Mainframe Technology Training in DXC Technology

Project report submitted in partial fulfillment of the requirement for the degree of
Bachelor of Technology in

BIOTECHNOLOGY

May 24,2021

Submitted By:

JIGYASA (171821)

Project Work Completed Under the guidance at

DXC Technologies Pvt. Ltd.

JAYPEE UNIVERSITY OF INFORMATION AND TECHNOLOGY
DEPARTMENT OF BIOTECHNOLOGY AND BIOINFORMATICS

WAKNAGHAT, H.P - 173234

Project Report Undertaking

I Ms. Jigyasa Roll No. 171821 Branch Biotechnology is doing my internship
with DXC technology from to

As per procedure I have to submit my project report to the university related
to my work that I have done during this internship.

I have compiled my projectreport. But due to COVID-19 situation
my project mentor in the company is not able to sign my project report.

So I hereby declare that the project report is fully designed/developed by me
and no part of the work is borrowed or purchased from any agency. And T'll
produce a certificate/document of my internship completion with the company
to TnP Cell whenever COVID-19 situation gets normal.

Signature :
Name : Jigyasa
Roll No. : 171821

Date : 24" March 2021

DECLARATION

I hereby declare that the presented report entitled " Mainframe Technology Training in DXC technology"
in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in
Biotechnology submitted in the Department of Biotechnology and Bioinformatics, Jaypee University of
Information Technology Waknaghat is an authentic record of my own work carried out over a period
from February 2021 to May 2021 under the supervision of Dr. Udayabanu, M., Associate Professor,
Jaypee University Of Information Technology. The matter embodied in the report has not been submitted

for the award of any other degree or diploma.

(Student Sign)

Jigvasa, 171821

@ e

(Supervisor Signatire)

Dr. Udayabanu, M,
Associate Professor,

Jaypee University Of Information Technology

TABLE OF CONTENT

CHAPTER 1: INTRODUCTION

1.1 INTRODUCGTION. ...ttt
1.2 ABOUT COMPANY ..ot

CHAPTER 2: SOFTWARE DEVELOPMENT

2.1 INTRODUCGCTION ...ooiiiiiiieiiie ettt e ettt e e e e e et ee s eeeaaaaeeeessseanaaaeesesesnnaneeseesennnnnes
2. 2SDLIC PRASES......cccueiiuiieiiieieeetee et eette ettt et ettt e ete e e ave e te e e aeeebaesbeeetaeeabeeaaeeabeetaeeabeeereeenreas

CHAPTER 3: MAINFRAME TECHNOLOGY

3.1 INTRODUCTION.. ..ottt
3.2 CHARACTERISTICS ...
3.3 MAINFRAME OPERATING SYSTEMcccoiiiiiiiiiiccececeeeee e
3.4 BASIC FILE MANAGEMENT OPERATIONScccooiiiiiiiiiiiiiiice

CHAPTER 4 : JOB CONTROL LANGUAGE (JCL)

4.1 INTRODUCTION.......ooiiiiiiiiiiiiiii s
4.2 JOB PROCESSING ..ottt
43 JCL STRUCTURE........cociiiiiiiiiiiiiiiic e s
4.4 JOB STATEMENT ...t ettt s e
4.5 EXEC STATEMENToiiiiiiiiieee et
4.6 DD STATEMENTcooiiiiiiiiiiiii s
4.7 JCL UTILITIES ...ttt

CHAPTER 5 : VIRTUAL STORAGE ACCESS METHOD (VSAM)

5.1 INTRODUCTION........ciiiiiiiiiiiieeeteee ettt
5.2 CHARATERISTICS ..o s
S IDCAMS L.t
5.4 VSAM DATA SETS ...ttt s
5.5 ALTERNATE INDEX (AL ...coiiiiiiiiiiiiiiiiciciiice e s
5.0 CATALOG ..ottt et

CHAPTER 6 : COBOL LANGUAGE

6.1 INTRODUCGCTION........ciiiiiiiiiiieeteeee et
6.2 COBOL HISTORYciiiiiiiiiiiiiiii i
6.3 IMPORTANC E........ooiiiiiiiiii s
6.4 FEATURES ...t et
6.5 COBOL STRUCTUREccooiiiiiiiiiiiiiiicc s
6.6 DIVISIONS ...ttt e s sttt
6.7 DATA TYPES ...

CHAPTER 7: DB2/SQL

7.1 INTRODUCTION........oiiiiiiiiiiiiiiiiii s

T2TABLES ...
7.3 EMBEDDED SQL PROGRAMMING
CONCLUSION

REFERENCES

List of Figures

Fig 1 1 Enterprise Technology Stack.........cceoiiiiiiiiiiieiiieieee et 9
Fig 2 1 Software Development Life Cycle (SDLC)ccoviiiiiiiiiiieiieeeeeeeecee e 11
Fig 3 1 Time Sharing OPtioncueeccuiieiiieeiiieeiieeeiee et ettt e eiteeeaeeesseeesseeesseeesnseessseesnseens 15
Fig 3 2 Interactive System Productivity Facilityccccoeeriiiiiiiiniiiecieeceeeee e 15
Fig 4 1 JOD PTOCESSINE ...c.uvieuiieiiieiiieiie ettt ettt ettt ettt e et e e b e enteesaaeenbeensaeenseenseennns 16
Fig4 2 Code Using IEFBRI4Aooiiiiieieceee ettt ettt ettt 19
Fig 4 3 Code Using IEBGENER Utcccoeouiiiiiiiiiniiiierieeietesieeteseeeeeese et 19
Fig 4 4 Code USING SOTt UIIIEYuviiiiiieciie ettt e e e e saeeesnveeseaeeennae s 20
Fig 5 1 IDCAMS Utility to create a Cluster in VSAM.......ccccooviiiieiiieiiieeeeeeee e 22
Fig 5 2 Types Of Catalog i VSAMccciiiiiiieeie ettt ettt evae e sveeeaaeeennae s 25
Fig 6 1 COBOL SHIUCUTEeeiiieiiieeiie ettt ettt ettt ettt e st e eteesaaeesbeesseessaeenseessnesnseenseesnns 27
Fig 6 2 Data Types in COBOLccciiiiiiiiieiieee ettt e eee 29
Fig 6 3 COBOL code using loops and conditional statements.............cccceeeveerveeciieniieneeenieennnenne 30
Fig 7 1 Database ATCHItECIUIE.ceeuiieriieeiiieeiieeeieeete e iee et e et e e e te e e sebeeeaaeeesseeesnseessaeesnseeas 34
Fig 7 2 Code to create @ table........uiiiiiieeiieciie ettt eare e e e es 36
Fig 7 3 Code to create an INAEXcceeeiiieiiiiieiiie ettt et e e saeeeeavee s 37
Fig 7 4 Code t0 INSEIT VAIUES.eeiiieiieeiiieiieciie ettt ettt ettt sttt e st e eteesbeeeabeeseesaaeenseens 37
Fig 7 5 COde 10 SCLECL. ...ceuviiiiieiieiieee ettt ettt et ettt ettt e st e enbeesseeenbeesaeeennas 38

Fig 7 6 COBOL/DB2 COde.....c.coiriiiuiiiieiieiiiieieictetesteete sttt ettt 41

Table 5 1 KSDS Components

List of Tables

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION
I got placed at DXC technology and has successfully completed DXC Early Career Professionals

program (DECP). The whole program was comprised of two trainings — Foundation and Technical. T
have been assigned to Application Development Learning Track during my foundation training where I
have learned about the computer science fundamentals such as Software Development Processes, Data
Structures, Programming Fundamentals, Database Management System (DBMS), Introduction to Cloud,
and Big Data. After the successful completion of Foundation training I have been assigned the Mainframe
Application Track in during my technical training. During the technical training I have learned various
technologies like understanding Mainframe technology, Z/os concepts, TSO-ISPF, JCL, VSAM, DB2 and
COBOL.

1.2 ABOUT COMPANY

DXC Technology, a Fortune 500 company, is an American multinational corporation that provides
business-to-business information technology services. When Hewlett Packard Enterprise Company (HPE)
broke off its Enterprise Services Business and combined it with Computer Sciences Corporation in 2017,
DXC Technology was born. CSC and HPE Enterprise Services were recognised throughout their histories
for developing to keep up with the ever-changing world of technology — and for providing clients with a
new viewpoint based on a long tradition of innovation and industry-leading services. Mike Salvino was
appointed president and CEO of DXC Technology in 2019. DXC Technology (NYSE: DXC) helps
worldwide enterprises modernise IT, optimise data infrastructures, and ensure security and scalability
across public, private, and hybrid clouds. Since April 3, 2017, DXC has traded on the New York Stock
Exchange under the ticker "DXC." Their focus is on on-premises and cloud IT transformation, data-
driven operations, and workplace modernisation. With the scope and size of services in the Enterprise

Technology Stack, DXC is in a great position to assist clients in managing their IT estate.

In India, DXC Technology is a beehive of innovation and technological talent. Our worldwide operations
are the company's largest, with high-caliber technology specialists dedicated to assisting clients with their

core issues and market possibilities.
DXC Technology provides services to the various industries.

DXC's Corporate Responsibility programme strives to build a sense of community and togetherness

within the company by actively participating in and donating to socially relevant projects. DXC Corporate

Responsibility (CR) is a top focus, and its employees go above and above in a variety of ways to help
their local communities. Our workers donate their resources and time to a variety of community

development activities both locally and globally.

GBS: Global Business Services
GiS: Global Infrastructure Services

Fig 1 1 Enterprise Technology Stack

CHAPTER 2: SOFTWARE DEVELOPMENT

2.1 INTRODUCTION

SDLC is for Software Development Life Cycle, and it is a method for developing software that ensures its
quality and correctness. The SDLC process is designed to develop high-quality software that fulfils
customer requirements. The system development should be completed within the schedule and budget
constraints. SDLC is a step-by-step process that outlines how to plan, construct, and maintain software.
Each phase of the SDLC life cycle includes its own set of processes and deliverables, which feed into the
next. The Software Development Life Cycle (SDLC) is also known as the Application Development Life
Cycle (ADLC).

The following are some of the most essential reasons why SDLC is crucial while designing a software

system.

e It serves as a foundation for project planning, scheduling, and costing.

e Provides a framework of activities and deliverables that are all the same.

e It's a system for keeping track of and controlling projects.

e Increases the visibility of project planning to all development process stakeholders.
e Speed of development has been increased and improved.

e Client relationships have improved.

2.2SDLC Phases

The SDLC process is broken down into the following stages:

(Software Development
life Cycle)

Fig 2 1 Software Development Life Cycle (SDLC)

2.2.1 STAGE -1 : REQUIREMENT ANALYSIS

The first stage of the SDLC process is the requirement analysis. It is organised by senior team members
with input from all industry stakeholders and domain specialists. At this point, the quality assurance
requirements are planned for, as well as the hazards that are involved.

This stage provides a clearer understanding of the project's overall scope as well as the anticipated
difficulties, opportunities, and instructions that prompted it.

The team must gather specific and accurate criteria throughout the gathering step. This aids businesses in
determining the necessary timescale for the system's completion.

2.2.2 STAGE —2: DEFINING FEASIBILITY

The next stage of the SDLC is to define and record software requirements after the requirement analysis
phase is completed. This procedure was carried out using the 'Software Requirement Specification'
document, commonly known as the 'SRS' document. During the project life cycle, it comprises everything

that has to be created and produced.

There are five different kinds of feasibility checks:

Economic: Can we finish the project on time and on budget?

Legal: Can this project be handled under cyber law and other regulatory frameworks/compliances?
Operation: Are we able to design operations that the client expects?

Technical: Need to see if the software will run on the current computer system.

Schedule: Determine whether or not the project can be finished on time.
2.2.3 STAGE - 3: DESIGNING

The goal of this stage is to gather all of the requirements, analysis, and design information for the
software project. This makes it easier to define the overall system architecture. This design phase serves

as input to the model's subsequent phase.
2.2.4 STAGE —4: CODING

Developers begin developing code in the selected programming language to create the full system at this
phase. Tasks are separated into units which are further separated into modules and given to different
developers throughout the coding phase. It is the most time-consuming step of the Software Development
Life Cycle. During this phase, the developer must adhere to a set of predetermined code principles. They
must also produce and implement code using programming tools such as compilers, interpreters, and

debuggers.
2.2.5 STAGE - 5: TESTING

As testing operations are mainly included in all phases of SDLC in current SDLC models, this stage is
frequently a subset of all phases. The testing team begins testing the full system's functioning. This is

done to ensure that the entire application functions as expected by the client.

QA and testing teams may discover errorsat this phase, which they report to developers. The development
team fixes the issue and sends it back to QA for another round of testing. This procedure is repeated until

the programme is bug-free, reliable, and meets the system's business requirements.

2.2.6 STAGE — 6: DEPLOYMENT

When the software testing step is completed and the system is free of errors and faults, the final
deployment procedure begins. Product rollout is sometimes done in stages, depending on the company's
business plan. The product may then be released as is or with proposed enhancements in the intended

market group depending on the feedback. After the programme has been deployed, it must be maintained.

2.2.7 STAGE —7: MAINTENANCE

When the businesses begins to use the designed systems, genuine challenges and requirements arise that
must be addressed on a regular basis. Maintenance is a practice that involves taking care of a created

product.

CHAPTER 3: MAINFRAME TECHNOLOGY

3.1 INTRODUCTION

The different end-user application systems that are housed on mainframe computers are known as
mainframe application systems. Because of their capacity to process enormous amounts of data more
effectively as well as data security measures, mainframe computers and their services are crucial for
governments and big companies. As a result, numerous firms use mainframes to host their applications in
order to assure data security and smooth data processing. This describes what a mainframe system is and

how it may help you.

3.2 CHARACTERISTICS

— Extremely fast
— Support for a huge number of people
— Take up space in the area

— Expensive

3.3 MAINFRAME OPERATING SYSTEM

In its most basic form, an operating system is a collection of programmes that control the internal
workings of a computer system, including memory, processors, peripherals, and the file system.

Mainframe operating systems are complex solutions with a wide range of features and functions.

3.3.1 FEATURES OF MAINFRAME OPERATING SYSTEM
— Multiprogramming refers to the capacity to run many programmes at the same time.
— When main memory is insufficient to hold huge amounts of data, virtual storage is used.

— Spooling is the process of copying the image of the file content to be printed to a spool file on the

hard drive, which is subsequently printed later.
— Ability to accommodate several users at the same time (time sharing).

— Batch processing refers to the capacity to process huge amounts of data in a non-interactive

manner.

3.3.2 DIFFERENT MAINFRAME OPERATING SYSTEMS

z/OS: The z/OS operating system, which is commonly used on mainframes, is meant to provide a reliable,

secure, and always-available environment for mainframe applications.

— z/VM: Because it runs other operating systems in the virtual machines it produces, z/Virtual

Machine (z/VM) is a hypervisor as a control application.

— z/VSE: Users of smaller mainframe machines choose z/Virtual Storage Extended (z/VSE). When

their needs beyond the capabilities of z/VSE, some of these clients transition to z/OS.
— Linux for System z: On a mainframe, a variety of (non-IBM) Linux distributions can be utilised.

— 2z/TPF: The z/Transaction Processing Facility (z/TPF) operating system is a special-purpose
system used by firms that process a large number of transactions, such as credit card firms and

airline reservation systems.

3.4 BASIC FILE MANAGEMENT OPERATIONS
3.4.1 TIME SHARING OPTION (TSO)

TSO is an interactive time-sharing environment for IBM mainframe operating systems such as MVS ,
0S/360 MVT, 0S/390, OS/VS2 (SVS), and z/OS. It consists of a collection of commands that the user

must put into the interface in order to complete the task.

Time-sharing is a design concept in computing that allows many users to utilise a computer system
simultaneously and independently without interfering with one another. [1] Each TSO user is isolated;

they believe they are the only ones using the system.

nierprise Comgd g o0 | g . aT_ 11661
nierprizse Thinklng b | s o e

===} Enfer “logon” followsd by ke THEN upsrld, Exsspls “ogon usserid™ or
mma}y Enfinr TS0

Fig 3 1 Time Sharing Option

3.4.2 INTERACTIVE SYSTEM PRODUCTIVITY FACILITY (ISPF)

ISPF is a menu-driven interface that allows the user to do operations by picking from a menu of
alternatives. Because most mainframe software providers utilised ISPF functions to build their
programmes, their tools look and operate similarly to ISPF. Many installations, likewise, create their own

informal tools that make advantage of ISPF capabilities.

Menu Weilitiss Lospllers Opiless Histus Melp

Fig 3 2 Interactive System Productivity Facility

CHAPTER 4 : JOB CONTROL LANGUAGE (JCL)

4.1 INTRODUCTION

In a mainframe context, JCL is used to communicate between a programme and the operating system (for
example, COBOL, Assembler, or PL/I). Programs can be run in batch or online mode in a mainframe
system. Processing bank transactions using a VSAM (Virtual Storage Access Method) file and applying
them to the appropriate accounts is an example of a batch system. A back office screen used by bank
employees to establish an account is an example of an online system. Programs are delivered to the

operating system as a job using a JCL in batch mode.

4.2 JOB PROCESSING

A job is a unit of work that may consist of several job phases. Each job step is defined by a series of Job

Control Statements in a Job Control Language (JCL).

The Job Entry System (JES) is used by the Operating System to receive jobs, schedule them for

processing, and regulate the output.

JOB (JCL) Job Entry System

i

JCL Interpretation
in JES

.

Job Queuing

'

Job Execation and Output data o
Input Data log creation in printer/dataset’
SPOOL SPOOL

Fig 4 1 Job Processing

JOB PROCESSING STEPS

Job Submission - This is where you send the JCL to JES.

— Job Conversion - The JCL and PROC are translated into an interpreted text that JES can
understand and saved in a dataset called SPOOL.

— Job Queuing - JES determines the job's priority depending on the CLASS and PRTY criteria in
the JOB statement . If there are no mistakes in the JCL code, the job is placed into the job queue.

— Job Execution - When a work achieves its greatest priority, it is selected from the job queue for
execution. The JCL file is read from the SPOOL, the programme is run, and the output is
redirected to the output destination provided in the JCL file.

— Purging - When the work is finished, the allotted resources are freed, as well as the JES SPOOL
space. Before the job log can be released from the SPOOL, it must be copied to another dataset

for storage.

4.3 JCL STRUCTURE

000100 //ALFA11M JOB NOTIFY=&SYSUID,TIME=(2,38),MSGLEVEL=(1,1)
pP@200 //STEP@1 EXEC PGM=IEBGENER

@0@300 //SYSPRINT DD SYSOUT=*

004080 //SYSUTL DD DSN=ALFA11.DATAX.FIRST.DATA,DISP=0LD
@O@se8 //SYSUT2 DD DSN=ALFA11.DATAY.SEC.DATA,DISP=0LD
pPeEe8 //SYSIN DD DUMMY

4.4 JOB STATEMENT

In a JCL, the JOB Statement is the initial control statement. This informs the Operating System (OS), the
spool, and the scheduler about the job's identity. The JOB statement's arguments assist operating systems

in assigning the appropriate scheduler, needed CPU time, and delivering user alerts.

The following is the code for the JOB statement:
//job-name JOB parameters

Let's look at the definitions for the keywords used in the JOB statement syntax above.

4.5 EXEC STATEMENT

The EXEC statement is the statement that carries the job step program/procedure information.

The EXEC statement's purpose is to supply necessary information for the program/procedure that is run in
the job phase. If the EXEC statement calls a procedure instead of immediately running a programme, the

parameters programmed in this statement can give data to the programme in execution, override specific

parameters of the JOB statement, and send parameters to the procedure.

The syntax of a JCL EXEC statement is as follows:

//step—name EXEC parameters

4.6 DD STATEMENT

Datasets are mainframe files that contain records in a specified order. Datasets are fundamental data
storage regions that are kept on the mainframe's Direct Access Storage Device (DASD) or Tapes. If these
data to be used/created in a batch application, the physical name of the file (i.e., dataset), as well as the

file type and organisation, must be coded in a JCL.

The DD statement specifies the definition of each dataset utilised in the JCL. A DD statement must be
used to specify the input and output resources required by a task step, including dataset organisation,

storage requirements, and record length.
The syntax of a JCL DD statement is as follows:

//dd-name DD parameters

4.7 JCL UTILITIES
Utility programmes are pre-written programmes that system programmers and application developers
employ on mainframes to meet day-to-day needs such as data organisation and maintenance.

4.7.1 IEFBR14

IEFBR14 is a bogus utility that doesn't perform anything. This application is used to create a dataset and
remove one. When this utility is used to allocate or delete a data set, it sends the request to the operating

system's functions, which allocate and delete the data set.

&) Vista TN3270 Session A = X
File Edit Font Transfer Macro Options Window Help

ENENESENEN I
File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT ALFAL1.JCL.PROGRAMS (J$ALLOC) - B1.A0 Columns 0BBOB1 BOOTZ
Command ===> _ Scroll ===> PAGE
otk ok ko okt ok ok ok ook sokolokok k- Top of Data kekokorsorskolorok koo ok kolok ok ook ok ko k ok
-Warning- The UNDO command is not available until you change
your edit profile using the command RECOVERY ON.
peeiea //ALFA11M JDB NOTIFY=ALFA11,TIME=(2,3),MSGLEVEL=(1,1)
oopzoe //*
Bpep308 //+ JCL TD ALLOCATE A DATASET
/7%
//STEPB1 EXEC PGH=TEFBR14
//70D1 DD DSN=ALFA11.DKC.MUMBAI.DATA,
N

Fil=Help F2=5plit 5 i F5=Rfind F6=Rchange Fr=Up
FB=Down F9=Swap Fi11=Right Fi1?2=Cancel

Fig 4 2 Code Using IEFBR14

4.7.2 IEBGENER

Uses of IEBGENER utility is used to copy non-VSAM data sets with the IEBGENER tool. Non-VSAM

data sets' contents can also be printed or shown.

For the IEBGENER tool, the following dd-names must be used: SYSUT1, SYSUT2, SYSIN and

& Vista TNZ270 Session A - X
File Edit Font Transfer Macre Options Window Help

LB Bl [o]+] (as]c] (7]
File Edit Edit_Settings Menu ilities Compilers Test Help

EDIT ALFA11.JCL.PROGRAMS(J$COPY2) - B1.80 Columns BBBB1 BBOTZ
Command === Scroll ===> PAGE
KKK KKK KRRk kkkkkk Top 0 Data $kkssksk otk bk kKR KKKk KK o Kok K
-Warning- The UNDO command is not available until you change
your edit profile using the command RECOYERY ON.
AeB1AB //ALFA11M JOB NOTIFY=ALFA11M,TIME=(2,308),MSGLEVEL=(1,1)
poB2BO //*
poo3en //% JCL WRITE DATA TO A FILE USING IEBGENER
popapo //#
popse0 //STEPO1 EXEC PGM=1EBGENER
D //SYSUT1 DD *

DSN=ALFAB1.0UTPUT.DATA,DSIP=0LD
popann // IN DD puriMy _
ok ok ok Kok ok ok ok ook okokkokokkkk k. Bottom of Data seoksksokskskokskokkokkokok ok Kok ok ook ok ko kok &

Fl=Help F2=Split FI=Eni t F5=Rfind FB6=Rchange Fr=Up
F8=Down F9=5Swap X F11=Right F12=Cancel

Fig 4 3 Code Using IEBGENER Utility

4.7.2 SORT

SORT is a sophisticated utility for copying, sorting, and merging information. The input datasets are
specified using the SORTIN and SORTIN DD commands. The output data is specified using the
SORTOUT and OUTFIL commands. The sort and merge conditions are specified using the SYSIN DD

command.

&) Vista TN3270 Session A = X
File Edit Font Transfer Macro Options Windew Help

L5 L[l [+]2]
File Edit Edit_Settings HMenu ilities Compilers Test Help

EDIT ALFA11.JCL.PROGRAMS (J$50RT2) - B1.A4 Member J$S0RT? saved
Command ===> Scroll === PAGE
Hokokokok ok ok Holok Rk kR ko okrckokckokkok Top of Data skookokorekolokomookoRsokkookom ok kol ok ok sk kok o
~Warning- The UNDD command is not available until you change
your edit profile using the command RECOVERY ON.
popipe //ALFALIM JOB SYSUID, TIME=(2,30),MSGLEVEL=(1,1)
aopzea
aop300
poodon
aepseae PGM=50RT
i 1.50RTLIB,DIS
*
1.DXC.MUMBAI.DATA, DISP=0LD

Gy

AO1188
ifd
a0

FRKR KRRk kR ok kR bk Bottom of Data sk sookkkorsk kR orkok ok koRk K
F1=Help il 3 it F5=Rfind Fb=Rchange Fr=Up
F p F11=Right FiZ2=Cancel

Fig 4 4 Code Using Sort Utility

CHAPTER S : VIRTUAL STORAGE ACCESS METHOD (VSAM)

5.1 INTRODUCTION

Virtual Storage Access Mechanism (VSAM) is a high-performance access method and data set
organisation that uses a catalogue structure to manage and preserve data. It makes use of the virtual
storage idea and may password-protect datasets at multiple levels. VSAM, like physical sequential files,
may be utilised in COBOL applications. The logical datasets for storing records are called VSAM. In
VSAM, files may be read sequentially or randomly. It's a better approach to store data that gets beyond

some of the drawbacks of traditional file systems like Sequential Files.

5.2 CHARATERISTICS

— Passwords are used by VSAM to safeguard data from illegal access.

— VSAM allows users to quickly access data sets.

— VSAM provides performance optimization options.

— In both batch and online environments, VSAM allows data sets to be shared.
— Interms of data storage, VSAM is more organized and orderly.

— In VSAM files, free space is automatically reused.

5.3 IDCAMS

JCL is used to define the VSAM cluster. To construct a cluster, JCL employs the IDCAMS function. IBM
created IDCAMS, a tool for access method services. It is mostly used to define VSAM datasets.

Following is the syntax to create a cluster:

DEFINE CLUSTER ((NAME (cluster—name)

INDEXED | NONINDEXED | NUMBERED | LINE&ZR
VOLUME {(volume—serial-name)
space—unit (primary, secondary)
CISZ (size)

FREESPACE (CI% CA%)
REUSE | NCOEREUSE
FEYS (key—length starting—position)
RECORDSIZE (average—len maximum-—len))
DATE (NAME (data—component—name))
INDEX (MAME (index-component—name))

&) Vista TN3270 Session A - X
File Edit Font Transfer Macre Options Window Help
[La %] (][ul«] [#]3]
File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT ALFA11.YSAM.PGMS.DAY1(DEF$CLUS) - B1.00 Columns OBOB1 BOBTZ

Command ===> Scroll ===> PAGE
skok ok sk ok ok ok sk ok sk ook skok sk okok ok ok sk ok skok ok ok ok ok ok ok lep of Data skokkokskokokkokskokok ok ok ok skok ok ok skok Kok Kok ok ok
-Warning- The UNDD command is not available until you change

your edit profile using the command RECOVERY 0ON.

popiee //ALFA11M J0OB NOTIFY=85YSUID, TIME=(2,308),M5GLEVEL=(1,1)

poozZee //x JCL TO CREATE A KSDS CLUSTER

pee3ve //STEPOL EXEC PGM=1DCAMS

papdpa //SYSPRINT DD SYS0UT=x*

pensea //SYSIN D0

alalaks DEFINE CLUS

/%
Fok ok ok ok kkokok ok ok kokokskokkk k- Hottom of Data soksokokkoksoksokorsorsokskorokskokskok ok kok ok

Fi=Help FZ2=5plit F5=Rfind Fb=Rchange Fr=Up
F8=Down F9=Swap] F11=Right F1Z2=Cancel

Fig S 1 IDCAMS Utility to create a Cluster in VSAM

5.4 VSAM DATA SETS
5.4.1 ENTRY SEQUENCED DATA SET (ESDS)

Entry Sequenced Data Set (ESDS) stands for Entry Sequenced Data Set. An entry-sequenced data set
works similarly to a sequential file system, but with a few extra features. We have direct access to the
records and may also employ passwords for security. For ESDS datasets, we must specify

NONINDEXED in the DEFINE CLUSTER command.

The major characteristics of ESDS are as follows:

Records are kept in the ESDS cluster in the order that they were introduced into the dataset.

— Physical addresses, also known as Relative Byte Addresses, are used to reference records (RBA).
If we have 80 byte records in an ESDS dataset, the RBA for the first record will be 0, the RBA
for the second record will be 80, the RBA for the third record will be 160, and so on.

— RBA may access records in a sequential order, which is known as addressed access.

— Records are kept in the sequence in which they were input into the system. At the conclusion,

new records are added.
— In the ESDS dataset, records cannot be deleted. They can, however, be tagged as inactive.

— The records in the ESDS dataset can be of any length.

5.4.2 KEY SEQUENCED DATA SET (KSDS)

The Key Sequenced Data Set (KSDS) is an acronym for Key Sequenced Data Set. A key-sequenced data
set (KSDS) is more complicated than an ESDS or an RRDS, but it is also more valuable and adaptable.
For KSDS datasets, we must include INDEXED in the DEFINE CLUSTER command. The following two

components make up the KSDS cluster:

The index component of the KSDS cluster comprises a list of key values for the cluster's records, together
with pointers to the data component's associated records. The physical address of a KSDS record is
referred to via the index component. The key of each record is linked to the record's position in the data

collection. This index is updated whenever a record is added or removed.

The real data is stored in the data component of the KSDS cluster. Each record in a KSDS cluster's data

component has the same number of characters and appears in the same relative position in each record.
The primary aspects of KSDS are as follows:

— Within the KSDS data collection, records are always ordered by key-field. By key, records are

kept in ascending, collating order.
— Records can be retrieved in any order, and there is also the option of direct access.

— A key is used to identify records. Each record's key is a field in a predetermined location inside
the record. In the KSDS dataset, each key must be unique. As a result, record duplication is not

feasible.

— When new records are added, the logical order of the records is determined by the key field's

collating sequence.
— The length of records in the KSDS dataset might be constant or variable.

— KSDS, like any other file, may be utilised in COBOL applications. The file name will be
specified in JCL, and the KSDS file will be used for processing within the application.

Table 5 1 KSDS Components

Index Component Data Component

..... Mem ory .“I;'llemarv Record | Record
Key | Address Address Key Field 1 Field 2
Key1 200 500 | Key3 Tutorials Point
Key 2 100 100 | Key 2 Mohtashim | M.
Key3 500 200 Key 1 Nishant Malik

5.4.3 LINEAR DATA SET

Linear Data Set (LDS) stands for Linear Data Set. The sole type of byte-stream dataset utilised in
traditional operating system files is the linear dataset. Linear datasets are used seldom. The essential

aspects of LDS are as follows:

— Because linear datasets do not have any control information inherent in their CI, they do not

include RDFs or CIDFs.
— In Linear datasets, data that may be retrieved as byte-addressable strings in virtual storage.
— The control interval size in linear datasets is 4KBytes.

— LDS is a non-vsam file that has some VSAM features such as IDCAMS and VSAM-specific

information in the catalogue.
— Linear Data Sets are now used the most by DB2.

— IDCAMS is a programme that is used to define

5.5 ALTERNATE INDEX (AI)

Alternate indexes are indexes that are built in addition to the primary index for KSDS/ESDS datasets. An
alternative index allows you to access records by utilising several keys. The alternate index key might be

a duplicated key or a non-unique key.

The steps to create an Alternate index are as follow :
1. Defining Al
2. Defining Path

3. Build Index

5.6 CATALOG

The unit and volume where the dataset is stored are maintained by the catalogue. Datasets are retrieved
via the catalogue. Non-VSAM datasets use the Disposition Parameter in JCL to build a catalogue item.
VSAM datasets have their own catalogue, which is kept in the form of a KSDS cluster.

Sub-allocated

g Dataspace 1 —""), cters

!
!

¢
I
User Catalog / Non-VSAM
f 1 Datasets
II)
oA Dt Sprice 21— Sub-allocated
o Clusters
I =i
.
Master
Catalog
T Unique
l‘ User Catalog Non-VSAM
2 \ Datasets
'-.\\l‘
4 ~ Sub-allocated
Data Space 3 Clusters

Fig 5 2 Types Of Catalog in VSAM

CHAPTER 6 : COBOL LANGUAGE

6.1 INTRODUCTION

COBOL is a very high-level programming language. It is necessary to comprehend COBOL's operation.

Machine code is a binary sequence of Os and 1s that computers can interpret. A compiler is required to

transform COBOL code to machine code. Compile the source code of the application. The compiler

checks for syntax mistakes before converting the code to machine language. The load module is the

output file created by the compiler. The Os and 1s in this output file represent executable code.

6.2 COBOL HISTORY

When enterprises in the western world grew in the 1950s, there was a need to automate numerous

procedures for ease of operation, which led to the development of a high-level programming language for

commercial data processing.

COBOL was created by CODASYL in 1959. (Conference on Data Systems Language).
COBOL-61, the following version, was published in 1961 with several changes.

COBOL was accepted as a standard language for commercial usage by ANSI in 1968. (COBOL-
68).

COBOL-74 and COBOL-85 were developed when it was rewritten again in 1974 and 1985,

respectively.

Object-Oriented COBOL was released in 2002.

6.3 IMPORTANCE

The first widely used high-level programming language was COBOL. It's an easy-to-understand
English-like language. All of the instructions may be written in plain English.

COBOL is also a self-documenting programming language.
COBOL is capable of handling large amounts of data.

COBOL is backwards compatible with earlier versions.

— COBOL offers good error messages, which makes bug resolution easier.

6.4 FEATURES
— Standard English : COBOL is a standard language that may be compiled and run on IBM

AS/400s, personal computers, and other platforms.

— Dedicated to the business world : COBOL was created for business-oriented applications in the
finance, defence, and other fields. Because of its extensive file processing capabilities, it can

manage large amounts of data.

— Language that is robust : COBOL is a strong language with a wide range of debugging and

testing facilities for practically all computer platforms.

— Language That Is Organized: COBOL has logical control structures, which makes it easier to

comprehend and alter. COBOL is divided into sections, making it simple to debug.

6.5 COBOL STRUCTURE

As demonstrated in the accompanying CHART, a COBOL programme structure is made up of divisions.

PROGRAM

!

DIVISIONS

l

SECTIONS

l

PARAGRAPHS

SENTENCES

!

STATEMENTS

CHARACTERS

Fig 6 1 COBOL Structure

The following is a basic overview of these divisions:

— The logical subdivision of programme logic is called sections. A section is made up of several

paragraphs.

— A section or division is subdivided into paragraphs. It comprises of zero or more sentences/entries

and has a user-defined or preset name followed by a period.

— A sentence is made up of one or more statements. Only the Procedure division has sentences. A

period must be used to conclude a sentence.
— COBOL statements that do processing are known as statements.

— Characters are at the bottom of the chain and cannot be divided.

6.6 DIVISIONS

There are four divisions in a COBOL programme.

Identification: It is the first and only division in any COBOL programme that must be completed. This
division is used by the programmer and the compiler to identify the programme. PROGRAM-ID is the
sole necessary paragraph in this division. PROGRAM-ID gives the programme name, which can be

between one and thirty characters long.

Environment: The environment division is used to specify the program's input and output files. It is

divided into sections.

The system on which the application is written and executed is described in the configuration section. It is

made up of two paragraphs.
— The system that was used to compile the application is known as the source computer.
— The application is executed using an object computer system.

The Input-Output section contains details about the files that will be utilised in the application. It is made

up of two paragraphs.
— Information about external data sets utilised in the application is provided via the file control.
— /O control gives you information about the files you're using in the programme.
Data: The variables in the programme are defined via data division. It is divided into four pieces.
The file section is used to specify the file's record structure.

— The Working-Storage section is where you specify the program's temporary variables and file
structures.

— The section Local-Storage is comparable to the section Working-Storage. The main distinction is
that variables are allocated and initialised each time a programme is run.

— The data names obtained from an external programme are described in the Linkage section.
Procedure: The logic of the programme is included in the procedure division. It is made up of statements
that may be executed utilising variables declared in the data division. Paragraph and section titles are

user-defined in this division.

In the method division, there must be at least one statement. STOP RUN, which is used in calling
programmes, or EXIT PROGRAM, which is used in called programmes, is the last statement to halt

execution in this division.

6.7 DATA TYPES

The variables used in a programme are defined via Data Division. To explain data in COBOL, one needs

be familiar with the terminology given in the picture.

a1 TOTAL-STUDENTS PIC9(5) VALUE "125°.

Level Number Data Name Picture Clause Value Clause

Fig 6 2 Data Types in COBOL

Data Name: Before utilising data names in the Procedure Division, they must first be specified in the
Data Division. Reserved words cannot be used; they must have a user-defined name. The memory regions

where real data is stored are referred to by data names. They might be simple or multi-leveled.

Level Number: The level of data in a record is indicated by a number. They're utilised to tell the
difference between basic and group products. To make group items, elementary objects may be grouped

together.
Picture Clause: The following things are defined using the picture clause:

Numeric, alphabetic, or alphanumeric data types are all possible. Only the numbers 0 to 9 make up the
numeric type. The letters A through Z, as well as spaces, make up alphabetic type. Digits, letters, and

special characters make up the alphanumeric type.
— With numeric data, sign can be employed. It can be either a plus or a minus sign.

— With numeric data, the decimal point location might be utilised. The position of the decimal point

is assumed and is not included in the data.
— The number of bytes consumed by the data item is defined by its length.

Value Clause: The value clause is an optional clause that is used to set the data elements' initial values.
Numeric literals, alphanumeric literals, and metaphorical constants can all be used. It may be used to both

group and basic objects.

&) Vista TN3270 Session A
File Edit Font Transfer Macro Options Window Help

L2 [H|H[S] (] »] u| m EE
File Edit Edit_Settings HMenu ilities Compilers Test Help

EDIT ALFA11.COBOL.PGMS.DAY3(PGMOL) - B1.14 poeol oeorz
PAGE

FHK K KOO ROR KKKk Rk Top of Data o0ksorksosorrsor ko ormksk ok o0k KRk KOk
-Warning- The UNDO command is not available until you change

your edit profile using the command RECOVERY ON.

Fig 6 3 (a) COBOL code using loops and conditional statements

&) Vista TN3270 Session A
File Edit Font Transfer Macro Options Window Help

EEE]

File Editr Edit Settings Menu Utilities Compilers Test Help

EDIT) 1 oepnl opare
PAGE

Fig 6 3(b) COBOL code using loops and conditional statements

& Vista TN3270 Session A
File Edit Font Transfer Macro Options Window Help

File Edit FEdit Settings Menu Utilities Compilers Test Help

EDIT ALFA11.COBOL.PGHS. DAYJ(PGMOL) - B1.14 Hoepl owore
- PAGE

Fig 6 3(c) COBOL code using loops and conditional statements

& Vista TN3270 Session A
File Edit Font Transfer Macro Options Window Help

] (LB]3]5]5] (] ol a] [#]%] [[a]e]c] (7]
File Edit Edit_Settings HMenu tilities Compilers Test Help

EDIT ALFA11.COBOL.PGMS.DAY3(PGMAL) - 01.14 s HOBO01 0BOfZ
- PAGE

F7=Up

Fig 6 3(d) COBOL code using loops and conditional statements

& Vista TN3270 Session A
File Edit Font Transfer Macro Options Window Help

File Edit FEdit Settings Menu Utilities Compilers Test Help

EDIT ALFA11.COBOL.PGHS. DAYJ(PGMOL) - B1.14 Hoepl owore
_ PAGE

Fig 6 3(e) COBOL code using loops and conditional statements

& Vista TN3270 Session A
File Edit Font Transfer Macro Options Window Help

| &3]3 [ula] [=]=] |
File Edit Edit_Settings HMenu ilities CLCompilers Test Help

EDIT ALFA11.COBOL.PGMS. DAY3(PGMA1) - 01.14 s DBA01 086872
S S PAGE

Fig 6 3(f) COBOL code using loops and conditional statements

& Vista TN3270 Session A - X
Font Transfer Macro Options Window Help

File Edit FEdit Settings Menu Utilities Compilers Test Help

EDIT ALFA11.COBOL.PGHS. DAYJ(PGMOL) - B1.14 Hoepl owore
PAGE

2 B3/16/21.075 B4:23PH 23.229.8.214

Fig 6 3(g) COBOL code using loops and conditional statements

& Vista TN3270 Session A - X
File Edit Font Transfer Macro Options Window Help

File Edit Edit_Settings Menu tilities Compilers Test Help

EDIT ALFA11.COBOL.PGHS. DAYJ(PGMOL) - B1.14 Hoepl owore
PAGE

Fokokok ok kb dokkkok ok ok ok ok ok kokk k. Bottom of Data sorskkkokdorsorsorkokdorkokkokok ok ok k

F7=Up

Fig 6 3(h) COBOL code using loops and conditional statements

CHAPTER 7: DB2/SQL

7.1 INTRODUCTION

IBM's DB2 is a database product. It's a database management system generally known as
Relational Database Management System (RDBMS). DB2 is designed to effectively store,
analyse, and retrieve data. With the addition of XML, the DB2 software now supports Object-

Oriented features and non-relational structures.

SQL is a programming language that is used to manipulate data in a relational database. SQL is a
database management system (RDBMS) standard language. It contains a large collection of
instructions that allow a programmer to generate, alter, and remove data from a relational
database management system. Each relational database management system (RDBMS) has its
own set of rules. As a result, while using SQL for an RDBMS, be sure the SQL commands you

use meet the RDBMS's standards.

DB2 was originally built by IBM for their own platform. It has been working on a Universal
Database (UDB) DB2 Server since 1990, which may run on any authoritative operating system,

including Windows, UNIX, and Linux.

Storage
Groups

Fig 7 1 Database Architecture

SQL commands may be classified into two groups:

1. DDL - Data Definition Language, which contains commands for database managers to

employ.
2. DML - Data Manipulation Language, which contains instructions for programmers to employ.

DDL commands
— CREATE-ALTER-DROP DATABASE
— CREATE-ALTER-DEOP STOGROUP
— CREATE-ALTER-DROP TABLESPACE
— CREATE-ALTEER-DEOP TABLE
— CREATE-ALTER-DROP INDEX
— CREATE-DROP VIEW
— CREATE-DROP ALIAS
— CREATE-DROP SYNONYMN

DML commands
— INSERT
— UPDATE
— DELETE
— SELECT
— OPEN
— FETCH
— CLOSE

7.2 TABLES

Tables are logical structures that Database Manager maintains. Each vertical element in a table is
referred to as a column (Tuple), and each horizontal block is referred to as a row (Entity). A table
is a collection of data kept in the form of columns and rows. Each column in a table has a

separate data type. Tables are used to keep track of data across time.

7.2.1 TABLE TYPES

Base tables are used to store data that is persistent across time. Base tables come in a variety of types,

including: Regular tables, Multidimentional Clustering Table, Insert Time Clustering Table, Range-

Clustered tables Table, Partitioned Table and Temporal Table.

Temporary tables are used for temporary work in various database procedures. The produced temporary

tables (DGTTs) do not exist in the system catalogue, and XML columns cannot be utilised in them.

MQT stands for Materialized Query Tables, and it may be used to increase query performance. A query,

which is used to determine the data in the tables, defines these sorts of tables.

7.2.2 CREATING A TABLE

The following syntax is used to create a table:

CREATE TABLE table
{ column-1
column-2

column-3

column-4

data-tvpe NOTNULL PRIMARY KEY,
data-tvpe,
data-tvpe,
data-tvpe

JIN database-name tablespace-name;

7.2.4 CREATING INDEX

Fig 7 2 Code to create a table

The following syntax is used to create a index:

CREATEUNIQUEINDEX IDX] ONTEAMS(TCODE);

Fig 7 3 Code to create an Index

7.2.5 INSERT

The following syntax is used to insert values into a table:

INSERTINTO table VALUES(valuel value? value3, .);

|
EMPN
NAMI

|

|

| n
BHMATE |

Fig 7 4 Code to insert values

7.2.6 UPDATE AND DELETE A TABLE
The following syntax is used to update values in a table:

Svntax:

UPDATE table SET column = value WHERE condition;

Example:

UPDATE TEAMS SET CAPTAIN = ')KGHLI' WHERE TCODE = IND ’;

The following syntax is used to delete a table:

Svntax:
DELETE FROM table WHEERE condition;

Example:
DELETE FROMPLAYERS WHERE PCODE = ‘P34°;

7.2.7 SELECT COMMAND

It is used to retrieve values. The following syntax is used for the select command:

SELECT {DISTINCT} column-1, column-2, ... FROMtable;

Fig 7 5 Code to select

7.3 EMBEDDED SQL PROGRAMMING

Embedded SQL is a programming approach that involves embedding SQL instructions into a
COBOL programme. A COBOL/DB2 programme is an example of this type of software. In a
COBOL/DB2 application, all SQL instructions must be written between EXEC SQL and END-
EXEC. Only one SQL command can be included in an EXEC SQL block. The SQL command
must not terminate with ; in the EXEC SQL block. The EXEC SQL block must be written in

Area B at all times.

— The INCLUDE command will insert the member's code into the location where the

INCLUDE command is supplied.

— In COBOL, the INCLUDE command is similar to the COPY command. This command

will be run throughout the compilation process.

7.3.1 HOST VARIABLES

Variables in the working-storage section can only be utilised outside of an EXEC SQL

block.
Column names are only allowed to be used within an EXEC SQL block.
You can utilise host variables both inside and outside of an EXEC SQL block.

Host variables are defined in the DCLGEN member, which is generated using the ISPF
option 8 DCLGEN option.

By default, the name of the host variable is the same as the name of the column. The

DCLGEN option allows you to add a prefix.

When using a host variable in an EXEC SQL block, type : before the host variable (:HV-
EMPNO).

: must not be written before the host variables when they are utilised outside of an EXEC

SQL block (HV-EMPNO)

7.3.2 SQLCODE VARIABLE

SQLCODE is a built-in DB2 variable that contains the SQL command's execution status.
If the SQL command is successful, it will return a result of 0 or positive. If the SQL
statement fails to run, it will return a negative result. Checking the SQLCODE after each
EXEC SQL block is a good idea.

SQLCODE is defined in the SQLCA member and has the S9(09) COMP PIC clause.
CONTAIN To utilise SQLCODE in the application, you must use the SQLCA command.
SQL codes that are commonly used:

0 - Successful execution of SQL command
-803 :Duplicate Primary Key

-204 - Invalid table name

-206 :Invalid table name

+100 :End of table

7.3.3 CURSORS

If you have a SELECT in a programme that returns numerous rows, you'll need to
employ a cursor.

— The cursor is related with the following four commands:

DECLARE CURSOER.: DECLAERE cursor-name CUERSOR FOR query

OPEN: OPEN cursor-name

FETCH: FETCH cursor-name INTO host-variables
CLOSE: CLOSE cursor-name

— In the WORKING-STORAGE SECTION, type the DECLARE CURSOR
command to set the cursor. We mention the cursor's name and correlate it with a
SELECT query. DECLARE CURSOR creates a record in the DB2 system table
with the cursor name and the SELECT query. The DECLARE CURSOR
command does not run the SELECT query.

— The OPEN command will search the DB2 system table for the cursor-name
specified in the command. If the cursor-name is found in the table, it will run the
SELECT query associated with it and produce a result table that the cursor will
refer to.

— The FETCH command retrieves the current row of the cursor table and assigns the
data to the host variables specified.

— The CLOSE command is used to close the cursor.

&) Vista TN3270 Session A -
File ¢ Macro Optlons Window Help

Elle Edit Edit_Settings ﬂenu Utilities Compilers Test Help

EDIT ALFA11.TCO1.POLICY.PDS(POLA111) - B1.28 Columns B0BB1 BBAOTZ
Command ===> _ Serall ===> PAGE
okok ok ok otk okkok ook ok bk sokskokskokokk Top of Data skoksorsorsoroksorsorsok otk sor ook dokok sk ko ok
-Warning- The UNDO command is not available until you change
your edit profile using the command RECOVERY ON.

pap1ipa IDENTIFICATION DIVISION.
papzon PROGRAM-ID. POLB111.
pee3ed ENVIRONMENT DIVISION.

INPUT-DUTPUT SECTION.

FILE-CONTROL.

DATA DIVISION.

FILE SEI IDN

WORKING- 1

¥r IV PO ATUS p 3(Bd4) COMP.
HﬂlﬂDH in I ; P PIC 59(Bd) COMP.
ue11pd
pu12E
ue
pe14dpd
peised INCLUDE T1
Fi1=Help EZ=Split F3=Exit F5=Rfind FE=Rchange
FB=Down F9=5Swap Fi0=Left Fi1=Right Fi1Z=Cancel

/ :58PH 23.2729.8.214

Fig 7 6 COBOL/DB2 Code

& Vista TN3270 Session A _
File Edit Font Transfer Macro Options Window Help

s3] 5]5]][] ula] [#]2]
File Edit Edit_Settings Menu ilities Compilers Test Help

EDIT ALFA11.TCO1.POLICY.PDS(POLA111) - B1.32 Columns BBAB1 BBOTZ
Command ===> _ Scroll ===> PAGE
ook KRRk R OK Rk kR kokkkokk - Tap of Data fsskoksokrokokokorkokkokok ok Kok Kok Kok %ok o Kok K
-Warning- The UNDO command is not available until you change
your edit profile using the command RECOVERY ON.
pebivg IDENTIFICATION DIVISION.
popzeo PROGRAM-ID. POLB111.
ENVIRONMENT DIVISION.
INPUT-DUTPUT SECTION.
FILE-CONTROL.
UHIH DIVIEIDN.

(B4) COMP,
)

= 25
1

COMP.
F SOLCA

pai4nn EXER Sl

pa1500 HH LUDE T1

F1=Help Fe=bplit Fi=Exit F5=Rfind Fb=Rchange

FB=Down F9=5wap Fll=Left F11=Right Fl1Z2=Cancel
9PM 23.2729.8.214

Fig 7 7 (a)COBOL/DB2 Code

& Vista TN3270 Session A = X
File Edit Font Transfer Macro Options Window Help

s3] 5]5]][] ula] [#]2]
File Edit Edit_Settings Menu ilities Compilers Test Help

EDIT ALFA11.TCO1.POLICY.PDS(POLA111) - B1.32 Columns 0BOB1 BOBTZ
Command ===> _ Scroll ===> PAGE
po16ee END-EXEC.
patree EXEC SOL
pelgoo INCLUDE T2
pe19e0 END-EXEC.
pezooo EXEC SOL
DECLARE C1 CURSOR
FOR SELECT HOLDER_ID,
POL_ID,
POL_TERM,

G]

F1=Help Fe=bplit Fi=Exit F5=Rfind Fb=Rchange

FB=Down F9=5wap Fll=Left F11=Right Fl1Z2=Cancel
0.3 B3/38/21.089 B2:39PM 23.7229.8.214

Fig 7 8 (h)COBOL/DB2 Code

& Vista TN3270 Session A = X
File Edit Font Transfer Macro Options Window Help

(HR[@)] [2]F] [o] [LASH5] B[]a] [¢]#] [a]e]c] (7]
File Edit Edit_Settings Menu ilities Compilers Test Help

EDIT ALFA11.TCO1.POLICY.PDS(POLA111) - B1.32 Columns 0BOB1 BOBTZ
Command ===> _ Scroll ===> PAGE
pa3400 END-EXEC.
pa3sB0 EXEC SOL
pe3eoo COMHIT
pa3roo END-EXEC.
pe3gaoo EXEC SOL
BPEN C1
END-EXEC.
EVALUATE SQLCODE
WHEN O
DISPLAY "CURSOR HAS BEEN DPENED"
PERFORM FETCH-PARA UNTIL SQLCODE = 1688
] JRM CLOSE-PARA
pedeed WHEN OTH
padroe SPLAY "CURSOR OPEN ERROR ", SOLCODE
pa4800 E;

b [FETCH-PARA.

pas5100 EXEC SOL

F1=Help Fe=bplit Fi=Exit F5=Rfind Fb=Rchange Fr=Hexiva

FB=Down F9=5wap Fll=Left F11=Right Fl1Z2=Cancel o Se
9PM 23.2729.8.214

Fig 7 9 (¢c)COBOL/DB2 Code

& Vista TN3270 Session A -
File nt ¢ Macro Options Window Help

LlaB[5]5]] [a] [¢]%] S
File Edit Edit Settings Menu Utilities Compilers Test Help

EDIT ALFA11.TCOL.POLICY.PDS(POLO111) - B1.32 Columns BBOAB1 BOOTZ
Command ===> _ Serall. ===> PAGE
pa5200 FETCH C1 INTO :HVY-HOLD-HOLDER-ID,

pas5300 :HY-HOLD-POL-1D,

pa5400 :HV-HOLD-POL-TERHN,

pa5500 :HV-HOLD-POL-DESC,

pas6ee “HY-HOLD-POL-PREMIUM,

pas7ee “HY-HOLD-POL-STATUS: IV-T1-POL-5STATUS
pas8sno END-EXEC.

pas980 EVALUATE SOLCODE
peenBo WHEN B

’ " DATA FETCHED"

LAY "END OF TABLE REACHED"
WHEN OTHER
DISPLAY "FETCH ERROR ", SQLCODE

pee96d FRFO
Fi1=Help EZ=Split i F5=Rfind FE=Rchange F7=Hpivate
FB=Down F9=Swap Fi1=Right Fi1Z=Cancel
:39PH 23.2729.8.214

Fig 7 10 (d)COBOL/DB2 Code

& Vista TN3270 Session A _
File Edit Font Transfer Macro Options Window Help

@] [2]=] (=] [D[a]a]H]5]][] o a] [+]2]
ile Edit Edit Settings HMenu tilities Compilers Test Help

EDIT ALFA11.TCO1.POLICY.PDS(POLA111) - B1.32 Columns 0BOB1 BOBTZ
Command ===> _ Scroll ===> PAGE
parope EXEC SOL
paripe INSERT INTOD POLICY_EXP_TABLE VYALUES(
parzuo :HY-POL-HOLDER-ID,
parioo :HY-POL-POLICY-ID,
paraoo :HY-POL-POL-VALUE,
parsee :HY-POL-PDL-EXP-DATE,
paTeBe :HV-POL-POL-STATUS: IV-T2-POLICY-STATUS)
parroe END-EXEC.
pArB00 EVALUATE SQLCODE
WHEN B

¥ "INSERT SUCCESSFUL"
‘:

INSERT ERRDR ", SQLCODE

poBTOoO V-HOLD-POL-STATUS = "NULL"

F1=Help Fe=bplit Fi=Exit F5=Rfind Fb=Rchange Fr=Hp

FB=Down F9=5wap Fll=Left F11=Right Fl1Z2=Cancel :
:39PM 23.279.8.214

Fig 7 11 (e)COBOL/DB2 Code

& Vista TN3270 Session A -
File nt ¢ Macro Options Window Help

LlaB[5]5]] [a] [¢]%] S
File Edit Edit Settings Menu Utilities Compilers Test Help

EDIT ALFA11.TCOL.POLICY.PDS(POLO111) - B1.32 Columns BBOAB1 BOOTZ
Command === _ Serall ===> PAGE
posaoo MOVE HY-HOLD-HOLDER-ID 10 HV-POL-HOLDER-ID
paB9Ine MOVE HY-HOLD-POL-ID T0 HV-POL-POLICY-ID
pasnpe COMPUTE HV-PDL-POL-VALUE = HY-HOLD-POL-TERM
pag1pe * HV-HOLD-POL-PREMIUM
pa92e0 MOVE "2B21-63-38" T0 HV-POL-POL-EXP-DATE
peg3ioo MOVE "EXPIRED" TO HV-POL-POL-STATUS

ELSE

DISPLAY "STATUS IS NOT NULL"
END-IF.
CLOSE-PARA.

END ;
EVALUATE SQLCODE
WH i
AY "CURSOR HAS BEEN CLOSED"

5P "CURSOR CLOSE ERROR ", SOLCODE
EZ=Split F3=Exit F5=Rfind FE=Rchange
F9=5Swap Fi0=Left Fi1=Right Fi1Z=Cancel
:39PH 23.2729.8.214

Fig 7 12 ()COBOL/DB2 Code

& Vista TN3270 Session A _
File Edit Font Transfer Macro Options Window Help

s3] 5]5]][] ula] [#]2]
File Edit Edit_Settings Menu ilities Compilers Test Help

EDIT ALFA11.TCB1.POLICY.PDS(POLBI11) - B1.32 Columns DBOB1 ODOTZ
Command ===> _ Scroll ===> PAGE
p1p600 END-EVALUATE.

ok Rk ok ok R kok ok okokok ok kkoksokkokokk k- Bottom of Data kkskoksorskkokskorkokokok ook kokok ook ook ok ok k

F1=Help Fe=bplit Fi=Exit F5=Rfind Fb=Rchange
FB=Down F9=5wap Fll=Left F11=Right Fl1Z2=Cancel
B3/38/21.089 9PM 23.2729.8.214

Fig 7 13 (gY)COBOL/DB2 Code

CONCLUSION

I have successfully completed my training at DXC Technology via vendors like IIHT and NIIT. I have
learned about basic fundamentals of Computer Science. My specialization during training was Mainframe
Technology. In Mainframe I have learned about its different types of operating systems. I have also
learned about entering commands in the operating system using environment like TSO and ISPF. Further
I have learned about Job Control Language which is used for submitting COBOL codes to the mainframe
computer operating system. I have learned about various datasets in VSAM data management. I have
learned about COBOL which is a business oriented language and also a very simple English like
language. Hence COBOL codes are easy to understand. Later I have learned about Embedded SQL
Commands in COBOL/DB2 programs. I have done case studies on COBOL and DB2.

Mainframe computers are now an integral part of most of the world's major organizations’ everyday
operations. Despite the fact that other types of computers are widely employed in business in various
capacities, the mainframe continues to have a valued position in today's e-business environment. Data at
the nation level is handled by mainframes business in industries like banking, investment, health care,

insurance, utilities, and administration.

REFERENCES

1. DXC Technology [Online] Available : https.//www.dxc.technology/ (Visited on May 21,
2020)

2. Tuteja, Maneela, and Gaurav Dubey. "A research study on importance of testing and quality
assurance in software development life cycle (SDLC) models." International Journal of Soft
Computing and Engineering (IJSCE) 2, no. 3 (2012): 251-257.

3. Ebbers, Mike, Wolfgang Bosch, Hans Joachim Ebert, Helmut Hellner, Jerry Johnston, Marco
Kroll, Wilhelm Mild et al. Introduction to the New Mainframe: IBM Z/VSE Basics. IBM Redbooks,
2016.

4. Barron, David W., and |. R. Jackson. "The evolution of job control languages." Software: Practice
and Experience 2, no. 2 (1972): 143-164.

5. Sammet, Jean E. "The early history of COBOL." In History of Programming Languages, pp. 199-
243.1978.

6. Java Point [Online] Available : https.//www.javatpoint.com/ - Software Development Life
(Visited on May 22, 2020)

7. Tutorials Point Java Point [Online] Available : https://www.tutorialspoint.com/ - JCL
Documentation and DB2 Documentation (Visited on May 22, 2020)

