Reactive Spring Boot Application For Product
Variant Using Kafka And Cassandra Database

Project report submitted in partial fulfilment of the requirement for
the degree of Bachelor of Technology
In

Computer Science and Engineering

By:
Aditya Kumar Singh (171289)

Under the supervision
of

Mr. Aman Sinha
(Tech Lead, ZopSmart Technology)

To

foem o sefaam
Department of Computer Science & Engineering and Information Technology

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN - 173234, HIMACHAL PRADESH

CERTIFICATE

Candidate’s Declaration

| hereby declare that the work presented in this report entitled “Reactive Spring
Boot Application For Product Variant Using Kafka And Cassandra Database” in
partial fulfillment of the requirements for the award of the degree of Bachelor of
Technology in Computer Science submitted in the Department of Computer
Science Engineering and Information Technology, Jaypee University of
Information Technology, Waknaghat is an authentic record of my own work
carried out over a period from February 2021 To May 2021 under the supervision
of Mr. Aman Sinha.

The matter embodied in the report has not been appeased for the award of any

other degree or diploma.

oy

Aditya Kumar Singh (171289)

This is to verify that the above statement made by candidates is true to the best
of my knowledge.

.

Mr. Aman Sinha
Tech Lead
ZopSmart Technology

Dated:- 22-05-2021

ACKNOWLEGEMENT

We have taken efforts to do this project. We wish to express our sincere
gratitude to Mr. Aman Sinha, Tech Lead, ZopSmart Technology for
constantly monitoring and guiding me to the right path in terms of the
project. She constantly helped us in our research and the project wouldn’tbe
possible without his constant support.

Secondly, | would also like to thank Lab assistant who helped me a lot in

finalizing this project within the limited time frame.

LIST OF CONTENTS

CHAPTER-1 INTRODUCTION ..ottt ettt sb e sne e e 1
1.1 INEFOTUCTION .ttt bbbt b et nb e 2

1.2 ProbIemM STAtEMENT........cviiiiiiiieci e 3

IR O o =T o1 1= SR 5

1.4 METNOTOIOQY ...ttt 5

SR O 10 a1 72 110] OSSR 7
CHAPTER-2 LITERATURE SURVEY ..ottt 8
ChAPTER-3 SYSTEM DEVELOPMENTccoiiiiitit ettt 12
3.1 Reactive Programmingo.ovtitiitiititiit it et et eet et et ettt aaaans 14

@ BASICS ittt bbbt 11

® REACTIVE SYSTEIMS......iiiiiiieieei ettt re s 15

o Reactive Stream SPeCifiCation...........ccoviiiiiiii i 15

KB 1o 1o =T o S 17

o EXPErimental SEIUDocoiiiiiiiii s 18

G B (T Y o | ISP 20

3.4 Apache KafKa......o.ouiiiii e e 22

3.5 APAChE CasSandra.ouuiuinit i 32

3.6 Model DevelopmEent.ouiei it e 39

B0 B aUTES. .ottt et e 41
CHAPTER-4 PERFORMANCE ANALYSIS... ..o 42
CONCLUSION ..ottt b e et s e s b e st e e b e s e e be e st e e s beenbeeteabeanbeanteas 48
FUTURE WORK ...ttt ettt sbe e sbe e sbe e beesbeesbeesaeesbeenbeenteestee e 48

REFERENCEottt n e r e e n e nrean e nenreeneas 49

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

LIST OF FIGURES

Cloud COMPULING SEIVICES.cveiiiiiiiiiteieeeeste sttt 12
0T (T L (01 T (1 -SSP 13
REACHIVE EVENT SIIEAIMiiiiiieiieiis ettt 14
SPPNG INIHAIIZEN ... s be e et e e sreesreesneesreenree e 19
L] PSSR 21
Point to POINt MESSAgING SYSTEMcviiiiiiiiiiieieees s 24
Publish Subscribe Messaging SYSEM........cc.oiiiririeiiire s 24
KAFKE .ttt b s 26
Cluster Diagram Of KafKa.........cccooviiiiiiiiiieiccec et 29
N Tl (3 =T o] [Tor: 11 o] o S 34
Cassandra WIite OPEIAtIONoiereiiiiiitcie et 36
REAA OPEIALION ...ttt b et sbe s 37
FIOW CRAIT ... bbbttt bbb 39
SChEMA IAGIAM ...c.viiiice e sttt sre et resre e 40
Spring BOOt APPHICALIONcccveiiecece e e 42
[1 W o] -] o] SR 43
N S-SR 44
KATKA CONSUMET ...ttt bbb bbbt bbb s 44
APACNE SEIVEL IMAGE......cuiiiiiiiiiie ettt sttt s be e e r e besbe e e e teereenes 45
D0l T g 1 = Vo RS 46
=TT o [T qTo oo g1 - 1o L-] cO TSRS 46
DAtabaSE IMAGEeeueeiiiiteieee ettt bbbt et 47
Database FUNTIMIEoiuiiiecccceee ettt et re e e e te e e e e nreeraenes 47

Abstract

The Zopsmart Smart Store is a platform to help businesses setup their own
customized e- commerce website. It has two variants: Smart Store Eazy, and
Smart Store Enterprise Edition. As the name suggests for both Smart Store
Enterprise Edition contains many features that make it modular and scalable, it has
minimal integration, you can operate it for multiple stores, any many more
customer friendly features. Whereas Smart Store Eazy is a lighter version of the
Enterprise Edition and is intended for small grocery stores. So, when aclient uses it
to build his/her own e-commerce platform, it must be ensured that they get access
the features they need, for that multiple extensions have been provided so that the
client can curate their website as per their own requirement. When it comes to
clients from abroad, or any business that has to extended abroad, there arises the
need of multi-lingual support on the website. This helps the customers search in
their respective languages and receive the search results in their respective
language. But nothing is so easy when it comesto integrate this feature. A separate
technology needs to be added in order to handle this and in order to avoid
uncontrolled calls to the database. Usage of other technologies (such as Google

APIs) helps in translation of the content as per the language variation.

CHAPTER 1

INTRODUCTION

Product variants are used to manage products having different variations, like size,
colour, etc. It allows managing the product at the template level (for all variations) and
at the variant level (specific attributes). As an example, a company selling t-shirts may
have the following product: Levi’s T-shirt .It will have Sizes: S, M, L, XL, XXL ,
Colours: Blue, Red, White, Black etc.

In this example, Levi’s T-Shirt is called the product template and T-Shirt, S, Blue is

a variant. Sizes and color are attributes.

The above example has a total of 20 different products (5 sizes x 4 colors). Each
one of these products has its own inventory, sales, etc. An E-commerce website
requires a multilingual support because it eases the usage and searching of products
for customers using the platform. Also, it as an important aspect if your business is
purely internet based. An intuitive user interface is a hallmark of any decent
business. But in order for the frontend of applications to work smoothly, you must
also consider the backend. Backend development, also called server-side
development, handles the behind-the-scenes functions of web development — things

like interactions with databases, authorizing users and routing URLS.

Reactive Programming (RP) is a programming model that is designed to cope with
asynchronous events (data streams) and the specific act of producing a change, in
other words, it means that modifications are implemented to the execution
environment in an effective ceratin order. Take a look at the sequences of events in
real life in order to have a full understanding of the reactive programming Java
paradigm.Spring Boot is a project that is built on the top of the Spring Framework.
It provides an easier and faster way to set up, configure, and run both simple and

web-based applications.

It is a Spring module that provides the RAD (Rapid Application Development)
feature to the Spring Framework. It is used to create a stand-alone Spring-based

application that you can just run because it needs minimal Spring configuration.

Apache Kafka is a software platform which is based on a distributed streaming
process. It is a publish-subscribe messaging system which let exchanging of data
between applications, servers, and processors as well. Apache Kafka was originally
developed by Linkedln, and later it was donated to the Apache Software
Foundation. Currently, it is maintained by Confluent under Apache Software
Foundation. Apache Kafka has resolved the lethargic trouble of data

communication between a sender and a receiver.

Cassandra is a distributed database management system designed for handling a
high volume of structured data across commodity servers. Cassandra handles the
huge amount of data with its distributed architecture. Data is placed on different
machines with more than one replication factor that provides high availability and

no single point of failure.

There are lots of great reasons why you should use reactive programming as a business
or developer.

Here are the major ones to think about.

1. Improves user experience - this is at the very heart of why you should be using
reactive programming for your apps or websites. The asynchronous nature of FRP
means that whatever you program with it will offer a smoother, more responsive
product for your users to interact with.

2. Easy to manage - one big bonus with reactive programming is that it is easy to
manage as a developer. Blocks of code can be added or removed from individual data
streams which means you can easily make any amendments needed via the stream
concerned.

3. Simpler than regular threading - FRP is less hassle than regular threading due to the

way it allows you to work on the data streams. Not only is this true for basic threading
2

in an application but also for more complex threading operations you may need to

undertake.

Problem statement

e Thread Per Request Model:-
The application will only be able to handle a number of concurrent requests
that equals the size of the thread pool. It is possible to configure the size of
the thread pool, but since each thread reserves some memory (typically
1MB), the higher thread pool size we configure, the higher the memory
consumption. If the application is designed according to a microservice
based architecture, we have better possibilities to scale based on load, but a
high memory utilization still comes with a cost. that the greatest advantage
of cloud computing. It encourages Yyou to spare important capital expense
because it needn't trouble with any actual Instrumentality ventures.

e Waiting for 1/O operation:-
Same type of waste also occurs while waiting for other types of 1/0
operations to complete such as a database call or reading from a file. In all
these situations the thread making the 1/O request will be blocked and
waiting idle until the I/O operation has completed, this is called blocking
I/0. Such situations where the executing thread gets blocked, just waiting for

a response, means a waste of threads and therefore a waste of memory.

e Response Time:-
Another issue with traditional imperative programming is the resulting response
times when a service needs to do more than one 1/O request. For example, service
A might need to call service B and C as well as do a database lookup and then
return some aggregated data as a result. This would mean that service A’s response
time would besides its own processing time be a sum of:
« response time of service B (network latency + processing)
« response time of service C (network latency + processing)
« response time of database request (network latency + processing)
e Overwhelming the client:-

Another type of problem that might occur in a microservice landscape is when service

A is requesting some information from service B, let’s say for example all the orders
placed during last month. If the amount of orders turns out to be huge, it might
become a problem for service A to retrieve all this information at once. Service A

might be overwhelmed with the high amount of data and it might result in for

example an out of memory-error.

On Demand Self Service

Developer not have to be compelled to worry regarding the resources. Resources
square measure created on the market to the user on AN “as needed” basis. insteadof
all quickly , on-demand computing permits cloud hosting firms to supply their

purchasers with access to computing resources as they become necessary

The different issues described above are the issues that reactive programming is
intended to solve. In short, the advantages that comes with reactive programming is
that we:
« move away from the thread per request model and can handle more requests
with a low number of threads.
« prevent threads from blocking while waiting for 1/O operations to complete.
* make it easy to do parallel calls.
» support “back pressure”, giving the client a possibility to inform the server on
how much load it can handle.

Needs of Microservices

1. Continuous Delivery

Microservices provide the ideal architecture for continuous delivery. With
microservices, each application resides in a separate container along with the
environment it needs to run. Because of this, each application can be edited in its
container without the risk of interfering with any other application.

This means zero downtime for users, simplified troubleshooting, and no disruption
even if a problem is identified. The safe and rapid changes allowed by microservice
architecture make it possible to update software fast enough to put the “continuous”
in continuous delivery. By keeping disruption to a minimum, microservice
architecture lets you update rapidly without inconveniencing customers.

Maximize Deployment Activity

Microservice architecture allows you to maximize deployment velocity and

application reliability by helping you move at the speed of the market. Since
applications each run in their own containerized environment, applications can be
moved anywhere without altering the environment. If an application works in
development, it will work for the customer. This speeds up time to market and

increases product reliability

. Faster innovation to adapt to changing market conditions

Microservices can also help you adapt more quickly to the changing market
conditions. Because microservices allow applications to be updated and tested
quickly, you can follow market trends and adapt your products faster.

Microservices also give you an edge when it comes to innovation, since developers
can experiment on applications without fear of causing problems elsewhere. In
today’s rapidly changing market, getting an edge on innovation helps you maintain

your current revenue streams while driving new revenue

Objectives

To make a Spring Boot non-blocking applications that are asynchronous and event-
driven and require a small number of threads to scale. A key aspect of that definition
iIs the concept of backpressure which is a mechanism to ensure producers don’t
overwhelm consumers .

Methodology

It is a system of broad principles or rules from which specific methods or
procedures may be derived to interpret or solve different problems within the scope
of a particular discipline. Unlike an algorithm, a methodology is not any formula

but it is a set of practices.

e Amazon Web Services

Services that can be used are:-

» Amazon Elastic Compute Cloud (Amazon EC2) to run Linux or Windows
basedservers

» Elastic Load Balancing (ELB) to load balance and distribute the web traffic

» Amazon Elastic Block Store (Amazon EBS) or Amazon Elastic File System
(Amazon EFS) to store static content.

» Amazon Virtual Private Cloud (Amazon VPC) to deploy Amazon EC2
instances. Amazon VPC is your isolated and private virtual network in the
AWS Cloud and gives you full control over the network topology, firewall
configuration, and routing rules.

» Web servers can be spread across multiple Availability Zones for
highavailability, even if an entire data center were to be down.

» AWS Auto Scaling automatically adds servers during high traffic

periods andscales back when traffic decreases

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/ebs
https://aws.amazon.com/efs
https://aws.amazon.com/efs
https://aws.amazon.com/efs
https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/autoscaling
https://aws.amazon.com/autoscaling

Docker

Docker may be a instrumentation platform that packages your application

and every one its dependencies along within the sort of a dockhand container
to confirm that your application works seamlessly in any atmosphere. dockhand
may be a powerful tool for making and deploying applications. It simplifies
rolling outapplications across multiple systems and may be a useful gizmo for
desegregation new technologies. Associate in Nursing application that runs
victimisation dock- hand can start off identical each time occasion anytime on
every system. this suggests that if the applying works on your native laptop,
it’ll work anyplace that supports dockhand.

Docker Image

A dockhand image may be a read-only example that contains a collection of
Direc- tions for making a instrumentality that may run on the dockhand
platform. It prov-ides a convenient thanks to package up applications and
preconfigured server environments, that you'll be able to use for your own non-
public use or share pub- lically with different dockhand users.

Docker Containers

Containers are the style of software virtualization. one instrumentality may well

be accustomed run something from a tiny low micro-service or code method to a
bigger application. within a instrumentality are all the mandatory executables,
computer code, libraries, and configuration files. Compared to server or machine
virtualization approaches, however, containers don't contain software pictures.
This makes thema lot of light-weight and moveable, with considerably less
overhead. In larger application deployments, multiple instrumentality is
also deployed collectively or a lot of container clusters. Such clusters may well

be managed by a instrumentality adapter like Kubernetes.

1.5 Organization

This report has been organized with the following chapters:

Chapter 2: In this chapter the previous end related work done in the development of
thie project were described with their methodology and architecture proposed by the
authors,

Chapter 3: In this chapter we see how we work on system design. Also described
Spring Boot , Apache Kafka , Reactive Programming , REST and Cassandra Database

which will be used in the development of spring boot application.
Chapter 4: Discusses about the result and Screenshots.

Chapter 5: Concludes the project and gives suggestions for future work.

1

CHAPTER 2

LITERATURE SURVEY

[1] Dr. Mitali Gupta [1] conducted the study of Reactive app that are availablein
India and concluded that only the application that were successful have good user
interface and shows the image in a way that sticks in the mind of user so he or she will
buy that. In short a good user interface application and low latency application gives best

user experience .

[2] Shantashree Das, Debomalya Ghose [2] conducted study on influence of online food
delivery application on the operation on business the paper discuss about how human
behaviour are changing and they are more inclined towards ordering food online instead
of going to restaurant and also provided some solution in order to operate business in

more efficient manner. So Reactive Spring boot is making better user experience

[3] P.Nagendra Babu , M.Chaitanya Kumari , S.Venkat Mohan [3] has worked on
computation of cloud computing , data access and storage services that do not require
end user knowledge of the physical location and configuration of the system that

delivers the services.

11

SAAS PAAS IAAS
Software As A Platform As A Infrastructure As
Service Service A Service
v" Government v Application v’ Server

Applications Development v Network
v Communications v Security v’ Storage
v Productivity Services

tools v Database

Management

Examples: Examples: Examples:
v" Oracle v' Microsoft Amazon EC2
v SalesForce.com Azure Verizon Terre
v" LinkedIn v GAE mark
v Google Apps

Figure 1 Cloud Computing Services

Concluded that however Cloud is employed for organizations and the way the cloud is
employedto Store , retrieve and modify the info while not physical instrumentation .Cloud
computing is that the quickest new paradigm for delivering on demand services over web
and might be represented as central Software system.Cloud computing describes a brand new
supplement ,

consumption and delivery model for IT services supported web protocols and it generally

involvesprovisioning of dynamically ascendable and infrequently virtualized resources .

12

[4] BabakBashari Rad, Harrison John Bhatti and Mohammad Ahmadi [4] worked on
Docker which provide some facilities, which are useful for developers and
administrators. It is an open platform can be used for building ,distributing, and
running applications in a portable , lightweight runtime and packaging tool, known as
Docker Engine. It also provideDocker Hub, which is a cloud service for sharing
applications. Costs can be reduced by replacing traditional virtual machine with docker

container. It excellently reduces the cost of re-building the cloud development platform.

Docker Clhent looa-cuu looc-cm

|
Y vy

[oo |

Figure 2 Docker architecture

The conclusion is Docker automates the applications when they are containerized.
An extra layer of docker engine is added to the host operating system. The
performance of docker is faster than virtual machines as it has no guest operating

system and less resourceoverhead.

13

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 Reactive Programming
e Basics
In short: by programming with asynchronous data streams. Let’s say service A
wants to retrieve some data from service B. With the reactive programming style
approach, service A will make a request to service B which returns immediately
(being non-blocking and asynchronous). Then the data requested will be made
available to service A as a data stream, where service B will publish an onNext-
event for each data item one by one. When all the data has been published, this is
signalled with an onComplete event. In case of an error, an onError event would be

published and no more items would be emitted.

Call returns immediately

Invoking service

onNext(T item)

e nitems
[J

onNext(T item)

onComplete()

figure 3 : Reactive Event Stream

14

Reactive programming uses a functional style approach (similar to the Streams API), which
gives the possibility to perform different kinds of transformations on the streams. A stream

can be used as an input to another one. Streams can be merged, mapped and filtered .

e Reactive Systems

Reactive programming is an important implementation technique when developing “reactive
systems”, which is a concept described in the “Reactive Manifesto”, highlighting the need
for modern applications to be designed to be:

1. Responsive (responding in a timely manner)

2. Resilient (staying responsive also in failure situations)

3. Elastic (staying responsive under varying workload)

4. Message Driven (relying on asynchronous message passing)

Building a reactive system means to deal with questions such as separation of concerns, data
consistency, failure management, choice of messaging implementation etc. Reactive
programming can be used as an implementation technique to ensure that the individual
services use an asynchronous, non-blocking model, but to design the system as a whole to
be a reactive system requires a design that takes care of all these other aspects as well.

e Reactive Streams Specification

As time went on, a standardisation for Java was developed through the Reactive Streams
effort. Reactive Streams is a small specification intended to be implemented by the reactive
libraries built for the JVM. It specifies the types to implement to achieve interoperability
between different implementations. The specification defines the interaction between
asynchronous components with back pressure. Reactive Streams was adopted in Java 9, by
the Flow API . The purpose of the Flow API is to act as an interoperation specification and

not an end-user API like RxJava.

15

The specification covers the following interfaces:
Publisher : This represents the data producer/data source and has one method which lets the
subscriber register to the publisher.
public interface Publisher<T> {
public void subscribe(Subscriber<? super T> s);
¥
Subscriber : This represents the consumer and has the following methods:
public interface Subscriber<T> {
public void onSubscribe(Subscription s);
public void onNext(T t);
public void onError(Throwable t);
public void onComplete();
by
. onSubscribe is to be called by the Publisher before the processing starts and is used to
pass a Subscription object from the Publisher to the Subscriberit!
. onNext is used to signal that a new item has been emittedits!
. onError is used to signal that the Publisher has encountered a failure and no more
items will be emitted
. onComplete is used to signal that all items were emitted sucessfullyist!
Subscription : The subscriptions holds methods that enables the client to control the
Publisher’s emission of items (i.e. providing backpressure support).
public interface Subscription {
public void request(long n);
public void cancel();
b
. request allows the Subscriber to inform the Publisher on how many additional

elements to be published

16

. cancel allows a subscriber to cancel further emission of items by the Publisher.
Processor : If an entity shall transform incoming items and then pass it further to another
Subscriber, an implementation of the Processor interface is needed. This acts both as a
Subscriber and as a Publisher.

public interface Processor<T, R> extends Subscriber<T>, Publisher<R> {

}

3.2 Spring Boot

Spring Boot provides a good platform for Java developers to develop a stand-alone and
production-grade spring application that you can just run. You can get started with minimum
configurations without the need for an entire Spring configuration setup.

How does it work ?

Spring Boot automatically configures your application based on the dependencies you have
added to the project by using @EnableAutoConfiguration annotation. For example, if
MySQL database is on your classpath, but you have not configured any database

connection, then Spring Boot auto-configures an in-memory database.

The entry point of the spring boot application is the class contains @SpringBootApplication

annotation and the main method.

Spring Boot automatically scans all the components included in the project by using

@ComponentScan annotation.
Spring Boot Starters

Handling dependency management is a difficult task for big projects. Spring Boot resolves

this problem by providing a set of dependencies for developers convenience.

For example, if you want to use Spring and JPA for database access, it is sufficient if you

include spring-boot-starter-data-jpa dependency in your project.

17

Note that all Spring Boot starters follow the same naming pattern spring-boot-starter- *,

where * indicates that it is a type of the application.

Auto Configuration

Spring Boot Auto Configuration automatically configures your Spring application based on
the JAR dependencies you added in the project. For example, if MySQL database is on
your class path, but you have not configured any database connection, then Spring Boot

auto configures an in-memory database.

For this purpose, you need to add @EnableAutoConfiguration annotation or
@SpringBootApplication annotation to your main class file. Then, your Spring Boot

application will be automatically configured.

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;

@EnableAutoConfiguration
public class DemoApplication {
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);

Spring Boot Application

The entry point of the Spring Boot Application is the class contains
@SpringBootApplication annotation. This class should have the main method to run the
Spring Boot application. @SpringBootApplication annotation includes Auto- Configuration,

Component Scan, and Spring Boot Configuration.
18

If you added @SpringBootApplication annotation to the class, you do not need to add the
@EnableAutoConfiguration, @ComponentScan and @SpringBootConfiguration annotation.

The @SpringBootApplication annotation includes all other annotations.

Component Scan
Spring Boot application scans all the beans and package declarations when the application

initializes. You need to add the @ComponentScan annotation for your class file to scan

your components added in your project.
Spring Initializer

One of the ways to Bootstrapping a Spring Boot application is by using Spring Initializer.
To do this, you will have to visit the Spring Initializer web page and
choose your Build, Spring Boot Version and platform. Also, you need to provide a Group,
Artifact and required dependencies to run the application.

Observe the following screenshot that shows an example where we added the spring-boot-

starter-web dependency to write REST Endpoints.

initializr

Project Language
Q© Gradle Project Q Kotlin Q Groovy

Dependencies ADD DEPENDENCIES... 3 + B

i No aependency selected
Spring Boot

QO 2.51(SNAPSHOT) Q 2.4.7 (SNAPSHOT) QO 248
O 2312(SNAPSHOT) Q 231

Project Metadata

Group com.example

Artifact demo

Name demo

Description Dema project for Spring Boot

Package name com.example.demo

Packaging O War

Java Q6 Qs

figure 4 : Spring intializr

19

https://start.spring.io/

Properties File

Properties files are used to keep ‘N’ number of properties in a single file to run the
application in a different environment. In Spring Boot, properties are kept in the

application.properties file under the classpath.
The application.properties file is located in the src/main/resources directory.

YAML File

Spring Boot supports YAML based properties configurations to run the application. Instead
of application.properties, we can use application.yml file. This YAML file also should be

kept inside the classpath.

3.3 REST API

REST stands for REpresentational State Transfer. REST is web standards based architecture
and uses HTTP Protocol. It revolves around resource where every component is a resource
and a resource is accessed by a common interface using HTTP standard methods. REST was
first introduced by Roy Fielding in 2000.

In REST architecture, a REST Server simply provides access to resources and REST client
accesses and modifies the resources. Here each resource is identified by URIs/ global IDs.
REST uses various representation to represent a resource like text, JSON, XML. JSON is the
most popular one.

HTTP methods

Following four HTTP methods are commonly used in REST based architecture.
*GET — Provides a read only access to a resource.

*POST — Used to create a new resource.

*DELETE — Used to remove a resource.

«PUT — Used to update a existing resource or create a new resource.

20

Restful Webservices

A web service is a collection of open protocols and standards used for exchanging data
between applications or systems. Software applications written in various programming
languages and running on various platforms can use web services to exchange data over
computer networks like the Internet in a manner similar to inter-process communication on a
single computer. This interoperability (e.g., between Java and Python, or Windows and
Linux applications) is due to the use of open standards.

Web services based on REST Architecture are known as RESTful web services. These
webservices uses HTTP methods to implement the concept of REST architecture. A
RESTful web service usually defines a URI, Uniform Resource ldentifier a service, provides

resource representation such as JSON and set of HTTP Methods.

Sr.No. URI HTTP Method POST body Result

1 /UserService/users GET empty Show list of all the users.

2 /UserService/addUser POST JSON String Add details of new user.

3 /UserService/getUser/:id GET empty Show details of a user.
figure 5 : URI

What is a Resource?

REST architecture treats every content as a resource. These resources can be Text Files,
Html Pages, Images, Videos or Dynamic Business Data. REST Server simply provides
access to resources and REST client accesses and modifies the resources. Here each resource
is identified by URIs/ Global 1Ds. REST uses various representations to represent a resource

where Text, JSON, XML. The most popular representations of resources are XML and
JSON.

21

Representation of Resources

A resource in REST is a similar Object in Object Oriented Programming or is like an Entity
in a Database. Once a resource is identified then its representation is to be decided using a
standard format so that the server can send the resource in the above said format and client
can understand the same format.
For example, in Restful Web Services — First Application chapter, a user is a resource which
Is represented using the following XML format —
<user>

<id>1</id>

<name>Mahesh</name>

<profession>Teacher</profession>
</user>

The same resource can be represented in JSON format as follows

{
"id":1,
"name":"Mahesh",
"profession™:"Teacher"
by

Good Resources Representation

REST does not impose any restriction on the format of a resource representation. A client
can ask for JSON representation whereas another client may ask for XML representation of
the same resource to the server and so on. It is the responsibility of the REST server to pass
the client the resource in the format that the client understands.

Following are some important points to be considered while designing a representation
format of a resource in RESTful Web Services.

. Understandability — Both the Server and the Client should be able to understand and

utilize the representation format of the resource.ists!

22

. Completeness — Format should be able to represent a resource completely. For
example, a resource can contain another resource. Format should be able to represent simple

as well as complex structures of resources.

3.4 Apache Kafka

Apache Kafka is a software platform which is based on a distributed streaming process. It is
a publish-subscribe messaging system which let exchanging of data between applications,
servers, and processors as well. Apache Kafka was originally developed by Linkedin, and
later it was donated to the Apache Software Foundation. Currently, it is maintained by
Confluent under Apache Software Foundation. Apache Kafka has resolved the lethargic
trouble of data communication between a sender and a receiver.

What is a Messaging System?

A Messaging System is responsible for transferring data from one application to another, so
the applications can focus on data, but not worry about how to share it. Distributed
messaging is based on the concept of reliable message queuing. Messages are queued
asynchronously between client applications and messaging system. Two types of messaging
patterns are available — one is point to point and the other is publish-subscribe (pub-sub)
messaging system. Most of the messaging patterns follow pub-sub.

Point to Point Messaging System

In a point-to-point system, messages are persisted in a queue. One or more consumers can
consume the messages in the queue, but a particular message can be consumed by a
maximum of one consumer only. Once a consumer reads a message in the queue, it
disappears from that queue. The typical example of this system is an Order Processing
System, where each order will be processed by one Order Processor, but Multiple Order

Processors can work as well at the same time. The following diagram depicts the structure.

23

Message queue

figure 6 : Point to Point Messaging System

Publish-Subscribe Messaging System

In the publish-subscribe system, messages are persisted in a topic. Unlike point-to-point
system, consumers can subscribe to one or more topic and consume all the messages in that
topic. In the Publish-Subscribe system, message producers are called publishers and message
consumers are called subscribers. A real-life example is Dish TV, which publishes different
channels like sports, movies, music, etc., and anyone can subscribe to their own set of

channels and get them whenever their subscribed channels are available.

_v Recelver

’
Sender-------- DE; -------- > Recelver
Message queue & Racelver

figure 7 : Publish-Subscribe Messaging System

24

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that
can handle a high volume of data and enables you to pass messages from one end-point to
another. Kafka is suitable for both offline and online message consumption. Kafka messages
are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built
on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm
and Spark for real-time streaming data analysis.

Benefits

Following are a few benefits of Kafka —

. Reliability — Kafka is distributed, partitioned, replicated and fault tolerance.
. Scalability — Kafka messaging system scales easily without down time.
. Durability — Kafka uses “Distributed commit log” which means messages persists on

disk as fast as possible, hence it is durable.

. Performance — Kafka has high throughput for both publishing and subscribing
messages. It maintains stable performance even many TB of messages are stored.

Kafka is very fast and guarantees zero downtime and zero data loss.

Use Cases

Kafka can be used in many Use Cases. Some of them are listed below —

. Metrics — Kafka is often used for operational monitoring data. This involves
aggregating statistics from distributed applications to produce centralized feeds of operational
data.

. Log Aggregation Solution — Kafka can be used across an organization to collect logs
from multiple services and make them available in a standard format to multiple con-sumers.
. Stream Processing — Popular frameworks such as Storm and Spark Streaming read
data from a topic, processes it, and write processed data to a new topic where it becomes
available for users and applications. Kafka’s strong durability is also very useful in the

context of stream processing.

25

Need for Kafka

Kafka is a unified platform for handling all the real-time data feeds. Kafka supports low

latency message delivery and gives guarantee for fault tolerance in the presence of machine

failures. It has the ability to handle a large number of diverse consumers. Kafka is very fast,

performs 2 million writes/sec. Kafka persists all data to the disk, which essentially means

that all the writes go to the page cache of the OS (RAM). This makes it very efficient to

transfer data from page cache to a network socket.

Before moving deep into the Kafka, you must aware of the main terminologies such as

topics, brokers, producers and consumers. The following diagram illustrates the main

terminologies and the table describes the diagram components in detail.

Topics Kafka Brokers
Leader
1
Partition 1 . g
replica
< 0 1 » p1 1
producer 1 | Follower
" e 01289 Ve
-
producer 2
: Partition 3
Server 3
repica |
. 0 > p3 g
oid New

figure 8 :Kafka

Consumer group

M consumer 1

In the above diagram, a topic is configured into three partitions. Partition 1 has two offset

factors 0 and 1. Partition 2 has four offset factors 0, 1, 2, and 3. Partition 3 has one offset

factor 0. The id of the replica is same as the id of the server that hosts it.

26

Assume, if the replication factor of the topic is set to 3, then Kafka will create 3 identical
replicas of each partition and place them in the cluster to make available for all its
operations. To balance a load in cluster, each broker stores one or more of those partitions.

Multiple producers and consumers can publish and retrieve messages at the same time.

Components and Description :

Topics

A stream of messages belonging to a particular category is called a topic. Data is stored in
topics.

Topics are split into partitions. For each topic, Kafka keeps a mini-mum of one partition.
Each such partition contains messages in an immutable ordered sequence. A partition is

implemented as a set of segment files of equal sizes.

Partition

Topics may have many partitions, so it can handle an arbitrary amount of data.
Partition offset

Each partitioned message has a unique sequence id called as “offset”.
Replicas of partition

Replicas are nothing but “backups” of a partition. Replicas are never read or write data. They
are used to prevent data loss.

Brokers
. Brokers are simple system responsible for maintaining the pub-lished data. Each

broker may have zero or more partitions per topic. Assume, if there are N partitions in a

r

topic and N number of brokers, each broker will have one partition.st,

[l

. Assume if there are N partitions in a topic and more than N brokers (n + m), the first

N broker will have one partition and the next M broker will not have any partition for that

r=-1

particular topic.ist!

(LA L]

27

. Assume if there are N partitions in a topic and less than N brokers (n-m), each broker
will have one or more partition sharing among them. This scenario is not recommended due

to unequal load distri-bution among the broker.

Kafka Cluster
Kafka’s having more than one broker are called as Kafka cluster. A Kafka cluster can be
expanded without downtime. These clusters are used to manage the persistence and

replication of message data.

Producers

Producers are the publisher of messages to one or more Kafka topics. Producers send data to
Kafka brokers. Every time a producer pub-lishes a message to a broker, the broker simply
appends the message to the last segment file. Actually, the message will be appended to a

partition. Producer can also send messages to a partition of their choice.

Consumers
Consumers read data from brokers. Consumers subscribes to one or more topics and consume

published messages by pulling data from the brokers.
Leader

“Leader” is the node responsible for all reads and writes for the given partition. Every

partition has one server acting as a leader.

28

Follower
Node which follows leader instructions are called as follower. If the leader fails, one of the
follower will automatically become the new leader. A follower acts as normal consumer,

pulls messages and up-dates its own data store.

Kafka ecosystem

Consumer Group

' '
1]
' '
) '
Producer 1 : ; consumert
)
[T
push msg | E ! | pullmsg
it Y
Producer 2 ' > G i & consumer2
¢ 1 i ' ~
. ' ' ' - .
. . ' ! 1
‘ : ’
Producer 3 E - consumer3d
i i
- — Y .
get kafka ~ " update offset

.

brokerid | 5
¢ ZooKeeper .

figure 9 : Cluster diagram of kafka

Broker

Kafka cluster typically consists of multiple brokers to maintain load balance. Kafka brokers
are stateless, so they use ZooKeeper for maintaining their cluster state. One Kafka broker
instance can handle hundreds of thousands of reads and writes per second and each bro-ker
can handle TB of messages without performance impact. Kafka broker leader election can be

done by ZooKeeper.

ZooKeeper
ZooKeeper is used for managing and coordinating Kafka broker. ZooKeeper service is
mainly used to notify producer and consumer about the presence of any new broker in the

Kafka system or failure of the broker in the Kafka system. As per the notification received

29

by the Zookeeper regarding presence or failure of the broker then pro-ducer and consumer

takes decision and starts coordinating their task with some other broker.

Producers
Producers push data to brokers. When the new broker is started, all the producers search it
and automatically sends a message to that new broker. Kafka producer doesn’t wait for

acknowledgements from the broker and sends messages as fast as the broker can handle.

Consumers

Since Kafka brokers are stateless, which means that the consumer has to maintain how many
messages have been consumed by using partition offset. If the consumer acknowledges a
particular message offset, it implies that the consumer has consumed all prior messages. The
consumer issues an asynchronous pull request to the broker to have a buffer of bytes ready
to consume. The consumers can rewind or skip to any point in a partition simply by

supplying an offset value. Consumer offset value is notified by ZooKeeper.

Workflow of Pub-Sub Messaging :

Following is the step wise workflow of the Pub-Sub Messaging —

. Producers send message to a topic at regular intervals.

. Kafka broker stores all messages in the partitions configured for that particular topic.
It ensures the messages are equally shared between partitions. If the producer sends two
messages and there are two partitions, Kafka will store one message in the first partition and
the second message in the second partition.

. Consumer subscribes to a specific topic.

. Once the consumer subscribes to a topic, Kafka will provide the current offset of the
topic to the consumer and also saves the offset in the Zookeeper ensemble.

. Consumer will request the Kafka in a regular interval (like 100 Ms) for new messages.

30

. Once Kafka receives the messages from producers, it forwards these messages to the

consumers.
. Consumer will receive the message and process it.
. Once the messages are processed, consumer will send an acknowledgement to the

Kafka broker.

. Once Kafka receives an acknowledgement, it changes the offset to the new value and
updates it in the Zookeeper. Since offsets are maintained in the Zookeeper, the consumer
can read next message correctly even during server outrages.

. This above flow will repeat until the consumer stops the request.

. Consumer has the option to rewind/skip to the desired offset of a topic at any time

and read all the subsequent messages.

Workflow of Queue Messaging / Consumer Group

In a queue messaging system instead of a single consumer, a group of consumers having the
same “Group ID” will subscribe to a topic. In simple terms, consumers subscribing to a
topic with same “Group ID” are considered as a single group and the messages are shared
among them. Let us check the actual workflow of this system.

. Producers send message to a topic in a regular interval.

. Kafka stores all messages in the partitions configured for that particular topic similar
to the earlier scenario.

. A single consumer subscribes to a specific topic, assume “Topic-01 with “Group ID”
as “Group-1”.

. Kafka interacts with the consumer in the same way as Pub-Sub Messaging until new
consumer subscribes the same topic, “Topic-01” with the same “Group ID” as “Group-1".

. Once the new consumer arrives, Kafka switches its operation to share mode and shares
the data between the two consumers. This sharing will go on until the number of con-sumers

reach the number of partition configured for that particular topic.

31

. Once the number of consumer exceeds the number of partitions, the new consumer
will not receive any further message until any one of the existing consumer unsubscribes.
This scenario arises because each consumer in Kafka will be assigned a minimum of one
partition and once all the partitions are assigned to the existing consumers, the new
consumers will have to wait.

. This feature is also called as “Consumer Group”. In the same way, Kafka will provide

the best of both the systems in a very simple and efficient manner.

Role of ZooKeeper

A critical dependency of Apache Kafka is Apache Zookeeper, which is a distributed
configuration and synchronization service. Zookeeper serves as the coordination interface
between the Kafka brokers and consumers. The Kafka servers share information via a
Zookeeper cluster. Kafka stores basic metadata in Zookeeper such as information about
topics, brokers, consumer offsets (queue readers) and so on.

Since all the critical information is stored in the Zookeeper and it normally replicates this
data across its ensemble, failure of Kafka broker / Zookeeper does not affect the state of the
Kafka cluster. Kafka will restore the state, once the Zookeeper restarts. This gives zero
downtime for Kafka. The leader election between the Kafka broker is also done by using

Zookeeper in the event of leader failure.

3.5 Apache Cassandra

Apache Cassandra is highly scalable, high performance, distributed NoSQL database.
Cassandra is designed to handle huge amount of data across many commodity servers,

providing high availability without a single point of failure.

32

Cassandra has a distributed architecture which is capable to handle a huge amount of data.
Data is placed on different machines with more than one replication factor to attain a high

availability without a single point of failure.

NoSQL Database
A NoSQL database (sometimes called as Not Only SQL) is a database that provides a

mechanism to store and retrieve data other than the tabular relations used in relational
databases. These databases are schema-free, support easy replication, have simple API,
eventually consistent, and can handle huge amounts of data.

The primary objective of a NoSQL database is to have

. simplicity of design,
. horizontal scaling, and
. finer control over availability.

NoSqgl databases use different data structures compared to relational databases. It makes
some operations faster in NoSQL. The suitability of a given NoSQL database depends on

the problem it must solve.

Cassandra Architecture

Cassandra was designed to handle big data workloads across multiple nodes without a single
point of failure. It has a peer-to-peer distributed system across its nodes, and data is
distributed among all the nodes in a cluster.

. In Cassandra, each node is independent and at the same time interconnected to other
nodes. All the nodes in a cluster play the same role.

. Every node in a cluster can accept read and write requests, regardless of where the
data is actually located in the cluster.

. In the case of failure of one node, Read/Write requests can be served from other

nodes in the network.

33

Data Replication in Cassandra

In Cassandra, nodes in a cluster act as replicas for a given piece of data. If some of the
nodes are responded with an out-of-date value, Cassandra will return the most recent value
to the client. After returning the most recent value, Cassandra performs a read repair in the
background to update the stale values.

See the following image to understand the schematic view of how Cassandra uses data

replication among the nodes in a cluster to ensure no single point of failure.

Mode 5 MNode 2
ot}
2 &

v-.,___________..-#
- Replication !.

—_—
Node 4 Mode 3

figure 10 : Node Replication
Components of Cassandra :

The main components of Cassandra are:

. Node: A Cassandra node is a place where data is stored.

. Data center: Data center is a collection of related nodes.

. Cluster: A cluster is a component which contains one or more data centers.

. Commit log: In Cassandra, the commit log is a crash-recovery mechanism. Every write

operation is written to the commit log.

34

. Mem-table: A mem-table is a memory-resident data structure. After commit log, the
data will be written to the mem-table. Sometimes, for a single-column family, there will be
multiple mem-tables.

. SSTable: It is a disk file to which the data is flushed from the mem-table when its
contents reach a threshold value.

. Bloom filter: These are nothing but quick, nondeterministic, algorithms for testing
whether an element is a member of a set. It is a special kind of cache. Bloom filters are

accessed after every query.

Cassandra Query Language

Cassandra Query Language (CQL) is used to access Cassandra through its nodes. CQL treats
the database (Keyspace) as a container of tables. Programmers use cqlsh: a prompt to work
with CQL or separate application language drivers.

The client can approach any of the nodes for their read-write operations. That node

(coordinator) plays a proxy between the client and the nodes holding the data.

Write Operations

Every write activity of nodes is captured by the commit logs written in the nodes. Later the
data will be captured and stored in the mem-table. Whenever the mem-table is full, data will
be written into the SStable data file. All writes are automatically partitioned and replicated
throughout the cluster. Cassandra periodically consolidates the SSTables, discarding

unnecessary data.

35

INDEX | ===

Commit log 55 Tahle

figure 11 : Cassandra Write Operation

Read Operations
In Read operations, Cassandra gets values from the mem-table and checks the bloom filter to
find the appropriate SSTable which contains the required data.

There are three types of read request that is sent to replicas by coordinators.

. Direct request
. Digest request
. Read repair request

The coordinator sends direct request to one of the replicas. After that, the coordinator sends
the digest request to the number of replicas specified by the consistency level and checks if
the returned data is an updated data.

After that, the coordinator sends digest request to all the remaining replicas. If any node
gives out of date value, a background read repair request will update that data. This process

is called read repair mechanism.

36

Commit Log

MemTable

figure 12 : Read Operation

Cassandra Data Model

Data model in Cassandra is totally different from normally we see in RDBMS. Let's see how

Cassandra stores its data.

Cluster

Cassandra database is distributed over several machines that are operated together. The
outermost container is known as the Cluster which contains different nodes. Every node
contains a replica, and in case of a failure, the replica takes charge. Cassandra arranges the

nodes in a cluster, in a ring format, and assigns data to them.

Keyspace

Keyspace is the outermost container for data in Cassandra. Following are the basic attributes
of Keyspace in Cassandra:

. Replication factor: It specifies the number of machine in the cluster that will receive
copies of the same data.

. Replica placement Strategy: It is a strategy which species how to place replicas in the
ring. There are three types of strategies such as:

1) Simple strategy (rack-aware strategy)

2) old network topology strategy (rack-aware strategy)
37

3) network topology strategy (datacenter-shared strategy)

. Column families: column families are placed under keyspace. A keyspace is a
container for a list of one or more column families while a column family is a container of
a collection of rows. Each row contains ordered columns. Column families represent the
structure of your data. Each keyspace has at least one and often many column families.

In Cassandra, a well data model is very important because a bad data model can degrade

performance, especially when you try to implement the RDBMS concepts on Cassandra.

Cassandra data Models Rules

Cassandra doesn't support JOINS, GROUP BY, OR clause, aggregation etc. So you have to
store data in a way that it should be retrieved whenever you want.

Cassandra is optimized for high write performances so you should maximize your writes for
better read performance and data availability. There is a tradeoff between data write and
data read. So, optimize you data read performance by maximizing the number of data writes.
Maximize data duplication because Cassandra is a distributed database and data duplication

provides instant availability without a single point of failure.

38

3.6 MODEL DEVELOPMENT

Flow-chart

Below is the flow chart that will describe the overall flow that Spring follows .

Client

HTTPS

CRUD Services

Repository Class Extending

Dependency Injection

request

Controller

| Service

Layer

» Model

Figure 13 : flow chart

Database

JPA / Spring Data

39

Schema diagram

Below is the Schema diagram of REST that will show what are the services available and

who can access them.

/orders
GET - list all orders
------ PUT - unused
POST - add a new order
DELETE - unused

/orders/Aid}
GET - get order details
F- - == PUT - update order
POST - add item
DELETE - cancel order

«interface» /customers
Resource =
GET - list all customers
GET
PUT i iom PUT - unused
POST POST - add new customer
DELETE DELETE - unused

/customers/{id}

GET - get customer details
—————— PUT - update customer
POST - unused

DELETE - delete customer

/customers/{id}/orders
GET - get all orders for customer
------ PUT - unused
POST - add order
DELETE - cancel all customer orders

Figure 14 : Schema diagram

40

3.7 Features

Reactive Programming solves performance problems caused by the use of native threads and
the “One thread per request” paradigm. However, this solution goes along with higher
development and maintenance complexity because testing and debugging, among other things,
become more complicated.

Green threads are a possible way to avoid the performance losses caused by the process
switches in the operating system. These were available in Java 1.1 but were already discarded
in Java 1.3 because they did not allow the benefits of multi-core or multi-processor systems
to be used. A new attempt to introduce another variant of Green Threads, so-called Fibers,
into the JDK is Project Loom. This proposal would be accompanied by support for
continuations in Java as a kind of spin-off product. This feature is known from other
programming languages like Kotlin and Go under the name Coroutines

« avoid “callback hell”

a lot simpler to do async / threaded work

a lot of operators that simplify work

very simple to compose streams of data

complex threading becomes very easy

you end up with a more cleaner, readable code base

easy to implement back-pressure

41

CHAPTER 4

PERFORMANCE ANALYSIS

4.1 Starting Spring Boot Application

"::3 z - 0 - é[‘emnt«nplu:aunn.\a-.'a

com.example.demo

I Project

0
@SpringBootApplicatioﬂ
DemoApplication {

i, .gitignore main(Str‘ing[] af‘gs) {

.‘i‘, demo.im|
A HELP.md SpringApplication.run(DemoApplication.

Figure 15: Spring Boot Application

42

4.2 Kafka

&P training@ip-172-31-27-203:~ - o X

Figure 16:- Kafka Zookeeper

43

- o kafka_2.11-1.0.1 java 80x24

e M java 8 bast

g offsets and group metadata from _
a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,369] INFO [GroupMetadataManager brokerId=0] Finished
g offsets and group metadata from __
a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,369] INFO [GroupMetadataManager brokerId=0] Finished
g offsets and group metadata from _
a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,369] INFO [GroupMetadataManager brokerId=0] Finished
g offsets and group metadata from _
a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,370] INFO [GroupMetadataManager brokerId=0] Finished
g offsets and group metadata from _
a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,370] INFO [GroupMetadataManager brokerId=0] Finished

_consumer_offsets-27 in 1 milliseconds.

consumer_offsets-30 in @ milliseconds.

_consumer_offsets-33 in @ milliseconds.

_consumer_offsets-36 in @ milliseconds.

_consumer_offsets-39 in @ milliseconds.

g offsets and group metadata from __consumer_offsets-42 in @ milliseconds.

a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,371] INFO [GroupMetadataManager brokerId=0] Finished

g offsets and group metadata from __consumer_offsets-45 in 1 milliseconds.

a.coordinator.group.GroupMetadataManager)
[2018-05-19 00:05:57,371] INFO [GroupMetadataManager brokerId=0] Finished

g offsets and group metadata from __consumer_offsets-48 in @ milliseconds.

a.coordinator.group.GroupMetadataManager)

Figure 17: Kafka Server

- © kafka_2.11-1.0.1 bash B0x24

ava g ava bash

apples-MacBook-Pro:kafka_2.11-1.0.1 apple$ bin/kafka-topics.sh --create --zookee
per localhost:2181 --replication-factor 1 --partitions 1 --topic Kafka_Example

+

WARNING: Due to limitations in metric names, topics with a period ('.') or under
score ('_") could collide. To avoid issues it is best to use either, but not bot

h.
Created topic "Kafka_Example™.

apples-MacBook-Pro:kafka_2.11-1.0.1 apple$ bin/kafka-console-consumer.sh --boots

trap-server localhost:92092 --topic Kafka_Example --from-beginning

Figure 18: Kafka Consumer

44

4.3 REST Controller

.springframework.beans.factory.annotation.Aut
.springframework.kafka.core.KafkaTemplate
.springframework.web.bind.annotation.GetM
.springframework.web.bind.annotation.F
.springframework.web.bind.annotation.R
.springframework.web.bind.annotation.Re

oot-kafka-producer-e

wired

KafkaTemplate<String, User>

String

String name) {

User(name

Figure 19: Apache sever Image.

45

4.1 Docker

Docker version 19.03.13, build 4484c46d9d

C:\Users\User>docker pull php:7.4-apache
7.4-apache: Pulling from library/php
852e50cd189d: Pull complete

0266fc315b01: Pull complete

4c8a5fa787al: Pull complete

46fc127¢1884: Pull complete

£768b7fadf16: Pull complete

345b578c1a78: Pull complete

90aafed41e78d: Pull complete

©b5d7691301b: Pull complete

e@6cc2d9e2f8: Pull complete

6e9815fb33e7: Pull complete

9c620d71744c: Pull complete

66ef24dcacad: Pull complete

83f52dab9487: Pull complete

Digest: sha256:1d57ff0a8318dcbdeBbcSec3f7a2a617920f3c7ebe7ffb331876609c8392b18a
Status: Downloaded newer image for php:7.4-apache
docker.io/library/php:7.4-apache

C:\Users\User>docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
php 7.4-apache 6de63328f8a3 3 days ago 414MB
docker/getting-started latest 67a23629d4d71 4 weeks ago 27.2MB
hello-world latest bf756fblae65 11 months ago 13.3kB

C:\Users\User>

Docker Image

Command Prompt - docker run -i --rm --name php_con -
--ulimit ulimit Ulimit optio

[+] Building 9.5s (7/7) FINISHED

C: \Users\User\Desktop\Docker>docker images

REPOSITORY TAG IMAGE ID CREATED
php_apache latest 5ba1babfsaf2 44 seconds ago
php 7.4-apache 6de63328f8a3 3 days ago
[docker/getting-started latest 67a3629d4d71 4 weeks ago
hello-world latest bf756fblae65 11 months ago

C:\Users\User\Desktop\Docker>docker run -i --rm --name php_cont -p 86:806 php_apache

[docker: Error response from daemon: Conflict. The container name "/php_cont” is already in use by container "5238045c25dc4fc4779901dabd814ca780e729c4faleceae5b767e4b5e4
4". You have to remove (or rename) that container to be able to reuse that name.
‘docker run --help’.

s\User\Desktop\Docker>docker run -i --rm --name php_con -p 86:80 php_apache
apache2: Could not reliably determine the server's fully qualified domain name, using 172.17.0.2. Set the 'ServerName' directive globally to suppress this mess

: apache2: Could not reliably determine the server's fully qualified domain name, using 172.17.0.2. Set the ‘'ServerName' directive globally to suppress this mess

10:22.358492 2020] [mpm_prefork:notice] [pid 1] AH@®163: Apache/2.4.38 (Debian) PHP/7.4.13 configured -- resuming normal operations
10:22.359357 2020] [core:notice] [pid 1] AH@@®94: Command line: ‘'apache2 -D FOREGROUND'
[e4/Dec/20260: 4:46 +0000] "GET / HTTP/1.1" 200 1463 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.
Safari/537.36"
oF [04/Dec/2020:09:14:46 +0000] "GET /css/index.css HTTP/1.1" 200 983 "http://localhost/" "Mozilla/5.@ (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KH
like Gecko) Chrome/86.0.4240.198 Safari/: &
172.17.0.1 [04/Dec/2020:09:14:46 I 2 css/bootstrap.min.css HTTP/1.1" 200 20083 "http://localhost/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/S5
37.36 (KHTML, like Gecko) CF +/86.0.4240.19¢ +i/537.36"
172.17.0.1 [04/Dec/2020:09:14: $ m ://localhost/" "Mozilla/5.0 (Windows NT 10.8; Win64;) AppleWebKit/53

Figure 21: Building Container

IC:\Users\User\Desktop\Docker>docker-compose up
Creating network "docker_default" with the default driver
Building web
[Step 1/3 : FROM php:7.4-apache
---> 6de63328f8a3
Step 2/3 : COPY site/ /var/www/html/
---> 4b4alc3100cd
[Step 3/3 : EXPOSE 80
---> Running in 593eal99d8ec
Removing intermediate container 593eal99d8ec
---> 3dab95ce19d9

Successfully built 3dab95ce19d9
Successfully tagged docker_web:latest
: Image for service web was built because it did not already exist. To rebuild this image you must use “docker-compose build™ or “docker-compose up --build™.
Pulling db (mysql:)...
: Pulling from library/mysql
852e50¢d189d: Already exists
29969ddbeffb: Pull complete
[a43f41a44c48: Pull complete
5cdd802543a3: Pull complete
b79b846de953: Pull complete
938c64119969: Pull complete
7689ec51a0d9: Pull complete
a880ba7c411f: Pull complete
984f656ec6ca: Pull complete
9f497bce458a: Pull complete
b9948f97694b: Pull complete
2f069358dc96: Pull complete
Digest: sha256:4bb2e81a40e9ded59bd8e3dc2ba5e1f2197696f6de39a91e96798dd27299b693
tat Downloaded newer image for mysql:latest
Creating docker_web_1 ...
Creating docker_web_1 ...
: Host is already in use by another container

ERROR: for docker_web_1 Cannot start service web: driver failed programming external connectivity on endpoint docker_web_1 (5b8dec2c56e50b81039f293dSb66eded72¢7d55¢086
Creating docker_db_1

ERROR: for web Cannot start service web: driver failed programming external connectivity on endpoint docker_web_1 (5b8dec2c56e50b810391293d5b66eded72¢7d55c086110934621
25c4d9de4e81): Bind for ©.0.0.0:80 failed: port is already allocated
: Encountered errors while bringing up the project.

C: \Users\User\Desktop\Docker>

Figure 22: Database Image

C:\Users\User\Desktop\Docker>docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS T NAMES
8c5145957d74 mysql "docker-entrypoint.s.." 2 minutes ago i s .0. :3306->3306/tcp, 33060/tcp docker_db_1
b1c89ce8396fc php_apache "docker-php-entrypoi.. 6 minutes ago i s .0.0.0:80->80/tcp php_con

C:\Users\User\Desktop\Docker>docker exec -it 8c5145957d74 bash
root@8c5145957d74: /# mysql -uroot -p12345
mysql: [Warning] Using a password on the command line interface can be insecure.
Wwelcome to the MySQL monitor. Commands end with ; or \g.

our MySQL connection id is 8

Server version: 8.8.22 MySQL Community Server - GPL

Copyright (c) 2@ee@, 2020, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

or "\h' for help. Type "\c' to clear the current input statement.
mysql> show databases
-3 26
mysql> show databases;
K
Database
-
foodorder
information_schema
mysql
performance_schema

mmmmmmmm oo +
5 rows in set (©.81 sec)

mysql>

Figure 23: Database runtime

CONCLUSION

When it comes to huge volumes of data or multi-userness, we often need asynchronous
processing to make our systems fast and responsive. In Java, a representative of old object-
oriented programming, asynchronicity can become really troublesome and make the code
hard to understand and maintain. So, reactive programming is especially beneficial for this
‘purely’ object-oriented environment as it simplifies dealing with asynchronous flows. With
its latest releases (starting with Java 8), Java itself has made some attempts to introduce
built-in reactivity, yet these attempts are not very popular with developers to date. But
there’re some live and regularly updated third-party implementations for reactive
programming in Java that help to save the day and thus are particularly loved and cherished

by Java developers.

FUTURE WORK

In future we'll try and create the appliance serverless. The serverless computing
model permits you to make and run applications and services while not
having to concerning infrastructure or servers. It eliminates infrastructure
management tasks like server provisioning, patching, software system maintenance,
scaling, and capability provisioning. Building native serverless applications implies
that developers will specialise in the core product and on innovating applications and
solutions, instead of outlay tons of your time on putting in and maintaining

infrastructure.

48

[1]

[2]

[3]

[4]

REFERENCE

A survey on Reactive Programming: Engineer Bainomugisha, Andoni Lombide
Carreton, Tom Van Cutsem, Stijn Mostinckx and Wolfgang De Meuter
https://www.researchgate.net/publication/233755674_A_Survey_on_Reactive_Programmi
ng

Shantashree Das, Debomalya Ghose, Influence Of Fast Online Apps On The
Operations Of The Restaurant Business : INTERNATIONAL JOURNAL OF
SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 12, DECEMBER
2019 ISSN 2277-8616

P.Nagendra Babu , M.Chaitanya Kumari , S.Venkat Mohan [3] has worked on
computationof cloud computing, International Journal of Engineering Trends and
Technology (IJETT)

— Volume 21 Number 6 — March 2015 ISSN: 2231-5381

BabakBashari Rad, Harrison John Bhatti and Mohammad Ahmadi [4] worked on
Docker which provide some facilities, International Research Journal of Engineering
and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 07 | July 2020

49

ZopSmart_Technology.pdf

y

Submission date: 24-May-2021 06:12PM (UTC+0530)
Submission ID: 1593112384

File name: ZopSmart_Technology.pdf (2.2M)

Word count: 10188

Character count: 68709

Reactive Spring Boot Application For Product

Variant Using Kafka And Cassandra Database

Project report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology
In

Computer Science and Engineering

By:
Aditya Kumar Singh (171289)

Under the supervision
of

Mr. Aman Sinha
(Tech Lead, ZopSm&rt Technology)
11

To

Department of Computer Science & Engineering and Information Technology

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN - 173234, HIMACHAL PRADESH

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Reactive Spring
Boot Application For Product Variant Using Kafka And Cassandra Database” in
partial fulfillment of the requirements for the award of the degree of Bachelor of
Technology in Computer Science submitted in the Department of Computer
Science Engineering and Information Technology, Jaypee University of
Information Technology, Waknaghat is an authentic record of my own work
carried out over a period from February 2021 To May 2021 under the supervision
of Mr. Aman Sinha.

The matter embodied in the report has not been appeased for the award of any

other degree or diploma.

g

Aditya Kumar Singh (171289)

This is to verify that the above statement made by candidates is true to the best
of my knowledge.

Mr. Aman Sinha
Tech Lead

ZopSmart Technology

Dated:- 22-05-2021

ACKNOWLEGEMENT

We have taken efforts to do this project. We wish to express our sincere
gratitude to Mr. Aman Sinha, Tech Lead, ZopSmart Technology for
constantly monitoring and guiding me to the right path in terms of the
project. She constantly helped us in our research and the project wouldn’tbe
possible without his constant support.

Secondly, I would also like to thank Lab assistant who helped me a lot in

finalizing this project within the limited time frame.

LIST OF CONTENTS

CHAPTER-1 INTRODUGCTIONcoiicoiiieareaosaaaeassaaseaaseassaeasaeasssssssmseasssaseesssessessessassassssassassessssassanns 1
L1 INEOAUCHION .ottt ittt ittt et ree bbbt b eb et es e es e es 2 s e s e emt e et emb et eseebeabeabeabaanan 2

1.2 ProblemStAEIMENEiviiuiiieiieisiiitieiesie ettt eeeeseesee st be s bttt e s e et e esees e s eeseemtessensbaeseeseaseasesseasas 3

1.3 OODJECTIVES 1euvreueearraeeneeaseaaseaasaaseeaseasaasassaneaseeaseanseaaseaassanneasaseanneaseanssannsasensnssensmsenseensessesaseanns 5

L MIETROAOLOZY ...ttt et a e ettt e e e sbtrse e e e e sbe e e e amseeeeaaanseeeaaeeanbnaeeansneeeanne 5

1.5 OFZANIZAtION: ..iitieoeiiiieeteeeeeeseeseeeeeerereesseaseasseaseeaseaaseaseasaseaseaseaaseansessessnseensmsensesnsessesnseanes 7
CHAPTER-2 LITERATURE SURVEYooiiiiiieeiiiesieeeeseeseeseesnseensesseesseesasaaassesnsssassesnsessesssesnns 8
ChAPTER-3 SYSTEM DEVELOPMENTcccoiititiotiienieanrseeseensseasseesssaeassesssesasssssmsessssssesssessees 12
3.1 Reactive Programimingoouirintonsiiienieeeneeneineeeneeaeesenneneanerneseannseneanes 14

L T (oSO S S SSSORUP O PYU TP SUSVRTUPURPPURON 11

® REACHIVE SYSIEIMS ovrivreiiieeieiieseeeeesietresseseesseasseaaseaaseaasessnseanssasaaaseanseassenaseensmsessesasesnsessenns 15

e Reactive Stream SpecifiCatiOn ... cvieiriceerieeresceeseesr e e seeeseaseessesseeeseesseseeseessesssessenns 15

3.2 SPEINEZ BOOL .eiiieiiiieieeeir e e seee e eee s e esaeeseenseaseaaseaeaseanaaaseasseeaseansessaeaseansasssseasesessnessesnsesneen 17

® EXPErimental SEIUPcveeovicieeieereinreeeseeseeseraseasseessessnseensessaaaseanseassansseensmsessesnsesnsessenns 18

3.3 Rest Api 20

34 Apache KafKa. oot e araeaaaeanann 22

3.5 Apache CassSandra.eiuris i eeee ettt a et e e et e et aa e anaens 32

3.6 Model Development.ovuii it iiieieti et et e e e e e e eneie e e e s e n s aersasaranersanssarss 3O

B0 B AU, ettt ettt et e 41
CHAPTER-4 PERFORMANCE ANALYSIS ..ottt iciesieeeer e seeneeeseessessaeseessesasessnsessesseensesnes 42
CONCLUSION 48
FUTURE WORK 48

REFERENCE... 49

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

LIST OF FIGURES

Cloud COMPULINE SEIVICES...utiiitiiuiiteieteteiteiteseeetesesresseesesessesseasessessessasse et et essesseasessessessens 12
DOCKET ACHILECIUIEiviiieiitiiieeteete ettt sttt ire st be bt bt sbesbesbeesbesbeteseereereereereanes 13
Reactive EVENT STICAIMNociiiiiiiiii ittt ettt sttt ettt et e e e e s esbesbesbesbeabeeeas 14
SPring INTHANZET ...vvveieeeereeeesee e ee e ee e e e neesseeseaase et aseeseenseansesseeaseansesesreansesseensesnes 19
R Lttt ettt ettt e ettt e e e e bee e e e beers et e e bbe et e bae e e e bmrbe et e banrneaearneaeane 21
Point to Point Messaging SYSEIMcvivoiieiereeeeseeeseesesenressaseesseessesseasaseensessnseansesseessesnes 24
Publish Subscribe Messaging SYSIEIM....c..icviiieeriiereseeeeseneeseeaeesreesseseaasseessesssreessessesssesnes 24
KCATKA Lottt ettt b ke ke b et e b e et ettt ekt be bt abeebe s 26
Cluster Diagram of KafKaccvoceiiioiiereer e se s eeseassaessseesaessnseesesreanseanes 29
INOAE REPIICAION ..uvevrieieiiiieeieseaeieeeies cereeaeseesseesmnasseensessareensessaasseansesseaanseanseseaseansesseenseenes
Cassandra Write Operation
REAA OPEIALION ...iiiiieieiieeereeieseeseeetneesseassaaeasseeasseaseaaseasseaaseansesseeaseansesaseessn seeseessesssesnnen 37
FLOW CRATT ..ot e e e st e e e e e e s mee e emere e e eseeereeames 39
Schema AIAZIAN ..c.cviieeieeeer e e e e eee e e sreesae s e e se st eseeaseasesseeaseensaeaseansnsesrnasseansesneen 40
Spring Boot APPLCATIONeciieeeieeeieeieeeeeseeseeeneseessesnreesseaaesseensessaaasesnsesseseassesseenseenes 42
Kafka ZOOKEEPET «.cvveeivieieeieesieeee st ceeeseesseesaeseaasseensaasentaseaseanseasasseensasasaeasasesnsesseenseannen 43
KATKA SEIVET L.ttt ettt s b2 s 2 b e e s e s e mt et et et beebeebeabeaneas 44
KafKa COMSUINET ... cvviitiiiiiitiiit ittt sttt ettt be bt bes e ss e es e et 2 s e e s e eseems et esbeebeebeebaabeasens 44
Apache Server IMAZEooi ittt e e e e nrerr e e e e nre e e eenres 45
DOCKET IMAZE .. e ivierieeeiieeeeeeeeseeeeeeseaseesesreeaseaseaseaaaseasaesaaasnseaseanseanseeseensasasnessnsesnnesseensesnnen 46
BUilding CONAINET .. .eiiiieeiieiieseeeesenreseeseesseeseeseaesseensassentasesseanseansasseeasasasnessasesnsesseensesnnen 46
Database IMAZEoooiiiiiiieiii ettt e st e st e e e bt e e s e bt e et e eenren sheeeenreeeeenres 47
Database FUNTIITIEeiueiiieiiiiiiiiitiin st eeteet et bt st ebe s bt stesesseeseasaaseeseesaamsensenstesseesesseasessens 47

Abstract

The Zopsmart Smart Store is a platform to help businesses setup their own
customized e- commerce website. It has two variants: Smart Store Eazy, and
Smart Store Enterprise Edition. As the name suggests for both Smart Store
Enterprise Edition contains many features that make it modular and scalable, it has
minimal integration, you can operate it for multiple stores, any many more
customer friendly features. Whereas Smart Store Eazy is a lighter version of the
Enterprise Edition and is intended for small grocery stores. So, when aclient uses it
to build his/her own e-commerce platform, it must be ensured that they get access
the features they need, for that multiple extensions have been provided so that the
client can curate their website as per their own requirement. When it comes to
clients from abroad, or any business that has to extended abroad, there arises the
need of multi-lingual support on the website. This helps the customers search in
their respective languages and receive the search results in their respective
language. But nothing is so easy when it comesto integrate this feature. A separate
technology needs to be added in order to handle this and in order to avoid
uncontrolled calls to the database. Usage of other technologies (such as Google

APIs) helps in translation of the content as per the language variation.

CHAPTER 1

INTRODUCTION

Product variants are used to manage products having different variations, like size,
colour, etc. It allows managing the product at the template level (for all variations) and
at the variant level (specific attributes). As an example, a company selling t-shirts may
have the following product: Levi’s T-shirt .It will have Sizes: S, M,L, XL, XXL ,
Colours: Blue, Red, White, Black etc.

In this example, Levi’s T-Shirt is called the product template and T-Shirt, S, Blue is

a variant. Sizes and color are attributes.

The above example has a total of 20 different products (5 sizes x 4 colors). Each
one of these products has its own inventory, sales, etc. An E-commerce website
requires a multilingual support because it eases the usage and searching of products
for customers using the platform. Also, it as an important aspect if your business is
purely internet based. An intuitive user interface is a hallmark of any decent
business. But in order for the frontend of applications to work smoothly, you must
also consider the backend. Backend development, also called server-side
development, handles the behind-the-scenes functions of web development — things

like interactions with databases, authorizing users and routing URLs.

Reactive Programming (RP) is a programming model that is designed to cope with
asynchronous events (data streams) and the specific act of producing a change, in
other words, it means that modifications are implemented to the execution
environment in an effective ceratin order. Take a look at the sequences of events in
real life in order to have a full understanding of the reactive programming Java
paradigm.Spring Boot is a project that is built on the top of the Spring Framework.
It provides an easier and faster way to set up, configure, and run both simple and

web-based applications.

It is a Spring module that provides the RAD (Rapid Application Development)
feature to the Spring Framework. It is used to create a stand-alone Spring-based

application that you can just run because it needs minimal Spring configuration.

Apache Kafka is a software platform which is based on a distributed streaming
process. It is a publish-subscribe messaging system which let exchanging of data
between applications, servers, and processors as well. Apache Kafka was originally
developed by LinkedIn, and later it was donated to the Apache Software
Foundation. Currently, it is maintained by Confluent under Apache Software
Foundation. Apache Kafka has resolved the lethargic trouble of data

communication between a sender and a receiver.

Cassandra is a distributed database management system designed for handling a
high volume of structured data across commodity servers. Cassandra handles the
huge amount of data with its distributed architecture. Data is placed on different
machines with more than one replication factor that provides high availability and

no single point of failure.

There are lots of great reasons why you should use reactive programming as a business
or developer.

Here are the major ones to think about.

1. Improves user experience - this is at the very heart of why you should be using
reactive programming for your apps or websites. The asynchronous nature of FRP
means that whatever you program with it will offer a smoother, more responsive
product for your users to interact with.

2. Easy to manage - one big bonus with reactive programming is that it is easy to
manage as a developer. Blocks of code can be added or removed from individual data
streams which means you can easily make any amendments needed via the stream
concerned.

3. Simpler than regular threading - FRP is less hassle than regular threading due to the

way it allows you to work on the data streams. Not only is this true for basic threading
2

in an application but also for more complex threading operations you may need to

undertake.

Problem statement

¢ Thread Per Request Model:-
The application will only be able to handle a number of concurrent requests
that equals the size of the thread pool. It is possible to configure the size of
the thread pool, but since each thread reserves some memory (typically
IMB), the higher thread pool size we configure, the higher the memory
consumption. If the application is designed according to a microservice
based architecture, we have better possibilities to scale based on load, but a
high memory utilization still comes';'with a cost. that the greatest advantage
of cloud computing. It encourages you to spare important capital expense
because it needn't trouble with any actual Instrumentality ventures.

e Waiting for 1/O operation:-
Same type of waste also occurs while waiting for other types of I/O
operations to complete such as a database call or reading from a file. In all
these situations the thread making the I/O request will be blocked and
waiting idle until the I/O operation has completed, this is called blocking
I/O. Such situations where the executing thread gets blocked, just waiting for

a response, means a waste of threads and therefore a waste of memory.

¢ Response Time:-
Another issue with traditional imperative programming is the resulting response
times when a service needs to do more than one I/O request. For example, service
A might need to call service B and C as well as do a database lookup and then
return some aggregated data as a result. This would mean that service A’s response
time would besides its own processing time be a sum of:
« response time of service B (network latency + processing)
« response time of service C (network latency + processing)
« response time of database request (network latency + processing)
¢ Overwhelming the client:-

Another type of problem that might occur in a microservice landscape is when service

A 1is requesting some information from service B, let’s say for example all the orders
placed during last month. If the amount of orders turns out to be huge, it might
become a problem for service A to retrieve all this information at once. Service A
might be overwhelmed with the high amount of data and it might result in for

example an out of memory-error.

¢ On Demand Self Service
Developer not have to be compelled to worry regarding the resources. Resources
square measure created on the market to the user on AN “as needed” basis. insteadof
all quickly ., on-demand computing permits cloud hosting firms to supply their

purchasers with access to computing resources as they become necessary

The different issues described above are the issues that reactive programming is
intended to solve. In short, the advantages that comes with reactive programming is
that we:
* move away from the thread per request model and can handle more requests
with a low number of threads.
+ prevent threads from blocking while waiting for I/O operations to complete.
* make it easy to do parallel calls.
+ support “back pressure”, giving the client a possibility to inform the server on

how much load it can handle.

Needs of Microservices

1. Continuous Delivery
Microservices provide the ideal architecture for continuous delivery. With
microservices, each application resides in a separate container along with the
environment it needs to run. Because of this, each application can be edited in its
container without the risk of interfering with any other application.
This means zero downtime for users, simplified troubleshooting, and no disruption
even if a problem is identified. The safe and rapid changes allowed by microservice
architecture make it possible to update software fast enough to put the “continuous”
in continuous delivery. By keeping disruption to a minimum, microservice
architecture lets you update rapidly without inconveniencing customers.

2. Maximize Deployment Activity

Microservice architecture allows you to maximize deployment velocity and

application reliability by helping you move at the speed of the market. Since
applications each run in their own containerized environment, applications can be
moved anywhere without altering the environment. If an application works in
development, it will work for the customer. This speeds up time to market and

increases product reliability

. Faster innovation to adapt to changing market conditions

Microservices can also help you adapt more quickly to the changing market
conditions. Because microservices allow applications to be updated and tested
quickly, you can follow market trends and adapt your products faster.

Microservices also give you an edge when it comes to innovation, since developers
can experiment on applications without fear of causing problems elsewhere. In
today’s rapidly changing market, getting an edge on innovation helps you maintain

your current revenue streams while driving new revenue

Objectives
To make a Spring Boot non-blocking applications that are asynchronous and event-
driven and require a small number of threads to scale. A key aspect of that definition

is the concept of backpressure which is a mechanism to ensure producers don’t

overwhelm consumers .

Methodology

It is a system of broad principles or rules from which specific methods or
procedures may be derived to interpret or solve different problems within the scope
of a particular discipline. Unlike an algorithm, a methodology is not any formula

but it is a set of practices.

e Amazon Web Services

Services that can be used are:-

Yf;‘

Amazon Elastic Compute Cloud (Amazon EC2) to run Linux or Windows

basedservers

Yf;‘

Elastic Load Balancing (ELB) to load balance and distribute the web traffic

Yf;‘

Amazon Elastic Block Store (Amazon EBS) or Amazon Elastic File System

(Amazon EFS) to store static content.

Y’f

Amazon Virtual Private Cloud (Amazon VPC) to deploy Amazon EC2
instances. Amazon VPC is your isolated and private virtual network in the
AWS Cloud and gives you full control over the network topology, firewall

configuration, and routing rules.

Y’f

Web servers can be spread across multiple Availability Zones for

highavailability, even if an entire data center were to be down.

Y’{

AWS Auto Scaling automatically adds servers during high traffic

periods andscales back when traffic decreases

Docker

Docker may be a instrumentation platform that packages your application

and every one its dependencies along within the sort of a dockhand container
to confirm that your application works seamlessly in any atmosphere. dockhand
may be a powerful tool for making and deploying applications. It simplifies
rolling outapplications across multiple systems and may be a useful gizmo for
desegregation new technologies. Associate in Nursing application that runs
victimisation dock- hand can start off identical each time occasion anytime on
every system. this suggests that if the applying works on your native laptop,
it’ll work anyplace that supports dockhand.

Docker Image

A dockhand image may be a read-only example that contains a collection of
Direc- tions for making a instrumentality that may run on the dockhand
platform. It prov-ides a convenient thanks to package up applications and
preconfigured server environments, that you'll be able to use for your own non-
public use or share pub- lically with different dockhand users.

Docker Containers

Containers are the style of software virtualization. one instrumentality may well

be accustomed run something from a tiny low icro—service or code method to a
bigger application. within a instrumentality are all the mandatory executables,
computer code, libraries, and configuration files. Compared to server or machine
virtualization approaches, however, containers don't contain software pictu%s.
This makes thema lot of light-weight and moveable, with considerably lss
overhead. In larger application .deployments, multiple instrumentality is
also deployed collectively or a lot of ntainer clusters. Such clusters may well

be managed by a instrumentality adapter like Kubernetes.

1.5 Organization
This report has been organized with the following chapters:

Chapter 2: In this chapter the previous end related work done in the development of

thie project were described with their methodology and architecture proposed by the

authors.

Chapter 3: In this chapter we see how we work on system design. Also described
Spring Boot , Apache Kafka , Reactive Programming , REST and Cassandra Database

which will be used in the development of spring boot application.
Chapter 4: Discusses about the result and Screenshots.

Chapter 5: Concludes the project and gives suggestions for future work.

CHAPTER 2

LITERATURE SURVEY

[1] Dr. Mitali Gupta [1] conducted the study of Reactive app that are availablein
India and concluded that only the application that were successful have good user
interface and shows the image in a way that sticks in the mind of user so he or she will
buy that. In short a good user interface application and low latency application gives best

user experience .

[2] Shantashree Das, Debomalya Ghose [2] conducted study on influence of online food
delivery application on the operation on business the paper discuss about how human
behaviour are changing and they are more inclined towards ordering food online instead
of going to restaurant and also provided some solution in order to operate business in

more efficient manner. So Reactive Spring boot is making better user experience

[3] P.Nagendra Babu , M.Chaitanya Kumari , S.Venkat Mohan [3] has worked on
computation of cloud computing , data access and storage services that do not require
end user knowledge of the physical location and configuration of the system that

delivers the services.

SAAS PAAS IAAS
Software As A Platform As A Infrastructure As
Service Service A Service
v" Government v Application v’ Server

Applications Development v" Network
v" Communications v’ Security v" Storage
v" Productivity Services

tools v Database

Management
Examples: Examples: Examples:
v" Oracle v Microsoft Amazon EC2
v" SalesForce.com Azure Verizon Terre
v" LinkedIn v GAE mark
v" Google Apps

Figure 1 Cloud Computing Services

Concluded that however Cloud is employed for organizations and the way the cloud is
employedto Store , retrieve and modify the info while not physical instrumentation .Cloud
computing is that the quickest new paradigm for delivering on demand services over web
and might be represented as central Software system.Cloud computing describes a brand new
supplement ,

consumption and delivery model for IT services supported web protocols and it generally

involvesprovisioning of dynamically ascendable and infrequently virtualized resources .

[4] BabakBashari Rad, Harrison John Bhatti and Mohammad Ahmadi [4] worked on
Docker which provide some facilities, which are wuseful for developers and
administrators. It is an open platform can be used for building .distributing, and
running applications in a portable , lightweight runtime and packaging tool, known as
Docker Engine. It also provideDocker Hub, which is a cloud service for sharing
applications. Costs can be reduced by replacing traditional virtual machine with docker

container. It excellently reduces the cost of re-building the cloud development platform.

| Docker Chent | Docher Chemt | Docher Clent

-

Figure 2 Docker architecture

The conclusion is Docker automates the applications when they are containerized.
An extra layer of docker engine is added to the host operating system. The
performance of docker is faster than virtual machines as it has no guest operating

system and less resourceoverhead.

CHAPTER 3

SYSTEMDEVELOPMENT

3.1 Reactive Programming
e Basics
In short: by programming with asynchronous data streams. Let’s say service A
wants to retrieve some data from service B. With the reactive programming style
approach, service A will make a request to service B which returns immediately
(being non-blocking and asynchronous). Then the data requested will be made
available to service A as a data stream, where service B will publish an onNext-
event for each data item one by one. When all the data has been published, this is
signalled with an onComplete event. In case of an error, an onError event would be

published and no more items would be emitted.

Invoking service

: »
E< Call returns immediately |
: onNext(T item) '
b ;
‘ . :
: e nitems '
‘ . :
" onNext(T item) -
- -
: onComplete() ;
I< L]

figure 3 : Reactive Event Stream

Reactive programming uses a functional style approach (similar to the Streams API), which
gives the possibility to perform different kinds of transformations on the streams. A stream

can be used as an input to another one. Streams can be merged, mapped and filtered .

¢ Reactive Systems

Reactive programming is an important implementation technique when developing “reactive
systems”, which is a concept described in the “Reactive Manifesto”, highlighting the need
for modern applications to be designed to be:

1. Responsive (responding in a timely manner)

2. Resilient (staying responsive also in failure situations)

3. Elastic (staying responsive under varying workload)

4. Message Driven (relying on asynchronous message passing)

Building a reactive system means to deal with questions such as separation of concerns, data
consistency, failure management, choice of messaging implementation etc. Reactive
programming can be used as an implementation technique to ensure that the individual
services use an asynchronous, non-blocking model, but to design the system as a whole to
be a reactive system requires a design that takes care of all these other aspects as well.

¢ Reactive Streams Specification

As time went on, a standardisation for Java was developed through the Reactive Streams
effort. Reactive Streams is a small specification intended to be implemented by the reactive
libraries built for the JVM. It specifies the types to implement to achieve interoperability
between different implementations. The specification defines the interaction between
asynchronous components with back pressure. Reactive Streams was adopted in Java 9, by
the Flow API . The purpose of the Flow API is to act as an interoperation specification and

not an end-user API like RxJava.

The specification covers the following interfaces:
Publisher : This represents the data producer/data source and has one method which lets the
subscriber register to the publisher.
public interface Publisher<T> {
public void subscribe(Subscriber<? super T> s);
¥
Subscriber : This represents the consumer and has the following methods:
public interface Subscriber<T> {
public void onSubscribe(Subscription s);
public void onNext(T t);
public void onError(Throwable t);
public void onComplete();
¥
. onSubscribe is to be called by the Publisher before the processing starts and is used to
pass a Subscription object from the Publisher to the Subscriberiste
. onNext is used to signal that a new item has been emittediste
. onError is used to signal that the Publisher has encountered a failure and no more
items will be emitted
. onComplete is used to signal that all items were emitted sucessfully[s}:p]
Subscription : The subscriptions holds methods that enables the client to control the
Publisher’s emission of items (i.e. providing backpressure support).
public interface Subscription {
public void request(long n);
public void cancel();
¥
. request allows the Subscriber to inform the Publisher on how many additional

elements to be published

. cancel allows a subscriber to cancel further emission of items by the Publisher.
Processor : If an entity shall transform incoming items and then pass it further to another
Subscriber, an implementation of the Processor interface is needed. This acts both as a
Subscriber and as a Publisher.

public interface Processor<T, R> extends Subscriber<T>, Publisher<R> {

b

3.2 Spring Boot
Spring Boot provides a good platform for Java developers to develop a stand-alone and
production-grade spring application that you can just run. You can get started with minimum
configurations without the need for an entire Spring configuration setup.

How does it work ?

Spring Boot automatically configures your application based on the dependencies you have
added to the project by using @EnableAutoConfiguration annotation. For example, if
MySQL database is on your classpath, but you have not configured any database

connection, then Spring Boot auto-configures an in-memory database.

The entry point of the spring boot application is the class contains @SpringBootApplication

annotation and the main method.

Spring Boot automatically scans all the components included in the project by using

@ComponentScan annotation.
Spring Boot Starters

Handling dependency management is a difficult task for big projects. Spring Boot resolves

this problem by providing a set of dependencies for developers convenience.

For example, if you want to use Spring and JPA for database access, it is sufficient if you

include spring-boot-starter-data-jpa dependency in your project.

Note that all Spring Boot starters follow the same naming pattern spring-boot-starter- *,

where * indicates that it is a type of the application.

Auto Configuration

Spring Boot Auto Configuration automatically configures your Spring application based on
the JAR dependencies you added in the project. For example, if MySQL database is on
your class path, but you have not configured any database connection, then Spring Boot

auto configures an in-memory database.

For this purpose, you need to add @EnableAutoConfiguration annotation or
@SpringBootApplication annotation to your main class file. Then, your Spring Boot

application will be automatically configured.

import org.springframework.boot.Spring Application;

import org.springframework.boot.autoconfigure Enable AutoConfiguration;

@Enable AutoConfiguration
public class DemoApplication {
12
public static void main(String[] args) {

SpringApplication.run(DemoApplication.class, args);

Spring Boot Application

The entry point of the Spring Boot Application 1is the «class contains
@SpringBootApplication annotation. This class should have the main method to run the
Spring Boot application. @SpringBootApplication annotation includes Auto- Configuration,

Component Scan, and Spring Boot Configuration.

If you added @SpringBootApplication annotation to the class, you do not need to add the
@EnableAutoConfiguration, @ComponentScan and @SpringBootConfiguration annotation.

The @SpringBootApplication annotation includes all other annotations.

Component Scan
Spring Boot application scans all the beans and package declarations when the application
initializes. You need to add the @ComponentScan annotation for your class file to scan

your components added in your project.
Spring Initializer

One of the ways to Bootstrapping a Spring Boot application is by using Spring Initializer.
To do this, you will have to visit the Spring Initializer web page and
choose your Build, Spring Boot Version and platform. Also, you need to provide a Group,
Artifact and required dependencies to run the application.

Observe the following screenshot that shows an example where we added the spring-boot-

starter-web dependency to write REST Endpoints.

C spring initializr

Project Language Dependencies ADD DEPENDENCIES... ¥ + B
o Q Gradie Project ® Q Kotin O Groowvy
No dependency selected
Spring Boot
QO 251(ENAPSHOT) @ Q) 247 (BNAPSHOT)) 246

QO 2312 (SNAPSHOT) Q) 23m

Project Metadata

Group com example

Artifact demo

Mame demo

Description Demo project for Spring Boot

Package name Com.example demo

Packaging @ Q war

dava Ow @ Os

figure 4 : Spring intializr

Properties File

?

Properties files are used to keep ‘N’ number of properties in a single file to run the
application in a different environment. In Spring Boot, properties are kept in the

application.properties file under the classpath.
The application.properties file is located in the src/main/resources directory.

YAML File

Spring Boot supports YAML based properties configurations to run the application. Instead
of application.properties, we can use application.yml file. This YAML file also should be

kept inside the classpath.

33 REST API

REST stands for REpresentational State Transfer. REST is web standards based architecture
and uses HTTP Protocol. It revolves around resource where every component is a resource
and a resource is accessed by a common interface using HTTP standard methods. REST was
first introduced by Roy Fielding in 2000.

In REST architecture, a REST Server simply provides access to resources and REST client
accesses and modifies the resources. Here each resource is identified by URIs/ global IDs.
REST uses various representation to represent a resource like text, JSON, XML. JSON is the

most popular one.

HTTP methods

Following four HTTP methods are commonly used in REST based architecture.
*GET — Provides a read only access to a resource.

*POST — Used to create a new resource.

*DELETE — Used to remove a resource.

*PUT — Used to update a existing resource or create a new resource.

20

Restful Webservices

A web service is a collection of open protocols and standards used for exchanging data
between applications or systems. Software applications written in various programming
languages and running on various platforms can use web services to exchange data over
computer networks like the Internet in a manner similar to inter-process communication on a
single computer. This interoperability (e.g., between Java and Python, or Windows and
Linux applications) is due to the use of open standards.

Web services based on REST Architecture are known as RESTful web services. These
webservices uses HTTP methods to implement the concept of REST architecture. A
RESTful web service usually defines a URI, Uniform Resource Identifier a service, provides

resource representation such as JSON and set of HTTP Methods.

Sr.No. URI HTTP Method POST body Result

1 /UserService/users GET empty Show list of all the users.

2 /UserService/addUser POST JSON String Add details of new user.

3 /UserService/getUser/iid GET empty Show details of a user.
figure 5 : URI

What is a Resource?

REST architecture treats every content as a resource. These resources can be Text Files,
Html Pages, Images, Videos or Dynamic Business Data. REST Server simply provides
access to resources and REST client accesses and modifies the resources. Here each resource
is identified by URIs/ Global IDs. REST uses various representations to represent a resource

where Text, JSON, XML. The most popular representations of resources are XML and
JSON.

21

Representation of Resources

A resource in REST is a similar Object in Object Oriented Programming or is like an Entity
in a Database. Once a resource is identified then its representation is to be decided using a
standard format so that the server can send the resource in the above said format and client
can understand the same format.
For example, in Restful Web Services — First Application chapter, a user is a resource which
iepresented using the following XML format —
<user>

<id>1</id>

<name>Mahesh</name>

<profession>Teacher</profession>

</user> 0
1
The same resource can be represented in JSON format as follows
{
"id": l ,

"name":"Mahesh",
"profession":"Teacher"

b

Good Resources Representation

REST does not impose any restriction on the format of a resource representation. A client
can ask for JSON representation whereas another client may ask for XML representation of
the same resource to the server and so on. It is the responsibility of the REST server to pass
the client the resource in the format that the client understands.

Following are some important points to be considered while designing a representation
format of a resource in RESTful Web Services.

. Understandability — Both the Server and the Client should be able to understand and

utilize the representation format of the resource.itp!

22

. Completeness — Format should be able to represent a resource completely. For
example, a resource can contain another resource. Format should be able to represent simple

as well as complex structures of resources.

3.4 Apache Kafka

Apache Kafka is a software platform which is based on a distributed streaming process. It is
a publish-subscribe messaging system which let exchanging of data between applications,
servers, and processors as well. Apache Kafka was originally developed by LinkedIn, and
later it was donated to the Apache Software Foundation. Currently, it is maintained by
Confluent under Apache Software Foundation. Apache Kafka has resolved the lethargic
trouble of data communication between a sender and a receiver.

What is a Messaging System?

A Messaging System is responsible for transferring data from one application to another, so
the applications can focus on data, but not worry about how to share it. Distributed
messaging i1s based on the concept of reliable message queuing. Messages are queued
asynchronously between client applications and messaging system. Two types of messaging
patterns are available — one is point to point and the other is publish-subscribe (pub-sub)
messaging system. Most of the messaging patterns follow pub-sub.

Point to Point Messaging System

In a point-to-point system, messages are persisted in a queue. One or more consumers can
consume the messages in the queue, but a particular message can be consumed by a
maximum of one consumer only. Once a consumer reads a message in the queue, it
disappears from that queue. The typical example of this system is an Order Processing
System, where each order will be processed by one Order Processor, but Mulii'ple Order

Processors can work as well at the same time. The following diagram depicts the structure.

23

Message queue

figure 6 : Point to Point Messaging System

Publish-Subscribe Messaging System

In the publish-subscribe system, messages are persisted in a topic. Unlike point-to-point
system, consumers can subscribe to one or more topic and consume all the messages in that
topic. In the Publish-Subscribe system, message producers are called publishers and message
consumers are called subscribers. A real-life example is Dish TV, which publishes different
channels like sports, movies, music, etc., and anyone can subscribe to their own set of

1
channels and get them whenever their subscribed channels are available.

v

figure 7 : Publish-Subscribe Messaging System

24

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that
can handle a high volume of data and enables you to pass messages from one end-point to
another. Kafka is suitable for both offline and online message consumption. Kafka messages
are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built
on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm
and Spark for real-time streaming data analysis.

Benefits

Following are a few benefits of Kafka —

. Reliability — Kafka is distributed, partitioned, replicated and fault tolerance.

. Scalability — Kafka messaging system scales easily without down time.

. Durability — Kafka uses “Distributed commit log” which means messages persists on
disk as fast as possible, hence it is durable.

. Performance — Kaftka has high throughput for both publishing and subscribing
messages. It maintains stable performance even many TB of messages are stored.

Kafka is very fast and guarantees zero downtime and zero data loss.

Use Cases

Kafka can be used in many Use Cases. Some of them are listed below —

. Metrics — Kafka is often used for operational monitoring data. This involves
aggregating statistics from distributed applications to produce centralized feeds of operational
data.

. Log Aggregation Solution — Kafka can be used across an organization to collect logs
from multiple services and make them available in a standard format to multiple con-sumers.
. Stream Processing — Popular frameworks such as Storm and Spark Streaming read
data from a topic, processes it, and write processed data to a new topic where it becomes
available for users and applications. Kafka’s strong durability is also very useful in the

context of stream processing.

25

Need for Kafka

Kafka is a unified platform for handling all the real-time data feeds. Kafka supports low
latency message delivery and gives guarantee for fault tolerance in the presence of machine
failures. It has the ability to handle a large number of diverse consumers. Kafka is very fast,
performs 2 million writes/sec. Kafka persists all data to the disk, which essentially means
that all the writes go to the page cache of the OS (RAM). This makes it very efficient to
transfer data from page cache to a network socket.

Before moving deep into the Kafka, you must aware of the main terminologies such as
topics, brokers, producers and consumers. The following diagram illustrates the main

terminologies and the table describes the diagram components in detail.

Topics Kafka Brokers
Leader
sarver 1
Paion 1 Consumer group
replica
vadis” R T - ¥ consumer 1
1 ::“"
o ke Sever2 Aead data
write data A 0 1 2 3 > pac“mz
| W
2 Partition 3 Folowsr
Server 3 _.» Consumer 3
- oo I —

figure 8 :Kafka

In the above diagram, a topic is configured into three partitions. Partition 1 has two offset
factors O and 1. Partition 2 has four offset factors 0, 1, 2, and 3. Partition 3 has one offset

factor 0. The id of the replica is same as the id of the server that hosts it.

26

Assume, if the replication factor of the topic is set to 3, then Kafka will create 3 identical
replicas of each partition and place them in the cluster to make available for all its
operations. To balance a load in cluster, each broker stores one or more of those partitions.

Multiple producers and consumers can publish and retrieve messages at the same time.

Components and Description :

Topics

A stream of messages belonging to a particular category is called a topic. Data is stored in
topics.

Topics are split into partitions. For each topic, Kafka keeps a mini-mum of one partition.
Each such partition contains messages in an immutable ordered sequence. A partition is

implemented as a set of segment files of equal sizes.

Partition

Topics may have many partitions, so it can handle an arbitrary amount of data.

Partition offset

Each partitioned message has a unique sequence id called as “offset”.

Replicas of partition

Replicas are nothing but “backups™ of a partition. Replicas are never read or write data. They

are used to prevent data loss.

Brokers

. Brokers are simple system responsible for maintaining the pub-lished data. Each
broker may have zero or more partitions per topic. Assume, if there are N partitions in a
topic and N number of brokers, each broker will have one partition.[s}:p]

. Assume if there are N partitions in a topic and more than N brokers (n + m), the first
N broker will have one partition and the next M broker will not have any partition for that
particular topic sk

27

. Assume 1if there are N partitions in a topic and less than N brokers (n-m), each broker
will have one or more partition sharing among them. This scenario is not recommended due

to unequal load distri-bution among the broker.

Kafka Cluster
Kafka’s having more than one broker are called as Kafka cluster. A Kafka cluster can be
expanded without downtime. These clusters are used to manage the persistence and

replication of message data.

Producers

Producers are the publisher of messages to one or more Kafka topics. Producers send data to
Kafka brokers. Every time a producer pub-lishes a message to a broker, the broker simply
appends the message to the last segment file. Actually, the message will be appended to a

partition. Producer can also send messages to a partition of their choice.

Consumers
Consumers read data from brokers. Consumers subscribes to one or more topics and consume

published messages by pulling data from the brokers.

Leader
“Leader” is the node responsible for all reads and writes for the given partition. Every

partition has one server acting as a leader.

28

Follower
Node which follows leader instructions are called as follower. If the leader fails, one of the
follower will automatically become the new leader. A follower acts as normal consumer,

pulls messages and up-dates its own data store.

Consumer Group

] .
[L}
] .
[[
Producer 1 ¢ : consumert
push msg | i E pull msg
. L] 1
Producer 2 ™. > o H 1 | consumer2
CRE H -
- :
Producer 3 i . r, consumerd
: g
. SR -
getkatka ‘% " update offset

broker id | L0

figure 9 : Cluster diagram of kafka

Broker

Kafka cluster typically consists of multiple brokers to maintain load balance. Kafka brokers
are stateless, so they use ZooKeeper for maintaining their cluster state. One Kafka broker
instance can handle hundreds of thousands of reads and writes per second and each bro-ker
can handle TB of messages without performance impact. Kafka broker leader election can be

done by ZooKeeper.

ZooKeeper
ZooKeeper is used for managing and coordinating Kafka broker. ZooKeeper service is
mainly used to notify producer and consumer about the presence of any new broker in the

Kafka system or failure of the broker in the Kafka system. As per the notification received

29

by the Zookeeper regarding presence or failure of the broker then pro-ducer and consumer

takes decision and starts coordinating their task with some other broker.

Producers
Producers push data to brokers. When the new broker is started, all the producers search it
and automatically sends a message to that new broker. Kafka producer doesn’t wait for

acknowledgements from the broker and sends messages as fast as the broker can handle.

Consumers

Since Kafka brokers are stateless, which means that the consumer has to maintain how many
messages have been consumed by using partition offset. If the consumer acknowledges a
particular message offset, it implies that the consumer has consumed all prior messages. The
consumer issues an asynchronous pull request to the broker to have a buffer of bytes ready
to consume. The consumers can rewind or skip to any point in a partition simply by

supplying an offset value. Consumer offset value is notified by ZooKeeper.

Workflow of Pub-Sub Messaging :

Following is the step wise workflow of the Pub-Sub Messaging —

. Producers send message to a topic at regular intervals.

. Kafka broker stores all messages in the partitions configured for that particular topic.
It ensures the messages are equally shared between partitions. If the producer sends two
messages and there are two partitions, Kafka will store one message in the first partition and
the second message in the second partition.

. Consumer subscribes to a specific topic.

. Once the consumer subscribes to a topic, Katka will provide the current offset of the
topic to the consumer and also saves the offset in the Zookeeper ensemble.

. Consumer will request the Kafka in a regular interval (like 100 Ms) for new messages.

30

. Once Kafka receives the messages from producers, it forwards these messages to the

consumers.
. Consumer will receive the message and process it.
. Once the messages are processed, consumer will send an acknowledgement to the

Kafka broker.

. Once Kafka receives an acknowledgement, it changes the offset to the new value and
updates it in the Zookeeper. Since offsets are maintained in the Zookeeper, the consumer
can read next message correctly even during server outrages.

. This above flow will repeat until the consumer stops the request.

. Consumer has the option to rewind/skip to the desired offset of a topic at any time

and read all the subsequent messages.

Workflow of Queue Messaging / Consumer Group

In a queue messaging system instead of a single consumer, a group of consumers having the
same “Group ID” will subscribe to a topic. In simple terms, consumers subscribing to a
topic with same “Group ID” are considered as a single group and the messages are shared
among them. Let us check the actual workflow of this system.

. Producers send message to a topic in a regular interval.

. Kafka stores all messages in the partitions configured for that particular topic similar

to the earlier scenario.

. A single consumer subscribes to a specific topic, assume “Topic-01"" with “Group ID”
as “Group-17.
. Kafka interacts with the consumer in the same way as Pub-Sub Messaging until new

consumer subscribes the same topic, “Topic-01" with the same “Group ID” as “Group-1”.
. Once the new consumer arrives, Kafka switches its operation to share mode and shares
the data between the two consumers. This sharing will go on until the number of con-sumers

reach the number of partition configured for that particular topic.

31

. Once the number of consumer exceeds the number of partitions, the new consumer
will not receive any further message until any one of the existing consumer unsubscribes.
This scenario arises because each consumer in Kafka will be assigned a minimum of one
partition and once all the partitions are assigned to the existing consumers, the new
consumers will have to wait.

. This feature is also called as “Consumer Group”. In the same way, Kafka will provide

the best of both the systems in a very simple and efficient manner.

Role of ZooKeeper

A critical dependency of Apache Kafka is Apache Zookeeper, which is a distributed
configuration and synchronization service. Zookeeper serves as the coordination interface
between the Kafka brokers and consumers. The Kafka servers share information via a
Zookeeper cluster. Kafka stores basic metadata in Zookeeper such as information about
topics, brokers, consumer offsets (queue readers) and so on.

Since all the critical information is stored in the Zookeeper and it normally replicates this
data across its ensemble, failure of Kafka broker / Zookeeper does not affect the state of the
Kafka cluster. Kafka will restore the state, once the Zookeeper restarts. This gives zero
downtime for Kafka. The leader election between the Kafka broker is also done by using

Zookeeper in the event of leader failure.

3.5 Apache Cassandra

Apache Cassandra is highly scalable, high performance, distributed NoSQL database.
Cassandra 1s designed to handle huge amount of data across many commodity servers,

providing high availability without a single point of failure.

32

Cassandra has a distributed architecture which is capable to handle a huge amount of data.
Data is placed on different machines with more than one replication factor to attain a high

availability without a single point of failure.

NoSQLDatabase

A NoSQL database (sometimes called as Not Only SQL) is a database that provides a
mechanism to store and retrieve data other than the tabular relations used in relational
databases. These databases are schema-free, support easy replication, have simple API,
eventually consistent, and can handle huge amounts of data.

The primary objective of a NoSQL database is to have

. simplicity of design,
. horizontal scaling, and
. finer control over availability.

NoSql databases use different data structures compared to relational databases. It makes
some operations faster in NoSQL. The suitability of a given NoSQL database depends on

the problem it must solve.

Cassandra Architecture

Cassandra was designed to handle big data workloads across multiple nodes without a single
point of failure. It has a peer-to-peer distributed system across its nodes, and data is
distributed among all the nodes in a cluster.

. In Cassandra, each node is independent and at the same time interconnected to other
nodes. All the nodes in a cluster play the same role.

. Every node in a cluster can accept read and write requests, regardless of where the
data is actually located in the cluster.

. In the case of failure of one node, Read/Write requests can be served from other

nodes in the network.

33

Data Replication in Cassandra

In Cassandra, nodes in a cluster act as replicas for a given piece of data. If some of the
nodes are responded with an out-of-date value, Cassandra will return the most recent value
to the client. After returning the most recent value, Cassandra performs a read repair in the
background to update the stale values.

See the following image to understand the schematic view of how Cassandra uses data

replication among the nodes in a cluster to ensure no single point of failure.

B

I d\ i ,
o i
N G
2Bl N
Node 1

I—-I =

Node 5 Node 2
el
% g
e &

gl _ |
--n Replication
Node 4 Node 3

figure 10 : Node Replication

Components of Cassandra :

The main components of Cassandra are:

. Node: A Cassandra node is a place where data is stored.

. Data center: Data center is a collection of related nodes.

. Cluster: A cluster is a component which contains one or more data centers.

. Commit log: In Cassandra, the commit log is a crash-recovery mechanism. Every write

operation is written to the commit log.

. Mem-table: A mem-table is a memory-resident data structure. After commit log, the
data will be written to the mem-table. Sometimes, for a single-column family, there will be
multiple mem-tables.

. SSTable: It is a disk file to which the data is flushed from the mem-table when its
contents reach a threshold value.

. Bloom filter: These are nothing but quick, nondeterministic, algorithms for testing
whether an element is a member of a set. It is a special kind of cache. Bloom filters are

accessed after every query.

Cassandra Query Language

Cassandra Query Language (CQL) is used to access Cassandra through its nodes. CQL treats
the database (Keyspace) as a container of tables. Programmers use cqlsh: a prompt to work
with CQL or separate application language drivers.

The client can approach any of the nodes for their read-write operations. That node

(coordinator) plays a proxy between the client and the nodes holding the data.

Write Operations

Every write activity of nodes is captured by the commit logs written in the nodes. Later the
data will be captured and stored in the mem-table. Whenever the mem-table is full, data will
be written into the SStable data file. All writes are automatically partitioned and replicated
throughout the cluster. Cassandra periodically consolidates the SSTables, discarding

unnecessary data.

35

Memory

Disk

a Commit IOg SSTable

figure 11 : Cassandra Write Operation

Read Operations
In Read operations, Cassandra gets values from the mem-table and checks the bloom filter to
find the appropriate SSTable which contains the required data.

There are three types of read request that is sent to replicas by coordinators.

. Direct request
. Digest request
. Read repair request

The coordinator sends direct request to one of the replicas. After that, the coordinator sends

the digest request to the number of replicas specified by the consistency level and checks if

the returned data is an updated data.
After that, the coordinator sends digest request to all the remaining replicas. If any node

gives out of date value, a background read repair request will update that data. This process

is called read repair mechanism.

36

Commit Log

MemTable

figure 12 : Read Operation

Cassandra Data Model

Data model in Cassandra is totally different from normally we see in RDBMS. Let's see how

Cassandra stores its data.

Cluster

Cassandra database is distributed over several machines that are operated together. The
outermost container is known as the Cluster which contains different nodes. Every node
contains a replica, and in case of a failure, the replica takes charge. Cassandra arranges the

nodes in a cluster, in a ring format, and assigns data to them.

Keyspace

Keyspace is the outermost container for data in Cassandra. Following are the basic attributes
of Keyspace in Cassandra:

. Replication factor: It specifies the number of machine in the cluster that will receive
copies of the same data.

. Replica placement Strategy: It is a strategy which species how to place replicas in the
ring. There are three types of strategies such as:

1) Simple strategy (rack-aware strategy)

2) old network topology strategy (rack-aware strategy)
37

3) network topology strategy (datacenter-shared strategy)

. Column families: column families are placed under keyspace. A Kkeyspace is a
container for a list of one or more column families while a column family is a container of
a collection of rows. Each row contains ordered columns. Column families represent the
structure of your data. Each keyspace has at least one and often many column families.

In Cassandra, a well data model is very important because a bad data model can degrade

performance, especially when you try to implement the RDBMS concepts on Cassandra.

Cassandra data Models Rules

Cassandra doesn't support JOINS, GROUP BY, OR clause, aggregation etc. So you have to
store data in a way that it should be retrieved whenever you want.

Cassandra is optimized for high write performances so you should maximize your writes for
better read performance and data availability. There is a tradeoff between data write and
data read. So, optimize you data read performance by maximizing the number of data writes.
Maximize data duplication because Cassandra is a distributed database and data duplication

provides instant availability without a single point of failure.

38

3.6 MODEL DEVELOPMENT

Flow-chart

Below is the flow chart that will describe the overall flow that Spring follows .

Client

HTTPS

Repository Class Extending
CRUD Services

r

request

Service

Controller ¢

Dependency Injection

Layer |

Figure 13 : flow chart

Database

» Model

UPA / Spring Data

39

Schema diagram

Below is the Schema diagram of REST that will show what are the services available and

who can access them.

forders

GET - list all orders

PUT - unused

POST - add a new order
DELETE - unused

/orders/{id}

«interface»
Resource

GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

/customers

GET
PUT
POST
DELETE

GET - list all customers
PUT - unused

POST - add new customer
DELETE - unused

/customers/{id}

GET - get customer details
PUT - update customer
POST - unused

DELETE - delete customer

/customers/{id}/orders

GET - get all orders for customer
PUT - unused

POST - add order

DELETE - cancel all customer orders

Figure 14 : Schema diagram

3.7 Features

Reactive Programming solves performance problems caused by the use of native threads and
the “One thread per request” paradigm. However, this solution goes along with higher
development and maintenance complexity because testing and debugging, among other things,
become more complicated.

Green threads are a possible way to avoid the performance losses caused by the process
switches in the operating system. These were available in Java 1.1 but were already discarded
in Java 1.3 because they did not allow the benefits of multi-core or multi-processor systems
to be used. A new attempt to introduce another variant of Green Threads, so-called Fibers,
into the JDK is Project Loom. This proposal would be accompanied by support for
continuations in Java as a kind of spin-off product. This feature is known from other
programming languages like Kotlin and Go under the name Coroutines

* avoid “callback hell”

* a lot simpler to do async / threaded work

* a lot of operators that simplify work

* very simple to compose streams of data

» complex threading becomes very easy

* you end up with a more cleaner, readable code base

13
* easy to implement back-pressure

41

CHAPTER 4

PERFORMANCE ANALYSIS

4.1 Starting Spring Boot Application

com.example.demo

L]
@SpringBootApplication|

DemoApplication {

Figure 15: Spring Boot Application

42

4.2 Kafka

2 taining®ip-172-31-27-203~ =0 X

Figure 16:- Kafka Zookeeper

43

L J L J kafka_2.11-1.0.1 java B80=24

o java e Dast

g offsets and group metadata from __consumer_offsets-27 in 1 milliseconds.
a.coordinator.group.GroupMetadataManager)
[2018-05-19 ©0:05:57,362] INFO [GroupMetadataManager brokerId=0] Finished loadin
g offsets and group metadata from __consumer_offsets-3@ in @ milliseconds. Ckafk
a.coordinator.group.GroupMetadataManager)

[2018-05-12 @0:05:57,369] INFO [GroupMetadataManager brokerId=0] Finished loadin
g offsets and group metadata from __consumer_offsets-33 in @ milliseconds. Ckafk
a.coordinator.group.GroupMetadataManager)

[2018-05-192 @0:05:57,369] INFO [GroupMetadataManager brokerId=0] Finished loadin
g offsets and group metadata from __consumer_offsets-36 in @ milliseconds. (Ckafk
a.coordinator.group.GroupMetadataManager)

[2018-05-19 @@:05:57,370] INFO [GroupMetadataManager brokerId=0] Finished loadin
g offsets and group metadata from __consumer_offsets-39 in @ milliseconds. Ckafk
a.coordinator.group.GroupMetadataManager)

[2018-05-19 ©0:05:57,37@] INFO [GroupMetadataManager brokerId=0] Finished loadin
g offsets and group metadata from __consumer_offsets-42 in @ milliseconds. (kafk
a.coordinator.group.GroupMetadataManager)

[2018-05-19 ©0:05:57,371] INFO [GroupMetadataManager brokerId=@] Finished loadin
g offsets and group metadata from __consumer_offsets-45 in 1 milliseconds. (Ckafk

+
Ckafk

erId=0] Fin ed loadin
adata from consumer_offsets-48 in @ milliseconds. (kafk
oupMetadataManager)

- L= kafka_2.11-1.0.1 — bash — B0=24
bash +

apples-MacBook-Pro:kafka_2.11-1.0.1 apple$ bin/kafka-topics.sh --create --zookee
per localhost:2181 --replication-factor 1 --partitions 1 --topic Kafka_Example
WARNING: Due to limitations in metric names, topics with a period ('.") or under
score ('_"') could collide. To avoid issues it is best to use either, but not bot
h.

Created topic "Kafka_Example™.

apples-MacBook-Pro:kafka_2.11-1.0.1 apple$ bin/kafka-console-consumer.sh --boots
trap-server localhost:9092 --topic Kafka_Example --from-beginning

Figure 18: Kafka Consumer

4.3 REST Controller

ot - kafka - producer ¢

Figure 19: Apache sever Image.

45

4.1 Docker

EX Command Prompt = O X

Figure 20: Docker Image

Figure 21: Building Container

46

Figure 22: Database Image

Figure 23: Database runtime

47

CONCLUSION

When it comes to huge volumes of data or multi-userness, we often need asynchronous
processing to make our systems fast and responsive. In Java, a representative of old object-
oriented programming, asynchronicity can become really troublesome and make the code
hard to understand and maintain. So, reactive programming is especially beneficial for this
‘purely’ object-oriented environment as it simplifies dealing with asynchronous flows. With
its latest releases (starting with Java 8), Java itself has made some attempts to introduce
built-in reactivity, yet these attempts are not very popular with developers to date. But
there’re some live and regularly updated third-party implementations for reactive
programming in Java that help to save the day and thus are particularly loved and cherished

by Java developers.

FUTURE WORK

In future we'll try and create the appliance serverless. The serverless computing
model permits you to make and run applications and services while not
having to concerning infrastructure or servers. It eliminates infrastructure
management tasks like server provisioning, patching, software system maintenance,
scaling, and capability provisioning. Building native serverless applications implies
that developers will specialise in the core product and on innovating applications and
solutions, instead of outlay tons of your time on putting in and maintaining

infrastructure.

48

1]

2]

3]

(4]

REFERENCE

A survey on Reactive Programming: Engineer Bainomugisha, Andoni Lombide
Carreton, Tom Van Cutsem, Stijn Mostinckx and Wolfgang De Meuter

https://www researchgate .net/publication/233755674_A_Survey_on_Reactive_Programmi
ng

Shantashree Das, Debomalya Ghose, Influence Of Fast Online Apps On The
Operations Of The Restaurant Business : INTERNATIONAL JOURNAL OF
SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 12, DECEMBER
2019 ISSN 2277-8616

P.Nagendra Babu , M.Chaitanya Kumari , S.Venkat Mohan [3] has worked on
computationof cloud computing, International Journal of Engineering Trends and
Technology (IJETT)

— Volume 21 Number 6 — March 2015 ISSN: 2231-5381

BabakBashari Rad, Harrison John Bhatti and Mohammad Ahmadi [4] worked on
Docker which provide some facilities, International Research Journal of Engineering
and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 07 | July 2020

49

ZopSmart_Technology.pdf

ORIGINALITY REPORT

10, 10, 6

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS

O

STUDENT PAPERS

PRIMARY SOURCES

.

www.utm.edu

Internet Source

2

o

www.darwinrecruitment.com

Internet Source

2%

e

cendana.com.bn

Internet Source

T

et <Tw
s 1B <7«
B [aodeskeon <Tw
DT to BSCR-EAR <1 o
n I:iltr(::rrwnftrsiguarlcr(;\radiohistory.com <1%
n I\{:{(\elr\:]\é\t/.SEEL?r?edfonIine.com <1 o

ethesis.nitrkl.ac.in

Internet Source <1 0/0

Submitted to Jaypee University of Information <1 y
Technology °
Student Paper
www.tenox.net

Internet Source <1 %
monada.com.ua

Internet Source <1 %
manualzz.com

Internet Source <1 %
www.netapp.com

Internet Source pp <1 %

uides.dss.gov.au
%ternetSource g <1 %

Exclude quotes On Exclude matches

Exclude bibliography On

< 10 words

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

Date: 17/6/2021
Type of Document (Tick): |PhD Thesis| |M.Tech Dissertation/ Report| B.Tech Project Report Pape[|

Name: Aditya Kumar Singh Department:CSE Enrolment No 171289

Contact No.7209280425 E-mail.171289@juitsolan.in

Name of the Supervisor:Dr. Monika Bharti Jindal

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): REACTIVE SPRING BOOT

APPLICATION FOR PRODUCT VARIANT USING KAFKA AND CASSANDRA DATABASE

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

— Total No. of Pages =55

— Total No. of Preliminary pages = 6

— Total No. of pages accommodate bibliography/references = 1 Aditya Kumar Singh

(Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at4Q (%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

M onaka Buanty

——
(Signature of Guide/Supervisor) Signature of HOD
FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index Generated Plagiarism Report Details
(%) (Title, Abstract & Chapters)

. Word Counts
o All Preliminary 10%

Pages

Report Generated on Character Counts

e Bibliography/Ima

ges/Quotes

_ Submission ID Total Pages Scanned
e 14 Words String

File Size

Checked by
Name & Signature Librarian

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)
through the supervisor at plagcheck.juit@gmail.com

mailto:plagcheck.juit@gmail.com

	Computer Science and Engineering
	CERTIFICATE
	ACKNOWLEGEMENT
	LISTo .OFo .CONTENTS
	Abstract
	CHAPTERo .1
	Problemo .statement
	 Waitingo .foro .I/Oo .operation:-
	 Responseo .Time:-
	 Ono .Demando .Selfo .Service

	Needso .ofo .Microservices
	Objectives
	Methodology
	 Amazono .Webo .Services
	 Docker
	 Dockero .Image
	 Dockero .Containers
	1.5 Organization

	CHAPTERo .2
	LITERATUREo .SURVEY

	CHAPTERo. 3o .SYSTEMo .DEVELOPMENT
	CHAPTERo. 3o .SYSTEMo .DEVELOPMENT
	3.1 Reactiveo .Programmingo .
	 Basics
	o .o .o .o .oSpringo .Booto .Application
	o .o .o .o .Componento .Scan
	3.6 MODELo .DEVELOPMENTo .Flow-chart
	3.6 MODELo .DEVELOPMENTo .Flow-chart

	Schemao .diagram

	CHAPTER .4o .PERFORMANCEo .ANALYSIS
	CHAPTER .4o .PERFORMANCEo .ANALYSIS
	4.1 Startingo .Springo .Booto .Application
	4.1o .Docker

	CONCLUSION
	FUTUREo .WORK
	REFERENCE
	Date: 17/6/2021
	UNDERTAKING
	Complete Thesis/Report Pages Detail:

	FOR DEPARTMENT USE
	FOR LRC USE
	Checked by

