
INTERNSHIP REPORT

FEB 2021 – JUNE 2021

Internship report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology

In

COMPUTER SCIENCE ENGINEERING

By:

Divij Gupta (171268)

To

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

1

TABLE OF CONTENTS

Chapter No. Topics Page No.

Student Declaration 2

Certificate from the Supervisor 3

Acknowledgement 4

Summary 5

List of Figures 6

Glossary of terms used 7

Chapter 1 Company’s Profile 8-9

Chapter 2 Introduction to the Project 10

Chapter 3 Implementation details 11-38

Chapter 4 Results & Conclusion 39

 References 40

2

DECLARATION

I hereby declare that this submission is my own work carried out at Paymentus

Corporation, Mohali from Feb, 2021 to June, 2021 and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which has been accepted for the award of any other degree or

diploma from a university or other institute of higher learning, except where due

acknowledgment has been made in the text.

Signature

Name: Divij Gupta

Date: 22-05-2021

3

CERTIFICATE

This is to certify that Mr. Divij Gupta of Jaypee University of Information Technology

carried out the internship under my supervision at Paymentus Corporation from Feb,

2021 to June, 2021. His efforts in the development of this internship were satisfactory.

Rajiv Kumar Date: 22 May, 2021

Team Lead (Android)

Paymentus Corporation

4

ACKNOWLEDGEMENT

I take this opportunity to express my sincere thanks and deep gratitude to all those

people who extended their wholehearted cooperation and have helped me in

completing this internship successfully.

First of all, I would like to thank Mr. Rajiv Kumar, who mentored me, guided me and

challenged me.

I also thank my family and friends who greatly supported me during the course of

theInternship.

Last but not the least, I would like to thank our founders for considering me a part of

the organization and provide such a great Platform to learn and enhance my skills.

A very special thanks goes to all the faculties of Jaypee University of Information

Technology under whom guidance I have been able to excel in my career and become a

part of the Paymentus family.

Divij Gupta

171268

Jaypee University of Information Technology

5

SUMMARY

This report is all about what I learned as an intern and the work I carried out in Paymentus Corporation,

Mohali during my internship period from Feb, 2021 to June, 2021.

Paymentus is the industry’s fastest growing and most complete billing and payment network —

powering the next generation ofielectronic bill payments.

In 2004, Paymentus was born from a desire to improve the way bills get paid. Vision, innovation and exe

mplary service have propelled Paymentus to become the leading paperless electronic billing and payment

solution on the market, resulting in 1,300 clients including some ofithe largest billers in North America.

Working here has taught me that a project is not only a piece of code, it is a compilation of

uncountable number of modules and a process behind building these modules. Writing code is just a

small fraction of making an application. Planning, assigning, reviewing, fixing, testing, compiling and

tracking all this process are some other fractions of developing an application.

During this internship, I was trained on various modern and best practices used in Android Development

using Kotlin. I got hands on experience on Material Design, various Android components, MVVM

architecture, Kotlin Coroutines, Kotlin Flows, etc. Using all the acquired knowledge, I was able to create a

Card Scanner using ML kit and Camera X which is used to extract card details instantly.

Divij Gupta

May 22, 2021

6

LIST OF FIGURES

1. Material Components 13

2. Permissions in Android 15

3. Locations in Android 16

4. MVC Architecture 18

5. MVP Architecture 19

6. MVVM Architecture 20

7

ABBREVIATIONS

1. MVVM – Model View ViewModel

2. MVC – Model View Controller

3. MVP – Model View Presenter

4. VCS – Version Control System

5. KTX – Kotlin Extensions

6. ML – Machine Learning

8

Chapter - 1

COMPANY’S PROFILE

1.1. Summary

Website:

https://www.paymentus.com/

Facebook Page:

https://www.facebook.com/Paymentus

Linkedin Page:

https://www.linkedin.com/company/paymentus/mycompany/

Twitter Page:

https://twitter.com/PaymentusCorp/

1.2. About Us

In 2004, Paymentus was born from a desire to improve the way bills get paid. Vision, innovation a

nd exemplary service have propelled Paymentus to become the leading paperless electronic billing

and payment solution on the market, resulting in 1,300 clients including some ofithe largest biller

s in North America.

We know that in orderito keep ourisolutions current and relevant, we need people with the know-

how, drive and proclivity for fostering a supremely happy customer experience. Our highly commi

tted, creative employees turned an idea into a secure, SAAS-

based CustomeriEngagement and Payment Platform; one that enables direct-

bill organizations to provide a unified customer experience and boost adoption oficost-

saving electronic billing and payment services.

http://www.paymentus.com/
http://www.facebook.com/Paymentus
http://www.facebook.com/Paymentus
http://www.linkedin.com/company/paymentus/mycompany/

9

Recognized by Deloitte to be among the fastest growing North American companies in 2011, 2013

, 2014, and 2016, Paymentus consistently strives to develop better, faster, more secure, cost-

efficient billing and payment platforms. We continually seek higherivalue for ouricustomers, in bo

th solutions and service.

It’s what has led to our remarkable growth in the last decade. We succeed when our clients succee

d. They succeed when their customerirelationships are enhanced and, in turn, their customers parti

cipate in these cost-saving electronic services at high rates.

10

Chapter - 2

INTRODUCTION TO THE PROJECT

Card Scanner is a Debit / Credit card scanning app which was created using Google’s ML – Kit and

Camera X Android Library. It is able to extract card numbers and expiry date within a fraction of second.

It gives a hassle free experience to the users as they won’t have to waste time typing long card numbers.

The different technologies used are:

1) Material Design: For the design of the app

2) Lottie: For the animation used for scanning

3) Camera X: For real-time scanning of the card

4) ML Kit: For extracting text from the frames received from the camera

5) LiveData: For asynchronously observing the results

6) MVVM: The architecture of the app

11

Chapter - 3

IMPLEMENTATION DETAILS

 Android Studio

Android Studio is the authority IDE for Android application improvement, in light of IntelliJ

IDEA. On the abilities you anticipate from IntelliJ, Android Studio offers:

 Adaptable Gradle-based form the framework Construct variations and numerous apk

record age

 Code layouts to assist you with building the regular application highlights

 Rich format proofreader with help for simplified topic altering

 Build up devices to get execution, ease of use, form similarity, and different issues

ProGuard and application marking capacities

 Worked in help for Google Cloud Platform, making it simple to incorporate Google Cloud

Messaging and App Engine

What's more, substantially more Android Studio bolsters no different programming dialects of

IntelliJ for example Java, C++, and more with augmentations, for example, Go; and

Android Studio 3.0 or later backings Kotlin and "all Java 7 language highlights and a subset of

Java 8 language includes that change by stage rendition." External activities backport some Java

9 highlights. While IntelliJ that Android Studio is based on bolsters all discharged Java forms, and

Java 12, it's not satisfactory to what level Android Studio underpins Java forms up to Java 12 (the

12

documentation makes reference to fractional Java 8 help). Probably some new dialect includes up

to Java 12 are usable in Android.

 Material Design

Material Design (codenamed Quantum Paper) is a design language developed by Google in 2014.

Expanding on the "card" motifs that debuted in Google Now, Material Design uses more grid-

based layouts, responsive animations and transitions, padding, and depth effects such as lighting a

nd shadows.

Google announced Material Design on June 25, 2014, at the 2014 Google I/O conference.

The main purpose ofimaterial design is creation ofinew visual language that combines principles o

figood design with technical and scientific innovation. Designer Matías Duarte explained that, "un

like real paper, our digital material can expand and reform intelligently. Material has physical surf

aces and edges. Seams and shadows provide meaning about what you can touch." Google states th

at their new design language is based on paper and ink but implementation takes place in an adva

nced manner.

In 2018, Google detailed a revamp ofithe language, with a focus on providing more flexibility for

designers to create custom "themes" with varying geometry, colors, and typography. Google relea

sed Material Theme Editor exclusively for the macOS design application Sketch.

13

14

 Permissions in Android

Every Android app runs in a limited-

access sandbox. Ifiyour app needs to use resources or information outside ofiits own sandbox, you

can and set up a permission request that provides this access. These steps are part ofithe .

Ifiyou declare any , and ifiyour app is installed on a device that runs Android 6.0 (API level 23) o

r higher, you must request the dangerous permissions at runtime by following the steps in this gui

de.

Ifiyou don't declare any dangerous permissions, oriifiyouriapp is installed on a device that runs A

ndroid 5.1 (APIilevel 22) or lower, the permissions are automatically granted, and you don't need

to complete any ofithe remaining steps on this page.

Basic Principles:

The basic principles for requesting permissions at runtime are as follows:

o Ask for permissions in context, when the user starts to interact with the feature that require

s it.

o Don't block the user. Always provide the option to cancel an educational UIiflow related t

o permissions.

o Ifithe user denies or revokes a permission that a feature needs, gracefully degrade your ap

p so that the user can continue using youriapp, possibly by disabling the feature that requir

es the permission.

o Don't assume any system behavior. For example, don't assume that permissions appear in t

he same permission group. A permission group merely helps the system minimize the num

beriofisystem dialogs that are presented to the user when an app requests closely-

related permissions.

15

 Location in Android

One ofithe unique features ofimobile applications is location awareness. Mobile users take their d

evices with them everywhere, and adding location awareness to your app offers users a more cont

extual experience. The location APIs available in Google Play services facilitate adding location a

wareness to your app with automated location tracking, wrong-side-of-the-

street detection, geofencing, and activity recognition.

16

17

 Architectures in Android

o MVC

Developing an application by applying a software architecture pattern is always preferred by t

he developers. An gives modularity to the project files and assures that all the codes get cover

ed in Unit testing. It makes the task easy foridevelopers to maintain the software and to expan

d the features ofithe application in the future. There are some architectures that are very popul

ariamong developers and one ofithem is the Model—View—

Controller(MVC) Pattern. The MVC pattern suggests splitting the code into 3 components. W

hile creating the class/file ofithe application, the developer must categorize it into one ofithe f

ollowing three layers:

 Model: This component stores the application data. It has no knowledge about the i

nterface. The model is responsible for handling the domain logic(real-

world business rules) and communication with the database and network layers.

 View: It is the UI(User Interface) layerithat holds components that are visible on th

e screen. Moreover, it provides the visualization ofithe data stored in the Model an

d offers interaction to the user.

 Controller: This component establishes the relationship between the View and the

Model.

18

o MVP

MVP (Model — View —

Presenter) comes into the picture as an alternative to the traditional MVC (Model —

View —

Controller) architecture pattern. Using MVC as the software architecture, developers end

up with the following difficulties:

Most ofithe core business logic resides in Controller. During the lifetime ofian application,

this file grows bigger and it becomes difficult to maintain the code.

Because ofitightly-

coupled UI and data access mechanisms, both Controller and View layer falls in the same

activity or fragment. This cause problem in making changes in the features ofithe applicati

on.

It becomes hard to carry out Unit testing ofithe different layer as most ofithe part which ar

e under testing needs Android SDK components.

19

o MVVM

MVVM suggests separating the data presentation logic(Views or UI) from the core busine

ss logic part ofithe application.

The separate code layers ofiMVVM are:

 Model: This layer is responsible for the abstraction ofithe data sources. Model and

ViewModel work together to get and save the data.

 View: The purpose ofithis layer is to inform the ViewModel about the user’s action

. This layer observes the ViewModel and does not contain any kind ofiapplication l

ogic.

 ViewModel: It exposes those data streams which are relevant to the View. Moreov

er, it servers as a link between the Model and the View.

20

 Intents in Android

An intent is to perform an action on the screen. It is mostly used to start activity, send broadcast r

eceiver,start services and send message between two activities. There are two intents available in

android as Implicit Intents and Explicit Intents.

21

 Datastore

Jetpack DataStore is a data storage solution that allows you to store key-

value pairs or typed objects with . DataStore uses Kotlin coroutines and Flow to store data asynch

ronously, consistently, and transactionally.

DataStore provides two different implementations: Preferences DataStore and Proto DataStore.

Preferences DataStore stores and accesses data using keys. This implementation does not require a

predefined schema, and it does not provide type safety.

Proto DataStore stores data as instances ofia custom data type. This implementation requires you t

o define a schema using , but it provides type safety.

22

 Room Database

Jetpack DataStore is a data storage solution that allows you to store key-

value pairs or typed objects with . DataStore uses Kotlin coroutines and Flow to store data asynch

ronously, consistently, and transactionally.

DataStore provides two different implementations: Preferences DataStore and Proto DataStore.

Preferences DataStore stores and accesses data using keys. This implementation does not require a

predefined schema, and it does not provide type safety.

Proto DataStore stores data as instances ofia custom data type. This implementation requires you t

o define a schema using , but it provides type safety.

23

 Maps SDK

With the Maps SDK for Android, add maps to your including apps using Google Maps data, ma

p displays, and map gesture responses. You can also provide additional information for map locati

ons and support user interaction by adding markers, polygons, and overlays to your map.

The SDK supports both the and Java programming languages and provides additional libraries an

d extensions for features and programming techniques.

24

25

 Retrofit

Retrofit is type-

safe REST client for Android and Java which aims to make it easier to consume RESTful web ser

vices. We’ll not go into the details ofiRetrofit 1.x versions and jump onto Retrofit 2 directly whic

h has a lot ofinew features and a changed internal API compared to the previous versions.

Retrofit 2 by default leverages OkHttp as the networking layer and is built on top ofiit.

Retrofit automatically serialises the JSON response using a POJO(Plain Old Java Object) which

must be defined in advanced for the JSON Structure. To serialise JSON we need a converter to co

nvert it into Gson first. We need to add the following dependencies in our build.grade file.

Coroutines

A coroutine is a concurrency design pattern that you can use on Android to simplify code that exe

cutes asynchronously. were added to Kotlin in version 1.3 and are based on established concepts

from otherilanguages.

On Android, coroutines help to manage long-

running tasks that might otherwise block the main thread and cause your app to become unrespon

sive. Over 50% ofiprofessional developers who use coroutines have reported seeing increased pro

ductivity. This topic describes how you can use Kotlin coroutines to address these problems, enab

ling you to write cleaner and more concise app code.

Features

 Coroutines is our recommended solution for asynchronous programming on Android. Noteworthy

features include the following:

 Lightweight: You can run many coroutines on a single thread due to support for , which doesn't bl

ock the thread where the coroutine is running. Suspending saves memory over blocking while sup

porting many concurrent operations.

 Fewer memory leaks: Use to run operations within a scope.

 Builtin cancellation support: is propagated automatically through the running coroutine hierarchy.

 Jetpack integration: Many Jetpack libraries include that provide full coroutines support. Some libr

aries also provide their own that you can use for structured concurrency.

26

27

28

 Scoped Storage in Android

Android 11 (API level 30) furtherienhances the platform, giving better protection to app and useri

data on external storage. This release introduces several enhancements, such as raw file path acces

s, batch edit operations for media, and an updated UI for the Storage Access Framework.

The release also offers improvements to , which makes it easier foridevelopers to fulfill their after

they migrate to using this storage model.

Scoped storage enforcement

Apps that run on Android 11 but target Android 10 (API level 29) can still request the requestLeg

acyExternalStorage attribute. This flag allows apps to associated with scoped storage, such as gra

nting access to different directories and different types ofimedia files.

29

 Notifications in Android

Notifications provide short, timely information about events in your app while it's not in use. This

page teaches you how to create a notification with various features for Android 4.0 (API level 14

) and higher. For an introduction to how notifications appear on Android, see the . For sample cod

e that uses notifications, see the .

Notice that the code on this page uses the NotificationCompat APIs from the Android support libr

ary. These APIs allow you to add features available only on newer versions ofiAndroid while still

providing compatibility back to Android 4.0 (API level 14). However, some new features such as

the inline reply action result in a no-op on older versions.

30

 ML Kit

ML Kit is a mobile SDK that brings Google's on-

device machine learning expertise to Android and iOS apps. Use our powerful yet easy to use Vis

ion and Natural Language APIs to solve common challenges in your apps or create brand-

new useriexperiences. All are powered by Google's best-in-

class ML models and offered to you at no cost.

31

ML Kit's APIs all run on-device, allowing for real

time use cases where you want to process a live camera stream for example. This also means that

the functionality is available offline.

o Text Recognition

With ML Kit's text recognition APIs can recognize text in any Latin-

based character set. They can also be used to automate data-

entry tasks such as processing credit cards, receipts, and business cards.

Input image guidelines

 For ML Kit to accurately recognize text, input images must contain text that is

represented by sufficient pixel data. Ideally, each character should be at least 16x16

pixels. There is generally no accuracy benefit for characters to be larger than 24x24

pixels.

So, for example, a 640x480 image might work well to scan a business card that

occupies the full width of the image. To scan a document printed on letter-sized

paper, a 720x1280 pixel image might be required.

 Poor image focus can affect text recognition accuracy. If you aren't getting acceptable

results, try asking the user to recapture the image.

 If you are recognizing text in a real-time application, you should consider the overall

dimensions of the input images. Smaller images can be processed faster. To reduce

latency, ensure that the text occupies as much of the image as possible, and capture

images at lower resolutions (keeping in mind the accuracy requirements mentioned

above)

Recognize text in images

To recognize text in an image, run the text recognizer as described below.

Prepare the input image

To recognize text in an image, create an InputImage object from either a Bitmap, medi

a.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage obj

ect to the TextRecognizer's processImage method.

You can create an InputImage from different sources, each is explained below.

32

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture a

n image from a device's camera, pass the media.Image object and the image's rotation t

o InputImage.fromMediaImage().

Get an instance ofiTextRecognizer

val recognizer = TextRecognition.getClient()

Process the image

Pass the image to the process method:

val result = recognizer.process(image)

.addOnSuccessListener { visionText ->

// Task completed successfully

// ...

}

.addOnFailureListener { e ->

// Task failed with an exception

// ...

}

Extract text from blocks ofirecognized text

Ifithe text recognition operation succeeds, a object is passed to the success listener. A

Text object contains the full text recognized in the image and zero orimore TextBlock

objects.

Each TextBlock represents a rectangular block ofitext, which contains zero or more ob

jects. Each Line object contains zero or more objects, which represent words and word

-like entities such as dates and numbers.

For each TextBlock, Line, and Element object, you can get the text recognized in the r

egion and the bounding coordinates ofithe region.

33

 Camera X

CameraX is a Jetpack support library, built to help you make camera app development easier. It p

rovides a consistent and easy-to-

use API surface that works across most Android devices, with backward-

compatibility to Android 5.0 (API level 21).

While CameraX leverages the capabilities oficamera2, it uses a simpler approach that is lifecycle-

aware and is based on use cases. It also resolves device compatibility issues for you so that you d

on't have to include device-

specific code in your code base. These features reduce the amount oficode you need to write whe

n adding camera capabilities to your app.

Lastly, CameraX enables developers to leverage the same camera experiences and features that pr

einstalled camera apps provide, with as little as two lines oficode. CameraX Extensions are option

al add-

ons that enable you to add effects on supported devices. These effects include Portrait, HDR, Nig

ht, and Beauty.

Primary benefits

CameraX improves the developer experience in the following ways:

Ease ofiuse

CameraX introduces use cases, which allow you to focus on the task you need to get done instead

ofispending time managing device-specific nuances. There are several basic use cases:

: get an image on the display

: access a buffer seamlessly for use in your algorithms, such as to pass into MLKit

: save high-quality images

These use cases work across all devices running Android 5.0 (API level 21) or higher, ensuring th

at the same code works on most devices in the market.

34

Consistency across devices

Managing consistent camera behavioriacross apps is hard. There is a lot to account for, including

aspect ratio, orientation, rotation, preview size, and high-

resolution image size. With CameraX, these basic behaviors just work.

We’re investing in an automated CameraX test lab that tests a variety oficamera behaviors across

and all operating system flavors since Android 5.0 (API level 21). These tests are run on an ongoi

ng basis to identify and fix a wide range ofiissues

Our aim is to, over time, significantly reduce your test burden.

New camera experiences

CameraX has an optional add-

on, called , which allow you to access the same features and capabilities as those in the native ca

mera app that ships with the device, with just two lines oficode.

The first set oficapabilities available include Portrait, HDR, Night, and Beauty. These capabilities

are available on supported devices.

CameraX Architecture

CameraX is an addition to Jetpack that makes it easierito leverage the capabilities of . This topic c

overs the architecture ofiCameraX, including its structure, how to work with the API, how to wor

k with lifecycles, and how to combine use cases.

CameraX structure

Developers use CameraX to interface with a device’s camera through an abstraction called a use c

ase. The following use cases are currently available:

Preview: accepts a surface for displaying a preview, such as a PreviewView.

Image analysis: provides CPU-accessible buffers for analysis, such as for machine learning.

Image capture: captures and saves a photo.

Use cases can be combined and active concurrently. For example, an app can let the user view the

image that the camera sees using a preview use case, have an image analysis use case that determ

35

ines whether the people in the photo are smiling, and include an image capture use case to take a

picture once they are.

API model

To work with the library, you specify the following things:

The desired use case with configuration options.

What to do with output data by attaching listeners.

The intended flow, such as when to enable cameras and when to produce data, by binding the use

case to .

You configure use cases using set() methods and finalize them with the build() method. Each use

case object provides a set ofiuse case-

specific APIs. For example, the image capture use case provides a takePicture() method call.

Instead ofian application placing specific start and stop method calls in onResume() and onPause()

, the application specifies a lifecycle to associate the camera with, using cameraProvider.bindToLi

fecycle(). That lifecycle then informs CameraX when to configure the camera capture session and

ensures camera state changes appropriately to match lifecycle transitions.

CameraX Lifecycles

CameraX observes a lifecycle to determine when to open the camera, when to create a capture ses

sion, and when to stop and shut down. Use case APIs provide method calls and callbacks to monit

oriprogress.

As explained in , you can bind some mixes ofiuse cases to a single lifecycle. When youriapp need

s to support use cases that can't be combined, you can do one ofithe following:

Group compatible use cases together into more than one and then switch between fragments

Create a custom lifecycle component and use it to manually control the camera lifecycle

Ifiyou decouple your view and camera use cases' Lifecycle owners (for example, ifiyou use a cust

om lifecycle or a), then you must ensure that all use cases are unbound from CameraX by using P

rocessCameraProvider.unbindAll() oriby unbinding each use case individually. Alternatively, whe

36

n you bind use cases to a Lifecycle, you can let CameraX manage opening and closing the capture

session and unbinding the use cases.

Ifiall ofiyour camera functionality corresponds to the lifecycle ofia single lifecycle-

aware component such as an AppCompatActivity or an AppCompat fragment, then using the lifec

ycle ofithat component when binding all the desired use cases will ensure that the camera function

ality is ready when the lifecycle-

aware component is active, and safely disposed of, not consuming any resources, otherwise.

Analyze images

The image analysis use case provides your app with a CPU-

accessible image to perform image processing, computer vision, or machine learning inference on.

The application implements an analyze method that is run on each frame.

Implementation

Images are processed by passing an executor in which the image analysis is run and an ImageAna

lysis.Analyzer parameter to the setAnalyzer() method.

Image analysis can work in two modes: blocking and non-

blocking. Blocking modeiis enabled by calling setBackpressureStrategy() with . In this mode, the

executorireceives frames from the camera in sequential order; this means that, ifithe analyze() met

hod takes longer than the latency ofia single frame at the current framerate, the frames may no lon

ger be current since new frames are blocked from entering the pipeline until the method returns.

Non-

blocking mode is enabled by calling setBackpressureStrategy() with . In this mode, the executor re

ceives the last available frame from the camera at the time that the analyze() method is called. Ifit

he method takes longer than the latency ofia single frame at the current framerate, some frames m

ight be skipped so that the next time analyze() receives data, it gets the last frame available in the

camera pipeline.

Before returning from analyze(), close the image reference by calling image.close() to avoid block

ing the production ofifurther images (causing the preview to stall) and to avoid potentially droppi

ng images. The method must complete analysis or make a copy instead ofipassing the image refer

ence beyond the analysis method.

37

38

39

Chapter - 4

RESULTS AND CONCLUSION

This internship was indeed a pool of knowledge, not only have I gained knowledge in Android

Development but I have also learned about how development of any project takes place, how team works,

how the work of each employee is tracked, how work is distributed between different team mates, what

are the different stages of development, what are the technical problems that one faces in the development

of any project, what all things are required before the development of any project,

what the code base should be like and what norms need to be followed in the development.

The card scanner is able to scan various types of debit / credit cards. It easily scans non embossed cards

but takes some time to scan the embossed ones. This can be improved by further improvements in the

scanning algorithm used.

40

References

[1] https://developer.android.com/

[2] https://developer.android.com/training/camerax

[3] https://developers.google.com/ml-kit/vision/text-recognition

[4] https://material.io/design

[5] https://github.com/googlesamples/mlkit

https://developer.android.com/
https://developer.android.com/training/camerax
https://developers.google.com/ml-kit/vision/text-recognition
https://material.io/design
https://github.com/googlesamples/mlkit

	TABLE OF CONTENTS
	SUMMARY
	LIST OF FIGURES
	Chapter - 1
	1.1. Summary
	1.2. About Us

	Chapter - 2 INTRODUCTION TO THE PROJECT
	Chapter - 3 IMPLEMENTATION DETAILS
	 Material Design
	 Permissions in Android
	Basic Principles:

	 Location in Android
	 Architectures in Android
	o MVP
	o MVVM
	 Intents in Android
	 Datastore
	 Room Database
	 Maps SDK
	 Retrofit
	Coroutines
	Features

	 Scoped Storage in Android
	 Notifications in Android
	 ML Kit
	o Text Recognition
	Recognize text in images
	Prepare the input image
	Using a media.Image

	Get an instance ofiTextRecognizer
	Process the image
	Extract text from blocks ofirecognized text
	 Camera X
	Primary benefits
	Ease ofiuse
	Consistency across devices
	New camera experiences

	CameraX Architecture
	CameraX structure
	API model

	CameraX Lifecycles
	Analyze images
	Implementation

	Chapter - 4 RESULTS AND CONCLUSION

