INTERNSHIP REPORT

Submitted in the fulfilment of the requirement for the degree of Bachelor of
Technology

in
Computer Science and Engineering
By

Aakanksha Jaiswal (171304)

UNDER THE SUPERVISION OF

Mr. Akshat Kumar Singhal

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

Free Hand

FreeText
Mr. Akshat Kumar Singhal

DECLARATION BY CANDIDATE

I hereby declare that the work presented in this report entitled “Developing Scalable Backend Systems
in GoLang” in the fulfilment of the requirements for the award of the degree of Bachelor of Technology
in Computer Science and Engineering/Information Technology submitted in the department of
Computer Science & Engineering and Information Technology, Jaypee University of Information
Technology Waknaghat is an authentic record of my own work at ZopSmart Pvt. Ltd. carried out over a
period from February 2021 to May 2021 .

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

W

(Student’s Signature)
Aakanksha Jaiswal
171304

This is to certify that the above statement made by the candidate is true to the best of my knowledge.
Mr. Akshat Singhal

(Senior Backend Developer, Manager)

ZopSmart

Stamp

ACKNOWLEDGEMENT

I take this opportunity to express my sincere thanks and deep gratitude to all those people who
extended their wholehearted cooperation and have helped me in completing this internship
successfully.

First of all, I would like to thank Ms. Mithali R. Shetty, Mr. Akshat Singhal and Mr. Vikash
Kumar, my mentors, who mentored me, guided me and challenged me. Last but not the least, I
would like to thank our founders for considering me a part of their organization and providing such a
great Platform to learn and enhance my skills.

A very special thanks goes to all the faculties of Jaypee University of Information Technology under
whose guidance I have been able to excel in my career and become a part of the ZopSmart family.

Aakanksha Jaiswal
(CSE, 171304)
Jaypee University of Information Technology

TABLE OF CONTENT

Content

DECLARATION BY THE CANDIDATE
Table of Contents

Company’s Profile

Chapter No. 1 INTRODUCTION

1.1 Web Application and its Components
1.2 Software Architecture
1.2.1 Monolith Architecture
1.2.2 Layered Architecture
1.2.3 Microservice Architecture
1.2.4 MVC Architecture
1.3 Software Design Patterns

1.3 Software Design Principles

Chapter No. 2 USING GoLang FOR BACKEND

Chapter No. 3 IMPLEMENTATION OF THE TRAINING
PROJECT

3.1 Problem Statement

Page
no.

[I-1IV

1-5

1-4

7-11

3.2 Test Driven Development

3.2.1 Layered Architecture

3.2.2 Tests for Storage Layer

3.2.3 Tests for Service Layer

3.2.4 Tests for Handler Layer
3.3 Implementation for Storage Layer
3.4 Implementation for Service Layer
3.5 Implementation for Handler Layer
3.6 Communicating Using Interfaces

3.7 main.go file

Chapter No. 5 LEARNING AND CONCLUSION

5.1 Discussion on the Results Achieved

5.2 Afterworks

12-
12-14
14-18
19-20
21-23
23-24
25-27
27-30

31

32

33
33
33

COMPANY’S PROFILE

Founded by Mr. Mukesh Sigh, ZopSmart expertises in the retail domain which is built on its team’s
immense knowledge in the fields of FMCQG, retail, supply-chain and logistics- all the experience has
been baked into business processes that are embedded in their products. Their solution has been built
over 7 years and is handling millions of transactions every day. The suite of products are one of the
most advanced, stable and scalable solutions available in the world of retail technology.

The team consists of passionate retail professionals who hail from world’s most prestigious
educational institutions- Mukesh Singh , Founder (B.Tech. IIT Kanpur, PhD Massachusetts Institute
of Technology); Raj Pander, CEO and Co-Founder (B.Tech. IIT Kanpur, MBA Wharton School of
Business) ; and Vikash Kumar, CTO (B.Tech IIT Bombay).

ZopSmart tends to collaborate with Kroger and McAfee and is helping them shift their backend from
conventional non-performant systems to scalable, maintainable, fast and reliable solutions. It uses
google’s newly developed Go Language as the primary tool for development. Other than these,
ZopSmart owns numerous products of its own such as SmartStore (E-commerce platform), Pagenics,
Hiring Portal, Quizzing Tool, etc. One of the major users of SmartStore is Tammimi from Saudi
Arabia, which is one of the largest online stores in the UAE.

Chapter 01: INTRODUCTION

1.1 Web Application and its Components
All web-based database applications have three primary components: A web
browser (or client), a web application server, and a database server.

Web-based database applications rely on a database server, which provides the
data for the application. The clients handle the presentation logic, which
controls the way in which wusers interact with the application. A Web
Application Server responds to the clients request by interacting with the
database. It contains all the business logic and acts as a mediator between the
two.

Hence we have three layers in a web application:

e View Layer
It provides an interface to the application, regardless of who it is for- the
users with a browser or for another application using Web services. View layer
is the bridge for getting the data in and out of the application. It does not
have business logic, it is more focused on the interface.

e Business Layer
It accepts user requests from the browser, processes them, and determines the
routes through which the data will be accessed. The workflows by which the
data and requests travel through the backend lay encoded in a business layer.

e Data Access Layer
It is built to keep the code we use to pull data from our data store like
database, flat files, or web services separate from business logic and
presentation code. Since it focuses only on interacting with the data, it can be
replaced easily as per needs. This helps in scaling applications well.

1.2 Software Architecture

In this project, we propose a two-stage CNN architecture, where the first
stage detects human faces while the second one uses a lightweight image
classifier to classify the faces detected in the first stage as ‘With Mask’ or
‘Without Mask’ and draws bounding boxes around them along with the
confidence score of the predicted category.

1.2.1 Monolith Architecture

Monolith means composed all in one piece. The Monolithic application
describes a single-tiered software application in which different components
combined into a single program from a single platform.

Benefits:

e Simple to develop.
e Simple to test.
e Simple to deploy.

e Simple to scale horizontally by running multiple copies behind a load
balancer.

Drawbacks:

® Maintenance — If Application is too large and complex to understand
entirely, it is challenging to make changes fast and correctly.
e The size of the application can slow down the start-up time.

e The entire application must be deployed on each update.

e Monolithic applications can also be challenging to scale when different
modules have conflicting resource requirements.

® Reliability — Bug in any module (e.g. memory leak) can potentially bring
down the entire process. Moreover, since all instances of the application
are identical, that bug impact the availability of the entire application

e Regardless of how easy the initial stages may seem, Monolithic
applications have difficulty adopting new and advanced technologies. Since
changes in languages or frameworks affect an entire application, it
requires effort to thoroughly work with the app details, hence it is costly
considering both time and effort.

Monolithic applications fit best for use cases where the requirements are pretty
simple, the app is expected to handle a limited amount of traffic.

1.2.2 Layered Architecture

This pattern can be used to structure programs that can be decomposed into groups
of subtasks, each of which is at a particular level of abstraction. Each layer
provides services to the next higher layer.

The most common layers are:

1. Delivery Layer : The delivery layer will receive the request and parse anything
that is required from the request. It calls the use case layer, ensures that the
response is the required format and writes it to the response writer.

2. Use Case Layer : The use case layer does the business logic that is required for
the application. This layer will communicate with the datastore layer. It takes
whatever it needs from the delivery layer and then calls the datastore layer.
Before and after calling the datastore layer, it applies the business logic that is
required.

3. Datastore Layer : The datastore stores the data. It can be any data storage. The
use case layer is the only layer that communicates with the datastore. This way
each layer can be tested independently without depending on the other.

1.2.3 Microservice Architecture

Microservices are an approach to application development in which a large
application is built as a suite of modular services (i.e. loosely coupled
modules/components). Each module supports a specific business goal and uses a
simple, well-defined interface to communicate with other sets of services.

Instead of sharing a single database as in Monolithic application, each microservice
has its own database. Having a database per service is essential if we want to
benefit from microservices, because it ensures loose coupling. Each of the services
has its own database. Moreover, a service can use a type of database that is best
suited to its needs.

1.2.4 Model-View-Controller (MVC) Architecture

The MVC architecture is a software architectural pattern in which the
application logic is divided into three components on the basis of
functionality.

These components are called:

® Models - represent how data is stored in the database
e Jiews - the components that are visible to the user, such as an

1.3

14

output or a GUI
e Controllers - the components that act as an interface between
models and views

At first glance, the three tiers may seem similar to the
model-view-controller (MVC) concept; however, topologically they are
different. A fundamental rule in a three tier architecture is the client tier
never communicates directly with the data tier; in a three-tier model all
communication must pass through the middle tier. Conceptually the
three-tier architecture is linear. However, the [model-view-controller] MVC
architecture is triangular: the view sends updates to the controller, the
controller updates the model, and the view gets updated directly from the
model.

The MVC architecture is used not only for desktop applications but also
for mobile and web applications.

Software Design Patterns

Software design is responsible for the code level design such as, what each module
i1s doing, the classes scope, and the functions purposes, etc. When used strategically,
they can make a programmer significantly more efficient by allowing them to avoid
reinventing the wheel, instead using methods refined by others already. Most
commonly used software designed patterns are: Singleton, Factory Method, Strategy,
Observer, Builder, Adapter and State.

Software Design Principles

SOLID is an acronym formed by the names of 5 design principles centered around
better code design, maintainability, and extendability. The principles were first
introduced by Robert Martin (more familiar in the developer circles as Uncle Bob)
in his 2000 paper Design Principles and Design Patterns. The principles were later
named by Michael Feathers who switched their order so they can form the
acronym.

The SOLID software principles will guide us to:
e write code that’s easy to maintain;

e make it easier to extend the system with new functionality without
breaking the existing ones;

e write code that’s easy to read and understand.

e Single Responsibility Principle
Single Responsibility Principle is the S in SOLID. Single responsibility means
that our class (any entity for that matter, including a method in a class, or a
function in structured programming) should only do one thing. If our class is
responsible for getting users’ data from the database, it shouldn’t care about
displaying the data as well. Those are different responsibilities and should be
handled separately.

e Open/Closed Principle
The Open/Closed Principle states that a module should be open for extension,
but closed for modification. That means one should be able to extend a module
with new features not by changing its source code, but by adding new code
instead. The goal is to keep working, tested code intact, so over time, it
becomes bug resistant.

e Liskov Substitution Principle
One should be able to substitute a parent class with any of its child classes,
without breaking the system, that is implementations of the same interface should
never give a different result.

e Interface Segregation Principle
Also known as the principle of lean interface, the Interface Segregation Principle
states that one should never force the client to depend on methods it doesn’t use.

e Dependency Inversion Principle

The dependency inversion principle states that high-level modules should not
depend on low-level modules - both should depend on abstractions. By
combining the dependency injection technique with the concept of binding an
interface to a concrete implementation, we can make sure that we never depend
on concrete classes. This will allow us to easily change the implementation of
specific parts of the system without breaking it. A good example of this is
switching our database driver from SQL to NoSQL. If we depend on the
abstract interfaces for accessing the database, we’d be able to easily change the
specific implementations and make sure the system works properly.

Chapter 02: USING GoLang FOR BACKEND

“Building High-Performance Apps with Golang”

Developed by Google in 2009, Golang is an open-source language that has been
steadily gaining traction. While there is a right tool/language for every job, Golang
or Go makes a perfect choice in many scenarios.

Major Benefits of Golang:
Concurrency

Modern applications are built for real-time collaboration and increasingly rely on
microservices. A language that has built-in features to support concurrent web
requests is highly desirable. Go manages concurrency efficiently while keeping the
execution straightforward. It enables connections with millions of users from a single
instance and interaction with any number of services without blocking web requests.

Simplicity

Golang has a clean syntax. To keep it simple, Go forgoes many features such as
classes, inheritance, and annotations. While this could lead to a few extra lines of
code, Golang ensures clarity. The language becomes an ideal choice if you have a
very large codebase with different teams working on different segments of the code.
Modifications and code maintenance becomes a breeze compared to languages like
Java.

Performance

Golang races past high-level languages like Java in performance. Because it can be
compiled directly and does not need a virtual machine to convert the code into
machine-readable format, Go code executes fast similar to JavaScript on a web page.
Moreover, sub-millisecond garbage collection pauses in Golang helps to avoid loading
delays boosting application speed.

Chapter 03: IMPLEMENTATION OF THE TRAINING PROJECT

3.1 Problem Statement
The Problem statement given was:

Create a service to manage a multi brand car dealership. The dealer works with only the
following brands:

Tesla

Porsche

Ferrari

Mercedes

BMW

This dealership handles 3 types of engines/motors (will be referred as engine henceforth):
e Petrol
e Diesel
e Electric

Engine details will have
e Displacement - for petrol and diesel
e Number of cylinders - for petrol and diesel
e Range(in km) - for electric only

Following are the requirements for the application:

The Dealer can add models for the above brands. Following information are required for adding:
Name

Year

Fuel type

Brand

Engine details

View all models available. There should be an option to view engine details. Output:
Name

Year

Fuel

Brand Name

Engine details

View model by brand. There should be an option to view engine details. Output:

Name

Year

Fuel

Engine details

Update the model details. Following details can be updated:
® Year
e Fuel type
e Engine details

Delete a model. When a model is deleted, the engine details should also be deleted.

Technical details
e Brand and fuel type will be constant and cannot be changed.
e Brand table should be pre-populated and no new brands can be added
e New fuel types cannot be added.

Authorisation Header
apikey - 5n6j76bv4v3h3ji4b5v6

GET /model?include=engine
Query Params: include=engine (optional)

Response: 200

"name" : "",
"year" : 1999,
"fuelType" : "diesel",
"brand" : "",
"engine" : {
"displacement" : 1000,
"numberOfCylinders" : 4

"name Al . mwn ,

"year" : 1999,
"fuelType" : "electric",
"brand" : "",
"engine" : {

"range" : 800

GET /model?brand={name}

Response: 200

"name" : “Carrera GT",
"year" : 1999,
"fuelType" : "petrol",
"brand" : "",
"engine" : {
"displacement" : 1000,
"numberOfCylinders" : 4
}
by
{
"name" : "Taycan Turbo S",
"year" : 2020,
"fuelType" : "electric",
"brand" : "",
"engine" : {
"range" : 400

GET /model/{id}

Response:
{

"name n . mww ,

"year" : 1999,

"fuelType" : "electric",

"brand" . "H,

"engine" : {

"range" : 800

}

}
POST /model
Request Body:
{

"name " . mww ,

"year" : 1999,

"fuelType" : "petrol",

"brand" : "",

"engine" : {
"displacement" : 1000,
"numberOfCylinders" : 4

}

}
Response: 201
DELETE /model/{id}

Response: 204

10

PUT /model/{id}

This should support partial update of data i.e. only brand etc.

Request Body:
{

"year" : 1999,

"fuelType" : "",

"brand" : "",

"engine" : {
"displacement" : 1000,
"numberOfCylinders" : 4

Response: 200

NOTE:

Invalid request should send 400

Invalid method should send 405

Invalid path should send 404

For any unknown error, return 500 along with error message

11

3.2

Test Driven Development

Test-driven development (TDD) is a software development process relying on software
requirements being converted to test cases before software is fully developed, and
tracking all software development by repeatedly testing the software against all test
cases. This is opposed to software being developed first and test cases created later.

3.2.1 Layered Architecture
The three independent layers are delivery, use-case and datastore.

e Delivery Layer: The delivery layer will receive the request and
parse anything that is required from the request. It calls the use
case layer, ensures that the response is the required format and
writes it to the response writer.

e Use-Case Layer: The use case layer does the business logic that
is required for the application. This layer will communicate with
the datastore layer. It takes whatever it needs from the delivery
layer and then calls the datastore layer. Before and after calling
the datastore layer, it applies the business logic that is required.

e Datastore Layer: The datastore stores the data. It can be any
data storage. The wuse case layer is the only layer that
communicates with the datastore. This way each layer can be
tested independently without depending on the other.

Since each layer is independent of each other, if the application grows to have gRPC
support, only the delivery layer will change. Datastore and use case layer will remain
the same. Even when there is a change in datastore, the entire application need not
change. Only the datastore layer will change. This way, it is easy to isolate any bugs,
maintain the code and grow the application.

Each layer will communicate with each other through interfaces.

e Schema for Engine and Model entities:

type Engine struct {
IiD int “json:"-"~
Displacement int “json:"displacement"’
NumberOfCylinders int “json:"number_of_cylinders"’
Range int “json:"range"’

12

package driver

import (

type Model struct {

ID int “json:
Name string “json:
Year int “json:
FuelType string “json:
Brand string “json:

EngineDetails *Engine " json:

e (Connecting to mysql:

rlldll -

"I'Ialﬂe” -
[Iyearll -
"fuel_ type"’
"brand"”

"engine_details, omitempty"’

func ConnectToDB(c SQLConfigs) (*sqgl.DB,
TMt.Sprintf("%s:%s@tcp(%s:%d)/%s",

"database/sql"
-

_ "github.com/go-sql-driver/mysql"

type SQLConfigs struct {

Host string

Username string
Password

Port

string
int

Database string

error) {

connectionString :=

db, err :=
if err !'= nil {

return nil, err

return db, nil

e Defining constants:

package constants

type FuelType string

const (
Electric FuelType
Petrol FuelType
Diesel FuelType
)

type Brand string

const
Tesla Brand =
Porsche Brand =
Ferrari Brand =
Mercedes Brand =
BMW Brand =
)

c.Username, c.Password,

sgl.Open("mysql"”, connectionString)

= "electric"
= "petrol"

= "diesel"

"tesla"
"porsche"
"ferrari”
"mercedes"
"BMW"

13

c.Host,

c.Port,

c.Database)

e Defining custom errors:

package

import (

errors

"Fmt"

type EntityMotFound struct {

Entity string

func (e EntityNotFound) Error() string {

return fmt.Sprintf({"error: %s is inwvalid; Not Found",

type EmptyEntity struct {

Entity string

func (e EmptyEntity) Error() string {

return fmt.Sprintf{"error: %s is empty; Bad Request"™,

type Error string

func (e
1
const
)

Error) Error() string

return string(e)

ConstantField Error
InvalidFuelType Error
InvalidYear Error

InvalidEngine Error

3.2.2 Tests for Storage Layer

For Storage Layer, we use

mysql-

driver for us.

Test for Engine Store:

= "cannot update fixed fTields"
= "invalid fuel type"
= "invalid year"

= "invalid engine details"

SQL mocks that mocks the behaviour

14

e.Entity)

e.Entity)

of

func TestGetEngineByID(t *testing.T) {
e := entities.Engine{ID: 118, Range: 40808}
row := sglmock.NewRows([]string{"modelID", "displacement", "numberOfCylinders", "model_range"}).

AddRow(e.ID, e.Displacement, e.NumberOfCylinders, e.Range)

const query = "SELECT modelID, displacement, numberOfCylinders, model_range FROM engines WHERE modelID = ?"

id := 110
db, mock := GetMockDB()
c := New(db)

mock .ExpectQuery(query).WithArgs(id).WillReturnRows(row)

_, err := c.GetEngineByID(did)
if err !'= nil {
t.Error(err)

func TestInsertEngine(t *testing.T) {
var testCases = []struct {

description string

engine entities.Engine
H
{
description: "Successful Insertion”,
engine: entities.Engineq{
ID: 107,
Displacement: 10606,
NumberOfCylinders: 40,
I
1.
}
for _, tc := range testCases {
db, mock := GetMockDB()
c := New(db)
mock .ExpectBegin()
res := sqlmock.NewResult(int64(tc.engine.ID), 1)
g2 := "INSERT INTO engines"
mock .ExpectExec(q2).
WithArgs(tc.engine.ID, tc.engine.Displacement, tc.engine.NumberOfCylinders, tc.engine.Range).
WillReturnResult(res)
mock .ExpectCommit()
err := c.InsertEngine(tc.engine)
if err !'= nil {
t.Errorf("error was not expected while updating stats: %s", err)
¥
1

15

func TestDeleteEngineByID(t *testing.T) {
var testCases = []struct {

description string

modelID int
H
{description: "SuccessfTul Deletion", modelID: 110%,
}
for _, tc := range testCases {
db, mock := GetMockDE()
c := New(db)
mock.ExpectBegin()
res := sqlmock.NewResult(intG64(tc.modelID), 1)
query := "DELETE FROM engines WHERE modelID = 72"
mock .ExpectExec(regexp.QuoteMeta(query)).
WithArgs(tc.modellD).
WillReturnResult(res)
mock .ExpectCommit()
err := c.DeleteEngineByID(tc.modellID)
if err !'= nil {
t.Errorf("error was not expected while updating stats: %s",
1
err = mock.ExpectationsWereMet()
if err != nil {
t.Errorf("there were unfulfilled expectations: %s", err)
1
}

16

err)

Test for Model Store:

func GetMockDE() (*sql.DB, sglmock.Sqglmock) {
db, mock, err := sqlmock.New()
if err !'= nil {

fmt.Println{"Failed to open mock sql database: ", err)

return db, mock

func TestGetAllModels(t *testing.T) {
el := entities.Model{ID: 110, Name: "Elsa GT", Year: 2815, FuelType: "electric", Brand: "Tesla"}
e2 := entities.Model{ID: 112, Name: "Nova NZ", Year: 2020, FuelType: "diesel"™, Brand: "Porsche"}

rows := sqlmock.NewRows([]string{"modelID", "name", "year", "fuelType", "brand"}).
AddRow(el1.ID, el.Mame, el.¥Year, el.FuelType, el.Brand).
AddRow(e2.ID, e2.Name, e2.¥ear, e2.FuelType, e2.Brand)

query := "SELECT modelID, name, year, fuelType, brand FROM models"
db, mock := GetMockDE()
c := New(db)

mock.ExpectQuery(query).WillReturnRows (rows)
_s err := c.GetAllModels()

if err !'= nil {

t.Error(err)

1

if err := mock.ExpectationsWereMet(); err != nil {
t.Errorf("there were unfulfilled expectations: %s", err)

1

17

func TestDeleteModelByID(t *testing.T) {
var testCases = []struct {

description string

modelID int
H
{description: "SuccessfTul Deletion", modelID: 110%,
X
for _, tc := range testCases {
db, mock := GetMockDB()
c = New(db)
mock .ExpectBegin()
res := sqlmock.MewResult(int&4(tc.modellID), 1)
mock .ExpectPrepare("DELETE FROM models WHERE modelID = ?").
ExpectExec().
WithArgs(tc.modellID).
WillReturnResult(res)
mock .ExpectCommit()
err := c.DeleteModelByID(tc.modelID)
if err !'= nil {
t.Errorf{"error was not expected while updating stats: %s", err)
1
err = mock.ExpectationsWereMet()
if err !'= nil {
t.Errorf{"Expectations not fulfill: %s", err)
1
X

18

3.2.3 Tests for Service Layer
o Test GetAll

{description:
{
T
{
Ts
1.

e Test Get model by ID

{

I

19

"GET all Models", output: []entities.Model{
ID: 118,
Name : "Elsa GT",
Year: 2815,
FuelType: "electric",
Brand: "Tesla",
EngineDetails: &entities.Engine{ID: 118, Range: 408},
ID: 112,
Name : "Nova NZ",
Year: 2020,
FuelType: "petrol”,
Brand: "Porsche",
EngineDetails: &entities.Engine{ID: 112, Displacement: 1880, NumberOfCylinders:
description: "Database Error",
id: 115,
output: entities.Model{},
err: goerrors.New("database error"),
description: "GET Model with valid ID",
id: 112,
output: entities.Model{
ID: 112,
Mame: "Verona",
Year: 2020,
FuelType: "electric",
Brand: "Tesla",
EngineDetails: &entities.Engine{ID: 110, Range: 4003},
3
description: "Invalid ID",
id: 1,
err: errors.EntityNotFound{Entity: "id"},
description: "Empty ID",
err: errors.EmptyEntity{Entity: "id"},

4%,

Test Post model

{
description: "POST Model with Empty Name",
input: entities.Model{
ID: 110,
Name: o
Year: 2015,
FuelType: "electric"”,
Brand: "Porsche",
EngineDetails: &entities.Engine{ID: 11@, Displacement: 10@®, NumberOfCylinders:
Ts
err: errors.EmptyEntity{Entity: "model name"},
I
{
description: "POST Model with Invalid FuelType™,
input: entities.Model{
ID: 118,
Name: "Werona",
Year: 2815,
FuelType: "CNG"™,
Brand: "Porsche",
EngineDetails: &entities.Engine{ID: 110, Displacement: 1808, NumberOfCylinders:
Ts
err: errors.InvalidFuelType,
I
Test Delete

{description: "Valid
{description: "Valid
{

description:

id:

err:

}.

Deletion™, id: 118},
Deletion™, id: 112%,

"Deleting non-existing ID",

90,
errors.EntityNotFound{Entity: "id"},

20

4},

4%,

1

description:
url:
resBody:

description:
url:

statusCode:

3.2.4 Tests for Handler Layer
o Test Get All

{

3

statusCode:

o Test Get by ID

{

ID:

Name :
Year:
FuelType:

Brand:

EngineDetails:

ID:

Name :
Year:
FuelType:
Brand:

EngineDetails:

http.Statusok,

"GET All models with Engine Details",
"/model/?include=engine”,
[]entities.Model{

i1e,

"Elsa GT",
2015,
"electric",
"Tesla",

&entities.Engine{Displacement: 1880,

112,
"Nowva NZ",
2020,
"petrol"”,
"Porsche",

&entities.Engine{Displacement: 10806,

"GET All models with Invalid URL",
"/model/?include=",

http.StatusBadRequest,

description: "GET Request Tor valid API Endpoint™,
modelID: "iie",
resp: entities.Model{

ID: 11@,

Name : "Elsa GT",

Year: 2015,

FuelType: "electric",

Brand: "Tesla",

EngineDetails: &entities.Engine{Displacement: 1080,
statusCode: http.StatusOK,
description: "GET Request Tor Incorrect Model ID",
modelID: "aie",
statusCode: http.StatusNotFound,

21

NumberOfCylinders: 4,

NumberOfCylinders: 4, Range:

NumberOfCylinders: 4@%,

Range: 4008%}%,

4003,

Test Post

NumberOfCylinders: 4%,

NumberOfCylinders: 43}%,

{
description: "Posting a Model with Valid Details”,
req: entities.Model{
ID: 113,
Name : "Carrera GT",
Year: 1999,
FuelType: "petrol”,
Brand: "Ferrari",
EngineDetails: &entities.Engine{Displacement: 1008,
3
statusCode: http.StatusCreated,
T,
{
description: "Posting a Model with Invalid Details",
req: entities.Model{
ID: 121,
Name : "Carrera GT",
Year: 1999,
FuelType: "petrol",
Brand: "Ferrari",
EngineDetails: &entities.Engine{NumberOfCylinders: 4, Range: 400},
3
statusCode: http.StatusBadRequest,
i
Test Update
{
description: "PUT Request on Valid API Endpoint”,
modelID: "110",
input: entities.Model{
Year: 19499,
FuelType: "Petrol",
EngineDetails: &entities.Engine{
Displacement: 1000,
NumberOfCylinders: 4,
Range: 406,
3
¥
statusCode: http.StatusOK,
}.
{
description: "PUT Request with empty Model ID",
input: entities.Model{
Year: 1999,
FuelType: "Petrol"”,
EngineDetails: &entities.Engine{Displacement: 10606,
statusCode: http.StatusBadRequest,
¥

22

o Test Delete

{description: "Deleting an existing model”, modelID: "113", statusCode: http.StatusNoContent},

{description: "Deleting a non-existing model", modelID: "114", statusCode:

http.StatusNotFound},

{description: "Deleting without Model ID", statusCode: http.StatusBadRequest},

{description: "Deleting without Float Type Model ID", modelID: "10.5", statusCode:

{description: "Database Error™, modelID: "285", statusCode: http.StatusInternalServerError},

3.3 Implementation for Storage Layer

type Model struct {
db *sql.DB

func New(db *sql.DB) Model {
return Model{db: db}

func (m Model) InsertModel(model entities.Model) error {
tx, err := m.db.Begin()
if err !'= nil {

return err

defer func() {

switch err {

case nil:
_ = tx.Commit()
default:
_ = tx.Rollback()
}
10
query := "INSERT INTC models (modelID, name, year, fuelType,

brand) VALUES (2, 7, 2, ?

_. err = tx.Exec(query, model.ID, model.Name, model.Year, model.FuelType, model.Brand)

if err '= nil {

return err

return err

23

http.StatusBadRequest},

?}II

func (m Model) DeleteModelByID(id int) error {
tx, err := m.db.Begin()
if err !'= nil {
return err

defer fTunc() {

switch err {

case nil:

_ = tx.Commit()
default:

_ = tx.Rollback()
1

30D

pre, err := tx.Prepare("DELETE FROM models WHERE modelID = ?")
if err != nil {

return err

_, err = pre.Exec(id)
if err !'= nil {

return err

defer func() {
er := pre.Close()
if er !'= nil {
log.Println(er)

10

return err

24

3.3 Implementation for Service Layer

type Model struct {
modelStore stores.Model

engineStore stores.Engine

func MNew(m stores.Model, e stores.Engine) Model {
return Model{
modelStore: m,

engineStore: e,

func (m Model) ServiceGetAllWithEngine() (modellist [Jentities.Model, err error) {
modellist, err = m.modelStore.GetAllModels()

if err '= nil {
return
1
enginelList, err := m.engineStore.GetAllEngines()
it err !'= nil {
return
¥
for i := range modellList {

modellList[i].EngineDetails = &enginelist[i]

return

25

func (m Model) ServiceUpdateModelByID(model entities.Model, id int) (err error) {
_¢ Brr = m.ServiceGetModelByID(id)

switch {

case err != nil:
return err

case model.ID '= @ || model.Brand !'= "" || model.Name != "":
return errors.ConstantField

case reflect.DeepEqual(model, entities.Model{}):
return errors.EmptyEntity{Entity: "update body"}

case model.FuelType !'= "" &8& !validFuelType(model.FuelType):
return errors.InvalidFuelType

case model.Year != 0 && (model.Year <= 1950 || model.Year == time.Now().Year()):
return errors.InvalidYear

case !validModelType(model):

return errors.InvalidEngine

err = m.modelStore.UpdateModelByID(model, id)

if err '= nil {
return

¥

if model.EngineDetails == nil {
return

}

return m.engineStore.UpdateEngineByID(*model.EngineDetails, id)

26

func (m Model) ServiceDeleteModelByID(id int) (err error) {
_+ err = m.ServiceGetModelByID({id)
if err !'= nil {

return

err = m.modelStore.DeleteModelByID({id)
if err != nil {

return err

return m.engineStore.DeleteEngineByID(id)

3.5 Implementation for Handler Layer

type Model struct {

service services.Model

func New(s services.Model) Model {

return Model{serwvice: s}

func (m Model) GetAllwWithEngine(w http.ResponseWriter, r *http.Request) {
include := r.FormVYalue("include™)
if include != "engine" {
http.Error{w, http.StatusText(http.StatusBadRequest), http.StatusBadRequest)
return

models, err := m.service.ServiceGetAllWithEngine()
if err !'= nil {
w.WriteHeader (http.StatusInternalServerError)

writeResponse(w, []byte(err.Error()))

return

h

resp, err := json.Marshal(models)

if err !'= nil {
w.WriteHeader(http.StatusInternalServerError)
return

h

writeResponse(w, resp)

27

func (m Model) PostModel(w http.ResponseWriter, r *http.Request) {
var model entities.Model

body, err := ioutil.ReadAll(r.Body)

if err '= nil {
wW.WriteHeader (http.S5tatusBadRequest)
return

err = json.Unmarshal(body, &model)

if err '= nil {
wW.WriteHeader (http.S5tatusBadRequest)
writeResponse(w, []Jbyte(err.Error()))

return

err = m.service.ServicePostModel(model)

if err == nil {
W.WriteHeader (http.StatusCreated)
return

1

wWriteErrorResponse(w, err)

28

func (m Model) DeleteModelByID(w http.ResponseWriter, r *http.Request) {

Var err error

vars = mux.Vars(r)
id := wvars["id"]

var i int
if id = "" {
i, err = strconv.Atoi(id)
if err !'= nil {
wW.WriteHeader(http.StatusBadReguest)

writeResponse(w, []byte("error in parsing the ID"))

return

err = m.service.ServiceDeleteModelByID(1)

it err == nil {
W.WriteHeader{http.StatusNoContent)
return

}

writeErrorResponse(w, err)

29

func (m Model) uUpdateModelByID(w hitp.ResponseWriter, r *http.Reguest) {
WAr EFT error

VErs = mux.vars(r)
id := wvars["id"]

wvar i int
if id 1= "" {
i, err = strconv.Atoi(id)
if err != nil {
W.WriteHeader (http.StatusBadrRequest)
writeresponse(w, []byte{"error in parsing the ID"})

return

var model entities.Model

body, err := ioutil.readall{r.Body)

if err 1= nil {
W.WriteHeader(http.5tatusBadRequest)
return

err = json.uUnmarshal({body, &model)

if err 1= nil {
W.WriteHeader(http.StatusBadrequest)
writerResponse(w, []Jbyte(err.Error())})

return

err = m.service.serviceupdateModelByID{model, i)
if err == nil {
return

writeeErrorresponse(w, err)

30

3.6 Communicating Using Interfaces

package stores

import
"github.com/zopsmart/golang-training/aakanksha-jaiswal-zss/car-dealership-project/entities”

type Engine interface {
GetallEngines() ([Jentities.Engine, error)
GetEnginesByIDList([]imt) ([]entities.Engine, error)
InsertEngine(entities.Engine) error
GetEngineByID(int) (entities.Engine, error)
beleteEngineByID{int)} error
UpdateEngineByID{entities.Engine, int) error

type Model interface {
GetallModels() ([]entities.Model, error)
GetModelsByBrand{string) ([]emntities.Model, []int, error)
InsertModel{entities.Model) error
GetModelByID(int) (entities.Model, error)
peleteModelByID(int) error
UpdateModelByID({entities.Model, inmt) error

package services
import "github.com/zopsmart/golang-training/aakanksha-jaiswal-zs/car-dealership-project/entities"”

type Model interface {
Servicegetallwithengine() ([]entities.Model, error)
serviceGetAallwithoutEngine() ([]entities.Model, errar)
ServiceGetByBrandwithEngine(string) ([J]entities.Model, error)
ServiceGetByBrandwithoutEngine({string) ([]entities.Model, error)
ServiceGetModelByID(int) (entities.Model, error)
ServicePostModel({entities.Model) error
ServiceDeleteModelByID(int) error
ServiceUpdateModelByID(entities.Model, int) error

31

main.go

main() {
const PORT = 3386

configurationDB := driver.SQLConfigs{
Host: "localhost”,
Username: "root",
Password: "123",
POTL: PORT,
Database: "car_dealership",

db, err := driver.ConnectToDE(configurationDe)

if err '= pnil {
log.Println{"could not connect to sql, err:", err)
return

defer func() {
err := db.close()
if err != nil {
log.Println{err)

)

modelDatastore := model.New(db)

enginebatastore := engine.Mew(db)
s5r := services.New(modelDataStore, engineDataStore)
h := handlers.New(sr}

r := mux.NewRouter()

HandleFunc("/model”, h.GetByBrandwitheEngine).Queries({"brand"”, "{name}", "include", "{engine}").Methods{http.MethodGetr)
HandleFunc({"/model”, h.GetByBrandwithoutEngine).Queries("brand”, "{name}").Methods{http.MethodGer)
HandleFunc{"/model”, h.GetAllWithEngine).qQueries{"include”, "{engine}").Methods(http.MethodGet)

HandleFunc("/model”, h.GetAllWwithoutEngine).Methods(http.MethodGet)

HandleFunc("/model/{id:[@-8]*}", h.GetModelByID).Methods{http.MethodGet)

.HandleFunc({"/model”, h.PostModel).Methods{http.MethodPost)

HandleFunc("/model/{id: [@-8]*}", h.DeleteModelByID).Methods(http.MethodDelete)

.HandleFunc{"/model/{id:[@-8]*}", h.UpdateModelByID).®Methods({http.MethodPut)

[Use(middlewares.AuthenticationMiddleware)

b s B s e A e s B |

srv := Ehttp.Server{
Handler: r,
Addr: "192.168.1.65:8838",

log.Fatal(srv.Listenandserve())

32

Chapter 04: LEARNING AND CONCLUSION

4.1 Discussion on the Results Achieved
The following results were achieved upon the implementation of this project:
e All tests were passed, include the edge cases
e Code coverage was 100%

4.2 Afterworks
e From this Project we learnt principles of system designing, architectures, patterns and
embrace the power of golang when it comes to developing scalable backend systems,
e After this project, I was assigned to the SmartStore Ecommerce platform wherein I
migrated a php service to golang, using the same design principles and architecture.

33

