IMAGE MODELING USING GENERATIVE
ADVERSARIAL NETWORK
Project report submitted in partial fulfilment of the
requirement for the degree of Bachelor of Technology
In
Computer Science Engineering
Submitted By:
Vishrut Thakur (171309)

under the supervision of

Dr. Rajinder Sandhu

To
x A /

Q2 A
X @
- >
wl , o
o il ,i S

72_/’ \| ,/ \9

Juit

fa=n o =faam

Department of Computer Science & Engineering and Information Technology,
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,
Waknaghat, Himachal Pradesh-173234

Candidate’s Declaration

| hereby declare that the work presented in this report entitled “IMAGE MODELING
USING GENERATIVE ADVERSARIAL NETWORK?” in partial fulfilment of the
requirements for the award of the degree of Bachelor of Technology in Computer Science
and Engineering submitted in the department of Computer Science & Engineering and
Information Technology, Jaypee University of Information Technology Waknaghat is an
authentic record of my own work carried out over a period from August 2020 to December
2020 under the supervision of Dr. Rajinder Sandhu, Assistant Professor (Senior Grade),
Computer Science and Engineering/Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

(Student Signature)
Vishrut Thakur, 171309

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

\ \
?\%ﬂ“‘“w
(Supetrvisor Signature)
Dr Rajinder Sandhu
Assistant Professor (Senior Grade)
Computer Science and Engineering/Information Technology
Dated:

Acknowledgement
Any serious and lasting achievement cannot be achieved without the help, guidance and
co-operation of numerous people involved in the work. I thank the almighty for giving me
the courage and perseverance in completing this-project.
| extend my sincere thanks to Prof. Dr. VINOD KUMAR Vice Chancellor of our
University, for providing sufficient infrastructure and good environment in the University
to complete our course.
| am thankful to our Registrar and Dean of Students Maj Gen RAKESH BASSI (Retd.), for
providing the necessary Infrastructure and labs and also permitting to carry out this project.
With extreme jubilance and deepest gratitude, 1 would like to thank Director & Head of the
C.S.E. Department, Prof. Dr. SAMIR DEV GUPTA for his constant encouragement.
| special thanks to our Project coordinator DR. HEMRAJ SAINI, Associate Professor
Computer Science & Engineering, for his support and valuable suggestions regarding
project work.
| am greatly indebted to project guide DR. RAJINDER SANDHU, Assistant Professor
(Senior Grade), Computer Science & Engineering Department, for providing valuable
guidance at every stage of this project work. 1 am profoundly grateful towards the
unmatched services rendered by him.
My special thanks to all the faculty of Computer Science & Engineering and peers for their
valuable advises at every stage of this work.
Last but not least, | would like to express my deep sense of gratitude and earnest thanks
giving to my dear parents for their constant moral support and heartfelt cooperation at every
step of life.

Table of Contents

Candidate’s DeClarationc.ecvveiuiiieiieiie e se st e et esbe e e sbe e e sresseesteensesneenneas i
ACKNOWIEAGEIMENT ...ttt et e esteareesbeensenas ii
LiSt OFf ADDIEVIATIONS ... e v
LISE OF FIGUIES ..t bbb bbb bbbttt vi
LISt OF TADIES ... viii
ADSITACT ...ttt ettt nes iX
CHAPTER 1- INTRODUCTION ..ottt sttt 1
1.1 INEFOUUCTION .t bbbttt 1
1.2 ODBJECLIVE ... bbbttt 1
1.3 MEthOUOIOQYcoeeieeiieiieiiiie e 1
CHAPTER 2- LITERATURE SURVEY ...t 3
2.1 REIAIEA WOTK....ccuiieiiiiiiiie st 3
2.1.1 Representation Learning from Unlabelled Datacccccoocvvieniiiennciennns 3
2.1.2 Generating Natural IMageScoevuererierieiese e 3
2.1.3 Visualizing the Internals of CNINS........ccooiiiiiiiie e 4

2.2 REIAIE WOTK.....coeiiiiiiiiiiicise et 4
2.2.1 Parametric TexXture SYNTNESISccovviiiriiiienesie s 4
2.2.2 Neural Texture Synthesis and Style Transferccocvvviiiiiiininiensice 4
2.2.3 Feedforward Neural Texture SYNthesisccccovvvevieiiii i, 5
2.2.4 Non-Parametric Texture SYNtheSiSc.ccveveiiiiiiiiiiicie e 5
CHAPTER 3- SYSTEM DEVELOPMENTcoootiiiiiiiciee e 7
TS0 Y o o] o - Tod SO 7
3.2 The RELU ACHVALIONoveiiieiitiieciiicis s 7

3.3 Details Of Adversarial TraiNingcccccriririninenene e 8

3.3 1 DeAUPIICALIONcviiiiiiieie ittt 9

B4 FBCES ..ttt bbbttt ns 9
3.5 IMAGENET-TK o 10
CHAPTER 4- PERFORMANCE ANALYSIS. ..ot 11
4.1 Investigating and Visualizing The Internals Of The Networks............cccccu.... 11
411 Walking in the Latent SPaceccoiiiiiriiiie s 11

4.2 Visualizing the DisCriminator FEAtUIES............cocoireriririie e 12
4.3 Manipulating the Generator Representation............ccococeverereneneneneneseienas 13
4.3.1 Forgetting to Draw Certain ODJECtS...........coviiirenininciesese s 13
4.3.2 Vector arithmetic on face SamplesS..........ccoovvieiiiiiiiiieie e 14

4.4 Classifying CIFAR-10 Using GANS as a Feature EXtractor.............cccoceveveiiennene 16
4.5 Classifying SVHN Digits Using GANs As A Feature EXtractor............cccev... 17
4.6 Evaluating Dcgans Capability To Capture Data Distributions.............cccce.... 18
CHAPTER 5= CONCLUSION ...cotiiiiiieiisie e 27
REFERENCES ...ttt ettt 28
APPENDIX ...ttt ettt ebens 31
5.1 COUR ottt 31
5.1.1 Model GENEIALIONc.ccveiiiiieiiiieisieee e 31
5.1.2 IMage GENEIALIONcc.eiuieieiieeie ettt et sre e nreas 35

List of Abbreviations
CNN - Convolution Neural Networks.
DCGAN:Ss - deep convolutional generative adversarial networks.
MNIST - Modified National Institute of Standards and Technology.
SVHN - Street View House Numbers
CIFAR- Canadian Institute for Advanced Research
VGG — Visual Geometry Group
FPR — False Positive Rate
LSUN - Large scale images showing different objects from given categories like
bedroom, tower, etc

SVBRDF - Spatially-Varying Bi-Directional Reflectance Distribution Functions.

List of Figures

Figure 3.1: Siamese GAN architeCtUrE.ccccovviiiriiiieie e 7
Figure 3.2: Generated bedrooms after one training pass through the dataset. 9
Figure 3.3: Generated bedrooms after five epochs of training.cccccoeeneiincieicnenns 10

Figure 4.1: Top rows: Interpolation between a series of 9 random points in Z show that the
space learned has smooth transitions, with every image in the space plausibly looking like
a bedroom. In the 6th row, you see a room without a window slowly transforming into a
room with a giant window. In the 10th row, you see what appears to be a TV slowly being
transformed INTO @ WINGOW.couiiiiieiieiecieie e ne e 12
Figure 4.2: On the right, guided backpropagation visualizations of maximal axis-aligned
responses for the first 6 learned convolutional features from the last convolution layer in
the discriminator. Notice a significant minority of features respond to beds - the central
object in the LSUN bedrooms dataset. On the left is a random filter baseline. Comparing to
the previous responses there is little to no discrimination and random structure. 13
Figure 4.3: Top row: un-modified samples from model. Bottom row: the same samples
generated with dropping out “window filters”.cccoooviiiiiiiii 14
Figure 4.4: Vector arithmetic for visual concepts. For each column, the Z vectors of samples
are averaged. Arithmetic was then performed on the mean vectors creating a new vector
Y . The center sample on the right hand side is produce by feeding Y as input to the

generator. To demonstrate the interpolation capabilities of the generator, uniform noise

SAMPIEA WITN SCAIE ... s 15
Figure 4.5: INPUL O MOoouviie et 16
Figure 4.6: Output Generated From Modelccooviiiiiiiiiiie e 16
Figure 4.7: Side-by-side illustration of (from left-to-right) the MNIST dataset, generations
from a baseline GAN, and generations from our DCGAN............ccccovevieiieiieie s 20
Figure 4.8: More face generations from our Face DCGAN.ccccoceiiiiinieniene e 21
Figure 4.9: Generations of a DCGAN that was trained on the Imagenet-1k dataset.......... 22
Figure 4.10: Luminance channel (Y) of input photograph.ccccooiiiiiiiiiiiic e, 24
Figure 4.11: Color channels (I, Q) of input photographcccevvvieii i 24
Figure 4.12: Style transfer result in luminance channel.c.ccocoiiiiiniicce, 25
Figure 4.13: Combination of synthesized luminance and source color channels. 25

Vi

Figure 4.14: Synthesis, using luminance-histogram matching before synthesis................ 25
Figure 4.15: Combination of color and luminance channels, using luminance-histogram

matching DEfOre SYNNESIS. ..o 26

vii

List of Tables
Table 1: SVHN classification with 1000 1aDeIS..........cccoiiiiiiiiiiiie e 11
Table 2: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not

pre- trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify
(O | AN O 1T To =L TSP S TR 17

Table 3: Nearest neighbor classification reSUlLS.ccoovviiininie e 19

viii

Abstract

Amongst recent research work in Computer Vision Applications, supervised learning with
CNNSs have been highly popular. Unfortunately, this can’t be inferred for its counterpart in
unsupervised learning.

Here, in this project | introduce another anecdote of CNNs called Deep Convolutional
Generative Adversarial Networks more commonly abbreviated as DCGANs. DCGANSs
having distinctive characteristics in-order can proof its potential among other classes of
unsupervised learning. Training on various image datasets, we show convincing evidence
that our deep convolutional adversarial pair learns a hierarchy of representations from
object parts to scenes in both the generator and discriminator. Additionally, we use the

learned features for novel tasks - demonstrating their applicability as general image
representations.

CHAPTER1- INTRODUCTION

1.1 Introduction

Various supervised learning tasks like image classification can be performed by
consummating the vast variety of unlabelled representations and therefore generating
good intermediate representations. As we know in todays research work learning
reusable representation from large unlabelled datasets has been very popular.

“We propose that one way to build good image representations is by training Generative
Adversarial Networks (GANSs)[1]”, and later reusing parts of the generator and
discriminator networks as feature extractors for supervised tasks. GANs provide an
attractive alternative to maximum likelihood techniques. One can additionally argue
that their learning process and the lack of a heuristic cost function (such as pixel-wise
independent mean-square error) are attractive to representation learning. GANs have
been known to be unstable to train, often resulting in generators that produce

nonsensical outputs.

1.2 Objective

To understand and visualize what GANs learn, and the intermediate representations of
multi-layer GANs. We capitalize on large amounts of unlabeled images in order to
learn a model of scene dynamics for image generation task. We propose a generative
adversarial network for image with a convolutional architecture that untangles the
image foreground from the background. Experiments suggest this model can generate
image better than simple baselines, and we show its utility at predicting futures of static
images.

Moreover, experiments and visualizations show the model internally learns useful
features for recognizing actions with minimal supervision, suggesting scene dynamics
are a promising signal for representation learning. We believe generative image models

can impact many applications in image understanding and simulation.

1.3 Methodology
+ We suggest and compare a fixed of constraints at the architectural topology of

Convolutional GANs that make them stable to educate in most settings. We name this

X4

X/

®
L4

0,
°n

class of architectures “Deep Convolutional Generative Adversarial Networks
(DCGANS)”

We use the trained generators for image classification tasks, showing competitive
performance with other unsupervised algorithms.

We visualize the filters learnt by GANs and empirically show that specific filters
have learned to draw specific objects.

We show that the generators have interesting vector arithmetic properties allowing
for easy manipulation of many semantic qualities of generated samples.

We use the trained discriminators for image classification tasks, showing

competitive performance with other unsupervised algorithms.

CHAPTER 2 - LITERATURE SURVEY
2.1 Related Work

211 Representation Learning from Unlabelled Data

Talking about unsupervised representation learning, It has been a fairly well studied
problem in general computer vision research, as well as in the context of images. A classic
approach to unsupervised representation learning is to do clustering on the data (for
example using K-means), and leverage the clusters for improved classification scores. “In
the context of images, one can do hierarchical clustering of image patches[2] to learn
powerful image representations. Another popular method is to train auto-encoders
(convolutionally, stacked[3], separating the what and where components of the code[4],
ladder structures[5])” that encode an image into a compact code, and decode the code to
reconstruct the image as accurately as possible. These methods have also been shown to
learn good feature representations from image pixels. “Deep belief networks[6] have also
been shown to work well in learning hierarchical representations.”

2.1.2 Generating Natural Images

“Generative image models are well studied and fall into two categories:

o parametric
o non-parametric.”

“The non-parametric models often do matching from a database of existing
images, often matching patches of images, and have been used in texture
synthesis[7] super-resolution[8] and in- painting[9].”

There has been drastic exploration of parametric models for generating images
(“for example on MNIST digits or for texture synthesis[10]”. However, generating
natural images of the real world have had not much success until recently. “A
variational sampling approach to generating images[11] has had some success,
but the samples often suffer from being blurry. Another approach generates
images using an iterative forward diffusion process[12].”

“Generative Adversarial Networks[13] generated images suffering from being

noisy and incomprehensible”. “A Laplacian pyramid extension to this
approach[14] showed higher quality images, but they still suffered from the
objects looking wobbly because of noise introduced in chaining multiple models.”
“A recurrent network approach[15] and a deconvolution network approach[16]
have also recently had some success with generating natural images.” But

generators were never used for supervised tasks.

2.1.3 Visualizing the Internals of CNNs

One constant criticism of using neural networks has been that they are black-box
methods, with little understanding of what the networks do in the form of a simple human-
consumable algorithm. In the context of CNNSs[17], (Zeiler & Fergus, 2014) showed that
by using deconvolutions and filtering the maximal activations, one can find the
approximate purpose of each convolution filter in the network. “Similarly, using a gradient
descent on the inputs lets us inspect the ideal image that activates certain subsets of
filtersmord[18].”

2.2 Related Work

2.2.1 Parametric Texture Synthesis
Some early methods for texture synthesis explored parametric models. “[19] used
histogram matching combined with Laplacian and steerable pyramids to synthesize
textures.” We are inspired by their use of histogram matching. “[10]investigated the
integration of many wavelet statistics over different locations, orientations, and scales into
a sophisticated parametric texture synthesis method.” These included cross-correlations
between pairs of filter responses.

2.2.2 Neural Texture Synthesis and Style Transfer
In this paper, for short, we use neural to refer to convolutional neural networks. Recently,
“[20] showed that texture synthesis can be performed by using ImageNet-pretrained
convolutional neural networks such as VGG[21].” Specifically, “[20]impose losses on co-
occurrence statistics for pairs of features.” These statistics are computed via Gram matrices,
which measure inner products between all pairs of feature maps within the same layers of
the CNN.
Results of[20] were typically better than those of[10] for texture synthesis. Later extended

this approach to style transfer, by incorporating within CNN layers both a Forbinius norm
content loss to a content exemplar image, and a Gram matrix style loss to a style exemplar
image. We build upon this framework, and offer a brief review of how it works in the next
section. Concurrently to our research,(Berger et al, 2016). observed that in the approach
of[20], texture regularity may be lost during synthesis, and proposed a loss that improves
regularity based on co-occurrence statistics between translations of the feature maps.
“Recently, [22] used neural networks to extract SVBRDF material models from a single
photo of a texture. Their method focuses on a more specific problem of recovering a
SVBRDF model from a head-lit flash image.” However, they do observe that positive
instabilities along with non-stationary textures can effortlessly end result if sufficiently
informative information are not used. We see this as related with our observations about
instabilities and the way to repair them.

2.2.3 Feedforward Neural Texture Synthesis
“Recently, a few papers ([23][24]) have investigated the training of feedforward synthesis
mod- els, which can be pre-trained on a given exemplar texture or style, and then used to
quickly synthesize a result using fixed network weights.” The feed-forward strategy is
faster at run-time and uses less memory. However, feed-forward methods must be trained
specifically on a given style or texture, making the approach impractical for applications
where such a pre-training would take too long (pre-training times of 2 to 4 hours are
reported in these papers).

2.2.4 Non-Parametric Texture Synthesis
“Non-parametric texture syn- thesis methods work by copying neighborhoods or patches
from an exemplar texture to a synthesized image according to a local similarity term[7]”;
Wei and Levoy 2000; Lefebvre and Hoppe 2005; Lefebvre and Hoppe 2006; Kwatra et al.
2003; Kwatra et al. 2005; Barnes et al. 2009]. This approach has also been used to transfer
style [Efros and Freeman 2001; Hertzmann et al. 2001; Barnes et al. 2015]. Some papers
have recently combined parametric neural network models with non- parametric patch-
based models [Chen and Schmidt 2016; Li and Wand 2016].

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark18
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark24
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark19
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22

CHAPTER 3- SYSTEM DEVELOPMENT

3.1 Approach

/7
0.0

0,
°

All convolutional net (Springenberg et al., 2014) which replaces deterministic
spatial pooling functions (such as maxpooling) with strided convolutions, allowing
the network to learn its own spatial downsampling. We use this approach in our
generator, allowing it to learn its own spatial upsampling, and discriminator.

Trend towards eliminating fully connected layers on top of convolutional features.
The strongest example of this is global average pooling which has been utilized
in state of art image classification models (Mordvintsev et al.). We found global
average pooling increased model stability but hurt convergence speed. A middle
ground of directly connecting the highest convolutional features to the input and
output respectively of the generator and discriminator worked well. The first layer
of the GAN, which takes a uniform noise distribution Z as input, could be called
fully connected as it is just a matrix multiplication, but the result is reshaped into
a 4-dimensional tensor and used as the start of the convolution stack. For the
discriminator, the last convolution layer is flattened and then fed into a single
sigmoid output.

Batch Normalization which stabilizes learning by normalizing the input to each unit
to have zero mean and unit variance. This helps deal with training problems that
arise due to poor initialization and helps gradient flow in deeper models. This
proved critical to get deep generatorsto begin learning, preventing the generator
from collapsing all samples to a single point which is a common failure mode
observed in GANSs. Directly applying batchnorm to all layers, resulted in sample

oscillation and model instability.

3.2 The ReLLU Activation

It is used in the generator with the exception of the output layer which uses the

Tanh function. We observed that using a bounded activation allowed the model to

learn more quickly to saturate and cover the color space of the training

distribution. Within the discriminator we found the leaky rectified activation to

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark23

work well.

Architecture guidelines for stable Deep Convolutional GANs

7
°

Replace any pooling layers with strided convolutions (discriminator) and fractional-
strided convolutions (generator).

2
%

Use batchnorm in both the generator and the discriminator.

0,
°

Remove fully connected hidden layers for deeper architectures.

®
L4

Use ReLU activation in generator for all layers except for the output, which uses
Tanh.

¢ Use Leaky ReLU activation in the discriminator for all layers.

3.3 Details Of Adversarial Training

We tramned DCGANs on three datasets, Large-scale Scene Understanding (LSUN)
Imagenet-1k and a newly assembled Faces dataset. Details on the usage of each of these
datasets are given below No pre-processing was applied to training images besides scaling
to the range of the tanh activation function [-1. 1]. All models were trained with mini-batch
stochastic gradient descent (5GD) with a mini-batch size of 128 Weights were mmitialized
from a zero-centered Normal distribution with standard deviation 0.02. In the LeakyEeLU,
the slope of the leak was set to 0.2 1n all models. We found the suggested learning rate of
0.001, to be too high, using 0.0002 instead. We found leaving the momentum term 51
at suggested value of 0.9 resulted in traiming oscillation and instability while reducing it to
0.5 helped stabilize training.

S(A)
S(B)
S(G(A))

Figure 3.1: Siamese GAN architecture.

It is made of a single generator (G) and discriminator (D): G takes an image as input and

outputs the translated image; D takes an image as input and outputs a latent vector.

The Siamese Discriminator has 2 objectives: telling G how to generate more realistic
images and maintaining in those fake images a correlation (same ‘content’) with the
original ones.

Calling A1, A2 and B1, B2 random images from domains A and B respectively, X arandom
image, and G(X) the images generated by the Generator, the Discriminator must encode
images into vectors D(X) such as:

« D(B1) must be close (euclidean distance) to a fixed point (the origin for example),
while D(G(A1)) must be far from the same point. Consequently, vectors closer to
the fixed points represent more realistic images. The Generator on the other hand
tries to minimize the distance from D(G(Al)) to the fixed point, in classic
adversarial fashion.

(D(A1)-D(A2)) must be similar (cosine similarity) to (D(G(A1))-D(G(A2))), to

preserve ‘content’ between A and G(A). Both the Generator and the Discriminator

®
%

take part in this objective.
3.3.1 Deduplication
To similarly lower the likelihood of the generator memorizing input examples (Figure 3.2)
A simple image de-duplication process is performed over the input sample. We fit a 3072-
128-3072 de-noising dropout regularized RELU autoencoder on 32x32 down sampled
center-crops of training examples. “The resulting code layer activations are then binarized
via thresholding the ReLU activation which has been shown to be an effective information
preserving technique[25]” and provides a convenient shape of semantic-hashing, bearing
in mind linear time de-duplication. visible inspection of hash collisions showed excessive
precision with an estimated FPR of much less than 1 in 100. Additionally, the technique

detected and removed approximately 275,000 near duplicates, suggesting a high recall.

3.4 Faces

Dbpedia was using to obtain random people’s names, further these names were used to
scrap images having human face from randomized web queries with only conditioned for
having born in recent times. This dataset has 3M images from 10K people. OpenCV face

detector was used over this dataset, only those detected images were kept which had

adequate resolution, this came out to be 350,000 face boxes. Now, these face boxes will be
used for training the sampler model, while keeping in mind that no data augmentation was

processed on the images.

3.5 Imagenet-1K

“We use Imagenet-1k[26] as a source of natural images for unsupervised training.” 32 x
32 min-resized center crops were used to train but again no data augmentation was
performed.

Figure 3.2 shows the result after one training pass. Theoretically, the model could learn to
memorize training examples, but this is experimentally unlikely as we train with a small
learning rate and minibatch SGD. We are aware of no prior empirical evidence

demonstrating memorization with SGD and a small learning rate.
_ } d "\ " e 'k’y' p. T T

Figure 3.2: Generated bedrooms after one training pass through the dataset.

Figure 3.3 shows resultant images after 5 successful epochs of training. Signs of visual
under-fitting is quite evident due to consistent noise textures across multiple samples like
the base boards of some of the beds.

Figure 3.3: Generated bedrooms after five epochs of training.

10

CHAPTER 4- PERFORMANCE ANALYSIS

4.1 Investigation and Visualization of The Internals of The Networks
+ We investigate the trained generators and discriminators in a variety of ways.
+ We do not do any kind of nearest neighbor search on the training set. Nearest
neighbors in pixel or feature space are trivially fooled (Theis et al., 2015) by small
image transforms. We also do not use log-likelihood metrics to quantitatively

assess the model, as it is a poor (Theis etal., 2015) metric.
Table 1: SVHN classification with 1000 labels

Model Error Rate
KNN 77.93%
DCGAN (ours) + L2-SVM 22.48%
Supervised CNN with the same architecture 28.87%
(validation)

41.1 The Latent Space
Prima facia investigation was done to figure out the basic structure of the latent space.
Walking on the manifold that is learnt can generally informs us about the possible signs of
memorization (like if we observe any sharp transitions) and hierarchical collapse of space.
If taking walks on this latent area consequences in semantic modifications to the picture
generations, a decent argument can be made on the model if relevant and worthwhile
representations were made. The results are shown in Figure 4.1. The first few rows
demonstrate that the learned space has smooth transitions. While in 6! and 10" rows the
picture is totally opposite, it is visible that in 6! row a room with no window and only a
scar on wall slowly converts to a room with a large window and similarly in row 10 a room

with television slowly gets a window in place of the TV.

11

Figure 4.1: Top rows: Interpolation between a series of 9 random points in Z show that the space learned has smooth
transitions, with every image in the space plausibly looking like a bedroom. In the 6th row, you see a room without a
window slowly transforming into a room with a giant window. In the 10th row, you see what appears to be a
TV slowly being transformed into a window.

4.2 Visualization of the Discriminator Features

“Previous work has demonstrated that supervised training of CNNs on large image datasets
results in very powerful learned features[17].” In addition to it, a traditional CNN can be
trained on classification to work as a object detector. Here I’'m going to demonstrate how

an unsupervised model like that of DCGAN if trained on a large enough image dataset can

12

also work on the generate a hierarchy of interesting features. “Using guided
backpropagation as proposed by[27], that the features learnt by the discriminator activate
on typical parts of a bedroom, like beds and windows.” Therefore, to draw a comparison
between these approaches in (Figure 4.2), we supply a baseline for randomly initialized

capabilities that are not activated on anything that is semantically applicable or interesting.

Random filters Trained filters

Figure 4.2: On the right, guided backpropagation visualizations of maximal axis-aligned responses for the first 6
learned convolutional features from the last convolution layer in the discriminator. Notice a significant minority of
features respond to beds - the central object in the LSUN bedrooms dataset. On the left is a random filter
baseline. Comparing to the previous responses there is little to no discrimination and random structure.

4.3 Manipulating the Generator Representation

4.3.1 Forgetting to Draw Certain Objects

In addition to the representations learnt by a discriminator, there is the question of what
representations the generator learns. The quality of samples suggest that the generator
learns specific object representations for major scene components such as beds,
windowsand miscellaneous furniture. In order to explore the form that these
representations take, we conducted an experiment to attempt to remove windows
from the generator completely.

On 150 samples, 52 window bounding boxes were drawn manually. On the second
highest convolution layer features, logistic regression was fit to predict whether a

feature activation was on a window, by using the criterion that activations inside the

13

drawn bounding boxes are positives and random samples from the same images are
negatives. Using this simple model, all feature maps with weights greater than zero
were dropped from all spatial locations. Then random new samples were generated with
and without the feature map removal. The generated images with and without the
window dropout are shown in Figure 4.3, and interestingly, the network mostly forgets

to draw windows in the bedrooms, replacing them with other objects.

Figure 4.3: Top row contains un-modified samples while Bottom row shows generated outputs after dropping out window
filters.

4.3.2 Vector arithmetic on face samples

In the context of evaluating learned representations of words (Mikolov et al., 2013)
demonstrated that simple arithmetic operations revealed rich linear structure in
representation space. One canoni- cal example demonstrated that the vector(’King”) -
vector(”Man”) + vector("Woman”) resulted in a vector whose nearest neighbor was the
vector for Queen. We investigated whether similar structure emerges in the Z
representation of our generators. We performed similar arithmetic on the Z vectors of
sets of exemplar samples for visual concepts.

Experiments working on only single samples per concept were unstable, but averaging
the Z vector for three examplars showed consistent and stable generations that
semantically obeyed the arithmetic. In addition to the object manipulation shown in
Figure 4.4 , we demonstrate that face pose is also modeled linearly in Z space Figure
4.6.

These demonstrations suggest interesting applications can be developed using Z
representations learned by our models. It has been previously demonstrated that
conditional generative models can learn to convincingly model object attributes like
scale, rotation, and position[16]. This is to our knowledge the first demonstration of

this occurring in purely unsupervised models.

14

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22
file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22

In addition, exploring and developing the above-mentioned vector arithmetic should
dramatically reduce the amount of information wanted for conditional generative

modeling of complicated photo distributions.

L_‘._J

‘_I—'
smiling neutral neutral
woman woman man

smiling man

man man woman
with glasses without glasses without glasses

Results of doing the same
arithmetic in pixel space

Figure 4.4: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are averaged. Arithmetic
was then performed on the mean vectors creating a new vector Y . The center sample on the right-hand side is
produce by feeding Y as input to the generator. To demonstrate the interpolation capabilities of the generator, uniform

15

noise sampled with scale +-0.25 was added to Y to produce the 8 other samples. Applying arithmetic in the input
space (bottom two examples) results in noisy overlap due to misalignment.

Input

Output

0
! 0

w-
‘ 50

100
’ 100

150 4i-°
.S 150

200 - o

250' 250

300 {40 ’ $d aeal 30041 . e
0 S0 100 150 200 250 0 50 100 150 200 250

Figure 4.6: Output Generated From Model

4.4 Classifying CIFAR-10 Using GANs as a Feature Extractor
“One common technique for evaluating the quality of unsupervised representation learning
algorithms is to apply them as a feature extractor on supervised datasets and evaluate the
performance of linear models fitted on top of these features.[28]”
On the CIFAR-10 dataset, a very strong baseline performance has been demonstrated from
a well-tuned single layer feature extraction pipeline utilizing K-means as a feature learning

algorithm. When using a very large amount of feature maps (4800) this xitechnique

16

achieves 80.6% accuracy. “An unsupervised multi-layered extension of the base algorithm
reaches 82.0% accuracy[29].” to evaluate the satisfactory of the representations found out
byx DCGANSs for supervised duties, we teach on Imagenet-1k and then use the
discriminator’s convolutional capabilities from all layers, maxpooling every layer’s
representation to produce a 4*4 spatial grid. These features are then flattened and
concatenated to form a 28672-dimensional vector and a regularized linear L2-SVM
classifier is trained on top of them. This achieves 82.8% accuracy, outperforming all K-
means based approaches. Notably, the discriminator has many less feature maps (512 in the
highest layer) compared to K-means based techniques, but does result in a larger total
feature vector size due to the many layers of 4*4 spatial locations. “The performance of
DCGANS is still less than that of Exemplar CNNs[16]”, a technique which trains normal
discriminative CNNs in an unsupervised style to distinguish among specifically chosen,
aggressively augmented, exemplar samples from the source dataset. similarly, might be
made with the aid of finetuning the discriminator’s representations, however we depart this
for future work. additionally, on the grounds that our DCGAN changed into never skilled
on CIFAR-10 this experiment also demonstrates the area robustness of the learned
capabilities.

Table 2: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre- trained on CIFAR-10,
but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

Model Accuracy Accuracy Max #of

(400per class) features
units
1 Layer K-means 80.6% 63.7% (£0.7% Error) 4800
3 Layer K-means Learned 82.0% 70.7% (£0.7%Error) 3200

RF 72.6% (+£0.7%Error)

View Invariant K-means 81.9% 77.4% (£0.2%Error) 6400
Exemplar CNN 84.3% 1024
DCGAN (ours) + L2-SVM 82.8% 73.8% (+0.4%Error) 512

17

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark10

4.5 Classifying SVHN Digits Using GANs As A Feature Extractor

“On the StreetView House Numbers dataset (SVHN)[1], we use the features of the
discriminator of a DCGAN for supervised purposes when labeled data is scarce.” Following
comparable dataset practice rules as in the CIFAR-10 experiments, we break up off a
validation set of 10,000 examples from the non-more set and use it for all hyperparameter
and version choice. 1000 uniformly class allotted training examples are randomly decided
on and used to educate a regularized linear L2-SVM classifier on top of the same feature
extraction pipeline used for CIFAR-10. “Additionally, we validate that the CNN
architecture used in DCGAN is not the key contributing factor of the model’s performance
by training a purely supervised CNN with the same architecture on the same data and
optimizing this model via random search over 64 hyperparameter trials [30].” It achieves a

significantly higher 28.87% validation error.

4.6 Evaluating DCGANSs Capability To Capture Data Distributions

We propose to apply standard classification metrics to a conditional version of our model,
evaluating the conditional distributions learned. We trained a DCGAN on MNIST
(splitting off a 10K validation set) as well as a permutation invariant GAN baseline and

evaluated the models using a nearest neighbor classifier comparing real data to a set of

generated conditional samples. We found that removing the scale and bias parameters from
batch norm produced better results for both models. We speculate that the noise introduced
bv batch norm helps the generative models to better explore and generate from the
underlying data distribution. The results are shown in Table 3 which compares our models
with other techniques. The DCGAN model achieves the same test error as a nearest

neighbor classifier fitted on the training dataset - suggesting the DCGAN model has done

a superb job at modelling the conditional distributions of this dataset. “At one million
samples per class, the DCGAN model outperforms InfiMNIST[5]”, a hand developed data
augmentation pipeline which uses translations and elastic deformations of training
examples. “The DCGAN is competitive with a probabilistic generative data augmentation
technique utilizing learned per class transformations[14] while being more general as it

directly models the data instead of transformations of the data.”

18

Table 3: Nearest neighbor classification results.

Model Test Error @50K Test Error @10M
samples samples
AlignMNIST 1.4%
INfIMNIST 2.6%
Real Data 3.1%
GAN 6.28% 5.65%
DCGAN (ours) 2.98% 1.48%

19

Q=2amMT b3 oG
Q- XmY v ko

O~ TN N be
O~—~am3 LS N

G — o HE VN N

OQO—=NMIPNI oo
O~AMNFHIOS oo
Q—=NmIFTNrI -6

O~ mo kb9 Nooo
O— X M>»>LIe =g
Q™ > Yo Y

Groundtruth MNIST

Figure 4.7: Side-by-side illustration of (from left-to-right) the MNIST dataset, generations from a baseline GAN, and

generations from our DCGAN

20

Figure 4.8: More face generations from our Face DCGAN.

21

Figure 4.9: Generations of a DCGAN that was trained on the Imagenet-1k dataset.

We now discuss some blessings of our end result. Our histogram loss addresses
instabilities through ensuring that the total statistical distribution of the capabilities is

preserved. further to enhancing photo pleasant, our complete loss (inclusive of the

22

histogram loss) also calls for fewer iterations to converge. “We use a mean of 700 iterations
for our results, which we find consistently give good quality, and 1000 iterations for the
results of [24]”, This we find can be unstable at time. “We note that methods based on
Gram matrices such as [20] can become unstable over the iteration count.” We interpret
this as being caused by the mean and variance being free to drift, as we discussed in 4.2.
By adding histograms to our loss function, the result is more stable and converges better,
both spatially and over iterations.
Funning times for our method are as follows. We used a machine with four physical cores
(Intel Core 15-6600k), with 3.5 GHz, 64 GB of RAM, and an Nvidia Geforce GTX1070
GPU with 8 GB of GPU RAM, running Archlinux. For a single iteration on the CPU, our
method takes 7 minutes and § seconds, whereas [20] takes 15 minutes 35 seconds. This
equates to our method requinng only 45.7% of the running time for the onginal Gatys
method. Our approach used three pyramid levels and histogram loss at relud 1 and relul 1.
These metrics were measured over 30 iterations synthesizing a 512x512 output. We
currently have most but not all of our algorithm implemented on the GPU. Because not all
of 1t 1s implemented on the GPU, a speed companson with our all-GPU implementation
of[20] 15 not meaningful, therefore we ran both approaches using CPU only.
Here we present two simple methods to preserve the color of the content image in the neural
style transfer algorithm:

o Linear color transfer onto the style image, before style transfer.

o Style transfer only in the luminance channel.

Each method supplies perceptually-interesting effects but have blessings and
disadvantages. The first method is clearly restrained through how well the colour transfer
from the content image onto the style photograph works. The coloration distribution
regularly cannot be matched perfectly, main to a mismatch between the colors of the output
image and that of the content material photograph (Figure 4.14: Synthesis, using
luminance-histogram matching before synthesis) The synthesis also replicates “content”
structures from the van Gogh style scene, i.e., the pattern of reflections on the river appears
as vertical yellow stripes of brushstrokes in the output.

In contrast, the second method preserves the colors of the content image perfectly.
However, dependencies between the luminance and the color channels are lost in the

23

output image (Figure 4.13: Combination of synthesized luminance and source color
channels.). This is particularly apparent for styles with prominent brushstrokes. In Figure
4.13 colors are no longer aligned to strokes. That means a single brushstroke can have
multiple colors, which does not happen in real paintings. In comparison, when using full
style transfer and color matching, the output image really consists of strokes which are
blotches of paint, not just variations of light and dark.

“One potential advantage of the luminance-based method is that it reduces the
dimensionality of the optimization problem for the neural synthesis[31].” The neural
synthesis set of rules performs numerical optimization of the output photograph, and
luminance-only synthesis has approx. 30% of its parameters. but, it's far doubtful that
there's any sensible benefit in common GPU implementations.

Below marked figures shows different generated images after luminance-only synthesis for

input images

Figure 4.10: Luminance channel (Y) of input photograph.

Figure 4.11: Color channels (I, Q) of input photograph

24

Figure 4.14: Synthesis, using luminance-histogram matching before synthesis

25

Figure 4.15: Combination of color and luminance channels, using luminance-histogram matching before synthesis.

26

CHAPTERS5- CONCLUSION

We propose a more stable set of architectures for training generative adversarial networks
and we give evidence that adversarial networks learn good representations of images for
supervised learning and generative modeling. There are still some forms of model
instability remaining - we noticed asmodels are trained longer they sometimes collapse
a subset of filters to a single oscillating mode.

Further work is needed to tackle this from of instability. We think that extending this
framework to other domains such as video (for frame prediction) and audio (pre-trained
features for speech synthesis) should be very interesting. Further investigations into the
properties of the learnt latent space would be interesting as well.

In future work, it would be interesting to explore how the two statistical
models in here (color statistics vs. CNN activations) might be unified, and to

explore more sophisticated color transfer and adjustment procedures .

27

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark3

[1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

[9]

REFERENCES
I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout
Networks,” 30th Int. Conf. Mach. Learn. ICML 2013, no. PART 3, pp. 23562364,
Feb. 2013, Accessed: May 16, 2021. [Online]. Available:
http://arxiv.org/abs/1302.4389.
A. Coates and A. Y. Ng, “Learning feature representations with K-means,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 7700 LECTURE NO, pp. 561-580, 2012, doi: 10.1007/978-3-
642-35289-8_30.
P. V. Ca, L. T. Edu, I. Lajoie, Y. B. Ca, and P.-A. M. Ca, “Stacked Denoising
Autoencoders: Learning Useful Representations in a Deep Network with a Local
Denoising Criterion Pascal Vincent Hugo Larochelle Yoshua Bengio Pierre-Antoine
Manzagol,” 2010.
J. Zhao, M. Mathieu, R. Goroshin, and Y. LeCun, “Stacked What-Where Auto-
encoders,” Jun. 2015, Accessed: May 16, 2021. [Online]. Available:
http://arxiv.org/abs/1506.02351.
A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko, “Semi-supervised
learning with Ladder networks,” in Advances in Neural Information Processing
Systems, Jul. 2015, vol. 2015-January, pp. 3546-3554, Accessed: May 16, 2021.
[Online]. Available: https://arxiv.org/abs/1507.02672v2.
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations,” 2009, pp. 1-8,

doi: 10.1145/1553374.1553453.

A. A. Efros and T. K. Leung, “Texture Synthesis by Non-parametric Sampling,”
1999.

W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-Based Super-Resolution,”
no. April, pp. 56-65, 2002.

J. Hays and A. A. Efros, “Scene completion using millions of photographs,”
Commun. ACM, wvol. 51, no. 10, pp. 87-94, Oct. 2008, doi:

10.1145/1400181.1400202.

[10] J. Portilla and E. P. Simoncelli, “Parametric texture model based on joint statistics

28

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

of complex wavelet coefficients,” Int. J. Comput. Vis., vol. 40, no. 1, pp. 49-71,
2000, doi: 10.1023/A:1026553619983.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Dec. 2014,
Accessed: May 16, 2021. [Online]. Available: https://arxiv.org/abs/1312.6114v10.
J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
Unsupervised Learning using Nonequilibrium Thermodynamics,” 32nd Int. Conf.
Mach. Learn. ICML 2015, vol. 3, pp. 2246-2255, Mar. 2015, Accessed: May 16,
2021. [Online]. Available: http://arxiv.org/abs/1503.03585.

I. J. Goodfellow et al., “Generative Adversarial Nets.” Accessed: May 16, 2021.
[Online]. Available: http://www.github.com/goodfeli/adversarial.

E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep Generative Image Models
using a Laplacian Pyramid of Adversarial Networks,” Adv. Neural Inf. Process.
Syst., vol. 2015-January, pp. 1486-1494, Jun. 2015, Accessed: May 16, 2021.
[Online]. Available: http://arxiv.org/abs/1506.05751.

K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “DRAW: A
recurrent neural network for image generation,” in 32nd International Conference
on Machine Learning, ICML 2015, Feb. 2015, vol. 2, pp. 14621471, Accessed:
May 16, 2021. [Online]. Available: https://www.youtube.

A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox,
“Discriminative Unsupervised Feature Learning with Exemplar Convolutional
Neural Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1734—
1747, Jun. 2014, Accessed: May 16, 2021. [Online]. Available:
http://arxiv.org/abs/1406.6909.

M. D. Zeiler and R. Fergus, “LNCS 8689 - Visualizing and Understanding
Convolutional Networks,” 2014.

“Google Al Blog: Inceptionism: Going Deeper into Neural Networks.”
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
(accessed May 17, 2021).

D. J. Heeger and J. R. Bergen, “Pyramid-based texture analysis/synthesis,” in
Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, 1995, pp.
229-238, doi: 10.1145/218380.218446.

29

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L. A. Gatys, A. S. Ecker, and M. Bethge, “A Neural Algorithm of Artistic Style,” J.
Vis., vol. 16, no. 12, p. 326, Aug. 2015, Accessed: May 17, 2021. [Online].
Available: http://arxiv.org/abs/1508.06576.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” Sep. 2015, Accessed: May 17, 2021. [Online]. Available:
http://www.robots.ox.ac.uk/.

V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau, “Single-Image
SVBRDF Capture with a Rendering-Aware Deep Network,” ACM Trans. Graph.,
vol. 37, no. 4, Oct. 2018, doi: 10.1145/3197517.3201378.

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, “Texture Networks: Feed-
forward Synthesis of Textures and Stylized Images,” 33rd Int. Conf. Mach. Learn.
ICML 2016, vol. 3, pp. 2027-2041, Mar. 2016, Accessed: May 17, 2021. [Online].
Available: http://arxiv.org/abs/1603.03417.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer
and super-resolution,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Mar.
2016, vol. 9906 LNCS, pp. 694-711, doi: 10.1007/978-3-319-46475-6_43.

N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting,” 2014. Accessed: May 18, 2021.
[Online]. Available: http://jmlr.org/papers/v15/srivastavalda.html.

J. Deng et al., “Imagenet: A large-scale hierarchical image database,” CVPR, 20009,
Accessed: May 16, 2021. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.155.1729.

A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox, “Learning to
Generate Chairs, Tables and Cars with Convolutional Networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 692-705, Apr. 2017, doi:
10.1109/TPAMI.2016.2567384.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” Nov. 2016, Accessed: May 13,
2021. [Online]. Available: https://arxiv.org/abs/1511.06434v2.

A. Coates and A. Y. Ng, “Selecting Receptive Fields in Deep Networks,” 2011.

30

[30] J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter
Optimization Yoshua Bengio,” 2012. Accessed: May 13, 2021. [Online]. Available:
http://scikit-learn.sourceforge.net.

[31] L. A. Gatys, U. Tubingen, M. Bethge, A. Hertzmann, A. Research, and E.
Shechtman, “Preserving Color in Neural Artistic Style Transfer,” 2016.

31

APPENDIX

5.1 Code
511 Model Generation
import tumpy as ap
from keras models import Sequential from keraz optimizers import Adam
from keras layers import Dense, Conv2D), Flatten, Feshape, Conv2DTranspose
from keras layers import LeakyRel U, Dropout
mmport matplotlib pyplot as plt from keras utils import plot_model
from keras preprocessing image import ImageDataGenerator from keras models
import load model

2 define the discrimmator model def define D{in_shape=(123,128 37):
model = Sequential()
model add{Conv2D{64, (3.3), padding="same’ input shape=in shape))
model add(LeakyFelU{alpha=0.27)
model add{Conv2ZDN64, (3.3), stnides={2, 2), padding="same"))
model.add(LeakyFRelUlalpha=0.2))
model add{Conv2D{64, (3.3), strides={2, 2), padding="same"))
model add(LeakyRel Ufalpha=0.2))
model add(Conv2D{64, (3.3), strides=(2. 2), padding='same"))
model add(LeakyFelUlalpha=0.2))
model add(Flatten()) model add({Dropout(0.4)) model add({Dense(1,
activation="sigmoid")) opt = Adam(1r=0.0002, beta_1=0.5)
model compile(loss="binary crossentropy’, optimizer=opt,

metrics=["accuracy'])

return model
define the generator model

def define G{latent dim):
model = Seauential

32

foundation for 16=16 image n_nodss =236 ¥ 16 * 15
model add(Dienza{n nodes, input_dim=latent dim))
maodel add(LeakyFel 1 alpha=0.2})
model add(Fechapa((16, 16, 236)))
upsample to 32x32
model add(Conv2DTranspozal 128, (4.4, stride==(2.2), padding="zamea"}}
model add(LeakyRel U alpha=0.2})
upsample to 64x64
model add(Conv2DTranspozal 128, (4.4, stride==(2.2), padding="zamea"}}
model add(LeakyRel U alpha=0.2})
#upsamplda to 128x123
model add(Conv2DTranspozal 128, (4.4, stride==(2.2), padding="zamea"}}
model add(LeakyBel T alpha=0.2})
model add(Con2D{3, (7.7}, activation="tank', padding="same")
return maodal

define the combmead ganerator and dizcriminztor model, for updating the senerator
def define GAN{model G, model TN
make weights in the dizerimmator not tramable modal D tramable = Falza

model = 2equentizl()

model add{modal &)

model add{mad=] 1))

opt = Adam{lr=0.0002, beta_1=0.5)

model compile(lozs="tinary_crossentropy’, optimizer=opt)
return maodal

from google colzk import drive drive mount(/ content'drrva”)

defload real mmages):

datagen = ImageDatalrensrator(rescale=1/233]
X = datagen flow _from dirsctory(‘content' drve Xy Dove/Colak

33

Wotebooks!_images’, target size= (128 123), batch_size=12500,
clazs_mode="binary")
data_list =]
batch_mdex =1
while batch_index == 3 batch_indax:
dafa = X next)
dafa_hist. append{data[0])
batch_indsx +=1
ImE_array = np.asarrayidata list)

retum img_arrav

def generate_real images(datazet, n_szamples):
1 = np.random randmt{0, datazat shape[0], n_samplas=)
H = dataset]i]
v = np.ones((n_samplaz, 17)
return X, v

def generata_latent poimte{latent dim, n_samplas):
= nprandom randn{lztent dim * n_samples)
® =T reshapeln_samples, latent dim)
return 3

def generate_fake mmagez{model G, latent dim, n_samples):
H_input = generate_latent points{latent dim, n_samples)
X =model_GpredictZ_mput)
v = np.zaros((n_samplasz, 13)
retum 3, v
def summarize performance{spoch, modal G,
modsal D, dataszet, latent dim, n_samplaz=100):
modal_Gosavel'content/drrre Wy Diriva'Colab Wotebooks/mods]l
+str{epoch)+ "hi")

34

¥ _real, v_real = genarate real mmapes(dataset n_samples)

_,ace_real =model Doevaluatai real v_real, verboza={)

x_fake, v_fake = penerate fzks mmapes{modsl (7, latent dim n_samples)

_, ace_fake = model IV evaluate(x fake, v_fake, verbose={)

primt] Accuracy real: 0. 08%0%, faka: % 0% % (aoe_real* 100, zec fake®1007)
def train_dizecriminator{model. datazat n_iter=10{, n_batch=258): half batch =
miin_batch/2)

manually emumerate epochs for 1 in rangaln_iter):

¥ _real, v_real = genarate real mmapesz(dataset, half batch)

_.real_ace =model traim om_batch7{_real v real) X fake v faka =
generate_fake mnagesthalf batch)

_ fake_acc =modelfram on batch(fake v fake) print(%ed real="%:.0{%%
fake="%. 0% % (1+], real_acc®100,

fake ace®1007)

def train_GAN[modsl &, model D, model GAN, dataset, latent dim, n_spochs=10],
n_batch=12E):

bat_per epo = mt{dataset shapa[l] /n_batch) half batch = mit(n_batch 7 1)

manually emumerate epochs for 1 n rangein_spochs):

enumetate batchesz over the training zat for) m range(bat_per_epo):

X _real, ¥_real = gensrate rsal mmagss{dataset,

half batch)

¥ _fake v fake = gzensrafe fake Imagesimodel &,

latent_dimn, half batch)

. v =npaetack{i(X_real, X_faka)), npovstacki(y_real, v_fakal)

d_lozs, _=model D irain on batchZ +)

¥ _gan = generate latent pointsilatent dmm, n_batch) v _szan = np.onss({n_batch, 13)
g_lozs = model GAN train on_batch(X pan, v_gan) print{'%ed, Jod5ed, d=%3f =231
%o (11, 3+,

bat_per_epo, d_lozs, g_lozs))

gvaluate the mode] performance if (1+1) % 10 =10:

35

summarize_performance{l, model &, model D, dataset,
latent dim)

latent dim =100 model D = defima 1)

medsl G = define Gilatent dim) model GAN = define GAN{model G, medsl_I¥)
dafazet=load_rsal_mmagasz{)

train_ GAN(modal G, model Domodel GAWN datazet[0], latent dim)

medel = load model/content/ drive v Drrve'Colak Motebooks='model face 79 h3"

def ganerate latent pointe(latent dim n_samples): # ganerate points mn the latent =pace
%_input = np.random. randn(latent dim ¥ n_samplasz) # rechape info a batch of mputs for
the network = _mput = x_mput reshape(n_samplez, latent dim) return =_input

def plot_1mazes(imagesz, o)

soalez image values m the range of [0,1]

Images = [(mages-images. min | mages max{) - Images min}) for 1 m rangein):
define subplot plt subplot(l, n, 1 + 1) # turn off axis pltaxis'off)

plot raw pixel data plt.imshowi{mages[1, -,)

pltzhow)

ptz = generate_latent_point={100, 30} # penerate images
X = model predictipts) # plot the result plot_imagaz(7, 4)

512 Image Generation

mmport torch

from torchvision mport transforms | models
from PIL mmport Image

import matplotlib pyplot 2z plt

Import BuUmpy 25 0p

36

device = ("cuda" if torch.cuda.is_available() else "cpu™) def
model_activations(input,model):
layers = {
‘0" :'convl 1,
'5':'conv2_1',
'10": 'conv3_1,
'19": '‘conv4_1',
21" 'conv4_2',
28" 'conv5_1'
}
features = {} x = input
X = X.unsqueeze(0)
for name,layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
transform = transforms.Compose([transforms.Resize(300),
transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])

content = Image.open(“content.png™).convert("RGB") content =
transform(content).to(device) print("COntent shape => ", content.shape)

style = Image.open(“style.jpg").convert("RGB") style = transform(style).to(device)

def imenvt(image):
X = image.to("cpu").clone().detach().numpy().squeeze() x = x.transpose(1,2,0)
X = x*np.array((0.5,0.5,0.5)) + np.array((0.5,0.5,0.5)) return np.clip(x,0,1)

fig, (ax1,ax2) = plt.subplots(1,2)

ax1.imshow(imcnvt(content),label = "Content") ax2.imshow(imcnvt(style),label =

37

"Style™)
plt.show()

def gram_matrix(imgfeature):

_,d,h,w = imgfeature.size() imgfeature = imgfeature.view(d,h*w)

gram_mat = torch.mm(imgfeature,imgfeature.t()) return gram_mat

target = content.clone().requires_grad_(True).to(device) #set device to cuda if available

print("device = ",device)

style_features = model_activations(style,model) content_features =

model_activations(content,model)

style_wt_meas = {"convl_1": 1.0,

"conv2_1":0.8,
"conv3_1": 0.4,
"conv4 1":0.2,
"conv5_1":0.1}

style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features}

content_wt = 100 style_wt = 1e8

print_after = 500
epochs = 1000
optimizer = torch.optim.Adam([target],Ir=0.007)

for i in range(1,epochs+1):
target_features = model_activations(target,model) content_loss =
torch.mean((content_features['conv4_2']-

target_features[‘conv4_2')**2)

38

style_loss =0
for layer in style_wt_meas: style_gram = style_grams[layer]
target_gram = target_features[layer]

_,d,w,h = target_gram.shape target_gram = gram_matrix(target_gram)

style_loss += (style_wt_meas[layer]*torch.mean((target_gram- style_gram)**2))/d*w*h
total_loss = content_wt*content_loss + style_wt*style loss

if 1%10==0:

print("epoch ",i," ", total_loss)

optimizer.zero_grad() total_loss.backward() optimizer.step()

if i%print_after == 0: plt.imshow(imcnvt(target),label="Epoch "+str(i)) plt.show()

plt.imsave(str(i)+'.png',imcnvt(target),format="png’)

39

Vishrut_thakur_171309

ORIGINALITY REPORT

19, 19, 5. O

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

docplayer.net 80
Internet Source /0

arxiv.or
8 5

Internet Source

o

towardsdatascience.com 40/
0

Internet Source

e

WWW.arxiv-vanity.com '] Y
0

Internet Source

-~

martychen920.blogspot.com

Internet Source 1 %

o

export.arxiv.org <'I o
0

Internet Source

Exclude quotes On Exclude matches <14 words

Exclude bibliography On

	171309
	Vishrut_thakur_171309

