
INTERNSHIP REPORT

Submitted in the fulfilment of the requirement for the degree of Bachelor of
Technology

in

Computer Science and Engineering

By

Aakanksha Jaiswal (171304)

UNDER THE SUPERVISION OF

DR. PRATEEK THAKRAL
Assistant Professor (Senior Grade)

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

Free Hand

FreeText
Mr. Akshat Kumar Singhal

DECLARATION BY CANDIDATE

I hereby declare that the work presented in this report entitled “Developing Scalable Backend Systems
in GoLang” in the fulfilment of the requirements for the award of the degree of Bachelor of Technology
in Computer Science and Engineering/Information Technology submitted in the department of
Computer Science & Engineering and Information Technology, Jaypee University of Information
Technology Waknaghat is an authentic record of my own work at ZopSmart Pvt. Ltd. carried out over a
period from February 2021 to May 2021 .

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

(Student’s Signature)
Aakanksha Jaiswal

171304

This is to certify that the above statement made by the candidate is true to the best of my knowledge.
Mr. Akshat Singhal
(Senior Backend Developer, Manager)
ZopSmart

1

Stamp

ACKNOWLEDGEMENT

I take this opportunity to express my sincere thanks and deep gratitude to all those people who
extended their wholehearted cooperation and have helped me in completing this internship
successfully.

First of all, I would like to thank Ms. Mithali R. Shetty, Mr. Akshat Singhal and Mr. Vikash
Kumar, my mentors, who mentored me, guided me and challenged me. Last but not the least, I
would like to thank our founders for considering me a part of their organization and providing such a
great Platform to learn and enhance my skills.

A very special thanks goes to all the faculties of Jaypee University of Information Technology under
whose guidance I have been able to excel in my career and become a part of the ZopSmart family.

Aakanksha Jaiswal
(CSE, 171304)

Jaypee University of Information Technology

2

TABLE OF CONTENT

Content Page
no.

DECLARATION BY THE CANDIDATE I

Table of Contents III-IV

Company’s Profile V

Chapter No. 1 INTRODUCTION 1-5

1.1 Web Application and its Components 1

1.2 Software Architecture 1-4

1.2.1 Monolith Architecture 2

1.2.2 Layered Architecture 3

1.2.3 Microservice Architecture 3

1.2.4 MVC Architecture 3-4

1.3 Software Design Patterns 5

1.3 Software Design Principles 5

Chapter No. 2 USING GoLang FOR BACKEND 6

Chapter No. 3 IMPLEMENTATION OF THE TRAINING
PROJECT

7-

3.1 Problem Statement 7-11

3

3.2 Test Driven Development 12-

3.2.1 Layered Architecture 12-14

3.2.2 Tests for Storage Layer 14-18

3.2.3 Tests for Service Layer 19-20

3.2.4 Tests for Handler Layer 21-23

3.3 Implementation for Storage Layer 23-24

3.4 Implementation for Service Layer 25-27

3.5 Implementation for Handler Layer 27-30

3.6 Communicating Using Interfaces 31

3.7 main.go file 32

Chapter No. 5 LEARNING AND CONCLUSION 33

5.1 Discussion on the Results Achieved 33

5.2 Afterworks 33

4

COMPANY’S PROFILE

Founded by Mr. Mukesh Sigh, ZopSmart expertises in the retail domain which is built on its team’s
immense knowledge in the fields of FMCG, retail, supply-chain and logistics- all the experience has
been baked into business processes that are embedded in their products. Their solution has been built
over 7 years and is handling millions of transactions every day. The suite of products are one of the
most advanced, stable and scalable solutions available in the world of retail technology.

The team consists of passionate retail professionals who hail from world’s most prestigious
educational institutions- Mukesh Singh , Founder (B.Tech. IIT Kanpur, PhD Massachusetts Institute
of Technology); Raj Pander, CEO and Co-Founder (B.Tech. IIT Kanpur, MBA Wharton School of
Business) ; and Vikash Kumar, CTO (B.Tech IIT Bombay).

ZopSmart tends to collaborate with Kroger and McAfee and is helping them shift their backend from
conventional non-performant systems to scalable, maintainable, fast and reliable solutions. It uses
google’s newly developed Go Language as the primary tool for development. Other than these,
ZopSmart owns numerous products of its own such as SmartStore (E-commerce platform), Pagenics,
Hiring Portal, Quizzing Tool, etc. One of the major users of SmartStore is Tammimi from Saudi
Arabia, which is one of the largest online stores in the UAE.

5

Chapter 01: INTRODUCTION

1.1 Web Application and its Components
Alli web-basedi databasei applicationsi havei threei primaryi components:i Ai webi
browseri (ori client),i ai webi applicationi server,i andi ai databasei server.

Web-basedi databasei applicationsi relyi oni ai databasei server,i whichi providesi thei
datai fori thei application.i Thei clientsi handlei thei presentationi logic,i whichi
controlsi thei wayi ini whichi usersi interacti withi thei application.i Ai Webi
Applicationi Serveri respondsi toi thei clientsi requesti byi interactingi withi thei
database.i Iti containsi alli thei businessi logici andi actsi asi ai mediatori betweeni thei
two.

Hence we have three layers in a web application:

● View Layer
Iti i providesi ani interfacei toi thei application,i regardlessi ofi whoi iti isi for-i thei
usersi withi ai browseri ori fori anotheri applicationi usingi Webi services.i Viewi layeri
isi thei bridgei fori gettingi thei datai ini andi outi ofi thei application.i Iti doesi noti
havei businessi logic,i iti isi morei focusedi oni thei interface.

● Business Layer
Iti acceptsi useri requestsi fromi thei browser,i processesi them,i andi determinesi thei
routesi throughi whichi thei datai willi bei accessed.i Thei workflowsi byi whichi thei
datai andi requestsi traveli throughi thei backendi layi encodedi ini ai businessi layer.

● Data Access Layer
Iti isi builti toi keepi thei codei wei usei toi pulli datai fromi ouri datai storei likei
database,i flati files,i ori webi servicesi separatei fromi businessi logici andi
presentationi code.i Sincei iti focusesi onlyi oni interactingi withi thei data,i iti cani bei
replacedi easilyi asi peri needs.i Thisi helpsi ini scalingi applicationsi well.

1.2 Software Architecture
Ini thisi project,i wei proposei ai two-stagei CNNi architecture,i wherei thei firsti
stagei detectsi humani facesi whilei thei secondi onei usesi ai lightweighti imagei
classifieri toi classifyi thei facesi detectedi ini thei firsti stagei asi ‘Withi Mask’i ori
‘Withouti Mask’i andi drawsi boundingi boxesi aroundi themi alongi withi thei
confidencei scorei ofi thei predictedi category.

1

1.2.1 Monolith Architecture
Monolithi meansi composedi alli ini onei piece.i Thei Monolithici applicationi
describesi ai single-tieredi softwarei applicationi ini whichi differenti componentsi
combinedi intoi ai singlei programi fromi ai singlei platform.

Benefits:

● Simplei toi develop.

● Simplei toi test.

● Simplei toi deploy.i

● Simplei toi scalei horizontallyi byi runningi multiplei copiesi behindi ai loadi
balancer.

Drawbacks:

● Maintenance — Ifi Applicationi isi tooi largei andi complexi toi understandi
entirely,i iti isi challengingi toi makei changesi fasti andi correctly.

● Thei sizei ofi thei applicationi cani slowi downi thei start-upi time.

● Thei entirei applicationi musti bei deployedi oni eachi update.

● Monolithici applicationsi cani alsoi bei challengingi toi scalei wheni differenti
modulesi havei conflictingi resourcei requirements.

● Reliability — Bugi ini anyi modulei (e.g.i memoryi leak)i cani potentiallyi bringi
downi thei entirei process.i Moreover,i sincei alli instancesi ofi thei applicationi
arei identical,i thati bugi impacti thei availabilityi ofi thei entirei application

● Regardlessi ofi howi easyi thei initiali stagesi mayi seem,i Monolithici
applicationsi havei difficultyi adoptingi newi andi advancedi technologies.i Sincei
changesi ini languagesi ori frameworksi affecti ani entirei application,i iti
requiresi efforti toi thoroughlyi worki withi thei appi details,i hencei iti isi costlyi
consideringi bothi timei andi effort.

Monolithici applicationsi fiti besti fori usei casesi wherei thei requirementsi arei prettyi
simple,i thei appi isi expectedi toi handlei ai limitedi amounti ofi traffic.i

2

1.2.2 Layered Architecture
Thisi patterni cani bei usedi toi structurei programsi thati cani bei decomposedi intoi groupsi
ofi subtasks,i eachi ofi whichi isi ati ai particulari leveli ofi abstraction.i Eachi layeri
providesi servicesi toi thei nexti higheri layer.

The most common layers are:
1. Delivery Layer : Thei deliveryi layeri willi receivei thei requesti andi parsei anythingi

thati isi requiredi fromi thei request.i Iti callsi thei usei casei layer,i ensuresi thati thei
responsei isi thei requiredi formati andi writesi iti toi thei responsei writer.

2. Use Case Layer : Thei usei casei layeri doesi thei businessi logici thati isi requiredi fori
thei application.i Thisi layeri willi communicatei withi thei datastorei layer.i Iti takesi
whateveri iti needsi fromi thei deliveryi layeri andi theni callsi thei datastorei layer.i
Beforei andi afteri callingi thei datastorei layer,i iti appliesi thei businessi logici thati isi
required.

3. Datastore Layer : Thei datastorei storesi thei data.i Iti cani bei anyi datai storage.i Thei
usei casei layeri isi thei onlyi layeri thati communicatesi withi thei datastore.i Thisi wayi
eachi layeri cani bei testedi independentlyi withouti dependingi oni thei other.

1.2.3 Microservice Architecture
Microservicesi arei ani approachi toi applicationi developmenti ini whichi ai largei
applicationi isi builti asi ai suitei ofi modulari servicesi (i.e.i looselyi coupledi
modules/components).i Eachi modulei supportsi ai specifici businessi goali andi usesi ai
simple,i well-definedi interfacei toi communicatei withi otheri setsi ofi services.

Insteadi ofi sharingi ai singlei databasei asi ini Monolithici application,i eachi microservicei
hasi itsi owni database.i Havingi ai databasei peri servicei isi essentiali ifi wei wanti toi
benefiti fromi microservices,i becausei iti ensuresi loosei coupling.i Eachi ofi thei servicesi
hasi itsi owni database.i Moreover,i ai servicei cani usei ai typei ofi databasei thati isi besti
suitedi toi itsi needs.

1.2.4 Model-View-Controller (MVC) Architecture
Thei MVCi architecturei isi ai softwarei architecturali patterni ini whichi thei
applicationi logici isi dividedi intoi threei componentsi oni thei basisi ofi
functionality.
These components are called:

● Models - representi howi datai isi storedi ini thei database
● Views - thei componentsi thati arei visiblei toi thei user,i suchi asi ani

3

outputi ori ai GUI
● Controllers - thei componentsi thati acti asi ani interfacei betweeni

modelsi andi views

Ati firsti glance,i thei threei tiersi mayi seemi similari toi thei
model-view-controlleri (MVC)i concept;i however,i topologicallyi theyi arei
different.i Ai fundamentali rulei ini ai threei tieri architecturei isi thei clienti tieri
neveri communicatesi directlyi withi thei datai tier;i ini ai three-tieri modeli alli
communicationi musti passi throughi thei middlei tier.i Conceptuallyi thei
three-tieri architecturei isi linear.i However,i thei [model-view-controller]i MVCi
architecturei isi triangular:i thei viewi sendsi updatesi toi thei controller,i thei
controlleri updatesi thei model,i andi thei viewi getsi updatedi directlyi fromi thei
model.

Thei MVCi architecturei isi usedi noti onlyi fori desktopi applicationsi buti alsoi
fori mobilei andi webi applications.

1.3 Software Design Patterns
Softwarei designi isi responsiblei fori thei codei leveli designi suchi as,i whati eachi modulei
isi doing,i thei classesi scope,i andi thei functionsi purposes,i etc.i Wheni usedi strategically,i
theyi cani makei ai programmeri significantlyi morei efficienti byi allowingi themi toi avoidi
reinventingi thei wheel,i insteadi usingi methodsi refinedi byi othersi already.i Mosti
commonlyi usedi softwarei designedi patternsi are:i Singleton,i Factoryi Method,i Strategy,i
Observer,i Builder,i Adapteri andi State.

1.4 Software Design Principles
SOLIDi isi ani acronymi formedi byi thei namesi ofi 5i designi principlesi centeredi aroundi
betteri codei design,i maintainability,i andi extendability.i Thei principlesi werei firsti
introducedi byi Roberti Martini (morei familiari ini thei developeri circlesi asi Unclei Bob)i
ini hisi 2000i paperi Designi Principlesi andi Designi Patterns.i Thei principlesi werei lateri
namedi byi Michaeli Feathersi whoi switchedi theiri orderi soi theyi cani formi thei
acronym.

The SOLID software principles will guide us to:
● writei codei that’si easyi toi maintain;

● makei iti easieri toi extendi thei systemi withi newi functionalityi withouti
breakingi thei existingi ones;

4

● writei codei that’si easyi toi readi andi understand.

● Single Responsibility Principle
Singlei Responsibilityi Principlei isi thei Si ini SOLID.i Singlei responsibilityi meansi
thati ouri classi (anyi entityi fori thati matter,i includingi ai methodi ini ai class,i ori ai
functioni ini structuredi programming)i shouldi onlyi doi onei thing.i Ifi ouri classi isi
responsiblei fori gettingi users’i datai fromi thei database,i iti shouldn’ti carei abouti
displayingi thei datai asi well.i Thosei arei differenti responsibilitiesi andi shouldi bei
handledi separately.

● Open/Closed Principle
Thei Open/Closedi Principlei statesi thati ai modulei shouldi bei openi fori extension,i
buti closedi fori modification.i Thati meansi onei shouldi bei ablei toi extendi ai modulei
withi newi featuresi noti byi changingi itsi sourcei code,i buti byi addingi newi codei
instead.i Thei goali isi toi keepi working,i testedi codei intact,i soi overi time,i iti
becomesi bugi resistant.

● Liskov Substitution Principle
Onei shouldi bei ablei toi substitutei ai parenti classi withi anyi ofi itsi childi classes,i
withouti breakingi thei system,i thati isi implementationsi ofi thei samei interfacei shouldi
neveri givei ai differenti result.

● Interface Segregation Principle
Alsoi knowni asi thei principlei ofi leani interface,i thei Interfacei Segregationi Principlei
statesi thati onei shouldi neveri forcei thei clienti toi dependi oni methodsi iti doesn’ti use.

● Dependency Inversion Principle
Thei dependencyi inversioni principlei statesi thati high-leveli modulesi shouldi noti
dependi oni low-leveli modulesi -i bothi shouldi dependi oni abstractions.i Byi
combiningi thei dependencyi injectioni techniquei withi thei concepti ofi bindingi ani
interfacei toi ai concretei implementation,i wei cani makei surei thati wei neveri dependi
oni concretei classes.i Thisi willi allowi usi toi easilyi changei thei implementationi ofi
specifici partsi ofi thei systemi withouti breakingi it.i Ai goodi examplei ofi thisi isi
switchingi ouri databasei driveri fromi SQLi toi NoSQL.i Ifi wei dependi oni thei
abstracti interfacesi fori accessingi thei database,i we’di bei ablei toi easilyi changei thei
specifici implementationsi andi makei surei thei systemi worksi properly.

5

Chapter 02: USING GoLang FOR BACKEND

“Buildingi High-Performancei Appsi withi Golang”

Developedi byi Googlei ini 2009,i Golangi isi ani open-sourcei languagei thati hasi beeni
steadilyi gainingi traction.i Whilei therei isi ai righti tool/languagei fori everyi job,i Golangi
ori Goi makesi ai perfecti choicei ini manyi scenarios.

Majori Benefitsi ofi Golang:

Concurrency

Moderni applicationsi arei builti fori real-timei collaborationi andi increasinglyi relyi oni
microservices.i Ai languagei thati hasi built-ini featuresi toi supporti concurrenti webi
requestsi isi highlyi desirable.i Goi managesi concurrencyi efficientlyi whilei keepingi thei
executioni straightforward.i Iti enablesi connectionsi withi millionsi ofi usersi fromi ai singlei
instancei andi interactioni withi anyi numberi ofi servicesi withouti blockingi webi requests.

Simplicity

Golangi hasi ai cleani syntax.i Toi keepi iti simple,i Goi forgoesi manyi featuresi suchi asi
classes,i inheritance,i andi annotations.i Whilei thisi couldi leadi toi ai fewi extrai linesi ofi
code,i Golangi ensuresi clarity.i Thei languagei becomesi ani ideali choicei ifi youi havei ai
veryi largei codebasei withi differenti teamsi workingi oni differenti segmentsi ofi thei code.i
Modificationsi andi codei maintenancei becomesi ai breezei comparedi toi languagesi likei
Java.

Performance

Golangi racesi pasti high-leveli languagesi likei Javai ini performance.i Becausei iti cani bei
compiledi directlyi andi doesi noti needi ai virtuali machinei toi converti thei codei intoi
machine-readablei format,i Goi codei executesi fasti similari toi JavaScripti oni ai webi page.i
Moreover,i sub-millisecondi garbagei collectioni pausesi ini Golangi helpsi toi avoidi loadingi
delaysi boostingi applicationi speed.

6

Chapter 03: IMPLEMENTATION OF THE TRAINING PROJECT

3.1 Problem Statement
The Problem statement given was:

Create a service to manage a multi brand car dealership. The dealer works with only the
following brands:

● Tesla
● Porsche
● Ferrari
● Mercedes
● BMW

This dealership handles 3 types of engines/motors (will be referred as engine henceforth):
● Petrol
● Diesel
● Electric

Engine details will have
● Displacement - for petrol and diesel
● Number of cylinders - for petrol and diesel
● Range(in km) - for electric only

Following are the requirements for the application:

The Dealer can add models for the above brands. Following information are required for adding:
● Name
● Year
● Fuel type
● Brand
● Engine details

View all models available. There should be an option to view engine details. Output:
● Name
● Year
● Fuel
● Brand Name
● Engine details

View model by brand. There should be an option to view engine details. Output:

7

● Name
● Year
● Fuel
● Engine details

Update the model details. Following details can be updated:
● Year
● Fuel type
● Engine details

Delete a model. When a model is deleted, the engine details should also be deleted.

Technical details
● Brand and fuel type will be constant and cannot be changed.
● Brand table should be pre-populated and no new brands can be added
● New fuel types cannot be added.

Authorisation Header
apikey - 5n6j76bv4v3h3ji4b5v6

GET /model?include=engine

Query Params: include=engine (optional)

Response: 200

[
{

"name" : "",
"year" : 1999,
"fuelType" : "diesel",
"brand" : "",
"engine" : {

"displacement" : 1000,
"numberOfCylinders" : 4

}

8

},
{

"name" : "",
"year" : 1999,
"fuelType" : "electric",
"brand" : "",
"engine" : {

"range" : 800
}

}
]

GET /model?brand={name}

Response: 200

[
{

"name" : “Carrera GT",
"year" : 1999,
"fuelType" : "petrol",
"brand" : "",
"engine" : {

"displacement" : 1000,
"numberOfCylinders" : 4

}
},
{

"name" : "Taycan Turbo S",
"year" : 2020,
"fuelType" : "electric",
"brand" : "",
"engine" : {

"range" : 400
}

}
]

9

GET /model/{id}

Response:

{
"name" : "",
"year" : 1999,
"fuelType" : "electric",
"brand" : "",
"engine" : {

"range" : 800
}

}

POST /model

Request Body:
{

"name" : "",
"year" : 1999,
"fuelType" : "petrol",
"brand" : "",
"engine" : {

"displacement" : 1000,
"numberOfCylinders" : 4

}
}

Response: 201

DELETE /model/{id}

Response: 204

10

PUT /model/{id}

This should support partial update of data i.e. only brand etc.

Request Body:

{
"year" : 1999,
"fuelType" : "",
"brand" : "",
"engine" : {

"displacement" : 1000,
"numberOfCylinders" : 4

}
}

Response: 200

NOTE:
● Invalid request should send 400
● Invalid method should send 405
● Invalid path should send 404
● For any unknown error, return 500 along with error message

11

3.2 Test Driven Development
Test-driveni developmenti (TDD)i isi ai softwarei developmenti processi relyingi oni softwarei
requirementsi beingi convertedi toi testi casesi beforei softwarei isi fullyi developed,i andi
trackingi alli softwarei developmenti byi repeatedlyi testingi thei softwarei againsti alli testi
cases.i Thisi isi opposedi toi softwarei beingi developedi firsti andi testi casesi createdi later.

3.2.1 Layered Architecture
The three independent layers are delivery, use-case and datastore.
● Delivery Layer: Thei deliveryi layeri willi receivei thei requesti andi

parsei anythingi thati isi requiredi fromi thei request.i Iti callsi thei usei
casei layer,i ensuresi thati thei responsei isi thei requiredi formati andi
writesi iti toi thei responsei writer.

● Use-Case Layer: Thei usei casei layeri doesi thei businessi logici thati
isi requiredi fori thei application.i Thisi layeri willi communicatei withi
thei datastorei layer.i Iti takesi whateveri iti needsi fromi thei deliveryi
layeri andi theni callsi thei datastorei layer.i Beforei andi afteri callingi
thei datastorei layer,i iti appliesi thei businessi logici thati isi required.

● Datastore Layer: Thei datastorei storesi thei data.i Iti cani bei anyi
datai storage.i Thei usei casei layeri isi thei onlyi layeri thati
communicatesi withi thei datastore.i Thisi wayi eachi layeri cani bei
testedi independentlyi withouti dependingi oni thei other.

Sincei eachi layeri isi independenti ofi eachi other,i ifi thei applicationi growsi toi havei gRPCi
support,i onlyi thei deliveryi layeri willi change.i Datastorei andi usei casei layeri willi remaini
thei same.i Eveni wheni therei isi ai changei ini datastore,i thei entirei applicationi needi noti
change.i Onlyi thei datastorei layeri willi change.i Thisi way,i iti isi easyi toi isolatei anyi bugs,i
maintaini thei codei andi growi thei application.

Each layer will communicate with each other through interfaces.

● Schema for Engine and Model entities:

12

● Connecting to mysql:

● Defining constants:

13

● Defining custom errors:

3.2.2 Tests for Storage Layer
For Storage Layer, we use SQL mocks that mocks the behaviour of
mysql-driver for us.
Test for Engine Store:

14

15

16

Test for Model Store:

17

18

3.2.3 Tests for Service Layer
● Test GetAll

● Test Get model by ID

19

● Test Post model

● Test Delete

20

3.2.4 Tests for Handler Layer
● Test Get All

● Test Get by ID

21

● Test Post

● Test Update

22

● Test Delete

3.3 Implementation for Storage Layer

23

24

3.3 Implementation for Service Layer

25

26

3.5 Implementation for Handler Layer

27

28

29

30

3.6 Communicating Using Interfaces

31

main.go

32

Chapter 04: LEARNING AND CONCLUSION

4.1 Discussion on the Results Achieved
The following results were achieved upon the implementation of this project:

● All tests were passed, include the edge cases
● Code coverage was 100%

4.2 Afterworks
● From this Project we learnt principles of system designing, architectures, patterns and

embrace the power of golang when it comes to developing scalable backend systems,
● After this project, I was assigned to the SmartStore Ecommerce platform wherein I

migrated a php service to golang, using the same design principles and architecture.

33

