RURAL ROAD DEVELOPMENT FROM JAYPEE UNIVERSITY GATE TO 1.2 Km STRETCH TOWARDS WAKNAGHAT .

Project Report submitted in fulfilment of the
requirement for the degree of

Bachelor of Technology
in
Civil Engineering

Under the Supervision of

Mr. LAV SINGH

By

Ayush Sharma (111674)

Ankush Rajta (111631)

2014-2015
Jaypee University of Information and Technology, Waknaghat,

Abstract

This Project is an attempt to do road survey from Jaypee University Gate to 1.2 km road stretch towards Waknaghat Circle. We have take 6 points at every cross section like extra Left Hand side ,Left hand side ,Centre Line ,Right hand side ,Extra Right hand side and Drainage with the help of Total station. We started our work from point which was very near to Jaypee University Gate, so we took that point as our benchmark. We try to find width of the pavement and shoulder width at every cross section with the help of total station .After this, we choose 10 curves from JaypeeUniversity Gate to 1.2 km and for that curves we have calculated Radius of curve ,Stopping sight Distance (SSD),Overtaking Sight Distance(OSD) and others various Horizontal alignment components of road like Super elevation ,Extra widening of the curves and Minimum length of transition Curve by empirical formula for each curves. To find this, we first calculated Radius of curve through Versine curve method and after obtaining the radius of curves for 10 curves. We calculated other design parameters. After completing this objective, we learnt to operate MX road software. In MX Road software, we learnt how to convert Auto cad File in to MX file.

CERTIFICATE

This is to certify that the work entitled "RURAL ROAD DEVELOPMENT FROM JAYPEE UNIVERSITY GATE TO 1.2 Km STRETCH TOWARDS WAKNAGHAT" submitted by Ankush Rajta (111631) and Ayush Sharma (111674) in partial fulfilment for the award of degree of Bachelor of Technology in Civil Engineering of Jaypee University of Information Technology has been carried out under my supervision. This work has not been submitted partially or wholly to any other University or Institute for the award of this or any other degree or diploma as per best of my knowledge.

Prof. Dr. Ashok Kumar Gupta
Professor \& Head
Department of Civil Engineering
JUIT

Mr. Lav Singh
Assistant Professor	External Examiner
(Project Supervisor)	
Department of Civil Engineering	
JUIT	

ACKNOWLEDGEMENT

We have taken sincere efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. We would like to extend our sincere thanks to all of them.

We are highly indebted to Mr. Lav Singh for his guidance and constant supervision as well as for providing necessary information regarding the project \& also for his support in completing the project.

We would like to express our gratitude towards our parents \& the Department of Civil Engineering (JUIT) for their kind co-operation and encouragement which helped us in partial completion of this project.

Our thanks and appreciations also goes to our colleagues in developing the project and people who have willingly helped us out with their abilities.

Date:

List of Contents

Page No.
ABSTRACT ii
CERTIFICATE iii
ACKNOWLEDGEMENT iv
CHAPTERS

1. Introduction
1.1Pavement 1
1.2 Neccesity of this Project 1
1.3 Scope 2
2. Literature Review 3
3. Classification of Roads
3.1 Based on weather conditions. 5
3.2 Based on the type of the carriage way. 5
3.3 Based on type of pavement surfacing. 5
3.4 Classification of Road by Nagpur Road plan. 5
4. Surveying
4.1 Introduction. 7
4.2 Total Station Survey. 7
4.2.1 Total Station. 7
4.2.2 Advantages Of Total Station Surveying. 8
4.2.3 Types Of Total Station Surveying. 8
4.2.4 Levelling The Total Station. 1015
4.2.5 How Survey Was Done For 1.2 Km Starting From JAYPEE GATE .
5. Modelling 17
5.1 Procedure. 17
5.2 Road Survey
5.2.1 Road Survey and Visual Inspection of the road strectch of 0 to 210 m 18 starting from Jaypee University gate.
5.2.2 Road Survey and Visual Inspection of the road stretch from 22 210 m to 487 m
5.2.3 Road Survey and Visual Inspection of the road stretch from 24 487 m to 726 m
5.2.4 Road Survey and Visual Inspection of the road stretch from 25
726 to 940 m
5.2.5 Road Survey and Visual Inspection of the road stretch from 25
Jaypee University Gate to 1130 m 27
5.3 Pavement width 27
5.3.1 Analysis of Road section from 0 m to 210 m 27
5.3.2 Analysis of Road section from 210 m to 405 m 28
5.3.3 Analysis of Road section from 435 m to 637 m 28
5.3.4 Analysis of Road section from 652 m to 856 m 28
5.3.5. Analysis of Road section from 873 m to 1084 m 29
5.3.6 Analysis of Road section from 1097 m to 1130 m 30
6. Measurement and Analysis of various Geometrical Design Components 31
6.1 Introduction 31
6.1.1 Circular curves 32
6.1.2 Relation between Radius of curve and Degree of Curve through Versine curve method 33
6.1.3 Super Elevation 36
6.1.4 Extra widening 37
6.1.5 Transition Curve 37
6.1.6 Stopping Sight Distance 38
6.1.7 Overtaking Sight Distance 38
6.2 Measurement of Various Design compents
7. Bently MXROAD V8i (SELECTseries 2)-Version 08.11.07.427 Software 43
7.1 Working steps 45
7.2 Creating model and assigning model defaults 46
7.3 Conversion of CAD file into MX file 48
7.4 Analysis 49
7.5 Horizontal Alignment 54
CONCLUSION and DISSCUSSION 58
REFRENCES
APPENDIXES59
A. Total Station Survey Data for 1.13 km
B. Calculation of Pavement Width and Right Hand shoulder 69 width and Left Hand Shoulder Width Till 1.13 Km
C. Images of Curves

LIST OF FIGUERS

Figure No.	Title	Page No.
4.1	Parts of Total Station.	9
4.2	Keys/Screen.	10
4.3	Tripod	11
4.4	Instruments on tripod	11
4.5	Focus On Survey Points.	12
4.6	Centring Of Bubble.	12
4.7(a)	Rotating the A \& B Screws in the Same Direction	13
4.7(b)	Rotate The Screw Only	13
4.8	Electronically Verify Levelling.	13
4.9	Rectile Focus.	14
4.10	Total Station.	14
4.11	Tripod.	14
4.12	Prism And Poles.	15
5.1	Alignment of the selected road stretch from Google Earth.	18
5.3(a)	Starting point of survey	19
5.3(b)	View of Moksh Hotel.	20
5.3(c)	Cutting of the Hill Side for Commercial purpose.	20
5.3(d)	Condition of Tree is not good.	21
5.3(e)	Condition of the concrete pavement is not good.	21

5.3(f)	Stones lying on the road.	22
5.4	Auto cad drawing for road stretch from 210 m to 487 m .	22
5.5(a)	Intersection of Flexible pavement and Rigid pavement.	23
5.5(b)	Intersection of Flexible pavement and Rigid pavement.	23
5.5	Auto cad drawing for road stretch from 487 m to 726 m .	24
5.6	Cutting of Hills.	24
5.7	Auto cad drawing for road stretch from 726 m to 940 m	25
5.8(a)	Auto cad drawing for road stretch from Jaypee gate to 1130m	25
5.8(b)	Auto cad drawing for road stretch from Jaypee gate to 1130 m (zoom in)	26
5.9	Condition of parapet is not good	26
5.10	Image showing L.H.S shoulder width ,Pavement width , R.H.S shoulder width and drainage width.	27
6.1	Horizontal curve features.	311
6.2	Circular Curve.	32
6.3	Analysis of super-elevation.	33
6.4	Determining Degree of curve 1 (Versine curve of method).	39
7.1	Survey Data Input.	44
7.2	Screen shot of a display window after importing survey data.	44
7.3	Creating model and assigning model default.	45
7.4	Creating MX level from MX Conversion Toolbar.	46
7.5	Level Manager	47
7.6	Screen shot showing MX strings.	47
7.7(a)	Analysis from application toolbar.	48
7.7(b)	Model to Analyze.	48

7.7 c$)$	Surface Analysis.	48
$7.8(\mathrm{a})$	Horizontal Design from main menu	49
$7.8(\mathrm{~b})$	Model Selection.	49
$7.8(\mathrm{c})$	Quick Horizontal Alignment Toolbar.	49
$7.9(\mathrm{a})$	QHA Toolbar.	50
$7.9(\mathrm{~b})$	XY Keyboard Entry.	50
$7.9(\mathrm{c})$	Plan.	50
$7.10(\mathrm{a})$	QHA Toolbar.	51
$7.10(\mathrm{~b})$	Parameters.	51
$7.10(\mathrm{c})$	XY Keyboard.	51
$7.10(\mathrm{~d})$	Plan.	52
7.11	Designed Horizontal Alignments for JUIT -1.2 km	51

CHAPTER 1

INTRODUCTION

1.1 Pavement

Flexible and Rigid pavement is used between Jaypee gate to Wakhnaghat like Road is made of Rigid pavement from Jaypee gate to Thank you gate and after that road is made of flexible pavement till Wakhnaghat.

To do this project we should have knowledge of the Higway engineering, Surveying, Auto cad software and MX road software

Road between Jaypee Gate and Wakhnaghat is located 3 kilometers off NH 22 (20 km from Shimla) (from Wakhnaghat) which runs from Kalka to Shimla (India).

1.2 Necessity of the project:

The reason behind to take this project is by seeing the fact that PWD doesnot take so much of interest in rural roads .They are donot follow IRC codes properly when its comes to rural roads. If we talk about rural road in india, Some are the facts about rural road of india :

- India has a Rural Road Network of about 2.70 Million km with Rs.35,000 Crore investment.
- Constitutes over 80% of Total Road Network.
- More than $1,000,000 \mathrm{Km}$ are tracks and roads not meeting Technical Standard.
- Rural Roads Sector suffered from lack of systematic Planning, Quality and Sustained Maintenance.
- It was a Myth that Rural Roads do not require Planning/Design/ Quality Assurance.

The reason to take this project "RURAL ROAD DEVELOPMENT FROM JAYPEE GATE TO 1.2 Km ROAD STRETCH TOWARDS WAKNAGHAT" is that we are very curious to know whether this road follow IRC or not and I also observed that, college have been increasing their admission capacity from the past 3 year but college have only limited Hostel seats available. So local people have started to give Room for Rent for those student who didn't able to get hostel in college. Due to this, Traffic volume from Jaypee Gate to Wakhnaghat is increasing. So there is need of development of this road.

1.3 SCOPE

- To do Road survey from Jaypee Gate to $1.2 \mathbf{k m}$ road stretch towards Waknaghat with the help of Total station .
- To determine pavement width at every cross section that we took from Jaypee Gate to 1.2 km road stretch towards Waknaghat .
- To determine radius of curve of major and sharp curves present between Jaypee Gate to 1.2 km road stretch towards Waknaghat by using the concept of versine curve.
- Measurement and analysis of various geometrical design components i.e. SSD(Stopping sight distance), Superelevation and Length of curve at the sharp and major curves.
- To learn MX Road Software.

CHAPTER 2 LITERATURE REVIEW

Various research papers/reports were studied as a literature review for this project. A summary of the readings is presented in the following.

1. Cost and Safety Efficient Design Study of Rural Roads in Developing Countries. By B L Hills, C J Baguley and S J Kirk.

In this general survey of a highway of Papua New Guinea was carried out. Their focus was how the characteristics of the road were changing with distance. The measurements were of shoulder width, running surface width, curvature, gradient, traffic and pedestrian count was carried out. Mainly they were focusing on geometric design and traffic flow and its affect on accident rates. As in the Papua New Guinea study, Curvature and Gradient proved to be significant explanatory variables, both increasing accident rates the sharper the curve or steeper the gradient. In a study of Tanzania's roads described in it was observed that the number of pedestrian accidents was considerably lower for roads where a 1 metre shoulder had been provided compared to those with a 0.5 metre shoulder .

Similarly we will be calculating shoulder width at various sections of JAYPEE gate to WAKNAGHAT circle and pavement width at various cross sections, we will also be calculating curvature, traffic count.

2. Traffic Report 2013 Of Agra to Lucknow to access controlled Expressway (Green Field) Project Prepared by Feedbackinfra.

In this report the traffic surveys were carried out in which they did classified traffic volume count at nine (9) locations. Locations were of upmost importance where one road was diverting into two. For these major roads intersecting the proposed project road were surveyed continuously for seven or three consecutive days for 24 hours on each day. The origin-destination survey was carried out with the primary objective of studying the travel pattern of goods and passenger traffic along the study corridor. Then a proper analysis of survey data was done. The various vehicle types having different sizes and characteristics were converted into a standard unit called passenger car unit.
3. Traffic volume and accident studies on NH-22 between SOLAN and SHIMLA by Anish Mahajan and Jay Singh

In this project, They have calculated length of curve, SSD, super elevation of black spots as their main focus was on accident studies. They have checked its value according to IRC code provisions .

CHAPTER 3 CLASSIFICATION OF ROADS

3.1 Based on weather conditions

a. All weather roads: Those which are negotiable during all weather
b. Fair weather roads: Traffic may be interrupted during monsoon season at cause way where stream may over flow across the road

3.2 Based on the type of the carriage way

a.Paved roads: Provided with a hard pavement course which should be atleast WBM.
b.Unpaved roads: Not provided with a hard pavement course which should be atleast WBM layer .Thus earth roads and gravel may be called unpaved roads.

3.3 Based on type of pavement surfacing

a.Surface roads: Provided with a bituminous or cement concrete surfacing.
b.Unsurfaced roads: Not provided with a bituminous or cement concrete surfacing, the roads are provided with bituminous surfacing are also called as black toped roads.

3.4 Classification of Road by Nagpur Road plan

As per the Nagpur Pl, the roads are classified as
a. National highway
b. State highways
c. District highways
d. Major district roads
e. Minor district roads
f. Village roads
a. National Highways:- These are the important roads of the country. They connect state capitals, ports and foreign highways. They also include roads of military importance. They are financed by the central government.
b. State Highways :- these are the important roads of a state. They connect important cities and district head quarters in the state , national highways \& state highways of neighbouring states. They are financed by state government roads and buildings department of the state government constructs \& maintain these roads.
c. District Roads :- these are the roads within a district . they are financed by zillaparishads with the help of grants given by state government.
d. The Major District Roads:- They are roads connecting district head quarters, taluk head quarters and other important town in the district production and market centers with each other and with state \& national highways \& railways.
e. Other District Roads :- They are district roads of less importance
f. Village Roads:- They connect villages with each other and to the nearest district road. They are financed by panchayats with the help of zilla parishads and state government

The road stretch from Jaypee Gate to $\mathbf{1 . 2} \mathbf{~ k m}$ towards Waknaghat come under in Other District Roads

CHAPTER 4

SURVEYING

4.1 Introduction

Surveying is the art of determining the relative position of points on, above or beneath the surface of the earth by means of direct or indirect measurement of distance direction and elevation. It includes the art of establishing points by predetermined angular and linear measurements.

The knowledge of surveying is advantageous in many phases of engineering. The earlier surveys were made in connection with land surveying. Practically every engineering project such as road, water supply and irrigation schemes, railroads and transmission lines, mines, bridges and buildings etc. require surveys. Before plans and estimates are prepared, boundaries should be determined and the topography of the site should be ascertained. After the plans are made, the structure must be staked out in the ground. As the work progresses, lines and grades must be given.

In this project, we have performed one types of survey:-

1. Total Station Survey

4.2 Total Station Survey

4.2.1 Total Station

A form of an electronic theodolite combined with an electronic distance measuring device (EDM). The primary function is to measure slope distance, vertical angle, and horizontal angle from a setup point to a foresight point. Most total stations use a modulated near-infrared light emitting diode which sends a beam from the instrument to a prism. The prism reflects this beam back to the instrument. The portion of the wavelength that leaves the instrument and returns is assessed and calculated. Distance measurements can be related to this measurement. The accuracy of a total station is dependent on instrument type. Angle Accuracy (Horizontal or Vertical) can range from 2" to $5^{\prime \prime}$. Distance Accuracy can range from: $+/-(0.8+1 \mathrm{ppm} \times \mathrm{D})$ to $+/-(3+3 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}$ where $\mathrm{D}=$ distance measured . Accuracy is highly dependent on leveling the instrument. Thus two leveling bubbles are provided on the instrument and are referred to the circular level and the plate level. Circular level is located on the tribrack while plate level is on horizontal axis of instrument just below scope of the total station.

- Sensitivity of Circular Level $=10^{\prime} / 2 \mathrm{~mm}$
- Sensitivity of Plate Level $=30$ " $/ 2 \mathrm{~mm}$

4.2.2 Advantages of Total Station Surveying

1. Relatively quick collection of information .
2. Multiple surveys can be performed at one set-up location.
3. Easy to perform distance and horizontal measurements with simultaneous calculation of project coordinates (Northings, Eastings, and Elevations).
4. Layout of construction site quickly and efficiently.
5. Digital design data from CAD programs can be uploaded to data collector.
6. Daily survey information can also be quickly downloaded into CAD which eliminates data manipulation time required using conventional survey techniques.

4.2.3 Types of Total Station Surveying

i. Slope Staking
ii. Topographic surveys
iii. Leveling
iv. Areas
v. Road (Highway)
vi. Surveys

Parts of the SET Total Station

Fig 4.1 (Parts of Total Station)

家"5.1 Basic Key Operation"

Fig 4.2 Keys /Screen

4.2.4 Leveling the Total Station

Leveling the Total Station must be accomplished to sufficient accuracy otherwise the instrument will not report result. Leveling the instrument takes 30 to 45 minutes make sure you can see all targets from the nstrument station before going through the process.

Step 1: Tripod Setup

a. Tripod legs should be equally spaced.
b. Tripod head should be approximately level.
c. Head should be directly over survey point

Fig 4.3Tripod

Step 2: Mount Instrument on Tripod

a. Place Instrument on Tripod.
b. Secure with centering screw while bracing the instrument with the other hand.
c. Insert battery in instrument before leveling

Fig 4.4 Instrument on Tripod

Step 3: Focus on Survey Point

a. Focus the optical plummet on the survey point

Fig 4.5 Focus on survey Point

Step 4: Leveling the Instrument

a. Adjust the leveling foot screws to center the survey point in the optical plummet reticle.
b. Center the bubble in the circular level by adjusting the trip.
c. Loosen the horizontal clamp and turn instrument until plate level is parallel to 2 of the leveling foot screws.frt
d. Center the bubble using the leveling screws- the bubble moves toward the screw that is turned clockwise.
e. Rotate the instrument 90 degrees and level using the 3rd leveling screw.
f. Observe the survey point in the optical plummet and center the point by loosening the centering screw and sliding the entire instrument.
g. After re-tightening the centering screw check to make sure the plate level bubble is level in several directions

Fig 4.6 Centering of bubble

Fig 4.7 (a) Rotating the
A and B screws in Same direction

Fig 4.7(b) Rotate the
C screw only

Step 4: Electronically Verify Leveling

a. Turn on the instrument by pressing and holding the "on" button (you should hear an audible Beep)
b. The opening screen will be the "MEAS" screen. Select the [Tilt] function.
c. Adjust the foot level screws to exactly center the electronic "bubble".
d. Rotate the instrument 90 degrees and repeat

Fig 4.8Electronically Verify Levelling

Step 5: Adjust Image \& Reticle Focus

a)Release the horizontal \& vertical clamps and point telescope to a featureless light background
b) Adjust the reticle (i.e. cross-hair) focus adjustment until reticle image is sharply focused.
c) Point telescope to target and adjust the focus ring until target is focused.
d) Move your head from side-to-side to test for image shift (i.e. parallax). Repeat the reticle focus step if parallax is significant.

NOTE: When the instrument operator changes the reticle focus may need to be adjusted.

Fig 4.9 Reticle Focus

4.2.5 Accessories of Total station

Fig 4.10 Total Station

Fig 4.11Tripod

Fig 4.12 Prism and Poles

4.2.6 How Survey was done for 1.2 Km from Jaypee Gate to 1.2 km (moving towards Waknaghat)

The following procedure we have followed to do road survey are :

1. To do road survey, we used total station .
2. We started our work from Jaypee gate.
3. Near to jaypee gate, we took our first point as a bench mark where we put zero value of northing ,easting and zenith in the station coordinates of the total station.
4. What we have done is ,we divided 1.2 km span of the road into many cross section with varied length .
5. At every cross section, we took 6 points like centre line ,R.H.S, L.H.S ,Extra R.H.S ,Extra L.H.S and Drainage which all having unique value of northing ,easting and zenith.
6. The values that we got with the help of total station at every cross section, we put it in excel . For example for Chainage from 0 to $\mathbf{3 0 m}$

CHAINAGE from 0 to 30 m

		N	E	S
Centre line	a1	-1.79	31.39	-0.639
left hand side	a 2	0.022	31.56	-0.546
right hand side	a3	-3.708	31.432	-0.69
extra left side	a4	2.591	31.85	-0.366
extra right side	a5	-4.107	31.146	-0.679
drainge towards right side	a6	-4.292	31.035	-0.44

7. To make road alignment in auto cad(2-D), we use Northing and Easting as a coordinates like (N,E) For example

			(Point name	
N	E	S	(N, E)	,N,E)
1.79	31.39	0.639	$1.79,31.39$	$a 1,1.79,31.39$

8. We make a list of (point name ,N,E) coordinates for all the cross section that we have .Let say, we make a list of coordinates for centre line .This list is used to make a Centre line in Auto Cad Software.

> Centre Line (RED)
> a1,-1.79,31.39
> b1,2.468,60.995
> c1,-4.436,89.898
> d1,-20.78,147.414
> e1,-19.604,207.533
9. The same procedure is followed for R.H.S, L.H.S ,Extra R.H.S ,Extra L.H.S and Drainage that was followed for Centre Line.

CHAPTER 5

MODELLING

5.1 PROCEDURE

Here, in Auto Cad we have to prepare the layout using the total survey data points. So here we imported these data points to get the layout by following steps:-

Step1:- Before importing the points and draw the layout we set the units and layers of the lines to be drawn. For this to be done we used 'UNITS' and the 'LAYER' commands. On entering the units command a pop window comes on the screen where we set the insertion units to 'Meters' and angle type to 'Surveyor's Units'. After then type the 'LAYER' command and then add new layers of different colors.

Step2:- Since the drawing conditions are set and the adequate layer is 'on' in Auto CAD. It's time to import. Type the command 'LINE' and then move to the EXCEL SHEET where you have prepared the data points in the required (X, Y) format.

In the EXCEL Sheet select the points that are falling in one line, copy them and then paste them in the command line of Auto CAD. The Auto CAD will join all the points by making a line between two consecutive points.

Here, we achieved the whole layout by joining drawings made in the same fashion upto each change of station of Total Station. After then hatching was done with solid colour to show the carriage way.

Step3:- After the layout has been made select the different layer to show the cross section lines and then name them using the 'MTEXT' command. Here, to represent the Cross sections we have used the letters "C.S." followed by the corresponding numeral of the cross section.

5.2 Road Survey

Actually to make alignment of the road for 1.2 km span in auto cad. We have first made alignment of road for 200 m . Then after that, we made alignmet of the road for stretch 200 m to 487 m and after that 487 m to 726 m and finally for stretch 726 m to 940 m in auto cad. After that, we compile all the drawing in one to make whole stretch of 1.2 km in Auto Cad.

Fig 5.1 Alignment of the selected road stretch from Google Earth

5.2.1 Road Survey and Visual Inspection of the road stretch from of $\mathbf{0}$ to 210 m starting from Jaypee University gate.

Fig 5.2 Auto cad drawing for road stretch from Jaypee Gate to 210 m stretch

Visual Inspection of Road From 0 to 210m starting from Jaypee University gate

- Starting from Jaypee Gate there is taxi stand on the left and Moksh Hotel on the right which sometimes lead to traffic congestion.
- Total Number of curves observed in this section is 3 . In which one curve is towards right and the other two curve is towards left.
- Just after the first curve there is cutting of rocks done mainly for construction purposes.
- The type of pavement used is mainly rigid pavement and the condition of rigid pavement is good except a few cracks are observed..
- There are some pictures who are giving information about Road Stretch from Jaypee Gate to 210 m .

Fig 5.3 (a) Starting point of survey

Fig 5.3 (b) View of Moksh Hotel

Fig 5.3 (c) Cutting of the Hill Side for Commercial purpose

Fig 5.3(d) Condition of Tree is not good

Fig 5.3 (e) Condition of the concrete pavement is not good

Fig 5.3(f) Stones lying on the road

5.2.2 Road Survey and Visual Inspection of the road stretch from

 210 m to 487 m .

Fig 5.4 Auto cad drawing for road stretch from 210 m to 487 m

Visual Inspection of Road stretch from 210m to 487 m .

- After the THANKYOU GATE there is use of bituminous pavement and the condition of bituminous pavement is good .
- The parapets thereafter are quite less in number out of which some are not in good condition.
- Drainage is provided but the condition is not good.
- There are some Pictures who are giving some information about Stretch for 210 m to 487 m toward Waknaghat Circle like :

Fig 5.5(a) Intersection of Flexible pavement and Rigid pavement

Fig 5.5 (b) View of Hill Point

5.2.3 Road Survey and Visual Inspection of the road stretch from 487 m to 726 m .

Fig 5.5 Auto cad drawing for road stretch from 487 m to 726 m
Visual Inspection of Road stretch from 487 m to 726 m

- Minor holes are visible in the pavement but overall the pavement condition is good.
- Drainage condition is good there.
- We observed hand pump
- Cutting of Hill have been done there

Fig 5.6 Cutting of Hills

5.2.4 Road Survey for the road stretch from 726m to 940 m

Fig 5.7 Auto cad drawing for road stretch from 726 m to 940 m

5.2.5 Road Survey for road stretch from Jaypee University Gate to 1130 m .

Fig 5.8 (a) Auto cad drawing for road stretch from Jaypee Gate to 1130 m

Fig 5.8 (b) Auto cad drawing for road stretch from Jaypee gate to 1130 m ($\mathbf{z o o m}$ in)

So Overall observaion that we collected from visual inspection of whole stretch 1130 m was that :

- Total no curves were found

22.

- We found Rigid pavement from Jaypee Gate to Thankyou.

After that we found flexible pavement throughout the road.

- There was no proper drainage at certain cross sections .
- We also observerd crack in rigid pavement .So there is need of repair in rigid pavement.
- We didnot observe Traffic Sign throughout the stretch which is not good sign ,from safety point of view.
- We also observed that there was no proper barrier was provided throught out the stretch .
- Most of the barriers were not good in condition.

Fig 5.9 Condition of parapet is not good

5.3 PAVEMENT WIDTH

After collecting survey data from total station for 1.2 Km . Then we find pavement width at every possible cross section .

Fig 5.10 Image showing L.H.S shoulder width ,Pavement width, R.H.S shoulder width and drainage width

5.3.1 ANALYSIS OF THE ROAD SECTION FROM 0 TO 210m.

DISTANCE	PAVEMENT WIDTH	LEFT HAND SIDE SHOULDER	RIGHT HAND SIDE SHOULDER
30 m (starting from Jaypee Gate)	3.73 m	2.59 m	0.49 m
60 m	3.60 m	0.45 m	0.38 m
90 m	3.27 m	0.34 m	0.31 m
150 m	5.53 m	0.45 m	0.28 m
210 m	5.13 m	0.24 m	0.47 m

According to IRC :52-2001 the pavement width of hilly roads in other district roads should be equal to 3.75 m and the roadway width (excluding side drains and parapets) should be equal to 4.75 m , meaning that the minimum shoulder width should be equal to 0.5 m on either side. As the road section in above section is mainly rigid pavement and road width at cross section at 90 m is 3.27 m which is very less as compared to minimum pavement width laid down by irc and shoulder width is also less there .

5.3.2 ANALYSIS OF ROAD SECTION FROM 210m TO 405m.

DISTANCE	PAVEMENT WIDTH	LEFT HAND SIDE SHOULDER	RIGHT HAND SIDE SHOULDER
220 m	2.38 m	0.37 m	0.19 m
240 m	3.51 m	0.40 m	0.63 m
260 m	4.67 m	0.78 m	0.62 m
310 m	5.31 m	0.65 m	0.44 m
330 m	4.64 m	0.59 m	0.74 m
341 m	4.45 m	0.25 m	0.33 m
366 m	4.43 m	0.28 m	0.48 m
376 m	2.95 m	0.39 m	0.52 m
405 m	3.20 m	0.58 m	0.20 m

In this section the pavement width is meeting the required criteria according to irc except at section $220 \mathrm{~m}, 240 \mathrm{~m}, 376 \mathrm{~m}, 405 \mathrm{~m}$ and left hand shoulder width is within the required criteria except at $220 \mathrm{~m}, 341 \mathrm{~m}, 366 \mathrm{~m}, 376 \mathrm{~m}$ and the right hand shoulder is not good at $220 \mathrm{~m}, 405 \mathrm{~m}$.

5.3.3 ANALYSIS OF ROAD SECTION FROM 435m TO 637m.

DISTANCE	PAVEMENT WIDTH	LEFT HAND SIDE SHOULDER	RIGHT HAND SIDE SHOULDER
435 m	3.37 m	1.18 m	1.12 m
456 m	3.62 m	1.46 m	0.68 m
474 m	4.76 m	0.75 m	0.74 m
487 m	3.61 m	0.78 m	0.92 m
503 m	3.40 m	0.59 m	0.64 m
544 m	4.12 m	0.63 m	1.35 m
577 m	3.82 m	0.95 m	0.94 m
637 m	3.31 m	0.95 m	0.72 m

The pavement width is within the required criteria and shoulder provides is good in this section .only at a distance of $435 \mathrm{~m}, 456 \mathrm{~m}, 487 \mathrm{~m}, 503 \mathrm{~m}, 577 \mathrm{~m}, 637 \mathrm{~m}$ the pavement width is less than the required criteria.

5.3.4 ANALYSIS OF ROAD SECTION FROM 652m TO 856 m.

DISTANCE	PAVEMENT WIDTH	LEFT HAND SIDE SHOULDER	RIGHT HAND SIDE SHOULDER
652 m	3.45 m	0.51 m	1.43 m
671 m	3.78 m	0.44 m	0.75 m
688 m	3.21 m	0.59 m	1.60 m
726 m	3.25 m	1.57 m	0.81 m
765 m	3.58 m	0.62 m	0.65 m
805 m	3.32 m	0.87 m	0.75 m
822 m	3.35 m	1.10 m	0.49 m
844 m	4.56 m	1.17 m	1.12 m
856 m	3.64 m	0.82 m	0.64 m

The pavement width is less in this particular section except at 671 m and 841 m . The shoulder provided is meeting the required criteria.

5.3.5 ANALYSIS OF ROAD SECTION FROM 873m TO 1084m.

DISTANCE	PAVEMENT WIDTH	LEFT HAND SIDE SHOULDER	RIGHT HAND SIDE SHOULDER
873 m	4.17 m	0.45 m	1.05 m
898 m	3.85 m	0.79 m	0.54 m
910 m	4.17 m	1.05 m	0.59 m

939 m	3.97 m	1.04 m	0.19 m
955 m	4.21 m	1.13 m	0.48 m
960 m	5.29 m	1.33 m	1.05 m
977 m	4.43 m	0.37 m	1.78 m
989 m	5.01 m	2.43 m	1.84 m
1024 m	4.57 m	2.27 m	1.02 m
1030 m	5.12 m	2.24 m	0.64 m
1039 m	4.07 m	0.57 m	1.07 m
1058 m	3.47 m	1.98 m	0.24 m
1075 m	5.11 m	1.71 m	1.39 m
1084 m	4.25 m	1.35 m	0.47 m

The road section is meeting the required condition at all the cross sections except at 1058 m . The left hand side shoulder is within the required criteria only at distance of 977 m is quite less and the right hand shoulder is within the required criteria except at $939 \mathrm{~m}, 1058 \mathrm{~m}$ is less .

5.3.6 ANALYSIS OF ROAD SECTION FROM 1097m to 1130m.

DISTANCE	PAVEMENT WIDTH	LEFT HAND SIDE SHOULDER	RIGHT HAND SIDE SHOULDER
1097 m	4.39 m	1.37 m	0.88 m
1130 m	5.21 m	2.26 m	0.94 m

The pavement width is within the required criteria at all the sections. All the shoulder width is meeting the required criteria.

CHAPTER 6

Measurement and analysis of various geometrical design components

6.1Introduction

6.1.1 Circular Curves

Horizontal curves are normally circular. Figure 4.13 illustrates several of their important features. Horizontal curves are described by radius (R), central angle (Δ) (which is equal to the deflection angle between the tangents), length (L),semitangent distance (T),

Fig 6.1 Horizontal curve features
middle ordinate (M), external distance (E), and chord (C). The curve begins at the tangent-to-curve point (TC) and ends at the curve-to-tangent point (CT). In the past, severity of curvature was sometimes expressed in degree of curvature. Although obsolete in the metric system, degree of curvature may still be encountered in some situations. Degree of curvature may be defined in two ways. The arc definition is the angle subtended by a 100 ft arc. The chord definition is the angle subtended by a 100 ft chord. The relationship between radius (in feet) and degree of curvature (arcdefinition) is

$$
\mathrm{D}=5729.58 / \mathrm{R}
$$

where $D=$ degree of curvature and $R=$ radius of curvature, in feet.

6.1.2 Relation between Radius of curve and Degree of curve through versine curve method

Fig 6.2 Circular Curve

Consider a circular curve having Radius of curve is R . Let assume any chord having chord length C and versine V which is shown in fig 6.2

As we know

$$
\begin{aligned}
& (\mathrm{C} / 2 * \mathrm{C} / 2)=\mathrm{V}^{*}(2 \mathrm{R}-\mathrm{V}) \\
& \mathrm{C}^{\wedge} 2 / 4=2 \mathrm{RV}-\mathrm{V}^{\wedge} 2
\end{aligned}
$$

As V is very small, so we will neglect the value of $\mathrm{V}^{\wedge} 2$.
So

$$
\begin{aligned}
& C^{\wedge} 2 / 4=2 R V \\
& C^{\wedge} 2 / 8 R=V
\end{aligned}
$$

Where chord length (C) is in metre and Versine (V) is also in metre .
$100 \mathrm{C}^{\wedge} 2 / 8 \mathrm{R}=\mathrm{V}$ where Versine (V) is in cm
12.5 $\mathrm{C}^{\wedge} 2 / \mathrm{R}=\mathrm{V}$
(12.5/1719) $\mathrm{C}^{\wedge} 2 * \mathrm{D}=\mathrm{V}$
$\left(\mathrm{C}^{\wedge} 2 * \mathrm{D}\right) / 138=\mathrm{V}$
When chord length (C) becomes 11.83 m , then $\mathrm{D}=\mathrm{V}$
So if we get know Degree of curve and then we will able to find Radius of any curve.

6.1.3 Super-elevation

To countract the effect of centrifugal force and to reduce the tendency of the vehicle to overturn or skid, the outer edge of the pavement is raised with respect to the inner edge. This transverse inclination to the pavement surface is known as super-elevation or cant.

Analysis of super-elevation

The force acting on a vehicle while taking a horizontal curve with super-elevation is shown in Figure 2.2. The force acting on horizontal curve of radius $R m$ at a speed of $v \mathrm{~m} / \mathrm{sq}$.sec is:

1) Centrifugal force (P) acting horizontally outward through the center of gravity,
2) Weight of the vehicle (W) acting downward through the center of gravity, and
3) Frictional force (F) between the wheel and pavement, along the surface inward.

Fig 6.3 Analysis of super-elevation

At equilibrium, by resolving the forces parallel to the surface of the pavement we get:

$$
\mathrm{P} \cos \theta=\mathrm{W} \sin \theta+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\mathrm{b}}
$$

$$
\begin{aligned}
& =\mathrm{W} \sin \theta+\mathrm{f}\left(\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}\right) \\
& =\mathrm{W} \sin \theta+\mathrm{f}(\mathrm{~W} \cos \theta+\mathrm{P} \sin \theta)
\end{aligned}
$$

Where W is the weight of the vehicle, P is the centrifugal force, f is the coefficient of friction, θ is the transverse slope due to super-elevation. Dividing by $\mathrm{W} \cos \theta$, we get:

$$
\begin{gathered}
\mathrm{P} \cos \theta / \mathrm{W} \cos \theta=\mathrm{W} \sin \theta / \mathrm{W} \cos \theta+\{\mathrm{f}(\mathrm{~W} \cos \theta+\mathrm{P} \sin \theta) / \mathrm{W} \cos \theta\} \\
\mathrm{P} / \mathrm{W}=\tan \theta+\mathrm{f}+\mathrm{f} \mathrm{P} / \mathrm{W} \tan \theta \\
\mathrm{P} / \mathrm{W}(1-\mathrm{f} \tan \theta)=\tan \theta+\mathrm{f} \\
\mathrm{P} / \mathrm{W}=(\tan \theta+\mathrm{f}) /(1-\mathrm{f} \tan \theta)
\end{gathered}
$$

Since $P / W=v^{2} / g R$,

$$
\mathrm{v}^{2} / \mathrm{gR}=(\tan \theta+\mathrm{f}) /(1-\mathrm{f} \tan \theta)
$$

This is an exact expression for super-elevation. But normally $\mathrm{f}=0.15$ and $\theta<4^{\circ}$ and 1-f $\tan \theta$ approximately equal to 1 , and for small $\theta, \tan \theta=\sin \theta E / B=e$, so we have:

$$
e+f=v^{2} / g R=V^{2} / 127 R
$$

Where e is the rate of super-elevation, f is the coefficient of friction; v is the speed $\mathrm{in} \mathrm{m} / \mathrm{sq} . \mathrm{sec}, \mathrm{R}$ the radius of curve in m and g the acceleration due to gravity in $m / s q . s c e$.

Three specific cases that can arise from equation $e+f=v^{2} / g R$ is as follows:

1. If there is no friction due to some practical reason, then $\mathrm{f}=0$ and equation becomes $\mathrm{e}=$ $\mathrm{v}^{2} / \mathrm{gR}$. These results in the situation where the pressure on the outer and the inner wheels are same; requiring very high super elevation e.
2. If there is no super-elevation provided due to some practical reason, then $\mathrm{e}=0$ and equation becomes $f=v^{2} / g R$. This results in very high coefficient of friction.
3. If $e=0$ and $f=0.15$ then for safe traveling speed from the equation is give by $v^{\prime}=V_{\mathrm{fgR}}$, where v ' is the restricted speed.

Maximum and minimum super-elevation (IRC)

Maximum allowable super-elevation of

1) 7% for plain and rolling terrain.
2) 10% for mountainous terrain not bounded by snow.

Minimum super-elevation

If the calculated super-elevation is equal or less then camber, then minimum elevation equal to camber should be provided from drainage consideration.

The IRC recommendation giving the radii of horizontal curves beyond which normal cambered section may be maintained and no super-elevation is required for curves, are presented in Table 2.4, for various design speed and cross slope.

Radii beyond which super-elevation is not required

Design Speed (kmlh)	Radii (meters) for camber of				
	4%	3%	2.5%	2%	1.7%
20	50	60	70	90	100
25	70	90	110	140	150
30	100	130	160	200	240
35	140	180	220	270	320
40	180	240	280	350	420
50	280	370	450	550	650

Steps for super-elevation design

Various steps in the design of super-elevation in practice may be summarized as given below:

1. Super-elevation for 75% of design speed is calculated neglecting the friction

$$
\mathrm{e}_{\mathrm{cal}}=\mathrm{V}^{2} / 225 \mathrm{R}
$$

2. If $e_{\text {cal }}$ is less than $e_{\text {max }}$ then provide $e_{\text {cal }}$. If $e_{\text {cal }}$ is greater than $e_{\max }$ then provide $e_{\text {max }}$ and proceed with step 3 and step 4
3. Check the coefficient of friction developed with $\mathrm{e}(\max)$ at full value of design speed

$$
\mathrm{f}=\left\{\left(\mathrm{V}^{2} / 127 \mathrm{R}\right)-0.07\right\}
$$

if the value of ' f ' thus calculated is less than 0.15 then ok, else calculate the restricted speed as given in step 4.
4. Calculate the allowable speed.
5. $\mathrm{e}+\mathrm{f}=0.07+0.15=0.22=\mathrm{V}^{2} / 127 \mathrm{R}$

6.1.4 Extra Widening

On horizontal curves, especially when they are not of very large radii, it is common to widen the pavement slightly more than the normal width. The objectives of providing extra widening of pavements on horizontal curves are due to the following reasons:

- Off- tracking of vehicle

Automobile with rigid wheel base on horizontal curve, the rear wheel do not follow the same path as that of the front wheel (only the front wheel are turned).

At low speed and up to the design speed with no lateral slipping of rear wheels, rear wheel follow the inner path of the curve as compared with the corresponding front wheel(if inner front wheel on inner edge of the pavement then inner rear wheel on shoulder).

Super-elevation and side friction developed are not adequate to counter act the outward thrust due to centrifugal force for vehicle travelling at higher speed then the design speed, transverse skidding is possible and rear wheels may follow the outer path as compared with corresponding front wheels.

- Psychological reasons

At the beginning of the curve, drivers have tendency to follow the outer side of the lane so as to take a path with larger radius and to have greater visibility.

Crossing or overtaking maneuver on curve, drivers tend to maintain greater clearance between vehicles then on tangents.

The extra width recommended by the Indian Roads Congress for single and two lane pavements are given in Table 2.7.

Radius of Curves	Up to 20	$20-40$	$41-60$	$61-100$	$101-300$	Above 300
Extra Width (m) Two lane	1.5	1.5	1.2	0.9	0.6	Nil
Single- lane	0.9	0.9	.6	Nil	Nil	Nil

Extra width of the pavement at horizontal curve.

6.1.5 Transition curve

A transition curve has a radius which decreases from infinity at the tangent point to a designed radius of the circular curve. When a transition curve is introduced between a straight and circular curve, the radius of the transition curve decreases becomes minimum at the beginning of the circular curve. The rate of change of radius of the transition curve will depend on the equation of the curve or its shape.

Objective of providing Transition Curve

The functions of transition curves in the horizontal alignment of highway are as follows:

1) To introduce gradually the centrifugal force between the tangent point and the beginning of the circular curve, avoiding sudden jerk on the vehicle.
2) To enable the driver turn the steering gradually for his own comfort and security.
3) To enable gradual introduction of the design super-elevation and extra widening of the pavement at the start of the circular curve.
4) To improve the aesthetic appearance of the road.

Calculation of Length of Transition Curve(IRC empirical formula)

1. By empirical formula: According to the IRC standards, the length of horizontal transition curve Ls should not be less than the value given by the following equations for the terrain classifications:
a) For plain and rolling terrain (1 in 150)

$$
\mathrm{L}_{\mathrm{s}}=2.67 \mathrm{~V}^{2} / \mathrm{R}_{\mathrm{c}}
$$

b) For mountainous and steep terrain (1 in 60)

$$
\mathrm{L}_{\mathrm{s}}=1.0 \mathrm{~V}^{2} / \mathrm{R}_{\mathrm{c}}
$$

6.1.6 Stopping Sight Distance

The stopping sight distance is calculated from the relation

$$
\mathrm{SSD}=0.278 \mathrm{Vt}+\left(\mathrm{V}^{\wedge} 2 / 254 \mathrm{f}\right)
$$

Where $\mathrm{V}=$ design speed , kmph
$t=$ reaction time taken as 3 seconds
$\mathrm{f}=$ coefficient of friction , assumed as 0.4
Safe stopping sight distance for various speeds given by IRC are given below :

Speed,kmph	20	25	30	40	50
SSD,m	20	30	35	50	70

6.1.7 Overtaking Sight Distance (OSD)

$$
\begin{aligned}
& \text { OSD }=0.28 \mathrm{Vb} t+0.28 \mathrm{Vb} \mathrm{~T}+2 \mathrm{~s}+\mathrm{V} . \mathrm{T} \\
& \text { where } \mathrm{Vb}
\end{aligned}=\text { speed of the overtaking vehicle }(\mathrm{V}-16) \mathrm{kmph} \text {. } \quad \begin{aligned}
\mathrm{t} & =\text { reaction time of driver=2sec } \\
\mathrm{s} & =\text { spacing of vehicles } \\
& =\left(\left(0.2^{*} \mathrm{Vb}\right)+6\right) \\
\mathrm{T} & =\left(\left(14.4^{*} \mathrm{~s}\right) / \mathrm{A}\right)^{\wedge} 0.5
\end{aligned}
$$

6.2 Measurement of various Design Components

A) Measurment of radius of curve and degree of curve through versine curve method

1. Curve 1

- Length of chord $=11.83 \mathrm{~m}$
- Degree of curve(d)=85
- Radius of curve $=(1719 / \mathrm{d}) \mathrm{m}=30.7 \mathrm{~m}$

Fig 6.4 Determining Degree of curve 1 (Versine curve of method)

Curve Number	Length of chord (in metre)	Degree of curve(d)	Radius of curve $=(1719 / \mathrm{d}) \mathrm{m}$
1	11.83	56	30.7
2	11.83	85	20.22
3	11.83	143	12.02
4	11.83	110	15.63
5	11.83	85	20.22
6	11.83	91	18.9
7	11.83	193	8.906
8	11.83	125	13.75
9	11.83	162	10.61
10	11.83	173	9.936

Calculated value of Degree of curve and Radius of curve

B) Super Elevation Design

1. For curve 1: $\mathbf{R}=\mathbf{3 0 . 7} \mathrm{m}$
a) $\mathbf{e}=\mathbf{V}^{\wedge} \mathbf{2 / 2 2 5} \mathbf{R}$ where $V=$ design speed (kmph)

$$
\begin{aligned}
& =25 \mathrm{kmph} \\
\mathrm{e}= & 25^{\wedge} 2 / 225^{*} 30.7 \\
& =0.0904<0.1 \quad(\text { this value of e may be adopted })
\end{aligned}
$$

b) Check For value of friction developed,

$$
\begin{aligned}
& \mathrm{f}=\left(\mathrm{V}^{\wedge} 2 / 127 \mathrm{R}\right)-0.1(\text { for Hill roads })=0.060<0.15 \quad(\mathrm{ok}) \\
& \mathbf{e}=\mathbf{0 . 0 9 0 4} \text { is safe for design speed } \mathbf{2 5} \mathbf{~ k m p h}
\end{aligned}
$$

2. For curve 3 : $\mathbf{R}=\mathbf{1 2 . 0 2} \mathbf{~ m}$
a) $\mathbf{e}=\mathbf{V}^{\wedge} \mathbf{2 / 2 2 5} \mathbf{R}=25^{\wedge} 2 / 225^{*} 12.02$

$$
=0.231>0.1
$$

So e is restricted to 0.1 (for hilly roads)
b) Check For value of friction developed,

$$
\begin{aligned}
& \mathrm{f}=\left(\mathrm{V}^{\wedge} 2 / 127 \mathrm{R}\right)-0.1 \text { (for Hill roads) } \\
& =0.309>0.15 \quad(\text { speed has to be restricted }
\end{aligned}
$$

c) Maximum Allowable speed $\mathbf{V a}(\mathbf{k m p h})$

$$
\begin{aligned}
\mathrm{Va} & =(31.79 * \mathrm{R})^{\wedge} 0.5 \\
& =19.54 \mathrm{kmph}
\end{aligned}
$$

Hence speed may be restricted to less than 19 or say 15 kmph at this curve.
(For calculation of superelevation design for each curve refer to appendix)

Curve Number	Elevation Required	Restricted Speed in kmph	Remarks
1	0.0904	-	Curve is safe for design speed
2	0.1	-	Curve is safe for design speed
3	0.1	15 kmph	Curve is not safe for design speed
4	0.1	20 kmph	Curve is not safe for design speed

5	0.1	-	Curve is safe for design speed
6	0.1	20 kmph	Curve is not safe for design speed
7	0.1	15 kmph	Curve is not safe for design speed
8	0.1	15 kmph	Curve is not safe for design speed
9	0.1	15 kmph	Curve is not safe for design speed
10	0.1	15 kmph	Curve is not safe for design speed

Super Elevation design For Design speed 25kmph

C) Measurment of Extra widening of curve

$$
\begin{gathered}
\mathrm{We}=\mathrm{Wm}+\mathrm{Wps} \\
=\left(\mathrm{nl}^{\wedge} 2 / 2 \mathrm{R}\right)+\left(\mathrm{V} / 9.5 * \mathrm{R}^{\wedge} .5\right) \mathrm{m}
\end{gathered}
$$

where $\mathrm{We}=$ Extra widening required on curve
$\mathrm{Wm}=$ Mechanical Widening
W ps = Widening due to Psychological reason
1 = length of wheelbase of longest vehicle,m
$\mathrm{V}=$ Design speed, kmph and $\mathrm{R}=$ Radius of horizontal curve, m
Here Number of lane $=1$
We neglect Wps because this factor is more important when no of lane is more than 1

Curve No.	Calculated Extra widening(in metres)	Allowable Extra widening according to IRC (in metres)
1	0.606	0.6
2	0.92	0.9
3	1.55	0.9
4	1.2	0.9
5	0.9	0.9
6	1	0.9
7	2.1	0.9
8	1.35	0.9
9	1.75 m	0.9
10	1.87	0.9

Requirement of Extra widening for each curve

D) Measurement of Minimum Transition length required for Design speed of

 25 kmph on each curve
1. For curve 1

$$
\begin{aligned}
\mathbf{L s} & =\mathbf{V}^{\wedge} \mathbf{2} / \mathbf{R} \\
& =25^{\wedge} 2 / 30.7 \\
& =20.36 \mathrm{~m}
\end{aligned}
$$

where V is Design speed in Kmph and R is Radius of curve in metre.

Same procedure have been followed to find Minimum length of Transition curve for other curves.

Curve No.	Minimum length of transition curve(in metres)
1	20.36
2	31
3	52
4	40
5	31
6	33
7	70.2
8	45.5
9	59
10	63

Calculated value of Minimum Length of Transition Curve

E) Sight Distance

$$
\begin{aligned}
\text { Stopping distance } & =0.278 \mathrm{Vt}+\left(\mathrm{V}^{\wedge} 2 / 254 \mathrm{f}\right) \\
& =\left(0.278^{*} 25^{*} 3\right)+\left(25^{\wedge} 2 / 254^{*} 0.4\right) \\
& =20.85+6.151 \\
& =27 \mathrm{~m} \text { (Approx) } \\
\mathbf{S S D} & =2 * \mathbf{S D} \quad \text { (Two way traffic movement in single lane road) } \\
& =2 * 27 \\
& =54 \mathrm{~m}
\end{aligned}
$$

F) Overtaking sight distance (OSD)

$$
\begin{aligned}
\mathbf{O S D} & =\mathbf{0 . 2 8 V b} \mathbf{t}+\mathbf{0 . 2 8} \mathbf{V b} \mathbf{T}+\mathbf{2 s}+\mathbf{V} . \mathbf{T} \\
& =(0.28 * 9 * 2)+(0.28 * 9 * 4.74)
\end{aligned}
$$

$$
\begin{aligned}
& +(2 * 7.8)+(0.28 * 25 * 4.74) \\
= & 65.764 \mathrm{~m}
\end{aligned}
$$

where $\mathrm{Vb}=$ speed of the overtaking vehicle ($\mathrm{V}-16$) kmph
$t=$ reaction time of driver $=2 \mathrm{sec}$
$s=$ spacing of vehicles
$=((0.2 * 9)+6)=7.8 \mathrm{~m}$
$\mathrm{T}=((14.4 * \mathrm{~s}) / \mathrm{A})^{\wedge} 0.5=4.74 \mathrm{sec}$

Chapter 7

Bentley MXROAD V8i (SELECT series 2)-Version

08.11.07.427 Software

MXROAD ${ }^{\text {TM }}$ is an advanced, string based modeling tool that enables the rapid and accurate design of all road type. With MXROAD ${ }^{\mathrm{TM}}$ one can quickly create design alternatives to achieve the ideal road system. Upon selection of the final design alternatives, MXROAD ${ }^{\mathrm{TM}}$ automates much of the design detailing process, saving the user time and money.

7.1. Working steps

A) Survey Input

Survey data may come from a number of sources like DWG, DXF, GENIO, NTF and Land XML. GENIO is the MX standard method of data transfer. For our project we have used DWG survey data.

To load the survey data use either File > Open or File > Import to select required file from CAD Menu.

For example, import CAD file from CD (All Survey Data-Survey 5 data) as shown in Figure 7.1 and after importing the CAD file one should get a screen as shown in Figure 7.2

Figure 7.1 Survey Data Input

Fig 7.2 Screen shot of a display window after importing survey data

7.2 Creating model and assigning model defaults:

String names and drawing styles are controlled by assigning model defaults. Model defaults have a two set of features which are Feature Set and Style Set name.

Feature name set offers string name by the type of features used and it controls the use of string type throughout MX.

Style set name defined the drawing style of the various model types and it ensure the consistent style of presentation.

From MX Menu, select Modify - Edit models - Create models

Every model created should be related to the style set name and feature set name at the earliest opportunity.

For example, create a model name called GROUND SURVEY and assign the model defaults as shown in figure 7.3

Figure 7.3 Creating model and assigning model default

7.3 Conversion of CAD file to MX file

All we have done so far is to open a CAD drawing; MX has no information at all in its database (the mode file), and does not know anything about the drawing. We now need to create a link between the MX model and the information in the CAD drawing.

For example, on MX Conversion Toolbar, select the arrow on the feature list to display the entire feature associated with the model. Scroll down the list and select point feature as shown in Figure 7.4. A corresponding level is created with the same name in the level manager as shown in Figure 7.5.

Now select all the point, make Point Features level active (refer Appendix A for active level toolbar) and press convert element icon. After conversion it should look like Figure 7.6.

Figure 7.4 Creating MX level from MX Conversion Toolbar

Figure 7.6 Screen shot showing MX strings

7.4 Analysis

The survey file is critical to the design and one must check that it contain no serious errors.MX provides two type of analysis; Surface Analysis and Surface Checker. Surface analysis checks level for serious errors and are use to create Triangulations (MX automatically creates a number of triangle connecting every string, triangulation is very much important while designing vertical alignment as it forms a surface connecting every point), Contours, Depth Bands etc. Surface checker search for the standard errors.

It can be accessed from the main menu (Analysis-Surface Analysis) or from the application toolbar as shown in the figure 7.7A.

For example, from application toolbar go to Surface Analysis as shown in Figure 7.7A. Select the appropriate model name to be analyzed (GROUND SURVEY) as shown in Figure 7.7 B. Press Next, new panel will come as shown in Figure 7.7C. Select Display Triangulation and hit next. Final model should look like Figure 7.8.

Figure 7.7(a) Analysis from application

7.5 HORIZONTAL ALIGNMENT

For the design of horizontal alignment we have used quick horizontal alignment method and it can be accessed from either the main menu; Design-Quick Alignment-Horizontal Design, or if you are using one of the MX applications then Quick Horizontal Design can be accessed from the toolbar.

For example, go to Quick Horizontal Design as shown in Figure 7.8A. Model Selection panel will come up, name a model 'Design' and string name 'MC10' (M stands for master string, C stand for road center line and 10 is road identity) as shown in Figure 7.8B and press Next.

On pressing Next, Quick Horizontal Alignment Toolbar will come as shown in figure 7.8C.

Figure 7.(8a) Horizontal Design from main menu

Figure 7.8(c) Quick Horizontal Alignment
Toolbar

Go to XY Keyboard Entry on Quick Horizontal Alignment Toolbar and enter the value of X＝3．280 and $Y=871.646$ for the construction of $1^{\text {st }}$ IP（intersection point）as shown in the Figure7．9

Figure 7．9（a）QHA Toolbar

$1^{\text {st }}$ IP constructed
Figure 7．9（b）XY Keyboard Entry

Figure 7．9（c）Plan

For 2nd IP, enter X=27.191, Y=867.952 in XY Keyboard Entry and Radius 80m, transition length of 15 m in Parameters as shown Figure 7.10

Figure 7.10(c) XY Keyboard
Figure 7.10(b) Parameters

Figure 7.10 Construction of $\mathbf{2}^{\text {nd }}$
IP

Go on constructing IP following the centre dote of survey point till the end and when done press OK button on QHA Toolbar to accept the horizontal design. Figure 7.11 shows the complete horizontal alignment designed by the authors.

Figure 7.11Designed Horizontal Alignments for JUIT -1.2 km

CONCLUSION AND DISSCUSION

The geometric design of a highway deals with the dimensions and the layout of visible features of the highway such as alignment, sight distances and intersections. The road geometrics of highway should be designed to provide optimum efficiency in traffic operations with maximum safety at reasonable cost.

Therefore it is important to plan and design the geometric features of the road during the initial alignment itself taking into consideration the future growth of the traffic flow and possibility of the road being upgraded to a higher category or to a higher design speed standard at a later speed.

First parameter while considering the design of road is speed, and the road jaypee gate to 1.2 km towards Waknaghat falls under other district roads ,the design speed of which is 25 kmph . All the design parameters of road depends upon design speed, the width of 3.75 m for single lane is provided at most of the cross sections and radius of the curve was found out by versine curve method. On horizontal curves, especially when they are not of large radii , it is important to widen the roads. On this road too many sharp curves are there so we checked out the extra widening by the formula and compare it actual site conditions and in most of curve adequate widening was given.

Next thing we did in geometric design of roads is super elevation design . Super elevation is important at curves and its importance become far more important in hilly roads as less roads have crash barriers in case the vehicle skids off the roads . We found out after designing the super elevation that the super elevation is adequate at most of the curves but in some curves it is not adequate, so we have to restrict our design speeds. Proper signs should be there to give information about to restrict the speed before such curves. Proper signs are not provided before such curves to restrict the speed which can leads to skidding of car if it is travelling at design speed or more than that.

RECOMMENDATIONS

1) Provide traffic signs at desirable places.
2) Provide adequate transition length for the varying horizontal curve as recommended by IRC: 522001.
3) Provide retaining walls on the hill side and cut side to protect road from land slide.
4)Provide extra widening wherever needed.

Problem faced during surveying by total station

1.Surveying was delayed due to unfavorable climatic condition and traffic disturbance.
2..Without transferring the data to PC from total station, data saved in the total station cannot be deleted.

Shortcomings of the selected road

1. Absence of Traffic Sign.

Traffic sign are very much important to warn drivers about the danger ahead.

2. Drainage System

We found out that existing drainage system were poorly maintained, drains were solid covered with trash and debris.

3. Retaining Walls

We found out that no retaining walls are provided on the hill side and cut side of the mountain for the selected road stretch.

4 .Pavement Condition was not good

We detect many cracks in pavement which is not safe for driving.

Steps to overcome the shortcoming of the Selected Road

1. Provide proper Traffic Sign

a) Use Reflecting Mirrors at curves

b) Use Speed Limit Traffic Sign

c) When Road is Slippery during Rainfall

2. Pavement Type

- Use Bitumen Pavement on Hill road. Cement Concrete pavenments are not considered suitable because of its intial high cost.Since Frequent damages are expected in hilly areas,a flexible pavement can be more easily and cheaply repaired than a concrete pavement
- I.R.C recommends the use of bitumen with penetration grade $175 / 225$ for ground macadam in very cold regions.

3. Maintenance of Drainage Structures

- Catch water drains ,side drains ,catch pits and culverts are periodically cleared off of all blockages to prevent overflowing during Drains
- Planting of trees on the upper slopes in order to reduce the scouring action of unstable ground due to rains is often resorted to as a precautionary measure.

REFERENCES

[1] S.K Khanna and C.E.G Justo 'Highway Engineering'.
[2] IRC 52-2001 'Recommendations about the alignment, survey and geometric design of hill roads'.
[3] Dr. B.C. Punmia, Ashok Kr. Jain, Arun Kr. Jain 'Surveying Vol 1'.
[4] N.N. Basak, 'Surveying and Levelling'.
[5] Hills B Baguley CJ and SJ Kirk 'Cost and Safety Efficient Design Study of Rural Roads in Developing Countries'2002.
[6] Total station setup and operation
'http://www.usouthal.edu/geography/allison/GY301/Total\ Station\ Setup\ and\%2 0Operation.pdf'.
[7] Learn autocad 'http://www.cadtutor.net/'.

APPENDIX-A

TOTAL STATION SURVEY DATA FOR 1.130KM

Chainage from $\mathbf{0 m}$ to $\mathbf{3 0 m}$

	N				E
Centre line	a1	-1.79	31.39	-0.639	$-1.79,31.39$
left hand side	a2	0.022	31.56	-0.546	$0.022,31.56$
right hand side	a3	-3.708	31.432	-0.69	$-3.708,31.432$
extra left side	a4	2.591	31.85	-0.366	$2.591,31.85$
extra right side	a5	-4.107	31.146	-0.679	$-4.107,31.146$
Drainage towards right side	a6	-4.292	31.035	-0.44	$-4.292,31.035$

Chainage from 30 to 60 m (Station changed 1)

Electric lamp		4.96	57.523	-1.675	$4.96,57.523$
Centre line	b1	2.468	60.995	-1.935	$2.468,60.995$
left hand side	b2	4.405	61.018	-1.907	$4.405,61.018$
right hand side	b3	0.831	60.615	-1.99	$0.831,60.615$
extra left side	b4	4.844	61.109	-1.879	$4.844,61.109$
extra right side	b5	0.456	60.575	-2.012	$0.456,60.575$
drainage towards right side	b6	0.544	60.556	-2.117	$0.544,60.556$
Electric pole		3.409	69.164	-2.138	$3.409,69.164$

Chainage from 60 to 90 m (Station changed 2)

Electric pole		3.102	69.29	-2.134	$3.102,69.29$
Centre line	c1	-4.436	89.898	-2.875	$-4.436,89.898$
L.H.S	c2	-2.891	90.095	-2.866	$-2.891,90.095$
R.H.S	c3	-6.099	89.483	-2.892	$-6.099,89.483$
Extra L.H.S	c4	-2.575	90.207	-2.856	$-2.575,90.207$
Extra R.H.S	c5	-6.403	89.424	-2.898	$-6.403,89.424$
Drainage	c6	-6.86	89.335	-2.714	$-6.86,89.335$

Chainage 90 m to 150 m (Station changed 3)

Electric pole		-12.294	109.504	-3.638	$-12.294,109.504$
Centre line	d1	-20.78	147.414	-7.129	$-20.78,147.414$
L.H.S	d2	-18.075	148.002	-7.114	$-18.075,148.002$
R.H.S	d3	-23.47	146.795	-7.148	$-23.47,146.795$
Extra L.H.S	d4	-17.64	148.116	-7.087	$-17.64,148.116$
Extra R.H.S	d5	-23.743	146.747	-7.16	$-23.743,146.747$

Drainage	d6	-23.949	146.626	-7.109	-23.949,146.626
Blue box		-15.572	118.303	-4.913	-15.572,118.303
Chainage from 150 m to $\mathbf{2 1 0 m}$ (Station changed 4)					
Big pole		-17.736	152.47	-7.271	-17.736,152.47
Centre line	e1	-19.604	207.533	-12.944	-19.604,207.533
L.H.S	e2	-16.965	207.67	-12.929	-16.965,207.67
R.H.S	e3	-22.096	207.579	-12.962	-22.096,207.579
Extra L.H.S	e4	-16.724	207.65	-12.91	-16.724,207.65
Extra R.H.S	e5	-22.566	207.553	-12.952	-22.566,207.553
Drainage	e6	-23.143	212.497	-13.286	-23.143,212.497
Chainage 210m to 220 m(Stat					
Centre line	f1	-6.64	207.539	-14.028	-6.64,207.539
L.H.S	f2	-6.819	207.937	-14.128	-6.819,207.937
R.H.S	f3	-5.979	210.163	-13.966	-5.979,210.163
Extra L.H.S	f4	-6.858	207.567	-14.114	-6.858,207.567
Extra R.H.S	f5	-7.19	214.118	-13.954	-7.19,214.118
Drainage	f6	-7.097	214.186	-13.967	-7.097,214.186
Chainage 220m to 240m					
Centre line	g1	-15.291	238.2	-16.01	-15.291,238.2
L.H.S	g2	-13.872	237.208	-15.999	-13.872,237.208
R.H.S	g3	-16.741	239.228	-15.985	-16.741,239.228
Extra L.H.S	g4	-13.58	236.94	-16.008	-13.58,236.94
Extra R.H.S	g5	-17.142	239.715	-15.941	-17.142,239.715
Drainage	g6	-17.28	239.764	-15.886	-17.28,239.764
Chainage 240m to 260m					
Centre line	h1	-3.096	254.054	-18.012	-3.096,254.054
L.H.S	h2	-1.14	252.93	-17.86	-1.14,252.93
R.H.S	h3	-5.085	255.422	-18.067	-5.085,255.422
Extra L.H.S	h4	-0.672	252.156	-17.796	-0.672,252.156
Extra R.H.S	h5	-5.615	255.747	-18.071	-5.615,255.747
Drainage	h6	-5.756	255.891	-17.986	-5.756,255.891
Chainage 260m to 310m(Station changed 6)					

Drainage	s6	180.575	486.462	-15.625	180.575,486.462
Chainage to 503 m (Station changed 13)	13)				
Centre line	t1	192.56	502.126	-14.454	192.56,502.126
L.H.S	t2	194.203	501.875	-14.294	194.203,501.875
R.H.S	t3	190.869	502.471	-14.586	190.869,502.471
Extra L.H.S	t4	196.662	501.532	-14.161	196.662,501.532
Extra R.H.S	t5	188.291	502.738	-14.598	188.291,502.738
Drainage	t6	187.68	502.899	-14.658	187.68,502.899
Chainage to 544m (Station changed 14)					
Centre line	w1	173.159	542.696	-11.84	173.159,542.696
L.H.S	w2	175.078	543.253	-12.047	175.078,543.253
R.H.S	w3	171.161	542.053	-11.659	171.161,542.053
Extra L.H.S	w4	175.679	543.439	-12.057	175.679,543.439
Extra R.H.S	w5	169.902	541.574	-11.669	169.902,541.574
Drainage	w6	169.593	541.386	-11	169.593,541.386
Chainage to 577m (Station changed 15)					
Centre line	x1	176.306	575.956	-9.715	176.306,575.956
L.H.S	x2	178.066	576.576	-9.548	178.066,576.576
R.H.S	x3	174.436	575.457	-9.903	174.436,575.457
Extra L.H.S	x4	178.994	576.769	-9.46	178.994,576.769
Extra R.H.S	x5	173.503	575.35	-9.979	173.503,575.35
Drainage	x6	173.357	575.323	-9.974	173.357,575.323
Chainage to 637 m (Station changed 16)					
Centre line	y1	119.725	634.809	-5.1	119.725,634.809
L.H.S	y2	120.71	636.061	-4.988	120.71,636.061
R.H.S	y3	118.584	633.529	-5.197	118.584,633.529
Extra L.H.S	y4	121.411	636.699	-4.879	121.411,636.699
Extra R.H.S	y5	118.081	633.02	-5.163	118.081,633.02
Drainage	y6	117.917	632.881	-5.124	117.917,632.881
Chainage to 652 m (Station changed 17)					
Centre line	z1	97.317	649.548	-3.6	97.317,649.548
L.H.S	z2	98.355	650.929	-3.713	98.355,650.929
R.H.S	z3	96.134	648.309	-3.438	96.134,648.309
Extra L.H.S	z4	98.672	651.33	-3.757	98.672,651.33
Extra R.H.S	z5	95.449	647.051	-3.424	95.449,647.051
Drainage	z6	95.429	646.725	-3.386	95.429,646.725
Chainage to 671m					
Centre line	aa1	86.195	669.492	-1.881	86.195,669.492
L.H.S	aa2	88.033	669.897	-1.952	88.033,669.897
R.H.S	aa3	84.316	669.241	-1.718	84.316,669.241
Extra L.H.S	aa4	88.455	670.008	-1.966	88.455,670.008
Extra R.H.S	aa5	83.572	669.139	-1.763	83.572,669.139
Drainage	aa6	83.282	668.944	-1.577	83.282,668.944
Chainage to 688m					

Centre line	bb1	88.425	685.235	-0.972	88.425,685.235
L.H.S	bb2	89.925	684.453	-1.07	89.925,684.453
R.H.S	bb3	87.096	685.942	-0.838	87.096,685.942
Extra L.H.S	bb4	90.373	684.077	-1.093	90.373,684.077
Extra R.H.S	bb5	85.855	686.942	-0.735	85.855,686.942
Drainage	bb6	85.397	687.478	-0.79	85.397,687.478
Chainage to 726 m					
Centre line	cc1	103.354	724.653	0.923	103.354,724.653
L.H.S	cc2	104.921	724.271	0.878	104.921,724.271
R.H.S	cc3	101.766	725.049	0.906	101.766,725.049
Extra L.H.S	cc4	106.485	724.2	0.967	106.485,724.2
Extra R.H.S	cc5	100.964	725.085	0.767	100.964,725.085
Drainage	cc6	100.741	725.125	0.782	100.741,725.125
Chainage to 765m(Station changed 18)					
Centre line	dd1	111.259	763.117	3.35	111.259,763.117
L.H.S	dd2	112.914	762.395	3.305	112.914,762.395
R.H.S	dd3	109.667	763.9	3.376	109.667,763.9
Extra L.H.S	dd4	113.447	762.078	3.295	113.447,762.078
Extra R.H.S	dd5	109.078	764.122	3.232	109.078,764.122
Drainage	dd6	108.762	764.224	3.197	108.762,764.224
Chainage to 805m (Station changed 19)					
Centre line	ee1	129.836	803.954	5.957	129.836,803.954
L.H.S	ee2	131.296	803.325	6.008	131.296,803.325
R.H.S	ee3	128.118	804.278	5.874	128.118,804.278
Extra L.H.S	ee4	132.122	803.068	6.01	132.122,803.068
Extra R.H.S	ee5	127.451	804.614	5.785	127.451,804.614
Drainage	ee6	126.946	804.683	5.817	126.946,804.683
Chainage to 822 m					
Centre line	ff1	132.067	821.69	6.513	132.067,821.69
L.H.S	ff2	133.852	821.573	6.601	133.852,821.573
R.H.S	ff3	130.516	821.74	6.385	130.516,821.74
Extra L.H.S	ff4	134.939	821.736	6.644	134.939,821.736
Extra R.H.S	ff5	130.031	821.711	6.294	130.031,821.711
Drainage	ff6	129.743	821.628	6.255	129.743,821.628
Chainage to 844 m (Station changed 20)					
Centre line	gg1	125.32	841.194	7.057	125.32,841.194
L.H.S	gg2	127.144	842.786	7.341	127.144,842.786
R.H.S	gg3	123.841	839.688	6.836	123.841,839.688
Extra L.H.S	gg4	123.277	843.563	7.462	123.277,843.563
Extra R.H.S	gg5	122.994	838.958	6.743	122.994,838.958
Drainage	gg6	122.547	838.558	6.489	122.547,838.558
Chainage to 856m (Station changed 21)					
Centre line	hh1	77.023	853.07	9.486	77.023,853.07

Chainage to 1039m(Station changed 28)					
Centre line	ss1	25.848	1036.665	21.858	25.848,1036.665
L.H.S	ss2	27.244	1038.298	21.941	27.244,1038.298
R.H.S	ss3	24.477	1035.319	21.762	24.477,1035.319
Extra L.H.S	ss4	27.645	1038.709	21.94	27.645,1038.709
Extra R.H.S	ss5	23.678	1034.606	21.72	23.678,1034.606
Drainage	ss6	23.482	1034.268	21.704	23.482,1034.268
Chainage to 1058m					
Centre line	tt1	2.618	1055.079	23.359	2.618,1055.079
L.H.S	tt2	3.855	1056.384	23.347	$3.855,1056.384$
R.H.S	tt3	1.403	1053.935	23.446	1.403,1053.935
Extra L.H.S	tt4	5.463	1057.538	23.333	5.463,1057.538
Extra R.H.S	tt5	1.277	1053.776	23.314	1.277,1053.776
Drainage	tt6	1.136	1053.592	23.314	1.136,1053.592
Chainage to 1075m(Station changed 29)					
Centre line	ww1	-5.774	1070.437	24.647	-5.774,1070.437
L.H.S	ww2	-3.071	1070.068	24.345	-3.071,1070.068
R.H.S	ww3	-10.989	1074.145	25.289	-10.989,1074.145
Extra L.H.S	ww4	4.231	1068.815	24.308	4.231,1068.815
Extra R.H.S	ww5	-9.462	1070.572	24.981	-9.462,1070.572
Drainage	ww6	-9.893	1070.594	25.013	-9.893,1070.594
Chainage to 1084m					
Centre line	xx1	3.85	1081.843	25.666	3.85,1081.843
L.H.S	xx2	4.05	1079.352	25.497	4.05,1079.352
R.H.S	xx3	1.973	1083.051	25.664	1.973,1083.051
Extra L.H.S	xx4	7.818	1070.051	25.213	7.818,1070.051
Extra R.H.S	xx5	1.717	1083.436	25.577	1.717,1083.436
Drainage	xx6	1.55	1083.618	25.49	1.55,1083.618
Chainage to 1097 m (Station changed 30)					
Centre line	yy1	20.833	1095.461	26.846	20.833,1095.461
L.H.S	yy2	22.53	1094.585	26.945	22.53,1094.585
R.H.S	yy3	18.658	1096.642	26.669	18.658,1096.642
Extra L.H.S	yy4	23.74	1093.964	26.793	23.74,1093.964
Extra R.H.S	yy5	17.79	1096.79	26.649	17.79,1096.79
Drainage	yy6	17.358	1096.877	26.539	17.358,1096.877
Chainage to 1130 m (station point changes)					
Centre line	zz1	21.669	1125.854	28.541	21.669,1125.854
L.H.S	zz2	23.774	1128.026	28.827	23.774,1128.026
R.H.S	zz3	19.555	1123.793	28.283	19.555,1123.793

Extra L.H.S	zz4	25.158	1129.193	29.908	$25.158,1129.193$
Extra R.H.S	zz5	18.894	1123.119	28.246	$18.894,1123.119$
Drainage	zz6	18.926	1122.824	27.182	$18.926,1122.824$

APPENDIX B

Calculation of Pavement Width and Right Hand shoulder width and Left Hand Shoulder Width Till 1.13m

CROSS SECTION	Distance from previous C.S.	POINT	N	E	z	$\begin{aligned} & \text { D23 } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \text { D24 } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \text { D35 } \\ & \text { (m) } \end{aligned}$
C. 51	30 m	a1	-1.790	31.390	-0.639	3.73	2.59	0.49
		a2	0.022	31.56	-0.546			
		a3	-3.708	31.432	-0.69			
		a4	2.591	31.85	-0.366			
		a5	-4.107	31.146	-0.679			
		a6	-4.292	31.035	-0.44			
C. 52	60m	b1	2.468	60.995	-1.935	3.60	0.45	0.38
		b2	4.405	61.018	-1.907			
		b3	0.831	60.615	-1.99			
		b4	4.844	61.109	-1.879			
		b5	0.456	60.575	-2.012			
		b6	0.544	60.556	-2.117			
C. 53	90m	c1	-4.436	89.898	-2.875	3.27	0.34	0.31
		c2	-2.891	90.095	-2.866			
		c3	-6.099	89.483	-2.892			
		c4	-2.575	90.207	-2.856			
		c5	-6.403	89.424	-2.898			
		c6	-6.86	89.335	-2.714			
C. 54	150m	d1	-20.78	147.414	-7.129	5.53	0.45	0.28
		d2	-18.075	148.002	-7.114			
		d3	-23.47	146.795	-7.148			
		d4	-17.64	148.116	-7.087			
		d5	-23.743	146.747	-7.16			
		d6	-23.949	146.626	-7.109			
C. 55	210m	e1	-19.604	207.533	-12.944	5.13	0.24	0.47
		e2	-16.965	207.67	-12.929			
		e3	-22.096	207.579	-12.962			
		e4	-16.724	207.65	-12.91			
		e5	-22.566	207.553	-12.952			
		e6	-22.586	207.899	-12.989			
C.S 6	220 m	f1	-6.64	207.539	-14.028	2.38	0.37	0.19
		f2	-6.819	207.937	-14.128			
		f3	-5.979	210.163	-13.966			
		f4	-6.858	207.567	-14.114			

		f5	-5.89	210.325	-13.954			
		f6	-7.097	214.186	-13.967			
C.S 7	240m	g1	-15.291	238.2	-16.01	3.51	0.40	0.63
		g2	-13.872	237.208	-15.999			
		g3	-16.741	239.228	-15.985			
		g4	-13.58	236.94	-16.008			
		g5	-17.142	239.715	-15.941			
		g6	-17.28	239.764	-15.886			
C.S 8	260m	h1	-3.096	254.054	-18.012	4.67	0.78	0.62
		h2	-1.14	252.93	-17.86			
		h3	-5.085	255.422	-18.067			
		h4	-1.1	252.156	-17.796			
		h5	-5.615	255.747	-18.071			
		h6	-5.756	255.891	-17.986			
C.S 9	310m	i1	32.089	307.341	-24.75	5.31	0.65	0.44
		i2	33.796	305.402	-24.822			
		i3	30.313	309.405	-24.61			
		i4	34.335	305.048	-24.856			
		i5	29.962	309.673	-24.638			
		$i 6$	29.736	309.967	-24.629			
C.S 10	330 m	j1	61.059	326.445	-26.611	4.64	0.59	0.74
		j2	61.91	324.32	-26.616			
		j3	60.188	328.625	-26.566			
		j4	62.083	324.208	-26.065			
		j5	59.817	328.764	-25.946			
		j6	59.705	328.779	-25.935			
C.S 11	341m	k1	75.468	339.253	-27.43	4.45	0.25	0.33
		k2	77.226	337.886	-27.464			
		k3	73.67	340.56	-27.406			
		k4	77.437	337.759	-27.495			
		k5	73.386	340.729	-27.358			
		k6	73.134	340.889	-27.217			
C.S 12	366m	m1	106.813	363.205	-26.616	4.33	0.28	0.48
		m2	107.762	361.087	-26.698			
		m3	106.072	365.071	-26.576			
		m4	107.8	360.812	-26.683			
		m5	105.834	365.483	-26.642			
		m6	105.693	365.732	-26.638			
C.S 13	376m	n1	168.033	373.685	-23.412	2.95	0.39	0.52
		n2	168.484	372.644	-23.479			
		n3	167.295	375.347	-23.382			
		n4	168.841	372.559	-23.359			
		n5	167.055	375.811	-23.415			
		n6	166.958	375.955	-23.496			
C.S 14	405m	o1	203.378	403.348	-21.24	3.20	0.58	0.20

		o2	204.912	402.267	-21.134			
		o3	202.194	403.949	-21.32			
		04	205.359	401.895	-21.086			
		05	202.021	404.022	-21.398			
		-6	201.92	404.055	-21.475			
C. 515	435m	p1	208.468	435.632	-19.546	3.37	1.18	1.12
		p2	210.008	435.986	-19.425			
		p3	206.735	435.228	-19.638			
		p4	211.156	436.22	-19.33			
		p5	205.638	435.001	-19.739			
		p6	205.293	434.994	-19.766			
C.S 16	456m	q1	199.445	453.227	-18.34	3.62	1.46	0.68
		q2	200.639	454.496	-18.233			
		q3	198.197	451.835	-18.437			
		q4	201.513	455.668	-18.221			
		q5	197.748	451.353	-18.623			
		q6	197.6	451.19	-18.572			
C.S 17	474m	r1	181.455	472.52	-16.603	4.76	0.75	0.74
		r2	183.846	472.91	-16.828			
		r3	179.149	472.27	-16.362			
		r4	184.567	473.016	-17.016			
		r5	178.489	471.938	-16.35			
		r6	177.105	471.924	-16.335			
C.S 18	487m	s1	184.44	484.487	-15.568	3.61	0.78	0.92
		s2	186.014	483.685	-15.762			
		s3	182.829	485.357	-15.491			
		s4	186.722	483.389	-15.872			
		s5	182.941	486.267	-15.596			
		s6	180.575	486.462	-15.625			
C.S 19	503m	t1	192.56	502.126	-14.454	3.40	0.59	0.64
		t2	194.203	501.875	-14.294			
		t3	190.869	502.471	-14.586			
		t4	194.662	501.532	-14.161			
		t5	190.291	502.738	-14.598			
		t6	188.005	502.899	-14.658			
C. 520	544m	w1	173.159	542.696	-11.84	4.12	0.63	1.35
		w2	175.078	543.253	-12.047			
		w3	171.161	542.053	-11.659			
		w4	175.679	543.439	-12.057			
		w5	169.902	541.574	-11.669			
		w6	169.593	541.386	-11.56			
C.S 21	577m	x1	176.306	575.956	-9.715	3.82	0.95	0.94
		x2	178.066	576.576	-9.548			
		x3	174.436	575.457	-9.903			
		x4	178.994	576.769	-9.46			

		x5	173.503	575.35	-9.979			
	637m	x6	173.357	575.323	-9.974	3.31	0.95	0.72
C.S 22		y1	119.725	634.809	-5.1			
		y2	120.71	636.061	-4.988			
		y3	118.584	633.529	-5.197			
		y4	121.411	636.699	-4.879			
		y5	118.081	633.02	-5.163			
		y6	117.917	632.881	-5.124			
C.S 23	652m	z1	97.317	649.548	-3.6	3.45	0.51	1.43
		z2	98.355	650.929	-3.713			
		z3	96.134	648.309	-3.438			
		z4	98.672	651.33	-3.757			
		z5	95.449	647.051	-3.424			
		z6	95.429	646.725	-3.386			
C.S 24	671m	aa1	86.195	669.492	-1.881	3.78	0.44	0.75
		aa2	88.033	669.897	-1.952			
		aa3	84.316	669.241	-1.718			
		aa4	88.455	670.008	-1.966			
		aa5	83.572	669.139	-1.763			
		aa6	83.282	668.944	-1.577			
C. 525	688m	bb1	88.425	685.235	-0.972	3.21	0.59	1.60
		bb2	89.925	684.453	-1.07			
		bb3	87.096	685.942	-0.838			
		bb4	90.373	684.077	-1.093			
		bb5	85.855	686.942	-0.735			
		bb6	85.397	686.895	-0.745			
C. ${ }^{2} 26$	726m	cc1	103.354	724.653	0.923	3.25	1.57	0.81
		cc2	104.921	724.271	0.878			
		cc3	101.766	725.049	0.906			
		cc4	106.485	724.2	0.967			
		cc5	100.964	725.085	0.767			
		cc6	100.741	725.125	0.782			
C.S 27	765m	dd1	111.259	763.117	3.35	3.58	0.62	0.65
		dd2	112.914	762.395	3.305			
		dd3	109.667	763.9	3.376			
		dd4	113.447	762.078	3.295			
		dd5	109.078	764.122	3.232			
		dd6	108.762	764.224	3.197			
C.S 28	805m	ee1	129.836	803.954	5.957	3.32	0.87	0.75
		ee2	131.296	803.325	6.008			
		ee3	128.118	804.278	5.874			
		ee4	132.122	803.068	6.01			
		ee5	127.451	804.614	5.785			
		ee6	126.946	804.683	5.817			
C.S 29	822m	ff1	132.067	821.69	6.513	3.35	1.10	0.49

		ff2	133.852	821.573	6.601			
		ff3	130.516	821.74	6.385			
		ff4	134.939	821.736	6.644			
		ff5	130.031	821.711	6.294			
		ff6	129.743	821.628	6.255			
C. 530	844m	gg1	125.32	841.194	7.057	4.56	1.17	1.12
		gg2	127.144	842.786	7.341			
		gg3	123.841	839.688	6.836			
		gg4	126.277	843.563	7.462			
		gg5	122.994	838.958	6.743			
		gg6	122.547	838.558	6.489			
C. 531	856m	hh1	77.023	853.07	9.486	3.64	0.82	0.64
		hh2	77.668	854.795	9.401			
		hh3	76.296	851.429	9.539			
		hh4	77.998	855.543	9.395			
		hh5	76.052	850.852	9.419			
		hh6	76.009	850.085	9.375			
C. 532	873m	ii1	55.565	871.356	11.47	4.17	0.45	1.05
		ii2	57.659	872.489	11.256			
		ii3	53.972	870.559	11.583			
		ii4	58.108	872.553	11.232			
		ii5	53.08	870.004	11.544			
		ii6	52.698	869.748	11.419			
C. 533	898m	jj1	55.422	897.666	13.202	3.85	0.79	0.54
		jj2	57.332	897.277	13.29			
		ji3	53.541	897.87	13.022			
		jj4	58.114	897.2	13.295			
		jj5	53.049	897.665	12.946			
		jj6	52.731	897.712	12.955			
C.S 34	910 m	kk1	54.469	908.668	13.653	4.17	1.05	0.59
		kk2	56.442	909.501	13.798			
		kk3	52.428	908.413	13.486			
		kk4	57.412	909.899	13.781			
		kk5	51.907	908.145	13.406			
		kk6	51.602	908.111	13.412			
C.S 35	939m	II1	37.143	936.617	15.03	3.97	1.04	0.19
		112	38.471	938.003	15.066			
		113	35.695	935.173	14.953			
		114	39.124	938.814	15.106			
		115	35.523	935.112	14.899			
		116	35.312	934.919	14.86			
C.S 36	955m	mm1	19.051	952.395	16.345	4.21	1.13	0.48
		mm2	20.681	953.784	16.228			
		mm3	17.319	951.264	16.486			
		mm4	21.548	954.506	16.221			

		mm5	17.021	950.897	16.41			
		mm6	16.575	950.551	16.228			
C.S 37	960m	nn1	15.529	959.259	17.157	5.29	1.33	1.05
		nn2	18.093	959.234	16.847			
		nn3	12.835	959.254	17.429			
		nn4	19.417	959.363	16.799			
		nn5	11.793	959.273	17.532			
		nn6	11.325	959.284	17.715			
C.S 38	977m	001	22.094	974.587	18.368	4.43	0.37	1.78
		002	24.147	972.827	18.421			
		003	20.525	975.378	18.315			
		004	24.452	972.621	18.435			
		005	19.144	976.497	18.195			
		006	18.822	976.749	18.101			
C.S 39	989m	pp1	29.959	987.664	19.229	5.01	2.43	1.84
		pp2	32.54	987.116	19.474			
		pp3	27.65	988.11	19.048			
		pp4	34.894	986.544	19.618			
		pp5	25.891	988.649	18.932			
		pp6	25.107	988.824	18.756			
C.S 40	1024m	qq1	30.58	1019.59	20.863	4.57	2.27	1.02
		qq2	32.877	1022	21.17			
		qq3	28.789	1019.995	20.768			
		qq4	33.934	1020	20.949			
		qq5	27.829	1020.309	20.638			
		qq6	27.428	1020.387	20.577			
C. 541	1030m	rr1	31.093	1027.666	21.375	5.12	2.24	0.64
		rr2	33.569	1028.682	21.653			
		rr3	28.686	1027.225	21.168			
		rr4	35.754	1029.181	21.763			
		rr5	28.112	1026.961	21.066			
		rr6	27.873	1026.922	21.072			
C.S 42	1039m	ss1	25.848	1036.665	21.858	4.07	0.57	1.07
		ss2	27.244	1038.298	21.941			
		ss3	24.477	1035.319	21.762			
		ss4	27.645	1038.709	21.94			
		ss5	23.678	1034.606	21.72			
		ss6	23.482	1034.268	21.704			
C.S 43	1058m	tt1	2.618	1055.079	23.359	3.47	1.98	0.24
		tt2	3.855	1056.384	23.347			
		tt3	1.403	1053.935	23.446			
		tt4	5.463	1057.538	23.333			
		tt5	1.277	1053.776	23.314			
		tt6	1.136	1053.592	23.314			

C.S 44	1075m	ww1	-5.774	1070.437	24.647	5.11	1.71	1.38
		ww2	-3.071	1070.068	24.345			
		ww3	-6.012	1074.145	25.289			
		ww4	-4.23	1068.815	24.308			
		ww5	-7.235	1073.562	25.005			
		ww6	-7.453	1073.562	25.013			
C.S 45	1084m	xx1	3.85	1081.843	25.666	4.25	1.35	0.47
		xx2	4.05	1079.352	25.497			
		xx3	1.973	1083.051	25.664			
		xx4	3.02	1078.535	25.213			
		xx5	1.717	1083.436	25.577			
		xx6	1.55	1083.618	25.49			
$\text { C.S } 46$	1097m	yy1	20.833	1095.461	26.846	4.39	1.37	0.88
		yy2	22.53	1094.585	26.945			
		yy3	18.658	1096.642	26.669			
		yy4	23.74	1093.964	26.793			
		yy5	17.79	1096.79	26.649			
		yy6	17.358	1096.877	26.539			
C. 547	1130 m	zz1	21.669	1125.854	28.541	5.21	2.26	0.94
		zz2	22.55	1128.026	28.827			
		zz3	19.555	1123.793	28.283			
		zz4	24.155	1129.193	29.908			
		zz5	18.894	1123.119	28.246			
		zz6	18.926	1123.11	27.88			

Appendix C

Images of Curves that we analyzed to find various design parameters

Curve 1

Curve 3

Curve 2

Curve 4

Curve 5

Curve 7

Curve 9

Curve 6

Curve 8

Curve 10

