Facial Key-point Detection
By

Adhishree Bansal (171233)
Aarushi Bhardwaj(171260)

Under the Supervision of
(Assistant Prof.: Dr. Aman Sharma)
to

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING & INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,
WAKNAGHAT, 173234, HIMACHAL PRADESH, INDIA

DECLARATION

We hereby declare that the work presented in this report entitled “Facial keypoint Detection” in
partial fulfillment of the requirements for the award of degree of Bachelor of Technology in
Computer Science and Engineering Information Technology submitted in the department of
Computer Science and engineering and Information Technology, Jaypee university of Information
Technology, Waknaghat is an authentic record of my own work carried out over a period under
supervision of Dr. Aman Sharma.

Adhishree Bansal (171233) Aarushi Bhardwaj (171260)

This is to certify that the statement made above is true and in my best knowledge.

Aw(ﬂwf £

(Supervisor Signature)

Dr. Aman Sharma

CERTIFICATE

This is to certify that the work in this Project titled as “Facial keypoint detection™ is entirely
written, successfully completed and demonstrated by the following students themselves as a
fulfillment of requirements for Bachelor’s of Engineering in Computer Science.

Aarushi Bhardwaj (171260)
Adhishree Bansal (171233)

ACKNOWLEDGEMENT

In the present world of ever evolving technology and cut throat competition in every field, there is
a race of existence in those having the will to come forward and succeed. Most importantly, we
would like to express our sincere gratitude to our advisor Dr. Aman Sharma for the continuous
support in the study and research. It was under his guidance and effort that we were able to

implement this project successfully.

Beside the hard work put by the team and the mentor, we would also like to express our gratitude
to the panel for bestowing us with an opportunity to present this project and providing us with
feedback which will assist us in future.

We would also like to extend our acknowledgement to our esteemed institute Jaypee University of
Information Technology for exposing and motivating us to work in various fields.

TABLE OF CONTENTS

Chapter Page

1. INtroduction......ccoeeveiniieiiieiiieiiiiiiiiiieiiiieiiinineseeiecenanes 1-8

L1 INtrodUCHON. .. e et 1-2

LR o) 17 5 7 3

1.3 Problem Statement.............oooiiiiiiiii e, 3

1.4 MethodoLogy....uvieiiiii e e e 4-8

T T T 8

2. Literature RevVieW....c.ccooiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiecnin 9-23
2.1 Multilayer Perception NN.......oooiiiiiiiiiiiiii e 9-15
2.2 Brief history of CNN......oiiiii e 15

2.3 Convolution in Computer ViSion.........c.ovveiiuiiiiiiiiiiieeineaneeannnnns 16-18
2.4 Limits of CNN ..o 18-20
2.5 Py OrCh. o 21-23
3. System Development.......cccoeeviiuiiiiniiiiiieiiiieiiiiiieieiiaiiesaisecnn 24-31
4. Performance AnalysiS........coeiveiiiiiiiiiniiiiiiiiiiiiiiiieriiieciineceian 32-38
ST 201 | | U 39-40

Figures

© 0N wWDNE

NNNRNRERE R R R RERR P
WNPFP, OOWWNOOUAWNEREO

. Figure 10
. Figure 11
. Figure 12
. Figure 13
. Figure 14
. Figure 15
. Figure 16
. Figure 17
. Figure 18
. Figure 19
. Figure 20
. Figure 21
. Figure 22
. Figure 23

List of Figures

Pages

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

co~N~No oD WDN

[y
o

[REN
[EEN

N
(6]

N
»

N
Ry

N
©

w
o

w
e

w
]

w
[ee]

w
©

B
o

B
o

ABSTRACT

Facial key points include centers and corners of the eyes, eyebrows, nose and
mouth, among other facial features. Our methodology involves four steps to
producing our output predictions. The first step involves number of training time
data augmentation techniques to expand the number of training examples, and
generalizability of our model. For the second stage we will discuss a number of
convolution neural networks we trained, with the best architectures derived from
former LeNet and VGG Net models. Attest time, we will discuss our approach
of again wusing data augmentation techniques to produce a composite of images
from a single test image, allowing for averaged predictions. Lastly, we use a
weighted ensemble of models to make our final key points predictions. We
evaluate our deferent model architectures, with and without data augmentation
techniques based on their Root Mean Squared Error scores they produce on the
test set. 3D face recognition has become a trending research direction in both
industry and academia. It inherits advantages from traditional 2D face recognition,
such as the natural recognition process and a wide range of applications.
Moreover, 3D face recognition systems could accurately recognize human faces
even under dim lights and with variant facial positions and expressions, in such
conditions 2D face recognition systems would have immense difficulty to operate.
This paper summarizes the history and the most recent progresses in 3D face
recognition research domain. The frontier research results are introduced in three
categories: pose-invariant recognition, expression-invariant recognition, and occlusion-
invariant recognition.

11

CHAPTER 1
(INTRODUCTION)

INTRODUCTION

With the fast development in computer vision area, more and more
research works and industry applications are focused on facial key point
detection. Detecting key points in given face image would act as a
fundamental part of many applications, including facial expression on
classification, facial alignment, tracking faces in videos and also applications
in medical diagnosis. Thus, how to detect facial key points both fast and
accurately to wuse it as a preprocessing procedure has become a big
challenge.

There are two main challenges for facial key points detection, one is that
facial features have great variance between different people and different
external factors, the other is that we have to reduce time complexity to
achieve real time key points detection.

Our primary motivation for this project was out interest in applying deep
learning to significant problems with relevant uses. The applications of this
research are numerous and significant, including facial expression analysis,
biometric or facial recognition, medical diagnosis of facial disfigurement and
even tracking of line of sight. The idea we are we are working towards
solving an open and important problem with all these possible applications
greatly inspired us. We specially chose the Facial key point detection
Kaggle competition because it gave us ample opportunity to experiment with
a wide variety of approaches and neutral net models to solve an otherwise
straightforward problem of localization. The competition element also allowed
us to benchmark our results against the greater community, and compare the
electiveness of our methods against alternatives. Lastly, we were motivated
by the inherent challenges associated with the problem. Detecting facial key
points is a challenging problem given variation in both facial features as
well as image conditions. Facial features dicer according to size, position,
pose and expression, while image condition varies with illumination and
viewing angle. These abundant variations, in combination with the necessity
for highly accurate coordinate predictions (e.g. the exact corner of an eye)
lead us to believe it would be a deep and interesting topic. In human
identification scenarios, facial metrics are more naturally accessible than many

other biometrics, such as iris, fingerprint, and palm print. Face recognition
is also highly valuable in human computer interaction, access control, video
surveillance, and many other applications. Although 2D face recognition
research made significant progresses in recent years, its accuracy is still
highly depended on light conditions and human poses. When the light is
dim or the face poses are not properly aligned in the camera view, the
recognition accuracy will suffer. The fast evolution of 3D sensors reveals a
new path for face recognition that could overcome the fundamental
limitations of 2D technologies. The geometric information contained in 3D
facial data could substantially improve the recognition accuracy under
conditions that are difficult for 2D technologies. Many researchers have
turned their focuses to 3D face recognition and made this research area a
new trend.

A general work flow for 3D face recognition is shown below. The work
flow could be decomposed into two phases and five stages. In the training
phase, 3D face data are acquired and then preprocessed to obtain ‘“clean”
3D faces. Then the data are processed by feature extraction algorithms to
find the features that could be used to differentiate faces. The features of
each face are then stored into the feature database. In the testing phase,
the target face goes through the acquisition, preprocessing, and feature
extraction stages that are identical to the stages in the training phase. In
the feature matching stage, the features of the target face are compared
with the faces stored in the feature database and calculate the match scores.
When a match score is sufficiently high, we would claim that the target
face is recognized.

/ Training Phase \

R Landmark Detection, - ;
3D Face . . Feature Feature
Segmentation, and |

Acquisition Extraction Database

Registration

Gallery

N __ J
/ Probe \

v :
D Landmark Detection, Feat Feat Decision
3D Face . : Feature Feature
Segmentation,and | > . —— matching

Extraction Matching

Acquisition

Registration score

L Input ‘L Process J‘ Output _|

N 4 i i
K Testing Phase /

Figurel: General Flowchart

1.2

1.3

1.4

OBJECTIVES

In recent times, it is majorly seen in most of the data science projects
which include a lot of Al-generated people, whether it is in papers, blogs,
or videos.

In this project, facial key points also known as facial landmarks are the small magenta
dots shown on each of the faces. In each training and testing image, there is an single face
and 68 key-points, with coordinates (x, y) for the face. These key-points mark
important areas of the face: in the yes, corners of the mouth, the nose, etc.

PROBLEM STATEMENT

This task is a currently active, designated to kaggle competition. The
problem is essentially to predict the near exact coordinate locations of
points on an image of a face. Given 15 facial points, there are 30
numerical values that we need to predict: a 2D (X, Yy) coordinate
representation for each facial point. The loss is calculated as the total root
mean square error that is RMSE, an elective measure of the derivations in
distances between the 15 real and predicted facial point coordinates.

Our approach involves the use of deep learning and convolution neural
networks to predict the x and y coordinates of a given key point class in
animate containing a single face. Therefore, as shown below in the figure,
our grey scale image from the dataset (96x96x1), and our output is 30
floating point values between 0.0 and 96.0, indicating where on the image
the corresponding x and y coordinates are for a given key point feature.
Below are example inputs (first row) and the output (second row).

Figure2

METHODOLOGY

How does CNN works?

Consider any image, as each image represents some pixel value, we analyze
the influence of nearby pixels in an image by using something called a
filter, also called as weights, kernel or features. Filters are tensor which
keeps track of spatial information and learns to extract features like edge
detection, smooth curve, etc of objects in something called a convolution
layer. The major part is to detect edges in the images and these are
detected by the filters. It helps to filter out the unwanted information to
amplify images. These are high pass filters where the changes occur in
intensity very quickly like fro black to white pixel and vice versa.

— /—> — (—3 —T— car
— 4 _
InpUt Image convolutional pooling fully-(l::;enrected predlcted
layer layor class
CNN

Figure3: Basic CNN structure

convolutional
layer

depth =4
filtered images

Figure4: Filtered images — flowchart

Let us consider an image size 5x5 size and 3 filters (since each filter will be used for each
colour channel RGB) of 3x3 size.

88 126 145 85 123
86 125 142 84 123 1 00 1 1

85 124 141 82 121 ab, hih o S) 0
82 119 135 80 117 0O 0 O 1

78 114 128 77 113

5 * 5 Image 3 * 3filterl 3 * 3 filter2 3 * 3 filter3

Figure5

For simplicity, we took 0 and 1 for filters, usually, these are continuous values. The filter

convolute with the image to detect patterns and features.

Convolution Process

85 123 123
84 123 123
82 121 121
80 117 82 119 1B5 80 117 82 119 135 f80 117
77 113 78 114 1%8 77 113 78 114 128f 77 113
3 o gl 1 o i i o al
1 1 o 1 -k o 2L 3 o
o o o o o o o o o
1 o q; 1 o il ak o 55
1 1 o n & 1 o 1 1 o
o o o o o o o o o
88 126 145 85 123 88 126 145 85 123 88 126 145 85 123
84 123 86 123 86 125
82 121 8s 121 85 124
80 117 82 117 82 119
78 114 128 77 113 78 114 128 77 113 78 114 128 77 113
88 126 145 85 123 88 126 145 85 123 88 126 145 85 123
86 125 142 84 123 86 125 142 84 123 86 125 142 84 123
82 121 85 121 85 124
80 117 82 117 119
77| 113 78 113 114 /
3 o 1 1 o 1 1 o 1
1 at o 1 <k o i 1 o
o o o o o o/ﬁo o

Figure6: Convolution process

[vLocal Receptive Field
[0 Filter

[l outputimage

Ouput image value = LRF * Filter
(dot product of LRF and Filter)

Filter size =3 X 3 --> 3
Input size =5 X5 --=> 5
Stride =1X1-->1 (1 cell move)
Padding = 0X0--=0 (No padding)

output size = (Input size - Filter size +
2 * Padding)* Stride + 1

output size (A-F+2P)*"S+ 1

outputsize = (5-3)* 1 + 1
output size =3 -->3 X 3

Filter /éﬁ

Input ” . . ’;
...-'.....

P S e L L L T
L L X B W ¥

SIS

Then the convolution of 5 x 5 image matrixes multiplies with 3 x 3 filter
matrixes which is called “feature Map”. We apply the dot product to scalar
value and then move the filter by the stride over the entire image.

Sometimes filter does not fit perfectly in the input image. In that case we pad the image
with zeros as shown below. This is called padding.

Next, we need to reduce the size of the image, if they are too large. Pooling layers section
would reduce the number parameters when the images are too large.

m Output image

u Pooling Window

Poolsize=2X2
Pool type = Max-pool
Stride =2
Padding = 1

Figure7: Pooling the layers

As shown in the above image, the padding is applied so that the filter perfectly fits the
given image. Adding pooling layer then decrease the size of the image and hence decrease
the complexity and computations.

Next step is Normalization. Usually an activation function RelLu is used.
Relu stands for rectified linear unit for a non linear operation.

The output is f(x) = max(0,x). The purpose of Relu is to add non
linearity to the convolution network. In usual cases, the real world data
want our network to learn non linear values.

A rectified linear unit has output O if the input is less than 0, and raw
output otherwise. That is, if the input is greater than 0, the output is equal
to the input. Here we are assuming that we have negative values since
dealing with the real world data. In case, if there is no negative value, you can skip this
part.

Oif x<0 -478 494 0 494

RELU(x)=
x if x>=0 460 -477 460 ©

Figure8

The final step is to flatten our matrix and feed the values to fully connected layer.

7Y

XN R (/ NA@LS
K g O N o< @-
)% '\;, b i.* _ I, '...-) :
- ﬁwﬁ’b" e AP S

K

#ﬂiﬁ”wﬂ:{ ﬁ
Q ?,;r‘*{h INgy
N

Figure9

x4

Next, we need to train the model in the same way we train other neural networks. Using
the certain number of epochs and then back-propagate to update weights and calculate the
loss.

1.5

Overall Structure of CNN

Feature Maps Feature Maps Feature Maps
Feature Maps

| CHouse (0.05)
L s [7re=(08)
O - . _[catiooy)
| | i J‘
Convolution Poaling Convolution Pooling T
+ Relu + Relu Fully Cannected Layers

Output Layer

Figurel0 : structure of CNN

Using the above diagram we know, that there are:
1. Convolution layer where convolution takes place
2. Pooling layer where the pooling process happens.
3. Normalization usually with use of ReLu

4. Fully connected layer

SCOPE

3D face recognition technology has been applied in many fields, such as
access control and automatic driving. The iPhone X wuses Face ID,
technology that unlocks the phone by using infrared and visible light scans
to uniquely identify your face. It works in a variety of conditions and is
extremely secure. In the world of autonomous driving, the autopilot needs
to manage the hand-over between the automated and the manual modes. To
have a smooth hand-over, it is important to make sure that the driver is
alert and ready to take control of the car before the autopilot is
disengaged. To have a smooth transition between modes of operation,
Omron introduces 3D facial recognition technology that detects a drowsy or
distracted driver. Considering the fact that one out of every six car
accidents is attributed to a drowsy or distracted driver, the technology can
have a huge impact even on the safety of manual driving.

CHAPTER 2
(LITERATURE REVIEW)

What we have tried to accomplish here is to create models such as Multi-layer
Perceptron and Convolutional Neural Network (CNN) in order to detect facial
keypoints and then to be the judge of how well they perform, how image
augmentation is done, how to create data loading and processing and at last how
to train and deploy models with the use of PyTorch.

2.1) MULTI-LAYER PERCEPTRON NEURAL NETWORKS

Artificial neural networks are a fascinating area of study, although they can be
intimidating when just getting started. There are a lot of specialized terminologies
used when describing the data structures and algorithms used in the field. In this
review we’ll understand the terminology and processes used in the field of multi-
layer perceptron artificial neural networks:

e The building blocks of neural networks including neurons, weights and activation
functions.
How the building blocks are used in layers to create networks.
How networks are trained from example data.

We are going cover the following topics:

Multi-Layer Perceptrons.

Neurons, Weights and Activations.
Networks of Neurons.

Training Networks.

Mo

1. Multi-Layer Perceptrons

The field of artificial neural networks is often just called neural networks or multi-
layer perceptrons after perhaps the most useful type of neural network. A
perceptron is a single neuron model that was a precursor to larger neural

networks. It is a field that investigates how simple models of biological brains can be
used to solve difficult computational tasks like the predictive modeling tasks we see in machine
learning. The goal is not to create realistic models of the brain, but instead to develop robust
algorithms and data structures that we can use to model difficult problems. The power of neural
networks comes from their ability to learn the representation in your training data and how to best
relate it to the output variable that you want to predict. In this sense neural networks learn a
mapping. Mathematically, they are capable of learning any mapping function and have
been proven to be a universal approximation algorithm. The predictive capability of
neural networks comes from the hierarchical or multi-layered structure of the
networks. The data structure can pick out (learn to represent) features at different
scales or resolutions and combine them into higher-order features. For example
from lines, to collections of lines to shapes.

2. Neurons

The building block for neural networks are artificial neurons. These are simple
computational units that have weighted input signals and produce an output signal
using an activation function.

Outputs

Activation

Weights

Inputs

Figurell: Model of a Simple Neuron

Neuron Weights

You may be familiar with linear regression, in which case the weights on the
inputs are very much like the coefficients used in a regression equation. Like
linear regression, each neuron also has a bias which can be thought of as an
input that always has the value 1.0 and it too must be weighted. For example,
a neuron may have two inputs in which case it requires three weights. One for
each input and one for the bias. Weights are often initialized to small random
values, such as values in the range 0 to 0.3.

10

Activation

The weighted inputs are summed and passed through an activation function,
sometimes called a transfer function. An activation function is a simple mapping
of summed weighted input to the output of the neuron. It is called an activation
function because it governs the threshold at which the neuron is activated and
strength of the output signal. Historically simple step activation functions were used
where if the summed input was above a threshold, for example 0.5, then the
neuron would output a value of 1.0, otherwise it would output a 0.0. Traditionally
non-linear activation functions are used. This allows the network to combine the
inputs in more complex ways and in turn provide a richer capability in the
functions they can model. Non-linear functions like the logistic also called the sigmoid
function were used that output a value between 0 and 1 with an s-shaped
distribution, and the hyperbolic tangent function also called tanh that outputs the
same distribution over the range -1 to +1. More recently the rectifier activation
function has been shown to provide better results.

3. Networks of Neurons

Neurons are arranged into networks of neurons. A row of neurons is called a
layer and one network can have multiple layers. The architecture of the neurons
in the network is often called the network topology.

Output Layer

Hidden Layer

Input Layer

Figurel2: Model of a simple network

11

Input or Visible Layers

The bottom layer that takes input from your dataset is called the visible layer,
because it is the exposed part of the network. Often a neural network is drawn
with a visible layer with one neuron per input value or column in your dataset.
These are not neurons as described above, but simply pass the input value though
to the next layer.

Hidden Layers

Layers after the input layer are called hidden layers because they are not directly
exposed to the input. The simplest network structure is to have a single neuron
in the hidden layer that directly outputs the value. Given increases in computing
power and efficient libraries, very deep neural networks can be constructed. Deep
learning can refer to having many hidden layers in your neural network. They are
deep because they would have been unimaginably slow to train historically, but
may take seconds or minutes to train using modern techniques and hardware.

Output Layer

The final hidden layer is called the output layer and it is responsible for
outputting a value or vector of values that correspond to the format required for
the problem.

The choice of activation function in the output layer is strongly constrained by
the type of problem that you are modeling. For example:

e A regression problem may have a single output neuron and the neuron
may have no activation function.

e A binary classification problem may have a single output neuron and use
a sigmoid activation function to output a value between 0 and 1 to
represent the probability of predicting a value for the class 1. This can
be turned into a crisp class value by using a threshold of 0.5 and snap
values less than the threshold to O otherwise to 1.

e A multi-class classification problem may have multiple neurons in the output
layer, one for each class (e.g. three neurons for the three classes in the
famous iris flowers classification problem). In this case a softmax activation
function may be used to output a probability of the network predicting each

12

of the class values. Selecting the output with the highest probability can be
used to produce a crisp class classification value.

4. Training Networks

Once configured, the neural network needs to be trained on your dataset.

Data Preparation

You must first prepare your data for training on a neural network. Data must be numerical, for
example real values. If you have categorical data, such as a sex attribute with the
values “male” and ‘“female”, you can convert it to a real-valued representation
called a one hot encoding. This is where one new column is added for each
class value (two columns in the case of sex of male and female) and a O or
1 is added for each row depending on the class value for that row.

This same one hot encoding can be used on the output variable in classification
problems with more than one class. This would create a binary vector from a
single column that would be easy to directly compare to the output of the neuron
in the network’s output layer, that as described above, would output one value
for each class.

Neural networks require the input to be scaled in a consistent way. You can
rescale it to the range between 0 and 1 called normalization. Another popular
technique is to standardize it so that the distribution of each
column has the mean of zero and the standard deviation of 1.

Scaling also applies to image pixel data. Data such as words can be converted
to integers, such as the popularity rank of the word in the dataset and other
encoding techniques.

Stochastic Gradient Descent

The classical and still preferred training algorithm for neural networks is called
stochastic gradient descent. This is where one row of data is exposed to the
network at a time as input. The network processes the input upward activating

13

neurons as it goes to finally produce an output value. This is called a forward
pass on the network. It is the type of pass that is also used after the network
is trained in order to make predictions on new data.

The output of the network is compared to the expected output and an error is
calculated. This error is then propagated back through the network, one layer at
a time, and the weights are updated according to the amount that they contributed
to the error. This clever bit of math is called the back propagation algorithm.

The process is repeated for all of the examples in your training data. One round
of updating the network for the entire training dataset is called an epoch. A
network may be trained for tens, hundreds or many thousands of epochs.

Weight Updates

The weights in the network can be updated from the errors calculated for each
training example and this is called online learning. It can result in fast but also
chaotic changes to the network.

Alternatively, the errors can be saved up across all of the training examples and
the network can be updated at the end. This is called batch learning and is often
more stable.

Typically, because datasets are so large and because of computational efficiencies,
the size of the batch, the number of examples the network is shown before an
update is often reduced to a small number, such as tens or hundreds of
examples. The amount that weights are updated is controlled by a configuration
parameter called the learning rate. It is also called the step size and controls the
step or change made to network weight for a given error. Often small weight
sizes are used such as 0.1 or 0.01 or smaller.

The update equation can be complemented with additional configuration terms that you can set.

e Momentum is a term that incorporates the properties from the previous
weight update to allow the weights to continue to change in the same
direction even when there is less error being -calculated.

e Learning Rate Decay is used to decrease the learning rate over epochs to
allow the network to make large changes to the weights at the beginning
and smaller fine tuning changes later in the training schedule.

14

Prediction

Once a neural network has been trained it can be used to make predictions. You
can make predictions on test or validation data in order to estimate the skill of
the model on unseen data. You can also deploy it operationally and use it to
make predictions continuously.

The network topology and the final set of weights is all that you need to save
from the model. Predictions are made by providing the input to the network and
performing a forward-pass allowing it to generate an output that you can use as
a prediction.

2.2) ABRIEF HISTORY OF CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks, also called ConvNets, were first introduced in the
1980s by Yann LeCun, a postdoctoral computer science researcher. LeCun had
built on the work done by Kunihiko Fukushima, a Japanese scientist who, a few
years earlier, had invented the neocognitron, a very basic image recognition
neural network.

The early version of CNNs, called LeNet (after LeCun), could recognize
handwritten digits. CNNs found a niche market in banking and postal services and
banking, where they read zip codes on envelopes and digits on checks.

But despite their ingenuity, ConvNets remained on the sidelines of computer vision
and artificial intelligence because they faced a serious problem: They could not
scale. CNNs needed a lot of data and compute resources to work efficiently for
large images. At the time, the technique was only applicable to images with low
resolutions.

If you come from a digital signal processing field or related area of mathematics,
you may understand the convolution operation on a matrix as something different.
Specifically, the filter (kernel) is flipped prior to being applied to the input.
Technically, the convolution as described in the use of convolutional neural

15

networks is actually a “cross-correlation”. Nevertheless, in deep learning, it is
referred to as a “convolution” operation.

2.3) CONVOLUTION IN COMPUTER VISION

The idea of applying the convolutional operation to image data is not new or unique to
convolutional neural networks; it is a common technique used in computer vision.

Historically, filters were designed by hand by computer vision experts, which were then applied
to an image to result in a feature map or output from applying the filter then makes the analysis of
the image easier in some way.

For example, below is a hand crafted 3x3 element filter for detecting vertical lines:
0.0,1.0,0.0
0.0,1.0,0.0
0.0,1.0,0.0

Applying this filter to an image will result in a feature map that only contains
vertical lines. It is a wvertical line detector. You can see this from the weight
values in the filter; any pixel values in the center vertical line will be positively
activated and any on either side will be negatively activated. Dragging this filter
systematically across pixel values in an image can only highlight vertical line
pixels.

A horizontal line detector could also be created and also applied to the image, for example:
0.0, 0.0, 0.0
1.0,1.0,1.0

0.0,0.0, 0.0

Combining the results from both filters, e.g. combining both feature maps, will
result in all of the lines in an image being highlighted. A suite of tens or even hundreds
of other small filters can be designed to detect other features in the image. The innovation

16

of using the convolution operation in a neural network is that the values of the
filter are weights to be learned during the training of the network.

The network will learn what types of features to extract from the input.
Specifically, training under stochastic gradient descent, the network is forced to
learn to extract features from the image that minimize the loss for the specific
task the network is being trained to solve, e.g. extract features that are the most
useful for classifying images as dogs or cats.

Power of Learned Filters

Learning a single filter specific to a machine learning task is a powerful
technique. Yet, convolutional neural networks achieve much more in practice.

Multiple Filters

Convolutional neural networks do not learn a single filter; they, in fact, learn
multiple features in parallel for a given input. For example, it is common for a
convolutional layer to learn from 32 to 512 filters in parallel for a given input.

This gives the model 32, or even 512, different ways of extracting features from
an input, or many different ways of both “learning to see” and after training,
many different ways of “seeing” the input data. This diversity allows specialization,
e.g. not just lines, but the specific lines seen in your specific training data.

Multiple Channels

Color images have multiple channels, typically one for each color channel, such
as red, green, and blue. From a data perspective, that means that a single image
provided as input to the model is, in fact, three images. A filter must always
have the same number of channels as the input, often referred to as “depth”. If
an input image has 3 channels (e.g. a depth of 3), then a filter applied to that
image must also have 3 channels (e.g. a depth of 3). In this case, a 3x3 filter

17

would in fact be 3x3x3 or [3, 3, 3] for rows, columns, and depth. Regardless
of the depth of the input and depth of the filter, the filter is applied to the
input using a dot product operation which results in a single value. This means
that if a convolutional layer has 32 filters, these 32 filters are not just two-
dimensional for the two-dimensional image input, but are also three-dimensional,
having specific filter weights for each of the three channels. Yet, each filter
results in a single feature map. Which means that the depth of the output of applying
the convolutional layer with 32 filters is 32 for the 32 feature maps created.

Multiple Layers

Convolutional layers are not only applied to input data, e.g. raw pixel values, but
they can also be applied to the output of other layers. The stacking of
convolutional layers allows a hierarchical decomposition of the input. Consider that
the filters that operate directly on the raw pixel values will learn to extract low-
level features, such as lines. The filters that operate on the output of the first
line layers may extract features that are combinations of lower-level features, such
as features that comprise multiple lines to express shapes. This process continues
until very deep layers are extracting faces, animals, houses, and so on.This is exactly
what we see in practice. The abstraction of features to high and higher orders as
the depth of the network is increased.

2.4) THE LIMITS OF CONVOLUTIONAL NEURAL NETWORKS

Despite their power and complexity, convolutional neural networks are, in essence,
pattern-recognition machines. They can leverage massive compute resources to ferret
out tiny and inconspicuous visual patterns that might go unnoticed to the human
eye. But when it comes to understanding the meaning of the contents of images,
they perform poorly.

Consider the following image. A well-trained ConvNet will tell you that it’s the
image of a soldier, a child and the American flag. But a person can give a
long description of the scene, and talk about military service, tours in a foreign
country, the feeling of longing for home, the joy of reuniting with the family, etc. Artificial
neural networks have no notion of those concepts.

18

These limits become more evident in practical applications of convolutional neural networks. For
instance, CNNs are now widely used to moderate content on social media networks.
But despite the wvast repositories of images and videos they’re trained on, they
still struggle to detect and block inappropriate content. In one case, Facebook’s
content-moderation Al banned the photo of a 30,000-year-old statue as nudity.
Also, neural networks start to break as soon as they move a bit out of their
context. Several studies have shown that CNNs trained on ImageNet and other
popular datasets fail to detect objects when they see them under different lighting
conditions and from new angles.

ObjectNet, a dataset that better represents the different nuances of how objects
are seen in real life. CNNs don’t develop the mental models that humans have
about different objects and their ability to imagine those objects in previously
unseen contexts.

Another problem with convolutional neural networks is their inability to understand
the relations between different objects. Consider the following image, which is
knownas a “Bongard problem,” named after its inventor, Russian computer scientist
Mikhail Moiseevich Bongard. Bongard problems present you with two sets of
images (six on the left and six on the right), and you must explain the key
difference between the two sets. For instance, in the example below, images in
the left set contain one object and images in the right set contain two objects.
It’s easy for humans to draw such conclusions from such small amounts of
samples. If 1 show you these two sets and then provide you withanew image, you’ll
be able to quickly decide whether it should go into the left or right set.

19

> | O|FE . o <]
> | = |1 2] LA
< | == | |

Bongard problems are easy for humans to solve, but hard for computer vision systems.

But there’s still no convolutional neural network that can solve Bongard problems with so few
training examples. In one study conducted in 2016, Al researchers trained a CNN on
20,000 Bongard samples and tested it on 10,000 more. CNN's performance was
much lower than that of average humans.

The peculiarities of ConvNets also make them vulnerable to adversarial attacks,
perturbations in input data that go unnoticed to the human eye but affect the
behavior of neural networks. Adversarial attacks have become a major source of
concern as deep learning and especially CNNs have become an integral component
of many critical applications such as self-driving cars.

Does this mean that CNNs are useless? Despite the limits of convolutional neural
networks, however, there’s no denying that they have caused a revolution in
artificial intelligence. Today, CNNs are used in many computer vision applications
such as facial recognition, image search and editing, augmented reality, and more.
In some areas, such as medical image processing, well-trained ConvNets might
even outperform human experts at detecting relevant patterns. As advances in
convolutional neural networks show, our achievements are remarkable and useful, but
we are still very far from replicating the key components of human intelligence.

2.5) PYTORCH

PyTorch is the premier open-source deep learning framework developed and
maintained by Facebook. At its core, PyTorch is a mathematical library that allows
you to perform efficient computation and automatic differentiation on graph-based
models. Achieving this directly is challenging, although thankfully, the modern

20

PyTorch API provides classes and idioms that allow you to easily develop a suite
of deep learning models.

PyTorch is an open-source Python library for deep Ilearning developed and
maintained by Facebook. The project started in 2016 and quickly became a
popular framework among developers and researchers. Torch (Torch7) is an open-
source project for deep learning written in C and generally used via the Lua
interface. It was a precursor project to PyTorch and is no longer actively
developed. PyTorch includes “Torch” in the name, acknowledging the prior torch
library with the “Py” prefix indicating the Python focus of the new project.

The PyTorch APl is simple and flexible, making it a favorite for academics and
researchers in the development of new deep learning models and applications. The
extensive use has led to many extensions for specific applications (such as text,
computer vision, and audio data), and may pre-trained models that can be used
directly. As such, it may be the most popular library used by academics.

The flexibility of PyTorch comes at the cost of ease of use, especially for
beginners, as compared to simpler interfaces like Keras. The choice to use
PyTorch instead of Keras gives up some ease of use, a slightly steeper learning
curve, and more code for more flexibility, and perhaps a more vibrant academic community.

2.5.1) PyTorch Deep Learning Model Life-Cycle

A model has a life-cycle, and this very simple knowledge provides the backbone for both
modeling a dataset and understanding the PyTorch API.

The five steps in the life-cycle are as follows:

1. Prepare the Data.

2. Define the Model.

3. Train the Model.

4. Evaluate the Model.

5. Make Predictions.

21

Step 1: Prepare the Data

The first step is to load and prepare your data. Neural network models require
numerical input data and numerical output data. You can use standard Python
libraries to load and prepare tabular data, like CSV files. For example, Pandas
can be used to load your CSV file, and tools from scikit-learn can be used to
encode categorical data, such as class labels. PyTorch provides the Dataset class that you
can extend and customize to load your dataset.

Step 2: Define the Model

The next step is to define a model. The idiom for defining a model in PyTorch
involves defining a class that extends the Module class. The constructor of your
class defines the layers of the model and the forward() function is the override
that defines how to forward propagate input through the defined layers of the
model. Many layers are available, such as Linear for fully connected layers,
Conv2d for convolutional layers, and MaxPool2d for pooling layers. Activation functions
can also be defined as layers, such as ReLU, Softmax, and Sigmoid.

Step 3: Train the Model

The training process requires that you define a loss function and an optimization
algorithm.

Stochastic gradient descent is used for optimization, and the standard algorithm is
provided by the SGD class, although other versions of the algorithm are available,
such as Adam. Training the model involves enumerating the DatalLoader for the
training dataset.

First, a loop is required for the number of training epochs. Then an inner loop
is required for the mini-batches for stochastic gradient descent.

Each update to the model involves the same general pattern comprised of:

Clearing the last error gradient.

A forward pass of the input through the model.
Calculating the loss for the model output.
Back propagating the error through the model.
Update the model in an effort to reduce loss.

Step 4: Evaluate the model

22

Once the model is fit, it can be evaluated on the test dataset. This can be
achieved by wusing the DatalLoader for the test dataset and collecting the
predictions for the test set, then comparing the predictions to the expected values
of the test set and calculating a performance metric.

Step 5: Make predictions

A fit model can be used to make a prediction on new data. For example, you might
have a single image or a single row of data and want to make a prediction.
This requires that you wrap the data in a PyTorch Tensor data structure. A
Tensor is just the PyTorch version of a NumPy array for holding data. It also
allows you to perform the automatic differentiation tasks in the model graph, like
calling backward() when training the model.

The prediction too will be a Tensor, although you can retrieve the NumPy array
by detaching the Tensor from the automatic differentiation graph and calling the
NumPy function.

2.5.2) How to Develop PyTorch Deep Learning Models

A Multilayer Perceptron model, or MLP for short, is a standard fully connected neural network
model. It is comprised of layers of nodes where each node is connected to all outputs
from the previous layer and the output of each node is connected to all inputs
for nodes in the next layer. An MLP is a model with one or more fully
connected layers. This model is appropriate for tabular data, that is data as it looks in a table
or spreadsheet with one column for each variable and one row for each variable. There
are three predictive modeling problems you may want to explore with an MLP;
they are binary classification, multiclass classification, and regression.

CHAPTER 3

(SYSTEM DEVELOPMENT)

23

3.1) CONVOLUTIONAL NEURAL NETWORKS (CNN)

The convolutional neural network, or CNN for short, is a specialized type of neural
network model designed for working with two-dimensional image data, although
they can be wused with one-dimensional and three-dimensional data. Central to the
convolutional neural network is the convolutional layer that gives the network its name. This layer
performs an operation called a “convolution®.

In the context of a convolutional neural network, a convolution is a linear operation
that involves the multiplication of a set of weights with the input, much like a
traditional neural network. Given that the technique was designed for two-
dimensional input, the multiplication is performed between an array of input data
and a two-dimensional array of weights, called a filter or a kernel. The filter is
smaller than the input data and the type of multiplication applied between a filter-
sized patch of the input and the filter is a dot product. A dot product is the
element-wise multiplication between the filter-sized patch of the input and filter,
which is then summed, always resulting in a single value. Because it results in
a single value, the operation is often referred to as the “scalar product®.

Using a filter smaller than the input is intentional as it allows the same filter
(set of weights) to be multiplied by the input array multiple times at different
points on the input. Specifically, the filter is applied systematically to each
overlapping part or filter-sized patch of the input data, left to right, top to bottom.

This systematic application of the same filter across an image is a powerful idea.
If the filter is designed to detect a specific type of feature in the input, then the
application of that filter systematically across the entire input image allows the filter an opportunity
to discover that feature anywhere in the image. This capability is commonly referred to as
translation invariance, e.g. the general interest in whether the feature is present rather than where
it was present.

The output from multiplying the filter with the input array one time is a single value. As the filter
is applied multiple times to the input array, the result is a two-dimensional array of output values
that represent a filtering of the input. As such, the two-dimensional output array
from this operation is called a ‘“feature map®.

Once a feature map is created, we can pass each value in the feature map
through a non linearity, such as a ReLU, much like we do for the outputs of
a fully connected layer.

24

Filter

Repeated overlapping
application...

4

Input

Feature Map N

Figure13: Example of a Filter Applied to a Two-Dimensional Input to Create a Feature Map

3.2) HOW DO CNNS WORK?

Convolutional neural networks are composed of multiple layers of artificial neurons.
Artificial neurons, a rough imitation of their biological counterparts, are
mathematical functions that calculate the weighted sum of multiple inputs and
outputs an activation value.

25

activation
functon

P o

activation

net input

ner;

transfer
function

0.
Xy o—> y
! @ threshold

Figurel4: The structure of an artificial neuron, the basic component of artificial neural networks

The behavior of each neuron is defined by its weights. When fed with the pixel values, the artificial
neurons of a CNN pick out various visual features. When you input an image into a
ConvNet, each of its layers generates several activation maps. Activation maps
highlight the relevant features of the image. Each of the neurons takes a patch
of pixels as input, multiplies their color values by its weights, sums them up,
and runs them through the activation function.

The first (or bottom) layer of the CNN usually detects basic features such as
horizontal, vertical, and diagonal edges. The output of the first layer is fed as
input of the next layer, which extracts more complex features, such as corners
and combinations of edges. As you move deeper into the convolutional neural
network, the layers start detecting higher-level features such as objects, faces, and
more.

The operation of multiplying pixel values by weights and summing them is called
“convolution” (hence the name convolutional neural network). A CNN is usually
composed of several convolution layers, but it also contains other components. The final layer of
a CNN is a classification layer, which takes the output of the final convolution layer as input
(remember, the higher convolution layers detect complex objects).

26

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

I1st hidden layer
(edges)

Visible layer
(input pixels)

Figurel5: Layers of CNN

3.3) TRAINING THE CONVOLUTIONAL NEURAL NETWORK

One of the great challenges of developing CNNs is adjusting the weights of the
individual neurons to extract the right features from images. The process of
adjusting these weights is called “training” the neural network.

In the beginning, CNN starts off with random weights. During training, the
developers provide the neural network with a large dataset of images annotated
with their corresponding classes (cat, dog, horse, etc.). The ConvNet processes each
image with its random values and then compares its output with the image’s
correct label. If the network’s output does not match the label—which is likely
the case at the beginning of the training process—it makes a small adjustment to
the weights of its neurons so that the next time it sees the same image, its
output will be a bit closer to the correct answer.

27

The corrections are made through a technique called backpropagation (or backprop).
Essentially, backpropagation optimizes the tuning process and makes it easier for
the network to decide which units to adjust instead of making random corrections.

Every run of the entire training dataset is called an “epoch.” The ConvNet goes through several
epochs during training, adjusting its weights in small amounts. After each epoch, the neural
network becomes a bit better at classifying the training images. As the CNN improves,
the adjustments it makes to the weights become smaller and smaller. At some
point, the network ‘“converges,” which means it essentially becomes as good as it
can.

After training the CNN, the developers use a test dataset to verify its accuracy.
The test dataset is a set of labeled images that are not part of the training
process. Each image is run through the ConvNet, and the output is compared to
the actual label of the image. Essentially, the test dataset evaluates how good the
neural network has become at classifying images it has not seen before.

If a CNN scores good on its training data but scores bad on the test data, it
is said to have been “overfitted.” This usually happens when there’s not enough
variety in the training data or when the ConvNet goes through too many epochs
on the training dataset.

The success of convolutional neural networks is largely due to the availability of
huge image datasets developed in the past decade. ImageNet, the contest mentioned
at the beginning of this article, got its title from a namesake dataset with more
than 14 million labeled images. There are other more specialized datasets, such as
the MNIST, a database of 70,000 images of handwritten digits.

You don’t, however, need to train every convolutional neural network on millions
of images. In many cases, you can use a pretrained model, such as the AlexNet or
Microsoft’s ResNet, and finetune it for another more specialized application. This process is called
transfer learning, in which a trained neural network is retrained a smaller set of new examples.

3.4) TRAIN TIME DATA AUGMENTATION
We decided to use a variety of data augmentation techniques to

(a) expand the size of our training data, and

28

(b) help generalize our model.

The most elective data augmentation techniques at train time that we ended up using were
horizontal reflection, slight rotation and contrast reduction. Our procedure was executed as
follows. For a given training image we would with probability 0.5 apply horizontal
reflection. If the probability succeeded, we would haven ‘’augmented set’ of 2
images: the original image, and the horizontally reflected image. Next, we would,
with probability 0.5 for each of the images in the augmented set, apply the
rotation transformation (as discussed below). Every time the probability succeeded,
our ’augmented set’ would be supplemented with an additional image. Lastly, on
the images in the augmentation set we would apply the contrast reduction
transformation with probability 0.5. With this stacking approach, for each training
image there was a possibility of producing between 1 and 23= 8 images, inclusive
(the final augmented set), which would all be added to the new training dataset
as inputs to our models. The expected number of images in an augmented set from a single
image is 1.5«1.5«1.5=3.375.Therefore, on average, our training set of 2140 raw images was
transformed into 7222.5 input images.

3.5 HORIZONTAL REFLECTION (MIRROR)

The first data augmentation technique is fairly straight forward. We need only reflect
the image and its keypoint labels horizontally and then remap the keypoint labels
to their new representations (left center eye becomes right center eye, and vice versa).

Figurel6

3.6 ROTATION

29

For the second data augmentation we rotate the image clockwise or
counterclockwise each with probability 0.5. The image pixel matrix (X) and labels
are rotated using XeR, where R is the rotation matrix. The images are padded
with their mean pixel value, along the edges where parts of the image were rotated out of bounds.

_ cos(f) —sin(6)
sin(f) cos(f)

Figurel7

3.7 CONTRAST JITTERING (REDUCTION)

For the third data augmentation we reduce the contrast of the grayscale image.
This is done by applying the formula CR(X) below, where X is the96x96x1 input
and mean(X) is the average pixel value in X. The idea is that pixel values are
shifted slightly towards the images mean pixel value. The degree of shift is
determined by hyper parameter which we eventually set to 0.8 after experimentation.

CR(X)=(0+X)+ (1 —6) *mean(X)

Figurel8

30

In practice we found that each of these augmentations improved results individually
and even more so in combination. We could not discern significant differences
from varying the probability of application for each as long as probabilities were
between 0.4 and 0.6. The impact of contrast reduction increased substantially when
and was gradually less effective at higher wvalues, and rapidly less elective at
lower values. Once we found the optimal value of contrast jittering significantly
improved results. This is most likely because the grayscale images within the
dataset vary greatly in terms of contrast. Addition-ally, the mean pixel value varies
quite significantly. The rotation angle hyper parameter produced generally good
results for any angles below 120, but otherwise didn’t vary greatly in performance.

CHAPTER 4
(PERFORMANCE ANALYSIS)

Inthis part, we will talk about the algorithms we used to recognize the keypoints
on the faces and their task completions in order to explore their differences and
find which would be the most suitable one. In addition, all the codes are also
provided in case you want to run it by yourselves. However, please note that
there is randomness among different experiments, which means you should not be
surprised if you cannot obtain the same result.

In this section, | just focus on the specific algorithm itself. And in the next
section, the contrast among different algorithms will be proposed. And we will
describe our step in Python to build Neural network and Convolution neural
network since they are the most challenging aspect in the experiment.

31

First of all, | list all the results here in tables:

RMSE1 RMSE2
Knn 3.375 2.346
Linear 4513 6.020
Lasso 3.558 2.979
Elastic 4.044 2.959
Ridge 8.464 2.609
Decision tree 3.745 4.101
Neural network 2.923 2.875
CNN 1.972 2.086

4.1) KNN

We prefer to start our discussion among the algorithms from kNN(k-
NearestNeighbor) because it is very simple to understand and visualize.

KNN regression can be used in cases where the data labels are continuous rather
than discrete variables. The label assigned to a query point is computed based the
mean of the labels of its nearest neighbors. The advantages lie in its simplicity
and effectiveness. Theoretically, the more training instances we can provide, the
better the performance of Knn algorithms will be. Luckily, there is a big data
set for us to train so RMSE1l has been reduced to about 3.375 with Kk=5.
Talking about the weak points about Knn. 1 want to mention the Curse of
Dimensionality, which significantly cut down the power of kNN algorithm. In this
case, this problem is obvious because we have 30 and 8 dimensions in each data
sets. Although the huge number of instances reduce the Curse of Dimensionality,
to some extent, it is still rigorous.

However, Knn receives 2.346 RMSE2 on a the data set of 8 dimensions while 3.375 RMSE1 on a
data set of 30 dimensions . It uncovers the Curse of Dimensionality, to some extent.

4.2) LASSO

32

The Lasso regression is a linear model that estimates sparse coefficients. It is useful
in some contexts due to its tendency to prefer solutions with fewer parameter
values, effectively reducing the number of variables upon which the given solution
is dependent. For this reason, the Lasso and its variants are fundamental to the
field of compressed sensing. Under certain conditions, it can recover the exact set of non-zero
weights.

Mathematically, it consists of a linear model trained with €1 prior as regularizer. The objective
function to minimize is:

min12nsamples| | Xw—y||22+a| |w] |1

And it can be proved that solving for the lasso regression is equivalent to solve the following
problem:

minnY i=1(yi—B0—pYj=1Bjxij)2,p>j=1Bj| <s

Lasso regression enjoys a good RMSEl1l with only 3.559. Some parameters may
be extra since sometimes we do not need such information to recognize a face.
On the other hand, parameter redundancy may cause the problem of overfitting.
Lasso regression has a the ability to overcome overfitting and that is the reason
why it is so popular among machine learning skKills.

The choice of the o is very important because large o will squeeze almost all the
parameters to zero, which obviously cannot meet our requirements, while small a
does not have the ability to fulfill the task as a lasso regression, in contrast, it
may perform as a normal linear regression.

The best way to choose a is cross validation. However, cross validation is not
easily to do on this dataset because it is too much big so that long times would be taken to run
the code. Luckily, we almost find the best choice (o =0.1). However, you should note that
since there is no Theoretical guidance to a, so this may not be the unique
choice.

4.3) ELASTIC NET

Elastic Net is a linear regression model trained with €1 and (€2 prior as
regularizer. This combination allows for learning a sparse model where few of the

33

weights are non- zero like Lasso, while still maintaining the regularization
properties of Ridge. Elastic-net is useful when there are multiple features which
are correlated with one another. Lasso is likely to pick one of these at random,
while elastic-net is likely to pick both.

A practical advantage of trading-off between Lasso and Ridge is it allows Elastic-
Net to inherit some of Ridge’s stability under rotation.

In elastic net there is two parameters to be adjusted, which significantly
increases the difficulty of tuning. In our experiment the RMSELl is 4.04.
Therefore, we prefer to attribute the poor performance to parameters. Although
we determine the parameters using cross validation, it is still hard to tune. Finally, the
parameters are fixed with 0=0.1,p=0.5.

Compared with Lasso regression, Elastic Net achieves a higher test error. However, we cannot
conclude that Elastic Net cannot compare with the Lasso regression. Instead, Lasso regression is
strong enough to prevent the system from overfitting rather than.

4.4) RIDGE REGRESSION

Compared with linear regression ridge regression balance the error and variance
by adding penalty. The parameters of ridge regression are obtained my minimize:

N> i=1(yi—BO—pXj=1Bjxi))2\p3 j=1B2]

If 2=0 it will degenerate into normal linear regression. In addition, it can be proved that solving
for ridge regression is equivalent to solving the following problem:

minnY i=1(yi—B0—pYj=1Bjxij)2,p> j=1B2j<s

Ridge regression has closed form solution as a convex optimization problem. This property
improved the speed of the code largely. However, ridge regression has huge gap

between RMSE1 and RMSE2, as can be seen from the table above. This problem

confused us a lot during the experiment. However, after dividing the data set again,
we obtain a normal result for ridge regression with RMSE1 = 2.967 and RMSE2 = 3.104. In the
table above we still report the previous RMSE because we want to mention this surprising result
may due to luck but still need further investigation.

34

4.5) DECISION TREE

Decision Trees (DTs) are a non-parametric supervised learning method used for classification
and regression. The goal is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the data features.

Some advantages of decision trees are:

e Simple to understand and to interpret. Trees can be visualized.

e Requires little data preparation. Other techniques often require data normalization,
dummy variables need to be created and blank values to be removed. Note
however that this module does not support missing values.

e Use a white box model. If a given situation is ob- servable in a model, the explanation for
the condition is easily explained by boolean logic. By contrast, in a black box model
results may be more difficult to interpret.

The disadvantages of decision trees include:

e Decision-tree learners can create over-complex trees that do not generalize
the data well. This is called over- fitting. Mechanisms such as pruning
(not currently sup- ported), setting the minimum number of samples
required at a leaf node or setting the maximum depth of the tree are
necessary to avoid this problem.

e Decision trees can be unstable because small variations in the data might result in a
completely different tree being generated. This problem is mitigated by using decision
trees within an ensemble.

The RMSEL1 of decision trees is 3.75 with k=5. We have the confidence to believe that
overfitting would not occur with applying only k=5 to such a big data set.
However, decision tree may ignore the correlation between characters, which is
an important property in this experiment.

4.6) NEURAL NETWORK
4.6.1 Package description

35

As you know Keras is a high-level neural networks library, written in Python and capable of
runningon top of either TensorFlow or Theano. It was developed with a focus on
enabling fast experimentation. Being able to go from idea to result with the least
possible delay is key to doing good research.

In this experiment, we first study how to use the pack- ages Keras and Theano
to build our neural network, then we choose two different neural networks to
achieve our goal.They have a common feature is very precise, but the calculation
is very large, we spent 5 days to debug them. Unfortunately, BP neural network has not
reached an ideal result, but CNN’s result is very good.

4.6.2 Steps to build neural network

Now, we’ll give you an idea of how to build the BP neural network. This has
the same idea as handwritten number recognition, but is slightly different in some
detail. This is a regression problem, not a classification problem. First we’d better
to use the "MSE’ to replace the ’categorical crossentropy’. Second, we must use
the linear function f(x)=x as the activation function in the last layer, because the
value of the other functions will be limited to 0 and 1, can not complete the predict. The other
things we have done as follow:

1. We choose the different optimizer to build our neural network, such as ’Rmsprop” and ’SGD’.
2. We use 4 layers which has 300,150,50,8 neural for training.

3. After some times attempt, we choose the nb_epoch=500, batch_size=30.

4.7 CONVOLUTION NEURAL NETWORK
4.7.1 Steps to build convolution neural network

As we all know, the most popular technique in image recognition is CNN. So we spend the
longest time in this method, now | will introduce the idea of our CNN.

e We use PCA method to reduce dimension from 96x96 to 16x16, This
method saves 95% information, and makes the calculation faster.

e Because Keras requires the input of 4-dimensional vectors, so we need
replace the 7049x16x16 image as 7649x16x16x1 image.

e We use 2 convolution layers. The first layer we use 32 filters with
dimension 5x5, then the pool size is 2x2. In the second layer, we use
the 8 filter with dimension 3x3, then the pool size is 2x2. we also use
the dropout method in each layer.

36

e After the convolution layer, we flatten it and add a normal hidden layer
with 100 neural.
Optimizer and loss function is similar with BP network.
After some times attempt, we choose the nb_epoch=400, batch_size=50.

We try to install the cuda and use the GPU to compute it but fail, so we
only use the CPU to train this neural network, it takes a very long time. Each
test time are more than 10 hours, so the number of adjusting the parameters is
not enough. But fortunately, the results are pretty good!

Following is a picture of a small demo run on our own computer. However,
the whole code should be run on the server.

Figurel9: Principle Sketch of PCA

4.7.2 Analysis

The most successful approach is the convolutional neural network, which has been widely applied
to image data. Convolutional neural network has three important mechanisms: (i)

local receptive fields, (ii) weight sharing, and (iii)subsampling. The structure of a
convolutional network is illustrated below:

! '/v

Input image Convolution! Layer

Figure20: Principle Sketch of PCA

In the convolution layer the units are organized into planes, each of which is called
a feature map. Units in a feature map each take inputs only from a small sub
region of the image, and all of the wunits in a feature map are considered to

37

share the same weight values. For instance, a feature map might consists of 100
units arranged in a 10x10 grid, with each unit taking inputs from a 5x5 pixel
patch of the image. The whole feature map therefore has 25 adjustable weight
parameters plus one adjustable bias parameter. Input values from a patch are
linearly combined using the weights and the bias, and the result transformed by
a sigmoid nonlinearity.

The whole network can be trained by error minimization using back propagation
to evaluate the gradient of the error function. This involves a slight modification
of the usual back propagation algorithm to ensure that the shared-weight constraints
are satisfied. Due to the use of local receptive fields, the number of weights in
the network is smaller than if the network were fully connected. Furthermore, the
number of independent parameters to be learned from the data is much smaller
still, due to the substantial numbers of constraints on the weights. Convolutional
neural network is an excellent approach to image recognition because it makes the
full use of local feature and shares soft weights, which is critical to images.
CNN achieves the best result with 1.972 RMSE1l and 2.086 RMSE2.

CHAPTER 5
(RESULT)

3D face recognition is an important and popular area in recent years. More and
more researchers are working on this field and presenting their 3D face
recognition methods. In this paper, we surveyed some of the latest methods for
3D face recognition under expressions, occlusions, and pose variations. At first
we summarized some various available 3D face databases. All of the above
methods are tested on these databases. Almost all researchers use the following
three formats of face data: point cloud, mesh and range data. All three type
face data are obtained by 3D scanner. The recognition methods are mainly
divided into two categories: local methods and holistic methods. Although many
experiments are carried out based on the holistic method, we believe that the
local method is more suitable for 3D face recognition. Compared to holistic methods, the local
method has stronger robustness in terms of occlusion and can obtain better experimental results.

38

B | = Downlosds/ X | @ facal-keypoint x + - =] X

C @ localhost:8888/notebooks/Downloads/facial-keypoint.ipynb | | s
[HOPCProgramf.. »/ CNNTutorial | Tuto.. PN Voice identification.. 2 Identifying speaker.. &% NextStep-Tata Con.. [} ML Report- Google.. 9 Longest CommonS.. [Facebook F7) Other favorites
" Jupyter facial-keypoint (autosaved) A | oot
File Edit View nsert Cel Kemel Wi Help Trusted | Python3 O
B+ 3 @& B 4 ¥ MHRin B C » code v| | =
Lets explore our dataset
In [3]: train_data.head().T
out[3]:

0 1 2 3 4
left_eye_center_x 66.0336 643329 65.0571 65.2257 66.7253
left_eye_center_y 39.0023 349701 349096 37.2618 396213
right_eye_center_x 30227 299493 30.9038 32.0231 322448
right_eye_center_y 364217 334487 34.9096 37.2618 38.042
left_eye_inner_corner_x 59.5821 588562 59.412 60.0033 58.5659
left_eye_inner_comer_y 396474 352743 36.321 391272 396213
left_eye_outer_corner_x 731303 707227 709844 723147 725159
left_eye_outer_corner_y 3997 36.1872 36.321 38381 398845
right_eye_inner_corner_x 36.3566 36.0347 376781 376186 36.9824
right_eye_inner_corner_y 37.3894 343615 36.321 38.7541 39.0949
right_eye_outer_cormer_x 234529 244725 249764 25.3073 225061
right_eye_outer_corner_y 37.3894 331444 36.6032 38.0079 38.3052
left_eyebrow_inner_end_x 56.9533 539874 55.7425 56.4338 572496
left_eyebrow_inner_end_y 29.0336 282759 27.5709 30.9299 306722

left_eyebrow_outer_end_x 802271 786342 788874 77.9103 77.7629 v

ﬂ P Type here to search

Figure21

B | = Downlosds/ X | @ facial-keypoint x + - =] X
C @ localhost:8888/notebooks/Downloads/faciz nt.ipynb B s s
[HOPCProgramf.. »/ CNNTutorial | Tuto.. PN Voice Identification.. 2 Identifying speaker.. % NextStep-Tata Con.. [} ML Report- Google.. 96 Longest CommonS.. [Facebook F7) Other favorites
= Jupyter facial-keypoint (autosaved) A Lot
File Edit View nset Cell Kemel Wi Help T | Python 3 O

B 4| % & B 4 ¥ MNRin B C » | Code v | =

Lets see what is the first image.

In [9]: | plt.imshow(X_train[@].reshape(96,96),cmap="gray’)
plt.show()

0

Now lets separate labels.

In []: | training = train_data.drop('Image’,axis = 1)

Figure22

39

= a X

6 v @ @

. NextStep- Tata Con... [} ML Report - Google.. 96 Longest CommonS.. [3) Facebook i
F Logout

Trusted | Python3 O

B | = Downlosds/ X | @ facal-keypoint x s
C @ localhost:8888/notebooks/Downloads/facial-keypoint.ipynb
[HOP:CProgramf.. 7 CNNTutorial | Tuto.. PN Voice Identification.. 2 Identifying speaker..] Other favorites

: Jupyter facial-keypoint (unsaved changes)
File ~ Edit View Insert Cell Kemel Widgets Help
B 4+ % @& B 4 ¥ NHRin B C M Markdown v | =

Lets reshape and convert it into float value.

In [8]: image_list = np.array(imag,dtype = 'float’)
X_train = image_list.reshape(-1,96,96,1)

Lets see what is the first image

In [18]: plt.imshow(X_train[2].reshape(96,96),cmap="'gray")
plt.show()

Figure23

40

REFERENCES

1. Facial Keypoint Detection Competition.Kaggle, 7 May 2013. Web. 31 Dec. 2016.;https://www.
kaggle.com/c/facial-keypoints-detection. 1.2, 1.3.

2. Liang, Lin, et al. “Face alignment via component-based discriminative search.” Com-
puter Vision-ECCV 2008. Springer Berlin Heidelberg, 2008. 72-85.

3. Amber, Brian, and Thomas Vetter. “Opti-
mal landmark detection using shape models andbranch and bound.” Computer Vision (ICCV),201
1 IEEE International Conference on. IEEE,2011.

4. Belhumeur, Peter N., et al. “Localizing parts offaces using a consensus of exemplars.” Patter
nAnalysis and Machine Intelligence, IEEE Trans-actions on 35.12 (2013): 2930-2940.

5. M. Dantone, J. Gall, G. Fanelli, and L. J. V.Gool. Real-
time facial feature detection usingconditional regression forests. In Proc. CVPR,2012.

6. D. Ciresan, U. Meier, and J. Schmidhuber.Multi-
column deep neural networks for imageclassification. In Proc. CVPR, 2012.

7. M. Valstar, B. Martinez, X. Binefa, and M. Pan-
tic. Facial point detection using boosted regres-sion and graph models. In Proc. CVPR, 2010.

8. Sun, Yi, Xiaogang Wang, and Xiaoou Tang.“Deep convolutional network cascade for facialpoi
nt detection.” Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recog-
nition. 2013.

9. Nouri, Daniel. 2015. Github. Kaggle Fa-cial Keypoints Detection tutorial. Avail-
able from https://github.com/dnouri/kfkd-tutorial/blob/master/kfkd.py

10. https://medium.com/diving-in-deep/facial-keypoints-detection-with-pytorch-86bac79141e4

41

https://github.com/dnouri/kfkd-tutorial/blob/master/kfkd.py
https://medium.com/diving-in-deep/facial-keypoints-detection-with-pytorch-86bac79141e4

f,msdmf,sd

v

CRIGINALITY REPORT

2

200 2%

0,
Yo INTERNET PUBLICATIO

SIMILARITY INDEX SOURCES NS

8%

STUDENT PAPERS

PRIMARY SOURCES

=

arxiv.org

Internet Source

6‘V0

[

machinelearningmastery.com

Internet Source

5(Vo

[

bdtechtalks.com

Internet Source

2 %

i

medium.com

Internet Source

2 %

]

cs231n.stanford.edu

Internet Source

1 %

Www.ir.juit.ac.in:8080

Internet Source

1 %

N B

Submitted to La Trobe

University
Student Paper

1 %

Submitted to University of
Strathclyde

<1

£l 2
Student Paper /0
n towardsdatascience.com <]_
Internet Source
%

42

	1. Multi-Layer Perceptrons
	2. Neurons
	Theo buildingo blocko foro neuralo networkso areo artificialo neurons.o Theseo areo simpleo computationalo unitso thato haveo weightedo inputo signalso ando produceo ano outputo signalo usingo ano activationo function.
	Figure11: Model of a Simple Neuron
	Neuron Weights
	Theo weightedo inputso areo summedo ando passedo througho ano activationo function,o sometimeso calledo ao transfero function.o Ano activationo functiono iso ao simpleo mappingo ofo summedo weightedo inputo too theo outputo ofo theo neuron.o Ito iso c...

	3. Networks of Neurons
	Input or Visible Layers
	Hidden Layers
	Output Layer
	Theo finalo hiddeno layero iso calledo theo outputo layero ando ito iso responsibleo foro outputtingo ao valueo oro vectoro ofo valueso thato correspondo too theo formato requiredo foro theo problem.

	4. Training Networks
	Data Preparation
	Stochastic Gradient Descent
	Weight Updates
	The weightso ino theo networko cano beo updatedo fromo theo errorso calculatedo foro eacho trainingo exampleo ando thiso iso calledo onlineo learning.o Ito cano resulto ino fasto buto alsoo chaotico changeso too theo network.

	2.3) CONVOLUTION IN COMPUTER VISION
	Power of Learned Filters
	Multiple Filters
	Multiple Channels
	Coloro imageso haveo multipleo channels,o typicallyo oneo foro eacho coloro channel,o sucho aso red,o green,o ando blue.o Fromo ao datao perspective,o thato meanso thato ao singleo imageo providedo aso inputo too theo modelo is,o ino fact,o threeo ima...
	Multiple Layers

	2.5.1) PyTorch Deep Learning Model Life-Cycle
	Step 1: Prepare the Data
	Step 2: Define the Model
	Step 3: Train the Model
	Step 4: Evaluate the model
	Step 5: Make predictions

	2.5.2) How to Develop PyTorch Deep Learning Models
	3.2) HOW DO CNNS WORK?
	3.3) TRAINING THE CONVOLUTIONAL NEURAL NETWORK
	4.1) KNN
	4.2) LASSO
	The Lasso regressiono iso ao linearo modelo thato estimateso sparseo coefficients.o Ito iso usefulo ino someo contextso dueo too itso tendencyo too prefero solutionso witho fewero parametero values,o effectivelyo reducingo theo numbero ofo variableso ...
	4.3) ELASTIC NET
	4.4) RIDGE REGRESSION
	4.5) DECISION TREE
	4.6) NEURAL NETWORK
	4.6.1 Package description
	As you know Keras is a high-level neural networks library, written in Python and capable of running ono topo ofo eithero TensorFlowo oro Theano.o Ito waso developedo witho ao focuso ono enablingo fasto experimentation.o Beingo ableo too goo fromo idea...
	4.6.2 Steps to build neural network
	Now, we’ll giveo youo ano ideao ofo howo too buildo theo BPo neuralo network.o Thiso haso theo sameo ideao aso handwritteno numbero recognition,o buto iso slightlyo differento ino someo detail.o Thiso iso ao regressiono problem,o noto ao classificatio...

	4.7 CONVOLUTION NEURAL NETWORK
	4.7.1 Steps to build convolution neural network
	4.7.2 Analysis
	The most successful approach is the convolutional neural network, which has been widely applied too imageo data.o Convolutionalo neuralo networko haso threeo importanto mechanisms:o (i)o localo receptiveo fields,o (ii)o weighto sharing,o ando (iii)sub...

