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ABSTRACT 

 

In the new world of coronavirus, multidisciplinary efforts have been organized to slow the spread of 

the pandemic. The AI community has also been a part of these endeavors. In particular, developments 

for monitoring social distancing or identifying face masks have made-the-headlines. Businesses are 

constantly overhauling their existing infrastructure and processes to be more efficient, safe, and usable 

for employees, customers, and the community. With the ongoing pandemic, it’s even more important 

to have advanced analytics apps and services in place to mitigate risk. For public safety and health, 

authorities are recommending the use of face masks and coverings to control the spread of COVID-19. 

 
Face masks help diminish the transmission of the infection by meddling with the spread of infection 

loaded droplets ejected from the nose and mouth. Wearing a face mask is one of the precautionary steps 

an individual can take to decrease the spread of COVID-19. 

 
Face mask detection systems are now increasingly important, especially in smart hospitals for effective 

patient care. They’re also important in stadiums, airports, warehouses, and other crowded spaces where 

foot traffic is heavy and safety regulations are critical to safeguarding everyone’s health. In this simple 

project, a video camera detects if an individual is wearing a face mask or not in real-time. We have 

used a prebuilt cascade classifier that detects faces from the input image and identifies the region of 

interest, which is then fed as input to our designed CNN. The CNN and Transfer learning detects 

whether the person is wearing the mask or not. The goal here is to train an AI model that is not only 

accurate but lightweight and performant for real-time inference on the edge. 
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Chapter 01 

INTRODUCTION 

 
1.1 Introduction 

In the new world ofi coronavirus, multidisciplinary efforts have been 

organized to slow the spread ofi the   pandemic.[1] The AI community has 

also been a part ofi these endeavors. In particular, developments fori 

monitoring social distancing or identifying face masks have made-the-

headlines. Businesses are constantly overhauling their existing infrastructure and 

processes to be more efficient, safe, and usable for employees, customers, and 

the community. With the ongoing pandemic, it’s even more important to have 

advanced analytics apps and services in place to mitigate risk. For public 

safety and health, authorities are recommending the use ofi face masks and 

coverings to control the   spread   ofi COVID-19.[3] [5] 

 
Face masks help reduce the transmission ofi the disease by interfering with 

the spread ofi virus-laden droplets ejected from the nose and   mouth. 

Wearing a face mask is one ofi the precautionary steps an individual can 

take in order to lessen the spread ofi COVID-19. [2] 

 
Face mask detection systems are now increasingly important, especially in 

smart hospitals for effective patient care. They’re also   important   in 

stadiums, airports, warehouses, and other crowded spaces where foot traffic 

is heavy and safety regulations are critical to   safeguarding   everyone’s 

health. Also, the absence ofi large datasets has made this task more 

cumbersome and challenging.[4] 

 

1.2 Objective of the Minor Project 

In this project, we propose a two-stage CNN architecture and transfer learning, 

where the first stage detects human faces while the second one uses a 

lightweight image classifier to classify the faces detected in the first stage as 

‘With Mask’ or ‘Without Mask’ and draws bounding boxes around them along 

with the confidence score ofi the predicted category. 
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1.3 Motivation of the Major Project 

The inspiration ofi the Project was taken from a post uploaded by Mr. 

Adrian Rosebrock who   produced   a   tutorial on how to build a real time 

face mask detector using MobileNetV2. As there was no   pre-trained 

classifier to distinguish faces with and without masks, Adrian trained this 

model with a dataset provided by one ofi his readers, Prajna Bhandary who 

created the dataset artificially by using facial landmarks to apply masks to 

face images, thus creating morphed image dataset. Although the model 

generalized pretty well, real images obtained from real-world sources like 

CCTV or surveillance cameras can be much   noisier.   In this project, we 

have used several scraping techniques to gather our own   dataset   and 

labelled ouri dataset accordingly. The dataset used here is more ofi a real 

world dataset, and hence generalizes pretty well in real world scenarios. At last 

we applied inception V3 model to increasing the accuracy of the project and to 

decrease the curve.   

 
1.4 Technical Requirements 

● System Requirements 

Computational power   ofi individual   machines are not sufficient to train 

big CNNs, hence the model is trained overi cloud GPUs. However, data 

preprocessing was done on local Machine.   To run the final working 

script, the system needs to meet the following requirements: 

1. Operating system: Windows 8 or newer, 64-bit macOS 10.13+, or 

Linux, including Ubuntu, RedHat, CentOS 6+, and others. 

2. System architecture: Windows- 64-bit x86, 32-bit x86; MacOS- 64-

bit x86; Linux- 64-bit x86, 64-bit Power8/Power9. 

3. Minimum 5 GB disk space to download and install the software 

requirements. 

 

● Python 

Python is an interpreted programming language, both high-level and general-

purpose. With its prominent use of substantial white space, Python's design 

philosophy emphasizes code readability. It aims to help programmers write 

simple logical code for small and large-scale projects with its language 

constructs and object-oriented approach. 

Python is typed and garbage-collected dynamically. It supports different 

paradigms ofi programming, including structured (specifically, procedural), 

object-oriented, and functional programming. Because   ofi   its 

comprehensive standard library, Python is sometimes defined as   a 

language that includes batteries. 
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● Numpy 

NumPy, which stands fori Numerical Python, is a library consisting ofi 

objects in a multidimensional array and a series ofi processing routines 

for those arrays. Mathematical and logical operations on arrays can be 

achieved using NumPy. The fundamentals ofi NumPy, including its 

architecture and climate, are explained in this tutorial. It also addresses 

the different functions ofi the list, indexing types, etc 

 

● Pandas 

Pandas is a software library written for data manipulation and analysis 

in the Python programming language. It provides data structures and 

operations for the manipulation ofi numerical tables and time series, in 

particular. It is free software which has been published under the BSD three-

clause license. The name derives from the word "panel data" an econometric 

term for data sets that contain multiple time span measurements for the 

same individuals. 

 
● Matplotlib 

Matplotlib is a comprehensive library for creating static, animated, and 

interactive visualizations in Python. It is the Python   programming 

language plotting library and its   NumPy   numerical   mathematics 

extension. For embedding plots into applications, it offers an object-

oriented API using general-purpose GUI toolkits such as Tkinter, wxPython, 

Qt, or GTK+. 

 
● Scikit-learn 

A free software machine learning library for the Python programming 

language is Scikit-learn (formerly scikits.learn and also referred to as 

sklearn). It includes numerous algorithms fori classification, regression and 

clustering, including vector support machines, random forests, gradient 

boosting, k-means and DBSCAN, and is designed to interface with the 

NumPy and SciPy numerical and scientific libraries ofi Python. 

 
● Machine Learning 

As a sub-domain ofi AI, ML algorithms can be classified and renderi a 

machine or software program intelligent enough to be more   precise 

without needing to be clearly programmable and   can   forecast 

performance. The key idea behind the operation ofi these algorithms is to 

collect input as a dataset and then learn from the output for the 
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respective inputs. Which helps to predict the performance ofi the 

algorithms when they obtain the same domain input. It effectively learns 

the pattern ofi similarity between the inputs by which the algorithm is 

trained and implies an output from the input ofi the test dataset. 

 
● Deep Learning 

Deep learning  is  a form ofi machine  learning (ML) and artificial 

intelligence (AI) that mimics the way certain kinds ofi information are 

acquired by humans. A significant aspect ofi data science, which involves 

statistics and predictive modelling, is   deep   learning. Data scientists who 

are charged with the compilation, review and evaluation ofi vast volumes 

ofi data are  extremely  beneficial;  deep  learning makes  this  process 

quicker and simpler. Deep learning can be thought ofi as a way ofi 

automating predictive  analytics at   its simplest.  While   conventional 

machine learning algorithms  are  linear,   in a hierarchy   ofi growing 

complexity    and    abstraction, deep learning algorithms are stacked. 

Computer programs that use deep learning go through almost the same 

method to classify the dog as the toddler learning. In the hierarchy, each 

algorithm applies a nonlinear transformation to its input and uses what it 

learns as an output to construct a statistical model. Iterations continue 

until an appropriate degree ofi precision has been achieved by the 

production. What profoundly influenced the mark was the number ofi 

processing layers through which data could move. 

The learning process is monitored in conventional machine learning, and 

when asking the computer what kinds ofi things it should be searching 

for to determine whether a picture contains a dog or does not contain a 

dog, the programmeri must be extremely precise. This is a laborious 

method called feature extraction, and the success rate ofi the computer 

depends entirely on the ability ofi the programmer to define a feature set 

for "dog." correctly. The benefit ofi deep learning is that the software 

builds the feature set without control by itself. Not only is unsupervised 

learning easier, but it is usually more precise. 

 
● Keras and Tensorflow 

TensorFlow is an end-to-end open source platform for machine learning. 

It has a comprehensive, flexible ecosystem ofi tools, libraries, and 

community resources that lets researchers push the state-of-the-art in ML 

and developers easily build and deploy ML-powered applications. 

TensorFlow provides stable Python and C++ APIs, as well as non-

guaranteed backward compatible API for other languages. 
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Keras is an open-source library that provides a Python interface for 

artificial neural networks. Keras acts as an interface for the TensorFlow 

library. It is Designed to enable fast experimentation with deep neural 

networks, it focuses on being user-friendly, modular,   and   extensible. 

Keras contains numerous implementations ofi commonly used neural-

network building blocks such as layers, objectives, activation functions, 

optimizers, and a host ofi tools to make working with image and text data 

easier to simplify the coding necessary for writing deep neural network 

code. In addition to standard neural networks, Keras has support for 

convolutional and recurrent neural networks. 

 
 

● OpenCV 

OpenCV (Open Source Computer Vision Library) is an open sourcei computer 

vision and machine learning software library. OpenCV was built to provide a 

common infrastructure for computer vision   applications   and   to   accelerate the 

use ofi machine perception in commercial products. OpenCV is a library ofi 

programming functions mainly aimed at real-time computeri vision. 

 
● Neural Networks (ANN) 

Artificial neural networks (ANNs), usually simply called neural networks 

(NNs), are computing systems inspired by the biological neural networks 

that constitute human brains. 

An ANN is based on a collection ofi connected units or nodes called 

artificial neurons, which loosely model the neurons in a biological brain. 

Each connection, like the synapses in a biological brain, can transmit a 

signal to other neurons. An artificial neuron that receives a signal then 

processes it and can signal neurons connected to it. The "signal" at a 

connection is a real number, and the output ofi each neuron is computed 

by some non-linear function ofi the sum ofi its inputs. The connections 

are called edges. Neurons and edges typically have a weight that adjusts 

as learning proceeds. The weight increases or decreases the strength ofi 

the signal at a connection. Neurons may have a threshold such that a 

signal is sent only ifi the aggregate signal crosses that threshold. 

Typically, neurons are aggregated into  layers.  Different layers may 

perform different transformations on theiri inputs. Signals travel from the 

first layer (the input layer), to the last layer (the output layer), possibly 

after traversing the layers multiple times. 
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Fig 1.1: Illustration of an ANN 

 

 
● Convolutional Neural Network 

Convolutional Neural Networks (CNN, or ConvNet) is a class ofi deep 

neural networks, most commonly applied to   analyzing   visual   imagery. 

They have a shared-weights architecture and translation invariance 

characteristics. They have applications in image and video recognition, 

recommender systems, image classification, medical image analysis, natural 

language processing, and financial time series. 

Convolutional Neural Network has   had   groundbreaking   results   over the 

past decade in a variety   ofi fields   related to pattern recognition; from 

image processing to voice recognition. The most   beneficial   aspect   ofi 

CNNs is reducing the number   ofi parameters   in ANN . This achievement 

has prompted both researchers and developers to approach larger models 

in order to solve complex tasks, which   was   not possible with classic 

ANNs; . The most important assumption about problems that are solved 

by CNN should not have features which are spatially dependent. In other 

words, for example, in a face detection application, we do not need to 

pay attention to where the faces are located in the images. The only 

concern is to detect them regardless ofi their position in the given images 

. Another important aspect ofi CNN, is to obtain abstract features when 

input propagates toward the deeper layers. Fori example, in image 

classification, the edge might be detected in the first layers, and then the 
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simpler shapes in the second layers, and then the higher level features 

such as faces in the next layers.[6] 

CNNs provide the three basic advantages over the traditional ANNs: 

 

1. Firstly, they have sparse connections instead ofi   fully   connected 

connections which lead to reduced parameters and make CNN’s efficient 

for processing high dimensional data. 

2. Secondly, weight sharing takes place where the same weights are shared 

across the entire image, causing reduced memory requirements as well as 

translational invariance. As the same weights are   shared   across   the 

images, hence ifi an object occurs in any image it will be detected 

irrespective ofi its position in the image. 

3. Thirdly, CNN’s use a very important concept   ofi pooling   in which the 

most prominent pixels are propagated to the next layeri dropping the rest 

providing a fixed size output matrix required for classification. [9] 

 
 

1.5 Project Deployment 

The System developed here is meant to be deployed as a software in embedded 

systems. Hence, a user interface has not been created for the same. Further 

enhancements can be done by embedding in RaspberryPi's Camera Module. 
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Chapter 02 

LITERATURE SURVEY 

 
The inspiration of the Project was taken from a post uploaded by Mr. 

Adrian Rosebrock who   produced   a   tutorial on how to build a real time 

face mask detector using MobileNetV2. MobileNetV2 is a lightweight 

network, with its biggest advantage being the fact that such lightweight 

networks can be embedded easily into raspberry pi and camera module. As 

there was no pre-trained classifieri to distinguish faces with and without 

masks, Adrian trained this model with a dataset provided by one ofi his 

readers, Prajna Bhandary who created the dataset artificially by using facial 

landmarks to apply masks to face images, thus creating morphed image 

dataset. 

 
 

Fig 2.1: Dataset of morphed images created by Prajna Bhandary 

 
Even though it was a synthetic dataset and was built with a single mask 

type, it seems to generalize pretty well for other kinds ofi masks. However, 

real images obtained from real-world sources like CCTV or surveillance 

cameras can be much noisier. In this project, we   have   used   several 

scraping techniques to gatheri our own dataset and labelled ouri dataset 

accordingly. 
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The dataset used here is self-collected via web-scraping (in Python, using 

beautiful soup) more ofi a real-world dataset, and hence generalizes pretty 

well in real world scenarios. 

Fig 2.2: Dataset of real images collected via scraping techniques 

 
Our dataset consists of over 5300 images (Excluding augmented data) as compared 

to a relatively small dataset of around 1400 images, used by Mr. Rosebrock. Also, 

instead of using MobileNetV2, we have limited our scope to using simple 

Convolutional Neural Network. 

 
Study of Research Paper: Understanding of a Convolutional Neural 

Network 

(Saad ALBAWI , Tareq Abed MOHAMMED ,Department of Computer Engineering 

Faculty of Engineering and Architecture, Istanbul Kemerburgaz University 

Istanbul, Turkey) 

 

Elements of a CNN: 

● Convolutional Layers 

Major advantage of Convolutional layers is that they have sparse 

connections instead ofi fully connected connections which lead to reduced 

parameters and make CNN’s efficient for processing high dimensional 

data. 

Secondly, weight sharing takes place where the same weights are shared 

across the entire image, causing reduced memory requirements as well as 

translational invariance. As the same weights are shared across the images, 
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hence ifi an object occurs in any image it will be detected irrespective ofi 

its position in the image. 

 

 

 

 

 

 
 

Fig 2.3: Convolutional v/s Fully Connected Layers 

● Non-linearity 

The next layer after the convolution is non-linearity. The nonlinearity 

can be used to adjust or cut-offi the generated output. This layeri is 

applied in order to saturate the output or limit the generated output. The 

Rectified Linear Unit (ReLU) has been used more   often   for   the 

following reasons: 

1. ReLU has simpler definitions in both function and gradient. 

2. The saturated function such as sigmoid and tanh cause problems 

in the back propagation. As the neural network design is deeper, 

the gradient signal begins to vanish, which is   called   the 

“vanishing gradient”. This happens since the gradient ofi those 

functions is very close to zero almost everywhere but the center. 

However, the ReLU has a constant gradient for the positive input. 

Although the function is not differentiable, it can be ignored in 

the actual 

3. The ReLU creates a   sparser   representation.   because the zero in 

the gradient leads to obtaining a complete zero. However, sigmoid 

and tanh always have non-zero results from the gradient, which 

might not be in favor for training. 
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Fig 2.4: ReLU Activation Function 

● Striding 

CNN has a lot ofi ways to decrease the trainable parameters, and at the 

same time reduce some ofi the side effects. One ofi these   is stride. 

While performing simple convolution, the next layer’s node has lots ofi 

overlaps with theiri neighbors. We can manipulate the overlap by 

controlling the stride. Fig. 2.5 , shows a given 7×7 image. Ifi we move 

the filter one node every time, we can have a 5x5 output only. Note 

that the output ofi the three left matrices in Fig. 2.5 , have an overlap 

(and three middle ones together and three right ones also). However, ifi 

we move and make every stride 2, then the output will be 3x3. Put 

simply, not only overlap, but also the size ofi the output will be reduced. 

 
For an image of size N×N dimensions and the filter of size F×F, the size of the 

output image O is given by : 

O = 1 + (N-F)/S 

Here, N is the input size, F is the filter or kernel size, and S is the stride. 
 

 

 

Fig 2.5: For Stride = 1, the filter moves once for each connection 



12  

 

● Padding 

One ofi the drawbacks ofi the convolution step is the loss ofi information 

that might exist on the border ofi the image. Because they are only 

captured   when   the   filter slides, they never have the chance to be seen. 

A very simple, yet efficient method to resolve the issue is to use zero-

padding. The other benefit ofi zero padding is to manage the output size. 

Fori example, in Fig. 2.5 , with N=7 and F=3 and stride 1, the output 

will be 5×5 (which shrinks from a 7×7 input). 

 
However, by adding one zero-padding, the output will be 7×7, which is 

exactly the same as the original input (The actual N now becomes 9). 

The modified formula including zero-padding can be given as: 

 
O = 1 + (N+2P-F)/S 

Where P is the numberi ofi the layers ofi the zero-padding,   N   is   the 

input size, F is the filter size, and S is the stride size. 

 
● Features of CNN 

Firstly, they have sparse connections instead ofi fully connected 

connections which lead to reduced parameters and make CNN’s efficient 

for processing high dimensional data. 

Secondly, weight sharing takes place where the same weights are shared 

across the entire image, causing reduced memory requirements as well as 

translational invariance. As the same weights are shared across the images, 

hence ifi an object occurs in any image it will be detected irrespective ofi 

its position in the image. 

Thirdly, CNN’s use a very important concept ofi pooling in which the 

most prominent pixels are propagated to the next layer dropping the rest 

providing a fixed size output matrix required fori classification. [9] 

● Pooling Layers 

The main idea ofi pooling is down-sampling in orderi to reduce the 

complexity fori further layers. In the image processing domain, it can be 

considered as similari to reducing the resolution. Pooling does not affect 

the number ofi filters. Max-pooling is one ofi the most common types ofi 

pooling methods. It partitions the image to sub-region rectangles, and it 

only returns the maximum value ofi the inside ofi that sub-region. One ofi 

the most common sizes used in max-pooling is 2×2. As in Fig. 2.6 , 
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when pooling is performed in the top-left 2×2 blocks (pink area), it 

moves 2 and focuses on the top-right part. This means that stride 2 is 

used in pooling.   To   avoid   down-sampling, stride 1 can be used, which 

is not common. It should be considered that down-sampling does not 

preserve the position ofi the information. Therefore, it should be applied 

only when the presence ofi information is important (ratheri than spatial 

information). Moreover, pooling can be used with non-equal filters and 

strides to improve the efficiency. 
 

Fig 2.6: Dataset of real images collected via scraping techniques 

 
● Fully-Connected Layers 

The fully-connected layer is similar to the way that neurons are arranged in a 

traditional neural network. Therefore, each node in a fully-connected layer is 

directly connected to every node in both the previous andi in the next layer. 

Each ofi the nodes in the last frames in the pooling layer are connected as a 

vector to the firsti layer from the fully-connected layer. These are the most 

parameters used with the CNN within these layers, and take a long time in 

training. The majori drawback ofi a   fully-connected   layer,   is that it includes a 

lot ofi parameters that need complex computations in training examples. 

Therefore, we try to eliminate the number ofi nodes and connections. The 

removed nodes and connection can be satisfied by using the dropout technique 

[7] . For example, LeNet andi AlexNet designed a deep and wide network 

while keeping the computational complex constant. [11] 
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Chapter 03 

SYSTEM DEVELOPMENT AND 

PERFORMANCE ANALYSIS 

 
3.1 Data Warehousing and Data Preprocessing 

Data warehousing is the process ofi constructing and using a data warehouse. A data 

warehouse is constructed by integrating data from multiple heterogeneous sources that 

support analytical reporting, structured and/or ad hoc queries, and decision making. 

Sources of Data: 

● Kaggle’s dataset for real v/s fake face image detection. 

● Prajna Bhandary’s dataset of morphed images. 

● Some other GitHub Repositories. 

● Uncleaned raw images scrapped from various other sources. (Web Scraping using 

BeautifulSoup) 

 
Data preprocessing is a data mining technique used to transform the raw   data   in a 

useful and efficient format. This helps in reducing the complexity and increases the 

accuracy ofi the applied algorithm. 

 
● Conversion of images from RGB to grayscale- In the specified problem statement, 

color isn’t necessary to recognize and interpret an image i.e. Grayscale is good 

enough to extract useful information and reduce computational complexity. 

 
● Resizing images- One important constraint that exists in CNN,   is the need to 

resize the images in the dataset to a unified dimension i.e. images must be 

preprocessed and scaled to have identical widths and heights before fed to the 

learning algorithm. 

 
● Data Augmentation- Another common pre-processing technique involves 

augmenting the existing dataset with perturbed versions ofi the existing images by 

performing transformations such as scaling, rotations, etc. to enlarge the dataset 

and expose the classifier to a wide variety ofi variations ofi the images. It makes 

the   model   more robust to    slight    variations,    and    hence prevents the    model 

from overfitting. 

 
● Normalizing image inputs- Data normalization ensures that each input image 

follows a similar data distribution. An alternative to this is standardization, which 

causes the input dataset to follow standard normal distribution. 
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Description of the finally created dataset: 

Balanced dataset of 5,300 images with two classes: with_mask and without_mask. 

 
3.2 Training the Network 

Various versions of improved Network are as follows: 

 
3.2.1 Initially designed Network 

The initially designed network consisted of two Convolutional layers, two max pooling 

layers, one flattening and one densely connected layer. 

 

 

 
 

 

Fig 3.1: Initial Network Architecture 

 

Number of Epochs: 20 

Learning rate: 1e-3 

Batch Size: 32 

 
Train-Test Split: 70% Training; 20% Validation; 10% Test 
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Started With: 

 
Ended On: 

 

Validation Accuracy: 91.4% (Good) 

Validation Loss: 23.9% (VERY HIGH) 

 

 

 
Table 3.1: Phase 1 Classification Report 
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Accuracy Curve: 
 

 

Graph 3.1: Accuracy Curve 
 

Loss Curve: 
 

 

Graph 3.2: Loss Curve 

 

 
Since Validation Accuracy was better than Training accuracy, we say that our model 

generalized well over the dataset. It appeared that the model suffered from a high bias 

problem. 

To resolve this issue, we increased the size of the network. 
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Performance on the test data verified our conclusions: 

Validation Accuracy: 92.5% (Good) 

Validation Loss: 21.7% (VERY HIGH) 

 

 
3.2.2 Second Phase of the designed Network 

 
After further changes, our improvised network consisted of three Convolutional layers, 

three max pooling layers, one flattening and one densely connected layer. 

 
Also, we altered the train test split to get some better insights. 

 

 

 
 

 

Fig 3.2: Phase 2 Network Architecture 
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Number of Epochs: 20 

Learning rate: 1e-3 

Batch Size: 32 

 
Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test 

 

 

 
Started With: 

 
Ended On: 

 
Validation Accuracy: 92.8% (Good) 

Validation Loss: 18.97% (VERY HIGH) 

 

 

 

 
Table 3.2: Phase 2 Classification Report 
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Accuracy Curve: 

Graph 3.3: Accuracy Curve 
 

Loss Curve: 

Graph 3.4: Loss Curve 

 

 
On increasing the size of the network, loss is reduced by a small amount, so we find other 

ways to reduce the bias. High value of loss motivated us to the number of epochs. Also, 

we tried to get better accuracy by increasing the batch size. 
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Performance on the test data: 

Validation Accuracy: 93.5% (Good) 

Validation Loss: 19.83% (VERY HIGH) 

 
3.2.3 Third Phase of the designed Network 

 
The design and size of the network remained the same, other hyperparameters were 

altered: 

● Decreased learning rate. 

● Increased the number of Epochs. 

● Increased batch size. 

● Expanded dataset. 

 

 
Number of Epochs: 30 

Learning rate: 1e-4 

Batch Size: 64 

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test 

Started With: 

 

 
Ended On: 
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Table 3.3: Phase 3 Classification Report 

 

 

 

 

 

Accuracy Curve: 

Graph 3.5: Accuracy Curve 
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Loss Curve: 

Graph 3.6: Loss Curve 

 
Performance on the test data: 

Loss is significantly high. 

Probably the learning rate is very low, which is why the gradient descent does not 

converge. 

Also, the number of epochs need to be increased to converge GD to a minimum. 
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3.2.4 Final Model 

Final changes in the model architecture included an additional convolutional and max 

pooling layers. With increased number of epochs, learning rate and batch size, the model 

showed significantly better results. 

 

 

 

 
 

 

Fig 3.3: Network Architecture of the Final Model 

 

Number of Epochs: 40 

Learning rate: 1e-3 

Batch Size: 128 

Train-Test Split: 72.5% Training; 12.75% Validation; 15% Test 

Started With: 

 

 
Ended On: 
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Table 3.4: Phase 4 Classification Report 
 

 

 

 

 

Accuracy Curve: 

Graph 3.7: Accuracy Curve 



26  

Loss Curve: 

Graph 3.8: Loss Curve 
 
 

Performance on the test data: 

Loss is significantly reduced to about 11% on TEST DATA. 

Accuracy improved to around 96% on TEST DATA. 
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3.3 Face Mask Detection 

In this project, we have used a prebuilt cascade classifier from Open Source Computer Vision 

Library, that detects faces from the input image and identifies the region of interest. The cascade 

classifier falls a little short when it comes to accuracy, however it works well in real-time 

because of it’s excellent frame rate of 15fps, which is pretty quick for real-time applications. 

Also, since it is lightweight, it is easily deployable into modules of embedded systems. The 

region of interest identified by the cascade classifier is then rescaled to 100*100 size, which is 

then fed as input to the CNN. The CNN detects whether the person is wearing the mask or not. 

 

 

 

 

 

Fig 3.4: Flow Diagram of the Project 
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3.4 Flow graph of the Major Project Problem 
 
 

 

Fig 3.5: Complete Flow Diagram of the Project 
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3.5 Code Snippets 

3.5.1 Data Preprocessing 
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3.5.2 Training the Network 
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3.5.3 Real Time Face Mask Detection 
 
 

 

 

 

 

          3.6 Transfer Learning : 

 

◦ Ini Transferi Learning,I wei makei usei ofi thei knowledgei gainedi whilei solvingi onei problem iand  

applyingi iti toi ai differenti buti relatedi problem. 

◦ Wheni wei traini thei networki oni a largei dataseti(for example: ImageNet) , wei traini alli the parametersi 

of thei neurali networki andi thereforei thei modeli isi learned. Iti mayi takei hoursi on youri GPU. 

◦ Wei cani givei thei newi dataseti toi finei tunei thei pre-trainedi CNN. Consideri thati thei new dataseti isi 

almosti similari toi thei originali dataseti usedi fori pre-training. Sincei thei newi dataseti is similar, thei 

samei weightsi cani be usedi fori extractingi thei featuresi fromi thei new dataset. 
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◦ Ifi thei newi dataseti isi veryi small, it’s betteri to traini onlyi thei finali layersi of thei networki to avoidi 

overfitting, keepingi alli otheri layersi fixed. Soi removei thei finali layersi ofi thei pre-trainedi network. 

Addi newi layers . Retraini onlyi thei newi layers. 

 

3.6.1 Transfer Learning 
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3.6.2 Creating Training and Validation directory 
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3.6.3 Setting directory path and creating ImageDataGenerator 
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Accuracy & Loss Graph 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

                               Graph 3.9 Accuracy graph 
 

 

 
 

                              Graph 3.10 Loss Graph 
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Chapter 04 

CONCLUSIONS 

 
4.1 Discussion on the Results Achieved 

The following results were achieved upon the implementation of this project: 

● Real-time monitoring was achieved. 

● 100% accuracy , 0% Loss on Test set. 

● Face covered with hands were not classified as masked. 

● Side facing positions were classified appropriately. 

● The model could not detect masks at larger distances. 

 
4.2 Application of the Project 

The goal ofi this Majori Project was to design and develop a system capable ofi 

detecting face masks in support ofi taking appropriate precautions in this pandemic 

situation. It focuses on achieving good accuracy without using heavily-designed complex 

networks having extensive hardware requirements which are not feasible in practical 

situations. 

 

4.3 Limitations of the Project 

If under any circumstance, the images taken by the camera module aren’t clear enough to 

classify the system fails. Therefore, the proposed system has the following limitations: 

● If the camera module is placed at a distance from the crowd, the model may not be able to 

give accurate results. 

● The model has been designed in a simple fashion, it has no way to classify whether the 

person in front of the camera is wearing a mask properly or not. 

● The model has not been trained by adversarial examples and is hence susceptible to bayesian 

error. 

 

4.4 Future Work 

The system at this stage is a “Proofi ofi Concept” for a much substantial endeavor. This 

will serve as a first step towards a distinguished technology that can bring about an 

evolution aimed at ace development. The developed system has special emphasis on real-

time monitoring with flexibility, adaptability and enhancements as the foremost requirements. 

 

Future enhancements are always meant to be items that require more  planning, 

budget and staffing to have them implemented. There following  are couple ofi 

recommended areas for future enhancements: 
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● Use of object detection Algorithms: Object detection algorithms can be used to trace 

humans in the camera. After this, a face detection classifier can be used to detect faces, 

and this model can be used to detect masks. 

● Use of lighter Networks: Traditional CNNs are heavy which might pose a problem in 

real-time deployment of the project. Instead, alternatives such as MobileNetV2, etc can 

be used so that its hardware requirements meet the feasibility studies in the SDLC. 



38  

REFERENCES 

 
[1] X. Liu, S. Zhang, COVID-19: Face masks and human-to-human transmission, Influenza Other 

Respiratory. Viruses, vol. n/a, no. n/a, doi: 10.1111/irv.12740. 

 
[2] S. Feng, C. Shen, N. Xia, W. Song, M. Fan, B.J. Cowling Rational use of face masks in the COVID-

19 pandemic Lancet Respirate. Med., 8 (5) (2020), pp. 434-436, 10.1016/S2213-2600(20)30134-X 

 
[3] “WHO Coronavirus Disease (COVID-19) Dashboard.” https://covid19.who.int/ (accessed October 

21, 2020). 

 
[4] D.S.W. Ting, L. Carin, V. Dzau, T.Y. Wong Digital technology and COVID-19 Nat. Med., 26 (4) 

(2020), pp. 459-461, 10.1038/s41591-020-0824-5 

 
[5] D.M. Altmann, D.C. Douek, R.J. Boyton What policy makers need to know about COVID-19 

protective immunity Lancet, 395 (10236) (2020), pp. 1527-1529, 10.1016/S0140-6736(20)30985-5 

 
[6] O. Abdel-hamid, L. Deng, and D. Yu, “Exploring Convolutional Neural Network Structures and 

Optimization Techniques for Speech Recognition,” no. August, pp. 3366–3370, 2013. 

 
[7] Wei Xiong , Bo Du, Lefei Zhang, Ruimin Hu, Dacheng Tao "Regularizing Deep Convolutional 

Neural Networks with a Structured Decorrelation Constraint ” IEEE 16th International Conference on 

Data Mining (ICDM) , pp. 3366–3370, 2016. 

 
[8] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient- based learning applied to 

document recognition. Proceedings of the IEEE, 86(11), pp.2278-2324. 

 
[9] D. Stutz and L. Beyer, “Understanding Convolutional Neural Networks,” 2014. 

 
[10] I. Kokkinos, E. C. Paris, and G. Group, “Introduction to Deep Learning Convolutional Networks, 

Dropout, Maxout 1,” pp. 1–70. 

 
[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, C. V Jan, J.  

Krause, and S. Ma, “ImageNet Large Scale Visual Recognition Challenge.”. 

 

 

 

 

 

 

 

 



11%
SIMILARITY INDEX

6%
INTERNET SOURCES

1%
PUBLICATIONS

7%
STUDENT PAPERS

1 2%

2 2%

3 1%

4 1%

5 1%

6 1%

7 <1%

8 <1%

9

t
ORIGINALITY REPORT

PRIMARY SOURCES

www.geeksforgeeks.org
Internet Source

Submitted to Sogang University
Student Paper

Submitted to Jaypee University of Information
Technology
Student Paper

Submitted to Higher Education Commission
Pakistan
Student Paper

Submitted to Utah Education Network
Student Paper

www.edureka.co
Internet Source

ethesis.nitrkl.ac.in
Internet Source

madhukamisetty.blogspot.com
Internet Source

www.ir.juit.ac.in:8080



Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File) 

through the supervisor at plagcheck.juit@gmail.com 

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT 

PLAGIARISM VERIFICATION REPORT 

Date: ………………………….

Type of Document (Tick):  PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report   Paper 

Name: ___________________________ __Department: _________________ Enrolment No _________ 

Contact No. ______________________________E-mail. ______________________________________ 

Name of the Supervisor: ________________________________________________________________ 

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________ 

________________________________________________________________________________________________________ 

________________________________________________________________________________________________________ 

UNDERTAKING 
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and 
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to 
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document 
mentioned above. 
Complete Thesis/Report Pages Detail: 

 Total No. of Pages =

 Total No. of Preliminary pages  =

 Total No. of pages accommodate bibliography/references =
  (Signature of Student)  

FOR DEPARTMENT USE 

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we 
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be 
handed over to the candidate. 

 (Signature of Guide/Supervisor)      Signature of HOD 

FOR LRC USE 

The above document was scanned for plagiarism check. The outcome of the same is reported below: 

Copy Received on Excluded Similarity Index 
(%) 

Generated Plagiarism Report Details 
(Title, Abstract & Chapters)  

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts 

Character Counts Report Generated on 

Submission ID Total Pages Scanned 

File Size 

Checked by 
Name & Signature     Librarian 

…………………………………………………………………………………………………………………………………………………………………………… 

FACE MASK DETECTION USING CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING

PRATIKSHA CSE/IT 171326

171326@juitsolan.in

MR. PRATEEK THAKRAL

39

11

37
1


	PRATIKSHA (171326)
	FACE MASK DETECTION USING CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING
	DECLARATION BY CANDIDATE
	ACKNOWLEDGEMENT
	TABLE OF CONTENT
	LIST OF ABBREVIATIONS
	LIST OF GRAPHS
	Chapter 01 INTRODUCTION
	1.1 Introduction
	1.2 Objective of the Minor Project
	1.3 Motivation of the Major Project
	1.4 Technical Requirements
	● System Requirements
	● Python
	● Numpy
	● Pandas
	● Matplotlib
	● Scikit-learn
	● Machine Learning
	● Deep Learning
	● Keras and Tensorflow
	● OpenCV
	● Neural Networks (ANN)
	● Convolutional Neural Network

	1.5 Project Deployment

	Chapter 02 LITERATURE SURVEY
	Study of Research Paper: Understanding of a Convolutional Neural Network
	Elements of a CNN:
	● Non-linearity
	● Striding
	● Padding
	● Features of CNN
	● Pooling Layers
	● Fully-Connected Layers


	Chapter 03
	3.1 Data Warehousing and Data Preprocessing
	3.2 Training the Network
	3.2.1 Initially designed Network
	Accuracy Curve:
	Loss Curve:

	3.2.2 Second Phase of the designed Network
	Accuracy Curve:
	Loss Curve:
	Performance on the test data:

	3.2.3 Third Phase of the designed Network
	Accuracy Curve:
	Loss Curve:
	Performance on the test data:

	3.2.4 Final Model
	Accuracy Curve:
	Loss Curve:

	3.3 Face Mask Detection
	3.4 Flow graph of the Major Project Problem
	3.5 Code Snippets
	3.5.2 Training the Network

	Chapter 04 CONCLUSIONS
	4.1 Discussion on the Results Achieved
	4.2 Application of the Project
	4.3 Limitations of the Project
	4.4 Future Work

	REFERENCES


	171325_CondensedSemReport.docx
	171325_Plag Report

	PlagiarismForm_PhD_M.Tech_B.Tech



