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Abstract 

Amongst recent research work in Computer Vision Applications, supervised learning with 

CNNs have been highly popular. Unfortunately, this can’t be inferred for its counterpart in 

unsupervised learning. 

Here, in this project I introduce another anecdote of CNNs called Deep Convolutional 

Generative Adversarial Networks more commonly abbreviated as DCGANs. DCGANs 

having distinctive characteristics in-order can proof its potential among other classes of 

unsupervised learning. lTraining lon lvarious limage ldatasets, lwe lshow lconvincing levidence 

lthat lour ldeep lconvolutional ladversarial lpair llearns la lhierarchy lof lrepresentations lfrom 

lobject lparts lto lscenes lin lboth lthe lgenerator land ldiscriminator. lAdditionally, lwe luse lthe 

llearned lfeatures lfor lnovel ltasks l- ldemonstrating ltheir lapplicability las lgeneral limage 

lrepresentations. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction 

Various supervised learning tasks like image classification can be performed by 

consummating the vast variety of unlabelled representations and therefore generating 

good intermediate representations. As we know in todays research work learning 

reusable representation from large unlabelled datasets has been very popular. 

“We propose that one way to build good image representations is by training Generative 

Adversarial Networks (GANs)[1]”, and jlater jreusing jparts jof jthe jgenerator jand 

jdiscriminator jnetworks jas jfeature jextractors jfor jsupervised jtasks. jGANs jprovide jan 

jattractive jalternative jto jmaximum jlikelihood jtechniques. jOne jcan jadditionally jargue 

jthat jtheir jlearning jprocess jand jthe jlack jof ja jheuristic jcost jfunction j(such jas jpixel-wise 

jindependent jmean-square jerror) jare jattractive jto jrepresentation jlearning. jGANs jhave 

jbeen jknown jto jbe junstable jto jtrain, joften jresulting jin jgenerators jthat jproduce 

jnonsensical joutputs. 

1.2 Objective 

To junderstand jand jvisualize jwhat jGANs jlearn, jand jthe jintermediate jrepresentations jof 

jmulti-layer jGANs. jWe jcapitalize jon jlarge jamounts jof junlabeled jimages jin jorder jto 

jlearn ja jmodel jof jscene jdynamics jfor jimage jgeneration jtask. jWe jpropose ja jgenerative 

jadversarial jnetwork jfor jimage jwith ja jconvolutional jarchitecture jthat juntangles jthe 

jimage jforeground jfrom jthe jbackground. Experiments jsuggest jthis jmodel jcan jgenerate 

jimage jbetter jthan jsimple jbaselines, jand jwe jshow jits jutility jat jpredicting jfutures jof jstatic 

jimages. 

Moreover, jexperiments jand jvisualizations jshow jthe jmodel jinternally jlearns juseful 

jfeatures jfor recognizing actions with minimal supervision, suggesting scene dynamics 

are a promising signal for representation learning. We believe generative image models 

can impact many applications in image understanding and simulation. 

1.3 Methodology 

❖  jWe suggest and compare a fixed of jconstraints jat jthe jarchitectural jtopology jof 

jConvolutional jGANs jthat jmake jthem jstable jto educate jin jmost jsettings. jWe name jthis 
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jclass jof jarchitectures “Deep Convolutional Generative Adversarial Networks 

(DCGANs)” 

❖  lWe luse lthe ltrained lgenerators lfor limage lclassification ltasks, lshowing lcompetitive 

l performance l with l other l unsupervised l algorithms. 

❖  lWe lvisualize lthe lfilters llearnt lby lGANs land lempirically lshow lthat lspecific lfilters 

lhave llearned lto ldraw lspecific lobjects. 

❖  lWe lshow lthat lthe lgenerators lhave linteresting lvector larithmetic lproperties lallowing 

lfor leasy lmanipulation lof lmany lsemantic lqualities lof lgenerated l samples. 

❖  lWe luse lthe ltrained ldiscriminators lfor limage lclassification ltasks, lshowing 

lcompetitive l performance l with l other l unsupervised l algorithms. 
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CHAPTER 2 - LITERATURE SURVEY 

2.1 Related Work 

2.1.1 Representation Learning from Unlabelled Data 

Talking about unsupervised jrepresentation jlearning, jIt jhas jbeen ja jfairly jwell jstudied 

jproblem jin jgeneral jcomputer jvision jresearch, jas jwell jas jin jthe jcontext jof jimages. jA jclassic 

japproach jto junsupervised jrepresentation jlearning jis jto jdo jclustering jon jthe jdata j(for 

jexample jusing jK-means), jand jleverage jthe jclusters jfor jimproved jclassification jscores. “In 

the context of images, one can do hierarchical clustering of image patches[2] to learn 

powerful image representations. Another popular method is to train auto-encoders 

(convolutionally, stacked[3], jseparating the what and where components of the code[4], 

ladder structures[5])” jthat jencode jan jimage jinto ja jcompact jcode, jand jdecode jthe jcode jto 

jreconstruct jthe jimage jas jaccurately jas jpossible. jThese jmethods jhave jalso jbeen jshown jto 

jlearn jgood jfeature jrepresentations  jfrom jimage jpixels. “Deep belief networks[6] have  also 

been shown to work well in learning hierarchical representations.” 

2.1.2 Generating Natural Images 

“Generative image models are well studied and fall into two categories: 

o parametric 

o non-parametric.” 

“The non-parametric models often do matching from a database of existing 

images, often matching patches of images, and have been used in texture 

synthesis[7] super-resolution[8] and in- painting[9].” 

There has been drastic exploration of jparametric jmodels jfor jgenerating jimages 

(“for example on MNIST digits or for texture synthesis[10]”. jHowever, jgenerating 

jnatural jimages jof jthe jreal jworld jhave jhad jnot jmuch jsuccess juntil jrecently. “A 

variational sampling approach to generating images[11] has had some success, 

but the samples often suffer from being blurry. Another approach generates 

images using an iterative forward diffusion process[12].” 

“Generative Adversarial Networks[13] generated images suffering from being 



4 

 

noisy and incomprehensible”. “A Laplacian pyramid extension  to this 

approach[14] showed higher quality images, but they still suffered from the 

objects looking wobbly because of noise introduced in chaining multiple models.” 

“A recurrent network approach[15] and a deconvolution network approach[16] 

have also recently had some success with generating natural images.” But 

generators were never used for supervised tasks. 

2.1.3 Visualizing the Internals of CNNs 

 gOne tconstant tcriticism tof tusing tneural tnetworks thas tbeen tthat tthey tare tblack-box 

tmethods, twith tlittle tunderstanding tof twhat tthe tnetworks tdo tin tthe tform tof ta tsimple thuman-

consumable talgorithm. tIn tthe tcontext tof tCNNs[17], j( jZeiler j& jFergus, j2014) jshowed jthat 

jby jusing jdeconvolutions jand jfiltering jthe jmaximal jactivations, jone jcan jfind jthe 

japproximate jpurpose jof jeach jconvolution jfilter jin jthe jnetwork. “Similarly, using a gradient 

descent on the inputs  lets  us  inspect  the  ideal image that activates certain subsets of 

filtersmord[18].” 

2.2 Related Work 

2.2.1 Parametric Texture Synthesis 

 lSome learly lmethods lfor ltexture lsynthesis lexplored lparametric lmodels. “[19] used 

histogram matching combined with Laplacian and steerable pyramids to synthesize 

textures.” lWe lare linspired lby ltheir luse lof lhistogram lmatching. “[10]investigated the 

integration of many wavelet statistics over different locations, orientations, and scales into 

a sophisticated parametric texture synthesis method.” lThese lincluded lcross-correlations 

lbetween lpairs lof lfilter lresponses. 

2.2.2 Neural Texture Synthesis and Style Transfer 

In this paper, for short, we use neural to refer to convolutional neural networks. Recently, 

“[20] showed that texture synthesis can be performed by using ImageNet-pretrained 

convolutional neural networks such as VGG[21].” gSpecifically, “[20]impose losses on co-

occurrence statistics for pairs of features.” lThese lstatistics lare lcomputed lvia lGram lmatrices, 

lwhich lmeasure linner lproducts lbetween lall lpairs lof lfeature lmaps lwithin lthe lsame llayers lof 

lthe lCNN. 

Results of[20] were typically better than those of[10] for texture synthesis. tLater textended 
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tthis tapproach tto tstyle ttransfer, tby tincorporating twithin CNN tlayers tboth ta Forbinius norm 

content loss tto ta tcontent texemplar timage, tand ta Gram matrix style loss tto ta tstyle texemplar 

timage. tWe tbuild tupon tthis tframework, tand toffer ta tbrief treview tof thow tit tworks tin tthe tnext 

tsection. tConcurrently tto tour tresearch,( tBerger tet tal, 2016).  tobserved tthat tin tthe tapproach 

tof[20], ttexture tregularity tmay tbe tlost tduring tsynthesis, tand tproposed ta tloss tthat timproves 

tregularity tbased ton tco-occurrence tstatistics tbetween ttranslations tof tthe tfeature tmaps. 

“Recently, [22] used neural networks to extract SVBRDF material models from a single 

photo of a texture. Their method focuses on a more specific problem of recovering a 

SVBRDF model from a head-lit flash image.” tHowever, tthey tdo tobserve that positive 

instabilities along with non-stationary textures can effortlessly end result if sufficiently 

informative information are not used. We see this as related with our observations about 

instabilities and the way to repair them. 

2.2.3 Feedforward Neural Texture Synthesis 

“Recently, la lfew lpapers ([23][24]) lhave linvestigated lthe ltraining lof lfeedforward lsynthesis 

lmod- lels, lwhich lcan lbe lpre-trained lon la lgiven lexemplar ltexture lor lstyle, and then lused to 

lquickly lsynthesize la lresult lusing lfixed lnetwork lweights.” The lfeed-forward lstrategy lis 

lfaster lat lrun-time land luses lless lmemory. lHowever, lfeed-forward lmethods lmust lbe ltrained 

lspecifically lon la lgiven lstyle lor ltexture, lmaking lthe lapproach limpractical lfor lapplications 

lwhere lsuch la lpre-training lwould ltake ltoo llong l(pre-training ltimes lof 2 to 4 lhours lare 

lreported lin lthese lpapers). 

2.2.4 Non-Parametric Texture Synthesis 

“Non-parametric ltexture lsyn- lthesis lmethods lwork lby lcopying lneighborhoods lor lpatches 

lfrom lan lexemplar ltexture lto la lsynthesized limage laccording lto la llocal lsimilarity lterm[7]”; 

lWei land lLevoy 2000; lLefebvre land lHoppe 2005; lLefebvre land lHoppe 2006; lKwatra let al. 

2003; Kwatra let lal. 2005; lBarnes let lal. 2009]. lThis lapproach lhas lalso lbeen lused lto ltransfer 

lstyle [Efros land lFreeman 2001; lHertzmann let lal. 2001; lBarnes let lal. 2015]. lSome lpapers 

lhave lrecently lcombined lparametric lneural lnetwork lmodels lwith lnon- lparametric lpatch-

based lmodels l[Chen land lSchmidt 2016; lLi land lWand 2016]. 
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CHAPTER 3 - SYSTEM DEVELOPMENT 

3.1 Approach 

❖ All iiconvolutional iinet (Springenberg et al., 2014) iiwhich ireplaces ideterministic 

ispatial ipooling ifunctions i(such ias imaxpooling) iwith istrided iconvolutions, iallowing 

ithe inetwork ito ilearn iits iown ispatial idownsampling. iWe iuse ithis iapproach iin iour 

igenerator, iallowing iit ito ilearn iits iown ispatial iupsampling, iand idiscriminator. 

❖ Trend etowards eeliminating efully econnected elayers eon etop eof econvolutional efeatures. 

eThe estrongest eexample eof ethis eis eglobal eaverage epooling ewhich ehas ebeen eutilized 

ein estate eof eart eimage eclassification emodels e(Mordvintsev et al.). eWe efound eglobal 

eaverage epooling eincreased emodel estability ebut e ehurt e econvergence espeed. eA emiddle 

eground eof edirectly econnecting ethe ehighest econvolutional efeatures eto ethe einput eand 

eoutput erespectively eof ethe egenerator eand ediscriminator eworked ewell. eThe efirst elayer 

eof ethe eGAN, ewhich etakes ea euniform enoise edistribution eZ eas einput, ecould ebe ecalled 

efully econnected eas eit eis ejust ea ematrix emultiplication, ebut ethe eresult eis ereshaped einto 

ea e4-dimensional etensor eand eused eas ethe estart eof ethe econvolution estack. eFor ethe 

ediscriminator, ethe elast econvolution elayer eis eflattened eand ethen efed einto ea esingle 

esigmoid eoutput. 

❖ Batch tNormalization twhich tstabilizes tlearning tby tnormalizing tthe tinput tto teach tunit 

tto thave tzero tmean tand tunit tvariance. tThis thelps tdeal twith ttraining tproblems tthat 

tarise tdue tto tpoor tinitialization tand thelps tgradient tflow tin tdeeper tmodels. tThis 

tproved tcritical tto tget t deep tgenerators tto t begin t learning, tpreventing tthe tgenerator 

tfrom tcollapsing tall tsamples tto ta tsingle tpoint twhich tis ta tcommon tfailure tmode 

tobserved tin tGANs. tDirectly tapplying tbatchnorm tto tall tlayers, tresulted tin tsample 

toscillation tand tmodel tinstability. 

3.2 The ReLU Activation 

It lis lused lin lthe lgenerator lwith lthe lexception lof lthe loutput llayer lwhich luses lthe 

lTanh lfunction. lWe lobserved lthat lusing la lbounded lactivation lallowed lthe lmodel lto 

llearn lmore lquickly lto lsaturate land lcover lthe lcolor lspace lof lthe ltraining 

ldistribution. lWithin lthe ldiscriminator lwe lfound lthe lleaky lrectified lactivation lto 

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark23
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lwork l well. 

Architecture guidelines for stable Deep Convolutional GANs 

❖ Replace any pooling layers with strided convolutions (discriminator) and fractional-

strided convolutions (generator). 

❖ Use batchnorm in both the generator and the discriminator. 

❖ Remove fully connected hidden layers for deeper architectures. 

❖ Use ReLU activation in generator for all layers except for the output, which uses 

Tanh. 

❖ Use Leaky ReLU activation in the discriminator for all layers. 

3.3 Details Of Adversarial Training 

 

 

Figure 3.1: Siamese GAN architecture. 

It is made of a single generator (G) and discriminator (D): G takes an image as input and 
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outputs the translated image; D takes an image as input and outputs a latent vector. 

The Siamese Discriminator has 2 objectives: telling G how to generate more realistic 

images and maintaining in those fake images a correlation (same ‘content’) with the 

original ones. 

Calling A1, A2 and B1, B2 random images from domains A and B respectively, X a random 

image, and G(X) the images generated by the Generator, the Discriminator must encode 

images into vectors D(X) such as: 

❖ D(B1) must be close (euclidean distance) to a fixed point (the origin for example), 

while D(G(A1)) must be far from the same point. Consequently, vectors closer to 

the fixed points represent more  realistic images. The Generator on the other hand 

tries to minimize the distance from  D(G(A1)) to the fixed point, in classic 

adversarial fashion. 

❖ (D(A1)-D(A2)) must be similar (cosine similarity) to (D(G(A1))-D(G(A2))), to 

preserve ‘content’ between A and G(A). Both the Generator and the Discriminator 

take part in this objective. 

3.3.1 Deduplication 

To similarly lower the likelihood of the generator memorizing input examples (Figure 3.2) 

A simple image de-duplication process is performed over the input sample. tWe tfit ta 3072-

128-3072 tde-noising tdropout tregularized tRELU tautoencoder ton 32x32 tdown tsampled 

tcenter-crops tof ttraining texamples. “The resulting code layer activations are then binarized 

via thresholding the ReLU activation which has been shown to be an effective information 

preserving technique[25]” and provides a convenient shape of semantic-hashing, bearing 

in mind linear time de-duplication. visible inspection of hash collisions showed excessive 

precision with an estimated FPR of much tless tthan t1 tin t100. tAdditionally, tthe ttechnique 

tdetected tand tremoved tapproximately t275,000 tnear duplicates, suggesting a high recall. 

3.4 Faces 

Dbpedia was using to obtain random people’s names, further these names were used to 

scrap images having human face from randomized web queries with only conditioned for 

having born in recent times. tThis tdataset thas t3M timages tfrom t10K tpeople. OpenCV face 

detector was used over this dataset, only those detected images were kept which had 
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adequate resolution, this came out to be 350,000 face boxes. Now, these face boxes will be 

used for training the sampler model, while keeping in mind that no data augmentation was 

processed on the images. 

3.5 Imagenet-IK 

“We use Imagenet-1k[26] as a source of natural images for unsupervised training.” t32 t× 

t32 tmin-resized tcenter tcrops twere used to train but again no data augmentation was 

performed.  

Figure 3.2 shows the result after one training pass. Theoretically, the model could learn to 

memorize training examples, but this is experimentally unlikely as we train with a small 

learning rate and minibatch SGD. We are aware of no prior empirical evidence 

demonstrating memorization with SGD and a small learning rate. 

 

Figure 3.2: tGenerated tbedrooms tafter tone ttraining tpass tthrough tthe tdataset. t 

Figure 3.3 shows resultant images after 5 successful epochs of training. Signs of visual 

under-fitting is quite evident due to consistent noise textures across multiple samples like 

the base boards of some of the beds. 
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Figure 3.3: Generated bedrooms after five epochs of training. 
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CHAPTER 4 - PERFORMANCE ANALYSIS 

4.1 Investigation and Visualization of The Internals of The Networks 

❖ We linvestigate lthe ltrained lgenerators land ldiscriminators lin la lvariety lof lways. 

❖  tWe ldo lnot ldo lany lkind lof lnearest lneighbor lsearch lon lthe ltraining lset. lNearest 

lneighbors lin lpixel l lor lfeature lspace lare l ltrivially lfooled l(Theis let l lal., l2015) lby lsmall 

limage ltransforms. lWe lalso ldo lnot luse llog-likelihood lmetrics lto lquantitatively 

lassess lthe lmodel, las lit lis la lpoor l(Theis l let lal., l l2015) l metric. 

Table l1: lSVHN lclassification lwith l1000 llabels 

Model Error lRate 

KNN 77.93% 

DCGAN l(ours) l+ lL2-SVM 

Supervised lCNN lwith lthe lsame larchitecture 

22.48% 

28.87% 

(validation) 

 

4.1.1 The Latent Space 

Prima facia investigation was done to figure out the basic structure of the latent space.  

tWalking ton tthe tmanifold tthat tis tlearnt can generally informs us about the possible signs of 

memorization (like if we observe any tsharp ttransitions) and hierarchical collapse of space. 

If taking walks on this latent area consequences in semantic modifications to the picture 

generations, a decent argument can be made on the model if relevant and worthwhile 

representations were made. The results are shown in Figure 4.1. The first few rows 

demonstrate that the learned space has smooth transitions. While in 6th and 10th rows the 

picture is totally opposite, it is visible that in 6th row a room with no window and only a 

scar on wall slowly converts to a room with a large window and similarly in row 10 a room 

with television slowly gets a window in place of the TV. 
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Figure 4.1: lTop lrows: lInterpolation lbetween la lseries lof l9 lrandom lpoints lin lZ lshow lthat lthe lspace llearned lhas lsmooth 

ltransitions, lwith levery limage lin lthe lspace lplausibly llooking llike la lbedroom. lIn lthe l6th lrow, lyou lsee la lroom lwithout la 

lwindow lslowly ltransforming linto la lroom lwith la lgiant lwindow. lIn lthe l10th lrow, lyou lsee lwhat lappears lto lbe la 

lTV lslowly lbeing ltransformed linto la lwindow. 

4.2 Visualization of the Discriminator Features 

“Previous work has demonstrated that supervised training of CNNs on  large image datasets 

results in very powerful learned features[17].” In addition to it, a traditional CNN can be 

trained on classification to work as a object detector. Here I’m going to demonstrate how 

an unsupervised model like that of DCGAN if trained on a large enough image dataset can 
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also work on the generate a hierarchy of interesting features. “Using guided 

backpropagation as proposed by[27], that the features learnt by the discriminator activate 

on typical parts of a bedroom, like beds and windows.” Therefore, to draw a comparison 

between these approaches in (Figure 4.2), we supply a baseline for randomly initialized 

capabilities that are not activated on anything that is semantically applicable or interesting. 

 

Figure 4.2: On jthe jright, jguided jbackpropagation jvisualizations jof jmaximal jaxis-aligned jresponses jfor jthe jfirst j6 

jlearned jconvolutional jfeatures jfrom jthe jlast jconvolution jlayer jin jthe jdiscriminator. jNotice ja jsignificant jminority jof 

jfeatures jrespond jto jbeds j- jthe jcentral jobject jin jthe jLSUN jbedrooms jdataset. jOn jthe jleft jis ja jrandom jfilter 

jbaseline. jComparing jto jthe jprevious jresponses jthere jis jlittle jto jno jdiscrimination jand jrandom jstructure. 

4.3 Manipulating the Generator Representation 

4.3.1 Forgetting to Draw Certain Objects 

In addition to the representations learnt by a discriminator, there is the question of what 

representations the generator learns. The quality of samples suggest that the generator 

learns specific object representations for major scene components such as beds, 

windowsand miscellaneous furniture. In order to explore the form that these 

representations take, we conducted     an experiment to attempt to remove windows 

from the generator completely. 

On 150 samples, 52 window bounding boxes were drawn manually. On the second 

highest convolution layer features, logistic regression was fit to predict whether a 

feature activation was on a window, by using the criterion that activations inside the 
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drawn bounding boxes are positives and random samples from the same images are 

negatives. Using this simple model, all feature maps with weights greater than zero 

were dropped from all spatial locations. Then random new samples were generated with 

and without the feature map removal. The generated images with and without the 

window dropout are shown in Figure 4.3, and interestingly, the network mostly forgets 

to draw windows in the bedrooms, replacing them with other objects. 

 

Figure 4.3: Top row contains un-modified samples while Bottom row shows generated outputs after dropping out window 

filters.  

4.3.2 Vector arithmetic on face samples 

In the context of evaluating learned representations of words (Mikolov et     al., 2013) 

demonstrated that simple arithmetic operations  revealed  rich  linear structure in 

representation space. One canoni- cal example demonstrated that the vector(”King”) - 

vector(”Man”) + vector(”Woman”) resulted in a vector whose nearest neighbor was the 

vector for Queen. We investigated whether similar structure emerges in the Z 

representation of our generators. We performed similar arithmetic on the Z vectors of 

sets of exemplar samples for visual concepts. 

Experiments working on only single samples per concept were unstable, but averaging 

the Z vector for three examplars showed consistent and stable generations that 

semantically obeyed the arithmetic.  In  addition  to  the object manipulation shown in 

Figure 4.4 , we demonstrate that  face  pose  is  also modeled linearly in Z space Figure 

4.6. 

These demonstrations suggest interesting applications can be developed using Z 

representations learned by our models. It has been previously demonstrated that 

conditional generative models can learn to convincingly model object attributes like 

scale, rotation, and position[16]. This is to our knowledge the first demonstration of 

this occurring in purely unsupervised models. 

file:///C:/Users/Vishrut%20Thakur/Downloads/171300_171303_report-converted.docx%23_bookmark22
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In addition, exploring and developing the above-mentioned vector arithmetic should 

dramatically reduce the amount of information wanted for conditional generative 

modeling of complicated photo distributions. 

 

Figure 4.4: Vector iarithmetic ifor ivisual iconcepts. iFor ieach icolumn, ithe iZ ivectors iof isamples iare iaveraged. iArithmetic 

iwas ithen iperformed ion ithe imean ivectors icreating ia inew ivector iY i. iThe icenter isample ion ithe iright-hand iside iis 

iproduce iby ifeeding iY ias iinput ito ithe igenerator. iTo idemonstrate ithe iinterpolation icapabilities iof ithe igenerator, iuniform 
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inoise isampled iwith iscale i+-0.25 iwas iadded ito iY ito iproduce ithe i8 iother isamples. iApplying iarithmetic iin ithe iinput 

ispace i(bottom itwo iexamples) iresults iin inoisy ioverlap idue ito imisalignment. 

Input 

 

Figure 4.5: Input to Model 

Output 

 

Figure 4.6: Output Generated From Model 

4.4 Classifying CIFAR-10 Using GANs as a Feature Extractor 

“One common technique for evaluating the quality of unsupervised representation learning 

algorithms is to apply them as a feature extractor on supervised datasets and evaluate the 

performance of linear models fitted on top of these features.[28]”  

On rthe rCIFAR-10 rdataset, ra rvery rstrong rbaseline rperformance rhas rbeen rdemonstrated rfrom 

ra rwell-tuned rsingle rlayer rfeature rextraction rpipeline rutilizing rK-means ras ra rfeature rlearning 

ralgorithm. rWhen rusing ra rvery rlarge ramount rof rfeature rmaps r(4800) rthis r×itechnique 
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rachieves r80.6% raccuracy. “An unsupervised multi-layered extension of the base algorithm 

reaches 82.0% accuracy[29].” rto revaluate rthe rsatisfactory rof rthe rrepresentations rfound rout 

rby× rDCGANs rfor rsupervised rduties, rwe rteach ron rImagenet-1k rand rthen ruse rthe 

rdiscriminator’s rconvolutional rcapabilities rfrom rall rlayers, rmaxpooling revery rlayer’s 

rrepresentation rto rproduce ra r4*4 rspatial rgrid. rThese rfeatures rare rthen rflattened rand 

rconcatenated rto rform ra r28672-dimensional rvector rand ra rregularized rlinear rL2-SVM 

rclassifier ris rtrained ron rtop rof rthem. rThis rachieves r82.8% raccuracy, outperforming all K-

means based approaches. Notably, the discriminator has many less feature maps (512 in the 

highest layer) compared to K-means based techniques, but does result in a larger total 

feature vector size due to the many layers of 4*4 spatial locations. “The performance of 

DCGANs is still less than that of Exemplar CNNs[16]” , a technique which trains normal 

discriminative CNNs in an  unsupervised style to distinguish among specifically chosen, 

aggressively augmented, exemplar samples from the source dataset. similarly, might be 

made with the aid of finetuning the discriminator’s representations, however we depart this 

for future work. additionally, on the grounds that our DCGAN changed into never skilled 

on CIFAR-10 this experiment also demonstrates the area robustness of the learned 

capabilities. 

Table 2: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre- trained on CIFAR-10, 

but on Imagenet-1k, and the features are used to classify CIFAR-10 images. 

Model Accuracy Accuracy 

(400per lclass) 

Max l#of 

features 

lunits 

 i 1 lLayer lK-means  i80.6%  i 63.7% l(±0.7% Error)  i4800 

 i3 lLayer lK-means lLearned  i82.0%  i70.7% l(±0.7%Error)  i3200 

RF  72.6% l(±0.7%Error)  

View lInvariant lK-means 81.9% 77.4% l(±0.2%Error)  i6400 

Exemplar lCNN 84.3%   i1024 

DCGAN l(ours) l+ lL2-SVM  i82.8%  73.8% l(±0.4%Error)  i512 
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4.5 Classifying SVHN Digits Using GANs As A Feature Extractor 

“On the StreetView House Numbers dataset (SVHN)[1], we use the features of the 

discriminator of a DCGAN for supervised purposes when labeled data is scarce.” Following 

comparable dataset practice rules as in the CIFAR-10 experiments, we break up off a 

validation set of 10,000 examples from the non-more set and use it for all hyperparameter 

and version choice. 1000 uniformly class allotted training examples are randomly decided 

on and used to educate a regularized linear L2-SVM classifier on top of the same feature 

extraction pipeline used for CIFAR-10. “Additionally, we validate that the CNN 

architecture used in DCGAN is not the key contributing factor of the model’s performance 

by training a purely supervised CNN with the same architecture on the same data and 

optimizing this model via random search over 64 hyperparameter trials [30].” It rachieves ra 

rsignificantly rhigher r28.87% rvalidation rerror. 

4.6 Evaluating DCGANs Capability To Capture Data Distributions 

We rpropose rto rapply rstandard rclassification rmetrics rto ra rconditional rversion rof rour rmodel, 

revaluating rthe rconditional rdistributions rlearned. rWe rtrained ra rDCGAN ron rMNIST 

r(splitting roff ra r10K rvalidation rset) ras rwell ras ra rpermutation rinvariant rGAN rbaseline rand 

revaluated rthe rmodels rusing ra rnearest rneighbor rclassifier rcomparing rreal rdata rto ra rset rof 

 

a rsuperb rjob rat rmodelling rthe rconditional rdistributions rof rthis rdataset. r“At one million 

samples per class, the  DCGAN model outperforms InfiMNIST[5]”, a rhand rdeveloped rdata 

raugmentation rpipeline rwhich ruses rtranslations rand relastic rdeformations rof rtraining 

rexamples. “The DCGAN is competitive with a probabilistic generative data augmentation 

technique utilizing learned per class transformations[14] while being more general as it 

directly models the data instead of transformations of the data.” 
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Table 3: Nearest neighbor classification results. 

 iModel  iTest iError i@50K 

isamples 

 iTest iError i@10M 

isamples 

 iAlignMNIST 
 

 i1.4% 

 iInfiMNIST 

 

 i2.6% 

 iReal iData  i3.1% 

 

 iGAN  i6.28%  i5.65% 

 iDCGAN i(ours)  i2.98%  i1.48% 
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Figure 4.7: Side-by-side illustration of (from left-to-right) the MNIST dataset, generations from a baseline GAN, and 

generations from our DCGAN 
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Figure 4.8: More face generations from our Face DCGAN. 
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Figure 4.9: Generations of a DCGAN that was trained on the Imagenet-1k dataset. 

 rWe rnow rdiscuss rsome rblessings of our end result. rOur rhistogram rloss raddresses  

rinstabilities through ensuring that the total statistical distribution of the capabilities is 

preserved. further to enhancing photo pleasant, our complete loss (inclusive of the 
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histogram loss) also calls for fewer iterations to converge. “We use a mean of 700 iterations 

for our results, which we find consistently give good quality, and 1000 iterations for the 

results of [24]”, This we find can be unstable at time. “We note that methods based on 

Gram matrices such as [20] can become unstable  over  the  iteration  count.” We interpret 

this as being caused by the mean and variance being free to drift, as we discussed in 4.2. 

By adding histograms to our loss function, the result is more stable and converges better, 

both spatially and over iterations. 

 

Each method supplies perceptually-interesting effects but have blessings and 

disadvantages. The first method is clearly restrained through how well the colour transfer 

from the content image onto the style photograph works. The coloration distribution 

regularly cannot be matched perfectly, main to a mismatch between the colors of the output 

image and that of the content material photograph (Figure 4.14: Synthesis, using 

luminance-histogram matching before synthesis) The synthesis also replicates “content” 

structures from the van Gogh style scene, i.e., the pattern of reflections on the river appears 

as vertical yellow stripes of brushstrokes in the output. 

In rcontrast, rthe rsecond rmethod rpreserves rthe rcolors rof rthe rcontent rimage rperfectly. 

rHowever, rdependencies rbetween rthe rluminance rand rthe rcolor rchannels rare rlost rin rthe 
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routput rimage r(Figure r4.13: rCombination rof rsynthesized rluminance rand rsource rcolor 

rchannels.). r rThis ris rparticularly rapparent rfor rstyles rwith rprominent rbrushstrokes. In Figure 

4.13 colors rare rno rlonger raligned rto rstrokes. rThat rmeans ra rsingle rbrushstroke rcan rhave 

rmultiple rcolors, rwhich rdoes rnot rhappen rin rreal rpaintings. rIn rcomparison, rwhen rusing rfull 

rstyle rtransfer rand rcolor rmatching, rthe routput rimage rreally rconsists rof rstrokes rwhich rare 

rblotches rof rpaint, rnot rjust rvariations rof rlight rand rdark. 

“One potential advantage of the luminance-based method is that it reduces the 

dimensionality of the optimization problem for the neural synthesis[31].” The neural 

synthesis set of rules performs numerical optimization of the output photograph, and 

luminance-only synthesis has approx. 30% of its parameters. but, it's far doubtful that 

there's any sensible benefit in common GPU implementations.  

Below marked figures shows different generated images after luminance-only synthesis for 

input images 

 

Figure 4.10: Luminance channel (Y) of input photograph. 

 

Figure 4.11: Color channels (I, Q) of input photograph 
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Figure 4.12: Style transfer result in luminance channel. 

 

Figure 4.13: Combination of synthesized luminance and source color channels. 

 

Figure 4.14: Synthesis, using luminance-histogram matching before synthesis 
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Figure 4.15: Combination of color and luminance channels, using luminance-histogram matching before synthesis. 

  

(f) 
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CHAPTER 5 - CONCLUSION 

We lpropose la lmore lstable lset lof larchitectures lfor ltraining lgenerative ladversarial lnetworks 

land lwe lgive levidence lthat ladversarial lnetworks llearn lgood lrepresentations lof limages lfor 

lsupervised llearning land lgenerative lmodeling. lThere lare lstill lsome lforms lof l lmodel l 

linstability lremaining l- lwe lnoticed l las lmodels l lare l ltrained l llonger l lthey l lsometimes l lcollapse 

la lsubset lof lfilters lto la lsingle loscillating lmode. 

Further lwork lis lneeded lto ltackle lthis lfrom lof linstability. lWe lthink lthat lextending lthis 

lframework lto lother ldomains lsuch las lvideo l(for lframe lprediction) land laudio l(pre-trained 

lfeatures lfor lspeech lsynthesis) lshould lbe lvery linteresting. lFurther linvestigations linto lthe 

lproperties lof lthe llearnt llatent lspace lwould lbe linteresting las lwell. 

In lfuture lwork, lit lwould lbe linteresting lto lexplore lhow l lthe l ltwo l lstatistical l  

lmodels  lin lhere l(color lstatistics  lvs. lCNN  lactivations) lmight lbe lunified, land lto 

lexplore l more l sophisticated l color l transfer l and l adjustment l procedures l . 
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APPENDIX 

5.1 Code 

5.1.1 Model Generation 
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5.1.2 Image Generation 
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device = ("cuda" if torch.cuda.is_available() else "cpu") def 

model_activations(input,model): 

layers = { 

'0' : 'conv1_1', 

'5' : 'conv2_1', 

'10': 'conv3_1', 

'19': 'conv4_1', 

'21': 'conv4_2', 

'28': 'conv5_1' 

} 

features = {} x = input 

x = x.unsqueeze(0) 

for name,layer in model._modules.items():  

x = layer(x) 

if name in layers: 

features[layers[name]] = x 

return features 

transform = transforms.Compose([transforms.Resize(300), 

transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]) 

 

content = Image.open("content.png").convert("RGB") content = 

transform(content).to(device) print("COntent shape => ", content.shape) 

style = Image.open("style.jpg").convert("RGB") style = transform(style).to(device) 

 

def imcnvt(image): 

x = image.to("cpu").clone().detach().numpy().squeeze() x = x.transpose(1,2,0) 

x = x*np.array((0.5,0.5,0.5)) + np.array((0.5,0.5,0.5)) return np.clip(x,0,1) 

 

fig, (ax1,ax2) = plt.subplots(1,2) 

 

ax1.imshow(imcnvt(content),label = "Content") ax2.imshow(imcnvt(style),label = 
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"Style") 

plt.show() 

 

def gram_matrix(imgfeature): 

_,d,h,w = imgfeature.size() imgfeature = imgfeature.view(d,h*w) 

gram_mat = torch.mm(imgfeature,imgfeature.t()) return gram_mat 

target = content.clone().requires_grad_(True).to(device) #set device to cuda if available 

print("device = ",device) 

 

 

style_features = model_activations(style,model) content_features = 

model_activations(content,model) 

 

style_wt_meas = {"conv1_1" : 1.0, 

"conv2_1" : 0.8, 

"conv3_1" : 0.4, 

"conv4_1" : 0.2, 

"conv5_1" : 0.1} 

 

style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features} 

 

content_wt = 100 style_wt = 1e8 

 

print_after = 500 

epochs = 1000 

optimizer = torch.optim.Adam([target],lr=0.007) 

 

for i in range(1,epochs+1): 

target_features = model_activations(target,model) content_loss = 

torch.mean((content_features['conv4_2']- 

target_features['conv4_2'])**2) 
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style_loss = 0 

for layer in style_wt_meas: style_gram = style_grams[layer] 

target_gram = target_features[layer] 

_,d,w,h = target_gram.shape target_gram = gram_matrix(target_gram) 

 

style_loss += (style_wt_meas[layer]*torch.mean((target_gram- style_gram)**2))/d*w*h 

 

total_loss = content_wt*content_loss + style_wt*style_loss 

if i%10==0: 

print("epoch ",i," ", total_loss) 

 

optimizer.zero_grad() total_loss.backward() optimizer.step() 

 

if i%print_after == 0: plt.imshow(imcnvt(target),label="Epoch "+str(i)) plt.show() 

plt.imsave(str(i)+'.png',imcnvt(target),format='png') 
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