Major Project Report
To Study and Implement Optimization Algorithms
Project report submitted in partial fulfilment of the requirement for the degree of
Bachelor of Technology
IN

Computer Science and Engineering/Information Technology

BY

Bhavye Sharma (171473)

UNDER THE SUPERVISION OF

Dr.Rajni Mohana

Department of Computer Science Engineering and Information Technology Jaypee University of Information
Technology, Waknaghat, Solan -173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Optimization Algorithms * in partial fulfilment of
the requirements for the award of the degree of Bachelor of Technology in Computer Science and
Engineering/Information Technology submitted in the department of Computer Science &Engineering and
Information Technology, Jaypee University of Information Technology Waknaghat is an authentic record of my
own work carried out over a period from August 2020 to December 2020 under the supervision of Dr Rajni

Mohana (Designation and Department name).

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

&7),[:: 9;&;):(

Bhavye Sharma

171473

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

[

Dr Rajni Mohana
Associate Professor

Department of Computer Science & Engineering and Information Technology

Dated:

ACKNOWLEDGEMENT

| wish to express our sense of gratitude towards Dr. Rajni Mohana Department of Computer
Science & Engineering, Jaypee University of Information Technology, Waknaghat, my guide, for
giving me this wonderful opportunity to work with her. 1 am grateful for her constant
encouragement, motivation, cooperation and support which helped me in finishing this project
successfully. Without her expert guidance this would not have been possible. I am also grateful to
the people whose works we have referred and the details regarding the same are mentioned in the
references. | would also like to thank all our friends and lab assistants for extending their help

and support at times when it was needed.

Table of Contents S.NO
Candidate declaration (i)
Acknowledgement (i)
List of Figures (iv)
List of Graphs (G1-G23)
Abstract (V)
1. Chapter-1 Introduction 1

2. Chapter-2 Literature Survey 6

3. Chapter-3 System Development 33
4. Chapter-4 Performance Analysis 53

5. Chapter-5 Conclusions 56

References

Appendices

Abstract:

Designing and implementing optimization algorithms in machine and deep learning tends to be

very challenging, partly due to the complexity and highly nonlinearity of the problem of interest,
partly due to stringent design codes in engineering practice. Conventional algorithms are not
the best tools for highly nonlinear global optimization, as they are local search algorithms,
and thus often miss the global optimality. In addition, design solutions have to be robust,
subject to uncertainty in parameters and tolerance of available components and

materials. The optimization algorithms have been implemented.

Chapter 1: Introduction

1.1 Introduction:

To Know about Optimization Algorithms First we should have some

background knowledge of Machine Learning and its Types.

Machine Learning is science of making computers learn without being explicitly programmed.
It is closely related to the computational statistic, which focuses on making the predictions using
the computers. Its application across the business problems, machine learning can also be
referred to as predicting analysis. Machine Learning is closely related to the computing
statistics. Machine Learning focuses on the development of the computer programs that can be
accesed data and can be used to learn themselves. The process of learning which begins with
observations or data, such as the examples and the instruction, in order to look for the patterns
in the data which makes better decisions for future basis on the examples which are provided.
The primary aim is allowing computers to learn automatically without the human interventions

or the assistances and adjusting action.

History of Machine Learning -The name machine learning was coined in 1959 by Arthur
Samuel. Tom M. Mitchell provided a widely quoted, more formal definition of the algorithms
studied in the machine learning field: "A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E." This follows Alan Turing's proposal in his paper
"Computing Machinery and Intelligence", in which the question "Can machines think?" is
replaced with the question "Can machines do what we (as thinking entities) can do?". In Turing’s
proposal the characteristics that could be possessed by a thinking machine and the various
implications in constructing one are exposed. Types of Machine Learning The types of machine
learning algorithms differ in their approach, the type of data they input and output, and the type
of task or problem that they are intended to solve. Broadly Machine Learning can be categorized
into 2 categories.

Types of Machine Learning -

I.Supervised Learning

I1.Unsupervised Learning

Machine learning enables analysis of massive quantities of data. While it generally delivers
faster, more accurate results in order to identify profitable opportunities or dangerous risks, it

may also require additional time and resources to train it properly.

Types of Machine Learning -

[.Supervised Learning

[I.Unsupervised Learning

Machine learning enables analysis of massive quantities of data. While it generally
delivers faster, more accurate results in order to identify profitable opportunities or

dangerous risks, it may also require additional time and resources to train it properly.
1.Supervised Learning -

Supervised Learning is a type of the learning were the data set is given and we

know how correct output looks like, having idea that their is a relationship between
the input and output. This is a learning a functions which maps inputs to outputs

basis on the examples inputs outputs pair. It means that the function from labelling
train data consists of set of train examples. Supervised learning problems are

categorization .

2.Unsupervised Learning Unsupervised Learning is a type of learning that allows us
to approach problems with little or no idea what our problem should look like. We
can derive structures by clustering data basis on the relationships amongst different

variables in the data.

a. What is Optimization: When we make machine learning model it won’t work perfectly on

the first go. The output given by the model

will be non-sensical and far away from actual output or expected
output. To measure how far away out output 1s from the expected

output we use loss function or cost function.
Loss Function = f{expected, predicted)

This loss function is dependent on both predicted value and actual

value. We need to make this loss function as close to zero as possible.
If loss function 1s 0 (ideal case), then actual value 1s equal to expected
value. The output of loss function is called loss. To reduce this loss is

called Optimization.

b. What are Optimization Algorithms: Optimization Algorithms are set
of instructions or steps which are repeated until loss given by the loss

function becomes minimum.

General Ontimizing Aleorithm:

b. predicted_value = model(prams)
Loop(start):
predicted_value = changes in model(params)
Recompute loss: LossFunction(predicted value, actual value)
If loss is less than equal to a threshold: stop loop

Loop(end)

10

1.2 Problem Statement: To study and implement different optimization algorithms and their

working to converge to global minima.

Objective -Implementing various Optimization Algorithms in Machine Learning and

understanding the working of the same.
Implemented

1) Momentum -Mini Batch

2) ->Gradient Descent(Batch Gradient)
3) RMSpropagation
4) Adagrad(Adaptive Gradient)

5) Adam

1.3 Objective: To compare different optimization algorithms using graphs

and loss.

1.4 Methodology:

1) Construct a dummy and balanced dataset.

i) Design a Linear Regression algorithm.

i) Optimize Linear Regression using different optimization techniques.

| 11 |

iv) Plot graphs.

System Design-

Linear
Dataset

Linear

Regression

Initialize
Weights
Randomly

Fig.1

Epochs

Optimization
Algo

i

Predict and
compute
Loss

Update
Weights and
learning rate

ATQ Algo

12

Chapter 2: Literature Survey

1. Hands on Machine Learning using Python by Aurelien Gueron : About Linear Regression
and datasets.
2. d2l.ai : About Optimization and optimization algorithms.

3. www.towardsdatascience.com : Working on different algorithms in detail.

4. Bai, Qinghai. "Analysis of particle swarm optimization algorithm.” Computer and
information science 3.1 (2010): 180.

5. Mirjalili, S. and Lewis, A., 2016. The whale optimization algorithm. Advances in

engineering software, 95, pp.51-67.

6. Parpinelli, R.S., Lopes, H.S. and Freitas, A.A., 2002. Data mining with an ant colony

optimization algorithm. IEEE transactions on evolutionary computation, 6(4), pp.321-332.

» Gradient descent is an optimization algorithm used to minimize function J(0) that is
Mean Squared Error,by updating the parameters which is theta(intercept and slope)

and VJ(0) w.r.t. to the parameters(theta).

* The learning rate eta determines the size of the steps we take to reach a (local) minimum
and eventually a global minima in epochs iterations . In other words, we follow
the direction of the slope of the surface created by the objective

function until we reach a desired minimum cost.

13

https://d2l.ai/chapter_optimization/index.html
http://www.towardsdatascience.com/

» We have studied the working of optimization algorithms in machine

learning and implemented Gradient Descent using python.

* A linear dataset has been used .

» Various parameters such as theta(slope and intercept) were used, adjusted, updated and

observed changes have been plotted .

Loss Function used here-> Mean Squared Error (MSE)was used to calculate cost/error.

» Reference book-Hands On Machine Learning

Tools and Technologies Used

* Lanquage Used- Python —

1.Python is a high level langyage which is easy to implement and is used in various

platforms such as data mining ,machine learning etc.

2.1t has important libraries which are powerfula nad helpful in visualizing the data and

processing it.

3.Some of these libraries are Numpy, Pandas, Matplot Lib.

| 14 |

» Libraries used-

1.NumPy-

(a)Numpy is an important library which is used in Python language for working with

array data structures.

(b)Numpy Library is which is known as NumPy, helps in mathematical and the

logical operations on arrays can be performed.

(c) It also helps in discussing various arrays functioning , types of indexes. An

introduction to the Matplotlib helps in providing graphs.

Y

NumPy

Software

0
0
iNl
’u

NumPv

Fig 2

15

2.Pandas

(a) Pandas is also an important library which is used in the Python language for the

working with data frames data structures.

(b) Pandas is an open-source, BSD licens Python libraries providing high

performances, easy to using data structures and the data analyzing tools for Python

language.

(c) Python with Pandas is used in various ranges of the fields including academic

and the commercials domain defining finances, economic, , analytics, and Statistics
etc.

1 d

|::l pandas
|

pandas

Software

Fig 3.

3.MatplotL ib-

16

(a)Matplot Library is an important library which is used in plotting the graphs and visualizing the

data which helps in data pre processing and feature engineering .

(b) It provides OOPS API for embedding the plots into the apps using general purposing toolkits

such as Tkinter etc which is used in our project.

Matplotlib

% matplotlib

et $QFe N

Fig 4

Platform —GoogleColab

17

| | |

(a)Google Colab is an important and powerful tool used in various data

warehousing,machine learning and deep learning implementation purposes.

(b)1t can be used for remote implementation of the projects whre 2 or more people can

work on the project simultaneously.

(c)It supports multiple file formats such as csv, xml, images ,html ,latex etc.

5.Scikit Learn-

18

scikit-learn

Software

Scikit-learn is a free software machine learming library
for the Python programming language. It features
various classification, regression and clustering
algorithms including support vector machines, ...
Wikipedia

Original author: David Cournapeau

Stable release: 0.23 2/ 4 August 2020; 3 months ago
License: Mew BSD License

Operating system: Linux, macOS, Windows

Initial release: June 2007; 13 years ago

Written in: Python, Cython, C, C++

Fig5.

19

Chapter 3: System Development

1- Constructing dummy dataset:

Dummy dataset is constructed by taking some random points on x-axis feeding to a
function. In this project we have used 300 points and the function used is of a linear nature.

Simultaneously we have added noise to our dataset so that optimization algorithm doesn’t

stops at the first step.

Dataset: y= m*x + ¢ + noise

def genrate_dataset(slope, intercept, size, noise):
X =random_points(num_points)
Y =slope*X + intercept + noise
Dataset = concatenate(X, Y)

return dataset

20

Noise Factor=1

10 - of

2 4

Noise Factor 4.5

G1.

21

25 1

20 1

= Ln
i i

Noise Factor 6

35 1
an_
25 4

20 1

| Mg dee,

1 eay b T

., -. .:‘."- *
=
. 'ﬁ:‘#‘l

o0 '-'f' YT

o .0:"‘ ' '.:"- {’?' ¢ &
- g o ®
P XAIT AL

G3.

22

a. Make Linear Regression class: Declared basic variables and member functions.
Variables Declared:

I. History: stores the all the errors and weights of all the epochs(iterations).
I1. Optimizer: sets the optimizer used to optimize the loss function.

1. Dynamic Learning Rate: sets the trend which the learning rate follows to reduce.

23

Member Function:

L
IT.

IL

IV.

VIL
| VIIL

fit(): Initializes the weights and makes the dataset workable.
train(): Use to start the training process. Takes in number of epochs
and 1nitial learning rate.

predict(): Uses the final weights to calculate predicted values and
calculates the net error.

show _trainsition(): Takes history and plots all the hypothesis from

initial to final weights.

show weightTransition(): Shows how the weights changes with

epochs.

show lossCurve(): Takes history which contains all the errors

calculated over every epoch and plots how the loss decreases.
final_fit(): Shows how the final weights fit the data points.

Other helper function: Provides other functionalities for the Linear

Regression class to work.

2-Implementing Optimizing Algorithms:

e Gradient Descent:

24

->Creating Linear Dataset

: - - S eat
ll.".t': |Gl:'t',| L]

train(self, epochs, eta):

selt.theta = np.random.rand(selt.X.shape

->Gradient Descent

def GradientDecesent(self, epochs, eta):

->Predicting and adjusting Thefa:

Linear Regression object takes “GD” as argument to call Gradient

Descent.

Gradient Descent is one the most basic and most widely used
optimization technique. In this technique we calculate the gradient,

also called slope, for every weight in the hypothesis.

This gradient tell amount of by which loss decreases or increases
when we change the weight by a small amount. Thus, we
differentiate loss function with respect to every weight in the
hypothesis. This gradient also tells us the direction and the angle
at which we have to move to reach the minima or point where the

loss function 1s the least.

We add this gradient, with direction, to its respective weight after multiplying it with learning rate

which represents the length of step we have to take.

Now, we apply this to one of the simplest loss functions, Mean Squared Error.

MSE(y_predicted) = ((y_predicted — y_actual)?)/n, where n is the number of instances of data

available.

26

y_predicted = wiXs + WoX2 + ... + wnXn = ZWiXi

On differentiation we get,

dJ/dw; = 2*(y_predicted-y_actual)*x;,

error =y _predicted-y_actual ,s0 now dJ/dw; = 2*error*x;.
Gradient = Array of dJ/dw;.

Update Statement : wi=w; + (learning_rate)*gradient[i].

Algorithm -Gradient Descent

The learning rate alpha is constant only the weights that is slope and intercept are

randomly initialized and updated over the epochs

The optimal weights are obtained over the epochs and graph of loss vs epochs is plotted to

observe to reach the global minima .

If the loss is high then we move towards right direction ie we increase the

weights in the positive direction of x-axis.

| 27 |

| | |
« if the loss increases over the epochs then we decrease the weights we move in
the negative direction of x-axis

 The update equations are:
w=w—aVyJ
b=b—aVpJ

Alpha is learning rate which is constant.

T(w) = V7
ow v

()[)J(tt') —— VhJ

w,b are the weights that we are trying to optimize over epochs by partially derivating to

achieve the gradient which is the direction we move to reduce the cost function that is
Mean Squared Error .

Loss Function

Mean Squared Error is derivated wrt to weights to find gradient

« Taking all data points in every epochs

28

D-rn. S e sz(yt — gt)

Derivative with respect to m Similarly for c

def GradientDecesent(self, epochs, eta):

previous theta = []

previous error = []

for _ in range(epochs):
predicted = np.dot(self.X, self.theta)
error = predicted-self.y
gradient = (2/len(self.X))*np.dot(np.transpose(self.X), error)
self.theta = self.theta - eta*gradient
error = (np.dot(np.transpose(error), error))/len(X)
previous theta.append(self.theta)
previous_error.append(error[@])

return [previous_theta, previous error]

29

Hypothesis Transition

30

20 1

Loss Curve

20

40

G5.

6l

a0
Epochs

1
100

1
120

1
140

31

Weight Transition

Weight

G6.

25 1

20 1

!
08 10

G7.

32

Momentum: SGD Stochastic Gradient Descent

Linear Regression object takes “Momentum” as argument to call Gradient Descent.

Momentum works on Stochastic Gradient Descent. Stochastic Gradient Descent is almost

same as Gradient Descent.

Gradient Descent takes all the point in dataset into consideration to calculate, the process is
slower increases time complexity so we take mini batch to make the weights updation

faster.

The learning rate alpha is constant only the weights that is slope and intercept are

randomly initialized and updated over the epochs

The optimal weights are obtained over the epochs and graph of loss vs epochs is plotted to

observe to reach the global minima .

The convergence is not smooth because of the mini batch it is very oscillating which has to

be damped where as gradient descent has smooth convergence of loss curve.

The damping of the oscillations is done by giving the momentum to the weights ie exp

weighted average.

Giving the more weights to present iteration gradient and less to previous gradients.

Beta=.95 initialized ,alpha is constant.

33

V[:/g’/)’(l—/)’)St_2+...+/3’(1—/3’) St—1+”'+(1_/))) St

Vt:ﬁvt—l"'(l_/)))VwL(W:X’y)
W=W—aV,

Algorithm 2
def Momentum(self, epochs, eta, gamma, mini_batch=70):
previous_theta = []
previous_error = []
momentum = np.array(len(self.theta)*[e])
momentum = momentum.reshape(len(momentum), 1)
for epoch in range(1, epochs+1):
if self.dlr == "exponential™ : eta = self.exponential decay(eta, epoch, -8.01)
if self.dlr == "polynomial" : eta = self.polynomial decay(eta, epoch, 0.1, -8.5)
predicted = np.dot(self.X, self.theta)
error = predicted-self.y
gradient = self.get stochastic gradient(self.X, mini batch, error)
momentum = gamma*momentum + eta*gradient
self.theta = self.theta - momentum
error = (np.dot(np.transpose(error), error))/len(X)
previous theta.append(self.theta)
previous error.append(error[@])
return [previous theta, previous error]

Loss Function;

34

Derivative with respect to m Similarly for c

Mean Squared Error is derivated wrt to weights to find gradient

« Taking Mini Batch of N data points Randomly by using seed

To reduce this, we only take some points from dataset to calculate the gradient.

These points are chosen randomly from the set.

35

Due to this random selection process the loss function converges
but, in a zig-zag manner. The Momentum comes into picture here
as it smooths out this zig-zag pattern, and also 1t helps accelerate

the process and help the function converge faster.

As the name suggest, algorithm gains “momentum”. For
example, if we throw a ball from top of the curve, it will still have
momentum or speed when it reaches local minima, and will pop

out of it and continue searching for global minima.

To mathematically understand this, we associate a weight with
every gradient. This weight 1s maximum for current gradient and

minimum for the first gradient.

This weight is constant to some power. This constant is beta, with 5

value between 0O to 1.

) &

Image 2: SGD without momentum Image 3: SGD with momentum

Gradient = get_gradient(data, points)

Momentum = p*Momentum + a*Gradient

The current gradient has a weight of 1 and rest other gradients are
multiplied by beta.

Update Statement : wi = w; + Momentum

Hypothesis Transition

5= L B &

LN
i

G8.

37

Loss Curve

160 1

140 1

Loss

20 - N

I
0 20 40 60 80 100 120 140

Epochs G9.

Weight Transition

20.0 1

— thetal
17.5 A1 |

15.0 1

12.5 1

Weight

10.0 1

1.5 1

5.0 1

25 1

G10.

38

0.0 0.2 0.4 0.6 0.3 10
G11.

3- Root Mean Squared Propagation(RMSProp) :

Linear Regression object takes “RMSP” as argument to call Gradient Descent.The learning rate

is not constant where as it is varied over epochs to converge faster .

The Smoothening Vdw and Vdb is used to contain the fall of the learning rate and for

convergence to still occur and reach to global minima otherwise weights wont update and get

stuck.

This happens as the previous and the new weights are almost the same so the convergence comes

to still. The value of learning rate_in Vdw is denoted by beta and is usually set to 0.9 .

The Vdw and Vdb are initilaised to 0. For every epochs we

calculate
update
Vaw = B+ Vaw + (1 — B) - dw’
vap = B - Vaw + (1 — B) - db°
1.

weights with the help of velocity component.

« Weight updation Equation-is as follows--

The learning rate is
update and contained by vdw,vdb

dw
A/ Vdw —+ €
db
A/ VUdb + €

W =W —«-

b—=56— -

Algorithm-

\ 40

and

Algorithm 3
def RMSProp(self, epochs, eta, beta, mini_batch=78):
previous_theta = []
previous _error = []
moving_avg = np.array([@]*len(self.theta))
moving avg = moving avg.reshape(len(moving avg), 1)
for epoch in range(1, epochs+1):
predicted = np.dot(self.X, self.theta)
error = predicted-self.y
gradient = self.get stochastic gradient(self.X, mini_batch, error)
moving avg = beta®moving avg + (1-beta)*(gradient®**2)
self.theta = self.theta - (eta/(moving _avg**e.5))*gradient
error = (np.dot(np.transpose(error), error))/len(X)
previous theta.append(self.theta)
previous_error.append(error[8])
return [previous theta, previous error]

RMSProp is just RProp used on SGD with some changes. In RMSProp we use
exponentially weighted average on squared of gradient. This is done because of

averaging gardients.
Moving average = f*Moving average + (1-B) *Gradient?
Update Statement:

wi = w; - (leraning_rate/Moving_average®® " Gradient

41

Hypothesis Transition

G12.

42

Loss Curve
160

140 -

120 1

100 1

Loss
=

!
0 20 4 & B0 100 120 140
G13.

Weight Transition

Weight

!)
O 20 40 &0 an 100 120 140

43

0.2

10

0.3

06

04

0.0

G15.

44

4) Adagrad- Adaptive Gradient ie adaptive learning learning rate

.For the different epochs and iterations the learning rate gets updated because in

The bag of words the mini batch may have sparse or dense classes to even out the distribution we
use varied learning rates.

Till now what we implemented till SGD with momentum was that the learning rate stays steady
that is constant and fixed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

qqqqqqqqqqqqqqqqq

squared is used.

The problem with this is that over epochs the alpha squared will become very
very large and learning rate very small so the weights will not be updated and
get stuck in the local not the global minima.

SGD = w,=w,__ —n _ 0L
t—1 ow,
: 0L
Adagrad = w, =w %=
t t—1 : .
taut_l
Ui

where 1§ = ——
L / Qy + ¢

e is a small 4 ve number to avoid divisibilty by 0

t) .
o, = Z(%F summation of gradient square

The N stands for learning rate which is variable.

W(t) is the weights updation equation .

N’ is the equation how the learning rate is updated for every epoch .
The very large alpha squared is the drawback which is dealt in Rmsp

The Loss Function is same as before that is Mean Squared Error.

| 45 |

Hence the rmsprop or adadelta is used where the weighted average is used instead of the alpa to
contain the rise of it and thus moving towards the global minima.

. oL
\Vf = Y&t __]_—— M é?VV ;
t_
oL
be=bi=ng,
t_

Where the eta is updated by the above mentioned equation.

def Adagrad(self, epochs, eta, mini_batch=70):
previous_theta = []
previous_error = []
moving_avg = np.array([@] * len(self.theta))
moving _avg = moving_avg.reshape(len(moving avg), 1)
for epoch in range(l, epochs+1):
predicted = np.dot(self.X, self.theta)
error = predicted - self.Y
gradient = self.get stochastic_gradient(self.X, mini_batch, error)

moving_avg = moving avg + gradient**2

self.theta = self.theta - (eta / (moving_avg ** 9.5)) * gradient
error = (np.dot(np.transpose(error), error)) / len(X)
previous_theta.append(self.theta)
previous_error.append(error[@])

return [previous_theta, previous_error]

46

Loss Curve

160

140 A

120

100

Loss

80 4

60

20

G16.

20

60

Epochs

80

100

120

47

251

20

15 4

10

0.0 0.2 0.4 0.6 0.8 1.0

G17.

The above graph shows the best fit line model with the most optimum weights reached over
epochs and optimized.

The next graph shows the weight transition over epochs and that plotted .

48

All weights to show the all weights with lines and to demonstrate the optimization happening
such way over the epochs .

Hypothesis Transition

49

Weight Transition
3.0 4

— thetal
bais
25 -

2.0 1

Weight
—
L

10 A

0.5 A1

O 20 4 6 8 100 120 140
Epochs

G19.

5)Adam-
* We dealt the problem of the alpha square being very large in the case of adagrad by adopting

sdw of rms / adadelta to contain the exponential rise of alpha so that learning rate doesn’t

get so small.

The weights still get updated and convergence progresses and tries to reach the optimal

global minima. |

* Through the use of weighted average that is sdw ,vdw .

» It combines best of both the worlds and combine to get the advantages of other two

. algorithms.

Hence a very optimised approach is adopted so that we may vary our learning rate
dynamically using Sdw and along with that we also dampen the oscillations with the Vdw
component and converge faster and smoothly .

| 50 |

mt:ﬂl mt—1+(1_ﬁl)gt
Vr:ﬁzvr—l'l'(l_ﬁz)grz

1)The Vdw_,Vdb for the momentum is used and denoted as m(t)

As the exponential weighted gradient to dampen and smoothen the oscillations and

convergence.

2)The Sdw,Sdb are used for the adaptive learning rates and are denoted as V(t) and
are computed for every epoch for the current mini batch as the exponential weighted
gradient squared.

3)g(t) is denoted as the gradient derived by the loss function MSE. |
On current Mini batch and epoch ,

* m(t),v(t) are computed and fed to weight update equation;

Over the epochs the error is reduced as the slope converges in the search of the
optimal minima

W, —W 7]
—1
t t \/V +E

—i—\zuz/

51

def Adam(self, epochs, eta, betal, beta2, mini_batch=79):

previous_theta = []

previous_error = []

moving_avg 1 = np.array([@] * len(self.theta))

moving_avg 1 = moving_avg_1.reshape(len{moving_avg_ 1), 1)

moving_avg 2 = np.array([8] * len(self.theta))

moving_avg 2 = moving_avg_2.reshape(len(moving_avg 2), 1)

for epoch in range(l, epochs+1):
predicted = np.dot(self.X, self.theta)
error = predicted - self.Y
gradient = self.get stochastic_gradient(self.X, mini_batch, error)
moving_avg_ 1 = betal * moving_avg_ 1 + (l-betal) * gradient
moving_avg 2 = beta2 * moving_avg_2 + (l-beta2) * (gradient**2)
mvavgl hat = moving_avg 1 / (1 - np.power(betal, epoch))
mvavg2_hat = moving_avg 2 / (1 - np.power(beta2, epoch))
self.theta = self.theta - eta * mvavgl_hat / (np.sqrt(mvavg2_hat) + 9.06001)
error = (np.dot(np.transpose(error), error)) / len(X)
previous_theta.append(self.theta)
previous_error.append(error[0])

return [previous_theta, previous_error]

The graph shows the loss curve over the epochs which gets smoothened and
converge.

52

Loss Curve

140 4

120 4

100 4

Loss

80

60 4

40 4

G21.

40

60

Epochs

80

100

120

140

53

The above graph shows the best fit line model with the most optimum weights
reached over epochs and optimized.

301

25

204

T T T T T T
0.0 02 04 06 08 10

G22.

54

All weights to show the all weights with lines and to demonstrate the optimization

happening such way over the epochs .

300
280
260
240
220
200
180
160

55

Hypothesis Transition

251

201

151

104

02

0.4

0.8

56

10

Weight Transition

— thetal
10 1 —— bais

veEIgnt

0 20 40 6 80 100 120 140
G23. Epochs

TimeLine of the Project-

Gantt Chart-

Timeline of the Project

TASK JANUARY FEBRUARY MARCH APRIL

1.Identifying and collecting the resources
needed ® o090
2.Studying and Implementing SGD

3.Studying and Implementing RMS Prop

4.Studying and Implementing
ADAGRAD

5.Studying and implementing ADAM

6.Performance Analysis

58

Chapter 4: Performance Analysis

The results obtained by this project are in form of loss given by the model.
These are respective losses given by the model:

v Gradient Descent: 60.6
v Momentum: 57.06
v RMSProp : 51.4

v Adagrad:47.3
v' Adam:33.2

I. The best efficiency is of Adam and adagrad as these implement
adaptive learning rate along with smoothening of loss curve over

epochs using momentum.

1. Analysis on the basis of advantages and disadvantages:

59

Advantages of Gradient Descent: Gradient Descent convergence of the
weight is very as can be seen in the graph. This is because gradient for each

weight is averaged for the entire dataset.

2-Also, as it has momentum it can sometimes overshoot the global minima.

Disadvantage of Gradient Descent: As complete dataset is used this

increases the time complexity of the algorithm.

Advantages of Momentum:

1-SGD gives oscillating convergence to the minima. Momentum approach

smoothens the convergence and also accelerates the convergence.

2-This also helps when algorithm finds any local minima. Because of

having momentum, it doesn’t get stuck here.
Disadvantage of Momentum:

1-As random data points are taken the algorithm takes some time to
stabilize and the loss curve 1s not very smooth, but it stabilizes in some

time.

60

Advantages of RMSProp:

1-RMSProp converges faster than the Gradient Descent as it works on Stochastic Gradient

Descent . RMSProp has knowledge about the previous gradients. The loss curve is smooth.

global minima.

Advantages of Adam-

61

Chapter- 5: Conclusion

Conclusion:

We completed our Project and learnt different methods and algorithm in optimization of the
machine learning algorithms. The work carried out came out to be successful and I got to the
exposure to implement various Optimization Machine Learning Algorithms. | got to know that

Optimization Algorithms in Machine Learning is a technique of improvising the already existing
high complexity algorithms and training the models to perform efficiently and reach and

converge to global minima and not limited slower and convergent upto local minimas.

Until now we found out that Gradient Descent algorithm works fine but take too much time
computationally and converges slowly as it propagates in zig zag manner . It also gets stuck on
local minima. But Momentum solves both the problem it converges faster and also comes out of
local minima. RMSProp doesn’t overshoots and doesn't fluctuate like momentum and reaches the

global minima .Adagrad has large values of alpha square that is dealt by using Adam.

62

Future Scope:

There are much more better and efficient algorithms to this project like AdaGrad, AdaDelta,

Adam, RProp etc. that can be applied to it.

The already existing implemented optimization algorithms such as Gradient Descent, Momentum
and RMS Propagation,Adam and Adagrad are efficient in themselves and the efficiencies of the
implemented can be increased by using other optimization algorithms mentioned above and

eventual comparison can be drawn out for better understanding of the algorithms .

References

63

1.Parpinelli, R.S., Lopes, H.S. and Freitas, A.A., 2002. Data mining with an ant
colony optimization algorithm. IEEE transactions on evolutionary computation, 6(4),
pp.321-332.

2. Bai, Q., 2010. Analysis of particle swarm optimization algorithm. Computer and

information science, 3(1), p.180

3. Mirjalili, S. and Lewis, A., 2016. The whale optimization algorithm. Advances in

engineering software, 95, pp.51-67.

4. Schlipf, M. and Gygi, F., 2015. Optimization algorithm for the generation of
ONCYV pseudopotentials. Computer Physics Communications, 196, pp.36-44.

5. Rajabioun, R., 2011. Cuckoo optimization algorithm. Applied soft
computing, 11(8), pp.5508-5518.

6. Trelea, 1.C., 2003. The particle swarm optimization algorithm: convergence

analysis and parameter selection. Information processing letters, 85(6), pp.317-325.

7. Pelikan, M., Goldberg, D.E. and Cantu-Paz, E., 1999, July. BOA: The Bayesian
optimization algorithm. In Proceedings of the genetic and evolutionary computation
conference GECCO-99 (Vol. 1, pp. 525-532).

8. Jiang, Y., Hu, T., Huang, C. and Wu, X., 2007. An improved particle swarm
optimization algorithm. Applied Mathematics and Computation, 193(1), pp.231-239.

9. Finkel, D., 2003. DIRECT optimization algorithm user guide. North Carolina State

University. Center for Research in Scientific Computation.

10. Wang, D., Tan, D. and Liu, L., 2018. Particle swarm optimization algorithm: an
overview. Soft Computing, 22(2), pp.387-408.

11.https://www.geeksforgeeks.org/optimization-techniques

12.https://en.wikipedia.org/wiki/Category:Optimization_algorithms_and _methods

APPENDICES

1.Importing the data set in Google Colab

65

o from google.colab import files
import pandas as pd

uploaded = Files.uplc:ad()|

2.Importing the important and necessary libraries.

o import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

3.Training the data set.

def train(self, epochs, eta):
self.epochs = epochs
if self.optimizer == 'GD":
self.history = self.GradientDecesent(epochs, eta)

66

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

Date: ...24/06/2021........ccceverveeeerernns
Type of Document (Tick): ->Report B.Tech Project Report Paper

Name: Bhavye Sharma __Department: ___Computer Science And Information
Technology Enrolment No 171473
Contact No. 7696299860 E-mail. bhavyesharma33@gmail.com__and

__171473@juitsolan.in

Name of the Supervisor: _Dr Rajni Mohana

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): __ To study and_Implement Optimization
Algorithms

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism and copyright
violations in the above thesis/report even after award of degree, the University reserves the rights to withdraw/revoke my
degree/report. Kindly allow me to avail Plagiarism verification report for the document mentioned above.

— Total No. of Pages =65

— Total No. of Preliminary pages =5

— Total No. of pages accommodate bibliography/references = 3

&4,\792’\9&(
(Signature of Student)
FOR DEPARTMENT USE
We have checked the thesis/report as per norms and found Similarity Index at 18...........(%). Therefore, we are

forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be handed over to
the candidate.

ESant

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index Abstract & Chapters Details

67

(%)
Word Counts
o All Preliminary
Pages Character Counts
Report Generated on ® Bibliography/
Images/Quotes
Submission ID Page counts
® 14 Words String
File Size
Checked by
Name & Signature Librarian

68

turnitinJ)
Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt
information regarding your submission.

The first page of your submissions is displayed below.

Submission authar: Bhv Bh
Assignment title: major project
Submission ttle: major project
File name: 171473_Major_Project_Report.docx
File size: 2,95M
Page count: 65
Word count: 3,114
Character count: 17,003
Submission date: 16-May-2021 05:57PM (UTC+0530)
Submission |ID: 1587087719

1 1 1
Majer Frejeet Repoet
ToStady sl
Pepa e g ok
Bachdor of Tochobegy

L]
Comporer Schmer wd Dagioorring Weburmanion Todheobog
"
Wharye Sharma (1T1ETN

UNDER THE SLPRRYISKIN (6
By Rajw Nobara

. —

Dt o Componr Scumcs Engmarmg st bebovamon Tutmogy Jiypes Dnbersty of Infarmton
ottty Ak maghad, w11 Mt Py b

70

	The learning rate is update and contained by vdw,vdb

