achieved by the composed network. However the

19



composition of the functions is very complicated in most situations. Moreover, the devoted derivative
of the composition must be calculated for each composition.

Because the derivative is dispersible, it can be back-propagated, which helps us solve the problem.

We know how to measure the derivative of the loss function, and we can spread the error backwards
from the end to the beginning if we know how to calculate the derivative of each function from its
composition.

Let's look at a simple linear example: we multiply the input three times to produce a hidden layer,
and then we multiply the hidden (middle layer) two times to produce the output.

When we create a library with distinct features or layers where we can propagate each function
(through direct use of this function) and how to propagate (by determining the derivative of the
function), we can make up a complicated neural network. To know how to reverse errors using
derivatives of such functions, we only need to keep stacks of function calls and their parameters
during the forward pass. It can be accomplished by removing calls via the feature. This method is
called self-differentiation and only requires each function to implement its derivative.

Every layer can transmit its results in the neural network for many other layers, in which case we add
the deltas from all target layers to backflow. This can make the linear calculation stack a complicated
calculation diagram.

3.3.6 Updating the Weights

The derivative is just the rate at which the error changes as the weight varies. Any major change in
weights will result in chaotic behaviour due to the high level of non-linearity. It's important to
remember that the derivative is only local at the place where it's being calculated.

Hence, we update the weights using the Delta Rule:

New weight = Old weight — Derivative *Learning Rate

If the derivative rate is positive, it means that the error is increased by an increase in weight, so the
new weight should be lower.

If the derivative rate is negative, then we must increase our weight and reduce the error by increasing
our weight.

If 0 is the derivative, we are at a minimum secure. No update on weights -> we've got a stable state is
therefore required.

20



3.3.7 Iteration

When we modify weights using a small delta step, we need to learn more than one iteration.

The same thing applies to genetic algorithms, when after each generation we apply a small mutation
rate and the fittest survive.

The gradient-decreasing force modifies the weight of the neural network to a lower global loss
function after every iteration.

The resemblance is that the delta rule works as a mutation operator and a fitness function reduces
loss.

The change is that the mutations of genetic algorithms are blind. Some mutations are bad, some are
decent, but the best ones can endure more. But NN is smarter to update weight, as it is guided by the
reduction of the gradient over the error.

21



CHAPTER 4

CONVOLUTIONAL NEURAL NETWORKS

4.1 Introduction

Here we will try to explain what Convolutional Neural Networks are and how they work. Our
current implementation is a mask detection program that employs a classification CNN.

4.2 The Program

The program is a convolutional neural network, built using Keras. Our dataset is images of faces,
split into 2 classes, one being images of people wearing masks, and the other being the images of
people not wearing masks. We will use the Keras Sequential API, where we define a CNN layer by
layer, then compile and run our dataset through it.

4.2.1 Importing all required libraries

Importing necessary libraries is very important when working on a project. One can always go the
long way and build the whole program on their own, but if the theory behind your project is clear, it
is a time-saving technique to use preconfigured libraries for your specific use.

Functions and Classes are pre-built, hence the tedious job of writing functions and creating classes
is not necessary anymore. One can simply write the code for the idea they have in mind try making
it better in every iteration without consuming much time.

The libraries which we used in this build of our CNN are:

1. NumPy: If your project involves more than a basic level of mathematical computation, the
NumPy library comes very handy. With a plethora of inbuilt functions of various
mathematical functions, it does help in tasks where mathematics is a primary concern.

2. Pandas: Pandas comes in handy when you need to manipulate and analyse data. It is built for
Python, on which we are building our whole CNN.

3. SK-Learn: The specific modules that we are importing the huge SK-Learn library are the
label encoder and the standard scalar.

22



4. Keras: The previous libraries and sub-libraries were all for the preprocessing of data. But
Keras is only for building our CNN. We import convert to categorical, image to array and
image loader.

5. OpenCV: It is a cross-platform library using which we can develop real-time computer
vision applications. It mainly focuses on image-processing, video capture and analysis
including features like face detection and object detection.

(The code for importing of libraries can be seen in Appendix A.1)

4.2.2 Data Preprocessing

Data preprocessing is one of the most important steps while dealing with data. Whatever program
you want to feed, it will require the data to be in a certain way, shape or form, and that is where data
preprocessing steps in.

In the CNN that we are using, we will need our images in a specific size and aspect ratio so that our
CNN runs smoothly. The various steps taken in this segment are:

1. We read the dataset of the pre-extracted features and categorize them via their IDs and their
labels.

2. We do the same for the testing data of the pre-extracted features.

3. Now, we resize the images to a specific aspect ratio. We do this by taking the larger
dimension of the image and scaling the smaller one to the previous one, giving us scaled
images, which can be read with greater ease.

4. Next, we take an input array with various image IDs as NumPy arrays so that the longest
side of the image is the maximum dimension length.

5. Then we insert the image array into a matrix, with all images categorized in order.

6. We now split the training data of the pre-extracted features and the images into training data
and cross-validation data.

7. Finally, we load this new training data into a final matrix, which we will input into our
CNN.

(The code for Data Preprocessing can be found in Appendix A.2)

23



4.2.3 Data Augmentation

To make our CNN model more robust in predicting the kind of plant we introduce to the bot, we
will employ a technique, called Data Augmentation. Through experience, one realises that a CNN
needs a substantial amount of data, and a small number like 600 will not give us accurate outputs
for our problem, we need at least 800 or so images per class.

To overcome this issue, we augment our image data. We take the 16 images we have, and we
randomly rotate them or apply a zoom transform on them, then replicate this image, to have a
bigger dataset of images that are slightly different from one another.

Steps taken to augment data are:

1. Number all images to be augmented.

2. Unlock multithreading so that all transformations can be done in parallel.

3. Set the range of zoom transformation.

4. Set horizontal and vertical flipping functions to True.

5. Parse all images through the data augmentation function

4.2.4 Building the CNN

Convolutional Neural Networks are made up of neurons that have variable weights and biases. Each
neuron receives an input from the previous layer, performs a dot product and can follow this with a
non-linear function, which is optional.

The whole network still expresses a single differentiable cost function: starting from the dataset’s
image pixels on one end to the accuracy on the other. CNNs have a loss function, just like regular
artificial neural networks, like SVM or SoftMax. On the output layer, you get a final result,
pertaining to the problem you’re aiming to solve with the CNN.

CNNs take advantage of the fact that the input fed into it is made up of images. Hence, their
architecture is designed in a more sensible way. If we compare it to a regular NN, where the
neurons are just 1 or 2 dimensional, the architecture of CNNs allows them to have neurons placed
in 3 different dimensions: length, breadth, height.

The basic working of a CNN can be summarised by saying that it takes 3-Dimensional input and
converts it into a 3-Dimensional output usually through a differentiable function.

The name of CNNs is derived from the word ‘convolution’. The convolution operator, used mainly
in Signal Processing is a mathematical technique of combining 2 signals to make the 3rd signal. It
gives a mathematical relation between the input signal, the output signal and the impulse response.

24



This immensely important mathematical operator has found its way into Deep Learning is well.
What a Convolutional Neural Network does is that it takes an image, which is a combination of 3
matrices of pixel colour density, and the 3 parameters being colours: Red, Green and Blue i.e. RGB.
Let us take one of these matrices, and take a ‘filter’ (A smaller predefined matrix) with which we
want to perform convolution. The process of convolution involves selecting a smaller matrix within
your original image matrix, which is the size of the filter, multiplying them element-wise and
adding them up to form a single number. Adding all such values, moving left to right and top to
bottom gives us a new matrix, which is the output of the convolution we just performed.

Similarly, we perform a convolution for all three matrices, or we could call it a n x n x 3 matrix,
with a f x f x 3 filter, giving us a (n - f - 1) x (n - f - 1) x 1 matrix as an output. The next step would
be running the same input matrix through multiple filters, and stacking up these output matrices to
form a (n - f - 1) x (n - f - 1) x y matrix, where y is the number of filters.

This operation can if done iteratively, by giving correct values for the filters, can do tremendous
predictions. This is the method we are going to use to detect the type of plant, by applying this
whole procedure to a dataset of leaves.

The Architecture of the CNN includes how many hidden layers the CNN will have, what will be the
functions of these layers, the cost function, etc. We need to pick the right values for all these
parameters for the optimal functioning of our CNN.

We will define the layers as:

1. Defining the input layers, giving details of the input images.

2. The first layer is a 2D Convolution Layer, followed by an activation layer with the ReLU
Activation Function.

3. The second layer is a 2D Maxpooling Layer.

4. Next, we have another set of a Colvolutional, an Activation and a Maxpooling layer.

5. Now, we flatten our 2D matrix into an array.

6. We add a fully connected layer and then get the final output.

7. Finally, we compile the model of our CNN.

25



Figure 4.1: Representation of out CNN Model

Here, we can see that the image accurately represents our model. All the layers sequentially laid out
one after the other, and finally compiled.

(The code for building the CNN can be found in Appendix A.3)

4.2.5 Training the Model

We will take the image augmenter generator, creating a minibatch. Feed these into the CNN, which
will run indefinitely until we find the optimal solution.

(The code for training the CNN can be found in Appendix A.4)

4.2.6 Visualisation

This step is not vital to our project, but it does help us understand how the CNN learns and
classifies according to its training. Here, we can see the graphs of Accuracy v. Epochs and Loss v.
Epochs.

26



Figure 4.2: Accuracy v. Epochs

Figure 4.3: Loss v. Epochs

4.3 The Results

Our Mask Detection Algorithm got an accuracy of 96% approx., and to begin implementing future
modules, we also wrote a small program that appends the data categorically in a CSV file which can
then be converted into a full-fledged database.

(The code for running the Mask Detection Webcam Integration can be found in Appendix A.5)

27



Figure 4.4: Stored Data from the program.

CHAPTER 5

IMPLEMENTATION OF DASHBOARD

5.1 Introduction

We created a virtual dashboard to track the employee's attendance digitally. Data from the face
detection and mask detection algorithms is collected and stored in the dashboard, which is built
with ReactJS and Material UI.

5.2 Technologies Used

5.2.1 ReactJS

ReactJS is a library for JavaScript which allows you to build reusable UI components. React is a
library for building modular user interfaces. It supports the development of reusable components of
the interface, which show changes in data over time. In MVC reactors are frequently used as V.
Reaction summarises the DOM from you, making your programming model easier and your
performance improved. React can also use a node to render native applications on the server and
react to native apps. React implements a reactive one-way data flow, which eliminates the boiler
plate and makes it easier to reason than standard data binding.

Features include :

● JSX −JSX is an extension of JavaScript. JSX is not necessary, but strongly encouraged, for
the reaction development.

● Unidirectional data flow and Flux - React implements an exclusive flow of data that
makes your application reasonable. Flux is a model which helps maintain unidirectional
data.

● Uses a virtual DOM-named JavaScript object. Because the virtual DOM JavaScript is faster
than normal DOM, it increases the speed of the app.

● Patterns of components and data improve readability, making it easier to handle large apps.

5.2.2 Material UI

Material is a Google design framework that enables teams to create high-quality digital products for
Android, iOS, Flutter, and the internet. The real world and its textures, as well as how they
represent light and cast shadows, are sources of inspiration for Material Design. Paper and ink are
reimagined as material surfaces.

28



Components :

Material Components are interactive building blocks that communicate attention, range, activation,
error, hover, push, drag, and disabled states via a built-in states system. There are component
libraries for Android, iOS, Flutter, and the internet.

Components address a variety of interface requirements, including :

● Display : Using components such as cards, lists, and sheets to place and organise material.

● Actions : Using components like the floating action button, users can perform tasks.

● Navigation : Use components such as navigation drawers and tabs to allow users to
navigate through the product.

● Input : Using components such as text fields, chips, and selection controls, users may enter
information or make selections.

● Communication : Snackbars, banners, and dialogues are used to alert users to important
information and notifications.

Theming :

With built-in help and instructions for customising colours, typography styles, and corner shapes,
Material Theming makes it simple to customise Material Design to fit the look and feel of your
brand.

● Color : Material's colour scheme is a method for adding colour to a user interface that is
well-organized. Main, secondary (brand colours), surface, context, and error are all global
colour types with semantic names and defined use in components. To facilitate continuity
and accessible contrast, each colour has a complementary colour that is used for elements
that are put “on” top of it.

● Shape : Form types can be used to draw attention to specific components, convey their
status, and articulate the brand. Based on their dimensions, all Material Components are
categorised into shape groups (small, medium, large). These global styles allow you to
easily adjust the shape of components that are identical in size. With the shape
customization app, you can build your own shape types.

● Typography : From headlines to body text and captions, the Material Design type scale
offers 13 typography types. Each style has a distinct meaning and function within the gui.
The typeface, font weight, and letter case, for example, can all be changed to fit your brand
and style.

29



5.3 Implementation Code

30



31



5.4 Result

REFERENCES

The following papers were read while researching this project:

[1] J. J. Hopfield, "Artificial neural networks," in IEEE Circuits and Devices Magazine, vol. 4,

no. 5, pp. 3-10, Sept. 1988, doi: 10.1109/101.8118.

[2] M. Asadullah and A. Raza, "An overview of home automation systems," 2016 2nd

International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, 2016,

pp. 27-31.

[3] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural

network," 2017 International Conference on Engineering and Technology (ICET), Antalya,

2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186.

32



[4] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple
features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 2001, pp. I-I.

[5] C. Tang, Y. Feng, X. Yang, C. Zheng and Y. Zhou, "The Object Detection Based on Deep
Learning," 2017 4th International Conference on Information Science and Control
Engineering (ICISCE), Changsha, 2017, pp. 723-728.

[6] L. Cuimei, Q. Zhiliang, J. Nan and W. Jianhua, "Human face detection algorithm via Haar
cascade classifier combined with three additional classifiers," 2017 13th IEEE International
Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, 2017, pp.
483-487.

APPENDIX A

A.1 Code for importing libraries

A.2 Code for data pre-processing

33



A.3 Building the CNN

34



A.4 Training the CNN

A.5 Running the Webcam Interface

35



36


