

 IMAGE MODELING USING GENERATIVE

ADVERSARIAL NETWORK

Project report submitted in partial fulfilment of the

requirement for the degree of Bachelor of Technology

In

Computer Science Engineering

Submitted By:

Vishrut Thakur (171309)

under the supervision of

Dr. Rajinder Sandhu

To

Department of Computer Science & Engineering and Information Technology,

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

Waknaghat, Himachal Pradesh-173234

i

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “IMAGE MODELING

USING GENERATIVE ADVERSARIAL NETWORK” in partial fulfilment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science

and Engineering submitted in the department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from August 2020 to December

2020 under the supervision of Dr. Rajinder Sandhu, Assistant Professor (Senior Grade),

Computer Science and Engineering/Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

(Student Signature)

Vishrut Thakur, 171309

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr Rajinder Sandhu

Assistant Professor (Senior Grade)

Computer Science and Engineering/Information Technology

Dated:

ii

Acknowledgement

Any serious and lasting achievement cannot be achieved without the help, guidance and

co-operation of numerous people involved in the work. I thank the almighty for giving me

the courage and perseverance in completing this-project.

I extend my sincere thanks to Prof. Dr. VINOD KUMAR Vice Chancellor of our

University, for providing sufficient infrastructure and good environment in the University

to complete our course.

I am thankful to our Registrar and Dean of Students Maj Gen RAKESH BASSI (Retd.), for

providing the necessary Infrastructure and labs and also permitting to carry out this project.

With extreme jubilance and deepest gratitude, I would like to thank Director & Head of the

C.S.E. Department, Prof. Dr. SAMIR DEV GUPTA for his constant encouragement.

I special thanks to our Project coordinator DR. HEMRAJ SAINI, Associate Professor

Computer Science & Engineering, for his support and valuable suggestions regarding

project work.

I am greatly indebted to project guide DR. RAJINDER SANDHU, Assistant Professor

(Senior Grade), Computer Science & Engineering Department, for providing valuable

guidance at every stage of this project work. I am profoundly grateful towards the

unmatched services rendered by him.

My special thanks to all the faculty of Computer Science & Engineering and peers for their

valuable advises at every stage of this work.

Last but not least, I would like to express my deep sense of gratitude and earnest thanks

giving to my dear parents for their constant moral support and heartfelt cooperation at every

step of life.

iii

Table of Contents

Candidate’s Declaration .. i

Acknowledgement ... ii

List of Abbreviations ... v

List of Figures ... vi

List of Tables ..viii

Abstract ... ix

CHAPTER 1 - INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Objective ... 1

1.3 Methodology ... 1

CHAPTER 2 - LITERATURE SURVEY... 3

2.1 Related Work... 3

2.1.1 Representation Learning from Unlabelled Data .. 3

2.1.2 Generating Natural Images .. 3

2.1.3 Visualizing the Internals of CNNs ... 4

2.2 Related Work... 4

2.2.1 Parametric Texture Synthesis .. 4

2.2.2 Neural Texture Synthesis and Style Transfer .. 4

2.2.3 Feedforward Neural Texture Synthesis ... 5

2.2.4 Non-Parametric Texture Synthesis .. 5

CHAPTER 3 - SYSTEM DEVELOPMENT .. 7

3.1 Approach ... 7

3.2 The ReLU Activation .. 7

iv

3.3 Details Of Adversarial Training .. 8

3.3.1 Deduplication ... 9

3.4 Faces .. 9

3.5 Imagenet-IK .. 10

CHAPTER 4 - PERFORMANCE ANALYSIS .. 11

4.1 Investigating and Visualizing The Internals Of The Networks........................ 11

4.1.1 Walking in the Latent Space .. 11

4.2 Visualizing the Discriminator Features ... 12

4.3 Manipulating the Generator Representation .. 13

4.3.1 Forgetting to Draw Certain Objects ... 13

4.3.2 Vector arithmetic on face samples ... 14

4.4 Classifying CIFAR-10 Using GANs as a Feature Extractor 16

4.5 Classifying SVHN Digits Using GANs As A Feature Extractor 17

4.6 Evaluating Dcgans Capability To Capture Data Distributions 18

CHAPTER 5 - CONCLUSION .. 27

REFERENCES .. 28

APPENDIX .. 31

5.1 Code .. 31

5.1.1 Model Generation .. 31

5.1.2 Image Generation ... 35

v

List of Abbreviations

• CNN - Convolution Neural Networks.

• DCGANs - deep convolutional generative adversarial networks.

• MNIST - Modified National Institute of Standards and Technology.

• SVHN – Street View House Numbers

• CIFAR- Canadian Institute for Advanced Research

• VGG – Visual Geometry Group

• FPR – False Positive Rate

• LSUN - Large scale images showing different objects from given categories like

bedroom, tower, etc

• SVBRDF - Spatially-Varying Bi-Directional Reflectance Distribution Functions.

vi

List of Figures

Figure 3.1: Siamese GAN architecture. ... 7

Figure 3.2: Generated bedrooms after one training pass through the dataset. 9

Figure 3.3: Generated bedrooms after five epochs of training. ... 10

Figure 4.1: Top rows: Interpolation between a series of 9 random points in Z show that the

space learned has smooth transitions, with every image in the space plausibly looking like

a bedroom. In the 6th row, you see a room without a window slowly transforming into a

room with a giant window. In the 10th row, you see what appears to be a TV slowly being

transformed into a window. .. 12

Figure 4.2: On the right, guided backpropagation visualizations of maximal axis-aligned

responses for the first 6 learned convolutional features from the last convolution layer in

the discriminator. Notice a significant minority of features respond to beds - the central

object in the LSUN bedrooms dataset. On the left is a random filter baseline. Comparing to

the previous responses there is little to no discrimination and random structure. 13

Figure 4.3: Top row: un-modified samples from model. Bottom row: the same samples

generated with dropping out “window filters”. ... 14

Figure 4.4: Vector arithmetic for visual concepts. For each column, the Z vectors of samples

are averaged. Arithmetic was then performed on the mean vectors creating a new vector

Y . The center sample on the right hand side is produce by feeding Y as input to the

generator. To demonstrate the interpolation capabilities of the generator, uniform noise

sampled with scale ... 15

Figure 4.5: Input to Model ... 16

Figure 4.6: Output Generated From Model ... 16

Figure 4.7: Side-by-side illustration of (from left-to-right) the MNIST dataset, generations

from a baseline GAN, and generations from our DCGAN .. 20

Figure 4.8: More face generations from our Face DCGAN. ... 21

Figure 4.9: Generations of a DCGAN that was trained on the Imagenet-1k dataset. 22

Figure 4.10: Luminance channel (Y) of input photograph. ... 24

Figure 4.11: Color channels (I, Q) of input photograph .. 24

Figure 4.12: Style transfer result in luminance channel. ... 25

Figure 4.13: Combination of synthesized luminance and source color channels. 25

vii

Figure 4.14: Synthesis, using luminance-histogram matching before synthesis 25

Figure 4.15: Combination of color and luminance channels, using luminance-histogram

matching before synthesis. ... 26

viii

List of Tables

Table 1: SVHN classification with 1000 labels ... 11

Table 2: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not

pre- trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify

CIFAR-10 images. .. 17

Table 3: Nearest neighbor classification results. ... 19

ix

Abstract

Amongst recent research work in Computer Vision Applications, supervised learning with

CNNs have been highly popular. Unfortunately, this can’t be inferred for its counterpart in

unsupervised learning.

Here, in this project I introduce another anecdote of CNNs called Deep Convolutional

Generative Adversarial Networks more commonly abbreviated as DCGANs. DCGANs

having distinctive characteristics in-order can proof its potential among other classes of

unsupervised learning. lTraining lon lvarious limage ldatasets, lwe lshow lconvincing levidence

lthat lour ldeep lconvolutional ladversarial lpair llearns la lhierarchy lof lrepresentations lfrom

lobject lparts lto lscenes lin lboth lthe lgenerator land ldiscriminator. lAdditionally, lwe luse lthe

llearned lfeatures lfor lnovel ltasks l- ldemonstrating ltheir lapplicability las lgeneral limage

lrepresentations.

1

CHAPTER 1 - INTRODUCTION

1.1 Introduction

Various supervised learning tasks like image classification can be performed by

consummating the vast variety of unlabelled representations and therefore generating

good intermediate representations. As we know in todays research work learning

reusable representation from large unlabelled datasets has been very popular.

“We propose that one way to build good image representations is by training Generative

Adversarial Networks (GANs)[1]”, and jlater jreusing jparts jof jthe jgenerator jand

jdiscriminator jnetworks jas jfeature jextractors jfor jsupervised jtasks. jGANs jprovide jan

jattractive jalternative jto jmaximum jlikelihood jtechniques. jOne jcan jadditionally jargue

jthat jtheir jlearning jprocess jand jthe jlack jof ja jheuristic jcost jfunction j(such jas jpixel-wise

jindependent jmean-square jerror) jare jattractive jto jrepresentation jlearning. jGANs jhave

jbeen jknown jto jbe junstable jto jtrain, joften jresulting jin jgenerators jthat jproduce

jnonsensical joutputs.

1.2 Objective

To junderstand jand jvisualize jwhat jGANs jlearn, jand jthe jintermediate jrepresentations jof

jmulti-layer jGANs. jWe jcapitalize jon jlarge jamounts jof junlabeled jimages jin jorder jto

jlearn ja jmodel jof jscene jdynamics jfor jimage jgeneration jtask. jWe jpropose ja jgenerative

jadversarial jnetwork jfor jimage jwith ja jconvolutional jarchitecture jthat juntangles jthe

jimage jforeground jfrom jthe jbackground. Experiments jsuggest jthis jmodel jcan jgenerate

jimage jbetter jthan jsimple jbaselines, jand jwe jshow jits jutility jat jpredicting jfutures jof jstatic

jimages.

Moreover, jexperiments jand jvisualizations jshow jthe jmodel jinternally jlearns juseful

jfeatures jfor recognizing actions with minimal supervision, suggesting scene dynamics

are a promising signal for representation learning. We believe generative image models

can impact many applications in image understanding and simulation.

1.3 Methodology

❖ jWe suggest and compare a fixed of jconstraints jat jthe jarchitectural jtopology jof

jConvolutional jGANs jthat jmake jthem jstable jto educate jin jmost jsettings. jWe name jthis

2

jclass jof jarchitectures “Deep Convolutional Generative Adversarial Networks

(DCGANs)”

❖ lWe luse lthe ltrained lgenerators lfor limage lclassification ltasks, lshowing lcompetitive

l performance l with l other l unsupervised l algorithms.

❖ lWe lvisualize lthe lfilters llearnt lby lGANs land lempirically lshow lthat lspecific lfilters

lhave llearned lto ldraw lspecific lobjects.

❖ lWe lshow lthat lthe lgenerators lhave linteresting lvector larithmetic lproperties lallowing

lfor leasy lmanipulation lof lmany lsemantic lqualities lof lgenerated l samples.

❖ lWe luse lthe ltrained ldiscriminators lfor limage lclassification ltasks, lshowing

lcompetitive l performance l with l other l unsupervised l algorithms.

3

CHAPTER 2 - LITERATURE SURVEY

2.1 Related Work

2.1.1 Representation Learning from Unlabelled Data

Talking about unsupervised jrepresentation jlearning, jIt jhas jbeen ja jfairly jwell jstudied

jproblem jin jgeneral jcomputer jvision jresearch, jas jwell jas jin jthe jcontext jof jimages. jA jclassic

japproach jto junsupervised jrepresentation jlearning jis jto jdo jclustering jon jthe jdata j(for

jexample jusing jK-means), jand jleverage jthe jclusters jfor jimproved jclassification jscores. “In

the context of images, one can do hierarchical clustering of image patches[2] to learn

powerful image representations. Another popular method is to train auto-encoders

(convolutionally, stacked[3], jseparating the what and where components of the code[4],

ladder structures[5])” jthat jencode jan jimage jinto ja jcompact jcode, jand jdecode jthe jcode jto

jreconstruct jthe jimage jas jaccurately jas jpossible. jThese jmethods jhave jalso jbeen jshown jto

jlearn jgood jfeature jrepresentations jfrom jimage jpixels. “Deep belief networks[6] have also

been shown to work well in learning hierarchical representations.”

2.1.2 Generating Natural Images

“Generative image models are well studied and fall into two categories:

o parametric

o non-parametric.”

“The non-parametric models often do matching from a database of existing

images, often matching patches of images, and have been used in texture

synthesis[7] super-resolution[8] and in- painting[9].”

There has been drastic exploration of jparametric jmodels jfor jgenerating jimages

(“for example on MNIST digits or for texture synthesis[10]”. jHowever, jgenerating

jnatural jimages jof jthe jreal jworld jhave jhad jnot jmuch jsuccess juntil jrecently. “A

variational sampling approach to generating images[11] has had some success,

but the samples often suffer from being blurry. Another approach generates

images using an iterative forward diffusion process[12].”

“Generative Adversarial Networks[13] generated images suffering from being

4

noisy and incomprehensible”. “A Laplacian pyramid extension to this

approach[14] showed higher quality images, but they still suffered from the

objects looking wobbly because of noise introduced in chaining multiple models.”

“A recurrent network approach[15] and a deconvolution network approach[16]

have also recently had some success with generating natural images.” But

generators were never used for supervised tasks.

2.1.3 Visualizing the Internals of CNNs

 gOne tconstant tcriticism tof tusing tneural tnetworks thas tbeen tthat tthey tare tblack-box

tmethods, twith tlittle tunderstanding tof twhat tthe tnetworks tdo tin tthe tform tof ta tsimple thuman-

consumable talgorithm. tIn tthe tcontext tof tCNNs[17], j(jZeiler j& jFergus, j2014) jshowed jthat

jby jusing jdeconvolutions jand jfiltering jthe jmaximal jactivations, jone jcan jfind jthe

japproximate jpurpose jof jeach jconvolution jfilter jin jthe jnetwork. “Similarly, using a gradient

descent on the inputs lets us inspect the ideal image that activates certain subsets of

filtersmord[18].”

2.2 Related Work

2.2.1 Parametric Texture Synthesis

 lSome learly lmethods lfor ltexture lsynthesis lexplored lparametric lmodels. “[19] used

histogram matching combined with Laplacian and steerable pyramids to synthesize

textures.” lWe lare linspired lby ltheir luse lof lhistogram lmatching. “[10]investigated the

integration of many wavelet statistics over different locations, orientations, and scales into

a sophisticated parametric texture synthesis method.” lThese lincluded lcross-correlations

lbetween lpairs lof lfilter lresponses.

2.2.2 Neural Texture Synthesis and Style Transfer

In this paper, for short, we use neural to refer to convolutional neural networks. Recently,

“[20] showed that texture synthesis can be performed by using ImageNet-pretrained

convolutional neural networks such as VGG[21].” gSpecifically, “[20]impose losses on co-

occurrence statistics for pairs of features.” lThese lstatistics lare lcomputed lvia lGram lmatrices,

lwhich lmeasure linner lproducts lbetween lall lpairs lof lfeature lmaps lwithin lthe lsame llayers lof

lthe lCNN.

Results of[20] were typically better than those of[10] for texture synthesis. tLater textended

5

tthis tapproach tto tstyle ttransfer, tby tincorporating twithin CNN tlayers tboth ta Forbinius norm

content loss tto ta tcontent texemplar timage, tand ta Gram matrix style loss tto ta tstyle texemplar

timage. tWe tbuild tupon tthis tframework, tand toffer ta tbrief treview tof thow tit tworks tin tthe tnext

tsection. tConcurrently tto tour tresearch,(tBerger tet tal, 2016). tobserved tthat tin tthe tapproach

tof[20], ttexture tregularity tmay tbe tlost tduring tsynthesis, tand tproposed ta tloss tthat timproves

tregularity tbased ton tco-occurrence tstatistics tbetween ttranslations tof tthe tfeature tmaps.

“Recently, [22] used neural networks to extract SVBRDF material models from a single

photo of a texture. Their method focuses on a more specific problem of recovering a

SVBRDF model from a head-lit flash image.” tHowever, tthey tdo tobserve that positive

instabilities along with non-stationary textures can effortlessly end result if sufficiently

informative information are not used. We see this as related with our observations about

instabilities and the way to repair them.

2.2.3 Feedforward Neural Texture Synthesis

“Recently, la lfew lpapers ([23][24]) lhave linvestigated lthe ltraining lof lfeedforward lsynthesis

lmod- lels, lwhich lcan lbe lpre-trained lon la lgiven lexemplar ltexture lor lstyle, and then lused to

lquickly lsynthesize la lresult lusing lfixed lnetwork lweights.” The lfeed-forward lstrategy lis

lfaster lat lrun-time land luses lless lmemory. lHowever, lfeed-forward lmethods lmust lbe ltrained

lspecifically lon la lgiven lstyle lor ltexture, lmaking lthe lapproach limpractical lfor lapplications

lwhere lsuch la lpre-training lwould ltake ltoo llong l(pre-training ltimes lof 2 to 4 lhours lare

lreported lin lthese lpapers).

2.2.4 Non-Parametric Texture Synthesis

“Non-parametric ltexture lsyn- lthesis lmethods lwork lby lcopying lneighborhoods lor lpatches

lfrom lan lexemplar ltexture lto la lsynthesized limage laccording lto la llocal lsimilarity lterm[7]”;

lWei land lLevoy 2000; lLefebvre land lHoppe 2005; lLefebvre land lHoppe 2006; lKwatra let al.

2003; Kwatra let lal. 2005; lBarnes let lal. 2009]. lThis lapproach lhas lalso lbeen lused lto ltransfer

lstyle [Efros land lFreeman 2001; lHertzmann let lal. 2001; lBarnes let lal. 2015]. lSome lpapers

lhave lrecently lcombined lparametric lneural lnetwork lmodels lwith lnon- lparametric lpatch-

based lmodels l[Chen land lSchmidt 2016; lLi land lWand 2016].

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark18
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark24
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark19
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22

6

CHAPTER 3 - SYSTEM DEVELOPMENT

3.1 Approach

❖ All iiconvolutional iinet (Springenberg et al., 2014) iiwhich ireplaces ideterministic

ispatial ipooling ifunctions i(such ias imaxpooling) iwith istrided iconvolutions, iallowing

ithe inetwork ito ilearn iits iown ispatial idownsampling. iWe iuse ithis iapproach iin iour

igenerator, iallowing iit ito ilearn iits iown ispatial iupsampling, iand idiscriminator.

❖ Trend etowards eeliminating efully econnected elayers eon etop eof econvolutional efeatures.

eThe estrongest eexample eof ethis eis eglobal eaverage epooling ewhich ehas ebeen eutilized

ein estate eof eart eimage eclassification emodels e(Mordvintsev et al.). eWe efound eglobal

eaverage epooling eincreased emodel estability ebut e ehurt e econvergence espeed. eA emiddle

eground eof edirectly econnecting ethe ehighest econvolutional efeatures eto ethe einput eand

eoutput erespectively eof ethe egenerator eand ediscriminator eworked ewell. eThe efirst elayer

eof ethe eGAN, ewhich etakes ea euniform enoise edistribution eZ eas einput, ecould ebe ecalled

efully econnected eas eit eis ejust ea ematrix emultiplication, ebut ethe eresult eis ereshaped einto

ea e4-dimensional etensor eand eused eas ethe estart eof ethe econvolution estack. eFor ethe

ediscriminator, ethe elast econvolution elayer eis eflattened eand ethen efed einto ea esingle

esigmoid eoutput.

❖ Batch tNormalization twhich tstabilizes tlearning tby tnormalizing tthe tinput tto teach tunit

tto thave tzero tmean tand tunit tvariance. tThis thelps tdeal twith ttraining tproblems tthat

tarise tdue tto tpoor tinitialization tand thelps tgradient tflow tin tdeeper tmodels. tThis

tproved tcritical tto tget t deep tgenerators tto t begin t learning, tpreventing tthe tgenerator

tfrom tcollapsing tall tsamples tto ta tsingle tpoint twhich tis ta tcommon tfailure tmode

tobserved tin tGANs. tDirectly tapplying tbatchnorm tto tall tlayers, tresulted tin tsample

toscillation tand tmodel tinstability.

3.2 The ReLU Activation

It lis lused lin lthe lgenerator lwith lthe lexception lof lthe loutput llayer lwhich luses lthe

lTanh lfunction. lWe lobserved lthat lusing la lbounded lactivation lallowed lthe lmodel lto

llearn lmore lquickly lto lsaturate land lcover lthe lcolor lspace lof lthe ltraining

ldistribution. lWithin lthe ldiscriminator lwe lfound lthe lleaky lrectified lactivation lto

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark23

7

lwork l well.

Architecture guidelines for stable Deep Convolutional GANs

❖ Replace any pooling layers with strided convolutions (discriminator) and fractional-

strided convolutions (generator).

❖ Use batchnorm in both the generator and the discriminator.

❖ Remove fully connected hidden layers for deeper architectures.

❖ Use ReLU activation in generator for all layers except for the output, which uses

Tanh.

❖ Use Leaky ReLU activation in the discriminator for all layers.

3.3 Details Of Adversarial Training

Figure 3.1: Siamese GAN architecture.

It is made of a single generator (G) and discriminator (D): G takes an image as input and

8

outputs the translated image; D takes an image as input and outputs a latent vector.

The Siamese Discriminator has 2 objectives: telling G how to generate more realistic

images and maintaining in those fake images a correlation (same ‘content’) with the

original ones.

Calling A1, A2 and B1, B2 random images from domains A and B respectively, X a random

image, and G(X) the images generated by the Generator, the Discriminator must encode

images into vectors D(X) such as:

❖ D(B1) must be close (euclidean distance) to a fixed point (the origin for example),

while D(G(A1)) must be far from the same point. Consequently, vectors closer to

the fixed points represent more realistic images. The Generator on the other hand

tries to minimize the distance from D(G(A1)) to the fixed point, in classic

adversarial fashion.

❖ (D(A1)-D(A2)) must be similar (cosine similarity) to (D(G(A1))-D(G(A2))), to

preserve ‘content’ between A and G(A). Both the Generator and the Discriminator

take part in this objective.

3.3.1 Deduplication

To similarly lower the likelihood of the generator memorizing input examples (Figure 3.2)

A simple image de-duplication process is performed over the input sample. tWe tfit ta 3072-

128-3072 tde-noising tdropout tregularized tRELU tautoencoder ton 32x32 tdown tsampled

tcenter-crops tof ttraining texamples. “The resulting code layer activations are then binarized

via thresholding the ReLU activation which has been shown to be an effective information

preserving technique[25]” and provides a convenient shape of semantic-hashing, bearing

in mind linear time de-duplication. visible inspection of hash collisions showed excessive

precision with an estimated FPR of much tless tthan t1 tin t100. tAdditionally, tthe ttechnique

tdetected tand tremoved tapproximately t275,000 tnear duplicates, suggesting a high recall.

3.4 Faces

Dbpedia was using to obtain random people’s names, further these names were used to

scrap images having human face from randomized web queries with only conditioned for

having born in recent times. tThis tdataset thas t3M timages tfrom t10K tpeople. OpenCV face

detector was used over this dataset, only those detected images were kept which had

9

adequate resolution, this came out to be 350,000 face boxes. Now, these face boxes will be

used for training the sampler model, while keeping in mind that no data augmentation was

processed on the images.

3.5 Imagenet-IK

“We use Imagenet-1k[26] as a source of natural images for unsupervised training.” t32 t×

t32 tmin-resized tcenter tcrops twere used to train but again no data augmentation was

performed.

Figure 3.2 shows the result after one training pass. Theoretically, the model could learn to

memorize training examples, but this is experimentally unlikely as we train with a small

learning rate and minibatch SGD. We are aware of no prior empirical evidence

demonstrating memorization with SGD and a small learning rate.

Figure 3.2: tGenerated tbedrooms tafter tone ttraining tpass tthrough tthe tdataset. t

Figure 3.3 shows resultant images after 5 successful epochs of training. Signs of visual

under-fitting is quite evident due to consistent noise textures across multiple samples like

the base boards of some of the beds.

10

Figure 3.3: Generated bedrooms after five epochs of training.

11

CHAPTER 4 - PERFORMANCE ANALYSIS

4.1 Investigation and Visualization of The Internals of The Networks

❖ We linvestigate lthe ltrained lgenerators land ldiscriminators lin la lvariety lof lways.

❖ tWe ldo lnot ldo lany lkind lof lnearest lneighbor lsearch lon lthe ltraining lset. lNearest

lneighbors lin lpixel l lor lfeature lspace lare l ltrivially lfooled l(Theis let l lal., l2015) lby lsmall

limage ltransforms. lWe lalso ldo lnot luse llog-likelihood lmetrics lto lquantitatively

lassess lthe lmodel, las lit lis la lpoor l(Theis l let lal., l l2015) l metric.

Table l1: lSVHN lclassification lwith l1000 llabels

Model Error lRate

KNN 77.93%

DCGAN l(ours) l+ lL2-SVM

Supervised lCNN lwith lthe lsame larchitecture

22.48%

28.87%

(validation)

4.1.1 The Latent Space

Prima facia investigation was done to figure out the basic structure of the latent space.

tWalking ton tthe tmanifold tthat tis tlearnt can generally informs us about the possible signs of

memorization (like if we observe any tsharp ttransitions) and hierarchical collapse of space.

If taking walks on this latent area consequences in semantic modifications to the picture

generations, a decent argument can be made on the model if relevant and worthwhile

representations were made. The results are shown in Figure 4.1. The first few rows

demonstrate that the learned space has smooth transitions. While in 6th and 10th rows the

picture is totally opposite, it is visible that in 6th row a room with no window and only a

scar on wall slowly converts to a room with a large window and similarly in row 10 a room

with television slowly gets a window in place of the TV.

12

Figure 4.1: lTop lrows: lInterpolation lbetween la lseries lof l9 lrandom lpoints lin lZ lshow lthat lthe lspace llearned lhas lsmooth

ltransitions, lwith levery limage lin lthe lspace lplausibly llooking llike la lbedroom. lIn lthe l6th lrow, lyou lsee la lroom lwithout la

lwindow lslowly ltransforming linto la lroom lwith la lgiant lwindow. lIn lthe l10th lrow, lyou lsee lwhat lappears lto lbe la

lTV lslowly lbeing ltransformed linto la lwindow.

4.2 Visualization of the Discriminator Features

“Previous work has demonstrated that supervised training of CNNs on large image datasets

results in very powerful learned features[17].” In addition to it, a traditional CNN can be

trained on classification to work as a object detector. Here I’m going to demonstrate how

an unsupervised model like that of DCGAN if trained on a large enough image dataset can

13

also work on the generate a hierarchy of interesting features. “Using guided

backpropagation as proposed by[27], that the features learnt by the discriminator activate

on typical parts of a bedroom, like beds and windows.” Therefore, to draw a comparison

between these approaches in (Figure 4.2), we supply a baseline for randomly initialized

capabilities that are not activated on anything that is semantically applicable or interesting.

Figure 4.2: On jthe jright, jguided jbackpropagation jvisualizations jof jmaximal jaxis-aligned jresponses jfor jthe jfirst j6

jlearned jconvolutional jfeatures jfrom jthe jlast jconvolution jlayer jin jthe jdiscriminator. jNotice ja jsignificant jminority jof

jfeatures jrespond jto jbeds j- jthe jcentral jobject jin jthe jLSUN jbedrooms jdataset. jOn jthe jleft jis ja jrandom jfilter

jbaseline. jComparing jto jthe jprevious jresponses jthere jis jlittle jto jno jdiscrimination jand jrandom jstructure.

4.3 Manipulating the Generator Representation

4.3.1 Forgetting to Draw Certain Objects

In addition to the representations learnt by a discriminator, there is the question of what

representations the generator learns. The quality of samples suggest that the generator

learns specific object representations for major scene components such as beds,

windowsand miscellaneous furniture. In order to explore the form that these

representations take, we conducted an experiment to attempt to remove windows

from the generator completely.

On 150 samples, 52 window bounding boxes were drawn manually. On the second

highest convolution layer features, logistic regression was fit to predict whether a

feature activation was on a window, by using the criterion that activations inside the

14

drawn bounding boxes are positives and random samples from the same images are

negatives. Using this simple model, all feature maps with weights greater than zero

were dropped from all spatial locations. Then random new samples were generated with

and without the feature map removal. The generated images with and without the

window dropout are shown in Figure 4.3, and interestingly, the network mostly forgets

to draw windows in the bedrooms, replacing them with other objects.

Figure 4.3: Top row contains un-modified samples while Bottom row shows generated outputs after dropping out window

filters.

4.3.2 Vector arithmetic on face samples

In the context of evaluating learned representations of words (Mikolov et al., 2013)

demonstrated that simple arithmetic operations revealed rich linear structure in

representation space. One canoni- cal example demonstrated that the vector(”King”) -

vector(”Man”) + vector(”Woman”) resulted in a vector whose nearest neighbor was the

vector for Queen. We investigated whether similar structure emerges in the Z

representation of our generators. We performed similar arithmetic on the Z vectors of

sets of exemplar samples for visual concepts.

Experiments working on only single samples per concept were unstable, but averaging

the Z vector for three examplars showed consistent and stable generations that

semantically obeyed the arithmetic. In addition to the object manipulation shown in

Figure 4.4 , we demonstrate that face pose is also modeled linearly in Z space Figure

4.6.

These demonstrations suggest interesting applications can be developed using Z

representations learned by our models. It has been previously demonstrated that

conditional generative models can learn to convincingly model object attributes like

scale, rotation, and position[16]. This is to our knowledge the first demonstration of

this occurring in purely unsupervised models.

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22

15

In addition, exploring and developing the above-mentioned vector arithmetic should

dramatically reduce the amount of information wanted for conditional generative

modeling of complicated photo distributions.

Figure 4.4: Vector iarithmetic ifor ivisual iconcepts. iFor ieach icolumn, ithe iZ ivectors iof isamples iare iaveraged. iArithmetic

iwas ithen iperformed ion ithe imean ivectors icreating ia inew ivector iY i. iThe icenter isample ion ithe iright-hand iside iis

iproduce iby ifeeding iY ias iinput ito ithe igenerator. iTo idemonstrate ithe iinterpolation icapabilities iof ithe igenerator, iuniform

16

inoise isampled iwith iscale i+-0.25 iwas iadded ito iY ito iproduce ithe i8 iother isamples. iApplying iarithmetic iin ithe iinput

ispace i(bottom itwo iexamples) iresults iin inoisy ioverlap idue ito imisalignment.

Input

Figure 4.5: Input to Model

Output

Figure 4.6: Output Generated From Model

4.4 Classifying CIFAR-10 Using GANs as a Feature Extractor

“One common technique for evaluating the quality of unsupervised representation learning

algorithms is to apply them as a feature extractor on supervised datasets and evaluate the

performance of linear models fitted on top of these features.[28]”

On rthe rCIFAR-10 rdataset, ra rvery rstrong rbaseline rperformance rhas rbeen rdemonstrated rfrom

ra rwell-tuned rsingle rlayer rfeature rextraction rpipeline rutilizing rK-means ras ra rfeature rlearning

ralgorithm. rWhen rusing ra rvery rlarge ramount rof rfeature rmaps r(4800) rthis r×itechnique

17

rachieves r80.6% raccuracy. “An unsupervised multi-layered extension of the base algorithm

reaches 82.0% accuracy[29].” rto revaluate rthe rsatisfactory rof rthe rrepresentations rfound rout

rby× rDCGANs rfor rsupervised rduties, rwe rteach ron rImagenet-1k rand rthen ruse rthe

rdiscriminator’s rconvolutional rcapabilities rfrom rall rlayers, rmaxpooling revery rlayer’s

rrepresentation rto rproduce ra r4*4 rspatial rgrid. rThese rfeatures rare rthen rflattened rand

rconcatenated rto rform ra r28672-dimensional rvector rand ra rregularized rlinear rL2-SVM

rclassifier ris rtrained ron rtop rof rthem. rThis rachieves r82.8% raccuracy, outperforming all K-

means based approaches. Notably, the discriminator has many less feature maps (512 in the

highest layer) compared to K-means based techniques, but does result in a larger total

feature vector size due to the many layers of 4*4 spatial locations. “The performance of

DCGANs is still less than that of Exemplar CNNs[16]” , a technique which trains normal

discriminative CNNs in an unsupervised style to distinguish among specifically chosen,

aggressively augmented, exemplar samples from the source dataset. similarly, might be

made with the aid of finetuning the discriminator’s representations, however we depart this

for future work. additionally, on the grounds that our DCGAN changed into never skilled

on CIFAR-10 this experiment also demonstrates the area robustness of the learned

capabilities.

Table 2: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre- trained on CIFAR-10,

but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

Model Accuracy Accuracy

(400per lclass)

Max l#of

features

lunits

 i 1 lLayer lK-means i80.6% i 63.7% l(±0.7% Error) i4800

 i3 lLayer lK-means lLearned i82.0% i70.7% l(±0.7%Error) i3200

RF 72.6% l(±0.7%Error)

View lInvariant lK-means 81.9% 77.4% l(±0.2%Error) i6400

Exemplar lCNN 84.3% i1024

DCGAN l(ours) l+ lL2-SVM i82.8% 73.8% l(±0.4%Error) i512

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark10

18

4.5 Classifying SVHN Digits Using GANs As A Feature Extractor

“On the StreetView House Numbers dataset (SVHN)[1], we use the features of the

discriminator of a DCGAN for supervised purposes when labeled data is scarce.” Following

comparable dataset practice rules as in the CIFAR-10 experiments, we break up off a

validation set of 10,000 examples from the non-more set and use it for all hyperparameter

and version choice. 1000 uniformly class allotted training examples are randomly decided

on and used to educate a regularized linear L2-SVM classifier on top of the same feature

extraction pipeline used for CIFAR-10. “Additionally, we validate that the CNN

architecture used in DCGAN is not the key contributing factor of the model’s performance

by training a purely supervised CNN with the same architecture on the same data and

optimizing this model via random search over 64 hyperparameter trials [30].” It rachieves ra

rsignificantly rhigher r28.87% rvalidation rerror.

4.6 Evaluating DCGANs Capability To Capture Data Distributions

We rpropose rto rapply rstandard rclassification rmetrics rto ra rconditional rversion rof rour rmodel,

revaluating rthe rconditional rdistributions rlearned. rWe rtrained ra rDCGAN ron rMNIST

r(splitting roff ra r10K rvalidation rset) ras rwell ras ra rpermutation rinvariant rGAN rbaseline rand

revaluated rthe rmodels rusing ra rnearest rneighbor rclassifier rcomparing rreal rdata rto ra rset rof

a rsuperb rjob rat rmodelling rthe rconditional rdistributions rof rthis rdataset. r“At one million

samples per class, the DCGAN model outperforms InfiMNIST[5]”, a rhand rdeveloped rdata

raugmentation rpipeline rwhich ruses rtranslations rand relastic rdeformations rof rtraining

rexamples. “The DCGAN is competitive with a probabilistic generative data augmentation

technique utilizing learned per class transformations[14] while being more general as it

directly models the data instead of transformations of the data.”

19

Table 3: Nearest neighbor classification results.

 iModel iTest iError i@50K

isamples

 iTest iError i@10M

isamples

 iAlignMNIST

 i1.4%

 iInfiMNIST

 i2.6%

 iReal iData i3.1%

 iGAN i6.28% i5.65%

 iDCGAN i(ours) i2.98% i1.48%

20

Figure 4.7: Side-by-side illustration of (from left-to-right) the MNIST dataset, generations from a baseline GAN, and

generations from our DCGAN

21

Figure 4.8: More face generations from our Face DCGAN.

22

Figure 4.9: Generations of a DCGAN that was trained on the Imagenet-1k dataset.

 rWe rnow rdiscuss rsome rblessings of our end result. rOur rhistogram rloss raddresses

rinstabilities through ensuring that the total statistical distribution of the capabilities is

preserved. further to enhancing photo pleasant, our complete loss (inclusive of the

23

histogram loss) also calls for fewer iterations to converge. “We use a mean of 700 iterations

for our results, which we find consistently give good quality, and 1000 iterations for the

results of [24]”, This we find can be unstable at time. “We note that methods based on

Gram matrices such as [20] can become unstable over the iteration count.” We interpret

this as being caused by the mean and variance being free to drift, as we discussed in 4.2.

By adding histograms to our loss function, the result is more stable and converges better,

both spatially and over iterations.

Each method supplies perceptually-interesting effects but have blessings and

disadvantages. The first method is clearly restrained through how well the colour transfer

from the content image onto the style photograph works. The coloration distribution

regularly cannot be matched perfectly, main to a mismatch between the colors of the output

image and that of the content material photograph (Figure 4.14: Synthesis, using

luminance-histogram matching before synthesis) The synthesis also replicates “content”

structures from the van Gogh style scene, i.e., the pattern of reflections on the river appears

as vertical yellow stripes of brushstrokes in the output.

In rcontrast, rthe rsecond rmethod rpreserves rthe rcolors rof rthe rcontent rimage rperfectly.

rHowever, rdependencies rbetween rthe rluminance rand rthe rcolor rchannels rare rlost rin rthe

24

routput rimage r(Figure r4.13: rCombination rof rsynthesized rluminance rand rsource rcolor

rchannels.). r rThis ris rparticularly rapparent rfor rstyles rwith rprominent rbrushstrokes. In Figure

4.13 colors rare rno rlonger raligned rto rstrokes. rThat rmeans ra rsingle rbrushstroke rcan rhave

rmultiple rcolors, rwhich rdoes rnot rhappen rin rreal rpaintings. rIn rcomparison, rwhen rusing rfull

rstyle rtransfer rand rcolor rmatching, rthe routput rimage rreally rconsists rof rstrokes rwhich rare

rblotches rof rpaint, rnot rjust rvariations rof rlight rand rdark.

“One potential advantage of the luminance-based method is that it reduces the

dimensionality of the optimization problem for the neural synthesis[31].” The neural

synthesis set of rules performs numerical optimization of the output photograph, and

luminance-only synthesis has approx. 30% of its parameters. but, it's far doubtful that

there's any sensible benefit in common GPU implementations.

Below marked figures shows different generated images after luminance-only synthesis for

input images

Figure 4.10: Luminance channel (Y) of input photograph.

Figure 4.11: Color channels (I, Q) of input photograph

25

Figure 4.12: Style transfer result in luminance channel.

Figure 4.13: Combination of synthesized luminance and source color channels.

Figure 4.14: Synthesis, using luminance-histogram matching before synthesis

26

Figure 4.15: Combination of color and luminance channels, using luminance-histogram matching before synthesis.

(f)

27

CHAPTER 5 - CONCLUSION

We lpropose la lmore lstable lset lof larchitectures lfor ltraining lgenerative ladversarial lnetworks

land lwe lgive levidence lthat ladversarial lnetworks llearn lgood lrepresentations lof limages lfor

lsupervised llearning land lgenerative lmodeling. lThere lare lstill lsome lforms lof l lmodel l

linstability lremaining l- lwe lnoticed l las lmodels l lare l ltrained l llonger l lthey l lsometimes l lcollapse

la lsubset lof lfilters lto la lsingle loscillating lmode.

Further lwork lis lneeded lto ltackle lthis lfrom lof linstability. lWe lthink lthat lextending lthis

lframework lto lother ldomains lsuch las lvideo l(for lframe lprediction) land laudio l(pre-trained

lfeatures lfor lspeech lsynthesis) lshould lbe lvery linteresting. lFurther linvestigations linto lthe

lproperties lof lthe llearnt llatent lspace lwould lbe linteresting las lwell.

In lfuture lwork, lit lwould lbe linteresting lto lexplore lhow l lthe l ltwo l lstatistical l

lmodels lin lhere l(color lstatistics lvs. lCNN lactivations) lmight lbe lunified, land lto

lexplore l more l sophisticated l color l transfer l and l adjustment l procedures l .

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark3

28

REFERENCES

[1] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout

Networks,” 30th Int. Conf. Mach. Learn. ICML 2013, no. PART 3, pp. 2356–2364,

Feb. 2013, Accessed: May 16, 2021. [Online]. Available:

http://arxiv.org/abs/1302.4389.

[2] A. Coates and A. Y. Ng, “Learning feature representations with K-means,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 7700 LECTURE NO, pp. 561–580, 2012, doi: 10.1007/978-3-

642-35289-8_30.

[3] P. V. Ca, L. T. Edu, I. Lajoie, Y. B. Ca, and P.-A. M. Ca, “Stacked Denoising

Autoencoders: Learning Useful Representations in a Deep Network with a Local

Denoising Criterion Pascal Vincent Hugo Larochelle Yoshua Bengio Pierre-Antoine

Manzagol,” 2010.

[4] J. Zhao, M. Mathieu, R. Goroshin, and Y. LeCun, “Stacked What-Where Auto-

encoders,” Jun. 2015, Accessed: May 16, 2021. [Online]. Available:

http://arxiv.org/abs/1506.02351.

[5] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko, “Semi-supervised

learning with Ladder networks,” in Advances in Neural Information Processing

Systems, Jul. 2015, vol. 2015-January, pp. 3546–3554, Accessed: May 16, 2021.

[Online]. Available: https://arxiv.org/abs/1507.02672v2.

[6] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations,” 2009, pp. 1–8,

doi: 10.1145/1553374.1553453.

[7] A. A. Efros and T. K. Leung, “Texture Synthesis by Non-parametric Sampling,”

1999.

[8] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-Based Super-Resolution,”

no. April, pp. 56–65, 2002.

[9] J. Hays and A. A. Efros, “Scene completion using millions of photographs,”

Commun. ACM, vol. 51, no. 10, pp. 87–94, Oct. 2008, doi:

10.1145/1400181.1400202.

[10] J. Portilla and E. P. Simoncelli, “Parametric texture model based on joint statistics

29

of complex wavelet coefficients,” Int. J. Comput. Vis., vol. 40, no. 1, pp. 49–71,

2000, doi: 10.1023/A:1026553619983.

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Dec. 2014,

Accessed: May 16, 2021. [Online]. Available: https://arxiv.org/abs/1312.6114v10.

[12] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep

Unsupervised Learning using Nonequilibrium Thermodynamics,” 32nd Int. Conf.

Mach. Learn. ICML 2015, vol. 3, pp. 2246–2255, Mar. 2015, Accessed: May 16,

2021. [Online]. Available: http://arxiv.org/abs/1503.03585.

[13] I. J. Goodfellow et al., “Generative Adversarial Nets.” Accessed: May 16, 2021.

[Online]. Available: http://www.github.com/goodfeli/adversarial.

[14] E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep Generative Image Models

using a Laplacian Pyramid of Adversarial Networks,” Adv. Neural Inf. Process.

Syst., vol. 2015-January, pp. 1486–1494, Jun. 2015, Accessed: May 16, 2021.

[Online]. Available: http://arxiv.org/abs/1506.05751.

[15] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “DRAW: A

recurrent neural network for image generation,” in 32nd International Conference

on Machine Learning, ICML 2015, Feb. 2015, vol. 2, pp. 1462–1471, Accessed:

May 16, 2021. [Online]. Available: https://www.youtube.

[16] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox,

“Discriminative Unsupervised Feature Learning with Exemplar Convolutional

Neural Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1734–

1747, Jun. 2014, Accessed: May 16, 2021. [Online]. Available:

http://arxiv.org/abs/1406.6909.

[17] M. D. Zeiler and R. Fergus, “LNCS 8689 - Visualizing and Understanding

Convolutional Networks,” 2014.

[18] “Google AI Blog: Inceptionism: Going Deeper into Neural Networks.”

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

(accessed May 17, 2021).

[19] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analysis/synthesis,” in

Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, 1995, pp.

229–238, doi: 10.1145/218380.218446.

30

[20] L. A. Gatys, A. S. Ecker, and M. Bethge, “A Neural Algorithm of Artistic Style,” J.

Vis., vol. 16, no. 12, p. 326, Aug. 2015, Accessed: May 17, 2021. [Online].

Available: http://arxiv.org/abs/1508.06576.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” Sep. 2015, Accessed: May 17, 2021. [Online]. Available:

http://www.robots.ox.ac.uk/.

[22] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau, “Single-Image

SVBRDF Capture with a Rendering-Aware Deep Network,” ACM Trans. Graph.,

vol. 37, no. 4, Oct. 2018, doi: 10.1145/3197517.3201378.

[23] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, “Texture Networks: Feed-

forward Synthesis of Textures and Stylized Images,” 33rd Int. Conf. Mach. Learn.

ICML 2016, vol. 3, pp. 2027–2041, Mar. 2016, Accessed: May 17, 2021. [Online].

Available: http://arxiv.org/abs/1603.03417.

[24] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer

and super-resolution,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Mar.

2016, vol. 9906 LNCS, pp. 694–711, doi: 10.1007/978-3-319-46475-6_43.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A Simple

Way to Prevent Neural Networks from Overfitting,” 2014. Accessed: May 18, 2021.

[Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html.

[26] J. Deng et al., “Imagenet: A large-scale hierarchical image database,” CVPR, 2009,

Accessed: May 16, 2021. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.155.1729.

[27] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox, “Learning to

Generate Chairs, Tables and Cars with Convolutional Networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 692–705, Apr. 2017, doi:

10.1109/TPAMI.2016.2567384.

[28] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with

deep convolutional generative adversarial networks,” Nov. 2016, Accessed: May 13,

2021. [Online]. Available: https://arxiv.org/abs/1511.06434v2.

[29] A. Coates and A. Y. Ng, “Selecting Receptive Fields in Deep Networks,” 2011.

31

[30] J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter

Optimization Yoshua Bengio,” 2012. Accessed: May 13, 2021. [Online]. Available:

http://scikit-learn.sourceforge.net.

[31] L. A. Gatys, U. Tübingen, M. Bethge, A. Hertzmann, A. Research, and E.

Shechtman, “Preserving Color in Neural Artistic Style Transfer,” 2016.

32

APPENDIX

5.1 Code

5.1.1 Model Generation

33

34

35

36

5.1.2 Image Generation

37

device = ("cuda" if torch.cuda.is_available() else "cpu") def

model_activations(input,model):

layers = {

'0' : 'conv1_1',

'5' : 'conv2_1',

'10': 'conv3_1',

'19': 'conv4_1',

'21': 'conv4_2',

'28': 'conv5_1'

}

features = {} x = input

x = x.unsqueeze(0)

for name,layer in model._modules.items():

x = layer(x)

if name in layers:

features[layers[name]] = x

return features

transform = transforms.Compose([transforms.Resize(300),

transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])

content = Image.open("content.png").convert("RGB") content =

transform(content).to(device) print("COntent shape => ", content.shape)

style = Image.open("style.jpg").convert("RGB") style = transform(style).to(device)

def imcnvt(image):

x = image.to("cpu").clone().detach().numpy().squeeze() x = x.transpose(1,2,0)

x = x*np.array((0.5,0.5,0.5)) + np.array((0.5,0.5,0.5)) return np.clip(x,0,1)

fig, (ax1,ax2) = plt.subplots(1,2)

ax1.imshow(imcnvt(content),label = "Content") ax2.imshow(imcnvt(style),label =

38

"Style")

plt.show()

def gram_matrix(imgfeature):

_,d,h,w = imgfeature.size() imgfeature = imgfeature.view(d,h*w)

gram_mat = torch.mm(imgfeature,imgfeature.t()) return gram_mat

target = content.clone().requires_grad_(True).to(device) #set device to cuda if available

print("device = ",device)

style_features = model_activations(style,model) content_features =

model_activations(content,model)

style_wt_meas = {"conv1_1" : 1.0,

"conv2_1" : 0.8,

"conv3_1" : 0.4,

"conv4_1" : 0.2,

"conv5_1" : 0.1}

style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features}

content_wt = 100 style_wt = 1e8

print_after = 500

epochs = 1000

optimizer = torch.optim.Adam([target],lr=0.007)

for i in range(1,epochs+1):

target_features = model_activations(target,model) content_loss =

torch.mean((content_features['conv4_2']-

target_features['conv4_2'])**2)

39

style_loss = 0

for layer in style_wt_meas: style_gram = style_grams[layer]

target_gram = target_features[layer]

_,d,w,h = target_gram.shape target_gram = gram_matrix(target_gram)

style_loss += (style_wt_meas[layer]*torch.mean((target_gram- style_gram)**2))/d*w*h

total_loss = content_wt*content_loss + style_wt*style_loss

if i%10==0:

print("epoch ",i," ", total_loss)

optimizer.zero_grad() total_loss.backward() optimizer.step()

if i%print_after == 0: plt.imshow(imcnvt(target),label="Epoch "+str(i)) plt.show()

plt.imsave(str(i)+'.png',imcnvt(target),format='png')

19%
SIMILARITY INDEX

19%
INTERNET SOURCES

5%
PUBLICATIONS

9%
STUDENT PAPERS

1 8%

2 5%

3 4%

4 1%

5 1%

6 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

Vishrut_thakur_171309
ORIGINALITY REPORT

PRIMARY SOURCES

docplayer.net
Internet Source

arxiv.org
Internet Source

towardsdatascience.com
Internet Source

www.arxiv-vanity.com
Internet Source

martychen920.blogspot.com
Internet Source

export.arxiv.org
Internet Source

	171309
	Vishrut_thakur_171309

