
Gernating Anime Character

Using Gan’s

In

Computer science and Engineering

By

NIkhil Nagpal

171224

Under supervision of

(Professor Dr Vivek seghal)

To

Department oficomputer science & Engineering andiinformation Technology

Jaypee University ofiInformation Technology Waknaghat, Solani173234,
Himachal Pradesh

(I)

Declaration

We hereby declare that the work presented in this report entitled “ANIME

GERNATION” in partial fulfilment of requirements for the degree of “Bachelor of

Technology in computer science and Engineering” submitted in the department

of Computer Science & Engineering and Information Technology, Jaypee University

of Information Technology waknaghat, is an authentic report of our work arried out

over a period from August 2020 under supervision of Dr. Vivek Seghal (Associate

Professor, CSE/IT Department).

The matter embedded in the report has not been submitted for the award of any

degree or diploma.

Nikhil Nagpal

171224

This is to certify that the above statement is made by candidate is true to the best of

my knowledge.

Dr. Vivek Sehgal

Associate Professor

CSE/IT Department

Dated

(II)

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

&

INFORMATION TECHNOLOGY

CERTIFICATE

This is to certify that the work in this project title as “Anime Face

Generation” is entirely written ,successfully completed and

demonstrated by the following student themselves as a fulfillment of

requirement for Bachelor’s of Engineering in Computer Science.

Nikhil Nagpal (171224)

(III)

ACKNOWLEDGEMENTS

We are highly indebted to all the members of Computer Science Department,

Jaypee University of Information Technology for their guidance and constant

supervision as well as providing necessary information regarding the project and for

their support in completing the project.

We would like to express our gratitude towards Dr. Vivek Sehgal, Associate

Professor, for his kind cooperation and encouragement which helped us in

completion of this project and for giving us such attention and time.

(IV)

TABLE OF CONTENTS

Chapter Page

1. Introduction……………………………………………………………1

1.1 Motivation…………………………………………………....1

1.2 Objectives……………………………………………………..2

1.3 Dataset………………………………………………………...2

1.4 Problem Statement…………………………………………....2

1.5 Methodology………………………………………………….2

1.6 Scope………………………………………………….............2

Chapter 2. Generative Adversarial Networks 3

 2.1 GANs………………………………….………………………3

 2.2 Architecture of gan’s……………………………………4
 2.3 Loss Function……………………..…………………………..5

2.4 Mode Collapse………………..…………………………….....8

2.5 Nash Equilibrium………..………………………………….…9

2.6 Latent space…….………..………………………………….…11

3. System Development 15

3.1 Working of GAN’s…………………………15

3.2 Working of DCGAN’S…………………………………... 16

3.3 Implementation of DCGAN’S……………………………20

3.4 Training of DCGAN’S…………………………………... 24

4. Result………………………………………………………………….25

5 Conclusion……………………………………………………………..38

List of Figures

1 Figure 1.0---2

2 Figure 2.1---3

3 Figure 2.2 --4

4 Figure 2.3 --5

5 Figure 2.4 --5

6 Figure 2.5 ---10

7 Figure 2.6--12

8 Figure 2.7--13

9 Figure 3.1 --16

10 Figure 4.1 --31

11 Figure 4.2 --34

12 Figure 4.3 --34

13 Figure 4.4 --34

15 Figure 4.5 --35

16 Figure 4.6 --36

17 Figure 4.7 --36

18 Figure 4.8--37

19 Figure 5.1 --38

20 Figure 5.2 --38

21 Figure 5.3 --39

22 Figure 5.4 --39

23 Figure 5.5---40

24 Figure 5.6 --40

CHAPTER 1

Introduction

1.1 Motivation

With the current digital climate ,data is the most valuable resource there is.And corporations

routinely collect incomprehensible amounts of data regularly from the users which goes

towards targeted marketing or fodder for data sets to run models upon.Real data has many

drawbacks such as the need to find, gather and organise it. Additionally, real data is often

limited in quantity and might not be sufficient for the requirements of the task.

On top of that the real data is often strictly regulated due to privacy concerns as it may

contain personal information about the users .Synthetic data can provide a much safer

alternative in situations like these. The crux of synthetic data is generating new data which

can be used in the form of completely separate dataset for model evaluation and training or as

test data.Since , Synthetic datasets do not contain any of the real data , it does not allow users

to access the real data ,which solves our privacy problem to begin with.Additionally, this data

can be used to add to the existing data.The present deep learning models more often than not

require great amount of data for generalization.

In generating anime character, we will explore special caseiwhen the generative model

generatesisamples by passing a random noise vectoriand on the other hand a discriminative

model will be used to discriminate weather the image is real or fake. Through multipleicycles

of generation and discrimination, both the networks train eachiother, while simultaneously

tryingito outwit each other, where a generative data uses existing data toigenerate new data

and discriminator network tries to differentiate.

However, Synthesis data is an ever evolving field of research.At first, synthetic data was

usually created by modeling some joint multivariate probability distribution, which was then

sampled. Example models include Bayesian networks and Gaussian Distribution Networks,

but most ofithese methods have one orimore restrictions related to data size or

complexity.iRecent developments in work on Generative Adversarial Networks (GANs) have

shown promising results with tabular data

Synthetic data is algorithmically generated information thatiimitates real-time information.

This typeiof data is a substitute for datasetsithat are used for testing and training. Sinceithe

very beginning, synthetic data has beenihelping corporations from different domainsito

validate and train machine-learningimodels.

1

1.2 Objective

 Objective of the project is to overcome one of the major problem of getting tons of data to

deal with the overfitting problem of deep learning and artificial intelligence problem here we

create a lots of data from noise vector and some of the data for example with some 50’s or

100’s images we can generate large dataset which help to avoid overfitting problem.

1.3 Dataset

The dataset is created by crawling anime database websites using curl. The script

anime_dataset_gen.py crawls and processes the images into 64x64 PNG images

with only the faces cropped.

1.4 Problem statement

Generate dataset using some of the input images

1.5 Methodology

i. Image collection

ii. Visualization

iii. Generate random noise and make it input for generator neutral network. It

willioutput generated fakeidata.

iv. Combining of fake generatedidata and real data and consider them as input to

discriminator

v. Discriminator will tryito learn by predicting whether theidata is fake or real

1.6 Scope

This will give a framework to stimulate generative modeling of anime style images and

eventually help both amateurs and professional designers to create new anime characters. We

explored automatic creation of anime character. In future, we can try to improve the GAN

model when class labels in training dataset are not evenly distributed. Also improvement in

final resolution of generated images can be worked upon.

2

CHAPTER 2

2.1 GenerativeiAdversarial Networks

Generative adversarialinetworks are a deep-learning-based architecture which is used for

training a generative model..

GANs modeliarchitecture has two sub-models-

1. Discriminator model : it’s role is of classification whether or not input fed into it is

real or generated by the Generator

2. Generator model : it’s role is to generate input data from latent random noise.It is used

to generate new data which can plausibly be part of the problem domain

Both ,the generatoriandidiscriminator, are trained together.

The generatorigenerates a batch of samples, and theseialong with real examplesifrom the

domain are providedito the discriminator andiclassified as real or fake. The generator a

multivariate gaussian distribution to a random distribution

The discriminator is updated so that it can get better at differentiating between the real and

fake batch data in theinext iteration, the generator is also updatedibased on how good the

generated data was good at fooling the discriminator.. The discriminatoriis supposedito tell

whether the distributioniparameterized by the generatoriis comparable to real training data.

Figure 2.1

 3

 Some parameters and variables

 d= Parameter of discriminator

 g= Parameter of generator

 Pz(z)= Inputinoise distribution

Pdata(x)=Originalidata distribution

 Pg(x)= Generatedidistribution

Figure 2.2: GAN architecture

2.2 Architecture

The architectureiofia GAN has twoibasic elements: theigeneratorinetwork and the

discriminatorinetwork. Each networkicanibe any neuralinetwork, such as an Artificial

NeuraliNetworki(ANN), a ConvolutionaliNeuraliNetwork (CNN), etc.

Generator

The generatorimodel takesia fixed-lengthirandomivector as input andigeneratesia

sample in theidomain. Theivector isidrawn from randomlyifrom aiGaussian

distribution, andithe vectoriis usedito seed the generativeiprocess. After training,

pointsiin this multidimensionalivector space will correspondito points in the problem

domain, forming a compressedirepresentation of the dataidistribution. Thisivector

spaceiis referred to as a latentispace, or a vectorispace comprisediof latentivariables.

Latentivariables, or hiddenivariables, are those variables that are importantifor a

Xtrain

Generat
or

x

x
^

Discriminato
r

 Loss
Function

re
al

false

backpropagation

Latent
random
noise

domain butiare notidirectly observable.iIt has five layers: an inputilayer, threeihidden

layers,iand an outputilayer.

 4

Figure 2.3:

Discriminator

The discriminator modelitakes an example fromithe domain asiinput (real or

generated) andipredicts a binary classilabel of real or fakei(generated).i The real

exampleicomes from the trainingidataset. The generatediexamples are outputiby the

generatorimodel.

The discriminatoriis a normali(and well understood) classificationimodel. After the

trainingiprocess, the discriminatorimodel is discardedias we are interestediin the

generator.

Figure 2.4

5

2.3 Loss Functions

The loss functionidescribed in the originalipaper written by IaniGoodfellow. can beiderived

from theiformula of binaryicross-entropy loss.iThe binaryicross-entropy loss can be

writtenias,

 L(y
hat

,y)=[y.log.y
hat

+(1-y).log(1-y
hat

)]

Discriminator Loss Function

Whileitraining the discriminator,ithe label of dataicoming fromiPdata(x) is y = 1 for realidata

and y = D(x). Putting these values in the above loss function we get,

 L(D(x),1)i= log(D(x))

And for dataicoming from theigenerator,ithe label is y = 0 for fakeidata and y =iD(G(z)). So

in this case, we get

 L(D(G(z)),0) =ilog(1-D(G(z)))

the role of the discriminator is to correctly classify theifake and real dataset. For this above

equations should be maximizediand the final lossifunction for the discriminator can beigiven

as

L
(D)

=max[log D(x)+log(1-iD(G(x)))]

GeneratoriLoss Function

Since the generatoriis competingiagainst the discriminator.iSo, it will try toiminimize the

above equationiiand loss functioniis given as,

L
(G)

=min[log D(x)+log(1- D(G(x)))]

6

Thus the combined loss function

L=minGmaxD[log D(x)+log(1- D(G(x)))]

Remember that the above loss function is valid only for a single data point, to consider the

entire datasetiwe need to take the expectationiof the aboveiequation as

minGmaxDV(D,G)=minGmaxD(Ex~p(x)[log D(x)]+Ex~p(x)[log(1-iD(G(x)))])

The algorithm as per Ian Goodfellow original paper on GAN:

Mini Batch stochastic gradient descent trainingiof generative adversarialinets.

For a number of trainingiiterations we do.

For k steps do

 Part 1

● Sample mini-batch of m noise sample {Z
(1)

………...Z
(m)

} form noise prior to

Pg(z)

● Sample of mini-batch of m noise sample{x
(1)

………...x
(m)

} from data

generating distribution Pdata(x)

● Update the discriminator by ascending its stochastic gradient

End for

 Part 2

● Sample mini-batch of m noise samples {Z
(1)

………...Z
(m)

} form noise prior to

Pg(z)

● Update the generator by descending its stochastic gradient

 7

End for

The gradient-based updates caniuse any standard gradient-basedilearning rule. We use

momentumiin ouriexperiments

As we can see from the aboveialgorithm that both theigenerator and the discriminator are

trainediseparately. In part 1 realidata, fakeidata are input into the discriminatoriwith correct

labels and then we train the discriminator. Gradients are propagated through the network

keeping the generatorifixed.We update theidiscriminator by increasing the stochasticigradient

as we want the discriminator to maximize its lossifunction.

In part 2 ,update the values in the generator model byikeeping the discriminatoristatic and

inputting fake dataiwith fake labels in order to trick theidiscriminator. We update generator

modeliby reducing its stochastic gradient as we want toiminimize the generator lossifunction

2.4 Mode Collapse

In a perfect world, GAN will produce a wide variety of outputs, but if a generator outputs a

very realistic, plausible output it may learn to produce only that one output. In essence, the

role of the generator is to produce that one output to trick the discriminator.

However, if this happens over and over again, the discriminator learns to always reject this

output. This may make it stall into local minima and doesn't track down the best strategy then

it is excessively simple for generator iteration to trick the discriminator.

Every iteration of the generator over-optimizes for a specific discriminator, and the

discriminator never figures out how to get familiar on how to break out of the cycle.

Consequently the generators rotate through a small set of output values which brings about

mode collapse..

The objective of the gan generator is to create output that can fool the discriminator D the

most as possible.

 8

One verge case is when the Generator trains extensivelyiwithout any updatesito the

Discriminator. Theigenerated (output of generator) output will convergeito find the optimal

output x* which will fool the Discriminator the most and the most realisticioutput from the

discriminatoripoint of view. In this extreme,ix* will be independentiof z.

 x
*
=argmaxx D(x)

The mode collapsesito a single point. The gradientiassociated with z tends to zero.

When we restart theitraining in theidiscriminator, the most effective way to detectigenerated

imagesiis to detect this single mode. Since the generator reduces the impact of z, theigradient

from the discriminatoriwill probably push the singleipoint around for the nextiivulnerable

mode

The generatoriproduces such an imbalance ofimodes in trainingithat it degrades its ability to

detect others. Now, both networks i.e generator and discriminator are overfittedito exploit

short-term opponentiweakness. As a result, the model fails to converge

2.5 Nash equilibrium

GANs are based on theizero-sum game concept i.e. if one wins the otheriloses as fixed. In a

zero-sumigame also called minimaxiyour opponent wants toimaximize their actions and your

action to minimizeithem.

The GANs modeliconverges when the discriminator and the generatorireach a point known as

Nashiequilibrium. This optimal point is represented as -

minGmaxDV(D,G)=Ex~p(x)[log D(x)]+Ex~p(x)[log(1- D(x))]

Since both sides want to undermineithe others, a Nashiequilibrium happens when one player

will not change its actioniregardless of what the opponent may do. Consider twoiplayers A

and B which manipulate and survey the value of “x and y” respectively. Player A wants to

maximize theivalue of “xy” while B wants toiminimize it.

 minBmaxAV(D,G)=xy

The Nash equilibrium happens when x=y=0.iThis is the only state where theiaction of your

opponent doesinot matter. It is the onlyistate that any opponent’s actions will not changeithe

game decision.

 9

Let’s see whether we can find the point of Nash equilibrium easily using gradient descent.

We update the parameters x and y based on the gradient of the value function V.

)

where α(alpha) is the learning rate of problems. When we plot x and y, and xy against the

training iterations, we realize our solution does not converge.

 Figure 2.5 : Representation of when Nash Equilibrium isn’t reached

If we increase the learningirate or train the model longeriduration of time, we can see the

parameters x,iy is unstable with big swings

How do you find NashiEquilibrium?

To find the Nashiequilibrium in a game, one would have to model out each of

the possibleiscenarios to determine the results and then choose whatithe optimal

strategy wouldibe. In a two-personigame, this would take into consideration the

possibleistrategies that both players could choose. If neitheriplayer changes

their strategyiknowing all of theiinformation, a Nashiequilibrium has occurred

10

2.6 Latent space

It simply means a presentation of compressed data. Theiconcept of “latent space”

is important becauseiits utility is at the core of ‘deepilearning’ — learning the features of data

and simplifyingidata representations for the purpose of findingipatterns. The latent space

representation of our dataicontains all the importantiinformation needed to represent our

original dataipoint. This representation must then represent the features of the originalidata.

In other words, the model learns the dataifeatures and simplifies its representation to make it

easier to analyze. This is at the core of a concept called Representation Learning, defined as a

set of techniquesithat allow a system to discover theirepresentations needed for feature

detection oriclassification from rawidata. In this use case, our latent spaceirepresentations are

used to transformimore complex forms of raw data (i.e. images, video), into simpler

representations which are ‘moreiconvenient to process’ andianalyze.

2.6 Pre-defined Networks

A. Residual Networks(ResNet)

A residual network is an artificial neural network particularly known as ANN. It is

used for computer vision tasks. ResNet makes it possible to train up to hundreds or

even thousands of layers and still achieves compelling performance. Taking

advantage of its powerful representational ability, the performance of many computer

vision applications other than image classification has been boosted, such as object

detection and face recognition. The core idea of ResNet is introducing a so-called

“identity shortcut connection”. For face detection we will be using the pre-trained

Inception-ResNet-2 model without fully connected layers.

Resnet architecture was evaluated on ImageNet 2012 classification

dataset consisting of 1000 classes. The model was trained on the 1.28

million training images and evaluated on the 50k validation images.

Moreover, 100k images were used for testing the model accuracy

 11

B.ImageNet

ImageNet is a dataset of over 15 million high resolution images belonging to roughly

22,000 categories. These images are collected from the web. It started in 2010, as a

part of an annual competition called ILSVRC. It uses a subset of ImageNet with

roughly 1000 images in each 1000 categories. In all there are roughly 1.2 million

training images, 50,000 validation images, and 150000 testing images.

ImageNet consists of variable-resolution images. Therefore, the images have been

down-sampled to a fixed resolution of 256×256. Given a rectangular image, the image

is rescaled and cropped out the central 256×256 patch from the resulting image.

C. VGG16-ConvolutionaliNetwork for Classification andiDetection

VGG16 is a convolutional neural network model, proposed in the paper “Very Deep

Convolutional Networks for Large-Scale Image Recognition”. The model achieves

92.7% top-5 testiaccuracy in ImageNet, which is a dataset of over 14 million images

belonging to 1000 classes. It makes theiimprovement over AlexNet by replacing large

kernel-sizedifilters with multiple 3×3 kernel-sized filters one after another.

Figure 2.6 : Architecture of VGG16

 12

The input toithe cov1 layer is a 224 x 224 RGB image with a fixed size. The image is

passed through aiseries of convolutional layers,ieach with a very small receptive field:

33 (the smallestisize that captures the concepts of left/right, up/down, andicentre).In

one of theiconfigurations, it also utilizes 1×1 convolutionifilters, which can be seen as

a linearitransformation of the inputichannels (followed by non-linearity). The

convolution stride is fixed to 1 pixel; the spatialipadding of conv. layer input is such

that the spatialiresolution is preserved after convolution, i.e. the paddingiis 1-pixel for

3×3 conv. layers. Spatial pooling is carriediout by five max-poolingilayers, which

follow some of theiconv. layers. Max-pooling is performediover a 2×2 pixel window,

with stride 2.

Following a stack of convolutional layers, three Fully-Connected layers are added;

theifirst two have 4096ichannels each, while theithird performs 1000-way ILSVRC

classificationiand thus has 1000 channels. Theisoft-max layer is the finalilayer. In all

networks, the completelyiconnected layers are configurediin the same way.

Figure 2.7 : VGG-16

Figure 2 illustrates the ConvNeticonfigurations. The nets are known by their

names (A-E). All of the configurationsiare based on a commonidesign found in

architecture, with the onlyidifference being the depth: fromithe network's 11

weight layers A to 19 weight layers in theinetwork E (8 conv. and 3 FC layers)

(16 conv. and 3 FC layers). The number of channelsiin the conv. layers is

minimal, starting at 64 in the firstilayer and rising by a factoriof two after each

max-pooling layer.,iuntil it reaches 512.

13

D.Cascade Classifier

Object Detection using feature-based cascade classifiers is an effective object

detection method. It is a machine learning based approach where a cascade function is

trained from a lot of positive and negative images. It is then used to detect objects in

other images. Initially, the algorithm needs a lot of positive images (images of faces)

and negative images (images without faces) to train the classifier. Then we need to

extract features from it. An OpenCV based system that uses a Haar Cascade Classifier

to detect facial features of Japanese anime characters in a given image file.

The cascade classifier consists of a collection of stages, where each stage is an

ensemble of weak learners. If the label is positive, the classifier passes the region to

the next stage. The detector reports an object found at the current window location

when the final stage classifies the region as positive.

14

CHAPTER 3

(SYSTEM DEVELOPMENT)

3.1 Working Of GANs

The Discriminator and Generator are the two neural networks that make up GAN.

GAN would pit these two networks against one another in a Zero-Sumigame

(Game Theory). Thisiis a game that theseiagents are playing (the networks). This

is where the adversarialiname in GAN comesifrom.

Generatoriwill produce some fake data,iand the Discriminatoriwill define a few

data sets that contain both fakeidata produced byiGenerator and real data

samples. The Generator's main goal is to create fake data that looks like real data

in order to trick the Discriminator into thinking it's real..

The Discriminator's goal is to improve its ability to distinguish between real and

fake data. Each agent will travel in a clockwise direction. We hope that by

duelling these agents, particularly the Generator, they will become stronger. That

is, the Generator will sample a distribution that has been studied and is supposed

toibe the same distributionias the real data, simulating the realidata. It will

develop aineural network capable of generating it. The Discriminator, on the

other hand, will use a supervised technique to train its neural network to detect

fakeiand real data. Each networkiwill train its networkiin a different order each

time.

There arei3 major stepsiin the training of aiGAN:

1. Using theigenerator to create fake inputs based on random noiseior in our case,

random normalinoise.

2. Training the discriminatoriwith both real and fakeiinputs (either simultaneously

by concatenating realiand fake inputs, or one after the other, theilatter being

preferred).

3. Trainithe whole model: theimodel is built with theidiscriminator combined with

theigenerator.

15

Figure 3.1: How GANs work

3.2 Working ofiDCGANs

● Replace all max poolingiwith convolutionalistrides

● Use transposediconvolution for upsampling.

● Eliminateifully connectedilayers.

● Use batchinormalization except forithe output layerifor the generatoriand the input

layer of theidiscriminator.

● Use ReLU in theigenerator, except for theioutput, which usesitanh.

● Use LeakyReLU in theidiscriminator.

 16

http://cs231n.github.io/neural-networks-1/

Layers inigenerator network:

LayeriNumber Layer name Configuration

1 Input Layer Inputishape=(batch size, 100),

outputishape= (batch size, 100)

2 DenseiLayer neurons=2048,

input shape=(batch size, 100),

output_shape=(batch size, 2048),

activation='Relu'

3 DenseiLayer neurons=16384,

 inputishape=(batch size, 100),

output_shape=(batch size, 2048), batch

normalization=Yes,

activation='Relu'

4 Reshape Layer Inputshape=(batch_size=16384),

output_shape= (batch_size, 8,i8, 256)

5 Up sampling Layer size=(2,i2),

 inputishape=(batch_size, 8, 8, 256),

output_shape=(batchisize, 16, 16, 256)

6 2D convolutioniLayer filters=128, kernelisize=(5, 5),

strides=(1, 1),

padding='same',

 input_shape=(batch_size, 16,i16,

256),ioutput_shape=(batch_size, 16, 16,

128), activation='relu'

7 Upsampling Layer size=(2, 2),

input_shape=(batch_size, 16, 16, 128),

output_shape=(batch_size, 32, 32, 128)

8 2D convolution Layer filters=64,ikernel_size=(5, 5),

istrides=(1, 1),

padding='same',

activation=ReLU,

 input_shape= (batch_size, 32, 32, 128),

output_shape=(batch_size, 32,i32, 64),

activation='relu'

9 Upsampling Layer size=(2, 2),

input_shape=(batch_size, 32, 32, 64),

output_shape=(batch_size, 64, 64, 64)

10 2D convolution Layer filters=3,

kernel_size=(5,i5),

strides=(1,i1), padding='same',

activation=ReLU,i

input_shape= (batch_size,i64, 64,i64),

output_shape=(batch_size,i64,i64,

3),iactivation='tanh'

 18

Layers in discriminatorinetwork:

Layer Number LayeriName Configuration

1 Input Layer input_shape=(batch_size,i64, 64, 3),

output_shape=i(batch_size, 64, 64, 3)

2 2D convolutionaliLayer filters=128,

 kernel_size=(5, 5),

strides=(1, 1),ipadding='valid',

input_shape=(batch_size,i64, 64, 3),

output_shape=(batch_size, 64,i64, 128),

activation='leakyrelu',i

leaky_relu_alpha=0.2

3 MaxPooling2D pool_size=(2,i2),

 input_shape=(batch_size, 64, 64, 128),

output_shape=(batch_size, 32, 32, 128)

4 2D convolutional Layer filters=256,

 kernel_size=(3, 3),

strides=(1, 1), padding='valid',

 input_shape=(batch_size, 32, 32, 128),

output_shape=(batch_size, 30, 30, 256),

activation='leakyrelu',

leaky_relu_alpha=0.2

5 MaxPooling2D pool_size=(2, 2),

input_shape=(batch_size, 30, 30, 256),

output_shape=(batch_size, 15, 15, 256)

6 2D convolutional Layer filters=512,

kernel_size=(3, 3),

strides=(1, 1),

padding='valid',

 input_shape=(batch_size, 15, 15, 256),

output_shape=(batch_size, 13, 13, 512),

activation='leakyrelu',

 leaky_relu_alpha=0.2

7 MaxPooling2D pool_size=(2, 2),

 input_shape=(batch_size, 13, 13, 512),

output_shape=(batch_size, 6, 6, 512)

8 Flatten Layer input_shape=(batch_size, 6, 6, 512),

output_shape= (batch_size, 18432)

9 Dense Layer neurons=1,

 input_shape=(batch_size, 1024),

output_shape=(batch_size, 1),

activation='sigmoid'

10 Dense Layer neurons=1, input_shape=(batch_size, 1024),

output_shape=(batch_size, 1),

activation='sigmoid'

3.3 Implementing DCGANs using Keras

Kerasiis a meta-framework that usesiTensorFlow or Teano as a backend.iIt

provides high-leveliAPIs for working with neuralinetworks. It also has pre-built

neural network layers, optimizers, regularizers, initializers, and data-

preprocessing layers for easy prototyping compared to low-level frameworks,

such as TensorFlow.

For Generator Network: the generatorinetwork consists of some 2Diconvolutional

layers, upsampling layers,ia reshape layer, andia batch normalizationilayer. In

Keras,ievery operationican beispecified as a layer. Eveniactivationifunctions are

 20

layers iniKeras and can be addedito a model justilike a normalidense layer.

For discriminator Network: All convolutional layers have LeakyReLU as the activation

function with an alpha value of 0.2 the convolutional layers have 128, 256, and 512 filters,

respectively. Their kernel sizes are (5, 5), (3, 3), and (3, 3), respectively. After the

convolutional layers, we have a flattenilayer, which flattensithe input to aione-dimensional

tensor. Following this, the network has two dense layers with 1,024 neurons and one neuron,

respectively. The first dense layer has LeakyReLU as the activation function, while the

second layer has sigmoid as the activation function. Sigmoidiactivation is used for binary

classification.iWe are training theidiscriminator network to classifyibetween real or fake

images.

Steps to create generator network involves:

1. creating aiSequential Keras model: gen_model =isequential()

2. addia dense layerithat has 2,048 nodes, followediby an activationilayer,

tanh

gen_model.add(Dense(units=2048))

ii gen_model.add(Activation('tanh'))

3. add theisecond layer, which is also a denseilayer that hasi16,384 neurons.

This is followed by a batchinormalization layer with default

hyperparametersiand tanh as the activationifunction:

gen_model.add(Dense(256*8*8))

gen_model.add(BatchNormalization())

gen_model.add(Activation('tanh'))

4. Next, addia reshape layer to the networkito reshape the tensor fromithe last

layerito a tensor ofia shapeiof (batch_size, 8, 8,i256)

gen_model.add(Reshape((8,i8, 256),

input_shape=(256*8*8,)))

5. Next,iadd a 2D upsampling layer to alterithe shapeifrom (8, 8, 256)ito (16,

16, 256). The upsampling size is (2, 2), whichiincreases the size of the

tensor to double itsioriginal size. Here, we have 256 tensorsiof a

dimensioniof 16 x 16

 21

gen_model.add(UpSampling2D(size=(2, 2)))

6. Next,iadd a 2D convolutionalilayer. This applies 2D convolutionsion the

tensoriusing a specified numberiof filters. Here, we are using 64ifilters and

a kernel of aishape of (5, 5)

gen_model.add(Conv2D(128,i(5, 5),

padding='same'))igen_model.add(Activation('tanh'))

7. Next, addia 2D upsampling layer to changeithe shape of the tensorifrom

(batch_size, 16,i16, 64) to (batch_size, 32,i32, 64)

8. Next, addia second 2D convolutionalilayer with 64 filtersiand a kernelisize

of (5, 5) followediby tanh as the activationifunction.

9. Next, add a 2D upsampling layer to changeithe shapeifrom (batch_size,

32,i32, 64) to (batch_size, 64,i64, 64)

10. Finally,iadd the third 2D convolutionalilayer with three filters and a kernel

size of (5, 5) followediby tanh as the activationifunction.

 Steps to create discriminator networkiinvolves:

1. Startiby creating aiSequential Keras mode : dis_model = Sequential()

2. Add a 2Diconvolutionalilayer that takes an inputiimage of a shapeiof (64, 64,

3). Theihyperparameters for this layeriare the following. Also, add

LeakyReLU with an alphaivalue of 0.2 as the activationifunction

Filters: 128

Kernel Size: (5, 5)

Padding: Same

3. Next, add a 2Dimax pooling layer with a pool size of (2, 2). Max pooling is

usedito downsample an imageirepresentation and it is appliediby using a max-

filter overinon-overlapping sub-regionsiof the representation.

 22

4. Next,iadd another 2D convolutionalilayer with the following configurations:

Filters: 256

 Kernel size: (3, 3)

Activation function: LeakyReLU with alpha 0.2

Pool size in 2D max pooling: (2, 2)

5. Next, add the third 2D convolutionalilayer with the followingiconfigurations:

Filters: 512

Kernel size: (3, 3)

Activation function: LeakyReLU with alpha 0.2

Pool size in 2D Max Pooling: (2, 2)

6. Next,iadd a flatten layer. Thisiflattens the input withoutiaffecting the batch

size. It produces aitwo-dimensional tensor

7. Next, add a denseilayer with 1024 neurons andiLeakyReLU with alpha 0.2 as

the activationifunction.

8. Finally, add a denseilayer with one neuron for binaryiclassification. The

sigmoid functioniis the best for binaryiclassification, as it gives the

probability of the classes.

Finally, add a denseilayer with one neuron for binaryiclassification. The

sigmoidifunction is the best for binaryiclassification, as it gives theiprobability

of the classes.

23

3.4 Training the DCGANs

Training a DCGAN isisimilar to training a VanillaiGAN network. It is aifour-step

process:

1. Loadithe dataset.

2. Buildiandicompile the networks.

3.iTrain theidiscriminator network.

4. Train theigenerator network

Initially, both of the networksiare naive and haveirandom weights. The standard

processito train a DCGAN networkiis to first train the discriminatorion the batch

of samples. To do this, we need fakeisamples as well as realisamples. We already

have the realisamples, so we now need to generate the fakeisamples. To generate

fake samples, create a latentivector of a shape of (100,) over a uniform

distribution.iFeed this latent vector to the untrainedigenerator network. The

generatorinetwork will generate fake samples that we use to trainiour

discriminator network.iConcatenate the real images and the fakeiimages to

createia new set of sampleiimages. We also need to createian array of labels:

label 1ifor real images andilabel 0 for fakeiimages

To train the generator network, we have to train the adversarialimodel. When we

train the adversarialimodel, it trains the generator network onlyibut freezes the

discriminatorinetwork.

 24

CHAPTER 4

(PERFORMANCE ANALYSIS)

Syntheticirdata is a very powerfulitool thatican overcome manyibarriers in dataiscience.

High-qualityisynthetic data canisubstitute for real data to alleviate privacyiconcerns. The

quality ofisynthetic data isidetermined by whether the syntheticidata correctlyicaptures the

correlationsibetween differenticolumns. We define the learningitask so that theiquality of

synthetic dataigenerated can be measurediquantitatively.

4.1 Synthetic data generation

Learning taskidefinition:

Theisynthetic data generation task is to train G i.e. a dataisynthesizer, whichitakes a tableias

inputiand generates an engineered form of this input. We requireithe input table toicontain

independentirows and only continuous and discreteicolumns. A table T contains

Nccontinuousicolumns {C1,C2,.....CNc}, and Ndidiscrete columns {D1,D2,.....,DNd}. Each

and every segment/column is thought of as an arbitrary variable. These arbitrary variables

trail an unidentified jointidistribution P(C1:Nc,iD1:Nd). One rowirj

={c1,j,....,cNc,j,d1,j,....,dNd,j} is one sampleifrom the jointidistribution. T is then apportioned

into a test set Ttest. and training set Ttrain. After trainingiG on Ttrain, Tsyn is generated by

autonomously samplingirows from data synthesizer G.

Evaluationimetrics: Directievaluation of Tsyn either tests whether Ttrain, Tsyniare sampled

from the sameidistribution or calculates the distanceibetween two underlying

distributions.iExisting methods forithis test makeisome strongiassumptions on the

underlyingidistribution. For example, Z-testitakes into consideration, the data trails a

Gaussianidistribution. By using theseistrong assumptions,ithe methods don’t apply to tabular

dataiwith complicated distributions.iAs directievaluation is intractable, we, therefore, use two

alternativeimethodsidescribed below:

Sample likelihood: Inithis method, theidistribution of Ttrain, denoted asiPtrain(), is known

and the distributioniof Tsyn, denoted asiPsyn(), can be approximated.iThe likelihoodiof Ttest

on Psyn(), and the likelihoodiof Tsynion Ptrain() can revealithe distanceibetween two

distributions.

25

Machineilearning efficacy: In general cases, findingithe underlyingidistributions is hard.

Alternatively,ithe quality of Tsyn can be evaluated byimachine learningiapplications such as

the classificationior regression. For instance, an individualican train a regressor

and/oriclassifier or envisage one column using othericolumnsias features. We can then

measureiefficacy by evaluatingiwhether a classifier oriregressorilearned from Tsyn can

achieveiequivalent or higheriperformance on Ttest asia model learned on Ttrain would.

4.2iExisting techniques for generation of syntheticidata

Theipossibility of generatingifully syntheticidata appeals to differentiresearch

communities,iincluding statistics, databaseimanagement, and machineilearning. PrivBayes

uses traditionaliBayesianinetworks but addsia differentially private learningialgorithm. GANs

are better because of theiriperformance and the flexibility they exhibit in representingidata.

4.2.1 PrivBayes

PrivBayes create the superior grade, differentially private engineered data utilizing Bayesian

networks.

Motivation: Bayesianinetworks represent a joint distribution of discrete variables. To

generate differentiallyiprivate synthetic data, we use three steps as shown below:

Learn a Bayesianinetwork.

Inject Laplace noiseito eachiparameter in the network.

Sample from the noisyinetwork.

Usually, this processileads to low-qualityisynthetic data dueito a largeiamount ofinoise that is

injectediin step 2. To acquire a certainiprivacy level,ieach networkistructure needs aidifferent

amount ofinoise.

Preprocessing: Bayesianinetworks cannot model continuousivariables. In PrivBayes all

continuousivariables are discretized into 16 equal-sized bins in such a way that the modeling

algorithm onlyideals with columns having discrete values.

 26

Model details:iThere is a compromise betweenithe Bayesianinetwork’sioriginal qualityiand

the qualityidecrease after addinginoise. For example,iin a table withiNd discreteicolumns,

and (Nd-1)-way Bayesianinetwork can fit theidistribution, but someiweights in the

networkiwill have low value andihighisensitivity. This means thatinoise caniplay a hugeirole

in a noisy model. PrivBayes usesia greedyialgorithm to find aigraph thatimaximizes the

mutual information.

Datasetsiand evaluationimetrics: PrivBayes is rigorously evaluated onifour realidatasets.

Machine learningiefficacy is evaluated, so is theidistance of marginalidistribution.

4.2.2.iMedGAN

As healthi records are valued for the purpose of research, however, they are heavily guarded

due to privacy concerns, healthcareiis a domainithat needs synthetic dataitechnology more

than other fields primarily because of the significant expense of data retrieval. One solution

to that is MedGAN which uses a GANiframework to generate completely syntheticihealth

records.

Motivation

In health records,ieach column usually is dependent upon others, which makes the learning of

the GAN model very hard. Direct demonstration can't be dependent upon as it creates

incorrect results. To rectify that, in MedGAN usually then, an autoencoder is deployed so that

we can project rawidata in a lower-dimensionalirepresentation.

Preprocessing

MedGAN supports a table where all columns are binary in addition to continuousicolumns. A

binaryicolumn is either 0 ori1 whereas a continuousivariable is normalized between 0-1 using

min-maxinormalization:

 27

 ci,j-min(Ci) i max(Ci)-min(Ci)

Datasets andievaluation metrics

Experiments are performed on threeidifferent healthcare datasets. Theimachine learning

efficacyiis calculated.

Preprocessing: All continuous columns are normalized. Discreteicolumns are alsoiconverted

to aifloating-point number.iEach category included in the discreteicolumn is initially

representediby a uniqueiinteger in 0,1,.....,Di-1 and thenidivided by Di-1. SinceiDCGAN is

created foriimages, theiinput is a matrixiinstead of a vector, andia row in the table

isiconverted to a square matrix. On theioff chance that the quantity of columns is anything

but a squareinumber, zeros are cushioned to theirow to build the number of columnsito the

following squareinumber.

Model Details: In MedGAN, the generator andidiscriminator work on different domains. The

generator’s role is to create a hiddenirepresentation. The discriminatorichecks for rawidata. In

this manner, the yield of the generatorifirst goes through a decoder beforeisent down the

pipeline toia discriminator.iDuring training initially, the autoencoder is trained. It remains

fixed when we are training the GAN. The loss function for it varies depending on the variable

type of the column. The loss function for it differs relying upon the variable kind of the

column.

Loss Function

Continuous variables

Mean squared error

Binary variables

Cross entropy loss

 28

Figure 4.1: The MedGAN architecture comprises encoder, decoder, generator, and

discriminator. The decoder and the encoder are to be trained on realidata and then fixed in

lateristeps.During the process of training, the output of the generator isigone through

theidecoder prior to feeding intoithe discriminator. Theidiscriminator determines whether the

information/dataiis genuine or counterfeit.

TableGAN

Motivation TableGAN is fundamentally used to generate synthetic information/data pointed

toward settling privacy comprehensions.

Model Details

It uses Convolutional networks for both the discriminator as well as the generator, it is trained

as a basic GAN. When tabular dataicontains a label column, aiprediction loss is addedito the

generator to especially improveithe correlation betweenithe label column and the other

columns

Datasets and evaluationimetrics

This model isievaluated on 4 datasets. The evaluation metriciincludes machine learning

efficacy.

 29

4.3 Challenges of Modelling Synthetic Data Using GAN

Countless properties which are unique to tabularidata make designing a GAN-basedimodel

very difficult. In thisisection, first we highlightitheseichallenges as they relate toisingle-table

non-timeiseries data, whichiwe try to address in ourimodel.

Challenges on tabular data generation

Modeling andisynthetically making single-table non-time seriesidata is theisimplest difficulty

in syntheticidata. Each row in the table is samplediindependently from the distributioniof all

possibleirows. One couldiargue that ifia row of dataiis symbolized as aivector, specifically

using min-maxinormalizationion continuousivalues and one-hotidepiction for discrete

values,ithen GAN models intended for imagesicould easily be adaptedito tabularidata.

However, here weilist numerous specialiproperties of single-table non-time-series dataithat

can break thisinaive adaptation.

(1. Mixed dataitypes: Real-life tabular dataiconsists of diverse dataitypes (continuous,

ordinal, categorical, etc.).iEach column has a complex relationship with other columns.iFor

tabularidata, alterations to GANs mustiapply both softmax and tanh on theioutput to at the

same time generate aimix of discrete and continuousicolumns. In the meantime, the

modelingitechnique should beiable to model the probabilityidensity of mixedidiscrete-

continuousidistribution.

(2. Multimodal distributions: We observe that multiple continuousicolumns in our real-world

datasetsihave numerous modes. It showedithat a traditional GAN can’t model all modes on a

two-dimensional dataset, thus itialso wouldn’t beiable to model the multimodalidistribution

which is present in continuous valued columns.

This is a recognized issue of GAN. GANsimake their real/fakeiconclusion on only one

example, so if theigenerator figuresiout one accurate exampleiand triesito duplicate that

exampleievery time,ithe discriminator doesinot haveienough data to figureiout the issue.

 30

Figure 4-1: Shows that a traditional GAN cannot model a simplei2-dimensional

Gaussianimixture.

 (A) shows the probabilityidensity of 25 Gaussianidistributions

 (B) shows the distributionilearned by GAN

(C) shows the originalidistribution

(D) shows distributionilearned by GAN

(3. Learning fromiencoded vectors: To allow learning from categoricalicolumns, which has

been changed into a one-hotivector. While producing synthetic data samples,ia generative

model isitrained to produce the probabilityidistribution across all the categories using

softmaxifunction.

 31

This is the issueiin GANsibecause an insignificant discriminator canisimply differentiate real

andifake data by checkingitheidistribution’s scarceness instead of consideringithe general

realnessiof airow.

(4. Highlyiimbalanced categoricalicolumns: In practical datasets,imost categoricalicolumns

have a highly imbalancedidistribution. In ouridatasets, we discover that half of theicategorical

columns areihighlyiimbalanced – the majoricategory appearsiin more than 80% of the all

data entries,causing mode collapse.

 Not including a small category only results in minute changes to theidistribution of data, but

imbalancedidata leads to inadequate training chances for these smaller classes. The

Discriminator networkicannot detectisuch problems unless mode-collapse-preventing

mechanisms areiimplemented. These methods can help preventiGANs from producing only

the most noticeable classes. Syntheticidata for the smaller categories are anticipated to be of

loweriquality, demanding to resample.

(5. High dimensionality: Theihighidimensionality of tabular data escalates the

complexityiexponentially. For example,inibinary variables havei2*n likelihoods. Precisely

representing the probabilityidistribution using a small neuralinetwork is impossibleibecause

there areinot enough parameters, and there is typically notisufficientitraining data. In this

case, any modeling technique introducesibias to the estimate.iFor example, whenimodeling

with aiGAN, bias could come iniwhile selecting aispecificinetwork structure

orilearningiobjective. Comparedito statisticalimodels, the biasiintroduced in neuralinetwork

models is difficult to analyze.

(6. Lack of trainingidata: Learningiwith smallitraining dataiis a perplexingiproblem. Similar

difficulties haveibeen registered as few-shotilearning orimeta-learning. Suchitasks are easier

with imagesibecause the content inidifferent imagesisharesisimilar filters. Yet, tabularidata is

radically different.iIt is perplexing to efficiently transferiknowledge learned fromioneitable to

another.

 32

(7. Missingivalues:iTabular data has missingivalues. To directlyitrain a GANimodel on

tabularidata with missingivalues, one shouldimodify the datairepresentation to appropriately

differentiate missingivalues from identified values,iand guise theimodel to makeiit robust

towards missingivalues. A substitute approachiis to assign the missing values beforeitraining

the model.iHowever, the data assertion also necessitates modelingiof the table.iMistakes in

dataiimputation wouldibe propagatedito learnediGAN models.

Problems MedGAN TableGAN Mod-GAN

Mixed data types Yes* Yes* Yes

Multimodal Distribution No Yes Yes

Learning from encoded vectors No No Yes

Imbalanced Categorical columns No Yes Yes

High Dimensionality Yes Yes Yes

Lack of Training Data No No No

Missing Values No No No

33

Figure 4.2: Loading the libraries

Figure 4.3: reading images from the dataset

32

Figure 4.4 : Displaying images

34

Figure 4.5 : Output of the image dataset

35

Figure 4.6 : Building the generator

Figure 4.7 : Building of Discriminator

36

Figure 4.8 : Folder containing trained images

 37

CHAPTER 5

(RESULT)

Figure 5.1 : Output at 100 epochs

Figure 5.2 : Output at 200 epochs

 38

Figure 5.3 : Output at 500 epchos

Figure 5.4: Output at 1000 epchos

 39

Figure 5.5: Output at 2000 epchos

Figure 5.6: Final Output

 40

Bibliography

● Generative Adversarial Networks - 3 Course Specialization on Coursera

● Generative Adversarial Networks with Python- Deep Learning Generative Models for

Image synthesis and Image Translation - Jason Browniee

● Generative Adversarial Networks Projects: Build Next-generation Generative Models

Using TensorFlow and Keras - Kailash Ahirwar

● Adult,census,covertype and intrusion dataset -UCI machine learning repository

● Credit risk modelling dataset -Kaggle

● MNIST dataset -Kaggle

● Synthesizing Tabular Data using Conditional GAN by Lei Xu B.E., Tsinghua

University (2017)

● Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of

deep networks. In Advances in neural information processing systems, pages 153–

160, 2007.

● P. Berka and M. Sochorova. 1999 czech financial dataset - real anonymized

transactions, 2019.

● Mihaela van der Schaar Jinsung Yoon, James Jordon. Gain: Missing data imputation

using generative adversarial nets. arXiv, 2018.

● Joan Serrà Santiago Pascual, Antonio Bonafonte. SEGAN: Speech enhancement

generative adversarial network. arXiv, 2017.

● Samuel A. Barnett. Convergence problems with generative adversarial networks

(GANs), 2018.

● Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit

Greenspan. Synthetic data augmentation using gan for improved liver lesion

classification,2017

● F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and

context. Acm transactions on interactive intelligent systems , 2015.

https://www.coursera.org/learn/build-basic-generative-adversarial-networks-gans/home/welcome
https://machinelearningmastery.com/generative_adversarial_networks/
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/c/crm/data
https://www.kaggle.com/c/digit-recognizer/data

● Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks.

Gernating_Anime_Character_1.
docx

by

Submission date: 24-Jun-2021 10:06PM (UTC+0530)
Submission ID: 1611634293
File name: Gernating_Anime_Character_1.docx (1.59M)
Word count: 6583
Character count: 43826

30%
SIMILARITY INDEX

27%
INTERNET SOURCES

8%
PUBLICATIONS

17%
STUDENT PAPERS

1 6%

2 4%

3 3%

4 3%

5 2%

6 1%

7 1%

8 1%

9 1%

Gernating_Anime_Character_1.docx
ORIGINALITY REPORT

PRIMARY SOURCES

hub.packtpub.com
Internet Source

Submitted to University of Oklahoma
Student Paper

towardsdatascience.com
Internet Source

medium.com
Internet Source

dspace.mit.edu
Internet Source

neurohive.io
Internet Source

www.ir.juit.ac.in:8080
Internet Source

Submitted to Jaypee University of Information
Technology
Student Paper

www.ijert.org
Internet Source

28

10 1%

11 1%

12 1%

13 1%

14 1%

15 <1%

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

Submitted to Nepal College of Information
Technology
Student Paper

developers.google.com
Internet Source

Submitted to Yonsei University
Student Paper

Submitted to Coventry University
Student Paper

jonathan-hui.medium.com
Internet Source

www.willberger.org
Internet Source

www.slideshare.net
Internet Source

Submitted to City University of Hong Kong
Student Paper

Submitted to Fachhochschule Salzburg GmbH
Student Paper

Submitted to Liverpool John Moores
University
Student Paper

Submitted to University of Glasgow
Student Paper

21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

Exclude quotes On Exclude matches < 14 words

Submitted to Republic of the Maldives
Student Paper

dai.lids.mit.edu
Internet Source

scholar.uwindsor.ca
Internet Source

www.packtpub.com
Internet Source

Submitted to B.V. B College of Engineering
and Technology, Hubli
Student Paper

machinelearningmastery.com
Internet Source

P. Kuhry. "The palaeoecology of a treed bog in
western boreal Canada: a study based on
microfossils, macrofossils and physico-
chemical properties", Review of Palaeobotany
and Palynology, 1997
Publication

Submitted to Erasmus University of
Rotterdam
Student Paper

Exclude bibliography On

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: …16.06.2021……………………….

Type of Document (Tick):

Name: Nikhil Nagpal Department: Computer science

Enrolment No 171224 Contact No. 9636610300

E-mail. Nikhil.nagpal98@gmail.com

Name of the Supervisor: Dr. vivek seghal

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): Gernating Anime Character
Using Gan’s

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:
 Total No. of Pages =48

 Total No. of Preliminary pages =6

 Total No. of pages accommodate bibliography/references =2
(Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at 28 (%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

 28
Word Counts

6583

Character Counts
43826

Report Generated on

Submission ID Total Pages Scanned

File Size

Checked by
Name & Signature Librarian

………

Paper B.Tech Project ReportM.Tech Dissertation/ ReportPhD Thesis

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

mailto:plagcheck.juit@gmail.com

	Adversial Network
	PlagiarismForm_PhD_M.Tech_B.Tech (1) (1)

