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Abstract 

As we know that data in real world is growing at a very fast pace. So it is very difficult to 

make analysis on this data which can be represented in the form of network. So to ease the 

computation or analysis of the complex network we divide the complete network into various 

communities on the basis of characteristics (i.e. distance between the nodes, modularity of 

sub graph).  

In this project I have studied three different algorithms for community detection in a network. 

These algorithms are based on the idea of optimizing a modularity function. The idea of 

detecting communities by optimizing a modularity function was proposed by Newman. First 

one is Louvain algorithm second one is extension of Louvain algorithm with a so called 

multilevel refinement procedure and last one is smart local moving (SLM) algorithm. For 

large size network SLM algorithm is preferred over other two algorithms 
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Problem Statement 

 

What I supposed to do? 

 

As social networks gain prominence, the first obvious question that comes in mind in 

observing these networks is: how to extract meaningful knowledge from these data? 

 

As we discussed earlier, the increasing complexity of the graph while analyzing. So 

finding the communities reduces the complexity of a network’s original graph. So I have 

implemented an algorithm for community detection to solve the above mentioned 

problem. 
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Chapter 1: Social Network Analysis 

1.1 Introduction 

Social network analysis (SNA) is a set of research procedures for identifying structures in 

systems based on the relations among actors. Grounded in graph and system theories, this 

approach has proven to be a powerful tool for studying networks in physical and social world. 

As social networks gain prominence, the first obvious question that comes in observing these 

networks is: how to extract meaningful knowledge from these data? In seeking a response, 

the network structure proves to be of utmost importance. Community detection may become 

a more complicated task given that social networks can be structured on many different 

levels, yet communities reduce the complexity of a network’s original graph in a substantial 

way, thus revealing its macro-structure. 

 

Fig 1: A small network with community structure. In this case there are three 

communities, denoted by the dashed circles, which have dense internal links but between 

which there are only a lower density of external links. 

1.2 Measures for Network Flow 

 

1.2.1 Centrality – 

Location, identifying where an actor resides in a network. Promotes the relationship            

among its neighbor .group of objects belong to same group .partition set of data on the basis   

of similarities. 
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1.2.2 Betweenness   

Degree an individual lies between other individuals in the network. The extent to which a 

node is directly connected only to those other nodes that are not directly connected to each 

other. Therefore, it's the number of people who a person is connected to indirectly through 

their direct links. This parameter reflects the popularity of a vertex, in the sense that most 

popular vertices are those maintaining the highest number of relationships. 

1.2.3 Closeness    

The degree an individual is near all other individuals in a network (directly or indirectly). 

Thus, closeness is the inverse of the sum of the shortest distances between each individual 

and every other person in the network. It is the minimum distance from vertex v to vertex t 

(the sum of the costs of relationship of all edges in the shortest path from v to t).measure of 

influence. 

1.2.4 Degree   

The count of the number of ties to other actors in the network. No.  Of shortest path travelling 

to s & t through v/ no of shortest path travelling to s&t. 

1.2.5 Clustering coefficient –  

  It measures the transitivity of a network. Which suggests that if two vertices that both are 

neighbors of the same third vertex have a more probability of also being neighbors of each 

other? This is similar to the fact that if two of your friends will have a higher probability of 

knowing each other than two people chosen at random from the population, on basis of their 

common acquaintance with you. 

1.2.6  Modularity 

Modularity is a measure of strength of sub graph of a network into communities. Networks 

with high modularity will have a compact structure among the nodes of the same community 

but sparse connections between nodes in different communities. 

Modularity measures the capacity of a given graph partition to yield the densest groups. 

The modularity function of Newman and Girvan (2004) is given as : 

   Q=
 

  
          

    

  
 δ(     ), 
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Where,   m= 
 

 
        

Denotes total number of edges in network., 

             

  Denotes degree of node I . 

The function δ(       indicates whether nodes i and j belongs to same community .It 

equals 1 if      =    and 0 otherwise .Higher value of modularity function are supposed to 

indicate a better community structure. 

 

 1.3 Modularity Optimization: Local Moving Heuristic 

Most popularly approach used for modularity optimization is the local moving heuristic. The 

basics of local moving heuristic involves repeatedly move individual nodes from one 

community to another in such a manner that movement of each node leads to increase of 

modularity. It iterates over the nodes in a network in random manner. For each node it is 

determined whether it is possible to further increase modularity by moving the node from its 

current community to another community. If increase of modularity is possible .then node is 

moved to the community which leads to the largest modularity gain. The local moving 

heuristic keeps moving of nodes until there is no possibility of further increase in modularity 

through individual node movements. 

 

1.4)  Applications 

Communities in a network might represent real social groupings, perhaps by interest or 

background; communities in a citation network might represent related papers on a single 

topic; communities in a metabolic network might represent cycles and other functional 

groupings; communities on the web might represent pages on related topics; hidden 

communities might represent potential suspicious activity. Being able to identify these 

communities could help us understand and exploit these networks more effectively. 
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Medical science: Suppose we have found formula to cure a particular type of infection. So 

we can apply community detection on the database of the patients to group together patients 

having same type of symptoms. We can give same cure to each of these patients. 

 

Recommender systems development: In this people having common school, interests, 

friends and many more can be grouped together in the same community. This community 

result must be used by recommender system while recommending friends or pages to others. 

 

Knowledge Management and Collaboration: SNAs can help locate expertise, seed new 

communities of practice, develop cross-functional knowledge-sharing, and improve strategic 

decision-making across leadership teams.  

 

Team-building: SNAs can contribute to the creation of innovative teams and facilitate post-

merger integration. SNAs can reveal, for example, which individuals are most likely to be 

exposed to new ideas. 

  

Human Resources: SNAs can identify and monitor the effects of workforce diversity, on-

boarding and retention, and leadership development. For instance, an SNA can reveal 

whether or not mentors are creating relationships between mentees and other employees.  

 

Strategy: SNAs can support industry ecosystem analysis as well as partnerships and 

alliances. They can pinpoint which firms are linked to critical industry players and which are 

not. 
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CHAPTER 2: Algorithms 

2.1) Louvain Algorithm  

It starts with each node in a network belonging to its own community .Initially, each 

community is considered as singleton community. Then it applies local moving heuristic 

approach to obtain an improved community structure. So, each individual node is moved 

from one community to another community until no further increase in modularity is 

possible. So, it forms a reduced network in which each node corresponds with a community 

in original network. Edges between the nodes in the same community in original network 

results in self links in reduced network. Then it proceeds further by assigning each node in 

the reduced network to its own singleton community .then again local moving heuristic  is 

applied in the reduced network, in the same way as it was earlier applied to original network. 

Again a second reduced network is achieved and its treated in same way as first reduce 

network is treated. It continues until a network is obtained that can’t be reduced further. 

Algorithm: 

Input: 

A: adjacency matrix of a network  

C: initial assignment of nodes to communities  

Output: 

C: final assignment of nodes to communities 

//apply local moving heuristic 

C=localmovingheuristic(A,C) 

If numberofcommunity(c) < numberofnodes(a) then 

//construction of reduce network (A,C) 

                   (     

                        (         

                  (               
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                                 //merge community 

For i=1 to numberofcommunity(      do 

If (c[i]=       ) 

               

End for 

End if 

2.2 Louvain algorithm with multilevel refinement 

Louvain algorithm  achieve solutions that are locally optimal with respect to community 

merging. It is not optimal with respect to movements of individual nodes between 

communities .local moving heuristics I is applied not only for creating an initial community 

structure for  the nodes in a network but also for refining the final community structure . 

Algorithm : 

Input: 

A: adjacency matrix of a network  

C:initial assignment of nodes to communities  

Output: 

C:final assignment of nodes to communities 

//apply local moving heuristic 

C=localmovingheuristic(A,C) 

If numberofcommunity(c) < numberofnodes(a) then 

//construction of reduce network (A,C) 

                   (     

                        (         

                                     (               
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                                 //merge community 

For i=1 to numberofcommunity(      do 

If (c[i]=       ) 

               

End for 

C=localMovingheuritic(A,C) 

End if 

2.3  Smart Local Moving Algorithm  

It searches for all possibilities to increase modularity by splitting up communities and by 

moving sets of nodes from one community to another.  

It uses local moving heuristics to improve community structure .It iterates over all 

communities in present community structure. For each community , a sub-network is 

constructed , it includes only the nodes belonging to the specific community of interest .It 

again uses local moving heuristics to identify communities in sub-network. 

 After finding community structure for each of sub-networks , it constructs  a reduced 

network where each node  corresponds to a community  in one of sub-networks . It initially 

assigns nodes to community. Hence,   for each sub-network ,there  is one community in the 

reduced network. All process repeated to reduced network rather than original network . 

Algorithm : 

Input: 

A: adjacency matrix of a network  

C:initial assignment of nodes to communities  

Output: 

C:final assignment of nodes to communities 

//apply local moving heuristic 
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C=localmovingheuristic(A,C) 

If numberofcommunity(c) < numberofnodes(a) then 

//For each community ,construct a sub network and run the local moving heuristics  

//construction of reduce network based on community structure of sub networks. 

       

J=0; 

For (i=1 to numberofcommunity(    ) do 

                (          

                        (     ] 

                          (          

If(C[i]=        ) 

C[i]=     + j; 

                                      (           

J=j + Numberofcommunity(      

End for; 

                   (     

                       (               

                                 //merge community 

For i=1 to numberofcommunity(      do 

If (c[i]=       ) 

               

End for 

End if. 
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2.4  Input : 

Zachary graph:  

Over the course of two years in the early 1970s, Wayne Zachary observed social interactions 

between the members of a karate club at an American university. He constructed networks of 

ties between members of the club based on their social interactions both within the club and 

away from it. By chance, a dispute arose during the course of his study between the club’s 

administrator and its principal karate teacher over whether to raise club fees, and as a result 

the club eventually split in two, forming two smaller clubs, centered around the administrator 

and the teacher.  

It is an undirected and unweighted graph. It consists of 34 vertices and 78 edges. 

  

Fig 2: A network structure extracted from Zachary’s observations before the split. 
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Chapter 3: CODE IMPLEMENTATION  

3.1) Modularity Optimizer 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.Console; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.Arrays; 

import java.util.Random; 

public class ModularityOptimizer 

{ 

    public static void main(String[] args) throws IOException 

    { 

        boolean printOutput, update; 

        Console console; 

        double modularity, maxModularity, resolution, resolution2; 

        int algorithm, i, j, modularityFunction, nClusters, nIterations, nRandomStarts; 

        int[] cluster; 

        long beginTime, endTime, randomSeed; 

        Network network; 

       Random random; 



19 
 

        String inputFileName, outputFileName; 

        if (args.length == 9) 

        { 

            inputFileName = args[0]; 

            outputFileName = args[1]; 

            modularityFunction = Integer.parseInt(args[2]); 

            resolution = Double.parseDouble(args[3]); 

            algorithm = Integer.parseInt(args[4]); 

            nRandomStarts = Integer.parseInt(args[5]); 

            nIterations = Integer.parseInt(args[6]); 

            randomSeed = Long.parseLong(args[7]); 

            printOutput = (Integer.parseInt(args[8]) > 0); 

            if (printOutput) 

            { 

                System.out.println("algorithm for modularity optimization"); 

                System.out.println(); 

            } 

        } 

        else 

        { 

            console = System.console(); 

            System.out.println("algorithm for modularity optimization"); 

            System.out.println(); 
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            inputFileName = console.readLine("Input file name: "); 

            outputFileName = console.readLine("Output file name: "); 

            modularityFunction = 1; 

           resolution =Double.parseDouble(console.readLine("Resolution parameter (e.g., 1.0): 

")); 

            algorithm = Integer.parseInt(console.readLine("Algorithm (1 = Louvain; 2 = Louvain 

with multilevel refinement; 3 = smart local moving): ")); 

            nRandomStarts = Integer.parseInt(console.readLine("Number of random starts (e.g., 

10): ")); 

            nIterations = Integer.parseInt(console.readLine("Number of iterations (e.g., 10): ")); 

            randomSeed = Long.parseLong(console.readLine("Random seed (e.g., 0): ")); 

            printOutput = (Integer.parseInt(console.readLine("Print output (0 = no; 1 = yes): ")) > 

0); 

            System.out.println(); 

        } 

        if (printOutput) 

        { 

            System.out.println("Reading input file..."); 

            System.out.println(); 

        } 

        network = readInputFile(inputFileName, modularityFunction); 

        if (printOutput) 

        { 

            System.out.format("Number of nodes: %d%n", network.getNNodes()); 
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            System.out.format("Number of edges: %d%n", network.getNEdges() / 2); 

            System.out.println(); 

            System.out.println("Running " + ((algorithm == 1) ? "Louvain algorithm" : 

((algorithm == 2) ? "Louvain algorithm with multilevel refinement" : "smart local moving 

algorithm")) + "..."); 

            System.out.println(); 

        } 

        resolution2 = (resolution / network.getTotalEdgeWeight()) ; 

        beginTime = System.currentTimeMillis(); 

        cluster = null; 

        nClusters = -1; 

        maxModularity = Double.NEGATIVE_INFINITY; 

        random = new Random(randomSeed); 

        for (i = 0; i < nRandomStarts; i++) 

        { 

            if (printOutput && (nRandomStarts > 1)) 

                System.out.format("Random start: %d%n", i + 1); 

            network.initSingletonClusters(); 

            j = 0; 

            update = true; 

            do 

            { 

                if (printOutput && (nIterations > 1)) 
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                    System.out.format("Iteration: %d%n", j + 1); 

                if (algorithm == 1) 

                    update = network.runLouvainAlgorithm(resolution2, random); 

                else if (algorithm == 2) 

                    update = network.LMultRef(resolution2, random); 

                else if (algorithm == 3) 

                    network.runSmartLocalMovingAlgorithm(resolution2, random); 

                j++; 

                modularity = network.calcQualityFunction(resolution2); 

                if (printOutput && (nIterations > 1)) 

                    System.out.format("Modularity: %.4f%n", modularity); 

            } 

            while ((j < nIterations) && update); 

            if (modularity > maxModularity) 

            { 

                network.orderClustersByNNodes(); 

                cluster = network.getClusters(); 

                nClusters = network.getNClusters(); 

                maxModularity = modularity; 

            } 

            if (printOutput && (nRandomStarts > 1)) 

            { 

                if (nIterations == 1) 
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                    System.out.format("Modularity: %.4f%n", modularity); 

                System.out.println(); 

            } 

        } 

        endTime = System.currentTimeMillis(); 

        if (printOutput) 

        { 

            if (nRandomStarts == 1) 

            { 

                if (nIterations > 1) 

                    System.out.println(); 

                System.out.format("Modularity: %.4f%n", maxModularity); 

            } 

            else 

    System.out.format("Maximum modularity in %d random starts: 

%.4f%n", nRandomStarts, maxModularity); 

            System.out.format("Number of communities: %d%n", nClusters); 

            System.out.format("Elapsed time: %d seconds%n", Math.round((endTime - 

beginTime) / 1000.0)); 

            System.out.println(); 

            System.out.println("Writing output file..."); 

            System.out.println(); 

        } 
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        writeOutputFile(outputFileName, cluster); 

    } 

    private static Network readInputFile(String fileName, int modularityFunction) throws 

IOException 

    { 

        BufferedReader bufferedReader; 

        double[] edgeWeight1, edgeWeight2, nodeWeight; 

        int i, j, nEdges, nLines, nNodes; 

        int[] firstNeighborIndex, neighbor, nNeighbors, node1, node2; 

        Network network; 

        String[] splittedLine; 

        bufferedReader = new BufferedReader(new FileReader(fileName)); 

        nLines = 0; 

        while (bufferedReader.readLine() != null) 

            nLines++; 

        bufferedReader.close(); 

        bufferedReader = new BufferedReader(new FileReader(fileName)); 

        node1 = new int[nLines]; 

        node2 = new int[nLines]; 

        edgeWeight1 = new double[nLines]; 

        i = -1; 

        for (j = 0; j < nLines; j++) 

        { 
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            splittedLine = bufferedReader.readLine().split("\t"); 

            node1[j] = Integer.parseInt(splittedLine[0]); 

            if (node1[j] > i) 

                i = node1[j]; 

            node2[j] = Integer.parseInt(splittedLine[1]); 

            if (node2[j] > i) 

                i = node2[j]; 

            edgeWeight1[j] = (splittedLine.length > 2) ? Double.parseDouble(splittedLine[2]) : 1; 

        } 

        nNodes = i + 1; 

        bufferedReader.close(); 

        nNeighbors = new int[nNodes]; 

        for (i = 0; i < nLines; i++) 

            if (node1[i] < node2[i]) 

            { 

                nNeighbors[node1[i]]++; 

                nNeighbors[node2[i]]++; 

            } 

        firstNeighborIndex = new int[nNodes + 1]; 

        nEdges = 0; 

        for (i = 0; i < nNodes; i++) 

        { 

            firstNeighborIndex[i] = nEdges; 
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            nEdges += nNeighbors[i]; 

        } 

        firstNeighborIndex[nNodes] = nEdges; 

        neighbor = new int[nEdges]; 

        edgeWeight2 = new double[nEdges]; 

        Arrays.fill(nNeighbors, 0); 

        for (i = 0; i < nLines; i++) 

            if (node1[i] < node2[i]) 

            { 

                j = firstNeighborIndex[node1[i]] + nNeighbors[node1[i]]; 

                neighbor[j] = node2[i]; 

                edgeWeight2[j] = edgeWeight1[i]; 

                nNeighbors[node1[i]]++; 

                j = firstNeighborIndex[node2[i]] + nNeighbors[node2[i]]; 

                neighbor[j] = node1[i]; 

                edgeWeight2[j] = edgeWeight1[i]; 

                nNeighbors[node2[i]]++; 

            } 

        //standard modularity function 

            nodeWeight = new double[nNodes]; 

            for (i = 0; i < nEdges; i++) 

                nodeWeight[neighbor[i]] += edgeWeight2[i]; 
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            network = new Network(nNodes, firstNeighborIndex, neighbor, edgeWeight2, 

nodeWeight); 

          return network; 

    } 

    private static void writeOutputFile(String fileName, int[] cluster) throws IOException 

    { 

        BufferedWriter bufferedWriter; 

        int i; 

        bufferedWriter = new BufferedWriter(new FileWriter(fileName)); 

        for (i = 0; i < cluster.length; i++) 

        { 

            bufferedWriter.write(Integer.toString(cluster[i])); 

            bufferedWriter.newLine(); 

        } 

        bufferedWriter.close(); 

    } 

} 

3.2)  Network Module 

import java.io.FileInputStream; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.ObjectInputStream; 

import java.io.ObjectOutputStream; 
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import java.io.Serializable; 

import java.util.Arrays; 

import java.util.Random; 

 

public class Network implements Cloneable, Serializable 

{ 

    private static final long serialVersionUID = 1; 

    private int nNodes; 

    private int[] firstNeighborIndex; 

    private int[] neighbor; 

    private double[] edgeWeight; 

    private double totalEdgeWeightSelfLinks; 

    private double[] nodeWeight; 

    private int nClusters; 

    private int[] cluster; 

    private double[] clusterWeight; 

    private int[] nNodesPerCluster; 

    private int[][] nodePerCluster; 

    private boolean clusteringStatsAvailable; 

 

    public static Network load(String fileName) throws ClassNotFoundException, 

IOException 

    { 
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        Network network; 

        ObjectInputStream objectInputStream; 

        objectInputStream = new ObjectInputStream(new FileInputStream(fileName)); 

        network = (Network)objectInputStream.readObject(); 

        objectInputStream.close(); 

        return network; 

    } 

    public Network(int nNodes, int[][] edge) 

    { 

        this(nNodes, edge, null, null, null); 

    } 

    public Network(int nNodes, int[][] edge, double[] edgeWeight) 

    { 

        this(nNodes, edge, edgeWeight, null, null); 

    } 

    public Network(int nNodes, int[][] edge, double[] edgeWeight, double[] nodeWeight) 

    { 

        this(nNodes, edge, edgeWeight, nodeWeight, null); 

    } 

    public Network(int nNodes, int[][] edge, double[] edgeWeight, double[] nodeWeight, int[] 

cluster) 

    { 

        double[] edgeWeight2; 
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        int i, j, nEdges, nEdgesWithoutSelfLinks; 

        int[] neighbor; 

        this.nNodes = nNodes; 

        nEdges = edge[0].length;  

        firstNeighborIndex = new int[nNodes + 1]; 

        if (edgeWeight == null) 

        { 

            edgeWeight = new double[nEdges]; 

            for (i = 0; i < nEdges; i++) 

                edgeWeight[i] = 1; 

        } 

        totalEdgeWeightSelfLinks = 0; 

        neighbor = new int[nEdges]; 

        edgeWeight2 = new double[nEdges]; 

        i = 1; 

        nEdgesWithoutSelfLinks = 0; 

        for (j = 0; j < nEdges; j++) 

            if (edge[0][j] == edge[1][j]) 

                totalEdgeWeightSelfLinks += edgeWeight[j]; 

            else 

            { 

                if (edge[0][j] >= i) 

                    for (; i <= edge[0][j]; i++) 
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                        firstNeighborIndex[i] = nEdgesWithoutSelfLinks; 

                neighbor[nEdgesWithoutSelfLinks] = edge[1][j]; 

                edgeWeight2[nEdgesWithoutSelfLinks] = edgeWeight[j]; 

                nEdgesWithoutSelfLinks++; 

            } 

        for (; i <= nNodes; i++) 

            firstNeighborIndex[i] = nEdgesWithoutSelfLinks; 

        this.neighbor = new int[nEdgesWithoutSelfLinks]; 

        System.arraycopy(neighbor, 0, this.neighbor, 0, nEdgesWithoutSelfLinks); 

        this.edgeWeight = new double[nEdgesWithoutSelfLinks]; 

        System.arraycopy(edgeWeight2, 0, this.edgeWeight, 0, nEdgesWithoutSelfLinks); 

        if (nodeWeight == null) 

        { 

            this.nodeWeight = new double[nNodes]; 

            for (i = 0; i < nNodes; i++) 

                this.nodeWeight[i] = 1; 

        } 

        else 

            this.nodeWeight = nodeWeight; 

 

        setClusters(cluster); 

    } 
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    public Network(int nNodes, int[] firstNeighborIndex, int[] neighbor) 

    { 

        this(nNodes, firstNeighborIndex, neighbor, null, null, null); 

    } 

    public Network(int nNodes, int[] firstNeighborIndex, int[] neighbor, double[] edgeWeight) 

    { 

        this(nNodes, firstNeighborIndex, neighbor, edgeWeight, null, null); 

    } 

    public Network(int nNodes, int[] firstNeighborIndex, int[] neighbor, double[] edgeWeight, 

double[] nodeWeight) 

    { 

        this(nNodes, firstNeighborIndex, neighbor, edgeWeight, nodeWeight, null); 

    } 

    public Network(int nNodes, int[] firstNeighborIndex, int[] neighbor, double[] edgeWeight, 

double[] nodeWeight, int[] cluster) 

    { 

        int i, nEdges; 

        this.nNodes = nNodes; 

        this.firstNeighborIndex = firstNeighborIndex; 

        this.neighbor = neighbor; 

        if (edgeWeight == null) 

        { 

            nEdges = neighbor.length; 
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            this.edgeWeight = new double[nEdges]; 

            for (i = 0; i < nEdges; i++) 

                this.edgeWeight[i] = 1; 

        } 

        else 

            this.edgeWeight = edgeWeight; 

        if (nodeWeight == null) 

        { 

            this.nodeWeight = new double[nNodes]; 

            for (i = 0; i < nNodes; i++) 

                this.nodeWeight[i] = 1; 

        } 

        else 

            this.nodeWeight = nodeWeight; 

        setClusters(cluster); 

    } 

    public Object clone() 

    { 

        Network clonedNetwork; 

 

        try 

        { 

            clonedNetwork = (Network)super.clone(); 
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            if (cluster != null) 

                clonedNetwork.cluster = (int[])cluster.clone(); 

            clonedNetwork.deleteClusteringStats(); 

            return clonedNetwork; 

        } 

        catch (CloneNotSupportedException e) 

        { 

            return null; 

        } 

    } 

    public void save(String fileName) throws IOException 

    { 

        ObjectOutputStream objectOutputStream; 

        objectOutputStream = new ObjectOutputStream(new FileOutputStream(fileName)); 

        objectOutputStream.writeObject(this); 

        objectOutputStream.close(); 

    } 

    public int getNNodes() 

    { 

        return nNodes; 

    }    public int getNEdges() 

    { 

        return neighbor.length; 
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    } 

    public int[][] getEdges() 

    { 

        int[][] edge; 

        int i, j; 

        edge = new int[2][neighbor.length]; 

        for (i = 0; i < nNodes; i++) 

            for (j = firstNeighborIndex[i]; j < firstNeighborIndex[i + 1]; j++) 

            { 

                edge[0][j] = i; 

                edge[1][j] = neighbor[j]; 

            } 

        return edge; 

    } 

    public double getTotalEdgeWeight() 

    { 

        double totalEdgeWeight; 

        int i; 

        totalEdgeWeight = totalEdgeWeightSelfLinks; 

        for (i = 0; i < neighbor.length; i++) 

            totalEdgeWeight += edgeWeight[i]; 

        return totalEdgeWeight; 

    } 
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    public double[] getEdgeWeights() 

    { 

        return edgeWeight; 

    } 

    public double getTotalNodeWeight() 

    { 

        double totalNodeWeight; 

        int i; 

        totalNodeWeight = 0; 

        for (i = 0; i < nNodes; i++) 

            totalNodeWeight += nodeWeight[i]; 

        return totalNodeWeight; 

    } 

    public double[] getNodeWeights() 

    { 

        return nodeWeight; 

    } 

    public int getNClusters() 

    { 

        return nClusters; 

    } 

    public int[] getClusters() 

    { 
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        return cluster; 

    } 

    public double[] getClusterWeights() 

    { 

        if (cluster == null) 

            return null; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        return clusterWeight; 

    } 

    public int[] getNNodesPerCluster() 

    { 

        if (cluster == null) 

            return null; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        return nNodesPerCluster; 

    } 

    public int[][] getNodesPerCluster() 

    { 

        if (cluster == null) 

            return null; 

        if (!clusteringStatsAvailable) 
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            calcClusteringStats(); 

        return nodePerCluster; 

    } 

    public void setClusters(int[] cluster) 

    { 

        int i, j; 

        if (cluster == null) 

            nClusters = 0; 

        else 

        { 

            i = 0; 

            for (j = 0; j < nNodes; j++) 

                if (cluster[j] > i) 

                    i = cluster[j]; 

            nClusters = i + 1; 

        } 

        this.cluster = cluster; 

        deleteClusteringStats(); 

    } 

    public void initSingletonClusters() 

    { 

        int i; 

        nClusters = nNodes; 
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        cluster = new int[nNodes]; 

        for (i = 0; i < nNodes; i++) 

            cluster[i] = i; 

 

        deleteClusteringStats(); 

    } 

    public void findConnectedComponents() 

    { 

        int i, j; 

        int[] neighborIndex, node; 

        cluster = new int[nNodes]; 

        for (i = 0; i < nNodes; i++) 

            cluster[i] = -1; 

        node = new int[nNodes]; 

        neighborIndex = new int[nNodes]; 

        nClusters = 0; 

        for (i = 0; i < nNodes; i++) 

            if (cluster[i] == -1) 

            { 

                cluster[i] = nClusters; 

                node[0] = i; 

                neighborIndex[0] = firstNeighborIndex[i]; 

                j = 0; 
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                do 

                    if (neighborIndex[j] == firstNeighborIndex[node[j] + 1]) 

                        j--; 

                    else if (cluster[neighbor[neighborIndex[j]]] == -1) 

                    { 

                        cluster[neighbor[neighborIndex[j]]] = nClusters; 

                        node[j + 1] = neighbor[neighborIndex[j]]; 

                        neighborIndex[j + 1] = firstNeighborIndex[node[j + 1]]; 

                        neighborIndex[j]++; 

                        j++; 

                    } 

                    else 

                        neighborIndex[j]++; 

                while (j >= 0); 

                nClusters++; 

            } 

        deleteClusteringStats(); 

    } 

    public void mergeClusters(int[] newCluster) 

    { 

        int i, j, k; 

        if (cluster == null) 

            return; 
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        i = 0; 

        for (j = 0; j < nNodes; j++) 

        { 

            k = newCluster[cluster[j]]; 

            if (k > i) 

                i = k; 

            cluster[j] = k; 

        } 

        nClusters = i + 1; 

        deleteClusteringStats(); 

    } 

    public boolean removeCluster(int cluster) 

    { 

        boolean removed; 

        if (this.cluster == null) 

            return false; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        removed = removeCluster2(cluster); 

        deleteClusteringStats(); 

        return removed; 

    } 

    public void removeSmallClusters(double minClusterWeight) 
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    {        boolean[] ignore; 

        double minClusterWeight2; 

        int i, smallestCluster; 

        Network reducedNetwork; 

        if (cluster == null) 

            return; 

        reducedNetwork = getReducedNetwork(); 

        reducedNetwork.initSingletonClusters(); 

        reducedNetwork.calcClusteringStats(); 

        ignore = new boolean[nClusters]; 

        do 

        { 

            smallestCluster = -1; 

            minClusterWeight2 = minClusterWeight; 

            for (i = 0; i < reducedNetwork.nClusters; i++) 

                if ((!ignore[i]) && (reducedNetwork.clusterWeight[i] < minClusterWeight2)) 

                { 

                    smallestCluster = i; 

                    minClusterWeight2 = reducedNetwork.clusterWeight[i]; 

                } 

            if (smallestCluster >= 0) 

            { 

                reducedNetwork.removeCluster2(smallestCluster); 
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                ignore[smallestCluster] = true; 

            } 

        } 

        while (smallestCluster >= 0); 

        mergeClusters(reducedNetwork.getClusters()); 

    } 

    public void orderClustersByWeight() 

    { 

        orderClusters(true); 

    } 

    public void orderClustersByNNodes() 

    { 

        orderClusters(false); 

    } 

    public Network getSubnetwork(int cluster) 

    { 

        double[] subnetworkEdgeWeight; 

        int[] subnetworkNeighbor, subnetworkNode; 

        if (this.cluster == null) 

            return null; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        subnetworkNode = new int[nNodes]; 
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        subnetworkNeighbor = new int[neighbor.length]; 

        subnetworkEdgeWeight = new double[edgeWeight.length]; 

        return getSubnetwork(cluster, subnetworkNode, subnetworkNeighbor, 

subnetworkEdgeWeight); 

    } 

    public Network[] getSubnetworks() 

    { 

        double[] subnetworkEdgeWeight; 

        int i; 

        int[] subnetworkNeighbor, subnetworkNode; 

        Network[] subnetwork; 

        if (cluster == null) 

            return null; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        subnetwork = new Network[nClusters]; 

        subnetworkNode = new int[nNodes]; 

        subnetworkNeighbor = new int[neighbor.length]; 

        subnetworkEdgeWeight = new double[edgeWeight.length]; 

        for (i = 0; i < nClusters; i++) 

            subnetwork[i] = getSubnetwork(i, subnetworkNode, subnetworkNeighbor, 

subnetworkEdgeWeight); 

        return subnetwork; 
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    } 

    public Network getReducedNetwork() 

    { 

        double[] reducedNetworkEdgeWeight1, reducedNetworkEdgeWeight2; 

        int i, j, k, l, m, reducedNetworkNEdges1, reducedNetworkNEdges2; 

        int[] reducedNetworkNeighbor1, reducedNetworkNeighbor2; 

        Network reducedNetwork; 

        if (cluster == null) 

            return null; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        reducedNetwork = new Network(); 

        reducedNetwork.nNodes = nClusters; 

        reducedNetwork.firstNeighborIndex = new int[nClusters + 1]; 

        reducedNetwork.totalEdgeWeightSelfLinks = totalEdgeWeightSelfLinks; 

        reducedNetwork.nodeWeight = new double[nClusters]; 

        reducedNetworkNeighbor1 = new int[neighbor.length]; 

        reducedNetworkEdgeWeight1 = new double[edgeWeight.length]; 

        reducedNetworkNeighbor2 = new int[nClusters - 1]; 

        reducedNetworkEdgeWeight2 = new double[nClusters]; 

 

        reducedNetworkNEdges1 = 0; 

        for (i = 0; i < nClusters; i++) 
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        { 

            reducedNetworkNEdges2 = 0; 

            for (j = 0; j < nodePerCluster[i].length; j++) 

            { 

                k = nodePerCluster[i][j]; 

                for (l = firstNeighborIndex[k]; l < firstNeighborIndex[k + 1]; l++) 

                { 

                    m = cluster[neighbor[l]]; 

                    if (m != i) 

                    { 

                        if (reducedNetworkEdgeWeight2[m] == 0) 

                        { 

                            reducedNetworkNeighbor2[reducedNetworkNEdges2] = m; 

                            reducedNetworkNEdges2++; 

                        } 

                        reducedNetworkEdgeWeight2[m] += edgeWeight[l]; 

                    } 

                    else 

                        reducedNetwork.totalEdgeWeightSelfLinks += edgeWeight[l]; 

                } 

                reducedNetwork.nodeWeight[i] += nodeWeight[k]; 

            } 

            for (j = 0; j < reducedNetworkNEdges2; j++) 
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            { 

                reducedNetworkNeighbor1[reducedNetworkNEdges1+j]= 

reducedNetworkNeighbor2[j]; 

                reducedNetworkEdgeWeight1[reducedNetworkNEdges1+j]= 

reducedNetworkEdgeWeight2[reducedNetworkNeighbor2[j]]; 

                reducedNetworkEdgeWeight2[reducedNetworkNeighbor2[j]] = 0; 

            } 

            reducedNetworkNEdges1 += reducedNetworkNEdges2; 

            reducedNetwork.firstNeighborIndex[i + 1] = reducedNetworkNEdges1; 

        } 

        reducedNetwork.neighbor = new int[reducedNetworkNEdges1]; 

        reducedNetwork.edgeWeight = new double[reducedNetworkNEdges1]; 

        System.arraycopy(reducedNetworkNeighbor1, 0, reducedNetwork.neighbor, 0, 

reducedNetworkNEdges1); 

        System.arraycopy(reducedNetworkEdgeWeight1, 0, reducedNetwork.edgeWeight, 0, 

reducedNetworkNEdges1); 

        return reducedNetwork; 

    } 

    public Network getLargestConnectedComponent() 

    { 

        double maxClusterWeight; 

        int i, largestCluster; 

        Network clonedNetwork; 

        clonedNetwork = (Network)clone(); 
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        clonedNetwork.findConnectedComponents(); 

        clonedNetwork.calcClusteringStats(); 

        largestCluster = -1; 

        maxClusterWeight = -1; 

        for (i = 0; i < clonedNetwork.nClusters; i++) 

            if (clonedNetwork.clusterWeight[i] > maxClusterWeight) 

            { 

                largestCluster = i; 

                maxClusterWeight = clonedNetwork.clusterWeight[i]; 

            } 

        return clonedNetwork.getSubnetwork(largestCluster); 

    } 

    public double calcQualityFunction(double resolution) 

    { 

        double qualityFunction, totalEdgeWeight; 

        int i, j, k; 

        if (cluster == null) 

            return Double.NaN; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

 

        qualityFunction = totalEdgeWeightSelfLinks; 

        totalEdgeWeight = totalEdgeWeightSelfLinks; 
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        for (i = 0; i < nNodes; i++) 

        { 

            j = cluster[i]; 

            for (k = firstNeighborIndex[i]; k < firstNeighborIndex[i + 1]; k++) 

            { 

                if (cluster[neighbor[k]] == j) 

                    qualityFunction += edgeWeight[k]; 

                totalEdgeWeight += edgeWeight[k]; 

            } 

        } 

        for (i = 0; i < nClusters; i++) 

            qualityFunction -= clusterWeight[i] * clusterWeight[i] * resolution; 

        qualityFunction /= totalEdgeWeight; 

        return qualityFunction; 

    } 

    public boolean runLocalMovingAlgorithm(double resolution) 

    { 

        return runLocalMovingAlgorithm(resolution, new Random()); 

    } 

 

    public boolean runLocalMovingAlgorithm(double resolution, Random random) 

    { 

        boolean update; 
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        double maxQualityFunction, qualityFunction; 

        double[] clusterWeight, edgeWeightPerCluster; 

        int bestCluster, i, j, k, l, nNeighboringClusters, nStableNodes, nUnusedClusters; 

        int[] neighboringCluster, newCluster, nNodesPerCluster, nodeOrder, unusedCluster; 

        if ((cluster == null) || (nNodes == 1)) 

            return false; 

        update = false; 

        clusterWeight = new double[nNodes]; 

        nNodesPerCluster = new int[nNodes]; 

        for (i = 0; i < nNodes; i++) 

        { 

            clusterWeight[cluster[i]] += nodeWeight[i]; 

            nNodesPerCluster[cluster[i]]++; 

        } 

        nUnusedClusters = 0; 

        unusedCluster = new int[nNodes]; 

        for (i = 0; i < nNodes; i++) 

            if (nNodesPerCluster[i] == 0) 

            { 

                unusedCluster[nUnusedClusters] = i; 

                nUnusedClusters++; 

            } 

        nodeOrder = new int[nNodes]; 
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        for (i = 0; i < nNodes; i++) 

            nodeOrder[i] = i; 

        for (i = 0; i < nNodes; i++) 

        { 

            j = random.nextInt(nNodes); 

            k = nodeOrder[i]; 

            nodeOrder[i] = nodeOrder[j]; 

            nodeOrder[j] = k; 

        } 

        edgeWeightPerCluster = new double[nNodes]; 

        neighboringCluster = new int[nNodes - 1]; 

        nStableNodes = 0; 

        i = 0; 

        do 

        { 

            j = nodeOrder[i]; 

 

            nNeighboringClusters = 0; 

            for (k = firstNeighborIndex[j]; k < firstNeighborIndex[j + 1]; k++) 

            { 

                l = cluster[neighbor[k]]; 

                if (edgeWeightPerCluster[l] == 0) 

                { 
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                    neighboringCluster[nNeighboringClusters] = l; 

                    nNeighboringClusters++; 

                } 

                edgeWeightPerCluster[l] += edgeWeight[k]; 

            } 

            clusterWeight[cluster[j]] -= nodeWeight[j]; 

            nNodesPerCluster[cluster[j]]--; 

            if (nNodesPerCluster[cluster[j]] == 0) 

            { 

                unusedCluster[nUnusedClusters] = cluster[j]; 

                nUnusedClusters++; 

            } 

            bestCluster = -1; 

            maxQualityFunction = 0; 

            for (k = 0; k < nNeighboringClusters; k++) 

            { 

                l = neighboringCluster[k]; 

                qualityFunction = edgeWeightPerCluster[l] - nodeWeight[j] * clusterWeight[l] * 

resolution; 

                if ((qualityFunction > maxQualityFunction) || ((qualityFunction == 

maxQualityFunction) && (l < bestCluster))) 

                { 

                    bestCluster = l; 
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                    maxQualityFunction = qualityFunction; 

                } 

                edgeWeightPerCluster[l] = 0; 

            } 

           if (maxQualityFunction == 0) 

            { 

                bestCluster = unusedCluster[nUnusedClusters - 1]; 

                nUnusedClusters--; 

            } 

            clusterWeight[bestCluster] += nodeWeight[j]; 

            nNodesPerCluster[bestCluster]++; 

            if (bestCluster == cluster[j]) 

                nStableNodes++; 

            else 

            { 

                cluster[j] = bestCluster; 

                nStableNodes = 1; 

                update = true; 

            } 

            i = (i < nNodes - 1) ? (i + 1) : 0; 

        } 

        while (nStableNodes < nNodes); 

        newCluster = new int[nNodes]; 
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        nClusters = 0; 

        for (i = 0; i < nNodes; i++) 

            if (nNodesPerCluster[i] > 0) 

            { 

                newCluster[i] = nClusters; 

                nClusters++; 

            } 

        for (i = 0; i < nNodes; i++) 

            cluster[i] = newCluster[cluster[i]]; 

        deleteClusteringStats(); 

        return update; 

    } 

    public boolean runLouvainAlgorithm(double resolution) 

    { 

        return runLouvainAlgorithm(resolution, new Random()); 

    } 

    public boolean runLouvainAlgorithm(double resolution, Random random) 

    { 

        boolean update, update2; 

        Network reducedNetwork; 

        if ((cluster == null) || (nNodes == 1)) 

            return false; 

        update = runLocalMovingAlgorithm(resolution, random); 
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        if (nClusters < nNodes) 

        { 

            reducedNetwork = getReducedNetwork(); 

            reducedNetwork.initSingletonClusters(); 

            update2 = reducedNetwork.runLouvainAlgorithm(resolution, random); 

            if (update2) 

            { 

                update = true; 

                mergeClusters(reducedNetwork.getClusters()); 

            } 

        } 

        deleteClusteringStats(); 

        return update; 

    } 

    public boolean runLouvainAlgorithmWithMultilevelRefinement(double resolution) 

    { 

        return runLouvainAlgorithmWithMultilevelRefinement(resolution, new Random()); 

    } 

    public boolean runLouvainAlgorithmWithMultilevelRefinement(double resolution, 

Random random) 

    { 

        boolean update, update2; 

        Network reducedNetwork; 
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        if ((cluster == null) || (nNodes == 1)) 

            return false; 

        update = runLocalMovingAlgorithm(resolution, random); 

        if (nClusters < nNodes) 

        { 

            reducedNetwork = getReducedNetwork(); 

            reducedNetwork.initSingletonClusters(); 

            update2 = reducedNetwork.runLouvainAlgorithm(resolution, random); 

            if (update2) 

            { 

                update = true; 

                mergeClusters(reducedNetwork.getClusters()); 

                runLocalMovingAlgorithm(resolution, random); 

            } 

        } 

        deleteClusteringStats(); 

        return update; 

    } 

    public boolean runSmartLocalMovingAlgorithm(double resolution) 

    { 

        return runSmartLocalMovingAlgorithm(resolution, new Random()); 

    } 

    public boolean runSmartLocalMovingAlgorithm(double resolution, Random random) 
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    { 

        boolean update; 

        int i, j, k; 

        int[] reducedNetworkCluster, subnetworkCluster; 

        Network reducedNetwork; 

        Network[] subnetwork; 

 

        if ((cluster == null) || (nNodes == 1)) 

            return false; 

        update = runLocalMovingAlgorithm(resolution, random); 

        if (nClusters < nNodes) 

        { 

            if (!clusteringStatsAvailable) 

                calcClusteringStats(); 

            subnetwork = getSubnetworks(); 

            nClusters = 0; 

            for (i = 0; i < subnetwork.length; i++) 

            { 

                subnetwork[i].initSingletonClusters(); 

                subnetwork[i].runLocalMovingAlgorithm(resolution, random); 

                subnetworkCluster = subnetwork[i].getClusters(); 

                for (j = 0; j < subnetworkCluster.length; j++) 

                    cluster[nodePerCluster[i][j]] = nClusters + subnetworkCluster[j]; 
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                nClusters += subnetwork[i].getNClusters(); 

            } 

            calcClusteringStats(); 

            reducedNetwork = getReducedNetwork(); 

            reducedNetworkCluster = new int[nClusters]; 

            i = 0; 

            for (j = 0; j < subnetwork.length; j++) 

                for (k = 0; k < subnetwork[j].getNClusters(); k++) 

                { 

                    reducedNetworkCluster[i] = j; 

                    i++; 

                } 

            reducedNetwork.setClusters(reducedNetworkCluster); 

            update |= reducedNetwork.runSmartLocalMovingAlgorithm(resolution, random); 

            mergeClusters(reducedNetwork.getClusters()); 

        } 

        deleteClusteringStats(); 

        return update; 

    } 

    private Network() 

    { 

    } 

    private void writeObject(ObjectOutputStream out) throws IOException 
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    { 

        deleteClusteringStats(); 

        out.defaultWriteObject(); 

    } 

    private boolean removeCluster2(int cluster) 

    { 

        double maxQualityFunction, qualityFunction; 

        double[] reducedNetworkEdgeWeight; 

        int bestCluster, i, j; 

        reducedNetworkEdgeWeight = new double[nClusters]; 

        for (i = 0; i < nNodes; i++) 

            if (this.cluster[i] == cluster) 

                for (j = firstNeighborIndex[i]; j < firstNeighborIndex[i + 1]; j++) 

                    reducedNetworkEdgeWeight[this.cluster[neighbor[j]]] += edgeWeight[j]; 

        bestCluster = -1; 

        maxQualityFunction = 0; 

        for (i = 0; i < nClusters; i++) 

            if ((i != cluster) && (clusterWeight[i] > 0)) 

            { 

                qualityFunction = reducedNetworkEdgeWeight[i] / clusterWeight[i]; 

                if (qualityFunction > maxQualityFunction) 

                { 

                    bestCluster = i; 
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                    maxQualityFunction = qualityFunction; 

                } 

            } 

        if (bestCluster == -1) 

            return false; 

        for (i = 0; i < nNodes; i++) 

            if (this.cluster[i] == cluster) 

                this.cluster[i] = bestCluster; 

        clusterWeight[bestCluster] += clusterWeight[cluster]; 

        clusterWeight[cluster] = 0; 

        if (cluster == nClusters - 1) 

        { 

            i = 0; 

            for (j = 0; j < nNodes; j++) 

                if (this.cluster[j] > i) 

                    i = this.cluster[j]; 

            nClusters = i + 1; 

        } 

        return true; 

    } 

    private void orderClusters(boolean orderByWeight) 

    { 

        class ClusterSize implements Comparable<ClusterSize> 
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        { 

            public int cluster; 

            public double size; 

            public ClusterSize(int cluster, double size) 

            { 

                this.cluster = cluster; 

                this.size = size; 

            } 

            public int compareTo(ClusterSize cluster) 

            { 

                return (cluster.size > size) ? 1 : ((cluster.size < size) ? -1 : 0); 

            } 

        } 

        ClusterSize[] clusterSize; 

        int i; 

        int[] newCluster; 

        if (cluster == null) 

            return; 

        if (!clusteringStatsAvailable) 

            calcClusteringStats(); 

        clusterSize = new ClusterSize[nClusters]; 

        for (i = 0; i < nClusters; i++) 
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            clusterSize[i] = new ClusterSize(i, orderByWeight ? clusterWeight[i] : 

nNodesPerCluster[i]); 

        Arrays.sort(clusterSize); 

        newCluster = new int[nClusters]; 

        i = 0; 

        do 

        { 

            newCluster[clusterSize[i].cluster] = i; 

            i++; 

        } 

        while ((i < nClusters) && (clusterSize[i].size > 0)); 

        nClusters = i; 

        for (i = 0; i < nNodes; i++) 

            cluster[i] = newCluster[cluster[i]]; 

        deleteClusteringStats(); 

    } 

    private Network getSubnetwork(int cluster, int[] subnetworkNode, int[] 

subnetworkNeighbor, double[] subnetworkEdgeWeight) 

    {        int i, j, k, subnetworkNEdges, subnetworkNNodes; 

        Network subnetwork; 

        subnetwork = new Network(); 

        subnetworkNNodes = nodePerCluster[cluster].length; 

        subnetwork.nNodes = subnetworkNNodes; 
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        if (subnetworkNNodes == 1) 

        { 

            subnetwork.firstNeighborIndex = new int[2]; 

            subnetwork.neighbor = new int[0]; 

            subnetwork.edgeWeight = new double[0]; 

            subnetwork.nodeWeight = new double[] {nodeWeight[nodePerCluster[cluster][0]]}; 

        } 

        else 

        { 

            for (i = 0; i < nodePerCluster[cluster].length; i++) 

                subnetworkNode[nodePerCluster[cluster][i]] = i; 

            subnetwork.firstNeighborIndex = new int[subnetworkNNodes + 1]; 

            subnetwork.nodeWeight = new double[subnetworkNNodes]; 

            subnetworkNEdges = 0; 

            for (i = 0; i < subnetworkNNodes; i++) 

            { 

                j = nodePerCluster[cluster][i]; 

                for (k = firstNeighborIndex[j]; k < firstNeighborIndex[j + 1]; k++) 

                    if (this.cluster[neighbor[k]] == cluster) 

                    { 

                        subnetworkNeighbor[subnetworkNEdges] = subnetworkNode[neighbor[k]]; 

                        subnetworkEdgeWeight[subnetworkNEdges] = edgeWeight[k]; 

                        subnetworkNEdges++; 
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                    } 

                subnetwork.firstNeighborIndex[i + 1] = subnetworkNEdges; 

                subnetwork.nodeWeight[i] = nodeWeight[j]; 

            } 

            subnetwork.neighbor = new int[subnetworkNEdges]; 

            subnetwork.edgeWeight = new double[subnetworkNEdges]; 

            System.arraycopy(subnetworkNeighbor, 0, subnetwork.neighbor, 0, 

subnetworkNEdges); 

            System.arraycopy(subnetworkEdgeWeight, 0, subnetwork.edgeWeight, 0, 

subnetworkNEdges); 

        } 

 

        subnetwork.totalEdgeWeightSelfLinks = 0; 

        return subnetwork; 

    } 

    private void calcClusteringStats() 

    { 

        int i, j; 

        clusterWeight = new double[nClusters]; 

        nNodesPerCluster = new int[nClusters]; 

        nodePerCluster = new int[nClusters][]; 

        for (i = 0; i < nNodes; i++) 

        { 
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            clusterWeight[cluster[i]] += nodeWeight[i]; 

            nNodesPerCluster[cluster[i]]++; 

        } 

        for (i = 0; i < nClusters; i++) 

        { 

            nodePerCluster[i] = new int[nNodesPerCluster[i]]; 

            nNodesPerCluster[i] = 0; 

        } 

        for (i = 0; i < nNodes; i++) 

        { 

            j = cluster[i]; 

            nodePerCluster[j][nNodesPerCluster[j]] = i; 

            nNodesPerCluster[j]++; 

        } 

        clusteringStatsAvailable = true; 

    } 

    private void deleteClusteringStats() 

    { 

        clusterWeight = null; 

        nNodesPerCluster = null; 

        nodePerCluster = null; 

        clusteringStatsAvailable = false; 

    }} 
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3.3) Output: 

 

 

Fig 3:Applying Louvain algorithm to Karate_club network 

  

Fig 4 :Applying Louvain with multilevel refinement algorithm on karate_club_network 
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(a) 

 

(b)..fig 5. applying louvain algorithm with multilevel refinement for amazon purchasing netw 

(a) iteration from random start 1to 6 (b) random start 7 to 10 and maximum modularity 

=.9617 



68 
 

(a) 

 

(b) 

Fig6. Applying SLM on amazon purchasing network data for 10 iteration and 10 random 

start (a) random start 1 & 2 (b) random start 9&10 with maximum modularity =0.9650 
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CHAPTER 4 : CONCLUSION 

4.1 Conclusion 

From all the three algorithms i.e Louvain Algorithm ,Louvain algorithm with multilevel 

refinement and Smart Local Moving Algorithm it can be concluded that if we want to 

maximize the modularity of the communities then we should use SLM algorithm for 

community detection. With 10 iteration per algorithm run ,the SLM algorithm consistently 

outperforms the original Louvain algorithm and Multilevel algorithm.  

With only one iteration per algorithm run, the SLM  algorithm slightly outperforms the 

original Louvain algorithm but the difference is almost negligible. The performance of 

Louvain algorithm with multilevel refinement is hardly affected by the number of iteration 

per algorithm run.  

In my opinion SLM algorithm is able to identify better community structures for large size 

network , in terms of modularity  than the two algorithm .To identify high-quality community 

structures ,it is essential to use the iterative variant of the SLM  algorithm  .In the analysis of 

large networks , we find that a single run of the SLM algorithm almost always give higher 

modularity value than 10 runs of the original Louvain or extension of same. 
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