
FACE MASK DETECTION USING CONVOLUTIONAL
NEURAL NETWORK

Project report submitted in partial fulfilment of the requirement for the degree
of Bachelor of Technology

in

Computer Science and Engineering

By

PRANSHU (171345)

UNDER THE SUPERVISION OF

MR. RAVINDARA BHATT

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

I

DECLARATION BY CANDIDATE

We hereby declare that the work presented in this report entitled “Face Mask Detection using
Convolutional Neural Network” in partial fulfilment of the requirements for the award of the degree of
Bachelor of Technology in Computer Science and Engineering/Information Technology submitted in
the department of Computer Science & Engineering and Information Technology, Jaypee University of
Information Technology Waknaghat is an authentic record of my own work carried out over a period from
August 2020 to December 2020 under the supervision of Dr. Ravindara Bhatt

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

 Pranshu
171345

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

Dr. Ravindara Bhatt
Computer Science Department
Dated:

II

ACKNOWLEDGEMENT

We are highly indebted to all the members of the Computer Science & Engineering, Jaypee
University of Information Technology for their guidance and constant supervision as well as providing
necessary information regarding the project and for their support in completing the same.

We would like to express our gratitude to Dr. Ravindara Bhatt for his kind cooperation and
encouragement throughout the project as well as his valuable time and attention, which helped us in
completion of this work. We would also like to thank our panel members Dr. R. Sandhu and Dr. P.K.
Gupta for giving us this opportunity to present our work and providing us with the necessary feedback
to improve this work in future.

Lastly, we would like to acknowledge our Institution, Jaypee University of Information Technology
for providing us this platform to showcase our work till date.

III

TABLE OF CONTENT

Content Page
no.

DECLARATION BY CANDIDATE I

Table of Contents III-IV

Abstract V

Chapter No. 1 INTRODUCTION

1-2

1.1 Introduction 1

1.2 Objective of the Major Project 1

1.3 Motivation of the Major Project 1

1.4 Technical Requirements 2-7

Chapter No. 2 LITERATURE SURVEY

8-13

Chapter No. 3 SYSTEM DEVELOPMENT AND
PERFORMANCE ANALYSIS

14-18

3.1 Data Warehousing and data Preprocessing 14

3.2 Training the Network 15

3.2.1 Initially Designed Network 15-17

IV

3.2.2 Second Phase of Designed Network 18-20

3.2.3 Third Phase of Designed Network 20-22

3.2.4 Final Model 23-24

3.3 Face Mask Detection 25

3.4 Flow Graph of the Project 26

3.5 Code Snippets 27-29

3.5.1 Data Preprocessing 27

3.5.2 Training the Model 28

3.5.3 Real-Time Face Mask Detection 29

Chapter No. 4 CONCLUSION

30-31

4.1 Discussion on the Results Achieved 30

4.2 Application of the Major Project 30

4.3 Limitation of the Major Project 30

4.4 Future Work 31

References

32

V

ABSTRACT

In the new world of coronavirus, multidisciplinary efforts have been organized to slow the spread of
the pandemic. The AI community has also been a part of these endeavors. In particular, developments
for monitoring social distancing or identifying face masks have made-the-headlines. Businesses are
constantly overhauling their existing infrastructure and processes to be more efficient, safe, and usable
for employees, customers, and the community. With the ongoing pandemic, it’s even more important
to have advanced analytics apps and services in place to mitigate risk. For public safety and health,
authorities are recommending the use of face masks and coverings to control the spread of COVID-19.

Face masks help diminish the transmission of the infection by meddling with the spread of infection
loaded droplets ejected from the nose and mouth. Wearing a face mask is one of the precautionary steps
an individual can take to decrease the spread of COVID-19.

Face mask detection systems are now increasingly important, especially in smart hospitals for effective
patient care. They’re also important in stadiums, airports, warehouses, and other crowded spaces where
foot traffic is heavy and safety regulations are critical to safeguarding everyone’s health. In this simple
project, a video camera detects if an individual is wearing a face mask or not in real-time. We have
used a prebuilt cascade classifier that detects faces from the input image and identifies the region of
interest, which is then fed as input to our designed CNN. The CNN detects whether the person is
wearing the mask or not.The goal here is to train an AI model that is not only accurate but lightweight
and performant for real-time inference on the edge.

VI

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

ANN Artificial Neural Network

nCoV Novel CoronaVirus

COVID CoronaVirus Disease

GPU Graphics Processing Unit

OpenCV Open Source Computer Vision Library

VII

LIST OF FIGURES

Fig 1.1 Illustration of an ANN

Fig 2.1 Dataset of morphed images created by Prajna Bhandary

Fig 2.2 Dataset of real images collected via scraping techniques

Fig 2.3 Convolutional v/s Fully Connected Layer

Fig 2.4 ReLU Activation Function

Fig 2.5 Stride 1, the filter moves only once for each connection

Fig 2.6 Dataset of real images collected via scraping techniques

Fig 3.1 Initial Network Architecture

Fig 3.2 Phase 2 Network Architecture

Fig 3.3 Network Architecture of the Final Model

Fig 3.4 Flow Diagram of the Project

Fig 3.5 Complete Flow Diagram of the Project

VIII

LIST OF GRAPHS

Graph 3.1 Phase 1 Accuracy Curve

Graph 3.2 Phase 1 Loss Curve

Graph 3.3 Phase 2 Accuracy Curve

Graph 3.4 Phase 2 Loss Curve

Graph 3.5 Phase 3 Accuracy Curve

Graph 3.6 Phase 3 Loss Curve

Graph 3.7 Phase 4 Accuracy Curve

Graph 3.8 Phase 4 Loss Curve

IX

LIST OF TABLES

Table 3.1 Phase 1 Classification Report

Table 3.2 Phase 2 Classification Report

Table 3.3 Phase 3 Classification Report

Table 3.4 Phase 4 Classification Report

1

Chapter 01
INTRODUCTION

 Introduction

In the new world ofi coronavirus, multidisciplinary efforts have been
organized to slow the spread ofi the pandemic.[1] The AI community has
also been a part ofi these endeavors. In particular, developments fori
monitoring social distancing or identifying face masks have made-the-
headlines. Businesses are constantly overhauling their existing infrastructure and
processes to be more efficient, safe, and usable for employees, customers, and
the community. With the ongoing pandemic, it’s even more important to have
advanced analytics apps and services in place to mitigate risk. For public
safety and health, authorities are recommending the use ofi face masks and
coverings to control the spread ofi COVID-19.[3] [5]

Face masks help reduce the transmission ofi the disease by interfering with
the spread ofi virus-laden droplets ejected from the nose and mouth.
Wearing a face mask is one ofi the precautionary steps an individual can
take in order to lessen the spread ofi COVID-19. [2]

Face mask detection systems are now increasingly important, especially in
smart hospitals for effective patient care. They’re also important in
stadiums, airports, warehouses, and other crowded spaces where foot traffic
is heavy and safety regulations are critical to safeguarding everyone’s
health. Also, the absence ofi large datasets has made this task more
cumbersome and challenging.[4]

 Objective of the Minor Project
In this project, we propose a two-stage CNN architecture, where the first
stage detects human faces while the second one uses a lightweight image
classifier to classify the faces detected in the first stage as ‘With Mask’ or
‘Without Mask’ and draws bounding boxes around them along with the
confidence score ofi the predicted category.

2

 Motivation of the Major Project
The inspiration ofi the Project was taken from a post uploaded by Mr.
Adrian Rosebrock who produced a tutorial on how to build a real time
face mask detector using MobileNetV2. As there was no pre-trained
classifier to distinguish faces with and without masks, Adrian trained this
model with a dataset provided by one ofi his readers, Prajna Bhandary who
created the dataset artificially by using facial landmarks to apply masks to
face images, thus creating morphed image dataset. Although the model
generalized pretty well, real images obtained from real-world sources like
CCTV or surveillance cameras can be much noisier. In this project, we
have used several scraping techniques to gather our own dataset and
labelled ouri dataset accordingly. The dataset used here is more ofi a real
world dataset, and hence generalizes pretty well in real world scenarios.

 Technical Requirements

● System Requirements
Computational power ofi individual machines are not sufficient to train
big CNNs, hence the model is trained overi cloud GPUs. However, data
preprocessing was done on local Machine. To run the final working
script, the system needs to meet the following requirements:

1. Operating system: Windows 8 or newer, 64-bit macOS 10.13+, or
Linux, including Ubuntu, RedHat, CentOS 6+, and others.

2. System architecture: Windows- 64-bit x86, 32-bit x86; MacOS- 64-
bit x86; Linux- 64-bit x86, 64-bit Power8/Power9.

3. Minimum 5 GB disk space to download and install the software
requirements.

● Python
Python is an interpreted programming language, both high-level and general-
purpose. With its prominent use of substantial white space, Python's design
philosophy emphasizes code readability. It aims to help programmers write
simple logical code for small and large-scale projects with its language
constructs and object-oriented approach.

Python is typed and garbage-collected dynamically. It supports different
paradigms ofi programming, including structured (specifically, procedural),
object-oriented, and functional programming. Because ofi its
comprehensive standard library, Python is sometimes defined as a
language that includes batteries.

3

● Numpy
NumPy, which stands fori Numerical Python, is a library consisting ofi
objects in a multidimensional array and a series ofi processing routines
for those arrays. Mathematical and logical operations on arrays can be
achieved using NumPy. The fundamentals ofi NumPy, including its
architecture and climate, are explained in this tutorial. It also addresses
the different functions ofi the list, indexing types, etc

● Pandas
Pandas is a software library written for data manipulation and analysis
in the Python programming language. It provides data structures and
operations for the manipulation ofi numerical tables and time series, in
particular. It is free software which has been published under the BSD three-
clause license. The name derives from the word "panel data" an econometric
term for data sets that contain multiple time span measurements for the
same individuals.

● Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python. It is the Python programming
language plotting library and its NumPy numerical mathematics
extension. For embedding plots into applications, it offers an object-
oriented API using general-purpose GUI toolkits such as Tkinter, wxPython,
Qt, or GTK+.

● Scikit-learn

A free software machine learning library for the Python programming
language is Scikit-learn (formerly scikits.learn and also referred to as
sklearn). It includes numerous algorithms fori classification, regression and
clustering, including vector support machines, random forests, gradient
boosting, k-means and DBSCAN, and is designed to interface with the
NumPy and SciPy numerical and scientific libraries ofi Python.

● Machine Learning

As a sub-domain ofi AI, ML algorithms can be classified and renderi a
machine or software program intelligent enough to be more precise
without needing to be clearly programmable and can forecast
performance. The key idea behind the operation ofi these algorithms is to
collect input as a dataset and then learn from the output for the

4

respective inputs. Which helps to predict the performance ofi the
algorithms when they obtain the same domain input. It effectively learns
the pattern ofi similarity between the inputs by which the algorithm is
trained and implies an output from the input ofi the test dataset.

● Deep Learning

Deep learning is a form ofi machine learning (ML) and artificial
intelligence (AI) that mimics the way certain kinds ofi information are
acquired by humans. A significant aspect ofi data science, which involves
statistics and predictive modelling, is deep learning. Data scientists who
are charged with the compilation, review and evaluation ofi vast volumes
ofi data are extremely beneficial; deep learning makes this process
quicker and simpler. Deep learning can be thought ofi as a way ofi
automating predictive analytics at its simplest. While conventional
machine learning algorithms are linear, in a hierarchy ofi growing
complexity and abstraction, deep learning algorithms are stacked.
Computer programs that use deep learning go through almost the same
method to classify the dog as the toddler learning. In the hierarchy, each
algorithm applies a nonlinear transformation to its input and uses what it
learns as an output to construct a statistical model. Iterations continue
until an appropriate degree ofi precision has been achieved by the
production. What profoundly influenced the mark was the number ofi
processing layers through which data could move.
The learning process is monitored in conventional machine learning, and
when asking the computer what kinds ofi things it should be searching
for to determine whether a picture contains a dog or does not contain a
dog, the programmeri must be extremely precise. This is a laborious
method called feature extraction, and the success rate ofi the computer
depends entirely on the ability ofi the programmer to define a feature set
for "dog." correctly. The benefit ofi deep learning is that the software
builds the feature set without control by itself. Not only is unsupervised
learning easier, but it is usually more precise.

● Keras and Tensorflow

TensorFlow is an end-to-end open source platform for machine learning.
It has a comprehensive, flexible ecosystem ofi tools, libraries, and
community resources that lets researchers push the state-of-the-art in ML
and developers easily build and deploy ML-powered applications.
TensorFlow provides stable Python and C++ APIs, as well as non-
guaranteed backward compatible API for other languages.

5

Keras is an open-source library that provides a Python interface for
artificial neural networks. Keras acts as an interface for the TensorFlow
library. It is Designed to enable fast experimentation with deep neural
networks, it focuses on being user-friendly, modular, and extensible.
Keras contains numerous implementations ofi commonly used neural-
network building blocks such as layers, objectives, activation functions,
optimizers, and a host ofi tools to make working with image and text data
easier to simplify the coding necessary for writing deep neural network
code. In addition to standard neural networks, Keras has support for
convolutional and recurrent neural networks.

● OpenCV
OpenCV (Open Source Computer Vision Library) is an open sourcei computer
vision and machine learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications and to accelerate the
use ofi machine perception in commercial products. OpenCV is a library ofi
programming functions mainly aimed at real-time computeri vision.

● Neural Networks (ANN)

Artificial neural networks (ANNs), usually simply called neural networks
(NNs), are computing systems inspired by the biological neural networks
that constitute human brains.

An ANN is based on a collection ofi connected units or nodes called
artificial neurons, which loosely model the neurons in a biological brain.
Each connection, like the synapses in a biological brain, can transmit a
signal to other neurons. An artificial neuron that receives a signal then
processes it and can signal neurons connected to it. The "signal" at a
connection is a real number, and the output ofi each neuron is computed
by some non-linear function ofi the sum ofi its inputs. The connections
are called edges. Neurons and edges typically have a weight that adjusts
as learning proceeds. The weight increases or decreases the strength ofi
the signal at a connection. Neurons may have a threshold such that a
signal is sent only ifi the aggregate signal crosses that threshold.
Typically, neurons are aggregated into layers. Different layers may
perform different transformations on theiri inputs. Signals travel from the
first layer (the input layer), to the last layer (the output layer), possibly
after traversing the layers multiple times.

6

Fig 1.1: Illustration of an ANN

● Convolutional Neural Network
Convolutional Neural Networks (CNN, or ConvNet) is a class ofi deep
neural networks, most commonly applied to analyzing visual imagery.
They have a shared-weights architecture and translation invariance
characteristics. They have applications in image and video recognition,
recommender systems, image classification, medical image analysis, natural
language processing, and financial time series.

Convolutional Neural Network has had groundbreaking results over the
past decade in a variety ofi fields related to pattern recognition; from
image processing to voice recognition. The most beneficial aspect ofi
CNNs is reducing the number ofi parameters in ANN . This achievement
has prompted both researchers and developers to approach larger models
in order to solve complex tasks, which was not possible with classic
ANNs; . The most important assumption about problems that are solved
by CNN should not have features which are spatially dependent. In other
words, for example, in a face detection application, we do not need to
pay attention to where the faces are located in the images. The only
concern is to detect them regardless ofi their position in the given images
. Another important aspect ofi CNN, is to obtain abstract features when
input propagates toward the deeper layers. Fori example, in image
classification, the edge might be detected in the first layers, and then the

7

simpler shapes in the second layers, and then the higher level features
such as faces in the next layers.[6]

CNNs provide the three basic advantages over the traditional ANNs:

1. Firstly, they have sparse connections instead ofi fully connected
connections which lead to reduced parameters and make CNN’s efficient
for processing high dimensional data.

2. Secondly, weight sharing takes place where the same weights are shared
across the entire image, causing reduced memory requirements as well as
translational invariance. As the same weights are shared across the
images, hence ifi an object occurs in any image it will be detected
irrespective ofi its position in the image.

3. Thirdly, CNN’s use a very important concept ofi pooling in which the
most prominent pixels are propagated to the next layeri dropping the rest
providing a fixed size output matrix required for classification. [9]

 Project Deployment
The System developed here is meant to be deployed as a software in embedded
systems. Hence, a user interface has not been created for the same. Further
enhancements can be done by embedding in RaspberryPi's Camera Module.

8

Chapter 02
LITERATURE SURVEY

The inspiration of the Project was taken from a post uploaded by Mr.
Adrian Rosebrock who produced a tutorial on how to build a real time
face mask detector using MobileNetV2. MobileNetV2 is a lightweight
network, with its biggest advantage being the fact that such lightweight
networks can be embedded easily into raspberry pi and camera module. As
there was no pre-trained classifieri to distinguish faces with and without
masks, Adrian trained this model with a dataset provided by one ofi his
readers, Prajna Bhandary who created the dataset artificially by using facial
landmarks to apply masks to face images, thus creating morphed image
dataset.

Fig 2.1: Dataset of morphed images created by Prajna Bhandary

Even though it was a synthetic dataset and was built with a single mask
type, it seems to generalize pretty well for other kinds ofi masks. However,
real images obtained from real-world sources like CCTV or surveillance
cameras can be much noisier. In this project, we have used several
scraping techniques to gatheri our own dataset and labelled ouri dataset
accordingly.

9

The dataset used here is self-collected via web-scraping (in Python, using
beautiful soup) more ofi a real-world dataset, and hence generalizes pretty
well in real world scenarios.

Fig 2.2: Dataset of real images collected via scraping techniques

Our dataset consists of over 5300 images (Excluding augmented data) as compared
to a relatively small dataset of around 1400 images, used by Mr. Rosebrock. Also,
instead of using MobileNetV2, we have limited our scope to using simple
Convolutional Neural Network.

Study of Research Paper: Understanding of a Convolutional Neural
Network
(Saad ALBAWI , Tareq Abed MOHAMMED ,Department of Computer Engineering
Faculty of Engineering and Architecture, Istanbul Kemerburgaz University
Istanbul, Turkey)

Elements of a CNN:
● Convolutional Layers

Major advantage of Convolutional layers is that they have sparse
connections instead ofi fully connected connections which lead to reduced
parameters and make CNN’s efficient for processing high dimensional
data.
Secondly, weight sharing takes place where the same weights are shared
across the entire image, causing reduced memory requirements as well as
translational invariance. As the same weights are shared across the images,

10

hence ifi an object occurs in any image it will be detected irrespective ofi
its position in the image.

Fig 2.3: Convolutional v/s Fully Connected Layers
● Non-linearity

The next layer after the convolution is non-linearity. The nonlinearity
can be used to adjust or cut-offi the generated output. This layeri is
applied in order to saturate the output or limit the generated output. The
Rectified Linear Unit (ReLU) has been used more often for the
following reasons:

1. ReLU has simpler definitions in both function and gradient.
2. The saturated function such as sigmoid and tanh cause problems

in the back propagation. As the neural network design is deeper,
the gradient signal begins to vanish, which is called the
“vanishing gradient”. This happens since the gradient ofi those
functions is very close to zero almost everywhere but the center.
However, the ReLU has a constant gradient for the positive input.
Although the function is not differentiable, it can be ignored in
the actual

3. The ReLU creates a sparser representation. because the zero in
the gradient leads to obtaining a complete zero. However, sigmoid
andi tanh always have non-zero results from the gradient, which
might not be in favor for training.

11

Fig 2.4: ReLU Activation Function
● Striding

CNN has a lot ofi ways to decrease the trainable parameters, and at the
same time reduce some ofi the side effects. One ofi these is stride.
While performing simple convolution, the next layer’s node has lots ofi
overlaps with theiri neighbors. We can manipulate the overlap by
controlling the stride. Fig. 2.5 , shows a given 7×7 image. Ifi we move
the filter one node every time, we can have a 5x5 output only. Note
that the output ofi the three left matrices in Fig. 2.5 , have an overlap
(and three middle ones together and three right ones also). However, ifi
we move and make every stride 2, then the output will be 3x3. Put
simply, not only overlap, but also the size ofi the output will be reduced.

For an image of size N×N dimensions and the filter of size F×F, the size of the
output image O is given by :

O = 1 + (N-F)/S
Here, N is the input size, F is the filter or kernel size, and S is the stride.

Fig 2.5: For Stride = 1, the filter moves once for each connection

12

● Padding
One ofi the drawbacks ofi the convolution step is the loss ofi information
that might exist on the border ofi the image. Because they are only
captured when the filter slides, they never have the chance to be seen.
A very simple, yet efficient method to resolve the issue is to use zero-
padding. The other benefit ofi zero padding is to manage the output size.
Fori example, in Fig. 2.5 , with N=7 and F=3 and stride 1, the output will
be 5×5 (which shrinks from a 7×7 input).

However, by adding one zero-padding, the output will be 7×7, which is
exactly the same as the original input (The actual N now becomes 9).
The modified formula including zero-padding can be given as:

O = 1 + (N+2P-F)/S

Where P is the numberi ofi the layers ofi the zero-padding, N is the
input size, F is the filter size, and S is the stride size.

● Features of CNN

Firstly, they have sparse connections instead ofi fully connected
connections which lead to reduced parameters and make CNN’s efficient
for processing high dimensional data.
Secondly, weight sharing takes place where the same weights are shared
across the entire image, causing reduced memory requirements as well as
translational invariance. As the same weights are shared across the images,
hence ifi an object occurs in any image it will be detected irrespective ofi
its position in the image.

Thirdly, CNN’s use a very important concept ofi pooling in which the
most prominent pixels are propagated to the next layer dropping the rest
providing a fixed size output matrix required fori classification. [9]

● Pooling Layers
The main idea ofi pooling is down-sampling in orderi to reduce the
complexity fori further layers. In the image processing domain, it can be
considered as similari to reducing the resolution. Pooling does not affect
the number ofi filters. Max-pooling is one ofi the most common types ofi
pooling methods. It partitions the image to sub-region rectangles, and it
only returns the maximum value ofi the inside ofi that sub-region. One ofi
the most common sizes used in max-pooling is 2×2. As in Fig. 2.6 ,

13

when pooling is performed in the top-left 2×2 blocks (pink area), it
moves 2 and focuses on the top-right part. This means that stride 2 is
used in pooling. To avoid down-sampling, stride 1 can be used, which
is not common. It should be considered that down-sampling does not
preserve the position ofi the information. Therefore, it should be applied
only when the presence ofi information is important (ratheri than spatial
information). Moreover, pooling can be used with non-equal filters and
strides to improve the efficiency.

Fig 2.6: Dataset of real images collected via scraping techniques

● Fully-Connected Layers

The fully-connected layer is similar to the way that neurons are arranged in a
traditional neural network. Therefore, each node in a fully-connected layer is
directly connected to every node in both the previous andi in the next layer.
Each ofi the nodes in the last frames in the pooling layer are connected as a
vector to the firsti layer from the fully-connected layer. These are the most
parameters used with the CNN within these layers, and take a long time in
training. The majori drawback ofi a fully-connected layer, is that it includes a
lot ofi parameters that need complex computations in training examples.
Therefore, we try to eliminate the number ofi nodes and connections. The
removed nodes and connection can be satisfied by using the dropout technique
[7] . For example, LeNet andi AlexNet designed a deep and wide network
while keeping the computational complex constant. [11]

14

Chapter 03
SYSTEM DEVELOPMENT AND

PERFORMANCE ANALYSIS

 Data Warehousing and Data Preprocessing
Data warehousing is the process ofi constructing and using a data warehouse. A data
warehouse is constructed by integrating data from multiple heterogeneous sources that
support analytical reporting, structured and/or ad hoc queries, and decision making.
Sources of Data:

● Kaggle’s dataset for real v/s fake face image detection.
● Prajna Bhandary’s dataset of morphed images.
● Some other GitHub Repositories.
● Uncleaned raw images scrapped from various other sources. (Web Scraping using

BeautifulSoup)

Data preprocessing is a data mining technique used to transform the raw data in a
useful and efficient format. This helps in reducing the complexity and increases the
accuracy ofi the applied algorithm.

● Conversion of images from RGB to grayscale- In the specified problem statement,

color isn’t necessary to recognize and interpret an image i.e. Grayscale is good
enough to extract useful information and reduce computational complexity.

● Resizing images- One important constraint that exists in CNN, is the need to

resize the images in the dataset to a unified dimension i.e. images must be
preprocessed and scaled to have identical widths and heights before fed to the
learning algorithm.

● Data Augmentation- Another common pre-processing technique involves

augmenting the existing dataset with perturbed versions ofi the existing images by
performing transformations such as scaling, rotations, etc. to enlarge the dataset
and expose the classifier to a wide variety ofi variations ofi the images. It makes
the model more robust to slight variations, and hence prevents the model
from overfitting.

● Normalizing image inputs- Data normalization ensures that each input image

follows a similar data distribution. An alternative to this is standardization, which
causes the input dataset to follow standard normal distribution.

15

Description of the finally created dataset:
Balanced dataset of 5,300 images with two classes: with_mask and without_mask.

 Training the Network

Various versions of improved Network are as follows:

 Initially designed Network
The initially designed network consisted of two Convolutional layers, two max pooling
layers, one flattening and one densely connected layer.

Fig 3.1: Initial Network Architecture

Number of Epochs: 20
Learning rate: 1e-3
Batch Size: 32

Train-Test Split: 70% Training; 20% Validation; 10% Test

16

Started With:

Ended On:

Validation Accuracy: 91.4% (Good)
Validation Loss: 23.9% (VERY HIGH)

Table 3.1: Phase 1 Classification Report

17

Accuracy Curve:

Graph 3.1: Accuracy Curve

Loss Curve:

Graph 3.2: Loss Curve

Since Validation Accuracy was better than Training accuracy, we say that our model
generalized well over the dataset. It appeared that the model suffered from a high bias
problem.
To resolve this issue, we increased the size of the network.

18

Performance on the test data verified our conclusions:

Validation Accuracy: 92.5% (Good)
Validation Loss: 21.7% (VERY HIGH)

 Second Phase of the designed Network

After further changes, our improvised network consisted of three Convolutional layers,
three max pooling layers, one flattening and one densely connected layer.

Also, we altered the train test split to get some better insights.

Fig 3.2: Phase 2 Network Architecture

19

Number of Epochs: 20
Learning rate: 1e-3
Batch Size: 32

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test

Started With:

Ended On:

Validation Accuracy: 92.8% (Good)
Validation Loss: 18.97% (VERY HIGH)

Table 3.2: Phase 2 Classification Report

20

Accuracy Curve:

Graph 3.3: Accuracy Curve

Loss Curve:

Graph 3.4: Loss Curve

On increasing the size of the network, loss is reduced by a small amount, so we find other
ways to reduce the bias. High value of loss motivated us to the number of epochs. Also,
we tried to get better accuracy by increasing the batch size.

21

Performance on the test data:

Validation Accuracy: 93.5% (Good)
Validation Loss: 19.83% (VERY HIGH)

 Third Phase of the designed Network

The design and size of the network remained the same, other hyperparameters were
altered:

● Decreased learning rate.
● Increased the number of Epochs.
● Increased batch size.
● Expanded dataset.

Number of Epochs: 30
Learning rate: 1e-4
Batch Size: 64

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test

Started With:

Ended On:

22

Table 3.3: Phase 3 Classification Report

Accuracy Curve:

Graph 3.5: Accuracy Curve

23

Loss Curve:

Graph 3.6: Loss Curve

Performance on the test data:

Loss is significantly high.
Probably the learning rate is very low, which is why the gradient descent does not
converge.
Also, the number of epochs need to be increased to converge GD to a minimum.

24

 Final Model
Final changes in the model architecture included an additional convolutional and max
pooling layers. With increased number of epochs, learning rate and batch size, the model
showed significantly better results.

Fig 3.3: Network Architecture of the Final Model

Number of Epochs: 40
Learning rate: 1e-3
Batch Size: 128

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test

Started With:

Ended On:

25

Table 3.4: Phase 4 Classification Report

Accuracy Curve:

Graph 3.7: Accuracy Curve

26

Loss Curve:

Graph 3.8: Loss Curve

Performance on the test data:

Loss is significantly reduced to about 11% on TEST DATA.
Accuracy improved to around 96% on TEST DATA.

27

 Face Mask Detection
In this project, we have used a prebuilt cascade classifier from Open Source Computer Vision
Library, that detects faces from the input image and identifies the region of interest. The cascade
classifier falls a little short when it comes to accuracy, however it works well in real-time
because of it’s excellent frame rate of 15fps, which is pretty quick for real-time applications.
Also, since it is lightweight, it is easily deployable into modules of embedded systems. The
region of interest identified by the cascade classifier is then rescaled to 100*100 size, which is
then fed as input to the CNN. The CNN detects whether the person is wearing the mask or not.

Fig 3.4: Flow Diagram of the Project

28

 Flow graph of the Major Project Problem

Fig 3.5: Complete Flow Diagram of the Project

29

 Code Snippets
 Data Preprocessing

30

 Training the Network

31

 Real Time Face Mask Detection

32

Chapter 04
CONCLUSIONS

 Discussion on the Results Achieved

The following results were achieved upon the implementation of this project:
● Real-time monitoring was achieved.
● 96% accuracy , 11% Loss on Test set.
● Face covered with hands were not classified as masked.
● Side facing positions were classified appropriately.
● The model could not detect masks at larger distances.

 Application of the Project

The goal ofi this Majori Project was to design and develop a system capable ofi
detecting face masks in support ofi taking appropriate precautions in this pandemic
situation. It focuses on achieving good accuracy without using heavily-designed complex
networks having extensive hardware requirements which are not feasible in practical
situations.

 Limitations of the Project

If under any circumstance, the images taken by the camera module aren’t clear enough to
classify the system fails. Therefore, the proposed system has the following limitations:
● If the camera module is placed at a distance from the crowd, the model may not be able to

give accurate results.
● The model has been designed in a simple fashion, it has no way to classify whether the

person in front of the camera is wearing a mask properly or not.
● The model has not been trained by adversarial examples and is hence susceptible to bayesian

error.

 Future Work
The system at this stage is a “Proofi ofi Concept” for a much substantial endeavor. This
will serve as a first step towards a distinguished technology that can bring about an
evolution aimed at ace development. The developed system has special emphasis on real-
time monitoring with flexibility, adaptability and enhancements as the foremost requirements.

Future enhancements are always meant to be items that require more planning,
budget and staffing to have them implemented. There following are couple ofi
recommended areas for future enhancements:

33

● Use of object detection Algorithms: Object detection algorithms can be used to trace
humans in the camera. After this, a face detection classifier can be used to detect faces,
and this model can be used to detect masks.

● Use of lighter Networks: Traditional CNNs are heavy which might pose a problem in
real-time deployment of the project. Instead, alternatives such as MobileNetV2, etc can
be used so that its hardware requirements meet the feasibility studies in the SDLC.

34

REFERENCES

[1] X. Liu, S. Zhang, COVID-19: Face masks and human-to-human transmission, Influenza Other
Respiratory. Viruses, vol. n/a, no. n/a, doi: 10.1111/irv.12740.

[2] S. Feng, C. Shen, N. Xia, W. Song, M. Fan, B.J. Cowling Rational use of face masks in the COVID-
19 pandemic Lancet Respirate. Med., 8 (5) (2020), pp. 434-436, 10.1016/S2213-2600(20)30134-X

[3] “WHO Coronavirus Disease (COVID-19) Dashboard.” https://covid19.who.int/ (accessed October
21, 2020).

[4] D.S.W. Ting, L. Carin, V. Dzau, T.Y. Wong Digital technology and COVID-19 Nat. Med., 26 (4)
(2020), pp. 459-461, 10.1038/s41591-020-0824-5

[5] D.M. Altmann, D.C. Douek, R.J. Boyton What policy makers need to know about COVID-19
protective immunity Lancet, 395 (10236) (2020), pp. 1527-1529, 10.1016/S0140-6736(20)30985-5

[6] O. Abdel-hamid, L. Deng, and D. Yu, “Exploring Convolutional Neural Network Structures and
Optimization Techniques for Speech Recognition,” no. August, pp. 3366–3370, 2013.

[7] Wei Xiong , Bo Du, Lefei Zhang, Ruimin Hu, Dacheng Tao "Regularizing Deep Convolutional
Neural Networks with a Structured Decorrelation Constraint ” IEEE 16th International Conference on
Data Mining (ICDM) , pp. 3366–3370, 2016.

[8] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient- based learning applied to
document recognition. Proceedings of the IEEE, 86(11), pp.2278-2324.

[9] D. Stutz and L. Beyer, “Understanding Convolutional Neural Networks,” 2014.

[10] I. Kokkinos, E. C. Paris, and G. Group, “Introduction to Deep Learning Convolutional Networks,
Dropout, Maxout 1,” pp. 1–70.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, C. V Jan, J.
Krause, and S. Ma, “ImageNet Large Scale Visual Recognition Challenge.”

35

15%
SIMILARITY INDEX

6%
INTERNET SOURCES

2%
PUBLICATIONS

14%
STUDENT PAPERS

1 6%

2 5%

3 4%

4 4%

5 3%

6 3%

7 2%

major project 22 05 21
ORIGINALITY REPORT

PRIMARY SOURCES

Saad Albawi, Tareq Abed Mohammed, Saad
Al-Zawi. "Understanding of a convolutional
neural network", 2017 International
Conference on Engineering and Technology
(ICET), 2017
Publication

towardsdatascience.com
Internet Source

Submitted to Jaypee University of Information
Technology
Student Paper

developer.nvidia.com
Internet Source

tryolabs.com
Internet Source

en.wikipedia.org
Internet Source

github.com
Internet Source

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

Date: …24/06/2021…….
Type of Document (Tick):

Name: Pranshu Department: COMPUTER SCIENCE

Enrolment No: 171345

Contact No. 7082159005 E-mail. : khattarpranshu@gmail.com

Name of the Supervisor: Dr. Ravinder Bhatt

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): FACE MASK DETECTION

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

− Total No. of Pages = 50
− Total No. of Preliminary pages = 10
− Total No. of pages accommodate bibliography/references = 1

(Signature of Student)
FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at (%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE
The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

• All Preliminary
Pages

• Bibliography/Ima
ges/Quotes

• 14 Words String

Word Counts

Character Counts Report Generated on

Submission ID Total Pages Scanned

File Size

Checked by
Name & Signature Librarian

………

B.Tech Project Report

15

mailto:khattarpranshu@gmail.com

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

mailto:plagcheck.juit@gmail.com

	FinalProjectReport2021-171345
	FACE MASK DETECTION USING CONVOLUTIONAL NEURAL NETWORK
	Project report submitted in partial fulfilment of the requirement for the degree of Bachelor of Technology

	Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, INDIA
	ACKNOWLEDGEMENT
	TABLE OF CONTENT
	LIST OF ABBREVIATIONS
	Chapter 01 INTRODUCTION
	Introduction
	Objective of the Minor Project
	Motivation of the Major Project
	Technical Requirements
	● System Requirements
	● Python
	● Numpy
	● Pandas
	● Matplotlib
	● Scikit-learn
	● Machine Learning
	● Deep Learning
	● Keras and Tensorflow
	● OpenCV
	● Neural Networks (ANN)
	● Convolutional Neural Network

	Project Deployment

	Chapter 02 LITERATURE SURVEY
	Study of Research Paper: Understanding of a Convolutional Neural Network
	Elements of a CNN:
	● Non-linearity
	● Striding
	● Padding
	● Features of CNN
	● Pooling Layers
	● Fully-Connected Layers

	Chapter 03
	Data Warehousing and Data Preprocessing
	Description of the finally created dataset:

	Training the Network
	Initially designed Network
	Accuracy Curve:
	Loss Curve:

	Second Phase of the designed Network
	/Accuracy Curve:
	/Loss Curve:
	/Performance on the test data:

	Third Phase of the designed Network
	/Accuracy Curve:
	/Loss Curve:
	/Performance on the test data:

	Final Model
	/Accuracy Curve:
	/Loss Curve:
	/Performance on the test data:

	Flow graph of the Major Project Problem
	Code Snippets
	Application of the Project
	Limitations of the Project
	Future Work

	REFERENCES

	171345_major project 22 05 21
	PlagiarismForm (2)
	Date: …24/06/2021…….
	UNDERTAKING
	Complete Thesis/Report Pages Detail:

	FOR DEPARTMENT USE
	FOR LRC USE
	Checked by

