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ABSTRACT 
 

In the new world of coronavirus, multidisciplinary efforts have been organized to slow the spread of 
the pandemic. The AI community has also been a part of these endeavors. In particular, developments 
for monitoring social distancing or identifying face masks have made-the-headlines. Businesses are 
constantly overhauling their existing infrastructure and processes to be more efficient, safe, and usable 
for employees, customers, and the community. With the ongoing pandemic, it’s even more important 
to have advanced analytics apps and services in place to mitigate risk. For public safety and health, 
authorities are recommending the use of face masks and coverings to control the spread of COVID-19. 

 
Face masks help diminish the transmission of the infection by meddling with the spread of infection 
loaded droplets ejected from the nose and mouth. Wearing a face mask is one of the precautionary steps 
an individual can take to decrease the spread of COVID-19. 

 
Face mask detection systems are now increasingly important, especially in smart hospitals for effective 
patient care. They’re also important in stadiums, airports, warehouses, and other crowded spaces where 
foot traffic is heavy and safety regulations are critical to safeguarding everyone’s health. In this simple 
project, a video camera detects if an individual is wearing a face mask or not in real-time. We have 
used a prebuilt cascade classifier that detects faces from the input image and identifies the region of 
interest, which is then fed as input to our designed CNN. The CNN detects whether the person is 
wearing the mask or not.The goal here is to train an AI model that is not only accurate but lightweight 
and performant for real-time inference on the edge. 
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Chapter 01 
INTRODUCTION 

 
 Introduction 

In the new  world  ofi  coronavirus,  multidisciplinary  efforts  have  been  
organized  to  slow  the  spread  ofi the  pandemic.[1]  The  AI  community  has 
also been a part ofi these  endeavors.  In  particular,  developments  fori  
monitoring social distancing  or  identifying  face  masks  have  made-the-
headlines. Businesses are constantly overhauling their existing infrastructure and 
processes to be more efficient,  safe,  and  usable  for  employees, customers, and 
the community. With the  ongoing  pandemic,  it’s  even more  important  to  have  
advanced  analytics  apps  and  services  in  place  to mitigate risk. For  public  
safety  and  health,  authorities  are  recommending  the  use  ofi  face  masks  and  
coverings  to  control  the  spread  ofi  COVID-19.[3] [5] 

 
Face masks help reduce  the  transmission  ofi the  disease  by  interfering  with  
the  spread  ofi  virus-laden  droplets  ejected  from  the  nose  and  mouth. 
Wearing a  face  mask  is  one  ofi the  precautionary  steps  an  individual  can 
take in order to lessen the spread ofi COVID-19. [2] 

 
Face mask detection systems are now increasingly  important,  especially  in  
smart  hospitals  for  effective  patient  care.  They’re  also  important  in  
stadiums, airports,  warehouses,  and  other  crowded  spaces  where  foot  traffic  
is  heavy  and  safety  regulations  are  critical  to  safeguarding  everyone’s  
health. Also, the absence ofi large datasets has  made  this  task  more  
cumbersome and challenging.[4] 

 

 Objective of the Minor Project 
In this project, we propose  a  two-stage  CNN  architecture,  where  the  first  
stage detects human faces while the second one uses a lightweight  image 
classifier to classify the faces detected in the first stage as ‘With Mask’ or 
‘Without Mask’ and draws bounding boxes around them along with the 
confidence score ofi the predicted category. 
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 Motivation of the Major Project 
The inspiration ofi the  Project  was  taken  from  a  post  uploaded  by  Mr.  
Adrian  Rosebrock  who  produced  a  tutorial  on  how  to  build  a  real  time   
face mask  detector  using  MobileNetV2.  As  there  was  no  pre-trained  
classifier to distinguish faces with and without  masks,  Adrian  trained  this  
model with a dataset provided by one ofi his readers, Prajna Bhandary who  
created the dataset artificially by using  facial  landmarks  to  apply  masks  to  
face images, thus creating morphed image dataset. Although the model  
generalized pretty well, real images obtained from  real-world  sources  like  
CCTV  or  surveillance  cameras  can  be  much  noisier.   In  this  project,  we 
have  used  several  scraping  techniques  to  gather  our  own  dataset  and  
labelled ouri dataset accordingly. The dataset  used  here  is  more  ofi a  real  
world dataset, and hence generalizes pretty well in real world scenarios. 

 
 Technical Requirements 

● System Requirements 
Computational power  ofi  individual  machines  are  not  sufficient  to  train  
big CNNs, hence the model is trained overi cloud GPUs. However, data 
preprocessing  was  done  on  local  Machine.  To  run  the  final  working 
script, the system needs to meet the following requirements: 

1. Operating system: Windows 8 or newer, 64-bit macOS 10.13+, or 
Linux, including Ubuntu, RedHat, CentOS 6+, and others. 

2. System architecture: Windows- 64-bit x86, 32-bit x86;  MacOS-  64-
bit x86; Linux- 64-bit x86, 64-bit Power8/Power9. 

3. Minimum 5 GB disk space to download and install the software 
requirements. 

 

● Python 
Python is an interpreted programming language, both high-level and general-
purpose. With its  prominent  use  of  substantial  white  space,  Python's design 
philosophy emphasizes code readability. It aims to help programmers write 
simple logical code for  small  and  large-scale  projects  with its language 
constructs and object-oriented approach. 

Python is typed and garbage-collected dynamically. It supports different 
paradigms ofi programming, including structured (specifically, procedural), 
object-oriented,  and  functional  programming.  Because  ofi  its  
comprehensive standard  library,  Python  is  sometimes  defined  as  a  
language that includes batteries. 
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● Numpy 
NumPy, which stands fori Numerical Python, is  a  library  consisting  ofi 
objects  in  a  multidimensional  array  and  a  series  ofi processing  routines   
for those arrays. Mathematical and logical operations on arrays  can  be  
achieved using NumPy. The fundamentals ofi NumPy, including  its  
architecture  and  climate,  are  explained  in  this  tutorial.  It  also  addresses  
the different functions ofi the list, indexing types, etc 

 

● Pandas 
Pandas  is  a  software  library  written  for  data  manipulation  and  analysis   
in the Python programming language. It provides data  structures  and 
operations for the manipulation ofi numerical tables and time series, in 
particular. It is free software which has been published under the BSD three-
clause license. The name derives from the word "panel data" an econometric 
term for data sets  that  contain  multiple  time  span  measurements for the 
same individuals. 

 
● Matplotlib 

Matplotlib is a comprehensive library for creating static, animated, and 
interactive visualizations  in  Python.  It  is  the  Python  programming  
language  plotting  library  and  its  NumPy  numerical   mathematics  
extension. For embedding  plots  into  applications,  it  offers  an  object-
oriented API using general-purpose GUI toolkits such as Tkinter, wxPython, 
Qt, or GTK+. 

 
● Scikit-learn 

A free software machine learning library for the Python  programming  
language is Scikit-learn (formerly scikits.learn and  also  referred  to  as 
sklearn). It includes numerous algorithms fori classification, regression and 
clustering, including vector support machines, random forests, gradient 
boosting, k-means and DBSCAN, and is designed to interface  with  the  
NumPy and SciPy numerical and scientific libraries ofi Python. 

 
● Machine Learning 

As a sub-domain ofi AI, ML algorithms can be classified and  renderi a  
machine or  software  program  intelligent  enough  to  be  more  precise  
without  needing  to  be  clearly  programmable  and  can  forecast   
performance. The key idea behind the operation ofi these algorithms is to  
collect input as a dataset and then learn from the output for the 
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respective inputs.  Which  helps  to  predict  the  performance  ofi  the 
algorithms when they obtain  the  same  domain  input.  It  effectively  learns  
the pattern ofi similarity between the inputs  by  which  the  algorithm  is  
trained and implies an output from the input ofi the test dataset. 

 
● Deep Learning 

Deep learning  is  a form ofi  machine  learning (ML) and artificial 
intelligence (AI) that mimics the way certain kinds  ofi information  are  
acquired by humans. A significant aspect ofi data science, which involves 
statistics  and  predictive  modelling,  is  deep   learning.  Data  scientists  who 
are charged with  the  compilation,  review  and  evaluation  ofi vast  volumes  
ofi  data are  extremely  beneficial;  deep  learning makes  this  process 
quicker and simpler. Deep learning can be  thought  ofi  as  a  way  ofi 
automating predictive  analytics at   its simplest.  While   conventional 
machine learning algorithms  are  linear,   in a hierarchy   ofi growing 
complexity  and  abstraction,  deep  learning  algorithms   are   stacked. 
Computer programs that use deep learning go through  almost  the  same  
method to classify the dog as the toddler learning. In the hierarchy, each 
algorithm applies a nonlinear transformation to its input  and  uses  what  it 
learns  as  an  output  to  construct  a  statistical  model.  Iterations  continue  
until an appropriate degree ofi  precision  has  been  achieved  by  the 
production. What profoundly influenced the mark was the number  ofi 
processing layers through which data could move. 
The learning process is monitored in conventional machine  learning,  and  
when  asking  the  computer  what  kinds  ofi things  it  should  be  searching  
for to determine whether a picture  contains  a  dog  or  does  not  contain  a  
dog, the programmeri  must  be  extremely  precise.  This  is  a  laborious 
method called feature extraction, and the success rate  ofi the  computer  
depends entirely on the ability  ofi the  programmer  to  define  a  feature  set  
for "dog." correctly. The benefit  ofi  deep  learning  is  that  the  software  
builds the feature set without control by itself. Not only is unsupervised  
learning easier, but it is usually more precise. 

 
● Keras and Tensorflow 

TensorFlow  is  an  end-to-end  open  source  platform  for  machine  learning.  
It has a comprehensive, flexible ecosystem  ofi  tools,  libraries,  and 
community resources that lets researchers push  the  state-of-the-art  in  ML  
and developers easily build and deploy  ML-powered  applications.  
TensorFlow provides stable Python and C++  APIs,  as  well  as  non-
guaranteed backward compatible API for other languages. 
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Keras is an  open-source  library  that  provides  a  Python  interface  for 
artificial neural networks. Keras acts as an interface for the  TensorFlow  
library. It is Designed to enable fast experimentation with deep neural  
networks,  it  focuses  on  being  user-friendly,  modular,  and  extensible.  
Keras contains numerous  implementations  ofi  commonly  used neural-
network building blocks such as layers,  objectives,  activation  functions, 
optimizers, and  a  host  ofi tools  to  make  working  with  image  and text data 
easier to  simplify  the  coding  necessary  for  writing  deep  neural network 
code. In addition to standard neural networks, Keras has  support for 
convolutional and recurrent neural networks. 

 
 

● OpenCV 
OpenCV (Open Source Computer Vision  Library)  is  an  open  sourcei computer 
vision and machine learning software library. OpenCV was built  to  provide  a 
common  infrastructure  for  computer  vision  applications   and   to   accelerate   the 
use ofi machine perception in commercial products. OpenCV is a library ofi 
programming functions mainly aimed at real-time computeri vision. 

 
● Neural Networks (ANN) 

Artificial neural networks (ANNs), usually simply called neural networks 
(NNs), are computing systems inspired by  the  biological  neural  networks  
that constitute human brains. 

An ANN is based on a collection  ofi connected  units  or  nodes  called  
artificial neurons, which loosely model the neurons  in  a  biological  brain.  
Each connection, like the synapses in  a  biological  brain,  can  transmit  a  
signal to other neurons. An artificial neuron that receives a  signal  then 
processes it and can signal neurons connected to it. The "signal"  at  a  
connection is a  real  number,  and  the  output  ofi each  neuron  is  computed  
by  some  non-linear  function  ofi the  sum  ofi its  inputs.  The  connections   
are called  edges.  Neurons  and  edges  typically  have  a  weight  that  adjusts  
as learning  proceeds.  The  weight  increases  or  decreases  the  strength  ofi  
the signal at a  connection.  Neurons  may  have  a  threshold  such  that  a  
signal is sent only ifi  the aggregate signal crosses that threshold. 
Typically, neurons are aggregated into  layers.  Different layers may 
perform different transformations on theiri inputs.  Signals  travel  from  the  
first layer (the input layer),  to  the  last  layer  (the  output  layer),  possibly  
after traversing the layers multiple times. 
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Fig 1.1: Illustration of an ANN 
 
 

● Convolutional Neural Network 
Convolutional Neural Networks  (CNN,  or  ConvNet)  is  a  class  ofi deep  
neural  networks,  most  commonly  applied  to  analyzing  visual  imagery.   
They have a shared-weights architecture and translation invariance 
characteristics. They have applications in image and video recognition, 
recommender systems, image classification, medical image analysis, natural 
language processing, and financial time series. 

Convolutional  Neural  Network  has  had  groundbreaking   results   over   the 
past  decade  in  a  variety  ofi  fields  related  to  pattern  recognition;   from 
image  processing  to  voice  recognition.  The  most  beneficial  aspect  ofi  
CNNs  is  reducing the  number  ofi parameters   in  ANN  .  This  achievement 
has   prompted  both  researchers  and  developers  to  approach  larger  models   
in  order  to  solve  complex  tasks,  which  was  not  possible  with   classic 
ANNs;  .  The  most  important  assumption  about  problems  that  are  solved    
by CNN should not have features which are spatially  dependent.  In  other  
words,  for   example,  in  a  face  detection  application,  we  do  not  need  to   
pay attention  to  where  the  faces  are  located  in  the  images.  The  only 
concern is to detect them regardless ofi their position in the given images 
. Another important  aspect  ofi CNN,  is  to  obtain  abstract  features  when  
input propagates toward the deeper layers. Fori  example,  in  image 
classification,  the  edge  might  be  detected  in  the  first  layers,  and  then  the 
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simpler  shapes  in  the  second  layers,  and  then  the  higher  level  features  
such as faces in the next layers.[6] 

CNNs provide the three basic advantages over the traditional ANNs: 
 

1. Firstly,  they  have  sparse  connections  instead  ofi  fully  connected  
connections which  lead  to  reduced  parameters  and  make  CNN’s  efficient  
for processing high dimensional data. 

2. Secondly, weight sharing takes place where  the  same  weights  are  shared 
across the entire image, causing reduced memory requirements as well as 
translational  invariance.  As  the  same  weights  are  shared  across   the  
images, hence ifi an object occurs in any  image  it  will  be  detected  
irrespective ofi its position in the image. 

3. Thirdly,  CNN’s  use  a  very  important  concept  ofi pooling   in  which  the 
most prominent pixels are propagated to the next layeri dropping the rest 
providing a fixed size output matrix required for classification. [9] 

 
 

 Project Deployment 
The System developed here is meant to be deployed as a software in embedded 
systems. Hence, a user interface has not been created for the same. Further 
enhancements can be done by embedding in RaspberryPi's Camera Module. 
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Chapter 02 
LITERATURE SURVEY 

 
The inspiration of  the  Project  was  taken  from  a  post  uploaded  by  Mr.  
Adrian  Rosebrock  who  produced  a  tutorial  on  how  to  build  a  real  time   
face mask detector using  MobileNetV2.  MobileNetV2  is  a  lightweight  
network, with its biggest advantage being the fact  that  such  lightweight  
networks can be embedded easily into raspberry pi  and  camera  module.  As  
there was no pre-trained classifieri to  distinguish  faces  with  and  without  
masks, Adrian trained this model with a  dataset  provided  by  one  ofi his  
readers, Prajna Bhandary who created the dataset artificially by using facial 
landmarks to apply masks to face  images,  thus  creating  morphed  image  
dataset. 

 
 

Fig 2.1: Dataset of morphed images created by Prajna Bhandary 
 

Even though it  was  a  synthetic  dataset  and  was  built  with  a  single  mask 
type, it seems to generalize pretty  well  for  other  kinds  ofi masks.  However,  
real images obtained from real-world sources like  CCTV  or  surveillance  
cameras  can  be  much  noisier.  In  this  project,  we  have   used   several 
scraping techniques to gatheri our own dataset and labelled ouri dataset 
accordingly. 
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The dataset used here is self-collected via web-scraping (in Python, using  
beautiful soup) more ofi a  real-world  dataset,  and  hence  generalizes  pretty  
well in real world scenarios. 

Fig 2.2: Dataset of real images collected via scraping techniques 

 
Our dataset consists of over 5300 images (Excluding augmented data) as compared 
to a relatively small dataset of around 1400 images, used by Mr. Rosebrock. Also, 
instead of using MobileNetV2, we have limited our scope to using simple 
Convolutional Neural Network. 

 
Study of Research Paper: Understanding of a Convolutional Neural 
Network 
(Saad ALBAWI , Tareq Abed MOHAMMED ,Department of Computer Engineering 
Faculty of Engineering and Architecture, Istanbul Kemerburgaz University 
Istanbul, Turkey) 

 

Elements of a CNN: 
● Convolutional Layers 

Major advantage of Convolutional layers  is  that  they  have  sparse 
connections instead ofi fully connected connections which lead to reduced 
parameters and make  CNN’s  efficient  for  processing  high  dimensional  
data. 
Secondly, weight sharing takes place where the  same  weights  are  shared  
across the entire image, causing reduced memory requirements as well as 
translational invariance. As the same weights are shared across the images, 
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hence ifi an object  occurs  in  any  image  it  will  be  detected  irrespective  ofi  
its position in the image. 

 
 
 
 

 
 
 

Fig 2.3: Convolutional v/s Fully Connected Layers 
● Non-linearity 

The  next  layer  after  the  convolution  is  non-linearity.  The  nonlinearity   
can be used  to  adjust  or  cut-offi the  generated  output.  This  layeri is  
applied in order to saturate the output or limit the generated output. The 
Rectified  Linear  Unit  (ReLU)  has  been  used  more  often  for   the  
following reasons: 

1. ReLU has simpler definitions in both function and gradient. 
2. The  saturated  function  such  as  sigmoid  and  tanh  cause  problems  

in the back propagation.  As  the  neural  network  design  is  deeper,  
the  gradient  signal  begins  to  vanish,  which  is  called   the 
“vanishing gradient”. This happens since the gradient ofi  those 
functions is very close to zero almost everywhere but the center. 
However, the ReLU has a constant gradient for the positive input. 
Although  the  function  is  not  differentiable,  it  can  be  ignored  in  
the actual 

3. The  ReLU  creates  a  sparser   representation.   because  the  zero  in 
the gradient leads to obtaining a complete zero.  However,  sigmoid  
andi tanh always have non-zero results from  the  gradient,  which  
might not be in favor for training. 
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Fig 2.4: ReLU Activation Function 
● Striding 

CNN has a lot ofi ways to  decrease  the  trainable  parameters,  and  at  the  
same  time  reduce  some  ofi  the  side  effects.  One  ofi  these   is   stride. 
While performing simple convolution, the next layer’s node has lots ofi 
overlaps with theiri  neighbors. We can manipulate the overlap by 
controlling the  stride.  Fig.  2.5  ,  shows  a  given  7×7  image.  Ifi we  move  
the  filter  one  node  every  time,  we  can  have  a  5x5  output  only.  Note   
that the output  ofi the  three  left  matrices  in  Fig.  2.5  ,  have  an  overlap  
(and three middle  ones  together  and  three  right  ones  also).  However,  ifi  
we move and  make  every  stride  2,  then  the  output  will  be  3x3.  Put 
simply, not only overlap, but also the size ofi the output will be reduced. 

 
For an image of size N×N dimensions and the filter of size F×F, the size of the 
output image O is given by : 

O = 1 + (N-F)/S 
Here, N is the input size, F is the filter or kernel  size, and S is the stride. 

 
 

 

Fig 2.5: For Stride = 1, the filter moves once for each connection 
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● Padding 
One ofi the drawbacks ofi the convolution step  is  the  loss  ofi information  
that might exist on  the  border  ofi the  image.  Because  they  are  only 
captured  when  the   filter  slides,  they  never  have  the  chance  to  be  seen.  
A very simple, yet efficient method to resolve the  issue  is  to  use zero-
padding. The other benefit ofi zero padding is  to  manage  the  output  size. 
Fori example, in Fig.  2.5  ,  with  N=7  and  F=3  and  stride  1,  the  output will 
be 5×5 (which shrinks from a 7×7 input). 

 
However, by adding one zero-padding, the output will be 7×7, which  is  
exactly the same  as  the  original  input  (The  actual  N  now  becomes  9).  
The modified formula including zero-padding can be given as: 

 
O = 1 + (N+2P-F)/S 

Where  P  is  the  numberi ofi the  layers  ofi the  zero-padding,  N   is   the  
input size, F is the filter size, and S is the stride size. 

 
● Features of CNN 

Firstly, they have sparse  connections  instead  ofi  fully  connected  
connections which lead to reduced  parameters  and  make  CNN’s  efficient  
for processing high dimensional data. 
Secondly, weight sharing takes place where  the  same  weights  are  shared  
across the entire image, causing reduced memory requirements as well as 
translational invariance. As the same weights are shared  across  the  images, 
hence ifi an object  occurs  in  any  image  it  will  be  detected  irrespective  ofi  
its position in the image. 

Thirdly,  CNN’s  use  a  very  important  concept  ofi pooling  in  which  the  
most prominent pixels are propagated to the next layer dropping the rest 
providing a fixed size output matrix required fori classification. [9] 

● Pooling Layers 
The main idea ofi pooling is down-sampling in  orderi  to  reduce  the 
complexity fori further layers. In the image processing domain, it can be 
considered as similari to  reducing  the  resolution.  Pooling  does  not  affect  
the number ofi filters. Max-pooling is one ofi the most common types ofi 
pooling methods. It partitions  the  image  to  sub-region  rectangles,  and  it  
only returns the maximum value  ofi the inside  ofi that  sub-region.  One  ofi  
the most common sizes used in max-pooling is 2×2. As in Fig. 2.6 , 
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when pooling is  performed  in  the  top-left  2×2  blocks  (pink  area),  it  
moves 2 and focuses  on  the  top-right  part.  This  means  that  stride  2  is  
used  in  pooling.  To   avoid   down-sampling,  stride  1  can  be  used,  which 
is not common. It should be considered  that  down-sampling  does  not 
preserve the position ofi the information. Therefore,  it  should  be  applied  
only when the presence ofi information is important (ratheri than spatial 
information). Moreover, pooling can be used with non-equal  filters  and  
strides to improve the efficiency. 

 

Fig 2.6: Dataset of real images collected via scraping techniques 

 
● Fully-Connected Layers 

The fully-connected layer is similar to the way that neurons are arranged in a 
traditional neural network. Therefore, each node in  a  fully-connected  layer  is  
directly connected to  every  node  in  both  the  previous  andi in  the  next  layer.  
Each ofi the nodes in the last frames  in  the  pooling  layer  are  connected  as  a  
vector to the firsti layer from the fully-connected layer. These  are  the  most 
parameters used with the CNN within these  layers,  and  take  a  long  time  in  
training.  The  majori drawback  ofi a  fully-connected   layer,   is  that  it  includes  a 
lot ofi parameters that  need  complex  computations  in  training  examples.  
Therefore, we try to  eliminate  the  number  ofi  nodes  and  connections.  The 
removed nodes and connection can be satisfied by using the dropout technique 
[7]  .  For  example,  LeNet  andi AlexNet  designed  a  deep  and  wide  network   
while keeping the computational complex constant. [11] 
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Chapter 03 
SYSTEM DEVELOPMENT AND 

PERFORMANCE ANALYSIS 
 

 Data Warehousing and Data Preprocessing 
Data warehousing is the process ofi constructing and using a data warehouse. A  data  
warehouse is constructed by integrating data from multiple  heterogeneous  sources  that  
support analytical reporting, structured  and/or  ad  hoc  queries,  and  decision  making.  
Sources of Data: 

● Kaggle’s dataset for real v/s fake face image detection. 
● Prajna Bhandary’s dataset of morphed images. 
● Some other GitHub Repositories. 
● Uncleaned raw images scrapped from various other sources. (Web Scraping using 

BeautifulSoup) 
 

Data preprocessing is  a  data  mining  technique  used  to  transform  the  raw  data   in  a 
useful and efficient format. This helps in  reducing  the  complexity  and  increases  the  
accuracy ofi the applied algorithm. 

 
● Conversion of images from RGB to grayscale- In the specified problem statement, 

color isn’t necessary to recognize and interpret an image  i.e.  Grayscale  is  good  
enough to extract useful information and reduce computational complexity. 

 
● Resizing images- One  important  constraint  that  exists  in  CNN,  is  the  need  to 

resize the images in the dataset to a unified dimension i.e. images  must  be  
preprocessed and scaled to have identical widths and heights  before  fed  to  the  
learning algorithm. 

 
● Data Augmentation- Another  common  pre-processing  technique  involves 

augmenting the existing dataset with perturbed versions ofi the existing images by 
performing transformations such  as  scaling,  rotations,  etc.  to  enlarge  the  dataset  
and expose the classifier to  a  wide  variety  ofi variations  ofi the  images.  It  makes  
the   model   more robust to   slight   variations,    and    hence prevents the    model  
from overfitting. 

 
● Normalizing image inputs- Data normalization  ensures  that  each  input  image 

follows a similar data distribution. An alternative to this is standardization, which  
causes the input dataset to follow standard normal distribution. 
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Description of the finally created dataset: 
Balanced dataset of 5,300 images with two classes: with_mask and without_mask. 

 
 Training the Network 

Various versions of improved Network are as follows: 
 

 Initially designed Network 
The initially designed network consisted of two Convolutional layers, two max pooling 
layers, one flattening and one densely connected layer. 

 
 
 
 

 

Fig 3.1: Initial Network Architecture 
 

Number of Epochs: 20 
Learning rate: 1e-3 
Batch Size: 32 

 
Train-Test Split: 70% Training; 20% Validation; 10% Test 
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Started With: 

 
Ended On: 

 

Validation Accuracy: 91.4% (Good) 
Validation Loss: 23.9% (VERY HIGH) 

 
 
 

Table 3.1: Phase 1 Classification Report 
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Accuracy Curve: 
 

 
Graph 3.1: Accuracy Curve 

 
Loss Curve: 

 

Graph 3.2: Loss Curve 
 
 

Since Validation Accuracy was better than Training accuracy, we say that our model 
generalized well over the dataset. It appeared that the model suffered from a high bias 
problem. 
To resolve this issue, we increased the size of the network. 
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Performance on the test data verified our conclusions: 

Validation Accuracy: 92.5% (Good) 
Validation Loss: 21.7% (VERY HIGH) 

 
 

 Second Phase of the designed Network 
 

After further changes, our improvised network consisted of three Convolutional layers, 
three max pooling layers, one flattening and one densely connected layer. 

 
Also, we altered the train test split to get some better insights. 

 
 
 
 

 

Fig 3.2: Phase 2 Network Architecture 
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Number of Epochs: 20 
Learning rate: 1e-3 
Batch Size: 32 

 
Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test 

 
 
 

Started With: 

 
Ended On: 

 
Validation Accuracy: 92.8% (Good) 
Validation Loss: 18.97% (VERY HIGH) 

 
 
 
 

Table 3.2: Phase 2 Classification Report 
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Accuracy Curve: 

Graph 3.3: Accuracy Curve 
 

Loss Curve: 

Graph 3.4: Loss Curve 
 
 

On increasing the size of the network, loss is reduced by a small amount, so we find other 
ways to reduce the bias. High value of loss motivated us to the number of epochs. Also, 
we tried to get better accuracy by increasing the batch size. 
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Performance on the test data: 

Validation Accuracy: 93.5% (Good) 
Validation Loss: 19.83% (VERY HIGH) 

 
 Third Phase of the designed Network 

 
The design and size of the network remained the same, other hyperparameters were 
altered: 

● Decreased learning rate. 
● Increased the number of Epochs. 
● Increased batch size. 
● Expanded dataset. 

 
 

Number of Epochs: 30 
Learning rate: 1e-4 
Batch Size: 64 

 
Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test 

Started With: 

 
 

Ended On: 
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Table 3.3: Phase 3 Classification Report 
 

 
 
 

Accuracy Curve: 

Graph 3.5: Accuracy Curve 
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Loss Curve: 

Graph 3.6: Loss Curve 
 

Performance on the test data: 

Loss is significantly high. 
Probably the learning rate is very low, which is why the gradient descent does not 
converge. 
Also, the number of epochs need to be increased to converge GD to a minimum. 
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 Final Model 
Final changes in the model architecture included an additional convolutional and max 
pooling layers. With increased number of epochs, learning rate and batch size, the model 
showed significantly better results. 

 
 
 
 
 

 

Fig 3.3: Network Architecture of the Final Model 
 

Number of Epochs: 40 
Learning rate: 1e-3 
Batch Size: 128 

 
Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test 

Started With: 

 

Ended On: 
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Table 3.4: Phase 4 Classification Report 
 
 

 
 
 

Accuracy Curve: 

Graph 3.7: Accuracy Curve 
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Loss Curve: 

Graph 3.8: Loss Curve 
 
 

Performance on the test data: 

Loss is significantly reduced to about 11% on TEST DATA. 
Accuracy improved to around 96% on TEST DATA. 
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 Face Mask Detection 
In this project, we have used a prebuilt cascade classifier from Open Source Computer Vision 
Library, that detects faces from the input image and identifies the region of interest. The cascade 
classifier falls a little short when it comes to accuracy, however it works well in real-time 
because of it’s excellent frame rate of 15fps, which is pretty quick for real-time applications. 
Also, since it is lightweight, it is easily deployable into modules of embedded systems. The 
region of interest identified by the cascade classifier is then rescaled to 100*100 size, which is 
then fed as input to the CNN. The CNN detects whether the person is wearing the mask or not. 

 
 
 

 
 

Fig 3.4: Flow Diagram of the Project 
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 Flow graph of the Major Project Problem 
 
 

 

Fig 3.5: Complete Flow Diagram of the Project 



29  

 Code Snippets 
 Data Preprocessing 
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 Training the Network 
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 Real Time Face Mask Detection 
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Chapter 04 
CONCLUSIONS 

 
 Discussion on the Results Achieved 

The following results were achieved upon the implementation of this project: 
● Real-time monitoring was achieved. 
● 96% accuracy , 11% Loss on Test set. 
● Face covered with hands were not classified as masked. 
● Side facing positions were classified appropriately. 
● The model could not detect masks at larger distances. 

 
 Application of the Project 

The goal ofi  this  Majori  Project  was  to  design  and  develop  a  system  capable  ofi  
detecting face masks in  support  ofi  taking  appropriate  precautions  in  this  pandemic 
situation. It focuses on achieving good accuracy without using heavily-designed complex 
networks having extensive hardware requirements which are  not  feasible  in  practical 
situations. 

 
 Limitations of the Project 

If under any circumstance, the images taken by the camera module aren’t clear enough to  
classify the system fails. Therefore, the proposed system has the following limitations: 
● If the camera module is placed at a distance from the crowd, the model may not be able to 

give accurate results. 
● The model has been designed in a simple fashion, it has no way to classify whether the 

person in front of the camera is wearing a mask properly or not. 
● The model has not been trained by adversarial examples and is hence susceptible to bayesian 

error. 
 

 Future Work 
The system at this stage is a  “Proofi ofi Concept”  for  a  much  substantial  endeavor.  This  
will serve as a first step towards a distinguished  technology  that  can  bring  about  an  
evolution aimed at ace development. The developed  system  has  special  emphasis  on real-
time monitoring with flexibility, adaptability and enhancements as the foremost requirements. 

 

Future  enhancements  are  always  meant  to  be  items that require more  planning, 
budget and staffing to have them implemented. There following  are couple ofi 
recommended areas for future enhancements: 
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● Use of object detection Algorithms: Object detection algorithms can be used to trace 
humans in the camera. After this, a face detection classifier can be used to detect faces, 
and this model can be used to detect masks. 

● Use of lighter Networks: Traditional CNNs are heavy which might pose a problem in 
real-time deployment of the project. Instead, alternatives such as MobileNetV2, etc can 
be used so that its hardware requirements meet the feasibility studies in the SDLC. 
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