Gernating Anime Character

Using Gan’s
In
Computer science and Engineering
By
NIkhil Nagpal
171224
Under supervision of

(Professor Dr Vivek seghal)
To

\NFO
< oF RMA]}

o,,\/\ /04/
7 o\
AN m
= o
S =
W S

7, r
£, 2

Juit

faemr da S9ifdas

Department of computer science & Engineering and information Technology

Jaypee University of Information Technology Waknaghat, Solan 173234,

Himachal Pradesh

(1)




Declaration

We hereby declare that the work presented in this report entitled “ANIME
GERNATION?” in partial fulfilment of requirements for the degree of “Bachelor of
Technology in computer science and Engineering” submitted in the department
of Computer Science & Engineering and Information Technology, Jaypee University
of Information Technology waknaghat, is an authentic report of our work arried out
over a period from August 2020 under supervision of Dr. Vivek Seghal ( Associate
Professor, CSE/IT Department).

The matter embedded in the report has not been submitted for the award of any

degree or diploma.

>}:
SN

i\)&*

Nikhil Nagpal

171224

This is to certify that the above statement is made by candidate is true to the best of
my knowledge.

Dr. Vivek Sehgal
Associate Professor
CSE/IT Department

Dated




Q)

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
&
INFORMATION TECHNOLOGY

CERTIFICATE

This is to certify that the work in this project title as “Anime Face

Generation” is entirely written ,successfully completed and
demonstrated by the following student themselves as a fulfillment of

requirement for Bachelor’s of Engineering in Computer Science.

Nikhil Nagpal (171224)




(1)

ACKNOWLEDGEMENTS

We are highly indebted to all the members of Computer Science Department,
Jaypee University of Information Technology for their guidance and constant
supervision as well as providing necessary information regarding the project and for

their support in completing the project.

We would like to express our gratitude towards Dr. Vivek Sehgal, Associate
Professor, for his kind cooperation and encouragement which helped us in

completion of this project and for giving us such attention and time.




(V)

TABLE OF CONTENTS
Chapter Page
L INtrodUuction. ..o 1
| Y (01177 15 10 ) s PR 1
A @ o] 11018 A PR 2
1.3 Dataset. . .ooueieeeee e e 2
1.4 Problem Statement...............ooeiiiiiiiiiiiiiiiieiee e, 2
1.5 Methodology......coviiiiiiii i 2
LoD SO . ittt 2
Chapter 2. Generative Adversarial Networks 3
2. GANS. 3
2.2  Architecture of gan’s...........cooiiiiiiiii 4
2.3 LOSS FUNCHON.....c.vtiiiiii e, 5
24 Mode Collapse. .....veriririii e 8
2.5  Nash Equilibrium..........ccoooiiiiiiiii e 9
2.6 Lalent SPace.....c.ouuiiitiiie e 11
3. System Development 15
3.1 Working of GAN’S.....ccoiiiiiiiiiiiiii it e 1D
3.2 Working of DCGAN’S.....coiiiii e, 16
3.3 Implementation of DCGAN’S.........cooiiiiiiiiiin.. 20
3.4 Training of DCGAN’S....oiiiii e, 24
4. RESULL. . . 25
5-Conclusion e 38




List of Figures

1 Figure 1.0-=-m=smmmom e e e oo e e e e e 2

2 FIQUIe 2.1 --=-mmememmmem e e e e e e 3

3 FIQUIE 2.2 ~mmemmmmm e e oo e e e 4

4 FIQUIE 2.3 ~-=-mmmmemmm e e oo oo oo e e e e e e e 5

5 FIQUIE 2.4 ~-oemmeemmee e oo e e e e e e e 5

6 FIgUIe 2.5 ==-mmmmmeem oo e 10

7 FIQUIe 2.6--=-=n=nemmmmem e e e e e e e 12
8 FIQUIe 2.7---nmmmmmeem e e oo e 13
e Lo [ R i 16
10 Figure 4.1 ----m-emmmmme e oo oo e e e eee 31
o T o 34
12 FIQUIre 4.3 -=--=mmmmmmemem e e e e e e e 34
B o ] B e 34
15 FIgUIre 4.5 -o-mommmmmme oo e 35
16 FIQUIE 4.6 ----m-mm e e e e e 36
I T o 36
18 Figure 4.8-----mmmmm oo 37
19 FigUIe 5.1 -mommmmmm oo oo e 38
20 FIQUIE 5.2 —-memmm e e e 38
21 FIQUIE 5.3 —-mmmmmmmm oo e e e e e ee 39
22 FIQUIE 5.4 —- oo e e 39
23 Figure 5.5--=-===n=emememe e e e e e e e e e ee 40

24 Figure 5.6 -------=-mmmmmmmeme e e e e e e e 40




CHAPTER 1

Introduction
1.1 Motivation

With the current digital climate ,data is the most valuable resource there is.And corporations
routinely collect incomprehensible amounts of data regularly from the users which goes
towards targeted marketing or fodder for data sets to run models upon.Real data has many
drawbacks such as the need to find, gather and organise it. Additionally, real data is often
limited in quantity and might not be sufficient for the requirements of the task.

On top of that the real data is often strictly regulated due to privacy concerns as it may
contain personal information about the users .Synthetic data can provide a much safer
alternative in situations like these. The crux of synthetic data is generating new data which
can be used in the form of completely separate dataset for model evaluation and training or as
test data.Since , Synthetic datasets do not contain any of the real data , it does not allow users
to access the real data ,which solves our privacy problem to begin with.Additionally, this data
can be used to add to the existing data.The present deep learning models more often than not
require great amount of data for generalization.

In generating anime character, we will explore special case when the generative model
generates samples by passing a random noise vector and on the other hand a discriminative
model will be used to discriminate weather the image is real or fake. Through multiple cycles
of generation and discrimination, both the networks train each other, while simultaneously
trying to outwit each other, where a generative data uses existing data to generate new data
and discriminator network tries to differentiate.

However, Synthesis data is an ever evolving field of research.At first, synthetic data was
usually created by modeling some joint multivariate probability distribution, which was then
sampled. Example models include Bayesian networks and Gaussian Distribution Networks,
but most of these methods have one or more restrictions related to data size or
complexity. Recent developments in work on Generative Adversarial Networks (GANSs) have
shown promising results with tabular data

Synthetic data is algorithmically generated information that imitates real-time information.
This type of data is a substitute for datasets that are used for testing and training. Since the
very beginning, synthetic data has been helping corporations from different domains to
validate and train machine-learning models.




1.2 Objective

Obijective of the project is to overcome one of the major problem of getting tons of data to
deal with the overfitting problem of deep learning and artificial intelligence problem here we
create a lots of data from noise vector and some of the data for example with some 50°s or
100’s images we can generate large dataset which help to avoid overfitting problem.

1.3 Dataset

The dataset is created by crawling anime database websites using cur1. The script
anime dataset gen.py Crawls and processes the images into 64x64 PNG images
with only the faces cropped.

1.4 Problem statement
Generate dataset using some of the input images

1.5 Methodology

1.6 Scope

Image collection

Visualization

Generate random noise and make it input for generator neutral network. It
will output generated fake data.

Combining of fake generated data and real data and consider them as input to
discriminator

Discriminator will try to learn by predicting whether the data is fake or real

This will give a framework to stimulate generative modeling of anime style images and

eventually help both amateurs and professional designers to create new anime characters. We

explored automatic creation of anime character. In future, we can try to improve the GAN

model when class labels in training dataset are not evenly distributed. Also improvement in

final resolution of generated images can be worked upon.




CHAPTER 2
2.1 Generative Adversarial Networks

Generative adversarial networks are a deep-learning-based architecture which is used for

training a generative model..
GANs model architecture has two sub-models-

1. Discriminator model : it’s role is of classification whether or not input fed into it is
real or generated by the Generator
2. Generator model : it’s role is to generate input data from latent random noise.It is used

to generate new data which can plausibly be part of the problem domain
Both ,the generator and discriminator, are trained together.

The generator generates a batch of samples, and these along with real examples from the
domain are provided to the discriminator and classified as real or fake. The generator a

multivariate gaussian distribution to a random distribution

The discriminator is updated so that it can get better at differentiating between the real and
fake batch data in the next iteration, the generator is also updated based on how good the
generated data was good at fooling the discriminator.. The discriminator is supposed to tell

whether the distribution parameterized by the generator is comparable to real training data.
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Figure 2.2: GAN architecture

2.2 Architecture
The architecture of a GAN has two basic elements: the generator network and the

discriminator network. Each network can be any neural network, such as an Artificial
Neural Network (ANN), a Convolutional Neural Network (CNN), etc.

Generator

The generator model takes a fixed-length random vector as input and generates a
sample in the domain. The vector isdrawn from randomly from a Gaussian
distribution, and the vector is used to seed the generative process. After training,
points in this multidimensional vector space will correspond to points in the problem
domain, forming a compressed representation of the data distribution. This vector
space is referred to as a latent space, or a vector space comprised of latent variables.

Latent variables, or hidden variables, are those variables that are important for a




domain but are not directly observable. It has five layers: an input layer, three hidden

layers, and an output layer.

Dataset - ‘

Generator Architecture Discriminator

Figure 2.3:

Discriminator

The discriminator model takes an example from the domain as input (real or
generated) and predicts a binary class label of real or fake (generated). The real
example comes from the training dataset. The generated examples are output by the
generator model.

The discriminator is a normal (and well understood) classification model. After the
training process, the discriminator model is discarded as we are interested in the

generator.
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2.3 Loss Functions

The loss function described in the original paper written by lan Goodfellow. can be derived
from the formula of binary cross-entropy loss. The binary cross-entropy loss can be
written as,

L™, y)=[y.log.y"" +(1-y).log(1-y"")]

Discriminator Loss Function

While training the discriminator, the label of data coming from Py, (X) is y = 1 for real data
and y- = D(x). Putting these values in the above loss function we get,

L(D(x),1) = log(D(x))

And for data coming from the generator, the label is y = 0 for fake data and y = D(G(z)). So
in this case, we get

L(D(G(2)),0) = log(1-D(G(2)))

the role of the discriminator is to correctly classify the fake and real dataset. For this above
equations should be maximized and the final loss function for the discriminator can be given
as

L®=max[log D(x)+log(1- D(G(x)))]

Generator Loss Function

Since the generator is competing against the discriminator. So, it will try to minimize the

above equation and loss function is given as,




L®=min[log D(x)+log(1- D(G(x)))]
6

Thus the combined loss function
L=mingmaxp[log D(x)+log(1- D(G(x)))]

Remember that the above loss function is valid only for a single data point, to consider the
entire dataset we need to take the expectation of the above equation as

mingmaxpV(D,G)=mingmaxp(Ex-px[10g D(X)]+E-p[10g(1- D(G(X))])

The algorithm as per lan Goodfellow original paper on GAN:

Mini Batch stochastic gradient descent training of generative adversarial nets.
For a number of training iterations we do.
For k steps do

Part 1
e Sample mini-batch of m noise sample {Z®............ Z™3} form noise prior to
Py(2)
e Sample of mini-batch of m noise sample{x®™............ x™3} from data

generating distribution Pgata(X)
e Update the discriminator by ascending its stochastic gradient

1/0 Z [OO0 O+ 000 =0 EMI
End for -

Part 2
e Sample mini-batch of m noise samples {Z®........... Z™} form noise prior to
Py(2)
e Update the generator by descending its stochastic gradient

961/ Z OO0 = D0 ()

=1




End for
The gradient-based updates can use any standard gradient-based learning rule. We use
momentum in our experiments

As we can see from the above algorithm that both the generator and the discriminator are
trained separately. In part 1 real data, fake data are input into the discriminator with correct
labels and then we train the discriminator. Gradients are propagated through the network
keeping the generator fixed.We update the discriminator by increasing the stochastic gradient
as we want the discriminator to maximize its loss function.

In part 2 ,update the values in the generator model by keeping the discriminator static and
inputting fake data with fake labels in order to trick the discriminator. We update generator
model by reducing its stochastic gradient as we want to minimize the generator loss function

2.4 Mode Collapse

In a perfect world, GAN will produce a wide variety of outputs, but if a generator outputs a
very realistic, plausible output it may learn to produce only that one output. In essence, the
role of the generator is to produce that one output to trick the discriminator.

However, if this happens over and over again, the discriminator learns to always reject this
output. This may make it stall into local minima and doesn't track down the best strategy then
it is excessively simple for generator iteration to trick the discriminator.

Every iteration of the generator over-optimizes for a specific discriminator, and the
discriminator never figures out how to get familiar on how to break out of the cycle.
Consequently the generators rotate through a small set of output values which brings about
mode collapse..

The objective of the gan generator is to create output that can fool the discriminator D the
most as possible.

O
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One verge case is when the Generator trains extensively without any updates to the
Discriminator. The generated (output of generator ) output will converge to find the optimal
output x* which will fool the Discriminator the most and the most realistic output from the
discriminator point of view. In this extreme, x* will be independent of z.

X =argmaxy D(x)

The mode collapses to a single point. The gradient associated with z tends to zero.

When we restart the training in the discriminator, the most effective way to detect generated
images is to detect this single mode. Since the generator reduces the impact of z, the gradient
from the discriminator will probably push the single point around for the next vulnerable
mode

The generator produces such an imbalance of modes in training that it degrades its ability to
detect others. Now, both networks i.e generator and discriminator are overfitted to exploit
short-term opponent weakness. As a result, the model fails to converge

2.5 Nash equilibrium

GAN: s are based on the zero-sum game concept i.e. if one wins the other loses as fixed. In a
zero-sum game also called minimax your opponent wants to maximize their actions and your
action to minimize them.

The GANs model converges when the discriminator and the generator reach a point known as
Nash equilibrium. This optimal point is represented as -

minGmaXDV(D’G):Ex—-p(X)[IOg D(X)] +Ex~p(x)[log(1' D(X))]

Since both sides want to undermine the others, a Nash equilibrium happens when one player
will not change its action regardless of what the opponent may do. Consider two players A
and B which manipulate and survey the value of “x and y” respectively. Player A wants to
maximize the value of “xy” while B wants to minimize it.

mingmax,V(D,G)=xy

The Nash equilibrium happens when x=y=0. This is the only state where the action of your
opponent does not matter. It is the only state that any opponent’s actions will not change the
game decision.




Let’s see whether we can find the point of Nash equilibrium easily using gradient descent.
We update the parameters x and y based on the gradient of the value function V.

AL = (00 0)/0(D))
AL = —0(0(0D)/0(0)

where a(alpha) is the learning rate of problems. When we plot x and y, and Xy against the
training iterations, we realize our solution does not converge.

Figure 2.5 : Representation of when Nash Equilibrium isn’t reached

If we increase the learning rate or train the model longer duration of time, we can see the
parameters X, y is unstable with big swings

How do you find Nash Equilibrium?

To find the Nash equilibrium in a game, one would have to model out each of
the possible scenarios to determine the results and then choose what the optimal
strategy would be. In a two-person game, this would take into consideration the
possible strategies that both players could choose. If neither player changes
their strategy knowing all of the information, a Nash equilibrium has occurred
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2.6 Latent space

It simply means a presentation of compressed data. The concept of “latent space”
IS important because its utility is at the core of ‘deep learning” — learning the features of data
and simplifying data representations for the purpose of finding patterns. The latent space
representation of our data contains all the important information needed to represent our
original data point. This representation must then represent the features of the original data.
In other words, the model learns the data features and simplifies its representation to make it
easier to analyze. This is at the core of a concept called Representation Learning, defined as a
set of techniques that allow a system to discover the representations needed for feature
detection or classification from raw data. In this use case, our latent space representations are
used to transform more complex forms of raw data (i.e. images, video), into simpler

representations which are ‘more convenient to process’ and analyze.

2.6 Pre-defined Networks

A. Residual Networks(ResNet)

A residual network is an artificial neural network particularly known as ANN. It is

used for computer vision tasks. ResNet makes it possible to train up to hundreds or
even thousands of layers and still achieves compelling performance. Taking
advantage of its powerful representational ability, the performance of many computer
vision applications other than image classification has been boosted, such as object
detection and face recognition. The core idea of ResNet is introducing a so-called
“identity shortcut connection”. For face detection we will be using the pre-trained

Inception-ResNet-2 model without fully connected layers.

Resnet architecture was evaluated on ImageNet 2012 classification
dataset consisting of 1000 classes. The model was trained on the 1.28
million training images and evaluated on the 50k validation images.

Moreover, 100k images were used for testing the model accuracy

[N

[




B.ImageNet

ImageNet is a dataset of over 15 million high resolution images belonging to roughly
22,000 categories. These images are collected from the web. It started in 2010, as a
part of an annual competition called ILSVRC. It uses a subset of ImageNet with
roughly 1000 images in each 1000 categories. In all there are roughly 1.2 million
training images, 50,000 validation images, and 150000 testing images.

ImageNet consists of variable-resolution images. Therefore, the images have been
down-sampled to a fixed resolution of 256x256. Given a rectangular image, the image

is rescaled and cropped out the central 256x256 patch from the resulting image.

C. VGG16-Convolutional Network for Classification and Detection

VGGI16 is a convolutional neural network model, proposed in the paper “Very Deep
Convolutional Networks for Large-Scale Image Recognition”. The model achieves
92.7% top-5 test accuracy in ImageNet, which is a dataset of over 14 million images
belonging to 1000 classes. It makes the improvement over AlexNet by replacing large

kernel-sized filters with multiple 3x3 kernel-sized filters one after another.

224 x224x3 224 x224x64

112x 112 x 128

56|x 56 x 256

7x7x512
28 x 28 x 512

14 x 14 x 512 1x1x4096 1x1x 1000

=) convolution+RelLU
max pooling
fully nected+RelU
softmax

Figure 2.6 : Architecture of VGG16
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The input to the covl layer is a 224 x 224 RGB image with a fixed size. The image is
passed through a series of convolutional layers, each with a very small receptive field:
33 (the smallest size that captures the concepts of left/right, up/down, and centre).In
one of the configurations, it also utilizes 1x1 convolution filters, which can be seen as
a linear transformation of the input channels (followed by non-linearity). The
convolution stride is fixed to 1 pixel; the spatial padding of conv. layer input is such
that the spatial resolution is preserved after convolution, i.e. the padding is 1-pixel for
3x3 conv. layers. Spatial pooling is carried out by five max-pooling layers, which
follow some of the conv. layers. Max-pooling is performed over a 2x2 pixel window,
with stride 2.

Following a stack of convolutional layers, three Fully-Connected layers are added,
the first two have 4096 channels each, while the third performs 1000-way ILSVRC
classification and thus has 1000 channels. The soft-max layer is the final layer. In all
networks, the completely connected layers are configured in the same way.

VGG-16

Input
EE-

Conv 1-1
Conv 1-2
Pooing
Conv 2-1
Conv 2-2
Pooing
Conv 3-1
Conv 3-2
Conv 3-3
Pooing
Conv 4-1
Conv 4-2
Conv 4-3
Pooing
Conv 5-1
Conv 5-2
Conv 5-3
Pooing
Dense
Dense
Dense
Output

Figure 2.7 : VGG-16

Figure 2 illustrates the ConvNet configurations. The nets are known by their
names (A-E). All of the configurations are based on a common design found in
architecture, with the only difference being the depth: from the network’s 11
weight layers A to 19 weight layers in the network E (8 conv. and 3 FC layers)
(16 conv. and 3 FC layers). The number of channels in the conv. layers is
minimal, starting at 64 in the first layer and rising by a factor of two after each

max-pooling layer., until it reaches 512.

13




D.Cascade Classifier

Object Detection using feature-based cascade classifiers is an effective object
detection method. It is a machine learning based approach where a cascade function is
trained from a lot of positive and negative images. It is then used to detect objects in
other images. Initially, the algorithm needs a lot of positive images (images of faces)
and negative images (images without faces) to train the classifier. Then we need to
extract features from it. An OpenCV based system that uses a Haar Cascade Classifier
to detect facial features of Japanese anime characters in a given image file.
The cascade classifier consists of a collection of stages, where each stage is an
ensemble of weak learners. If the label is positive, the classifier passes the region to
the next stage. The detector reports an object found at the current window location

when the final stage classifies the region as positive.

14




CHAPTER 3

(SYSTEM DEVELOPMENT)

3.1 Working Of GANs

2.

The Discriminator and Generator are the two neural networks that make up GAN.
GAN would pit these two networks against one another in a Zero-Sum game
(Game Theory). This is a game that these agents are playing (the networks). This
is where the adversarial name in GAN comes from.

Generator will produce some fake data, and the Discriminator will define a few
data sets that contain both fake data produced by Generator and real data
samples. The Generator's main goal is to create fake data that looks like real data
in order to trick the Discriminator into thinking it's real..

The Discriminator's goal is to improve its ability to distinguish between real and
fake data. Each agent will travel in a clockwise direction. We hope that by
duelling these agents, particularly the Generator, they will become stronger. That
is, the Generator will sample a distribution that has been studied and is supposed
to be the same distribution as the real data, simulating the real data. It will
develop a neural network capable of generating it. The Discriminator, on the
other hand, will use a supervised technique to train its neural network to detect
fake and real data. Each network will train its network in a different order each

time.

There are 3 major steps in the training of a GAN:

Using the generator to create fake inputs based on random noise or in our case,

random normal noise.

Training the discriminator with both real and fake inputs (either simultaneously
by concatenating real and fake inputs, or one after the other, the latter being

preferred).

Train the whole model: the model is built with the discriminator combined with

the generator.
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Figure 3.1: How GANs work

3.2 Working of DCGANSs

® Replace all max pooling with convolutional strides

e Use transposed convolution for upsampling.

e Eliminate fully connected layers.

e Use batch normalization except for the output layer for the generator and the input

layer of the discriminator.

® Use ReLU in the generator, except for the output, which uses tanh.

e Use LeakyRelL U in the discriminator.

16



http://cs231n.github.io/neural-networks-1/

Layers in generator network:

Layer Number | Layer name Configuration

1 Input Layer Input shape=(batch size, 100),
output shape= (batch size, 100)

2 Dense Layer neurons=2048,
input shape=(batch size, 100),
output_shape=(batch size, 2048),
activation='Relu’

3 Dense Layer neurons=16384,
input shape=(batch size, 100),
output_shape=(batch size, 2048), batch
normalization=Yes,
activation='Relu’

4 Reshape Layer Inputshape=(batch_size=16384),
output_shape= (batch_size, 8, 8, 256)

5 Up sampling Layer size=(2, 2),
input shape=(batch_size, 8, 8, 256),
output_shape=(batch size, 16, 16, 256)

6 2D convolution Layer | filters=128, kernel size=(5, 5),
strides=(1, 1),
padding='same’,
input_shape=(batch_size, 16, 16,
256), output_shape=(batch_size, 16, 16,
128), activation="relu’

7 Upsampling Layer size=(2, 2),
input_shape=(batch_size, 16, 16, 128),
output_shape=(batch_size, 32, 32, 128)




8 2D convolution Layer | filters=64, kernel_size=(5, 5),
strides=(1, 1),
padding='same’,
activation=ReLU,
input_shape= (batch_size, 32, 32, 128),
output_shape=(batch_size, 32, 32, 64),
activation="relu'
9 Upsampling Layer size=(2, 2),
input_shape=(batch_size, 32, 32, 64),
output_shape=(batch_size, 64, 64, 64)
10 2D convolution Layer | filters=3,

kernel_size=(5, 5),

strides=(1, 1), padding="same’,
activation=ReLU,

input_shape= (batch_size, 64, 64, 64),
output_shape=(batch_size, 64, 64,

3), activation="tanh'

18




Layers in discriminator network:

Layer Number | Layer Name Configuration

1 Input Layer input_shape=(batch_size, 64, 64, 3),
output_shape= (batch_size, 64, 64, 3)

2 2D convolutional Layer | filters=128,
kernel_size=(5, 5),
strides=(1, 1), padding="valid',
input_shape=(batch_size, 64, 64, 3),
output_shape=(batch_size, 64, 64, 128),
activation="leakyrelu’,
leaky_relu_alpha=0.2

3 MaxPooling2D pool_size=(2, 2),
input_shape=(batch_size, 64, 64, 128),
output_shape=(batch_size, 32, 32, 128)

4 2D convolutional Layer | filters=256,
kernel_size=(3, 3),
strides=(1, 1), padding="valid',
input_shape=(batch_size, 32, 32, 128),
output_shape=(batch_size, 30, 30, 256),
activation="leakyrelu’,
leaky relu_alpha=0.2

5 MaxPooling2D pool_size=(2, 2),
input_shape=(batch_size, 30, 30, 256),
output_shape=(batch_size, 15, 15, 256)




6 2D convolutional Layer | filters=512,

kernel_size=(3, 3),

strides=(1, 1),

padding='"valid',
input_shape=(batch_size, 15, 15, 256),
output_shape=(batch_size, 13, 13, 512),
activation="leakyrelu’,

leaky relu_alpha=0.2

7 MaxPooling2D pool_size=(2, 2),
input_shape=(batch_size, 13, 13, 512),
output_shape=(batch_size, 6, 6, 512)

8 Flatten Layer input_shape=(batch_size, 6, 6, 512),
output_shape= (batch_size, 18432)

9 Dense Layer neurons=1,
input_shape=(batch_size, 1024),
output_shape=(batch_size, 1),

activation='sigmoid’

10 Dense Layer neurons=1, input_shape=(batch_size, 1024),
output_shape=(batch_size, 1),

activation='sigmoid’

3.3 Implementing DCGANS using Keras

Keras is a meta-framework that uses TensorFlow or Teano as a backend. It
provides high-level APIs for working with neural networks. It also has pre-built
neural network layers, optimizers, regularizers, initializers, and data-
preprocessing layers for easy prototyping compared to low-level frameworks,
such as TensorFlow.

For Generator Network: the generator network consists of some 2D convolutional

layers, upsampling layers, a reshape layer, and a batch normalization layer. In
Keras, every operation can be specified as a layer. Even activation functions are
20




layers in Keras and can be added to a model just like a normal dense layer.

For discriminator Network: All convolutional layers have LeakyReLU as the activation

function with an alpha value of 0.2 the convolutional layers have 128, 256, and 512 filters,
respectively. Their kernel sizes are (5, 5), (3, 3), and (3, 3), respectively. After the
convolutional layers, we have a flatten layer, which flattens the input to a one-dimensional
tensor. Following this, the network has two dense layers with 1,024 neurons and one neuron,
respectively. The first dense layer has LeakyRelLU as the activation function, while the
second layer has sigmoid as the activation function. Sigmoid activation is used for binary
classification. We are training the discriminator network to classify between real or fake

images.

Steps to create generator network involves:

1. creating a Sequential Keras model: gen_model = sequential()

2. add a dense layer that has 2,048 nodes, followed by an activation layer,
tanh
gen_model.add(Dense(units=2048))
gen_model.add(Activation(‘tanh"))

3. add the second layer, which is also a dense layer that has 16,384 neurons.
This is followed by a batch normalization layer with default
hyperparameters and tanh as the activation function:

gen_model.add(Dense(256*8*8))
gen_model.add(BatchNormalization())

gen_model.add(Activation('tanh’))

4. Next, add a reshape layer to the network to reshape the tensor from the last
layer to a tensor of a shape of (batch_size, 8, 8, 256)
gen_model.add(Reshape((8, 8, 256),
input_shape=(256*8*8,)))

5. Next, add a 2D upsampling layer to alter the shape from (8, 8, 256) to (16,
16, 256). The upsampling size is (2, 2), which increases the size of the
tensor to double its original size. Here, we have 256 tensorsof a
dimension of 16 x 16
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gen_model.add(UpSampling2D(size=(2, 2)))

6. Next, add a 2D convolutional layer. This applies 2D convolutions on the
tensor using a specified number of filters. Here, we are using 64 filters and
a kernel of a shape of (5, 5)
gen_model.add(Conv2D(128, (5, 5),
padding="same")) gen_model.add(Activation('tanh"))

7. Next, add a 2D upsampling layer to change the shape of the tensor from
(batch_size, 16, 16, 64) to (batch_size, 32, 32, 64)

8. Next, add a second 2D convolutional layer with 64 filters and a kernel size
of (5, 5) followed by tanh as the activation function.

9. Next, add a 2D upsampling layer to change the shape from (batch_size,
32, 32, 64) to (batch_size, 64, 64, 64)

10. Finally, add the third 2D convolutional layer with three filters and a kernel
size of (5, 5) followed by tanh as the activation function.

Steps to create discriminator network involves:

1. Start by creating a Sequential Keras mode : dis_model = Sequential()

2. Add a 2D convolutional layer that takes an input image of a shape of (64, 64,
3). The hyperparameters for this layer are the following. Also, add
LeakyReL U with an alpha value of 0.2 as the activation function
Filters: 128
Kernel Size: (5, 5)

Padding: Same

3. Next, add a 2D max pooling layer with a pool size of (2, 2). Max pooling is
used to downsample an image representation and it is applied by using a max-

filter over non-overlapping sub-regions of the representation.
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Next, add another 2D convolutional layer with the following configurations:
Filters: 256

Kernel size: (3, 3)

Activation function: LeakyRelL U with alpha 0.2

Pool size in 2D max pooling: (2, 2)

Next, add the third 2D convolutional layer with the following configurations:
Filters: 512

Kernel size: (3, 3)

Activation function: LeakyReL. U with alpha 0.2

Pool size in 2D Max Pooling: (2, 2)

Next, add a flatten layer. This flattens the input without affecting the batch

size. It produces a two-dimensional tensor

Next, add a dense layer with 1024 neurons and LeakyReLU with alpha 0.2 as

the activation function.

Finally, add a dense layer with one neuron for binary classification. The
sigmoid function is the best for binary classification, as it gives the
probability of the classes.

Finally, add a dense layer with one neuron for binary classification. The
sigmoid function is the best for binary classification, as it gives the probability

of the classes.

23




3.4Training the DCGANSs

Training a DCGAN is similar to training a Vanilla GAN network. It is a four-step

process:

1. Load the dataset.

2. Build and compile the networks.

3. Train the discriminator network.

4. Train the generator network

Initially, both of the networks are naive and have random weights. The standard
process to train a DCGAN network is to first train the discriminator on the batch
of samples. To do this, we need fake samples as well as real samples. We already
have the real samples, so we now need to generate the fake samples. To generate
fake samples, create a latent vector of a shape of (100,) over a uniform
distribution. Feed this latent vector to the untrained generator network. The
generator network will generate fake samples that we use to train our
discriminator network. Concatenate the real images and the fake images to
create a new set of sample images. We also need to create an array of labels:
label 1 for real images and label O for fake images

To train the generator network, we have to train the adversarial model. When we
train the adversarial model, it trains the generator network only but freezes the

discriminator network.
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CHAPTER 4

(PERFORMANCE ANALYSIS)

Synthetic data is a very powerful tool that can overcome many barriers in data science.
High-quality synthetic data can substitute for real data to alleviate privacy concerns. The
quality of synthetic data is determined by whether the synthetic data correctly captures the
correlations between different columns. We define the learning task so that the quality of

synthetic data generated can be measured quantitatively.

4.1 Synthetic data generation
Learning task definition:

The synthetic data generation task is to train G i.e. a data synthesizer, which takes a table as
input and generates an engineered form of this input. We require the input table to contain
independent rows and only continuous and discrete columns. A table T contains
Nccontinuous columns {C1,C2,.....CNc}, and Nd discrete columns {D1,D2,.....,DNd}. Each
and every segment/column is thought of as an arbitrary variable. These arbitrary variables
trail an unidentified joint distribution P(C1:Nc, D1:Nd). One row rj
={clj,....,cNc,j,d1,....,dNd,j} is one sample from the joint distribution. T is then apportioned
into a test set Ttest. and training set Ttrain. After training G on Ttrain, Tsyn is generated by

autonomously sampling rows from data synthesizer G.

Evaluation metrics: Direct evaluation of Tsyn either tests whether Ttrain, Tsyn are sampled
from the same distribution or calculates the distance between two underlying

distributions. Existing methods for this test make some strong assumptions on the

underlying distribution. For example, Z-test takes into consideration, the data trails a
Gaussian distribution. By using these strong assumptions, the methods don’t apply to tabular
data with complicated distributions. As direct evaluation is intractable, we, therefore, use two

alternative methods described below:

Sample likelihood: In this method, the distribution of Ttrain, denoted as Ptrain(), is known
and the distribution of Tsyn, denoted as Psyn(), can be approximated. The likelihood of Ttest
on Psyn(), and the likelihood of Tsyn on Ptrain() can reveal the distance between two

distributions.
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Machine learning efficacy: In general cases, finding the underlying distributions is hard.
Alternatively, the quality of Tsyn can be evaluated by machine learning applications such as
the classification or regression. For instance, an individual can train a regressor

and/or classifier or envisage one column using other columns as features. We can then
measure efficacy by evaluating whether a classifier or regressor learned from Tsyn can

achieve equivalent or higher performance on Ttest as a model learned on Ttrain would.

4.2 Existing techniques for generation of synthetic data

The possibility of generating fully synthetic data appeals to different research

communities, including statistics, database management, and machine learning. PrivBayes
uses traditional Bayesian networks but adds a differentially private learning algorithm. GANs
are better because of their performance and the flexibility they exhibit in representing data.

4.2.1 PrivBayes

PrivBayes create the superior grade, differentially private engineered data utilizing Bayesian

networks.

Motivation: Bayesian networks represent a joint distribution of discrete variables. To

generate differentially private synthetic data, we use three steps as shown below:
Learn a Bayesian network.

Inject Laplace noise to each parameter in the network.

Sample from the noisy network.

Usually, this process leads to low-quality synthetic data due to a large amount of noise that is
injected in step 2. To acquire a certain privacy level, each network structure needs a different

amount of noise.

Preprocessing: Bayesian networks cannot model continuous variables. In PrivBayes all
continuous variables are discretized into 16 equal-sized bins in such a way that the modeling

algorithm only deals with columns having discrete values.
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Model details: There is a compromise between the Bayesian network’s original quality and
the quality decrease after adding noise. For example, in a table with Nd discrete columns,
and (Nd-1)-way Bayesian network can fit the distribution, but some weights in the

network will have low value and high sensitivity. This means that noise can play a huge role
in a noisy model. PrivBayes uses a greedy algorithm to find a graph that maximizes the

mutual information.

Datasets and evaluation metrics: PrivBayes is rigorously evaluated on four real datasets.
Machine learning efficacy is evaluated, so is the distance of marginal distribution.

4.2.2. MedGAN

As health records are valued for the purpose of research, however, they are heavily guarded
due to privacy concerns, healthcare is a domain that needs synthetic data technology more
than other fields primarily because of the significant expense of data retrieval. One solution
to that is MedGAN which uses a GAN framework to generate completely synthetic health

records.

Motivation

In health records, each column usually is dependent upon others, which makes the learning of
the GAN model very hard. Direct demonstration can't be dependent upon as it creates
incorrect results. To rectify that, in MedGAN usually then, an autoencoder is deployed so that

we can project raw data in a lower-dimensional representation.

Preprocessing

MedGAN supports a table where all columns are binary in addition to continuous columns. A
binary column is either 0 or 1 whereas a continuous variable is normalized between 0-1 using

min-max normalization:
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ci,j-min(Ci) max(Ci)-min(Ci)

Datasets and evaluation metrics

Experiments are performed on three different healthcare datasets. The machine learning
efficacy is calculated.

Preprocessing: All continuous columns are normalized. Discrete columns are also converted
to a floating-point number. Each category included in the discrete column is initially
represented by a unique integer in 0,1,.....,Di-1 and then divided by Di-1. Since DCGAN is
created for images, the input is a matrix instead of a vector, and a row in the table

is converted to a square matrix. On the off chance that the quantity of columns is anything
but a square number, zeros are cushioned to the row to build the number of columns to the

following square number.

Model Details: In MedGAN, the generator and discriminator work on different domains. The
generator’s role is to create a hidden representation. The discriminator checks for raw data. In
this manner, the yield of the generator first goes through a decoder before sent down the
pipeline to a discriminator. During training initially, the autoencoder is trained. It remains
fixed when we are training the GAN. The loss function for it varies depending on the variable
type of the column. The loss function for it differs relying upon the variable kind of the

column.

Loss Function
Continuous variables
Mean squared error
Binary variables

Cross entropy loss
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Figure 4.1: The MedGAN architecture comprises encoder, decoder, generator, and
discriminator. The decoder and the encoder are to be trained on real data and then fixed in
later steps.During the process of training, the output of the generator is gone through

the decoder prior to feeding into the discriminator. The discriminator determines whether the

information/data is genuine or counterfeit.
TableGAN

Motivation TableGAN is fundamentally used to generate synthetic information/data pointed

toward settling privacy comprehensions.

Model Details

It uses Convolutional networks for both the discriminator as well as the generator, it is trained
as a basic GAN. When tabular data contains a label column, a prediction loss is added to the
generator to especially improve the correlation between the label column and the other

columns

Datasets and evaluation metrics

This model is evaluated on 4 datasets. The evaluation metric includes machine learning

efficacy.
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4.3 Challenges of Modelling Synthetic Data Using GAN

Countless properties which are unique to tabular data make designing a GAN-based model
very difficult. In this section, first we highlight these challenges as they relate to single-table

non-time series data, which we try to address in our model.
Challenges on tabular data generation

Modeling and synthetically making single-table non-time series data is the simplest difficulty
in synthetic data. Each row in the table is sampled independently from the distribution of all
possible rows. One could argue that if a row of data is symbolized as a vector, specifically
using min-max normalization on continuous values and one-hot depiction for discrete
values, then GAN models intended for images could easily be adapted to tabular data.
However, here we list numerous special properties of single-table non-time-series data that

can break this naive adaptation.

(1. Mixed data types: Real-life tabular data consists of diverse data types (continuous,
ordinal, categorical, etc.). Each column has a complex relationship with other columns. For
tabular data, alterations to GANs must apply both softmax and tanh on the output to at the
same time generate a mix of discrete and continuous columns. In the meantime, the
modeling technique should be able to model the probability density of mixed discrete-

continuous distribution.

(2. Multimodal distributions: We observe that multiple continuous columns in our real-world
datasets have numerous modes. It showed that a traditional GAN can’t model all modes on a
two-dimensional dataset, thus it also wouldn’t be able to model the multimodal distribution

which is present in continuous valued columns.

This is a recognized issue of GAN. GANs make their real/fake conclusion on only one
example, so if the generator figures out one accurate example and tries to duplicate that

example every time, the discriminator does not have enough data to figure out the issue.
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The encoder and the decoder are trained on real data
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The output of the generator passes through the decoder before being fed into the discriminator
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Real data directly fed into the discriminator

i

.. ] eal
".;| Discriminator

Figure 4-1: Shows that a traditional GAN cannot model a simple 2-dimensional

Gaussian mixture.

(A) shows the probability density of 25 Gaussian distributions
(B) shows the distribution learned by GAN

(C) shows the original distribution

(D) shows distribution learned by GAN

(3. Learning from encoded vectors: To allow learning from categorical columns, which has

been changed into a one-hot vector. While producing synthetic data samples, a generative
model is trained to produce the probability distribution across all the categories using

softmax function.

31




This is the issue in GANs because an insignificant discriminator can simply differentiate real
and fake data by checking the distribution’s scarceness instead of considering the general

realness of a row.

(4. Highly imbalanced categorical columns: In practical datasets, most categorical columns
have a highly imbalanced distribution. In our datasets, we discover that half of the categorical
columns are highly imbalanced — the major category appears in more than 80% of the all

data entries,causing mode collapse.

Not including a small category only results in minute changes to the distribution of data, but
imbalanced data leads to inadequate training chances for these smaller classes. The
Discriminator network cannot detect such problems unless mode-collapse-preventing
mechanisms are implemented. These methods can help prevent GANs from producing only
the most noticeable classes. Synthetic data for the smaller categories are anticipated to be of
lower quality, demanding to resample.

(5. High dimensionality: The high dimensionality of tabular data escalates the

complexity exponentially. For example, n binary variables have 2*n likelihoods. Precisely
representing the probability distribution using a small neural network is impossible because
there are not enough parameters, and there is typically not sufficient training data. In this
case, any modeling technique introduces bias to the estimate. For example, when modeling
with a GAN, bias could come in while selecting a specific network structure

or learning objective. Compared to statistical models, the bias introduced in neural network

models is difficult to analyze.

(6. Lack of training data: Learning with small training data is a perplexing problem. Similar
difficulties have been registered as few-shot learning or meta-learning. Such tasks are easier
with images because the content in different images shares similar filters. Yet, tabular data is
radically different. It is perplexing to efficiently transfer knowledge learned from one table to
another.
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(7. Missing values: Tabular data has missing values. To directly train a GAN model on
tabular data with missing values, one should modify the data representation to appropriately
differentiate missing values from identified values, and guise the model to make it robust
towards missing values. A substitute approach is to assign the missing values before training
the model. However, the data assertion also necessitates modeling of the table. Mistakes in

data imputation would be propagated to learned GAN models.

Problems MedGAN | TableGAN | Mod-GAN
Mixed data types Yes* Yes* Yes

1
Multimodal Distribution No Yes Yes

1
Learning from encoded vectors | No No Yes

1
Imbalanced Categorical columns | No Yes Yes

1
High Dimensionality Yes Yes Yes

1
Lack of Training Data No No No

1
Missing Values No No No
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import numpy as np

import os

import matplotlib.pyplot as plt
import cv2

import warnings
warnings.filterwarnings('ignore')

import keras

from keras.optimizers import Adam

from keras.models import Sequential, Model

from keras.layers import Dense, LeakyRelLU, BatchNormalization, Reshape, Flatten, Input
from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Conv2DTranspose

Figure 4.2: Loading the libraries

def list_images(basePath, contains=None):

return list_files(basePath, validExts=(".jpg", ".jpeg”, ".png", "“.bmp"),

def list_files(basePath, validExts=(".jpg", ".jpeg”, ".png”, ".bmp"),
for (rootDir, dirNames, filenames) in os.walk(basePath):
for filename in filenames:

if contains is not None and filename.find(contains) == -1:
continue
ext = filename[filename.rfind("."):].lower()

if ext.endswith(validExts):
imagePath = os.path.join(rootDir, filename).replace(”
yield imagePath

def load_images(directory=""', size=(64,64)):
images = []
labels = []
label = ©

imagePaths = list(list_images(directory))
for path in imagePaths:
if not('0SX' in path):
path = path.replace('\\"', "' /")

cv2.imread(path)
cv2.resize(image, size)

Figure 4.3: reading images from the dataset

image
image
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images=load_images('../input/data")

_,ax = plt.subplots(5,5, figsize = (8,8))
for i in range(5):
for j in range(5):
ax[i,j].imshow(images[5¥i+j])
ax[i,j].axis('off")

Figure 4.4 : Displaying images
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Figure 4.5 : Output of the image dataset
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def build_generator(self):
epsilon = 0.080001
noise_shape = (self.noise_size,)

model = Sequential()

model.add(Dense(4*4%512, activation='linear', input_shape=noise_shape))
model.add(LeakyRelLU(alpha=8.2))
model.add(Reshape((4, 4, 512)))

model.add(Conv2DTranspose(512, kernel_size=[4,4], strides=[2,2], padding="same",
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.082)))

model.add(BatchNormalization(momentum=8.9, epsilon=epsilon))

model.add(LeakyRelLU(alpha=8.2))

model.add(Conv2DTranspose(256, kernel_size=[4,4], strides=[2,2], padding="same",
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))

model.add(BatchNormalization(momentum=0.9, epsilon=epsilon))

model.add(LeakyRelLU(alpha=6.2))

model.add(Conv2DTranspose(128, kernel_size=[4,4], strides=[2,2], padding="same",
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.082)))

model.add(BatchNormalization(momentum=8.9, epsilon=epsilon))

model.add(LeakyRelLU(alpha=6.2))

model.add(Conv2DTranspose(64, kernel_size=[4,4], strides=[2,2], padding="same",
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.02)))

model.add(BatchNormalization(momentum=8.9, epsilon=epsilon))

model.add(LeakyRelLU(alpha=6.2))

model.add(Conv2DTranspose(3, kernel_size=[4,4], strides=[1,1], padding="same"”,
kernel_initializer= keras.initializers.TruncatedNormal(stddev=0.082)))

Figure 4.6 : Building the generator

model = Sequential()

model.add(Conv2D(128, (3,3), padding='same’, input_shape=self.img_shape))
model .add(LeakyRelLU(alpha=6.2))

model .add(BatchNormalization())

model.add(Conv2D(128, (3,3), padding='same’))
model.add(LeakyRelLU(alpha=86.2))

model .add(BatchNormalization())

model .add(MaxPooling2D(pool_size=(3,3)))

model .add(Dropout(8.2))

model.add(Conv2D(128, (3,3), padding='same’))
model .add(LeakyRelLU(alpha=86.2))
model.add(BatchNormalization())
model.add(Conv2D(128, (3,3), padding='same’))
model .add(LeakyRelLU(alpha=6.2))
model.add(BatchNormalization())

model .add(MaxPooling2D(pool_size=(3,3)))
model .add(Dropout(8.3))

model.add(Flatten())

model .add(Dense(128))
model.add(LeakyRelLU(alpha=8.2))

model .add(Dense(128))

model .add(LeakyRelLU(alpha=8.2))

model .add(Dense(1, activation='sigmoid’))

model.summary ()

img = Input(shape=self.img_shape)
validity = model(img)

return Model(img, validity)
Figure 4.7 : Building of Discriminator
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Imkdir animeGenerated

gan=G6AN()

gan.train(epochs=15001, batch_size=256, metrics_update=200, save_images=1000, save_model=15000)

Figure 4.8 : Folder containing trained images
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CHAPTER S

(RESULT)

Figure 5.1 : Output at 100 epochs

Figure 5.2 : Output at 200 epochs
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