
FACE MASK DETECTION USING CONVOLUTIONAL

NEURAL NETWORK AND TRANSFER LEARNING

Project report submitted in fulfilment of the requirement for the degree of

Bachelor of Technology

in

Computer Science and Engineering

By

PRATIKSHA (171326)

UNDER THE SUPERVISION OF

MR. PRATEEK THAKRAL

Assistant Professor (Grade-II)

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology, Waknaghat,

173234, Himachal Pradesh, INDIA

I

DECLARATION BY CANDIDATE

I hereby declare that the work presented in this report entitled “Face Mask Detection using

Convolutional Neural Network and Transfer Learning” in fulfilment of the requirements for the

award of the degree of Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic record of my own

work carried out over a period from January 2021 to June 2021 under the supervision of Mr. Prateek

Thakral (Assistant Professor Grade- II , Computer science department).

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

 (Supervisor’s Signature)

 Mr. Prateek Thakral

 Assistant Professor(Grade-II)

 Computer Science Department

 (Student’s Signature)

 Pratiksha 171326

 This is to certify that the above statement made by the candidate is true to the best of my knowledge.

II

ACKNOWLEDGEMENT

We are highly indebted to all the members of the Computer Science & Engineering, Jaypee

University of Information Technology for their guidance and constant supervision as well as providing

necessary information regarding the project and for their support in completing the same.

We would like to express our gratitude to Mr. Prateek Thakral for his kind cooperation and

encouragement throughout the project as well as his valuable time and attention, which helped us in

completion of this work. We would also like to thank our panel members Dr. Himanshu Jindal and

Mr. Arvind Kumar for giving us this opportunity to present our work and providing us with the

necessary feedback to improve this work in future.

Lastly, we would like to acknowledge our Institution, Jaypee University of Information Technology

for providing us this platform to showcase our work till date.

III

TABLE OF CONTENT

Content Page

no.

DECLARATION BY CANDIDATE I

Table of Contents III-IV

Abstract V

Chapter No. 1 INTRODUCTION

1-2

1.1 Introduction 1

1.2 Objective of the Major Project 1

1.3 Motivation of the Major Project 1

1.4 Technical Requirements 2-7

Chapter No. 2 LITERATURE SURVEY

8-13

Chapter No. 3 SYSTEM DEVELOPMENT AND

PERFORMANCE ANALYSIS

14-18

3.1 Data Warehousing and data Preprocessing 14

3.2 Training the Network 15

3.2.1 Initially Designed Network 15-17

IV

3.2.2 Second Phase of Designed Network 18-20

3.2.3 Third Phase of Designed Network 20-22

3.2.4 Final Model 23-24

3.3 Face Mask Detection 25

3.4 Flow Graph of the Project 26

3.5 Code Snippets 27-29

3.5.1 Data Preprocessing 27

3.5.2 Training the Model 28

3.5.3 Real-Time Face Mask Detection

 3.6 Transfer Learning

 3.6.1 Creating Training and Validation directory

 3.6.3 Setting directory path and creating

 3.6.4 Accuracy and Loss graph

29

31

33

34

35

Chapter No. 4 CONCLUSION

35-37

4.1 Discussion on the Results Achieved 35

4.2 Application of the Major Project 35

4.3 Limitation of the Major Project 36

4.4 Future Work 36

References

38

V

ABSTRACT

In the new world of coronavirus, multidisciplinary efforts have been organized to slow the spread of

the pandemic. The AI community has also been a part of these endeavors. In particular, developments

for monitoring social distancing or identifying face masks have made-the-headlines. Businesses are

constantly overhauling their existing infrastructure and processes to be more efficient, safe, and usable

for employees, customers, and the community. With the ongoing pandemic, it’s even more important

to have advanced analytics apps and services in place to mitigate risk. For public safety and health,

authorities are recommending the use of face masks and coverings to control the spread of COVID-19.

Face masks help diminish the transmission of the infection by meddling with the spread of infection

loaded droplets ejected from the nose and mouth. Wearing a face mask is one of the precautionary steps

an individual can take to decrease the spread of COVID-19.

Face mask detection systems are now increasingly important, especially in smart hospitals for effective

patient care. They’re also important in stadiums, airports, warehouses, and other crowded spaces where

foot traffic is heavy and safety regulations are critical to safeguarding everyone’s health. In this simple

project, a video camera detects if an individual is wearing a face mask or not in real-time. We have

used a prebuilt cascade classifier that detects faces from the input image and identifies the region of

interest, which is then fed as input to our designed CNN. The CNN and Transfer learning detects

whether the person is wearing the mask or not. The goal here is to train an AI model that is not only

accurate but lightweight and performant for real-time inference on the edge.

VI

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

ANN Artificial Neural Network

nCoV Novel CoronaVirus

COVID CoronaVirus Disease

GPU Graphics Processing Unit

OpenCV Open Source Computer Vision Library

VII

LIST OF FIGURES

Fig 1.1 Illustration of an ANN

Fig 2.1 Dataset of morphed images created by Prajna Bhandary

Fig 2.2 Dataset of real images collected via scraping techniques

Fig 2.3 Convolutional v/s Fully Connected Layer

Fig 2.4 ReLU Activation Function

Fig 2.5 Stride 1, the filter moves only once for each connection

Fig 2.6 Dataset of real images collected via scraping techniques

Fig 3.1 Initial Network Architecture

Fig 3.2 Phase 2 Network Architecture

Fig 3.3 Network Architecture of the Final Model

Fig 3.4 Flow Diagram of the Project

Fig 3.5 Complete Flow Diagram of the Project

VIII

LIST OF GRAPHS

Graph 3.1 Phase 1 Accuracy Curve

Graph 3.2 Phase 1 Loss Curve

Graph 3.3 Phase 2 Accuracy Curve

Graph 3.4 Phase 2 Loss Curve

Graph 3.5 Phase 3 Accuracy Curve

Graph 3.6 Phase 3 Loss Curve

Graph 3.7 Phase 4 Accuracy Curve

Graph 3.8 Phase 4 Loss Curve

Graph 3.9 Transfer learning accuracy curve

Graph
3.10

Transfer Learning Loss curve

IX

LIST OF TABLES

Table 3.1 Phase 1 Classification Report

Table 3.2 Phase 2 Classification Report

Table 3.3 Phase 3 Classification Report

Table 3.4 Phase 4 Classification Report

1

Chapter 01

INTRODUCTION

1.1 Introduction

In the new world ofi coronavirus, multidisciplinary efforts have been

organized to slow the spread ofi the pandemic.[1] The AI community has

also been a part ofi these endeavors. In particular, developments fori

monitoring social distancing or identifying face masks have made-the-

headlines. Businesses are constantly overhauling their existing infrastructure and

processes to be more efficient, safe, and usable for employees, customers, and

the community. With the ongoing pandemic, it’s even more important to have

advanced analytics apps and services in place to mitigate risk. For public

safety and health, authorities are recommending the use ofi face masks and

coverings to control the spread ofi COVID-19.[3] [5]

Face masks help reduce the transmission ofi the disease by interfering with

the spread ofi virus-laden droplets ejected from the nose and mouth.

Wearing a face mask is one ofi the precautionary steps an individual can

take in order to lessen the spread ofi COVID-19. [2]

Face mask detection systems are now increasingly important, especially in

smart hospitals for effective patient care. They’re also important in

stadiums, airports, warehouses, and other crowded spaces where foot traffic

is heavy and safety regulations are critical to safeguarding everyone’s

health. Also, the absence ofi large datasets has made this task more

cumbersome and challenging.[4]

1.2 Objective of the Minor Project

In this project, we propose a two-stage CNN architecture and transfer learning,

where the first stage detects human faces while the second one uses a

lightweight image classifier to classify the faces detected in the first stage as

‘With Mask’ or ‘Without Mask’ and draws bounding boxes around them along

with the confidence score ofi the predicted category.

2

1.3 Motivation of the Major Project

The inspiration ofi the Project was taken from a post uploaded by Mr.

Adrian Rosebrock who produced a tutorial on how to build a real time

face mask detector using MobileNetV2. As there was no pre-trained

classifier to distinguish faces with and without masks, Adrian trained this

model with a dataset provided by one ofi his readers, Prajna Bhandary who

created the dataset artificially by using facial landmarks to apply masks to

face images, thus creating morphed image dataset. Although the model

generalized pretty well, real images obtained from real-world sources like

CCTV or surveillance cameras can be much noisier. In this project, we

have used several scraping techniques to gather our own dataset and

labelled ouri dataset accordingly. The dataset used here is more ofi a real

world dataset, and hence generalizes pretty well in real world scenarios. At last

we applied inception V3 model to increasing the accuracy of the project and to

decrease the curve.

1.4 Technical Requirements

● System Requirements

Computational power ofi individual machines are not sufficient to train

big CNNs, hence the model is trained overi cloud GPUs. However, data

preprocessing was done on local Machine. To run the final working

script, the system needs to meet the following requirements:

1. Operating system: Windows 8 or newer, 64-bit macOS 10.13+, or

Linux, including Ubuntu, RedHat, CentOS 6+, and others.

2. System architecture: Windows- 64-bit x86, 32-bit x86; MacOS- 64-

bit x86; Linux- 64-bit x86, 64-bit Power8/Power9.

3. Minimum 5 GB disk space to download and install the software

requirements.

● Python

Python is an interpreted programming language, both high-level and general-

purpose. With its prominent use of substantial white space, Python's design

philosophy emphasizes code readability. It aims to help programmers write

simple logical code for small and large-scale projects with its language

constructs and object-oriented approach.

Python is typed and garbage-collected dynamically. It supports different

paradigms ofi programming, including structured (specifically, procedural),

object-oriented, and functional programming. Because ofi its

comprehensive standard library, Python is sometimes defined as a

language that includes batteries.

3

● Numpy

NumPy, which stands fori Numerical Python, is a library consisting ofi

objects in a multidimensional array and a series ofi processing routines

for those arrays. Mathematical and logical operations on arrays can be

achieved using NumPy. The fundamentals ofi NumPy, including its

architecture and climate, are explained in this tutorial. It also addresses

the different functions ofi the list, indexing types, etc

● Pandas

Pandas is a software library written for data manipulation and analysis

in the Python programming language. It provides data structures and

operations for the manipulation ofi numerical tables and time series, in

particular. It is free software which has been published under the BSD three-

clause license. The name derives from the word "panel data" an econometric

term for data sets that contain multiple time span measurements for the

same individuals.

● Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and

interactive visualizations in Python. It is the Python programming

language plotting library and its NumPy numerical mathematics

extension. For embedding plots into applications, it offers an object-

oriented API using general-purpose GUI toolkits such as Tkinter, wxPython,

Qt, or GTK+.

● Scikit-learn

A free software machine learning library for the Python programming

language is Scikit-learn (formerly scikits.learn and also referred to as

sklearn). It includes numerous algorithms fori classification, regression and

clustering, including vector support machines, random forests, gradient

boosting, k-means and DBSCAN, and is designed to interface with the

NumPy and SciPy numerical and scientific libraries ofi Python.

● Machine Learning

As a sub-domain ofi AI, ML algorithms can be classified and renderi a

machine or software program intelligent enough to be more precise

without needing to be clearly programmable and can forecast

performance. The key idea behind the operation ofi these algorithms is to

collect input as a dataset and then learn from the output for the

4

respective inputs. Which helps to predict the performance ofi the

algorithms when they obtain the same domain input. It effectively learns

the pattern ofi similarity between the inputs by which the algorithm is

trained and implies an output from the input ofi the test dataset.

● Deep Learning

Deep learning is a form ofi machine learning (ML) and artificial

intelligence (AI) that mimics the way certain kinds ofi information are

acquired by humans. A significant aspect ofi data science, which involves

statistics and predictive modelling, is deep learning. Data scientists who

are charged with the compilation, review and evaluation ofi vast volumes

ofi data are extremely beneficial; deep learning makes this process

quicker and simpler. Deep learning can be thought ofi as a way ofi

automating predictive analytics at its simplest. While conventional

machine learning algorithms are linear, in a hierarchy ofi growing

complexity and abstraction, deep learning algorithms are stacked.

Computer programs that use deep learning go through almost the same

method to classify the dog as the toddler learning. In the hierarchy, each

algorithm applies a nonlinear transformation to its input and uses what it

learns as an output to construct a statistical model. Iterations continue

until an appropriate degree ofi precision has been achieved by the

production. What profoundly influenced the mark was the number ofi

processing layers through which data could move.

The learning process is monitored in conventional machine learning, and

when asking the computer what kinds ofi things it should be searching

for to determine whether a picture contains a dog or does not contain a

dog, the programmeri must be extremely precise. This is a laborious

method called feature extraction, and the success rate ofi the computer

depends entirely on the ability ofi the programmer to define a feature set

for "dog." correctly. The benefit ofi deep learning is that the software

builds the feature set without control by itself. Not only is unsupervised

learning easier, but it is usually more precise.

● Keras and Tensorflow

TensorFlow is an end-to-end open source platform for machine learning.

It has a comprehensive, flexible ecosystem ofi tools, libraries, and

community resources that lets researchers push the state-of-the-art in ML

and developers easily build and deploy ML-powered applications.

TensorFlow provides stable Python and C++ APIs, as well as non-

guaranteed backward compatible API for other languages.

5

Keras is an open-source library that provides a Python interface for

artificial neural networks. Keras acts as an interface for the TensorFlow

library. It is Designed to enable fast experimentation with deep neural

networks, it focuses on being user-friendly, modular, and extensible.

Keras contains numerous implementations ofi commonly used neural-

network building blocks such as layers, objectives, activation functions,

optimizers, and a host ofi tools to make working with image and text data

easier to simplify the coding necessary for writing deep neural network

code. In addition to standard neural networks, Keras has support for

convolutional and recurrent neural networks.

● OpenCV

OpenCV (Open Source Computer Vision Library) is an open sourcei computer

vision and machine learning software library. OpenCV was built to provide a

common infrastructure for computer vision applications and to accelerate the

use ofi machine perception in commercial products. OpenCV is a library ofi

programming functions mainly aimed at real-time computeri vision.

● Neural Networks (ANN)

Artificial neural networks (ANNs), usually simply called neural networks

(NNs), are computing systems inspired by the biological neural networks

that constitute human brains.

An ANN is based on a collection ofi connected units or nodes called

artificial neurons, which loosely model the neurons in a biological brain.

Each connection, like the synapses in a biological brain, can transmit a

signal to other neurons. An artificial neuron that receives a signal then

processes it and can signal neurons connected to it. The "signal" at a

connection is a real number, and the output ofi each neuron is computed

by some non-linear function ofi the sum ofi its inputs. The connections

are called edges. Neurons and edges typically have a weight that adjusts

as learning proceeds. The weight increases or decreases the strength ofi

the signal at a connection. Neurons may have a threshold such that a

signal is sent only ifi the aggregate signal crosses that threshold.

Typically, neurons are aggregated into layers. Different layers may

perform different transformations on theiri inputs. Signals travel from the

first layer (the input layer), to the last layer (the output layer), possibly

after traversing the layers multiple times.

6

Fig 1.1: Illustration of an ANN

● Convolutional Neural Network

Convolutional Neural Networks (CNN, or ConvNet) is a class ofi deep

neural networks, most commonly applied to analyzing visual imagery.

They have a shared-weights architecture and translation invariance

characteristics. They have applications in image and video recognition,

recommender systems, image classification, medical image analysis, natural

language processing, and financial time series.

Convolutional Neural Network has had groundbreaking results over the

past decade in a variety ofi fields related to pattern recognition; from

image processing to voice recognition. The most beneficial aspect ofi

CNNs is reducing the number ofi parameters in ANN . This achievement

has prompted both researchers and developers to approach larger models

in order to solve complex tasks, which was not possible with classic

ANNs; . The most important assumption about problems that are solved

by CNN should not have features which are spatially dependent. In other

words, for example, in a face detection application, we do not need to

pay attention to where the faces are located in the images. The only

concern is to detect them regardless ofi their position in the given images

. Another important aspect ofi CNN, is to obtain abstract features when

input propagates toward the deeper layers. Fori example, in image

classification, the edge might be detected in the first layers, and then the

7

simpler shapes in the second layers, and then the higher level features

such as faces in the next layers.[6]

CNNs provide the three basic advantages over the traditional ANNs:

1. Firstly, they have sparse connections instead ofi fully connected

connections which lead to reduced parameters and make CNN’s efficient

for processing high dimensional data.

2. Secondly, weight sharing takes place where the same weights are shared

across the entire image, causing reduced memory requirements as well as

translational invariance. As the same weights are shared across the

images, hence ifi an object occurs in any image it will be detected

irrespective ofi its position in the image.

3. Thirdly, CNN’s use a very important concept ofi pooling in which the

most prominent pixels are propagated to the next layeri dropping the rest

providing a fixed size output matrix required for classification. [9]

1.5 Project Deployment

The System developed here is meant to be deployed as a software in embedded

systems. Hence, a user interface has not been created for the same. Further

enhancements can be done by embedding in RaspberryPi's Camera Module.

8

Chapter 02

LITERATURE SURVEY

The inspiration of the Project was taken from a post uploaded by Mr.

Adrian Rosebrock who produced a tutorial on how to build a real time

face mask detector using MobileNetV2. MobileNetV2 is a lightweight

network, with its biggest advantage being the fact that such lightweight

networks can be embedded easily into raspberry pi and camera module. As

there was no pre-trained classifieri to distinguish faces with and without

masks, Adrian trained this model with a dataset provided by one ofi his

readers, Prajna Bhandary who created the dataset artificially by using facial

landmarks to apply masks to face images, thus creating morphed image

dataset.

Fig 2.1: Dataset of morphed images created by Prajna Bhandary

Even though it was a synthetic dataset and was built with a single mask

type, it seems to generalize pretty well for other kinds ofi masks. However,

real images obtained from real-world sources like CCTV or surveillance

cameras can be much noisier. In this project, we have used several

scraping techniques to gatheri our own dataset and labelled ouri dataset

accordingly.

9

The dataset used here is self-collected via web-scraping (in Python, using

beautiful soup) more ofi a real-world dataset, and hence generalizes pretty

well in real world scenarios.

Fig 2.2: Dataset of real images collected via scraping techniques

Our dataset consists of over 5300 images (Excluding augmented data) as compared

to a relatively small dataset of around 1400 images, used by Mr. Rosebrock. Also,

instead of using MobileNetV2, we have limited our scope to using simple

Convolutional Neural Network.

Study of Research Paper: Understanding of a Convolutional Neural

Network

(Saad ALBAWI , Tareq Abed MOHAMMED ,Department of Computer Engineering

Faculty of Engineering and Architecture, Istanbul Kemerburgaz University

Istanbul, Turkey)

Elements of a CNN:

● Convolutional Layers

Major advantage of Convolutional layers is that they have sparse

connections instead ofi fully connected connections which lead to reduced

parameters and make CNN’s efficient for processing high dimensional

data.

Secondly, weight sharing takes place where the same weights are shared

across the entire image, causing reduced memory requirements as well as

translational invariance. As the same weights are shared across the images,

10

hence ifi an object occurs in any image it will be detected irrespective ofi

its position in the image.

Fig 2.3: Convolutional v/s Fully Connected Layers

● Non-linearity

The next layer after the convolution is non-linearity. The nonlinearity

can be used to adjust or cut-offi the generated output. This layeri is

applied in order to saturate the output or limit the generated output. The

Rectified Linear Unit (ReLU) has been used more often for the

following reasons:

1. ReLU has simpler definitions in both function and gradient.

2. The saturated function such as sigmoid and tanh cause problems

in the back propagation. As the neural network design is deeper,

the gradient signal begins to vanish, which is called the

“vanishing gradient”. This happens since the gradient ofi those

functions is very close to zero almost everywhere but the center.

However, the ReLU has a constant gradient for the positive input.

Although the function is not differentiable, it can be ignored in

the actual

3. The ReLU creates a sparser representation. because the zero in

the gradient leads to obtaining a complete zero. However, sigmoid

and tanh always have non-zero results from the gradient, which

might not be in favor for training.

11

Fig 2.4: ReLU Activation Function

● Striding

CNN has a lot ofi ways to decrease the trainable parameters, and at the

same time reduce some ofi the side effects. One ofi these is stride.

While performing simple convolution, the next layer’s node has lots ofi

overlaps with theiri neighbors. We can manipulate the overlap by

controlling the stride. Fig. 2.5 , shows a given 7×7 image. Ifi we move

the filter one node every time, we can have a 5x5 output only. Note

that the output ofi the three left matrices in Fig. 2.5 , have an overlap

(and three middle ones together and three right ones also). However, ifi

we move and make every stride 2, then the output will be 3x3. Put

simply, not only overlap, but also the size ofi the output will be reduced.

For an image of size N×N dimensions and the filter of size F×F, the size of the

output image O is given by :

O = 1 + (N-F)/S

Here, N is the input size, F is the filter or kernel size, and S is the stride.

Fig 2.5: For Stride = 1, the filter moves once for each connection

12

● Padding

One ofi the drawbacks ofi the convolution step is the loss ofi information

that might exist on the border ofi the image. Because they are only

captured when the filter slides, they never have the chance to be seen.

A very simple, yet efficient method to resolve the issue is to use zero-

padding. The other benefit ofi zero padding is to manage the output size.

Fori example, in Fig. 2.5 , with N=7 and F=3 and stride 1, the output

will be 5×5 (which shrinks from a 7×7 input).

However, by adding one zero-padding, the output will be 7×7, which is

exactly the same as the original input (The actual N now becomes 9).

The modified formula including zero-padding can be given as:

O = 1 + (N+2P-F)/S

Where P is the numberi ofi the layers ofi the zero-padding, N is the

input size, F is the filter size, and S is the stride size.

● Features of CNN

Firstly, they have sparse connections instead ofi fully connected

connections which lead to reduced parameters and make CNN’s efficient

for processing high dimensional data.

Secondly, weight sharing takes place where the same weights are shared

across the entire image, causing reduced memory requirements as well as

translational invariance. As the same weights are shared across the images,

hence ifi an object occurs in any image it will be detected irrespective ofi

its position in the image.

Thirdly, CNN’s use a very important concept ofi pooling in which the

most prominent pixels are propagated to the next layer dropping the rest

providing a fixed size output matrix required fori classification. [9]

● Pooling Layers

The main idea ofi pooling is down-sampling in orderi to reduce the

complexity fori further layers. In the image processing domain, it can be

considered as similari to reducing the resolution. Pooling does not affect

the number ofi filters. Max-pooling is one ofi the most common types ofi

pooling methods. It partitions the image to sub-region rectangles, and it

only returns the maximum value ofi the inside ofi that sub-region. One ofi

the most common sizes used in max-pooling is 2×2. As in Fig. 2.6 ,

13

when pooling is performed in the top-left 2×2 blocks (pink area), it

moves 2 and focuses on the top-right part. This means that stride 2 is

used in pooling. To avoid down-sampling, stride 1 can be used, which

is not common. It should be considered that down-sampling does not

preserve the position ofi the information. Therefore, it should be applied

only when the presence ofi information is important (ratheri than spatial

information). Moreover, pooling can be used with non-equal filters and

strides to improve the efficiency.

Fig 2.6: Dataset of real images collected via scraping techniques

● Fully-Connected Layers

The fully-connected layer is similar to the way that neurons are arranged in a

traditional neural network. Therefore, each node in a fully-connected layer is

directly connected to every node in both the previous andi in the next layer.

Each ofi the nodes in the last frames in the pooling layer are connected as a

vector to the firsti layer from the fully-connected layer. These are the most

parameters used with the CNN within these layers, and take a long time in

training. The majori drawback ofi a fully-connected layer, is that it includes a

lot ofi parameters that need complex computations in training examples.

Therefore, we try to eliminate the number ofi nodes and connections. The

removed nodes and connection can be satisfied by using the dropout technique

[7] . For example, LeNet andi AlexNet designed a deep and wide network

while keeping the computational complex constant. [11]

14

Chapter 03

SYSTEM DEVELOPMENT AND

PERFORMANCE ANALYSIS

3.1 Data Warehousing and Data Preprocessing

Data warehousing is the process ofi constructing and using a data warehouse. A data

warehouse is constructed by integrating data from multiple heterogeneous sources that

support analytical reporting, structured and/or ad hoc queries, and decision making.

Sources of Data:

● Kaggle’s dataset for real v/s fake face image detection.

● Prajna Bhandary’s dataset of morphed images.

● Some other GitHub Repositories.

● Uncleaned raw images scrapped from various other sources. (Web Scraping using

BeautifulSoup)

Data preprocessing is a data mining technique used to transform the raw data in a

useful and efficient format. This helps in reducing the complexity and increases the

accuracy ofi the applied algorithm.

● Conversion of images from RGB to grayscale- In the specified problem statement,

color isn’t necessary to recognize and interpret an image i.e. Grayscale is good

enough to extract useful information and reduce computational complexity.

● Resizing images- One important constraint that exists in CNN, is the need to

resize the images in the dataset to a unified dimension i.e. images must be

preprocessed and scaled to have identical widths and heights before fed to the

learning algorithm.

● Data Augmentation- Another common pre-processing technique involves

augmenting the existing dataset with perturbed versions ofi the existing images by

performing transformations such as scaling, rotations, etc. to enlarge the dataset

and expose the classifier to a wide variety ofi variations ofi the images. It makes

the model more robust to slight variations, and hence prevents the model

from overfitting.

● Normalizing image inputs- Data normalization ensures that each input image

follows a similar data distribution. An alternative to this is standardization, which

causes the input dataset to follow standard normal distribution.

15

Description of the finally created dataset:

Balanced dataset of 5,300 images with two classes: with_mask and without_mask.

3.2 Training the Network

Various versions of improved Network are as follows:

3.2.1 Initially designed Network

The initially designed network consisted of two Convolutional layers, two max pooling

layers, one flattening and one densely connected layer.

Fig 3.1: Initial Network Architecture

Number of Epochs: 20

Learning rate: 1e-3

Batch Size: 32

Train-Test Split: 70% Training; 20% Validation; 10% Test

16

Started With:

Ended On:

Validation Accuracy: 91.4% (Good)

Validation Loss: 23.9% (VERY HIGH)

Table 3.1: Phase 1 Classification Report

17

Accuracy Curve:

Graph 3.1: Accuracy Curve

Loss Curve:

Graph 3.2: Loss Curve

Since Validation Accuracy was better than Training accuracy, we say that our model

generalized well over the dataset. It appeared that the model suffered from a high bias

problem.

To resolve this issue, we increased the size of the network.

18

Performance on the test data verified our conclusions:

Validation Accuracy: 92.5% (Good)

Validation Loss: 21.7% (VERY HIGH)

3.2.2 Second Phase of the designed Network

After further changes, our improvised network consisted of three Convolutional layers,

three max pooling layers, one flattening and one densely connected layer.

Also, we altered the train test split to get some better insights.

Fig 3.2: Phase 2 Network Architecture

19

Number of Epochs: 20

Learning rate: 1e-3

Batch Size: 32

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test

Started With:

Ended On:

Validation Accuracy: 92.8% (Good)

Validation Loss: 18.97% (VERY HIGH)

Table 3.2: Phase 2 Classification Report

20

Accuracy Curve:

Graph 3.3: Accuracy Curve

Loss Curve:

Graph 3.4: Loss Curve

On increasing the size of the network, loss is reduced by a small amount, so we find other

ways to reduce the bias. High value of loss motivated us to the number of epochs. Also,

we tried to get better accuracy by increasing the batch size.

21

Performance on the test data:

Validation Accuracy: 93.5% (Good)

Validation Loss: 19.83% (VERY HIGH)

3.2.3 Third Phase of the designed Network

The design and size of the network remained the same, other hyperparameters were

altered:

● Decreased learning rate.

● Increased the number of Epochs.

● Increased batch size.

● Expanded dataset.

Number of Epochs: 30

Learning rate: 1e-4

Batch Size: 64

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test

Started With:

Ended On:

22

Table 3.3: Phase 3 Classification Report

Accuracy Curve:

Graph 3.5: Accuracy Curve

23

Loss Curve:

Graph 3.6: Loss Curve

Performance on the test data:

Loss is significantly high.

Probably the learning rate is very low, which is why the gradient descent does not

converge.

Also, the number of epochs need to be increased to converge GD to a minimum.

24

3.2.4 Final Model

Final changes in the model architecture included an additional convolutional and max

pooling layers. With increased number of epochs, learning rate and batch size, the model

showed significantly better results.

Fig 3.3: Network Architecture of the Final Model

Number of Epochs: 40

Learning rate: 1e-3

Batch Size: 128

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test

Started With:

Ended On:

25

Table 3.4: Phase 4 Classification Report

Accuracy Curve:

Graph 3.7: Accuracy Curve

26

Loss Curve:

Graph 3.8: Loss Curve

Performance on the test data:

Loss is significantly reduced to about 11% on TEST DATA.

Accuracy improved to around 96% on TEST DATA.

27

3.3 Face Mask Detection

In this project, we have used a prebuilt cascade classifier from Open Source Computer Vision

Library, that detects faces from the input image and identifies the region of interest. The cascade

classifier falls a little short when it comes to accuracy, however it works well in real-time

because of it’s excellent frame rate of 15fps, which is pretty quick for real-time applications.

Also, since it is lightweight, it is easily deployable into modules of embedded systems. The

region of interest identified by the cascade classifier is then rescaled to 100*100 size, which is

then fed as input to the CNN. The CNN detects whether the person is wearing the mask or not.

Fig 3.4: Flow Diagram of the Project

28

3.4 Flow graph of the Major Project Problem

Fig 3.5: Complete Flow Diagram of the Project

29

3.5 Code Snippets

3.5.1 Data Preprocessing

30

3.5.2 Training the Network

31

3.5.3 Real Time Face Mask Detection

 3.6 Transfer Learning :

◦ Ini Transferi Learning,I wei makei usei ofi thei knowledgei gainedi whilei solvingi onei problem iand

applyingi iti toi ai differenti buti relatedi problem.

◦ Wheni wei traini thei networki oni a largei dataseti(for example: ImageNet) , wei traini alli the parametersi

of thei neurali networki andi thereforei thei modeli isi learned. Iti mayi takei hoursi on youri GPU.

◦ Wei cani givei thei newi dataseti toi finei tunei thei pre-trainedi CNN. Consideri thati thei new dataseti isi

almosti similari toi thei originali dataseti usedi fori pre-training. Sincei thei newi dataseti is similar, thei

samei weightsi cani be usedi fori extractingi thei featuresi fromi thei new dataset.

32

◦ Ifi thei newi dataseti isi veryi small, it’s betteri to traini onlyi thei finali layersi of thei networki to avoidi

overfitting, keepingi alli otheri layersi fixed. Soi removei thei finali layersi ofi thei pre-trainedi network.

Addi newi layers . Retraini onlyi thei newi layers.

3.6.1 Transfer Learning

33

3.6.2 Creating Training and Validation directory

34

3.6.3 Setting directory path and creating ImageDataGenerator

35

Accuracy & Loss Graph

 Graph 3.9 Accuracy graph

 Graph 3.10 Loss Graph

36

Chapter 04

CONCLUSIONS

4.1 Discussion on the Results Achieved

The following results were achieved upon the implementation of this project:

● Real-time monitoring was achieved.

● 100% accuracy , 0% Loss on Test set.

● Face covered with hands were not classified as masked.

● Side facing positions were classified appropriately.

● The model could not detect masks at larger distances.

4.2 Application of the Project

The goal ofi this Majori Project was to design and develop a system capable ofi

detecting face masks in support ofi taking appropriate precautions in this pandemic

situation. It focuses on achieving good accuracy without using heavily-designed complex

networks having extensive hardware requirements which are not feasible in practical

situations.

4.3 Limitations of the Project

If under any circumstance, the images taken by the camera module aren’t clear enough to

classify the system fails. Therefore, the proposed system has the following limitations:

● If the camera module is placed at a distance from the crowd, the model may not be able to

give accurate results.

● The model has been designed in a simple fashion, it has no way to classify whether the

person in front of the camera is wearing a mask properly or not.

● The model has not been trained by adversarial examples and is hence susceptible to bayesian

error.

4.4 Future Work

The system at this stage is a “Proofi ofi Concept” for a much substantial endeavor. This

will serve as a first step towards a distinguished technology that can bring about an

evolution aimed at ace development. The developed system has special emphasis on real-

time monitoring with flexibility, adaptability and enhancements as the foremost requirements.

Future enhancements are always meant to be items that require more planning,

budget and staffing to have them implemented. There following are couple ofi

recommended areas for future enhancements:

37

● Use of object detection Algorithms: Object detection algorithms can be used to trace

humans in the camera. After this, a face detection classifier can be used to detect faces,

and this model can be used to detect masks.

● Use of lighter Networks: Traditional CNNs are heavy which might pose a problem in

real-time deployment of the project. Instead, alternatives such as MobileNetV2, etc can

be used so that its hardware requirements meet the feasibility studies in the SDLC.

38

REFERENCES

[1] X. Liu, S. Zhang, COVID-19: Face masks and human-to-human transmission, Influenza Other

Respiratory. Viruses, vol. n/a, no. n/a, doi: 10.1111/irv.12740.

[2] S. Feng, C. Shen, N. Xia, W. Song, M. Fan, B.J. Cowling Rational use of face masks in the COVID-

19 pandemic Lancet Respirate. Med., 8 (5) (2020), pp. 434-436, 10.1016/S2213-2600(20)30134-X

[3] “WHO Coronavirus Disease (COVID-19) Dashboard.” https://covid19.who.int/ (accessed October

21, 2020).

[4] D.S.W. Ting, L. Carin, V. Dzau, T.Y. Wong Digital technology and COVID-19 Nat. Med., 26 (4)

(2020), pp. 459-461, 10.1038/s41591-020-0824-5

[5] D.M. Altmann, D.C. Douek, R.J. Boyton What policy makers need to know about COVID-19

protective immunity Lancet, 395 (10236) (2020), pp. 1527-1529, 10.1016/S0140-6736(20)30985-5

[6] O. Abdel-hamid, L. Deng, and D. Yu, “Exploring Convolutional Neural Network Structures and

Optimization Techniques for Speech Recognition,” no. August, pp. 3366–3370, 2013.

[7] Wei Xiong , Bo Du, Lefei Zhang, Ruimin Hu, Dacheng Tao "Regularizing Deep Convolutional

Neural Networks with a Structured Decorrelation Constraint ” IEEE 16th International Conference on

Data Mining (ICDM) , pp. 3366–3370, 2016.

[8] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient- based learning applied to

document recognition. Proceedings of the IEEE, 86(11), pp.2278-2324.

[9] D. Stutz and L. Beyer, “Understanding Convolutional Neural Networks,” 2014.

[10] I. Kokkinos, E. C. Paris, and G. Group, “Introduction to Deep Learning Convolutional Networks,

Dropout, Maxout 1,” pp. 1–70.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, C. V Jan, J.

Krause, and S. Ma, “ImageNet Large Scale Visual Recognition Challenge.”.

11%
SIMILARITY INDEX

6%
INTERNET SOURCES

1%
PUBLICATIONS

7%
STUDENT PAPERS

1 2%

2 2%

3 1%

4 1%

5 1%

6 1%

7 <1%

8 <1%

9

t
ORIGINALITY REPORT

PRIMARY SOURCES

www.geeksforgeeks.org
Internet Source

Submitted to Sogang University
Student Paper

Submitted to Jaypee University of Information
Technology
Student Paper

Submitted to Higher Education Commission
Pakistan
Student Paper

Submitted to Utah Education Network
Student Paper

www.edureka.co
Internet Source

ethesis.nitrkl.ac.in
Internet Source

madhukamisetty.blogspot.com
Internet Source

www.ir.juit.ac.in:8080

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts Report Generated on

Submission ID Total Pages Scanned

File Size

Checked by
Name & Signature Librarian

………

FACE MASK DETECTION USING CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING

PRATIKSHA CSE/IT 171326

171326@juitsolan.in

MR. PRATEEK THAKRAL

39

11

37
1

	PRATIKSHA (171326)
	FACE MASK DETECTION USING CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING
	DECLARATION BY CANDIDATE
	ACKNOWLEDGEMENT
	TABLE OF CONTENT
	LIST OF ABBREVIATIONS
	LIST OF GRAPHS
	Chapter 01 INTRODUCTION
	1.1 Introduction
	1.2 Objective of the Minor Project
	1.3 Motivation of the Major Project
	1.4 Technical Requirements
	● System Requirements
	● Python
	● Numpy
	● Pandas
	● Matplotlib
	● Scikit-learn
	● Machine Learning
	● Deep Learning
	● Keras and Tensorflow
	● OpenCV
	● Neural Networks (ANN)
	● Convolutional Neural Network

	1.5 Project Deployment

	Chapter 02 LITERATURE SURVEY
	Study of Research Paper: Understanding of a Convolutional Neural Network
	Elements of a CNN:
	● Non-linearity
	● Striding
	● Padding
	● Features of CNN
	● Pooling Layers
	● Fully-Connected Layers

	Chapter 03
	3.1 Data Warehousing and Data Preprocessing
	3.2 Training the Network
	3.2.1 Initially designed Network
	Accuracy Curve:
	Loss Curve:

	3.2.2 Second Phase of the designed Network
	Accuracy Curve:
	Loss Curve:
	Performance on the test data:

	3.2.3 Third Phase of the designed Network
	Accuracy Curve:
	Loss Curve:
	Performance on the test data:

	3.2.4 Final Model
	Accuracy Curve:
	Loss Curve:

	3.3 Face Mask Detection
	3.4 Flow graph of the Major Project Problem
	3.5 Code Snippets
	3.5.2 Training the Network

	Chapter 04 CONCLUSIONS
	4.1 Discussion on the Results Achieved
	4.2 Application of the Project
	4.3 Limitations of the Project
	4.4 Future Work

	REFERENCES

	171325_CondensedSemReport.docx
	171325_Plag Report

	PlagiarismForm_PhD_M.Tech_B.Tech

