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Abstract    
Multi-core processors are already widespread in general-purpose computing systems 
with many no of manufacturers currently offering up to a ten to twelve cores per 
processor. With this the systems adopting such multi-core enabled processors gain 
increased computational capacity, improved parallelism, and higher performance with 
respect to power consumption. However, using multicore processors in real-time 
applications also introduces new challenges and opportunities for development of 
efficient scheduling algorithms. In this report on scheduling issue in multi-core 
processor, we study this problem of scheduling, characterize the design space, and 
develop an analytical system which will provide the efficiency of few of the effective 
algorithms available till today. Exploiting the nature of processor cores, the general 
principle adopted in this report is to statically partition tasks among processor cores, 
co-allocate multiple synchronizing tasks when possible, and introduce limited inter-
core task migration when required and scheduling them when necessary for improving 
system utilization. We then analyze the overheads of inter-core task scheduling and 
synchronization and provide mechanisms to efficiently allocate synchronizing 
sequential tasks on multicores by co-locating such tasks on the basis of statics gathered 
over developed new system of scheduling. The results of this report contribute to a 
system that can efficiently utilize multi-core processors to predictably execute periodic 
real-time tasks with well-defined deadlines.   
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Chapter 1  
Introduction  
Processor manufacturers have widely adopted multi-core technologies to effectively 
utilize continuously increasing transistor density limitation. Multi-core technology is 
considered as a practical alternative to increase the processor clock frequency, which 
is limited by available instruction-level parallelism and leads to challenging 
power/thermal requirements. Commercial vendors such as Intel, AMD, and Free-Scale, 
already have offered various processor solutions with multiple cores on the same 
package of processor. Processors with up to a ten to twelve cores per package are 
already employed in production systems, while research prototypes with 80 cores-
perchip have been successfully developed by Intel with new technology of bringing 
10nm transistors on the cores. Tilera has also demonstrated a 100-core chip with shared 
caches, interconnects, and memory controllers. Researchers have even predicted that 
chips with hundreds of processing cores on the same package could become available 
in the future for general public as till today they are in experimental phase. Given the 
proliferation of multi-core processors in general-purpose computing, embedded and 
real-time applications such as smart phones are actively considering the use of such 
processors with 4 to 8 cores on a single package of processor. These application 
domains would benefit from the additional computational capacity made available at a 
lower power requirement which is considered as one of the key factor in their 
performance. However, effectively utilizing multi-core processors in traditional 
realtime applications requires new tools and techniques for programming, scheduling, 
synchronization, certification, and runtime support. In this report, we address the 
scheduling and synchronization challenges arising in the context of multi-core real-
time systems. A more detailed description of the scope is available in later chapters. 
The main motivation for this topic arises from the heavy computational requirements 
of many hard real-time applications such as automotive engine control, driver 
assistance and many more real-time application. These systems often execute control 
loops and other time-critical tasks, which require absolute guarantees on meeting 
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deadlines for task completion. The heavy computational demand motivates the need 
for employing multi-core processors, which could enable additional functionality such 
as smarter algorithms for smoother control, and fully autonomous operation. The 
increasing portfolio of multi-core processors also ensures long-term hardware support 
for such applications, which acts as a forcing function for systems with long expected 
lifetimes. In the real-time systems literature, there has been significant research on 
scheduling real-time tasks on Symmetric Multi-Processors (SMPs). Although multi-
core processors largely resemble SMPs, there are some key differences such as   

  

(i) The presence of fast interconnects between the processor cores  
(ii) The potential availability of multiple levels of on-chip shared cache  
(iii) The shared nature of the off-chip pins connecting to memory and I/O devices.  

  

Traditional real-time multiprocessor scheduling algorithms are classified as either 
partitioned: where tasks are not allowed to migrate across processor cores, or global: 
where tasks are allowed to unrestrictedly migrate across processor cores. The 
architectural characteristics of multi-core processors make them more amenable to 
semi-partitioned scheduling, where a limited number of tasks are allowed to migrate 
across core boundaries. In this report, we propose a semi-partitioning framework for 
scheduling periodic real-time tasks, where a coordinated approach is adopted for 
allocating tasks to processor cores, scheduling tasks within processor cores, and 
synchronizing with other tasks. The proposed approach limits inter-core task 
migrations for reducing scheduling overheads and reduces inter-core task 
synchronization for containing synchronization costs multi-core systems.  

1.1 Report Scope  
In this report, we focus on systems with only the following characteristics:   
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1. Homogeneous Uniform Multi-core Processors, where each processor core has 
the same architecture and operating speed as any other in the same package. This 
effectively implies that the processor cores are interchangeable from a functional 
perspective.   
2. Periodic Task Sets, where each task is an infinite sequence of jobs released 
exactly at periodic intervals. Algorithms in this report can be used for scheduling 
purpose of processes as because of time and resource limitation. We do not study 
servers or advanced computer processors to handle aperiodic tasks in multi-core 
processors, which constitutes key future work.   

3. Hard Real-Time Systems, where a job missing its deadline constitutes a failure 
of the corresponding task. There is no accrued value for jobs completing late or 
occasionally missing their deadlines.  

 
Figure 1.1: Report Scope  

However, in mixed-criticality setups, we do consider that the deadlines of higher 
critical tasks are more important than those of lower critical tasks.  

4. Implicit Deadlines, where task periods are equal to their deadlines. Our task 
model abstracts the tasks for providing analysis and timing guarantees, it relies heavily 
on task worst-case execution time parameters. Obtaining these parameters require 
specific architectural support and heave knowledge of kernel level implementation 
which will be completed in next part of the report. A few of the key design choices 
considered for multi-core processors are listed below:  

• Cache partitioning or Scratch pad memory: From the worst-case execution time 
analysis perspective, application developers would benefit from analyzing their tasks 
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in isolation and measuring execution times. It would be ideal for the hardware 
architecture to faithfully maintain these execution times when executed with other 
tasks. Adopting cache partitioning or scratch pad memory is one decision to avoid 
interference from other cores.  

• Pinned pages and Memory Controller fairness: Memory stalls could take orders 
of magnitude longer than cache accesses. Given that demand paging and swapping 
mechanisms add unacceptable delays, it would be ideal to pin pages to memory. Given 
that different threads from different cores could be issuing memory requests, it would 
be useful to have a notion of fairness and bounded service times at the memory 
controller level.  

• Deterministic Execution Pipelines: Various mechanisms such as out-of-order 
execution, hardware multi-threading, and super-scalar processors already introduce 
non-determinism in the uni-core processor context. These issues transcend into 
multicore embedded processors as well. Architectures with bounded interference 
would significantly reduce the pessimism in worst-case execution time analysis.  

  

1.2 THE FUTURE OF SCHEDULING AND 
SYNCHRONIZATION  
    
Transactional Memory: A transaction is a sequence of steps executed by a single 
thread. Transactions are "serializable", meaning transactions appear to execute 
sequentially, in a one-at-a-time order. Transactions are often (but not always) executed 
"speculatively." A speculative transaction that succeeds is said to "commit," and its 
effects become visible to other threads, while one that fails is said to "abort" (or cancel), 
and its effects are discarded. Direct hardware support for transactions will have a 
pervasive effect across the software stack, affecting how we implement and reason 
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about everything from low-level constructs like mutual exclusion locks, to concurrent 
data structures such as skip-lists or priority queues, to system-level constructs such as 
read-copy-update (RCU), all the way to run-time support for high-level language 
scheduling mechanisms. Although transactions can alleviate many of the well-known 
shortcomings of legacy scheduling constructs, we believe that such a pervasive change 
will present new challenges and opportunities very distinct from the familiar issues we 
face today.  
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Chapter 2  
Background  
Work related to this report falls in four categories:   

(i) Multi-processor and multi-core scheduling   
(ii) Multi-processor synchronization   
(iii) Parallel task scheduling  

We will now discuss the related work in first two of domains and describe the 
differences with few of the available approach till date.  

  

2.1 Multi-processor and Multi-core Scheduling   
The design space of the existing literature on multi-processor real-time scheduling 
algorithms is provided in figure 2.1. Multiprocessor scheduling schemes are classified 
into global and partitioned systems. It has been shown that each of these categories 
has its own advantages and disadvantages. Global scheduling schemes can better utilize 
the available processors. These schemes appear to be best-suited for applications with 
small working-set sizes. Although the last level of on-chip shared cache ultimately 
determines the caching behavior of an application, task migrations tend to generate 
significant additional cache traffic due to invalidations and cache-consistency 
protocols. Weak processor affinity and preemption overheads therefore need to be 
managed to fully exploit the benefits of global approaches. On the other hand, 
partitioned Design space of Multi-Processor Real-Time Scheduling approaches are 
severely limited by the low utilization bounds associated with bin-packing problems. 
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The advantage of these schemes is their stronger processor affinity, and hence they 
provide better average response times for tasks with larger working set sizes. Global 
scheduling schemes based on rate-monotonic scheduling (RMS) and earliest deadline 
first (EDF) are known to suffer from the so-called Dhall effect. When heavy-weight 
(high-utilization) tasks are mixed with lightweight (low-utilization) tasks, conventional 
real-time scheduling schemes can yield arbitrarily low utilization bounds on 
multiprocessors. By dividing the task-set into heavy-weight and lightweight tasks, the 
RMUS  algorithm achieves a utilization bound of 33% for fixed-priority global 
scheduling. These results have been improved with a higher bound of 37.5%. The 
global EDF scheduling schemes have been shown to possess a higher utilization bound 
of 50%. PFair scheduling algorithms based on the notion of proportionate progress can 
achieve the optimal utilization bound of 100%. Recent approaches also reduce the 
number of migrations and preemptions incurred by fairness-based algorithms, further 
improving their overall performance. However, despite the superior performance of 
global schemes, significant research has also been devoted to partitioned schemes due 
to their appeal for a significant class of applications, and their scalability to massive 
multicores, while exploiting cache affinity. Partitioned multiprocessor scheduling 
techniques have largely been restricted by the underlying bin-packing problem. The 
utilization bound of strictly partitioned scheduling schemes is known to be 50%. This 
optimal bound has been achieved for both fixed-priority algorithms and dynamic-
priority algorithms based on most modern multi-core processors provide some level of 
data sharing through shared levels of the memory hierarchy. Therefore, it could be 
useful to split a bounded number of tasks across processing cores to achieve a higher 
system utilization. Partitioned dynamic-priority scheduling schemes with task splitting 
have been explored in this context. Fixed-priority scheduling with task-splitting 
support is relatively less analyzed in the literature. Recent results have provided task-
splitting algorithms in the fixed-priority context. Optimal task-splitting algorithms have 
also been developed for tasks having the same period. Even though these have 
subsequently achieved a higher worst-case utilization bound, the average-case 
performance the provided Highest-Priority Task Splitting algorithm is still better at 
around 88%. In the area of real-time multi-core scheduling, there has also been previous 
work on cacheaware approaches to real-time scheduling. We focus more on exploiting 
the shared caches to minimize the overhead of task splitting, rather than explicitly 



 
8 | P a g e  

  

choosing cachecollaborative tasks to run in parallel. The partitioning algorithm may be 
modified to choose cache-collaborative tasks to be co-located on the same processing 
core. However, the effects of such partitioning schemes is the subject of future research 
and work.   
  

 
Figure 2.1 Multiprocessor scheduling algorithms 

  

2.2 Multi-processor Synchronization  
Traditional multiprocessor scheduling algorithms have dealt mostly with independent 
tasks having no interactions. Researchers like de Niz and Rajkumar have previously 
developed a set of partitioning bin-packing algorithms to deploy groups of 



 
9 | P a g e  

  

communicating tasks onto a network of processors. The objective of these algorithms 
is to minimize the number of processors needed while trying to reduce the bandwidth 
required to satisfy the communication between these tasks. In this report, we are 
concerned with tasks that need to synchronize on (potentially) globally shared 
resources, which could be executing on different processor cores. Task synchronization 
for real-time systems application is a well-known problem. Fixed-priority scheduling 
schemes employ techniques like priority inheritance and priority ceiling protocols to 
enable resource sharing across real-time tasks. Dynamic-priority scheduling schemes 
also use mechanisms like the Stack-based Resource Policy (SRP) to handle real-time 
task synchronization. In the context of fixed-priority multiprocessor scheduling, the 
priority ceiling protocol has been extended to realize the multiprocessor priority ceiling 
protocol (MPCP). Synchronization schemes have also been developed for other related 
scheduling paradigms like PFair. Multiprocessor extensions to SRP have also been 
considered and performance comparisons have been done with MPCP. This 
dissertation adopts a provided approach to partitioned task scheduling by explicitly 
considering MPCP synchronization penalties during task allocation and investigating 
the impact of different Execution Control Policies (ECPs). Recent studies have 
investigated the performance differences between spin-based and suspension-based 
synchronization protocols. In these studies, their authors found that spinbased protocols 
impose a smaller scheduling penalty than suspension-based ones, even under zero 
preemption costs. While these studies present interesting results, the analyses they used 
on suspension-based protocols can be substantially improved. In this dissertation, we 
have developed new schedulability analysis for these protocols that are less pessimistic 
and includes our improvements. With this new analysis, we found that the suspension-
based proto-18 cols in fact behave better than spin under low preemption costs (less 
than 160µs per preemption) and longer critical sections (15 µs) than those studied.  
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Chapter 3  
Synchronization of Sequential Tasks  
In this chapter, we relax the assumption of independent tasks, which was made in above 
chapter. This is an important consideration, given that task synchronization is a key 
problem faced in many real-world systems. Available solutions in the uniprocessor 
context like the Priority Ceiling Protocol(PCP)  have been extended to the 
multiprocessor scenario . In this chapter, we detail some of the scheduling penalties 
arising due to multiprocessor task synchronization, and analyze them under different 
execution control policies. Subsequently, we focus on a synchronization-aware 
partitioned fixed-priority scheduler to accommodate these inefficiencies. In systems 
with task synchronization requirements, traditional synchronization-agnostic task 
allocation algorithms can introduce bottlenecks in the system by unnecessarily 
distributing tasks sharing global resources across different processors. 
Synchronization-agnostic scheduling can also lead to performance penalties by 
unnecessarily preempting tasks holding global resources. Therefore, coordination 
among task scheduling, allocation and synchronization is vital for maximizing the 
performance benefits of real-time multiprocessor systems. The major contributions of 
this chapter are as follows:  

1. Characterization of key synchronization penalties including  
(i) blocking delays on global critical sections  
(ii) back-to-back execution from blocking jitter, and  
(iii) multiple priority inversions due to remote resource sharing between 

tasks allocated to different processors   
2. Evaluation of a synchronization-aware task-allocation scheme to accommodate these 

task synchronization penalties during the allocation phase  
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3. Analysis of the impact of different execution control policies (ECPs) on global task 
synchronization, where an ECP is a mechanism to compensate for the scheduling 
penalties incurred by tasks due to remote blocking, and  

4. Detailed empirical study of the above-mentioned execution control policies.  
Our empirical results indicate that coordinated scheduling, allocation, and 
synchronization yields significant benefits (as much as 50% savings compared to 
synchronization-agnostic task allocation.   

3.1 Multiprocessor Synchronization Challenges  
In this section, we detail the various challenges associated with synchronization in 
multiprocessors. We first highlight the key differences between global and local task 
synchronization.  

3.1.1 Global vs Local Synchronization  
The Priority Ceiling Protocol (PCP) is a real-time synchronization protocol that 
minimizes the time a high-priority task waits for a low priority one to release the lock 
on a shared resource, known as blocking time. When PCP is used by tasks deployed on 
different processors, this blocking time can lead to idling of the processors. For 
instance, consider Figure 3.1. In this figure, there are three tasks, τ1 and τ2 running in 
processor P1 and τ3 running in processor P2. In addition, a resource is shared between 
tasks τ2 and τ3 using PCP. The figure depicts how τ2 locks the resource at time making 
τ3 wait for the lock up to time 51 when the lock is released by τ2. This waiting leaves 
processor P2 idle because the only task deployed there, τ3, is waiting for the lock 
(known as remote blocking). Furthermore, during the time τ2 holds the lock it suffers 
multiple preemptions from the higher priority task τ1. As a consequence, τ3 misses its 
deadline at time 68. Such a problem is removed if, instead of sharing the resource across 
processors, it is shared on the same processor, i.e., tasks τ2 and τ3 are deployed 
together, say in processor P2.  



 
12 | P a g e  

  

  
FIGURE 3.1 Global vs Local Synchronization  

The key aspect of the example in Figure 3.1 is that processor utilization is wasted 
during remote blocking. This is because a task that could be scheduled in the remote 
processor is blocked leaving the cycles reserved for it idle. This contrasts with local 
blocking because the task holding the lock uses the cycles the blocked task leaves 
idle. Furthermore, such a waste of reserved cycles can be repeated for each blocked 
task running on a different processor. That is, sharing a resource across n processors 
can waste reserved cycles in n − 1 processors, effectively transforming this n 
processors into a single processor during the execution of the critical section (only 
one critical section can execute at a time). This highlights the significance of task 
allocation in determining the schedulability of a task set in a multiprocessor. In 
other words, the co-location of tasks that lock shared resources to the same 
processor prevents reserving processors cycles that are wasted in remote blocking. 
This motivates mentioned synchronization-aware task-allocation algorithm. In the 
worst case, however, some degree of global resource sharing may be unavoidable. 
As a result, techniques to mitigate its consequences are also needed.  
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3.1.2 Multiprocessor Priority Ceiling Protocol  
We shall analyze and characterize the behavior of different execution control 
policies (ECPs) in Section 3.2. For the sake of self-containment, we present a brief 
tutorial of the multiprocessor priority ceiling protocol (MPCP) and its properties. 
Let us start by reviewing some definitions. A global mutex is a mutex shared by 
tasks deployed on different processing cores. The corresponding critical sections are 
referred to as global critical sections (gcs). Conversely, a local mutex is only shared 
between tasks on the same processing core, and the corresponding critical sections are 
local critical sections. Let J′ be the highest priority job that can lock a global mutex 
MG. Under MPCP, when any job J acquires MG, it will execute the gcs corresponding 
to MG at a priority of πG + π′, where πG is a base priority level greater than that of any 
other normally executing task in the system, and π′ is the priority of J′. This priority 
ceiling is referred to as the remote priority ceiling of a gcs.   
MPCP was specifically developed for minimizing remote blocking and priority 
inversions when global resources are shared. We reproduce below a basic definition of 
MPCP.  

1) Jobs use assigned priorities unless within critical sections.  
2) The uniprocessor priority ceiling protocol is used for all requests to local mutexes.  
3) A job J within a global critical section (gcs) guarded by a global mutex MG has the 

priority of its gcs (πG + π′).   
4) A job J within a gcs can preempt another job J  within a gcs if the priority of J ’s gcs is 

greater than that of J ’s gcs.  
5) When a job J requests a global mutex MG. MG can be granted to J by means of an 

atomic transaction on shared memory, if MG is not held by another job.  
6) If a request for a global mutex MG cannot be granted, the job J is added to a prioritized 

queue on MG. before being preempted. The priority used as the key for queue insertion 
is the normal priority assigned to J.  
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7) When a job J attempts to release a global mutex MG, the highest priority job JH  

  
Figure 3.2 Ceiling protocol 

waiting for MG is signaled and becomes eligible for execution at JH’s host processor 
at its gcs priority. If no jobs are suspended on MG, it is released.Now, consider tasks 
that must suspend themselves when waiting for global critical section resources. Many 
penalties are encountered and are described next.  
  

3.1.3 Blocking Delay on Remote Resources  
MPCP executes all the gcs’s at a priority level above all normal execution segments 
and local critical sections. Even under the purview of such a priority ceiling protocol, 
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it is not possible to guarantee that tasks do not receive transitive interference during 
remote blocking as shown in Fig. 3.2. In this figure, Task τi in P1 could be suspended 
on τj in P2. Task τk on P2 could be suspended on another task τl on another processor 
P3. The priority ceiling of the mutex shared between τk and τl could be higher than the 
priority-ceiling of the mutex shared between τi and τj. In this scenario, the release of 
the critical section by τl would give control to the task τk, which preempts the task τj 
executing its critical section. The task τi waiting on τj therefore suffers from the 
interference due to the release of a mutex by τl.  
Back-To-Back Execution of Suspending Tasks  
A phenomenon that arises when tasks suspend themselves is that of “back-to-back 
execution”. Consider the example shown in Fig. 3.3. There are three tasks τ1: ((2, 2, 
0), 8), τ2: (4, 8), τ3 :((1, 2, 2), 64). Task τ1 and τ2 are assigned to processor P1.  
Task τ3 is assigned to processor P2.It is easy to verify that τ1 and τ3 are schedulable. 
However, an anomalous scheduling behavior happens with respect to task τ2. It should 
be schedulable if τ1 follows a periodic release behavior, since it expects at most one 
preemption from a task with its same period of 8. When τ2 is released at time instant 
3, however, it faces back-to-back execution due to the remote synchronization effect of 
τ1 and this leads to τ2 suffering the interference of a second arrival of τ1 leading to a 
deadline miss. This back-to-back preemption arises due to the jitter in the blocking time 
of task τ1 and its self-suspending behavior. Multiple Priority Inversions due to 
Suspension The key scheduling inefficiency resulting from the remote blocking 
behavior of tasks is that of multiple priority inversions due to lower-priority critical 
sections. For example, consider the  
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Figure 3.3 Suspended task execution 

scenario shown in Fig. 3.4. Whenever task τ2 suspends, task τ3 can get a chance to 
execute, and it can request a lock on the global critical section shared with τ1. When 
τ1 releases the global critical section, τ3 preempts τ2 due to its higher priority ceiling 
and interferes with the normal execution of τ2 twice. In the worst case, every normal 
execution-segment (of duration Ci,k1 ≤ k ≤ ni) of a task τi can be preempted at most 
once by each of the lower-priority tasks τj (j > i) executing their global critical sections 
released from remote processors.  
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Figure 3.4 Suspended task execution 

  

3.2 Coordination Among Scheduling, Allocation, 
and Synchronization  
Our goal is to introduce a scheme which combines a synchronization-aware task 
allocation strategy, with an efficient protocol for global task synchronization. In order 
to realize this, we first describe the synchronization-aware task allocation strategy. We 
then analyze different execution control policies under the multi-processor priority 
ceiling protocol.  
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3.2.1 Synchronization-Aware Task Allocation  
We consider two bin-packing algorithms: the synchronization-agnostic and the 
synchronization aware algorithms. The former packs objects exclusively based on size 
and the latter tries to pack together tasks that share mutexes. Both algorithms are 
modifications of the best-fit decreasing (BFD) bin-packing algorithm. The BFD 
algorithm orders the bins by non-increasing order of available space and the objects by 
non-increasing order of object size, and tries to allocate the object at the head of this 
sorted list into each of the bins in order.  

When bin-packing algorithms are used to pack periodic tasks into processors, the 
utilization of each task is used as its size and one minus the total utilization deployed 
on a processor is used as the available space in the processors. This approach assumes 
that the load of the processors can reach 100%, which for rate-monotonic scheduling is 
only sometimes true. However, in the absence of additional information, such an 
approach is a good indicator of which task and which processor to try next. In the 
binpacking algorithms, once we select the task to be allocated and the candidate 
processor for trying the allocation, we use our response-time tests to check if this 
allocation is possible. When synchronization is used, an additional penalty can be 
incurred if we distribute the tasks that share a mutex among two or more processors. 
This is because, if we allocate these tasks to the same processor, the shared mutex 
becomes a local mutex and local PCP can be used. As described in the previous section, 
local synchronization eliminates the scheduling penalties associated with global task 
synchronization.  

The strategy of the synchronization-aware packer is two-fold. First, tasks that share a 
mutex are bundled together. This bundling is transitive, i.e., if a task A shares a mutex 
with task B, and B shares a mutex with C , all three of them are bundled together. Then, 
each task bundle is attempted to be allocated together as a single task into a processor. 
We start with just enough processors to allocate the total utilization of all the tasks. 
Secondly, the task bundles that do not fit are put aside until all bundles and tasks that 
fit are allocated without adding processors. Now, only bundles that did not fit into any 
existing processor remain unallocated. The penalty of transforming a local mutex into 
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a global mutex is the additional processor utilization required for schedulability. The 
cost of breaking a bundle is defined as the maximum of such penalties over all its 
mutexes. The bundles are then ordered in increasing order of cost, and the bundle with 
the smallest cost is selected to be broken. This bundle is broken such that it contains at 
least one piece as close as possible to the size of the largest available gap among the 
processors(in accordance with the BFD heuristic). If this allocation is not possible, a 
new processor is added and we try again to partition the task-set. Since the addition of 
new processors opens up new possibilities to allocate full bundles together, we repeat 
the whole strategy again starting by retrying to fit the unallocated bundles. In the 
absolute worst-case, each task may require its own processor, therefore, at most n 
processors exist in the final packing of any schedulable task-set (where n is the number 
of tasks).  

3.2.2 Execution Control Policies  
An execution control policy (ECP) is defined as a mechanism to compensate for the 
scheduling penalties incurred by tasks due to remote blocking. In this work, we 
consider the following execution control policies:  

1. Suspend: The task is suspended during remote blocking, enabling lower priority 
tasks to execute.  

2. Spin: The task continues to spin on the remote critical section, preventing lower 
priority tasks from executing.  

Other execution control policies such as period enforcement can also be applied for 
minimizing the scheduling penalty arising from synchronization. We now describe 
different execution control policies and their schedulability implications.  
MPCP:Suspend   

The MPCP:Suspend execution control policy forces a task to suspend when it waits for 
a gcs entry request to be satisfied. In this version, tasks blocking on remote resources 
release the processor for other tasks executing in the system. It suffers from all the 
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scheduling penalties described in the previous section. We now quantify each of the 
scheduling inefficiencies described in the earlier sections.  

1) Remote Blocking due to Global Critical Sections: This is captured by a separate term  
Br(i,j) for the j’th critical section acquired by the task τi(the r in Br(i,j) denotes remote 
blocking as opposed to local blocking.  

2) Back-To-Back Execution due to Suspending Tasks: In addition to the preemptions 
considered by conventional Rate-Monotonic Scheduling, in the worst case, back-
toback execution can result in additional interference from each higher priority task 
(τh). 3) Multiple Priority Inversions due to Global Critical Sections: The global critical 
sections of each lower priority task can affect the normal execution segment of a higher 
priority task. An alternative approach is to prevent back-to-back execution and multiple 
priority inversions by not relinquishing the processor and spinning until the critical 
section is obtained , similar to MPCP:Spin defined next.   

MPCP:Spin   
In the MPCP: Spin protocol, tasks spin (i.e. execute a tight loop) while waiting for a 
gcs to be released. This avoids any future interference from global critical section 
requests from lower priority tasks, which may be otherwise issued during task 
suspension. In practice, this could be implemented as virtual spinning, where other 
tasks are allowed to execute unless they try to access global critical sections. In that 
case, they would be suspended. As a result, the number of priority inversions per task 
is restricted to one per lower priority task. The back-to-back execution phenomenon is 
also avoided since the tasks do not suspend in the middle. The time spent waiting for 
the lock becomes part of the task execution time, therefore, the task never voluntarily 
suspends during its execution. This improves average-case performance but cannot 
guarantee worst-case improvements  
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3.3 Evaluation  
In this section, we present an experimental evaluation of the synchronization schemes 
and their integration with our synchronization-aware bin-packing algorithm. The 
metric used to compare the effectiveness of each algorithm is the number of bins 
needed to allocate a given task-set. The fewer the number of bins needed, the better is 
the performance. In order to study the performance of synchronization algorithms in 
isolation, we use the synchronization-agnostic packing algorithm. The benefits of using 
a synchronization-aware packing algorithm for each of these schemes is quantified 
later.  

3.3.1 Experimental Setup  
All our experiments evaluate how many processors of equal capacity (100% utilization) 
an algorithm uses to schedule a task set. We compare the number of processors needed 
among all the algorithms against the optimal packing algorithm. Given that optimal 
binpacking is an intractable problem, we start with a fully-packed configuration instead 
(from a bin-packing standpoint disregarding scheduling inefficiencies). We do this 
processor by processor by dividing the 100% utilization into a defined number of tasks 
that would fit this processor perfectly. Each of these tasks is assigned a random 
utilization that all add up to 100%. Then, their periods are chosen randomly between 
10ms and 100ms. Next, their execution time is calculated to match their utilization. 
Now, given a selected number of critical sections per task, the execution is divided into 
two types of segments: normal execution and critical section. These segments are 
arranged starting with a segment of normal execution followed by one of critical section 
and then another of normal execution. This arrangement continues until the task has 
the required number of critical sections. Each critical section is associated with a mutex 
that is locked by some chosen number of other tasks.  
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3.3.2 Comparison of Synchronization Schemes  
We explore three main factors that affect the different ECPs: (i) the size of the critical 
sections, (ii) the number of tasks per processor, and (iii) the number of lockers per 
mutex.   

In order to obtain a conceptual comparison of the different synchronization schemes, 
we consider their behavior under zero overheads. Overheads can change, and likely 
decline over time, and are platform-dependent. Later on, we explicitly specify and 
evaluate the impact of different preemption costs on these different schemes.  

The most important factor that affects the different ECPs is the size of a critical section. 
Figure 3.5 depicts the results of conducted experiments with increasing critical section 
sizes. Initially, both MPCP:Spin and MPCP:Suspend exhibit similar performance. At 
longer critical section lengths however, MPCP:Spin requires many more processors 
compared to MPCP:Suspend. This is mainly due to the processor time lost during 
spinning on a mutex. In the case of MPCP:Suspend, this time is effectively used by the 
other tasks executing on the same processor. As a general trend, however, both 
MPCP:Spin and MPCP:Suspend require more processors with longer critical section 
lengths. This is mainly due to increasing remote blocking terms with increasing global 
critical section lengths. In the case of MPCP:Suspend, this overhead manifests as 
longer priority inversions from lower-priority global critical section executions. 
MPCP:Spin experiences a similar overhead due to the increased usage of CPU time 
during spinning.  
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Figure 3.5 Comparison among synchronization schemes 

Next, with increased number of tasks per processor, since this has the potential of 
increasing the number of preemptions for a task and also the number of priority 
inversions. Figure 3.6 depicts the number of processors needed to pack a workload of 
eight fully-packed processors with two critical sections per task and two lockers per 
mutex. Each critical section has a duration of 500µs. For smaller critical section 
lengths, the previous experiments already indicate that the performance difference is 
negligible, and this was verified. In Figure 3.6, we can observe that, as the number of 
tasks per processor increases, the spin-based synchronization scheme requires more 
processors compared to the suspension-based scheme. This is because having more 
tasks during spinning to wait for global mutexes increases the loss of processor 
utilization. The suspension scheme, however, effectively utilizes this duration to 
execute other eligible tasks hosted on the same processor. In general, both the schemes 
require more processors with an increasing number of tasks. With MPCP:Spin, this is 
due to more tasks using CPU time for spinning, whereas with MPCP:Suspend, this is 
due to more priority inversions from lower priority tasks locking global mutexes.  

3.3.3 Synchronization-Aware Task Allocation  
Explained synchronization-aware packing algorithm bundles together synchronizing 
tasks and tries to deploy them. This strategy reduces the number of global mutexes and 
resulting remote blocking. However, the bundling heuristic artificially creates larger 
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objects to pack, and this can lead to less efficient packing than the BFD heuristic on 
the original task set. As a result, given algorithm does not always pay off. However, 
when remote blocking penalties play a major role, then our synchronization-aware 
packer yields significant benefits.  

3.3.4 Synchronization-Aware Task Allocation 
and Splitting  
The approach thus far has been to perform synchronization-aware task allocation and 
scheduling for avoiding the penalty of inter-core task synchronization. As described 
earlier, the bin-packing bounds still apply when purely partitioned approaches are 
considered. Even though object splitting enables us to split composite tasks into its 
constituent subsets, the fragmentation penalty from partitioning could still remain. In 
systems, where the task set is still not schedulable after the synchronization-aware task 
allocation, the next step would be to attempt task splitting. Our primary goal in this 
chapter has been to compare the benefits of using synchronization information during 
the allocation phase, hence we have not provided a detailed empirical evaluation of this 
extension of using task splitting to recover additional utilization.  

From the bin-packing perspective, we will first allocate the composite tasks that are 
schedulable under standard synchronization-aware allocation. We then allocate the 
remaining tasks using the task splitting approach since the system is otherwise 
unschedulable under the traditional bin-packing approach. In order to attempt this task 
splitting, we should note that the remaining tasks might not necessarily have the highest 
priority on the allocated processor. The approach to take here is to assign the split task 
a deadline equal to the deadline of the currently existing highest-priority task on the 
host processor. For example, consider a task τ with a computational requirement of 3 
and deadline of 9 that needs to be split into τ′ and τ′′. In this scenario, τ′ is created such 
that some processor Pi is maximally utilized when τ′ is added. Let the highest-priority 
task on Pi have a deadline of 4. Let us say that assigning a deadline of 4 to τ′ results in 
a maximum possible computational time of 1 for τ′ on Pi. The remaining task τ′′ will 
now have a computational time of 2 and a deadline of 8, since τ′ can be assigned the 
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highest priority on Pi. By performing such a splitting, the remaining object τ′′ has a size 
of 25% instead of the original object τ with a size of 33.33%. Task splitting can thus 
be used an additional tool after the synchronization-aware task allocation is completed, 
for scheduling the remaining tasks that are otherwise unschedulable. Further evaluating 
these benefits in randomly generated task sets and quantifying the performance benefit 
is part of our key future work. It should be noted that for the split tasks the critical 
sections will automatically become global critical sections since they could be accessed 
from any of the allocated processors for the task. Also, the migration and preemption 
cost need to be included as a part of the critical section execution time, since tasks 
might migrate while holding the corresponding mutex.  
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Chapter 4  
Mixed-Criticality Systems 
Evaluation 

4.1 System Ductility 
In order to evaluate the effectiveness of mixed-criticality scheduling, we need a metric 
that captures the semantics of mixed-criticality systems. At first glance it may appear 
that we have two objectives to fulfill:  

(i) protect the higher-criticality tasks in case of overload 
(ii) achieve high schedulable utilization.  

Such multi-objective optimization problems have been studied by trade-off approaches 
such as Multiple Criteria Decision Analysis and others more specific to resource 
allocation like the QoS Resource Allocation Model. These approaches use some form 
of quantification of user preference (e.g. user utility) in order to compare the value 
obtained from assigning a unit of resource to increase one objective or another. This 
encoding assumes that at different points of the unit-by-unit allocation process 
assigning resources to one objective function will return the highest value and at some 
other point assigning to another will returned the highest. 

However, the value of the mixed-criticality objective functions cannot be characterized 
as a user-preference function where the resource allocation preference switches from 
one objective function to another. Specifically, there is no point in the allocation 
process where getting more schedulable utilization is more valuable than protecting 
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higher-criticality tasks. In fact, if we consider that the main purpose of mixed-criticality 
systems is to protect higher-criticality tasks from being affected by lower-criticality 
ones then it is clear that this multi-objective function reduces to a hierarchical one. In 
this case, the first objective is to protect critical tasks and the second one is to obtain as 
much utilization as possible. In order to capture this formally, we introduce a metric 
called ductility matrix to fully describe the potential behavior of the system with respect 
to two factors:  
(1) the level of overload faced by tasks 
(2) tasks that miss their deadlines due to a given overload. 
 In order to characterize the system performance, it is first essential to characterize the 
possible workloads presented to the system at which performance can be measured. 
Hence, we now describe the possible workloads in mixed-criticality task-sets, and 
develop an encoding of the system workload. 

4.1.1 System Workload 
As described earlier, the task model under consideration introduces two new parameters 
for each task τi: (i) an overload execution budget Cio, and (ii) a criticality value κi (with 
κi ∈{ζ}). The system workload can therefore be in any of 2k states since each of the k 
criticality levels can either be normal or overloaded. The workload of the system under 
consideration can thus be characterized using a binary encoding called the workload 
vector < W1,W2,...,Wm >, where Wk is an indicator variable that denotes the operating 
state of all tasks τj with criticality value κj = k. Wk = 0 denotes that all tasks at criticality 
level k are in the normal operating state. Wk = 1 denotes that a task with criticality k is 
in the overload operating state. 

As an example of system workloads, consider the mixed-criticality radar surveillance 
task-set described with two criticality levels. In this task set, the system workload could 
be in any of the 4 possible states: (i) Both hostile and friendly tracking tasks are 
overloaded < 1,1 >, (ii) Hostile tracking task is overloaded while friendly tracking task 
is not overloaded < 1,0 >, (iii) Friendly tracking task is overloaded while hostile 
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tracking task is not overloaded < 0,1 >, and (iv) Both hostile and friendly tracking tasks 
are not overloaded < 0,0 >. 
We can also define a scalar equivalent known as system workload (w) that is a 
comparable quantity to work with, which is computed from the workload vector as: 

k 
w = X{wiWg} 

g=1 

The system workload as defined above is thus a weighted sum of the overloads faced 
by different criticality levels. 

As described earlier, it is desirable that there exists a strict ordering among the 
overloads faced by different criticality levels. One way of guaranteeing this ordering is 
to assign criticality level g a weight of wg = 2k−g, therefore, any additional overload in 
criticality level g results in more system workload (at least 2k−g additional system 
overload) than it is possible to add k through the maximum overloading of all lower-
criticality levels {l}∀l > g (at most X 2k−l = l=g+1 (2k−g − 1) additional system workload). 
This property captures the requirement that a high criticality level be treated as more 
important than all the other low-criticality levels combined. It is important to note here 
that the system workload is not a quantification of the amount of workload per-se. 
Instead, it quantifies the criticality of the system overload. 
The idea behind the workload vector is to evaluate the scheduling decisions in the light 
of the presented workload. For example, given a workload vector < 1,0,..,0 >, it is 
desirable that the scheduler meets the peak resource requirements of tasks at the highest 
criticality level, even if it requires stealing resources from lower criticality tasks. On 
contrary, given a workload vector of < 0,0,...,0 >, the scheduler should meet the normal 
resource requirements of tasks in all criticality levels. 

4.1.2 Ductility 
The ductility matrix is a comprehensive description of the system performance with 
respect to criticality levels. To simplify the evaluation of different scheduling 
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algorithms, we define a scalar equivalent of the ductility matrix that can be ordered 
based on the magnitude. P is a projection mapping function that maps a matrix M to 
ascalar value S. Let us define ductility d, which is a scalar equivalent of the ductility 
matrix D using the projection function Pd, where: 

 

The key properties of this projection function Pd are: 

1. All entries within each column belong to the same criticality level, and are therefore 
2k treated equally without assigning different weights to each row (using Xdr,c). Under 
r=1 non-anomalous scheduling algorithms, it can be expected that if the tasks meet their 
deadlines under overloaded conditions, they will continue to meet their deadlines under 
non-overloaded conditions. 

2. The contribution to the final scalar Pd(D) of having a 1 in any row in column c is larger 
than the contribution of having all ones in all other columns l with lower criticality. 
Thus, every task in criticality level c is treated as absolutely more important than all 
the tasks of all the other lower criticality levels l ∀c < l ≤ k. This is accomplished by 
normalizing the contribution of each column c to the range [0,1] (by applying a scale 
of ) and subsequently applying a weight of  to impose a strict ordering 
among columns. 
Note that the maximum value of d obtained using Pd will be . Therefore, 
we obtain the normalized ductility ν (normalized to the range [0,1]) as: 

 

In this chapter, we will use this normalized ductility ν to compare the performance of 
various scheduling algorithms. It should be emphasized here that Ductility represents 
one possible quantification of the system resiliency to critical overloads. Many other 
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projection functions are also possible for the ductility matrix. However, we believe that 
Pd succinctly captures the mixed criticality scheduling requirements from the system 
designer’s perspective. Multiple projection functions themselves are not an integral 
part of the ductility matrix. The one presented here is agnostic to the type of overload 
because in the absence of an overload profile it conveniently assumes the worst-case 
profile of all tasks in a criticality level overloading. The interesting property is really 
the level of resiliency offered to the most critical tasks under any type of overload 
including the worst-case profile. The exploration of other overload profiles is left for 
future work. 

4.1.3 Illustration 
Consider the set of four tasks. Near Hostile and Near Friendly are examples of near-
range (Home Perimeter) tracking algorithms that require a higher sampling rate (10Hz 
or a 100ms period), whereas, Far Hostile and Far Friendly are examples are far-range 
( Non Perimeter) tracking algorithms that only need a lower sampling rate (5Hz or a 
200ms period). 

The criticality levels reflect whether the tasks are used to track hostile (Near Hostile 
and Far Hostile) or friendly (Near Friendly and Far Friendly) objects. 

Assume partitioned rate-monotonic scheduling (say scheduling algorithm R), with 
tasks Near Hostile and Far Hostile assigned to processor P1, and tasks Near Friendly 
and Far Friendly assigned to processor P2. In this scenario, we will now illustrate the 
development of the ductility matrix, and subsequently calculate the normalized 
ductility ν. 

The ductility matrix D(R) under this scenario is given by: 
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w1 = 3 =< 1,1 > 
w2 = 2 =< 1,0 > 
w3 = 3 =< 0,1 > 
w4 = 0 =< 0,0 > 

1. When w = w1 = 3 =< 1,1 >, both criticality levels 1 and 2 are overloaded. Under rate 
monotonic scheduling, the Far Hostile task (in criticality level 1) will miss its deadline 
in processor P1 (d1,1 = 0)and Far Friendly task (in criticality level 2) will miss its 
deadline in processor P2 (d1,2 = 0). 

2. When w = w2 = 2 =< 1,0 >, criticality level 1 is overloaded. Under rate-monotonic 
scheduling, the Far Hostile task (in criticality level 1) will miss its deadline in processor 
P1 (d2,1 = 0) and all other tasks will meet their deadlines (d2,2 = 1). 

3. When w = w3 = 1 =< 0,1 >, criticality level 2 is overloaded. Under rate-monotonic 
scheduling, the Far Friendly task (in criticality level 2) will miss its deadline in 
processor P2 (d3,2 = 0) and all other tasks will meet their deadlines (d3,1 = 1). 

4. When w = w4 = 0 =< 0,0 >, both criticality levels are in normal conditions. Under rate-
monotonic scheduling, all tasks meet their deadlines (d4,1 = d4,2 = 1). 
The ductility is given by , since tasks in criticality level 1 
meets 
their deadlines only under w = 1 and w = 0 and gets a weight of (high criticality), while 
criticality level 2 meets its deadlines only under w = 2 and w = 0 and gets a weight of 

  ( low criticality). 
The normalized ductility  (since the maximum ductility for two 
criticality levels is   
The normalized ductility metric describes the performance in the context of various 
overload conditions in mixed-criticality systems. In order to improve the normalized 
ductility, we need to focus on both (i) scheduling within each processor, and (ii) 
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allocation of tasks to processors. First, we develop the zero-slack scheduling algorithm 
to improve overload performance in each individual processor. 

4.2  Zero-Slack Scheduling 
4.2.1 Criticality Inversion in Uniprocessors 
Traditional uniprocessor scheduling algorithms such as Rate-Monotonic Scheduling 
(RMS) and Earliest-Deadline First (EDF) aim at maximizing the schedulable processor 
utilization, while ensuring that task deadlines are still satisfied. These algorithms 
assume that tasks do not execute beyond their worst-case execution times (WCETs), 
and do not have a well-defined mechanism for dealing with overloads when tasks do 
overrun their WCETs. This poses a challenging problem in the context of cyber-
physical systems such as the radar surveillance setup, where task behavior is tightly 
coupled with the operating physical environment, resulting in task WCETs that are 
often hard to characterize and potentially highly pessimistic. RMS and EDF also assign 
scheduling priorities to jobs based on either the task period (in the case of RMS) or the 
absolute deadline (in the case of EDF). This leads to additional problems in mixed-
criticality settings, where scheduling priorities assigned by RMS or EDF may not 
correspond to the criticality of tasks, giving more processor time to a task τlc that has 
lower criticality than to a higher criticality task τhc due to its priority assignment. We 
identify this behavior as criticality inversion. This behavior can lead to deadline misses 
of high criticality tasks due to processing time assigned to low criticality tasks when an 
overload occurs. 

A straightforward approach for dealing with the criticality inversion problem is to 
assign scheduling priorities based on criticality (CAPA). However, this could result in 
significantly low schedulable utilization due to priority inversion arising from tasks 
with low rate-monotonic scheduling priority that have a high criticality. In order to 
address this issue, we have proposed a Zero-Slack scheduling algorithm for dealing 
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with criticality inversion in uniprocessors, while still improving schedulable processor 
utilization. 

Zero-Slack (ZS) scheduling is a meta-scheduling algorithm that is designed to work 
with other priority-driven scheduling algorithms such as RMS. It uses the observation 
that criticality inversion only matters under overload conditions. Under ZS, the 
execution of each task τi is divided into two different modes: N (normal) and C (critical). 
In the N mode, all active and otherwise non-suspended tasks in the system are 
considered to be ready for scheduling purposes. Whereas in the C mode of task τi, all 
the tasks with lower criticality than τi are considered suspended or blocked for 
scheduling purposes. Our admission control algorithm then calculates the execution 
time available for each mode. It is worth noting here that these two modes (normal and 
critical) are scheduling modes that correspond to satisfying the normal and overload 
budget requirements of tasks. 

4.2.2 Scheduling Guarantee for ZS 

We now define the scheduling guarantee of zero-slack scheduling. ZS performs 
admission control, and if admitted 1, a task τi is guaranteed to run up to Cio if no higher 
criticality task τh exceeds its Ch. From the perspective of the ductility matrix, this 
translates to any taskset schedulable under ZS having a ductility matrix D(ZS) with dr,c 
= 1 for all r ≥ 2c−1, since r would correspond to a workload 2k −r (where k is the number 
of criticality levels), where none of the tasks τh with higher criticality than c would 
exceed their Ch. 

where x can be either 0 or 1 depending on the actual task set. 

Task-sets with k criticality levels schedulable under ZS are thus guaranteed to have a 
ductility: 
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The ZS guarantee follows the separation of the overloaded from the non-overloaded 
situation. This separation allows us to make two strategic decisions. First, when no 
overload condition is present, we should schedule the task with the objective of 
maximizing utilization. And secondly, when the system experiences an overload, we 
avoid modifying the utilization maximization schedule until the last instant necessary 
to satisfy our guarantee. 

For the purposes of this dissertation, due to space considerations, we restrict our 
discussion to a self-contained description of the zero-slack rate-monotonic scheduling 
algorithm ( ZSRM), which we leverage for intra-processor scheduling. An interested 
reader is referred to for a discussion on the generalized ZS algorithm and associated 
properties. 
4.2.3 Worst-Case Phasing of Dual-Mode Tasks 
Key to the calculation of the zero-slack instants when rate-monotonic scheduling is 
used is the phasing of the tasks. For a single-mode execution, Liu and Layland proved 
that the phasing that creates the maximum preemption for a task τi happens when every 
task τj|priority(τj) < priority(τi) arrives at the same time as τi. However, in a dual-mode 
task, this worst-case phasing does not hold. This is because, when tasks reach their 
zero-slack instants, they will suspend lower-criticality tasks. On the one hand, this 
suspension acts, as intended, to avoid preemptions suffered by task τi from lower-
criticality tasks. However, it also acts as a preemption when higher-criticality tasks 
suspend τi. Hence, to calculate the worst-case delay imposed by this type of preemption, 
we need to align all the suspensions in the same way as the period arrivals. 
Unfortunately, if we align the zero-slack instants of the higher-criticality tasks, we may 
misalign the arrival of higher-priority tasks. In other words, it is not always possible to 
align both the worst-case arrival of the tasks and the zero-slack instants. The 
implication of this misalignment is that we cannot create a single integrated critical 
zone based on the alignment of both types of preemptions. As a result, we take a 
pessimistic approach by assuming that the effects of both Table 4.1: Zero-Slack-RM 
Scheduled Task set alignments always happen. 
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Task C Co T Criticality Priority ZS 
Instant 

τ0 10 50 100 2 0 80 
τ1 20 100 200 1 1 60 
τ2 40 200 400 0 2 200 

Although the worst-case phasing may not exist, it provides an upper bound on the 
total interference imposed on task τi. This can be shown as follows. Before the zero-
slack instant, the maximum interference from higher-priority tasks happens when they 
are released simultaneously with τi. After the zero-slack instant, τi effectively blocks all 
the lower - criticality tasks. Therefore, the interference can only arise from higher-
criticality tasks. By switching all the higher-criticality tasks to their critical mode (C) 
along with τi, the interference suffered by τi in the critical mode (C) is also maximized. 

4.2.4 A Zero-Slack-RM Scheduling Example 
Let us use an example to illustrate the characteristics of the zero-slack-RM scheduler. 
Tabl presents a task set with the priorities assigned by the rate-monotonic scheduler 
and the zero-slack instants calculated by our algorithm. 

Due to space limitations, we will focus our discussions on τ1. Figure 4.1 presents 
the critical zone of this task. In this figure, we can see the preemption from τ0 in the N 
mode of τ1 for 50 units of time. After this, τ1 runs for 10 units and then reaches its zero-
slack instant at time 60, switching to C mode. In C mode, it suspends the lower-
criticality task τ0, but at the same time it is suspended by the higher-criticality task τ2. 
This suspension is the pessimistic approach we use due to the absence of an exact 
worst-case phasing. τ2 then runs for C2 (40) units and resumes the lower-criticality tasks. 
However, in order to maintain the criticality order, this resumption is implemented as 
a stack, meaning that it only returns to the previous criticality level (leaving τ0 
suspended). Then, τ1 can continue executing completing its 
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Figure 4.1: Critical Zone of Task 1 

) at time 190. 

Each task in the task set has its own (pessimistic) critical zone similar to the one 
presented in Figure 4.1, but they are unfortunately not necessarily aligned with each 
other. 

Properties of The Zero-Slack-RM Scheduler 

Theorem 1. Any task set schedulable under Criticality-As-Priority Assignment(CAPA) 
is also schedulable under the zero-slack scheduling scheme. 

Proof. The admission control for zero-slack scheduling starts with assigning Zi = 0 for 
all tasks τi. Under this assignment of zero-slack instants, the zero-slack scheduler 
behaves essentially like a CAPA scheme, since whenever τi is released all the lower 
criticality tasks are immediately blocked due to τi switching to its critical mode (Zi = 0). 
Therefore, if the task set is schedulable under CAPA, it should be schedulable with 
zero-slack instants of 0. In this scenario, we now inductively prove that each task τi 
remains schedulable over subsequent iterations. 

During subsequent iterations of the zero-slack calculation, additional computation 
from the critical mode (C) is transferred to the normal mode (N). This transfer is 
performed only to use up the slack available in the normal mode (N) up to the zero-
slack instant. Considering any task τi, this transfer of computation does not increase the 
blocking terms suffered by τi from higher criticality tasks executing in their C mode. 
The normal mode N of τi remains unaffected, since additional computation is 
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transferred to only fill up available slack. Therefore, the response time of τi only reduces 
in subsequent iterations. Hence, if τi was schedulable in the previous iteration, it 
continues to be schedulable. This completes the induction.   

Theorem 2. Any task set schedulable under rate-monotonic scheduling is also 
schedulable under the zero-slack scheduling scheme. 

Proof. For any task set Γ consisting of tasks τi = (Ci,Ti) schedulable under the RM 
scheduling scheme, consider an equivalent Γz with tasks τiz = (Ci,Cio,Ti,κi) with Ci = Cio 

= Ci and κi = πi, where πi is the priority assigned to task τi under RM scheduling. 
Scheduling the task set Γz using CAPA produces the same schedule as the RM 
scheduler, since the priorities are completely aligned with the criticality under the 
chosen κi values. Hence, Γz is also schedulable under CAPA, since it is schedulable 
under RM scheduling. Using the property that zero-slack scheduling subsumes CAPA, 
it follows that Γz is also schedulable under zero-slack scheduling. 

Having considered the problem of scheduling independent mixed-criticality 
sequential tasks, we now consider the problem of task synchronization in such systems. 
4.3 Evaluation 
The performance of mixed-criticality scheduling algorithms needs to be evaluated 
along two dimensions: (i) normal schedulability, and (ii) overload behavior. Classical 
bin-packing 
algorithms 
 0.9 
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 0.5 
 0.4 
 0.3 

 5 
Criticality Vector: 
0={0,1,2},1={0,2,1} 
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Figure 4.2: Surface of Average Performance (Harmonic Tasks) 

for (non mixed-criticality) multiprocessor systems are typically evaluated exclusively 
along the dimension of normal schedulability. For any given taskset, the performance 
of different binpacking algorithms along the dimension of normal schedulability can 
be compared by determining the number of processors required by each algorithm. 
However, in our case, we want to evaluate the effectiveness of the algorithms to extract 
the maximum ductility out of a given number of processors. Therefore, the ductility 
that the algorithms can obtain for different processor counts is compared. Our COP 
algorithm is compared to the WFD given that it is designed to balance the load, and 
hence the slack, across all the available processors. 

Figure 4.2 shows the average ductility achieved using COP in comparison with the 
average ductility achieved using WFD (both using Zero-Slack Rate-Monotonic 
(ZSRM) within each individual processor). These results were obtained using 
randomly generated tasksets having 30 tasks each. In order to isolate the effects of bin 
packing from any rate-monotonic scheduling effects that may arise from non-harmonic 
task period ratios, we constrained our task sets to have harmonic task periods Ti from 
the set {100,200,400,800,1600}. The overloaded computation time Cio of each task was 
chosen in an uniformly random fashion between  and . Subse- 

 

Figure 4.3: Surface of Average Performance (Task Periods: Uniform [10,100]) 
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quently, the normal computation time Ci of each task was chosen in an uniformly 
random fashion between and . We did not choose an overload utilization 
greater than since such tasks are typically allocated to their own processors. The 
overload workload was also restricted to be within a factor of two from the normal 
workload to focus on more stressful task sets. The tasks were also assigned to a 
criticality level in an uniformly random fashion from {L1,L2,L3}. 

The criticality values for levels {L1,L2,L3} are varied along the x-axis as 
{0,1,2},{0,2,1}, {1,0,2},{1,2,0},{2,0,1}, {2,1,0}. The number of available processors 
was increased from 

4 to 20 along the y-axis. The z-axis presents the average ductility value (100 
experiments for each data point) given the criticality assignment and number of 
available processors. Results in Figure 4.3 show that COP outperforms WFD 
significantly when the system has a fewer number of available processors. This 
behavior is largely due to the fact that WFD performs its allocation decisions in a 
criticality-agnostic fashion, thereby potentially packing high-criticality tasks in the 
same processor resulting in poor performance under overload conditions. COP, on the 
other hand, spreads the high-criticality tasks among the available processors, thus 
resulting in much better performance during system overloads. As the number of 
available processors increases, both COP and WFD are able to allocate more slack in 
each processor, which leads to better overload behavior. When the number of available 
processors is increased beyond 15 all tasks become schedulable even with their 
overloaded utilization . Therefore, both COP and WFD achieve the maximum 
ductility of 0.875 (for three criticality levels, the maximum ductility is 

 
Subsequently, we relaxed the constraint of harmonic task periods. We chose the task 

periods in a uniformly random fashion from [10,100]. As with the previous 
experimental setup, we used randomly generated tasksets having 30 tasks each. The 
overloaded computation time Cio of each task was chosen in an uniformly random 
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fashion between  and , and the normal computation time Ci of each task was 
chosen in an uniformly random fashion between and 

. The obtained ductility values for COP and WFD at different criticality vectors and 
varying number of available processors is shown in Figure 4.3. As can be seen in these 
results, the behavior is quite similar to the case with harmonic task periods. However, 
under non-harmonic task periods, the obtained ductility values are observed to 
significantly change with the criticality vectors. 

We now study the performance of COP and WFD on the specific taskset shown in 
Table 4.2. Each task of type τi was assigned to criticality level {Li}, and the criticality 
vector {L1,L2,L3} was varied as before. Figure (a) shows the performance at criticality 
assignment {0,1,2}. In this scenario, the task criticalities are assigned to task priorities. 
As shown in Figure (a), both COP and WFD exhibit very similar performance since 
there is no criticality inversion. However, under a criticality assignment of {2,1,0}, the 
taskset experiences maximum criticality inversion since the criticalities are exactly in 
the reverse order of priorities. Figure (b) shows that the COP achieves significantly 
better performance compared to WFD when a small number of processors is available 
(almost five-fold in extreme cases). As the number of processors increases, the 
performance difference between COP and WFD decreases. When the number of 
available processors approaches a large enough value that is sufficient to schedule the 
overloaded tasksets themselves, WFD performs slightly better than COP. This is 
largely due to the approximate nature of the heuristics themselves. COP uses a modified 
BFD algorithm in its first phase, which can perform worse than WFD for specific 
tasksets. This shows that although the average-case Table 4.2: Task Types 

 
Task C Co T 
τ1 10 50 100 
τ2 20 100 200 
τ3 30 200 400 
    

     Table 4.2: average-case 
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Figure 4.4: Comparison at different criticality vectors 

performance of COP as shown in Figure 4.3 seems to indicate that COP always 
outperforms WFD, there do exist tasksets and processor counts at which WFD performs 
better than COP. 

Our evaluation results show that COP performs better for mixed-criticality systems 
compared to traditional WFD, by taking into account both task criticality and sizes. We 
illustrated this using the ductility metric developed in Section 4.2. Based on the 
evaluation, COP is best suited for mixed-criticality systems where (i) there are fewer 
number of processors than required to schedule the overloaded taskset itself, and (ii) 
criticality of tasks are misaligned with their 

priorities. 

Table 4.3: Deadline Misses 
Packer  Deadline misses 
 2300 

Tracks 
2400 Tracks 2500 Tracks 

WFD 0  Far Hostile  Far Hostile 
COP 0  Near 

Friendly 
 Near 

Friendly 
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4.4 Summary 
Mixed-criticality tasks introduce interesting challenges in emerging cyber-physical 
systems, where multi-core processors can be effectively leveraged. The overload 
behavior plays a vital role in such systems, as shown by our radar surveillance case 
study. In this chapter, we formally captured the desired overload behavior of mixed-
criticality systems using the ductility metric. Systems with higher ductility must 
guarantee that, under overload conditions, the high-criticality tasks continue to meet 
their deadlines by stealing resources from low-criticality tasks. We first developed a 
Zero-Slack (ZS) scheduling algorithm to provide high ductility in uniprocessor 
settings. We then showed that task allocation decisions also play a vital role in 
determining system ductility for multi-core settings. Subsequently, we developed the 
Compress-on-Overload Packing (COP) algorithm for allocating tasks to processors in 
order to improve system ductility. Evaluation results show that ZS subsumes both (i) 
the rate-monotonic scheduling (RMS) priority assignment used for maximizing 
schedulable utilization, and (ii) the Criticality-As-Priority Assignment (CAPA) 
algorithm used for better overload behavior. From a task allocation perspective, COP 
is shown to strictly dominate the standard worst-fit decreasing (WFD) heuristic used 
for load balancing. In resource-limited settings, COP can achieve up to five times 
better ductility than WFD. Finally, we applied our solution to the radar surveillance 
application and illustrated the practical benefits of using criticality-aware scheduling 
and task allocation. 
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Chapter 5 
RT SYSTEM CODE SNAPSHOTS 
5.1 CODE SNAPSHOTS  
……….ABOVE CODE DEFAULT……… 

5.2 Snapshot’s of Running System 



 
44 | P a g e  

  

 
 

 



 
45 | P a g e  

  

  



 
46 | P a g e  

  

 
  



 
47 | P a g e  

  

Chapter 6  
Conclusions and Future Work  
In this report, we have studied the problem of scheduling and synchronizing real-time 
periodic tasks on multi-core processors, using fixed-priority scheduling and static 
offline task allocation. This report presents key advancements with respect to 
utilization bounds and resource augmentation bounds for multi-core processors.  

6.1 Conclusions  
The major contributions of this report are summarized in the following categories:  

• Scheduling Independent Sequential Tasks on Multi-core Processors  

• Multi-core Task Synchronization  

More details of these individual contributions follow.  

6.1.1 Scheduling Independent Sequential Tasks 
on Multi-core Processors  
Bin-packing approaches to scheduling real-time tasks on multi-core processors have 
traditionally suffered from a 50% worst-case utilization bound. Although researchers 
had previously proposed task splitting approaches, the results from this dissertation 
were the first to increase the bound to 65% for fixed-priority scheduling. The key 
observation used in achieving this bound is that the highest-priority task has the shortest 
possible worst-case response time, hence resulting in the maximal deadline for the 
residual task to be allocated elsewhere. This observation, when combined with tasks 
being allocated in decreasing order of densities, results in the above-mentioned 
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worstcase utilization bound of 65%. The main benefit of the introduced algorithm is its 
semipartitioned nature, which results in off-line task allocation and statically defined 
task migrations. It also ensures that no more than one task per core migrates across 
cores, thereby minimizing the number of tasks being migrated. The fixed-priority 
scheduling approach also makes it practical for implementation in operating systems 
like Linux.  

6.1.2 Multi-core Task Synchronization  
The main bottleneck in effectively utilizing multi-core processors is the 
synchronization requirement between tasks. Although existing task synchronization 
protocols such as the Multiprocessor Priority Ceiling Protocol (MPCP) provide 
bounded synchronization delays, such delays can still result in non-trivial scheduling 
penalties. In this report, we made an analysis of the blocking durations resulting from 
multi-core synchronization. We individually studied two different Execution Control 
Policies (ECPs) viz. suspend and spin, each resulting in very different blocking 
durations and scheduling penalties. In order to minimize the penalty of inter-core task 
synchronization, we explained a coordinated approach to task allocation, scheduling, 
and synchronization, which leverages MPCP to provide bounded blocking delays and 
avoid inter-core task synchronization when possible. This approach was quantitatively 
evaluated for its utilization benefits and implementation overheads. The experimental 
results shows that synchronization-aware task allocation protocols could result in up to 
50% fewer processor cores compared to synchronization-agnostic approaches. These 
results follow largely from the significant scheduling penalties arising from inter-core 
synchronization, which often outweigh any bin-packing benefits from allocating 
synchronizing tasks to different processor cores.   

6.2 Future Work  
Multi-core processors are relatively new developments in the arena of real-time and 
embedded systems. There are many possible avenues for future work with regards to 
this report and the provided approach.   
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Transactional Memory is also one of the field to study upon in order to enhance the 
performance of multicore-processors. 
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