

SCHEDULING AND EXECUTION TIME
ANALYSIS FOR MULTI-CORE

ARCHITECTURE
Project Report submitted in partial fulfillment of the Degree of

Bachelor of Technology
In

Computer Science
Under the Supervision of

Dr. Vivek Kumar Sehgal
(Associate Professor)

By

Prashant Kumar
Enrollment no. : 111317

To

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

i | P a g e

Certificate
This is to certify that project report entitled “Scheduling and Execution time analysis
for multi-core architecture” submitted by Prashant Kumar in partial fulfillment for
the award of degree of Bachelor of Technology in Computer Science & Engineering to
Jaypee University of Information Technology ,Waknaghat ,Solan has been carried out
under my supervision.

This work has not been submitted partially or fully to any other University or Institute
for the award of this or any other degree or diploma.

Date: Dr. Vivek Sehgal (Associate Professor)

ii | P a g e

Acknowledgement
On the very outset of this report, I would like to extend my sincere & heartfelt
obligation towards all the personages who have helped me in this endeavor. Without
their active guidance, help, cooperation & encouragement, I would not have made
headway in the project.

I would like to show my greatest appreciation to Dr. Vivek Sehgal. I feel motivated
every time I get her encouragement. For her coherent guidance throughout the tenure
of the project, I feel fortunate to be taught by Dr. Vivek Sehgal, who gave me her
unwavering support. Besides being my mentor, she taught me that there is no substitute
for hard work.

I express my gratitude and sincere thanks to Prof. R.M.K. Sinha, Dean, Department
of Computer Science and Engineering. for allowing me to undertake this project.

I deeply express my sincere thanks to Brig. (Retd.) S. P. Ghrera, Head of Department,
Department of Computer Science and Engineering, for encouraging and allowing me
to present this project

I would also thank my parents Mr. Hriday Narayan Singh and Mrs. Saroj Devi for
teaching me how to be successful and how to achieve my goal which helped in
completing this project.

They have supported me in every step of my life.

Date: Prashant Kumar

iii | P a g e

Table of Contents

S. No. Topic Page No.

1 Certificate i
2 Acknowledgement ii
3 Abstract iv
4 Chapter 1 Introduction 1
 1.1 Report Scope

 1.2 The Future Of Synchronization

5 Chapter 2 Background 6

 2.1 Multi-processor and Multi-core Scheduling

 2.2 Multi-processor Synchronization

6 Chapter 3 Synchronization of Sequential Tasks 10

 3.1 Multiprocessor Synchronization Challenges

 3.2 Coordination among Scheduling, Allocation
 and Synchronization

 3.3 Evaluation

7 Chapter 4 Mixed Critically System and its Evaluation 23

 4.1 Code

iv | P a g e

 4.2 Output window

8 Chapter 5 Code Snapshots 39

9 Chapter 6 Conclusions and Future Work 42

v | P a g e

List of Figures
S.no Topic Page no.
 1 Report Scope 03
 2 Multi-Processor Scheduling Algorithm 08
 3 Global vs Local Synchronization 11
 4 Ceiling Protocol 13
 5 Suspended Task Execution 14-15
 6 Synchronization scheme Comparison 20
 7 Task critical zone 32

 8 Harmonic task performance 34

 9 Uniform periodic task performance 35

 10 Critical section comparison 37

vi | P a g e

Abstract
Multi-core processors are already widespread in general-purpose computing systems
with many no of manufacturers currently offering up to a ten to twelve cores per
processor. With this the systems adopting such multi-core enabled processors gain
increased computational capacity, improved parallelism, and higher performance with
respect to power consumption. However, using multicore processors in real-time
applications also introduces new challenges and opportunities for development of
efficient scheduling algorithms. In this report on scheduling issue in multi-core
processor, we study this problem of scheduling, characterize the design space, and
develop an analytical system which will provide the efficiency of few of the effective
algorithms available till today. Exploiting the nature of processor cores, the general
principle adopted in this report is to statically partition tasks among processor cores,
co-allocate multiple synchronizing tasks when possible, and introduce limited inter-
core task migration when required and scheduling them when necessary for improving
system utilization. We then analyze the overheads of inter-core task scheduling and
synchronization and provide mechanisms to efficiently allocate synchronizing
sequential tasks on multicores by co-locating such tasks on the basis of statics gathered
over developed new system of scheduling. The results of this report contribute to a
system that can efficiently utilize multi-core processors to predictably execute periodic
real-time tasks with well-defined deadlines.

1 | P a g e

Chapter 1
Introduction
Processor manufacturers have widely adopted multi-core technologies to effectively
utilize continuously increasing transistor density limitation. Multi-core technology is
considered as a practical alternative to increase the processor clock frequency, which
is limited by available instruction-level parallelism and leads to challenging
power/thermal requirements. Commercial vendors such as Intel, AMD, and Free-Scale,
already have offered various processor solutions with multiple cores on the same
package of processor. Processors with up to a ten to twelve cores per package are
already employed in production systems, while research prototypes with 80 cores-
perchip have been successfully developed by Intel with new technology of bringing
10nm transistors on the cores. Tilera has also demonstrated a 100-core chip with shared
caches, interconnects, and memory controllers. Researchers have even predicted that
chips with hundreds of processing cores on the same package could become available
in the future for general public as till today they are in experimental phase. Given the
proliferation of multi-core processors in general-purpose computing, embedded and
real-time applications such as smart phones are actively considering the use of such
processors with 4 to 8 cores on a single package of processor. These application
domains would benefit from the additional computational capacity made available at a
lower power requirement which is considered as one of the key factor in their
performance. However, effectively utilizing multi-core processors in traditional
realtime applications requires new tools and techniques for programming, scheduling,
synchronization, certification, and runtime support. In this report, we address the
scheduling and synchronization challenges arising in the context of multi-core real-
time systems. A more detailed description of the scope is available in later chapters.
The main motivation for this topic arises from the heavy computational requirements
of many hard real-time applications such as automotive engine control, driver
assistance and many more real-time application. These systems often execute control
loops and other time-critical tasks, which require absolute guarantees on meeting

2 | P a g e

deadlines for task completion. The heavy computational demand motivates the need
for employing multi-core processors, which could enable additional functionality such
as smarter algorithms for smoother control, and fully autonomous operation. The
increasing portfolio of multi-core processors also ensures long-term hardware support
for such applications, which acts as a forcing function for systems with long expected
lifetimes. In the real-time systems literature, there has been significant research on
scheduling real-time tasks on Symmetric Multi-Processors (SMPs). Although multi-
core processors largely resemble SMPs, there are some key differences such as

(i) The presence of fast interconnects between the processor cores
(ii) The potential availability of multiple levels of on-chip shared cache
(iii) The shared nature of the off-chip pins connecting to memory and I/O devices.

Traditional real-time multiprocessor scheduling algorithms are classified as either
partitioned: where tasks are not allowed to migrate across processor cores, or global:
where tasks are allowed to unrestrictedly migrate across processor cores. The
architectural characteristics of multi-core processors make them more amenable to
semi-partitioned scheduling, where a limited number of tasks are allowed to migrate
across core boundaries. In this report, we propose a semi-partitioning framework for
scheduling periodic real-time tasks, where a coordinated approach is adopted for
allocating tasks to processor cores, scheduling tasks within processor cores, and
synchronizing with other tasks. The proposed approach limits inter-core task
migrations for reducing scheduling overheads and reduces inter-core task
synchronization for containing synchronization costs multi-core systems.

1.1 Report Scope
In this report, we focus on systems with only the following characteristics:

3 | P a g e

1. Homogeneous Uniform Multi-core Processors, where each processor core has
the same architecture and operating speed as any other in the same package. This
effectively implies that the processor cores are interchangeable from a functional
perspective.
2. Periodic Task Sets, where each task is an infinite sequence of jobs released
exactly at periodic intervals. Algorithms in this report can be used for scheduling
purpose of processes as because of time and resource limitation. We do not study
servers or advanced computer processors to handle aperiodic tasks in multi-core
processors, which constitutes key future work.

3. Hard Real-Time Systems, where a job missing its deadline constitutes a failure
of the corresponding task. There is no accrued value for jobs completing late or
occasionally missing their deadlines.

Figure 1.1: Report Scope

However, in mixed-criticality setups, we do consider that the deadlines of higher
critical tasks are more important than those of lower critical tasks.

4. Implicit Deadlines, where task periods are equal to their deadlines. Our task
model abstracts the tasks for providing analysis and timing guarantees, it relies heavily
on task worst-case execution time parameters. Obtaining these parameters require
specific architectural support and heave knowledge of kernel level implementation
which will be completed in next part of the report. A few of the key design choices
considered for multi-core processors are listed below:

• Cache partitioning or Scratch pad memory: From the worst-case execution time
analysis perspective, application developers would benefit from analyzing their tasks

4 | P a g e

in isolation and measuring execution times. It would be ideal for the hardware
architecture to faithfully maintain these execution times when executed with other
tasks. Adopting cache partitioning or scratch pad memory is one decision to avoid
interference from other cores.

• Pinned pages and Memory Controller fairness: Memory stalls could take orders
of magnitude longer than cache accesses. Given that demand paging and swapping
mechanisms add unacceptable delays, it would be ideal to pin pages to memory. Given
that different threads from different cores could be issuing memory requests, it would
be useful to have a notion of fairness and bounded service times at the memory
controller level.

• Deterministic Execution Pipelines: Various mechanisms such as out-of-order
execution, hardware multi-threading, and super-scalar processors already introduce
non-determinism in the uni-core processor context. These issues transcend into
multicore embedded processors as well. Architectures with bounded interference
would significantly reduce the pessimism in worst-case execution time analysis.

1.2 THE FUTURE OF SCHEDULING AND
SYNCHRONIZATION

Transactional Memory: A transaction is a sequence of steps executed by a single
thread. Transactions are "serializable", meaning transactions appear to execute
sequentially, in a one-at-a-time order. Transactions are often (but not always) executed
"speculatively." A speculative transaction that succeeds is said to "commit," and its
effects become visible to other threads, while one that fails is said to "abort" (or cancel),
and its effects are discarded. Direct hardware support for transactions will have a
pervasive effect across the software stack, affecting how we implement and reason

5 | P a g e

about everything from low-level constructs like mutual exclusion locks, to concurrent
data structures such as skip-lists or priority queues, to system-level constructs such as
read-copy-update (RCU), all the way to run-time support for high-level language
scheduling mechanisms. Although transactions can alleviate many of the well-known
shortcomings of legacy scheduling constructs, we believe that such a pervasive change
will present new challenges and opportunities very distinct from the familiar issues we
face today.

6 | P a g e

Chapter 2
Background
Work related to this report falls in four categories:

(i) Multi-processor and multi-core scheduling
(ii) Multi-processor synchronization
(iii) Parallel task scheduling

We will now discuss the related work in first two of domains and describe the
differences with few of the available approach till date.

2.1 Multi-processor and Multi-core Scheduling
The design space of the existing literature on multi-processor real-time scheduling
algorithms is provided in figure 2.1. Multiprocessor scheduling schemes are classified
into global and partitioned systems. It has been shown that each of these categories
has its own advantages and disadvantages. Global scheduling schemes can better utilize
the available processors. These schemes appear to be best-suited for applications with
small working-set sizes. Although the last level of on-chip shared cache ultimately
determines the caching behavior of an application, task migrations tend to generate
significant additional cache traffic due to invalidations and cache-consistency
protocols. Weak processor affinity and preemption overheads therefore need to be
managed to fully exploit the benefits of global approaches. On the other hand,
partitioned Design space of Multi-Processor Real-Time Scheduling approaches are
severely limited by the low utilization bounds associated with bin-packing problems.

7 | P a g e

The advantage of these schemes is their stronger processor affinity, and hence they
provide better average response times for tasks with larger working set sizes. Global
scheduling schemes based on rate-monotonic scheduling (RMS) and earliest deadline
first (EDF) are known to suffer from the so-called Dhall effect. When heavy-weight
(high-utilization) tasks are mixed with lightweight (low-utilization) tasks, conventional
real-time scheduling schemes can yield arbitrarily low utilization bounds on
multiprocessors. By dividing the task-set into heavy-weight and lightweight tasks, the
RMUS algorithm achieves a utilization bound of 33% for fixed-priority global
scheduling. These results have been improved with a higher bound of 37.5%. The
global EDF scheduling schemes have been shown to possess a higher utilization bound
of 50%. PFair scheduling algorithms based on the notion of proportionate progress can
achieve the optimal utilization bound of 100%. Recent approaches also reduce the
number of migrations and preemptions incurred by fairness-based algorithms, further
improving their overall performance. However, despite the superior performance of
global schemes, significant research has also been devoted to partitioned schemes due
to their appeal for a significant class of applications, and their scalability to massive
multicores, while exploiting cache affinity. Partitioned multiprocessor scheduling
techniques have largely been restricted by the underlying bin-packing problem. The
utilization bound of strictly partitioned scheduling schemes is known to be 50%. This
optimal bound has been achieved for both fixed-priority algorithms and dynamic-
priority algorithms based on most modern multi-core processors provide some level of
data sharing through shared levels of the memory hierarchy. Therefore, it could be
useful to split a bounded number of tasks across processing cores to achieve a higher
system utilization. Partitioned dynamic-priority scheduling schemes with task splitting
have been explored in this context. Fixed-priority scheduling with task-splitting
support is relatively less analyzed in the literature. Recent results have provided task-
splitting algorithms in the fixed-priority context. Optimal task-splitting algorithms have
also been developed for tasks having the same period. Even though these have
subsequently achieved a higher worst-case utilization bound, the average-case
performance the provided Highest-Priority Task Splitting algorithm is still better at
around 88%. In the area of real-time multi-core scheduling, there has also been previous
work on cacheaware approaches to real-time scheduling. We focus more on exploiting
the shared caches to minimize the overhead of task splitting, rather than explicitly

8 | P a g e

choosing cachecollaborative tasks to run in parallel. The partitioning algorithm may be
modified to choose cache-collaborative tasks to be co-located on the same processing
core. However, the effects of such partitioning schemes is the subject of future research
and work.

Figure 2.1 Multiprocessor scheduling algorithms

2.2 Multi-processor Synchronization
Traditional multiprocessor scheduling algorithms have dealt mostly with independent
tasks having no interactions. Researchers like de Niz and Rajkumar have previously
developed a set of partitioning bin-packing algorithms to deploy groups of

9 | P a g e

communicating tasks onto a network of processors. The objective of these algorithms
is to minimize the number of processors needed while trying to reduce the bandwidth
required to satisfy the communication between these tasks. In this report, we are
concerned with tasks that need to synchronize on (potentially) globally shared
resources, which could be executing on different processor cores. Task synchronization
for real-time systems application is a well-known problem. Fixed-priority scheduling
schemes employ techniques like priority inheritance and priority ceiling protocols to
enable resource sharing across real-time tasks. Dynamic-priority scheduling schemes
also use mechanisms like the Stack-based Resource Policy (SRP) to handle real-time
task synchronization. In the context of fixed-priority multiprocessor scheduling, the
priority ceiling protocol has been extended to realize the multiprocessor priority ceiling
protocol (MPCP). Synchronization schemes have also been developed for other related
scheduling paradigms like PFair. Multiprocessor extensions to SRP have also been
considered and performance comparisons have been done with MPCP. This
dissertation adopts a provided approach to partitioned task scheduling by explicitly
considering MPCP synchronization penalties during task allocation and investigating
the impact of different Execution Control Policies (ECPs). Recent studies have
investigated the performance differences between spin-based and suspension-based
synchronization protocols. In these studies, their authors found that spinbased protocols
impose a smaller scheduling penalty than suspension-based ones, even under zero
preemption costs. While these studies present interesting results, the analyses they used
on suspension-based protocols can be substantially improved. In this dissertation, we
have developed new schedulability analysis for these protocols that are less pessimistic
and includes our improvements. With this new analysis, we found that the suspension-
based proto-18 cols in fact behave better than spin under low preemption costs (less
than 160µs per preemption) and longer critical sections (15 µs) than those studied.

10 | P a g e

Chapter 3
Synchronization of Sequential Tasks
In this chapter, we relax the assumption of independent tasks, which was made in above
chapter. This is an important consideration, given that task synchronization is a key
problem faced in many real-world systems. Available solutions in the uniprocessor
context like the Priority Ceiling Protocol(PCP) have been extended to the
multiprocessor scenario . In this chapter, we detail some of the scheduling penalties
arising due to multiprocessor task synchronization, and analyze them under different
execution control policies. Subsequently, we focus on a synchronization-aware
partitioned fixed-priority scheduler to accommodate these inefficiencies. In systems
with task synchronization requirements, traditional synchronization-agnostic task
allocation algorithms can introduce bottlenecks in the system by unnecessarily
distributing tasks sharing global resources across different processors.
Synchronization-agnostic scheduling can also lead to performance penalties by
unnecessarily preempting tasks holding global resources. Therefore, coordination
among task scheduling, allocation and synchronization is vital for maximizing the
performance benefits of real-time multiprocessor systems. The major contributions of
this chapter are as follows:

1. Characterization of key synchronization penalties including
(i) blocking delays on global critical sections
(ii) back-to-back execution from blocking jitter, and
(iii) multiple priority inversions due to remote resource sharing between

tasks allocated to different processors
2. Evaluation of a synchronization-aware task-allocation scheme to accommodate these

task synchronization penalties during the allocation phase

11 | P a g e

3. Analysis of the impact of different execution control policies (ECPs) on global task
synchronization, where an ECP is a mechanism to compensate for the scheduling
penalties incurred by tasks due to remote blocking, and

4. Detailed empirical study of the above-mentioned execution control policies.
Our empirical results indicate that coordinated scheduling, allocation, and
synchronization yields significant benefits (as much as 50% savings compared to
synchronization-agnostic task allocation.

3.1 Multiprocessor Synchronization Challenges
In this section, we detail the various challenges associated with synchronization in
multiprocessors. We first highlight the key differences between global and local task
synchronization.

3.1.1 Global vs Local Synchronization
The Priority Ceiling Protocol (PCP) is a real-time synchronization protocol that
minimizes the time a high-priority task waits for a low priority one to release the lock
on a shared resource, known as blocking time. When PCP is used by tasks deployed on
different processors, this blocking time can lead to idling of the processors. For
instance, consider Figure 3.1. In this figure, there are three tasks, τ1 and τ2 running in
processor P1 and τ3 running in processor P2. In addition, a resource is shared between
tasks τ2 and τ3 using PCP. The figure depicts how τ2 locks the resource at time making
τ3 wait for the lock up to time 51 when the lock is released by τ2. This waiting leaves
processor P2 idle because the only task deployed there, τ3, is waiting for the lock
(known as remote blocking). Furthermore, during the time τ2 holds the lock it suffers
multiple preemptions from the higher priority task τ1. As a consequence, τ3 misses its
deadline at time 68. Such a problem is removed if, instead of sharing the resource across
processors, it is shared on the same processor, i.e., tasks τ2 and τ3 are deployed
together, say in processor P2.

12 | P a g e

FIGURE 3.1 Global vs Local Synchronization

The key aspect of the example in Figure 3.1 is that processor utilization is wasted
during remote blocking. This is because a task that could be scheduled in the remote
processor is blocked leaving the cycles reserved for it idle. This contrasts with local
blocking because the task holding the lock uses the cycles the blocked task leaves
idle. Furthermore, such a waste of reserved cycles can be repeated for each blocked
task running on a different processor. That is, sharing a resource across n processors
can waste reserved cycles in n − 1 processors, effectively transforming this n
processors into a single processor during the execution of the critical section (only
one critical section can execute at a time). This highlights the significance of task
allocation in determining the schedulability of a task set in a multiprocessor. In
other words, the co-location of tasks that lock shared resources to the same
processor prevents reserving processors cycles that are wasted in remote blocking.
This motivates mentioned synchronization-aware task-allocation algorithm. In the
worst case, however, some degree of global resource sharing may be unavoidable.
As a result, techniques to mitigate its consequences are also needed.

13 | P a g e

3.1.2 Multiprocessor Priority Ceiling Protocol
We shall analyze and characterize the behavior of different execution control
policies (ECPs) in Section 3.2. For the sake of self-containment, we present a brief
tutorial of the multiprocessor priority ceiling protocol (MPCP) and its properties.
Let us start by reviewing some definitions. A global mutex is a mutex shared by
tasks deployed on different processing cores. The corresponding critical sections are
referred to as global critical sections (gcs). Conversely, a local mutex is only shared
between tasks on the same processing core, and the corresponding critical sections are
local critical sections. Let J′ be the highest priority job that can lock a global mutex
MG. Under MPCP, when any job J acquires MG, it will execute the gcs corresponding
to MG at a priority of πG + π′, where πG is a base priority level greater than that of any
other normally executing task in the system, and π′ is the priority of J′. This priority
ceiling is referred to as the remote priority ceiling of a gcs.
MPCP was specifically developed for minimizing remote blocking and priority
inversions when global resources are shared. We reproduce below a basic definition of
MPCP.

1) Jobs use assigned priorities unless within critical sections.
2) The uniprocessor priority ceiling protocol is used for all requests to local mutexes.
3) A job J within a global critical section (gcs) guarded by a global mutex MG has the

priority of its gcs (πG + π′).
4) A job J within a gcs can preempt another job J within a gcs if the priority of J ’s gcs is

greater than that of J ’s gcs.
5) When a job J requests a global mutex MG. MG can be granted to J by means of an

atomic transaction on shared memory, if MG is not held by another job.
6) If a request for a global mutex MG cannot be granted, the job J is added to a prioritized

queue on MG. before being preempted. The priority used as the key for queue insertion
is the normal priority assigned to J.

14 | P a g e

7) When a job J attempts to release a global mutex MG, the highest priority job JH

Figure 3.2 Ceiling protocol

waiting for MG is signaled and becomes eligible for execution at JH’s host processor
at its gcs priority. If no jobs are suspended on MG, it is released.Now, consider tasks
that must suspend themselves when waiting for global critical section resources. Many
penalties are encountered and are described next.

3.1.3 Blocking Delay on Remote Resources
MPCP executes all the gcs’s at a priority level above all normal execution segments
and local critical sections. Even under the purview of such a priority ceiling protocol,

15 | P a g e

it is not possible to guarantee that tasks do not receive transitive interference during
remote blocking as shown in Fig. 3.2. In this figure, Task τi in P1 could be suspended
on τj in P2. Task τk on P2 could be suspended on another task τl on another processor
P3. The priority ceiling of the mutex shared between τk and τl could be higher than the
priority-ceiling of the mutex shared between τi and τj. In this scenario, the release of
the critical section by τl would give control to the task τk, which preempts the task τj
executing its critical section. The task τi waiting on τj therefore suffers from the
interference due to the release of a mutex by τl.
Back-To-Back Execution of Suspending Tasks
A phenomenon that arises when tasks suspend themselves is that of “back-to-back
execution”. Consider the example shown in Fig. 3.3. There are three tasks τ1: ((2, 2,
0), 8), τ2: (4, 8), τ3 :((1, 2, 2), 64). Task τ1 and τ2 are assigned to processor P1.
Task τ3 is assigned to processor P2.It is easy to verify that τ1 and τ3 are schedulable.
However, an anomalous scheduling behavior happens with respect to task τ2. It should
be schedulable if τ1 follows a periodic release behavior, since it expects at most one
preemption from a task with its same period of 8. When τ2 is released at time instant
3, however, it faces back-to-back execution due to the remote synchronization effect of
τ1 and this leads to τ2 suffering the interference of a second arrival of τ1 leading to a
deadline miss. This back-to-back preemption arises due to the jitter in the blocking time
of task τ1 and its self-suspending behavior. Multiple Priority Inversions due to
Suspension The key scheduling inefficiency resulting from the remote blocking
behavior of tasks is that of multiple priority inversions due to lower-priority critical
sections. For example, consider the

16 | P a g e

Figure 3.3 Suspended task execution

scenario shown in Fig. 3.4. Whenever task τ2 suspends, task τ3 can get a chance to
execute, and it can request a lock on the global critical section shared with τ1. When
τ1 releases the global critical section, τ3 preempts τ2 due to its higher priority ceiling
and interferes with the normal execution of τ2 twice. In the worst case, every normal
execution-segment (of duration Ci,k1 ≤ k ≤ ni) of a task τi can be preempted at most
once by each of the lower-priority tasks τj (j > i) executing their global critical sections
released from remote processors.

17 | P a g e

Figure 3.4 Suspended task execution

3.2 Coordination Among Scheduling, Allocation,
and Synchronization
Our goal is to introduce a scheme which combines a synchronization-aware task
allocation strategy, with an efficient protocol for global task synchronization. In order
to realize this, we first describe the synchronization-aware task allocation strategy. We
then analyze different execution control policies under the multi-processor priority
ceiling protocol.

18 | P a g e

3.2.1 Synchronization-Aware Task Allocation
We consider two bin-packing algorithms: the synchronization-agnostic and the
synchronization aware algorithms. The former packs objects exclusively based on size
and the latter tries to pack together tasks that share mutexes. Both algorithms are
modifications of the best-fit decreasing (BFD) bin-packing algorithm. The BFD
algorithm orders the bins by non-increasing order of available space and the objects by
non-increasing order of object size, and tries to allocate the object at the head of this
sorted list into each of the bins in order.

When bin-packing algorithms are used to pack periodic tasks into processors, the
utilization of each task is used as its size and one minus the total utilization deployed
on a processor is used as the available space in the processors. This approach assumes
that the load of the processors can reach 100%, which for rate-monotonic scheduling is
only sometimes true. However, in the absence of additional information, such an
approach is a good indicator of which task and which processor to try next. In the
binpacking algorithms, once we select the task to be allocated and the candidate
processor for trying the allocation, we use our response-time tests to check if this
allocation is possible. When synchronization is used, an additional penalty can be
incurred if we distribute the tasks that share a mutex among two or more processors.
This is because, if we allocate these tasks to the same processor, the shared mutex
becomes a local mutex and local PCP can be used. As described in the previous section,
local synchronization eliminates the scheduling penalties associated with global task
synchronization.

The strategy of the synchronization-aware packer is two-fold. First, tasks that share a
mutex are bundled together. This bundling is transitive, i.e., if a task A shares a mutex
with task B, and B shares a mutex with C , all three of them are bundled together. Then,
each task bundle is attempted to be allocated together as a single task into a processor.
We start with just enough processors to allocate the total utilization of all the tasks.
Secondly, the task bundles that do not fit are put aside until all bundles and tasks that
fit are allocated without adding processors. Now, only bundles that did not fit into any
existing processor remain unallocated. The penalty of transforming a local mutex into

19 | P a g e

a global mutex is the additional processor utilization required for schedulability. The
cost of breaking a bundle is defined as the maximum of such penalties over all its
mutexes. The bundles are then ordered in increasing order of cost, and the bundle with
the smallest cost is selected to be broken. This bundle is broken such that it contains at
least one piece as close as possible to the size of the largest available gap among the
processors(in accordance with the BFD heuristic). If this allocation is not possible, a
new processor is added and we try again to partition the task-set. Since the addition of
new processors opens up new possibilities to allocate full bundles together, we repeat
the whole strategy again starting by retrying to fit the unallocated bundles. In the
absolute worst-case, each task may require its own processor, therefore, at most n
processors exist in the final packing of any schedulable task-set (where n is the number
of tasks).

3.2.2 Execution Control Policies
An execution control policy (ECP) is defined as a mechanism to compensate for the
scheduling penalties incurred by tasks due to remote blocking. In this work, we
consider the following execution control policies:

1. Suspend: The task is suspended during remote blocking, enabling lower priority
tasks to execute.

2. Spin: The task continues to spin on the remote critical section, preventing lower
priority tasks from executing.

Other execution control policies such as period enforcement can also be applied for
minimizing the scheduling penalty arising from synchronization. We now describe
different execution control policies and their schedulability implications.
MPCP:Suspend

The MPCP:Suspend execution control policy forces a task to suspend when it waits for
a gcs entry request to be satisfied. In this version, tasks blocking on remote resources
release the processor for other tasks executing in the system. It suffers from all the

20 | P a g e

scheduling penalties described in the previous section. We now quantify each of the
scheduling inefficiencies described in the earlier sections.

1) Remote Blocking due to Global Critical Sections: This is captured by a separate term
Br(i,j) for the j’th critical section acquired by the task τi(the r in Br(i,j) denotes remote
blocking as opposed to local blocking.

2) Back-To-Back Execution due to Suspending Tasks: In addition to the preemptions
considered by conventional Rate-Monotonic Scheduling, in the worst case, back-
toback execution can result in additional interference from each higher priority task
(τh). 3) Multiple Priority Inversions due to Global Critical Sections: The global critical
sections of each lower priority task can affect the normal execution segment of a higher
priority task. An alternative approach is to prevent back-to-back execution and multiple
priority inversions by not relinquishing the processor and spinning until the critical
section is obtained , similar to MPCP:Spin defined next.

MPCP:Spin
In the MPCP: Spin protocol, tasks spin (i.e. execute a tight loop) while waiting for a
gcs to be released. This avoids any future interference from global critical section
requests from lower priority tasks, which may be otherwise issued during task
suspension. In practice, this could be implemented as virtual spinning, where other
tasks are allowed to execute unless they try to access global critical sections. In that
case, they would be suspended. As a result, the number of priority inversions per task
is restricted to one per lower priority task. The back-to-back execution phenomenon is
also avoided since the tasks do not suspend in the middle. The time spent waiting for
the lock becomes part of the task execution time, therefore, the task never voluntarily
suspends during its execution. This improves average-case performance but cannot
guarantee worst-case improvements

21 | P a g e

3.3 Evaluation
In this section, we present an experimental evaluation of the synchronization schemes
and their integration with our synchronization-aware bin-packing algorithm. The
metric used to compare the effectiveness of each algorithm is the number of bins
needed to allocate a given task-set. The fewer the number of bins needed, the better is
the performance. In order to study the performance of synchronization algorithms in
isolation, we use the synchronization-agnostic packing algorithm. The benefits of using
a synchronization-aware packing algorithm for each of these schemes is quantified
later.

3.3.1 Experimental Setup
All our experiments evaluate how many processors of equal capacity (100% utilization)
an algorithm uses to schedule a task set. We compare the number of processors needed
among all the algorithms against the optimal packing algorithm. Given that optimal
binpacking is an intractable problem, we start with a fully-packed configuration instead
(from a bin-packing standpoint disregarding scheduling inefficiencies). We do this
processor by processor by dividing the 100% utilization into a defined number of tasks
that would fit this processor perfectly. Each of these tasks is assigned a random
utilization that all add up to 100%. Then, their periods are chosen randomly between
10ms and 100ms. Next, their execution time is calculated to match their utilization.
Now, given a selected number of critical sections per task, the execution is divided into
two types of segments: normal execution and critical section. These segments are
arranged starting with a segment of normal execution followed by one of critical section
and then another of normal execution. This arrangement continues until the task has
the required number of critical sections. Each critical section is associated with a mutex
that is locked by some chosen number of other tasks.

22 | P a g e

3.3.2 Comparison of Synchronization Schemes
We explore three main factors that affect the different ECPs: (i) the size of the critical
sections, (ii) the number of tasks per processor, and (iii) the number of lockers per
mutex.

In order to obtain a conceptual comparison of the different synchronization schemes,
we consider their behavior under zero overheads. Overheads can change, and likely
decline over time, and are platform-dependent. Later on, we explicitly specify and
evaluate the impact of different preemption costs on these different schemes.

The most important factor that affects the different ECPs is the size of a critical section.
Figure 3.5 depicts the results of conducted experiments with increasing critical section
sizes. Initially, both MPCP:Spin and MPCP:Suspend exhibit similar performance. At
longer critical section lengths however, MPCP:Spin requires many more processors
compared to MPCP:Suspend. This is mainly due to the processor time lost during
spinning on a mutex. In the case of MPCP:Suspend, this time is effectively used by the
other tasks executing on the same processor. As a general trend, however, both
MPCP:Spin and MPCP:Suspend require more processors with longer critical section
lengths. This is mainly due to increasing remote blocking terms with increasing global
critical section lengths. In the case of MPCP:Suspend, this overhead manifests as
longer priority inversions from lower-priority global critical section executions.
MPCP:Spin experiences a similar overhead due to the increased usage of CPU time
during spinning.

23 | P a g e

Figure 3.5 Comparison among synchronization schemes

Next, with increased number of tasks per processor, since this has the potential of
increasing the number of preemptions for a task and also the number of priority
inversions. Figure 3.6 depicts the number of processors needed to pack a workload of
eight fully-packed processors with two critical sections per task and two lockers per
mutex. Each critical section has a duration of 500µs. For smaller critical section
lengths, the previous experiments already indicate that the performance difference is
negligible, and this was verified. In Figure 3.6, we can observe that, as the number of
tasks per processor increases, the spin-based synchronization scheme requires more
processors compared to the suspension-based scheme. This is because having more
tasks during spinning to wait for global mutexes increases the loss of processor
utilization. The suspension scheme, however, effectively utilizes this duration to
execute other eligible tasks hosted on the same processor. In general, both the schemes
require more processors with an increasing number of tasks. With MPCP:Spin, this is
due to more tasks using CPU time for spinning, whereas with MPCP:Suspend, this is
due to more priority inversions from lower priority tasks locking global mutexes.

3.3.3 Synchronization-Aware Task Allocation
Explained synchronization-aware packing algorithm bundles together synchronizing
tasks and tries to deploy them. This strategy reduces the number of global mutexes and
resulting remote blocking. However, the bundling heuristic artificially creates larger

24 | P a g e

objects to pack, and this can lead to less efficient packing than the BFD heuristic on
the original task set. As a result, given algorithm does not always pay off. However,
when remote blocking penalties play a major role, then our synchronization-aware
packer yields significant benefits.

3.3.4 Synchronization-Aware Task Allocation
and Splitting
The approach thus far has been to perform synchronization-aware task allocation and
scheduling for avoiding the penalty of inter-core task synchronization. As described
earlier, the bin-packing bounds still apply when purely partitioned approaches are
considered. Even though object splitting enables us to split composite tasks into its
constituent subsets, the fragmentation penalty from partitioning could still remain. In
systems, where the task set is still not schedulable after the synchronization-aware task
allocation, the next step would be to attempt task splitting. Our primary goal in this
chapter has been to compare the benefits of using synchronization information during
the allocation phase, hence we have not provided a detailed empirical evaluation of this
extension of using task splitting to recover additional utilization.

From the bin-packing perspective, we will first allocate the composite tasks that are
schedulable under standard synchronization-aware allocation. We then allocate the
remaining tasks using the task splitting approach since the system is otherwise
unschedulable under the traditional bin-packing approach. In order to attempt this task
splitting, we should note that the remaining tasks might not necessarily have the highest
priority on the allocated processor. The approach to take here is to assign the split task
a deadline equal to the deadline of the currently existing highest-priority task on the
host processor. For example, consider a task τ with a computational requirement of 3
and deadline of 9 that needs to be split into τ′ and τ′′. In this scenario, τ′ is created such
that some processor Pi is maximally utilized when τ′ is added. Let the highest-priority
task on Pi have a deadline of 4. Let us say that assigning a deadline of 4 to τ′ results in
a maximum possible computational time of 1 for τ′ on Pi. The remaining task τ′′ will
now have a computational time of 2 and a deadline of 8, since τ′ can be assigned the

25 | P a g e

highest priority on Pi. By performing such a splitting, the remaining object τ′′ has a size
of 25% instead of the original object τ with a size of 33.33%. Task splitting can thus
be used an additional tool after the synchronization-aware task allocation is completed,
for scheduling the remaining tasks that are otherwise unschedulable. Further evaluating
these benefits in randomly generated task sets and quantifying the performance benefit
is part of our key future work. It should be noted that for the split tasks the critical
sections will automatically become global critical sections since they could be accessed
from any of the allocated processors for the task. Also, the migration and preemption
cost need to be included as a part of the critical section execution time, since tasks
might migrate while holding the corresponding mutex.

26 | P a g e

Chapter 4
Mixed-Criticality Systems
Evaluation

4.1 System Ductility
In order to evaluate the effectiveness of mixed-criticality scheduling, we need a metric
that captures the semantics of mixed-criticality systems. At first glance it may appear
that we have two objectives to fulfill:

(i) protect the higher-criticality tasks in case of overload
(ii) achieve high schedulable utilization.

Such multi-objective optimization problems have been studied by trade-off approaches
such as Multiple Criteria Decision Analysis and others more specific to resource
allocation like the QoS Resource Allocation Model. These approaches use some form
of quantification of user preference (e.g. user utility) in order to compare the value
obtained from assigning a unit of resource to increase one objective or another. This
encoding assumes that at different points of the unit-by-unit allocation process
assigning resources to one objective function will return the highest value and at some
other point assigning to another will returned the highest.

However, the value of the mixed-criticality objective functions cannot be characterized
as a user-preference function where the resource allocation preference switches from
one objective function to another. Specifically, there is no point in the allocation
process where getting more schedulable utilization is more valuable than protecting

27 | P a g e

higher-criticality tasks. In fact, if we consider that the main purpose of mixed-criticality
systems is to protect higher-criticality tasks from being affected by lower-criticality
ones then it is clear that this multi-objective function reduces to a hierarchical one. In
this case, the first objective is to protect critical tasks and the second one is to obtain as
much utilization as possible. In order to capture this formally, we introduce a metric
called ductility matrix to fully describe the potential behavior of the system with respect
to two factors:
(1) the level of overload faced by tasks
(2) tasks that miss their deadlines due to a given overload.
 In order to characterize the system performance, it is first essential to characterize the
possible workloads presented to the system at which performance can be measured.
Hence, we now describe the possible workloads in mixed-criticality task-sets, and
develop an encoding of the system workload.

4.1.1 System Workload
As described earlier, the task model under consideration introduces two new parameters
for each task τi: (i) an overload execution budget Cio, and (ii) a criticality value κi (with
κi ∈{ζ}). The system workload can therefore be in any of 2k states since each of the k
criticality levels can either be normal or overloaded. The workload of the system under
consideration can thus be characterized using a binary encoding called the workload
vector < W1,W2,...,Wm >, where Wk is an indicator variable that denotes the operating
state of all tasks τj with criticality value κj = k. Wk = 0 denotes that all tasks at criticality
level k are in the normal operating state. Wk = 1 denotes that a task with criticality k is
in the overload operating state.

As an example of system workloads, consider the mixed-criticality radar surveillance
task-set described with two criticality levels. In this task set, the system workload could
be in any of the 4 possible states: (i) Both hostile and friendly tracking tasks are
overloaded < 1,1 >, (ii) Hostile tracking task is overloaded while friendly tracking task
is not overloaded < 1,0 >, (iii) Friendly tracking task is overloaded while hostile

28 | P a g e

tracking task is not overloaded < 0,1 >, and (iv) Both hostile and friendly tracking tasks
are not overloaded < 0,0 >.
We can also define a scalar equivalent known as system workload (w) that is a
comparable quantity to work with, which is computed from the workload vector as:

k
w = X{wiWg}

g=1

The system workload as defined above is thus a weighted sum of the overloads faced
by different criticality levels.

As described earlier, it is desirable that there exists a strict ordering among the
overloads faced by different criticality levels. One way of guaranteeing this ordering is
to assign criticality level g a weight of wg = 2k−g, therefore, any additional overload in
criticality level g results in more system workload (at least 2k−g additional system
overload) than it is possible to add k through the maximum overloading of all lower-
criticality levels {l}∀l > g (at most X 2k−l = l=g+1 (2k−g − 1) additional system workload).
This property captures the requirement that a high criticality level be treated as more
important than all the other low-criticality levels combined. It is important to note here
that the system workload is not a quantification of the amount of workload per-se.
Instead, it quantifies the criticality of the system overload.
The idea behind the workload vector is to evaluate the scheduling decisions in the light
of the presented workload. For example, given a workload vector < 1,0,..,0 >, it is
desirable that the scheduler meets the peak resource requirements of tasks at the highest
criticality level, even if it requires stealing resources from lower criticality tasks. On
contrary, given a workload vector of < 0,0,...,0 >, the scheduler should meet the normal
resource requirements of tasks in all criticality levels.

4.1.2 Ductility
The ductility matrix is a comprehensive description of the system performance with
respect to criticality levels. To simplify the evaluation of different scheduling

29 | P a g e

algorithms, we define a scalar equivalent of the ductility matrix that can be ordered
based on the magnitude. P is a projection mapping function that maps a matrix M to
ascalar value S. Let us define ductility d, which is a scalar equivalent of the ductility
matrix D using the projection function Pd, where:

The key properties of this projection function Pd are:

1. All entries within each column belong to the same criticality level, and are therefore
2k treated equally without assigning different weights to each row (using Xdr,c). Under
r=1 non-anomalous scheduling algorithms, it can be expected that if the tasks meet their
deadlines under overloaded conditions, they will continue to meet their deadlines under
non-overloaded conditions.

2. The contribution to the final scalar Pd(D) of having a 1 in any row in column c is larger
than the contribution of having all ones in all other columns l with lower criticality.
Thus, every task in criticality level c is treated as absolutely more important than all
the tasks of all the other lower criticality levels l ∀c < l ≤ k. This is accomplished by
normalizing the contribution of each column c to the range [0,1] (by applying a scale
of) and subsequently applying a weight of to impose a strict ordering
among columns.
Note that the maximum value of d obtained using Pd will be . Therefore,
we obtain the normalized ductility ν (normalized to the range [0,1]) as:

In this chapter, we will use this normalized ductility ν to compare the performance of
various scheduling algorithms. It should be emphasized here that Ductility represents
one possible quantification of the system resiliency to critical overloads. Many other

30 | P a g e

projection functions are also possible for the ductility matrix. However, we believe that
Pd succinctly captures the mixed criticality scheduling requirements from the system
designer’s perspective. Multiple projection functions themselves are not an integral
part of the ductility matrix. The one presented here is agnostic to the type of overload
because in the absence of an overload profile it conveniently assumes the worst-case
profile of all tasks in a criticality level overloading. The interesting property is really
the level of resiliency offered to the most critical tasks under any type of overload
including the worst-case profile. The exploration of other overload profiles is left for
future work.

4.1.3 Illustration
Consider the set of four tasks. Near Hostile and Near Friendly are examples of near-
range (Home Perimeter) tracking algorithms that require a higher sampling rate (10Hz
or a 100ms period), whereas, Far Hostile and Far Friendly are examples are far-range
(Non Perimeter) tracking algorithms that only need a lower sampling rate (5Hz or a
200ms period).

The criticality levels reflect whether the tasks are used to track hostile (Near Hostile
and Far Hostile) or friendly (Near Friendly and Far Friendly) objects.

Assume partitioned rate-monotonic scheduling (say scheduling algorithm R), with
tasks Near Hostile and Far Hostile assigned to processor P1, and tasks Near Friendly
and Far Friendly assigned to processor P2. In this scenario, we will now illustrate the
development of the ductility matrix, and subsequently calculate the normalized
ductility ν.

The ductility matrix D(R) under this scenario is given by:

31 | P a g e

w1 = 3 =< 1,1 >
w2 = 2 =< 1,0 >
w3 = 3 =< 0,1 >
w4 = 0 =< 0,0 >

1. When w = w1 = 3 =< 1,1 >, both criticality levels 1 and 2 are overloaded. Under rate
monotonic scheduling, the Far Hostile task (in criticality level 1) will miss its deadline
in processor P1 (d1,1 = 0)and Far Friendly task (in criticality level 2) will miss its
deadline in processor P2 (d1,2 = 0).

2. When w = w2 = 2 =< 1,0 >, criticality level 1 is overloaded. Under rate-monotonic
scheduling, the Far Hostile task (in criticality level 1) will miss its deadline in processor
P1 (d2,1 = 0) and all other tasks will meet their deadlines (d2,2 = 1).

3. When w = w3 = 1 =< 0,1 >, criticality level 2 is overloaded. Under rate-monotonic
scheduling, the Far Friendly task (in criticality level 2) will miss its deadline in
processor P2 (d3,2 = 0) and all other tasks will meet their deadlines (d3,1 = 1).

4. When w = w4 = 0 =< 0,0 >, both criticality levels are in normal conditions. Under rate-
monotonic scheduling, all tasks meet their deadlines (d4,1 = d4,2 = 1).
The ductility is given by , since tasks in criticality level 1
meets
their deadlines only under w = 1 and w = 0 and gets a weight of (high criticality), while
criticality level 2 meets its deadlines only under w = 2 and w = 0 and gets a weight of

 (low criticality).
The normalized ductility (since the maximum ductility for two
criticality levels is
The normalized ductility metric describes the performance in the context of various
overload conditions in mixed-criticality systems. In order to improve the normalized
ductility, we need to focus on both (i) scheduling within each processor, and (ii)

32 | P a g e

allocation of tasks to processors. First, we develop the zero-slack scheduling algorithm
to improve overload performance in each individual processor.

4.2 Zero-Slack Scheduling
4.2.1 Criticality Inversion in Uniprocessors
Traditional uniprocessor scheduling algorithms such as Rate-Monotonic Scheduling
(RMS) and Earliest-Deadline First (EDF) aim at maximizing the schedulable processor
utilization, while ensuring that task deadlines are still satisfied. These algorithms
assume that tasks do not execute beyond their worst-case execution times (WCETs),
and do not have a well-defined mechanism for dealing with overloads when tasks do
overrun their WCETs. This poses a challenging problem in the context of cyber-
physical systems such as the radar surveillance setup, where task behavior is tightly
coupled with the operating physical environment, resulting in task WCETs that are
often hard to characterize and potentially highly pessimistic. RMS and EDF also assign
scheduling priorities to jobs based on either the task period (in the case of RMS) or the
absolute deadline (in the case of EDF). This leads to additional problems in mixed-
criticality settings, where scheduling priorities assigned by RMS or EDF may not
correspond to the criticality of tasks, giving more processor time to a task τlc that has
lower criticality than to a higher criticality task τhc due to its priority assignment. We
identify this behavior as criticality inversion. This behavior can lead to deadline misses
of high criticality tasks due to processing time assigned to low criticality tasks when an
overload occurs.

A straightforward approach for dealing with the criticality inversion problem is to
assign scheduling priorities based on criticality (CAPA). However, this could result in
significantly low schedulable utilization due to priority inversion arising from tasks
with low rate-monotonic scheduling priority that have a high criticality. In order to
address this issue, we have proposed a Zero-Slack scheduling algorithm for dealing

33 | P a g e

with criticality inversion in uniprocessors, while still improving schedulable processor
utilization.

Zero-Slack (ZS) scheduling is a meta-scheduling algorithm that is designed to work
with other priority-driven scheduling algorithms such as RMS. It uses the observation
that criticality inversion only matters under overload conditions. Under ZS, the
execution of each task τi is divided into two different modes: N (normal) and C (critical).
In the N mode, all active and otherwise non-suspended tasks in the system are
considered to be ready for scheduling purposes. Whereas in the C mode of task τi, all
the tasks with lower criticality than τi are considered suspended or blocked for
scheduling purposes. Our admission control algorithm then calculates the execution
time available for each mode. It is worth noting here that these two modes (normal and
critical) are scheduling modes that correspond to satisfying the normal and overload
budget requirements of tasks.

4.2.2 Scheduling Guarantee for ZS

We now define the scheduling guarantee of zero-slack scheduling. ZS performs
admission control, and if admitted 1, a task τi is guaranteed to run up to Cio if no higher
criticality task τh exceeds its Ch. From the perspective of the ductility matrix, this
translates to any taskset schedulable under ZS having a ductility matrix D(ZS) with dr,c
= 1 for all r ≥ 2c−1, since r would correspond to a workload 2k −r (where k is the number
of criticality levels), where none of the tasks τh with higher criticality than c would
exceed their Ch.

where x can be either 0 or 1 depending on the actual task set.

Task-sets with k criticality levels schedulable under ZS are thus guaranteed to have a
ductility:

34 | P a g e

The ZS guarantee follows the separation of the overloaded from the non-overloaded
situation. This separation allows us to make two strategic decisions. First, when no
overload condition is present, we should schedule the task with the objective of
maximizing utilization. And secondly, when the system experiences an overload, we
avoid modifying the utilization maximization schedule until the last instant necessary
to satisfy our guarantee.

For the purposes of this dissertation, due to space considerations, we restrict our
discussion to a self-contained description of the zero-slack rate-monotonic scheduling
algorithm (ZSRM), which we leverage for intra-processor scheduling. An interested
reader is referred to for a discussion on the generalized ZS algorithm and associated
properties.
4.2.3 Worst-Case Phasing of Dual-Mode Tasks
Key to the calculation of the zero-slack instants when rate-monotonic scheduling is
used is the phasing of the tasks. For a single-mode execution, Liu and Layland proved
that the phasing that creates the maximum preemption for a task τi happens when every
task τj|priority(τj) < priority(τi) arrives at the same time as τi. However, in a dual-mode
task, this worst-case phasing does not hold. This is because, when tasks reach their
zero-slack instants, they will suspend lower-criticality tasks. On the one hand, this
suspension acts, as intended, to avoid preemptions suffered by task τi from lower-
criticality tasks. However, it also acts as a preemption when higher-criticality tasks
suspend τi. Hence, to calculate the worst-case delay imposed by this type of preemption,
we need to align all the suspensions in the same way as the period arrivals.
Unfortunately, if we align the zero-slack instants of the higher-criticality tasks, we may
misalign the arrival of higher-priority tasks. In other words, it is not always possible to
align both the worst-case arrival of the tasks and the zero-slack instants. The
implication of this misalignment is that we cannot create a single integrated critical
zone based on the alignment of both types of preemptions. As a result, we take a
pessimistic approach by assuming that the effects of both Table 4.1: Zero-Slack-RM
Scheduled Task set alignments always happen.

35 | P a g e

Task C Co T Criticality Priority ZS
Instant

τ0 10 50 100 2 0 80
τ1 20 100 200 1 1 60
τ2 40 200 400 0 2 200

Although the worst-case phasing may not exist, it provides an upper bound on the
total interference imposed on task τi. This can be shown as follows. Before the zero-
slack instant, the maximum interference from higher-priority tasks happens when they
are released simultaneously with τi. After the zero-slack instant, τi effectively blocks all
the lower - criticality tasks. Therefore, the interference can only arise from higher-
criticality tasks. By switching all the higher-criticality tasks to their critical mode (C)
along with τi, the interference suffered by τi in the critical mode (C) is also maximized.

4.2.4 A Zero-Slack-RM Scheduling Example
Let us use an example to illustrate the characteristics of the zero-slack-RM scheduler.
Tabl presents a task set with the priorities assigned by the rate-monotonic scheduler
and the zero-slack instants calculated by our algorithm.

Due to space limitations, we will focus our discussions on τ1. Figure 4.1 presents
the critical zone of this task. In this figure, we can see the preemption from τ0 in the N
mode of τ1 for 50 units of time. After this, τ1 runs for 10 units and then reaches its zero-
slack instant at time 60, switching to C mode. In C mode, it suspends the lower-
criticality task τ0, but at the same time it is suspended by the higher-criticality task τ2.
This suspension is the pessimistic approach we use due to the absence of an exact
worst-case phasing. τ2 then runs for C2 (40) units and resumes the lower-criticality tasks.
However, in order to maintain the criticality order, this resumption is implemented as
a stack, meaning that it only returns to the previous criticality level (leaving τ0
suspended). Then, τ1 can continue executing completing its

36 | P a g e

Figure 4.1: Critical Zone of Task 1

) at time 190.

Each task in the task set has its own (pessimistic) critical zone similar to the one
presented in Figure 4.1, but they are unfortunately not necessarily aligned with each
other.

Properties of The Zero-Slack-RM Scheduler

Theorem 1. Any task set schedulable under Criticality-As-Priority Assignment(CAPA)
is also schedulable under the zero-slack scheduling scheme.

Proof. The admission control for zero-slack scheduling starts with assigning Zi = 0 for
all tasks τi. Under this assignment of zero-slack instants, the zero-slack scheduler
behaves essentially like a CAPA scheme, since whenever τi is released all the lower
criticality tasks are immediately blocked due to τi switching to its critical mode (Zi = 0).
Therefore, if the task set is schedulable under CAPA, it should be schedulable with
zero-slack instants of 0. In this scenario, we now inductively prove that each task τi
remains schedulable over subsequent iterations.

During subsequent iterations of the zero-slack calculation, additional computation
from the critical mode (C) is transferred to the normal mode (N). This transfer is
performed only to use up the slack available in the normal mode (N) up to the zero-
slack instant. Considering any task τi, this transfer of computation does not increase the
blocking terms suffered by τi from higher criticality tasks executing in their C mode.
The normal mode N of τi remains unaffected, since additional computation is

37 | P a g e

transferred to only fill up available slack. Therefore, the response time of τi only reduces
in subsequent iterations. Hence, if τi was schedulable in the previous iteration, it
continues to be schedulable. This completes the induction.

Theorem 2. Any task set schedulable under rate-monotonic scheduling is also
schedulable under the zero-slack scheduling scheme.

Proof. For any task set Γ consisting of tasks τi = (Ci,Ti) schedulable under the RM
scheduling scheme, consider an equivalent Γz with tasks τiz = (Ci,Cio,Ti,κi) with Ci = Cio

= Ci and κi = πi, where πi is the priority assigned to task τi under RM scheduling.
Scheduling the task set Γz using CAPA produces the same schedule as the RM
scheduler, since the priorities are completely aligned with the criticality under the
chosen κi values. Hence, Γz is also schedulable under CAPA, since it is schedulable
under RM scheduling. Using the property that zero-slack scheduling subsumes CAPA,
it follows that Γz is also schedulable under zero-slack scheduling.

Having considered the problem of scheduling independent mixed-criticality
sequential tasks, we now consider the problem of task synchronization in such systems.
4.3 Evaluation
The performance of mixed-criticality scheduling algorithms needs to be evaluated
along two dimensions: (i) normal schedulability, and (ii) overload behavior. Classical
bin-packing
algorithms
 0.9
 0.8
 0.7
 0.5
 0.4
 0.3

 5
Criticality Vector:
0={0,1,2},1={0,2,1}

38 | P a g e

Figure 4.2: Surface of Average Performance (Harmonic Tasks)

for (non mixed-criticality) multiprocessor systems are typically evaluated exclusively
along the dimension of normal schedulability. For any given taskset, the performance
of different binpacking algorithms along the dimension of normal schedulability can
be compared by determining the number of processors required by each algorithm.
However, in our case, we want to evaluate the effectiveness of the algorithms to extract
the maximum ductility out of a given number of processors. Therefore, the ductility
that the algorithms can obtain for different processor counts is compared. Our COP
algorithm is compared to the WFD given that it is designed to balance the load, and
hence the slack, across all the available processors.

Figure 4.2 shows the average ductility achieved using COP in comparison with the
average ductility achieved using WFD (both using Zero-Slack Rate-Monotonic
(ZSRM) within each individual processor). These results were obtained using
randomly generated tasksets having 30 tasks each. In order to isolate the effects of bin
packing from any rate-monotonic scheduling effects that may arise from non-harmonic
task period ratios, we constrained our task sets to have harmonic task periods Ti from
the set {100,200,400,800,1600}. The overloaded computation time Cio of each task was
chosen in an uniformly random fashion between and . Subse-

Figure 4.3: Surface of Average Performance (Task Periods: Uniform [10,100])

39 | P a g e

quently, the normal computation time Ci of each task was chosen in an uniformly
random fashion between and . We did not choose an overload utilization
greater than since such tasks are typically allocated to their own processors. The
overload workload was also restricted to be within a factor of two from the normal
workload to focus on more stressful task sets. The tasks were also assigned to a
criticality level in an uniformly random fashion from {L1,L2,L3}.

The criticality values for levels {L1,L2,L3} are varied along the x-axis as
{0,1,2},{0,2,1}, {1,0,2},{1,2,0},{2,0,1}, {2,1,0}. The number of available processors
was increased from

4 to 20 along the y-axis. The z-axis presents the average ductility value (100
experiments for each data point) given the criticality assignment and number of
available processors. Results in Figure 4.3 show that COP outperforms WFD
significantly when the system has a fewer number of available processors. This
behavior is largely due to the fact that WFD performs its allocation decisions in a
criticality-agnostic fashion, thereby potentially packing high-criticality tasks in the
same processor resulting in poor performance under overload conditions. COP, on the
other hand, spreads the high-criticality tasks among the available processors, thus
resulting in much better performance during system overloads. As the number of
available processors increases, both COP and WFD are able to allocate more slack in
each processor, which leads to better overload behavior. When the number of available
processors is increased beyond 15 all tasks become schedulable even with their
overloaded utilization . Therefore, both COP and WFD achieve the maximum
ductility of 0.875 (for three criticality levels, the maximum ductility is

Subsequently, we relaxed the constraint of harmonic task periods. We chose the task

periods in a uniformly random fashion from [10,100]. As with the previous
experimental setup, we used randomly generated tasksets having 30 tasks each. The
overloaded computation time Cio of each task was chosen in an uniformly random

40 | P a g e

fashion between and , and the normal computation time Ci of each task was
chosen in an uniformly random fashion between and

. The obtained ductility values for COP and WFD at different criticality vectors and
varying number of available processors is shown in Figure 4.3. As can be seen in these
results, the behavior is quite similar to the case with harmonic task periods. However,
under non-harmonic task periods, the obtained ductility values are observed to
significantly change with the criticality vectors.

We now study the performance of COP and WFD on the specific taskset shown in
Table 4.2. Each task of type τi was assigned to criticality level {Li}, and the criticality
vector {L1,L2,L3} was varied as before. Figure (a) shows the performance at criticality
assignment {0,1,2}. In this scenario, the task criticalities are assigned to task priorities.
As shown in Figure (a), both COP and WFD exhibit very similar performance since
there is no criticality inversion. However, under a criticality assignment of {2,1,0}, the
taskset experiences maximum criticality inversion since the criticalities are exactly in
the reverse order of priorities. Figure (b) shows that the COP achieves significantly
better performance compared to WFD when a small number of processors is available
(almost five-fold in extreme cases). As the number of processors increases, the
performance difference between COP and WFD decreases. When the number of
available processors approaches a large enough value that is sufficient to schedule the
overloaded tasksets themselves, WFD performs slightly better than COP. This is
largely due to the approximate nature of the heuristics themselves. COP uses a modified
BFD algorithm in its first phase, which can perform worse than WFD for specific
tasksets. This shows that although the average-case Table 4.2: Task Types

Task C Co T
τ1 10 50 100
τ2 20 100 200
τ3 30 200 400

 Table 4.2: average-case

41 | P a g e

Figure 4.4: Comparison at different criticality vectors

performance of COP as shown in Figure 4.3 seems to indicate that COP always
outperforms WFD, there do exist tasksets and processor counts at which WFD performs
better than COP.

Our evaluation results show that COP performs better for mixed-criticality systems
compared to traditional WFD, by taking into account both task criticality and sizes. We
illustrated this using the ductility metric developed in Section 4.2. Based on the
evaluation, COP is best suited for mixed-criticality systems where (i) there are fewer
number of processors than required to schedule the overloaded taskset itself, and (ii)
criticality of tasks are misaligned with their

priorities.

Table 4.3: Deadline Misses
Packer Deadline misses
 2300

Tracks
2400 Tracks 2500 Tracks

WFD 0 Far Hostile Far Hostile
COP 0 Near

Friendly
 Near

Friendly

42 | P a g e

4.4 Summary
Mixed-criticality tasks introduce interesting challenges in emerging cyber-physical
systems, where multi-core processors can be effectively leveraged. The overload
behavior plays a vital role in such systems, as shown by our radar surveillance case
study. In this chapter, we formally captured the desired overload behavior of mixed-
criticality systems using the ductility metric. Systems with higher ductility must
guarantee that, under overload conditions, the high-criticality tasks continue to meet
their deadlines by stealing resources from low-criticality tasks. We first developed a
Zero-Slack (ZS) scheduling algorithm to provide high ductility in uniprocessor
settings. We then showed that task allocation decisions also play a vital role in
determining system ductility for multi-core settings. Subsequently, we developed the
Compress-on-Overload Packing (COP) algorithm for allocating tasks to processors in
order to improve system ductility. Evaluation results show that ZS subsumes both (i)
the rate-monotonic scheduling (RMS) priority assignment used for maximizing
schedulable utilization, and (ii) the Criticality-As-Priority Assignment (CAPA)
algorithm used for better overload behavior. From a task allocation perspective, COP
is shown to strictly dominate the standard worst-fit decreasing (WFD) heuristic used
for load balancing. In resource-limited settings, COP can achieve up to five times
better ductility than WFD. Finally, we applied our solution to the radar surveillance
application and illustrated the practical benefits of using criticality-aware scheduling
and task allocation.

43 | P a g e

Chapter 5
RT SYSTEM CODE SNAPSHOTS
5.1 CODE SNAPSHOTS
……….ABOVE CODE DEFAULT………

5.2 Snapshot’s of Running System

44 | P a g e

45 | P a g e

46 | P a g e

47 | P a g e

Chapter 6
Conclusions and Future Work
In this report, we have studied the problem of scheduling and synchronizing real-time
periodic tasks on multi-core processors, using fixed-priority scheduling and static
offline task allocation. This report presents key advancements with respect to
utilization bounds and resource augmentation bounds for multi-core processors.

6.1 Conclusions
The major contributions of this report are summarized in the following categories:

• Scheduling Independent Sequential Tasks on Multi-core Processors

• Multi-core Task Synchronization

More details of these individual contributions follow.

6.1.1 Scheduling Independent Sequential Tasks
on Multi-core Processors
Bin-packing approaches to scheduling real-time tasks on multi-core processors have
traditionally suffered from a 50% worst-case utilization bound. Although researchers
had previously proposed task splitting approaches, the results from this dissertation
were the first to increase the bound to 65% for fixed-priority scheduling. The key
observation used in achieving this bound is that the highest-priority task has the shortest
possible worst-case response time, hence resulting in the maximal deadline for the
residual task to be allocated elsewhere. This observation, when combined with tasks
being allocated in decreasing order of densities, results in the above-mentioned

48 | P a g e

worstcase utilization bound of 65%. The main benefit of the introduced algorithm is its
semipartitioned nature, which results in off-line task allocation and statically defined
task migrations. It also ensures that no more than one task per core migrates across
cores, thereby minimizing the number of tasks being migrated. The fixed-priority
scheduling approach also makes it practical for implementation in operating systems
like Linux.

6.1.2 Multi-core Task Synchronization
The main bottleneck in effectively utilizing multi-core processors is the
synchronization requirement between tasks. Although existing task synchronization
protocols such as the Multiprocessor Priority Ceiling Protocol (MPCP) provide
bounded synchronization delays, such delays can still result in non-trivial scheduling
penalties. In this report, we made an analysis of the blocking durations resulting from
multi-core synchronization. We individually studied two different Execution Control
Policies (ECPs) viz. suspend and spin, each resulting in very different blocking
durations and scheduling penalties. In order to minimize the penalty of inter-core task
synchronization, we explained a coordinated approach to task allocation, scheduling,
and synchronization, which leverages MPCP to provide bounded blocking delays and
avoid inter-core task synchronization when possible. This approach was quantitatively
evaluated for its utilization benefits and implementation overheads. The experimental
results shows that synchronization-aware task allocation protocols could result in up to
50% fewer processor cores compared to synchronization-agnostic approaches. These
results follow largely from the significant scheduling penalties arising from inter-core
synchronization, which often outweigh any bin-packing benefits from allocating
synchronizing tasks to different processor cores.

6.2 Future Work
Multi-core processors are relatively new developments in the arena of real-time and
embedded systems. There are many possible avenues for future work with regards to
this report and the provided approach.

49 | P a g e

Transactional Memory is also one of the field to study upon in order to enhance the
performance of multicore-processors.

50 | P a g e

References

1. Chang, Che-Wei; Chen, Jian-Jia; Kuo, Tei-Wei; Falk, H., "Real-Time Task
Scheduling on Island-Based Multi-Core Platforms," Parallel and Distributed
Systems, IEEE Transactions on , vol.PP, no.99, pp.1,1,doi:
10.1109/TPDS.2013.2297308

2. Winter, J.A.; Albonesi, D.H., "Scheduling algorithms for npredictably
heterogeneous CMP architectures," Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on , vol.,
no., pp.42,51, 24-27 June 2008
doi: 10.1109/DSN.2008.4630069

3. http://www.sei.cmu.edu/cyber-physical/research/timing-
verification/multicore-scheduling.cfm

4. Parallel Computer Architecture A Hardware / Software Approach ,
David E. Culler, Jaswinder Pal Singh with Anoop Gupta, Morgan
Kaufmann .

5. Rahman, M.M., "Process synchronization in multiprocessor and multi-core
processor," Informatics, Electronics & Vision (ICIEV), 2012 International
Conference on , vol., no., pp.554,559, 18-19 May 2012

6. Stoif, C.; Schoeberl, M.; Liccardi, B.; Haase, J., "Hardware synchronization
for embedded multi-core processors," Circuits and Systems (ISCAS), 2011
IEEE International Symposium on , vol., no., pp.2557,2560, 15-18 May 2011

7. Joseph, A.; Dhanwada, N.R., "Process Synchronization in Multi-core Systems
Using On-Chip Memories," VLSI Design and 2014 13th International
Conference on Embedded Systems, 2014 27th International Conference on ,
vol., no., pp.210,215, 5-9 Jan. 2014

8. Lakshmanan, K.; Kato, S.; Rajkumar, R., "Scheduling Parallel Real-Time
Tasks on Multi-core Processors," Real-Time Systems Symposium (RTSS),
2010 IEEE 31st , vol., no., pp.259,268, Nov. 30 2010-Dec. 3 2010

51 | P a g e

9. Vaidya, V.G.; Sah, S.; Ranadive, P., "Optimal task scheduler for multi-core
processor," Software Technology and Engineering (ICSTE), 2010 2nd
International Conference on , vol.1, no., pp.V1-1,V1-4, 3-5 Oct. 2010

10. http://i.stanford.edu/pub/cstr/reports/cs/tr/99/1624/CS-TR-99-1624.pdf
11. http://infolab.stanford.edu/pub/cstr/reports/csl/tr/98/759/CSL-TR-98-759.pdf

