
1

TransFarmers

Solving Transportation issues for farmers.

Project Report submitted in partial fulfillment of the requirement for the degree of

Bachelor of Technology.

in

INFORMATION TECHNOLOGY

 under the Supervision of

 Ms. Reema Aswani

By

 Mr.Yash Chopra(111421)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

 Certificate

This is to certify that project report entitled “TransFarmers.”, submitted by Yash Chopra in partial

fulfillment for the award of degree of Bachelor of Technology in Information Technology to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award of

this or any other degree or diploma.

Date: Supervisor’s Name :

 Ms. Reema Aswani

 Designation:

 AssistantProfessor(Grade 1)

3

 Acknowledgement

It is my privilege to express my sincere regards to my project coordinator, Ms Reema Aswani, for her

valuable inputs, able guidance, encouragement, whole-hearted cooperation and constructive criticism

throughout the duration of my project.

I deeply express my sincere thanks to the Head of Department Prof. Dr. RMK Sinha for encouraging

and allowing me to present the project on the topic “TransFarmers“at our department premises for the

partial fulfillment of the requirements leading to the award of B.Tech degree.

I take this opportunity to thank all my lecturers who have directly or indirectly helped in my project. I

pay my respect and love to my parents and all other family members for their love and encouragement

throughout my career. Last but not the least I express my thanks to my friends for their cooperation

and support.

Date: Name of the student

 Yash chopra

4

 INDEX

CONTENT PAGE NO.

1.ABSTRACT 6

2.MOTIVATION 7

3.CHAPTER 1

 INTRODUCTION TO ANDROID

 DEVELOPMENT 8

4.CHAPTER 2

 TransFarmers 48

5.CHAPTER 3

 SCREENSHOTS 62

6.CHAPTER 4

 HARDWARE AND SOFTWARE

 REQUIREMENTS 67

7.CHAPTER 5

 CONCLUSION 68

8.REFRENCES 69

5

 INDEX OF FIGURES

FIGURES PAGE NO.

1.THE ACTIVITY LIFECYCLE 24

2.WAYS IN WHICH ACTIVITY

 RETURNS TO USER 29

3.ILLUSTRATION OF HOW INTENT

 IS DELIVERED TO START

 ANOTHER ACTIVITY 32

4.A CHOOSER DIALOG 38

5.BLOCK DIAGRAM 52

6.WELCOME SCREEN 62

7.CATEGORY SCREEN 63

8.LOGIN SCREEN 64

9.LIST OF DETAILS BUS SERVICE 65

10.TRANSPORTER DETAILS 66

6

 INDEX OF TABLES

TABLE PAGE NO.

1. LIFECYCLE CALLBACK METHODS 25

7

 ABSTRACT

The main aim of the application is to convert private transport into public transport.

This application revolve around the farmers and local people who lack a medium of transport or are

finding people to share ride and divide the cost of transport.

Now this is an android application in which farmers and transport company representatives will sign

up and create their accounts. After they signup, transport company can post their route on application

which will be broadcasted to all the users of the application. The farmers will view the route and if the

route falls on their way, the both contact each other and decide the meeting point.

After deciding the meeting point and time, farmer and the transport company representative meet and

farmer loads the good he want to send to the city.

In this way, profit cut which was previously kept by the mediocre is now kept by farmers themselves.

This application works similarly as the Dijsktra’s Algorithm in which the nodes are the farmers and the

transport company representatives and vertices are the routes.

8

 MOTIVATION

In the current scenario, our farmers have very less exposure to outside world and lack very basic needs

of life out of which one is the means of transport.

They mostly rely on the other transport services which collect their yield from them and supply it to

the market.

9

 Chapter 1

INTRODUCTION TO ANDROID DEVELOPMENT

Android provides a rich application framework that allows you to build innovative apps and games for

mobile devices in a Java language environment. The documents listed in the left navigation provide

details about how to build apps using Android's various APIs.

If you're new to Android development, it's important that you understand the following fundamental

concepts about the Android app framework.

1.1 Applications provide multiple entry points

Android apps are built as a combination of distinct components that can be invoked individually. For

instance, an individual activity provides a single screen for a user interface, and a service

independently performs work in the background.

From one component you can start another component using an intent. You can even start a

component in a different app, such an activity in a maps app to show an address. This model provides

multiple entry points for a single app and allows any app to behave as a user's "default" for an action

that other apps may invoke.

1.2 Applications adapt to different devices

Android provides an adaptive app framework that allows you to provide unique resources for different

device configurations. For example, you can create different XML layout files for different screen

sizes and the system determines which layout to apply based on the current device's screen size.

You can query the availability of device features at runtime if any app features require specific

hardware such as a camera. If necessary, you can also declare features your app requires so app

markets such as Google Play Store do not allow installation on devices that do not support that feature.

10

1.3 Application Fundamentals

Android apps are written in the Java programming language. The Android SDK tools compile your

code—along with any data and resource files—into an APK: an Android package, which is an archive

file with an .apk suffix. One APK file contains all the contents of an Android app and is the file that

Android-powered devices use to install the app.

Once installed on a device, each Android app lives in its own security sandbox:

The Android operating system is a multi-user Linux system in which each app is a different user.

By default, the system assigns each app a unique Linux user ID (the ID is used only by the system and

is unknown to the app). The system sets permissions for all the files in an app so that only the user ID

assigned to that app can access them.

Each process has its own virtual machine (VM), so an app's code runs in isolation from other apps.

By default, every app runs in its own Linux process. Android starts the process when any of the app's

components need to be executed, then shuts down the process when it's no longer needed or when the

system must recover memory for other apps.

In this way, the Android system implements the principle of least privilege. That is, each app, by

default, has access only to the components that it requires to do its work and no more. This creates a

very secure environment in which an app cannot access parts of the system for which it is not given

permission.

However, there are ways for an app to share data with other apps and for an app to access system

services:

It's possible to arrange for two apps to share the same Linux user ID, in which case they are able to

access each other's files. To conserve system resources, apps with the same user ID can also arrange to

run in the same Linux process and share the same VM (the apps must also be signed with the same

certificate).

An app can request permission to access device data such as the user's contacts, SMS messages, the

mountable storage (SD card), camera, Bluetooth, and more. All app permissions must be granted by

the user at install time.

That covers the basics regarding how an Android app exists within the system. The rest of this

document introduces you to:

11

The core framework components that define your app.

The manifest file in which you declare components and required device features for your app.

Resources that are separate from the app code and allow your app to gracefully optimize its behavior

for a variety of device configurations.

1.4 Application Components

App components are the essential building blocks of an Android app. Each component is a different

point through which the system can enter your app. Not all components are actual entry points for the

user and some depend on each other, but each one exists as its own entity and plays a specific role—

each one is a unique building block that helps define your app's overall behavior.

There are four different types of app components. Each type serves a distinct purpose and has a distinct

lifecycle that defines how the component is created and destroyed.

Here are the four types of app components:

1.4.1 Activities

An activity represents a single screen with a user interface. For example, an email app might have one

activity that shows a list of new emails, another activity to compose an email, and another activity for

reading emails. Although the activities work together to form a cohesive user experience in the email

app, each one is independent of the others. As such, a different app can start any one of these activities

(if the email app allows it). For example, a camera app can start the activity in the email app that

composes new mail, in order for the user to share a picture.

An activity is implemented as a subclass of Activity and you can learn more about it in

the Activitiesdeveloper guide.

1.4.2 Services

A service is a component that runs in the background to perform long-running operations or to perform

work for remote processes. A service does not provide a user interface. For example, a service might

play music in the background while the user is in a different app, or it might fetch data over the

network without blocking user interaction with an activity. Another component, such as an activity,

can start the service and let it run or bind to it in order to interact with it.

A service is implemented as a subclass of Service and you can learn more about it in

the Servicesdeveloper guide.

1.4.3 Content providers

12

A content provider manages a shared set of app data. You can store the data in the file system, an

SQLite database, on the web, or any other persistent storage location your app can access. Through the

content provider, other apps can query or even modify the data (if the content provider allows it). For

example, the Android system provides a content provider that manages the user's contact information.

As such, any app with the proper permissions can query part of the content provider (such

as ContactsContractData) to read and write information about a particular person.

Content providers are also useful for reading and writing data that is private to your app and not

shared. For example, the Note Pad sample app uses a content provider to save notes.

A content provider is implemented as a subclass of ContentProvider and must implement a standard

set of APIs that enable other apps to perform transactions. For more information, see the Content

Providersdeveloper guide.

1.4.4 Broadcast receivers

A broadcast receiver is a component that responds to system-wide broadcast announcements. Many

broadcasts originate from the system—for example, a broadcast announcing that the screen has turned

off, the battery is low, or a picture was captured. Apps can also initiate broadcasts—for example, to let

other apps know that some data has been downloaded to the device and is available for them to use.

Although broadcast receivers don't display a user interface, they may create a status bar notification to

alert the user when a broadcast event occurs. More commonly, though, a broadcast receiver is just a

"gateway" to other components and is intended to do a very minimal amount of work. For instance, it

might initiate a service to perform some work based on the event.

A broadcast receiver is implemented as a subclass of BroadcastReceiver and each broadcast is

delivered as an Intent object. For more information, see the BroadcastReceiver class.

A unique aspect of the Android system design is that any app can start another app’s component. For

example, if you want the user to capture a photo with the device camera, there's probably another app

that does that and your app can use it, instead of developing an activity to capture a photo yourself.

You don't need to incorporate or even link to the code from the camera app. Instead, you can simply

start the activity in the camera app that captures a photo. When complete, the photo is even returned to

your app so you can use it. To the user, it seems as if the camera is actually a part of your app.

When the system starts a component, it starts the process for that app (if it's not already running) and

instantiates the classes needed for the component. For example, if your app starts the activity in the

camera app that captures a photo, that activity runs in the process that belongs to the camera app, not

in your app's process. Therefore, unlike apps on most other systems, Android apps don't have a single

entry point (there's no main() function, for example).

13

Because the system runs each app in a separate process with file permissions that restrict access to

other apps, your app cannot directly activate a component from another app. The Android system,

however, can. So, to activate a component in another app, you must deliver a message to the system

that specifies your intent to start a particular component. The system then activates the component for

you.

1.5 The Manifest File

Before the Android system can start an app component, the system must know that the component

exists by reading the app's AndroidManifest.xml file (the "manifest" file). Your app must

declare all its components in this file, which must be at the root of the app project directory.

The manifest does a number of things in addition to declaring the app's components, such as:

 Identify any user permissions the app requires, such as Internet access or read-access to the

user's contacts.

 Declare the minimum API Level required by the app, based on which APIs the app uses.

 Declare hardware and software features used or required by the app, such as a camera,

Bluetooth services, or a multi-touch screen.

 API libraries the app needs to be linked against (other than the Android framework APIs), such

as the Google Maps library.

 And more

1.5.1 Declaring components

The primary task of the manifest is to inform the system about the app's components. For example, a

manifest file can declare an activity as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest ... >

 <applicationandroid:icon="@drawable/app_icon.png" ... >

 <activityandroid:name="com.example.project.ExampleActivity"

 android:label="@string/example_label" ... >

 </activity>

 ...

 </application>

</manifest>

In the <application> element, the android:icon attribute points to resources for an icon that identifies

the app.

14

In the <activity> element, the android:name attribute specifies the fully qualified class name of

the Activitysubclass and the android:label attributes specifies a string to use as the user-visible label

for the activity.

You must declare all app components this way:

<activity> elements for activities

<service> elements for services

<receiver> elements for broadcast receivers

<provider> elements for content providers

Activities, services, and content providers that you include in your source but do not declare in the

manifest are not visible to the system and, consequently, can never run. However, broadcast receivers

can be either declared in the manifest or created dynamically in code (as BroadcastReceiver objects)

and registered with the system by callingregisterReceiver().

For more about how to structure the manifest file for your app, see The AndroidManifest.xml

Filedocumentation.

1.5.2 Declaring component capabilities

As discussed above, in Activating Components, you can use an Intent to start activities, services, and

broadcast receivers. You can do so by explicitly naming the target component (using the component

class name) in the intent. However, the real power of intents lies in the concept of implicit intents. An

implicit intent simply describes the type of action to perform (and, optionally, the data upon which

you’d like to perform the action) and allows the system to find a component on the device that can

perform the action and start it. If there are multiple components that can perform the action described

by the intent, then the user selects which one to use.

The way the system identifies the components that can respond to an intent is by comparing the intent

received to the intent filters provided in the manifest file of other apps on the device.

When you declare an activity in your app's manifest, you can optionally include intent filters that

declare the capabilities of the activity so it can respond to intents from other apps. You can declare an

intent filter for your component by adding an <intent-filter> element as a child of the component's

declaration element.

For example, if you've built an email app with an activity for composing a new email, you can declare

an intent filter to respond to "send" intents (in order to send a new email) like this:

<manifest ... >

 ...

 <application ... >

15

 <activityandroid:name="com.example.project.ComposeEmailActivity">

 <intent-filter>

 <actionandroid:name="android.intent.action.SEND"/>

 <dataandroid:type="*/*"/>

 <categoryandroid:name="android.intent.category.DEFAULT"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

Then, if another app creates an intent with the ACTION_SEND action and pass it to startActivity(), the

system may start your activity so the user can draft and send an email.

For more about creating intent filters, see the Intents and Intent Filters document.

1.5.3 Declaring app requirements

There are a variety of devices powered by Android and not all of them provide the same features and

capabilities. In order to prevent your app from being installed on devices that lack features needed by

your app, it's important that you clearly define a profile for the types of devices your app supports by

declaring device and software requirements in your manifest file. Most of these declarations are

informational only and the system does not read them, but external services such as Google Play do

read them in order to provide filtering for users when they search for apps from their device.

For example, if your app requires a camera and uses APIs introduced in Android 2.1 (API Level 7),

you should declare these as requirements in your manifest file like this:

<manifest ... >

 <uses-featureandroid:name="android.hardware.camera.any"

 android:required="true"/>

 <uses-sdkandroid:minSdkVersion="7"android:targetSdkVersion="19"/>

 ...

</manifest>

Now, devices that do NOT have a camera and have an Android version LOWER than 2.1 cannot

install your app from Google Play.

16

However, you can also declare that your app uses the camera, but does not REQUIRE it. In that case,

your app must set the required attribute to "false" and check at runtime whether the device has a

camera and disable any camera features as appropriate.

1.6 Activities

An Activity is an application component that provides a screen with which users can interact in order

to do something, such as dial the phone, take a photo, send an email, or view a map. Each activity is

given a window in which to draw its user interface. The window typically fills the screen, but may be

smaller than the screen and float on top of other windows.

An application usually consists of multiple activities that are loosely bound to each other. Typically,

one activity in an application is specified as the "main" activity, which is presented to the user when

launching the application for the first time. Each activity can then start another activity in order to

perform different actions. Each time a new activity starts, the previous activity is stopped, but the

system preserves the activity in a stack (the "back stack"). When a new activity starts, it is pushed onto

the back stack and takes user focus. The back stack abides to the basic "last in, first out" stack

mechanism, so, when the user is done with the current activity and presses the Back button, it is

popped from the stack (and destroyed) and the previous activity resumes. (The back stack is discussed

more in the Tasks and Back Stack document.)

When an activity is stopped because a new activity starts, it is notified of this change in state through

the activity's lifecycle callback methods. There are several callback methods that an activity might

receive, due to a change in its state—whether the system is creating it, stopping it, resuming it, or

destroying it—and each callback provides you the opportunity to perform specific work that's

appropriate to that state change. For instance, when stopped, your activity should release any large

objects, such as network or database connections. When the activity resumes, you can reacquire the

necessary resources and resume actions that were interrupted. These state transitions are all part of the

activity lifecycle.

The rest of this document discusses the basics of how to build and use an activity, including a

complete discussion of how the activity lifecycle works, so you can properly manage the transition

between various activity states.

Creating an Activity

To create an activity, you must create a subclass of Activity (or an existing subclass of it). In your

subclass, you need to implement callback methods that the system calls when the activity transitions

17

between various states of its lifecycle, such as when the activity is being created, stopped, resumed, or

destroyed. The two most important callback methods are:

 onCreate() - You must implement this method. The system calls this when creating your activity.

Within your implementation, you should initialize the essential components of your activity. Most

importantly, this is where you must call setContentView() to define the layout for the activity's user

interface.

onPause() - The system calls this method as the first indication that the user is leaving your activity

(though it does not always mean the activity is being destroyed). This is usually where you should

commit any changes that should be persisted beyond the current user session (because the user might

not come back).

There are several other lifecycle callback methods that you should use in order to provide a fluid user

experience between activities and handle unexpected interuptions that cause your activity to be

stopped and even destroyed. All of the lifecycle callback methods are discussed later, in the section

about Managing the Activity Lifecycle.

Implementing a user interface

The user interface for an activity is provided by a hierarchy of views—objects derived from the View

class. Each view controls a particular rectangular space within the activity's window and can respond

to user interaction. For example, a view might be a button that initiates an action when the user touches

it.

Android provides a number of ready-made views that you can use to design and organize your layout.

"Widgets" are views that provide a visual (and interactive) elements for the screen, such as a button,

text field, checkbox, or just an image. "Layouts" are views derived from ViewGroup that provide a

unique layout model for its child views, such as a linear layout, a grid layout, or relative layout. You

can also subclass the View and ViewGroup classes (or existing subclasses) to create your own widgets

and layouts and apply them to your activity layout.

The most common way to define a layout using views is with an XML layout file saved in your

application resources. This way, you can maintain the design of your user interface separately from the

source code that defines the activity's behavior. You can set the layout as the UI for your activity with

setContentView(), passing the resource ID for the layout. However, you can also create new Views in

your activity code and build a view hierarchy by inserting new Views into a ViewGroup, then use that

layout by passing the root ViewGroup to setContentView().

For information about creating a user interface, see the User Interface documentation.

18

Declaring the activity in the manifest

You must declare your activity in the manifest file in order for it to be accessible to the system. To

declare your activity, open your manifest file and add an <activity> element as a child of the

<application> element. For example:

<manifest ... >

 <application ... >

 <activity android:name=".ExampleActivity" />

 ...

 </application ... >

 ...

</manifest >

There are several other attributes that you can include in this element, to define properties such as the

label for the activity, an icon for the activity, or a theme to style the activity's UI. The android:name

attribute is the only required attribute—it specifies the class name of the activity. Once you publish

your application, you should not change this name, because if you do, you might break some

functionality, such as application shortcuts (read the blog post, Things That Cannot Change).

See the <activity> element reference for more information about declaring your activity in the

manifest.

Using intent filters

An <activity> element can also specify various intent filters—using the <intent-filter> element—in

order to declare how other application components may activate it.

When you create a new application using the Android SDK tools, the stub activity that's created for

you automatically includes an intent filter that declares the activity responds to the "main" action and

should be placed in the "launcher" category. The intent filter looks like this:

19

<activity android:name=".ExampleActivity" android:icon="@drawable/app_icon">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

The <action> element specifies that this is the "main" entry point to the application. The <category>

element specifies that this activity should be listed in the system's application launcher (to allow users

to launch this activity).

If you intend for your application to be self-contained and not allow other applications to activate its

activities, then you don't need any other intent filters. Only one activity should have the "main" action

and "launcher" category, as in the previous example. Activities that you don't want to make available

to other applications should have no intent filters and you can start them yourself using explicit intents

(as discussed in the following section).

However, if you want your activity to respond to implicit intents that are delivered from other

applications (and your own), then you must define additional intent filters for your activity. For each

type of intent to which you want to respond, you must include an <intent-filter> that includes an

<action> element and, optionally, a <category> element and/or a <data> element. These elements

specify the type of intent to which your activity can respond.

For more information about how your activities can respond to intents, see the Intents and Intent

Filters document.

Starting an Activity

You can start another activity by calling startActivity(), passing it an Intent that describes the activity

you want to start. The intent specifies either the exact activity you want to start or describes the type of

action you want to perform (and the system selects the appropriate activity for you, which can even be

from a different application). An intent can also carry small amounts of data to be used by the activity

that is started.

When working within your own application, you'll often need to simply launch a known activity. You

can do so by creating an intent that explicitly defines the activity you want to start, using the class

name. For example, here's how one activity starts another activity named SignInActivity:

20

Intent intent = new Intent(this, SignInActivity.class);

startActivity(intent);

However, your application might also want to perform some action, such as send an email, text

message, or status update, using data from your activity. In this case, your application might not have

its own activities to perform such actions, so you can instead leverage the activities provided by other

applications on the device, which can perform the actions for you. This is where intents are really

valuable—you can create an intent that describes an action you want to perform and the system

launches the appropriate activity from another application. If there are multiple activities that can

handle the intent, then the user can select which one to use. For example, if you want to allow the user

to send an email message, you can create the following intent:

Intent intent = new Intent(Intent.ACTION_SEND);

intent.putExtra(Intent.EXTRA_EMAIL, recipientArray);

startActivity(intent);

The EXTRA_EMAIL extra added to the intent is a string array of email addresses to which the email

should be sent. When an email application responds to this intent, it reads the string array provided in

the extra and places them in the "to" field of the email composition form. In this situation, the email

application's activity starts and when the user is done, your activity resumes.

Starting an activity for a result

Sometimes, you might want to receive a result from the activity that you start. In that case, start the

activity by calling startActivityForResult() (instead of startActivity()). To then receive the result from

the subsequent activity, implement the onActivityResult() callback method. When the subsequent

activity is done, it returns a result in an Intent to your onActivityResult() method.

For example, perhaps you want the user to pick one of their contacts, so your activity can do

something with the information in that contact. Here's how you can create such an intent and handle

the result:

private void pickContact() {

 // Create an intent to "pick" a contact, as defined by the content provider URI

 Intent intent = new Intent(Intent.ACTION_PICK, Contacts.CONTENT_URI);

 startActivityForResult(intent, PICK_CONTACT_REQUEST);

}

21

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 // If the request went well (OK) and the request was PICK_CONTACT_REQUEST

 if (resultCode == Activity.RESULT_OK && requestCode == PICK_CONTACT_REQUEST) {

 // Perform a query to the contact's content provider for the contact's name

 Cursor cursor = getContentResolver().query(data.getData(),

 new String[] {Contacts.DISPLAY_NAME}, null, null, null);

 if (cursor.moveToFirst()) { // True if the cursor is not empty

 int columnIndex = cursor.getColumnIndex(Contacts.DISPLAY_NAME);

 String name = cursor.getString(columnIndex);

 // Do something with the selected contact's name...

 }

 }

}

This example shows the basic logic you should use in your onActivityResult() method in order to

handle an activity result. The first condition checks whether the request was successful—if it was, then

the resultCode will be RESULT_OK—and whether the request to which this result is responding is

known—in this case, the requestCode matches the second parameter sent with

startActivityForResult(). From there, the code handles the activity result by querying the data returned

in an Intent (the data parameter).

What happens is, a ContentResolver performs a query against a content provider, which returns a

Cursor that allows the queried data to be read. For more information, see the Content Providers

document.

For more information about using intents, see the Intents and Intent Filters document.

Shutting Down an Activity

You can shut down an activity by calling its finish() method. You can also shut down a separate

activity that you previously started by calling finishActivity().

Note: In most cases, you should not explicitly finish an activity using these methods. As discussed in

the following section about the activity lifecycle, the Android system manages the life of an activity

for you, so you do not need to finish your own activities. Calling these methods could adversely affect

the expected user experience and should only be used when you absolutely do not want the user to

return to this instance of the activity.

22

Managing the Activity Lifecycle

Managing the lifecycle of your activities by implementing callback methods is crucial to developing a

strong and flexible application. The lifecycle of an activity is directly affected by its association with

other activities, its task and back stack.

An activity can exist in essentially three states:

 Resumed - The activity is in the foreground of the screen and has user focus. (This state is also

sometimes referred to as "running".)

 Paused - Another activity is in the foreground and has focus, but this one is still visible. That is,

another activity is visible on top of this one and that activity is partially transparent or doesn't

cover the entire screen. A paused activity is completely alive (the Activity object is retained in

memory, it maintains all state and member information, and remains attached to the window

manager), but can be killed by the system in extremely low memory situations.

 Stopped - The activity is completely obscured by another activity (the activity is now in the

"background"). A stopped activity is also still alive (the Activity object is retained in memory,

it maintains all state and member information, but is not attached to the window manager).

However, it is no longer visible to the user and it can be killed by the system when memory is

needed elsewhere.

If an activity is paused or stopped, the system can drop it from memory either by asking it to finish

(calling its finish() method), or simply killing its process. When the activity is opened again (after

being finished or killed), it must be created all over.

Implementing the lifecycle callbacks

When an activity transitions into and out of the different states described above, it is notified through

various callback methods. All of the callback methods are hooks that you can override to do

appropriate work when the state of your activity changes. The following skeleton activity includes

each of the fundamental lifecycle methods:

23

public class ExampleActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // The activity is being created.

 }

 @Override

 protected void onStart() {

 super.onStart();

 // The activity is about to become visible.

 }

 @Override

 protected void onResume() {

 super.onResume();

 // The activity has become visible (it is now "resumed").

 }

 @Override

 protected void onPause() {

 super.onPause();

 // Another activity is taking focus (this activity is about to be "paused").

 }

 @Override

 protected void onStop() {

 super.onStop();

 // The activity is no longer visible (it is now "stopped")

 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 // The activity is about to be destroyed.

 }

}

Note: Your implementation of these lifecycle methods must always call the superclass implementation

before doing any work, as shown in the examples above.

24

Taken together, these methods define the entire lifecycle of an activity. By implementing these

methods, you can monitor three nested loops in the activity lifecycle:

The entire lifetime of an activity happens between the call to onCreate() and the call to onDestroy().

Your activity should perform setup of "global" state (such as defining layout) in onCreate(), and

release all remaining resources in onDestroy(). For example, if your activity has a thread running in the

background to download data from the network, it might create that thread in onCreate() and then stop

the thread in onDestroy().

The visible lifetime of an activity happens between the call to onStart() and the call to onStop().

During this time, the user can see the activity on-screen and interact with it. For example, onStop() is

called when a new activity starts and this one is no longer visible. Between these two methods, you can

maintain resources that are needed to show the activity to the user. For example, you can register a

BroadcastReceiver in onStart() to monitor changes that impact your UI, and unregister it in onStop()

when the user can no longer see what you are displaying. The system might call onStart() and onStop()

multiple times during the entire lifetime of the activity, as the activity alternates between being visible

and hidden to the user.

The foreground lifetime of an activity happens between the call to onResume() and the call to

onPause(). During this time, the activity is in front of all other activities on screen and has user input

focus. An activity can frequently transition in and out of the foreground—for example, onPause() is

called when the device goes to sleep or when a dialog appears. Because this state can transition often,

the code in these two methods should be fairly lightweight in order to avoid slow transitions that make

the user wait.

25

Fig 1. The activity lifecycle

Figure 1 illustrates these loops and the paths an activity might take between states. The rectangles

represent the callback methods you can implement to perform operations when the activity transitions

between states.

26

The same lifecycle callback methods are listed in table 1, which describes each of the callback

methods in more detail and locates each one within the activity's overall lifecycle, including whether

the system can kill the activity after the callback method completes.

Method

Description

Killable after?

Next

onCreate()

Called when the activity is first

created. This is where you should do

all of your normal static set up —

create views, bind data to lists, and

so on. This method is passed a

Bundle object containing the

activity's previous state, if that state

was captured (see Saving Activity

State, later).

Always followed by onStart().

No

onStart()

onRestart()

Called after the activity has been

stopped, just prior to it being started

again.

Always followed by onStart()

No

onStart()

onStart()

Called just before the activity

becomes visible to the user.

Followed by onResume() if the

activity comes to the foreground, or

onStop() if it becomes hidden.

No onResume()

or

onStop()

onResume()

Called just before the activity starts

interacting with the user. At this

point the activity is at the top of the

No onPause()

https://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity.html#onRestart()
https://developer.android.com/reference/android/app/Activity.html#onStart()
https://developer.android.com/reference/android/app/Activity.html#onResume()

27

activity stack, with user input going

to it.

Always followed by onPause().

onPause()

Called when the system is about to

start resuming another activity. This

method is typically used to commit

unsaved changes to persistent data,

stop animations and other things

that may be consuming CPU, and so

on. It should do whatever it does

very quickly, because the next

activity will not be resumed until it

returns.

Followed either by onResume() if

the activity returns back to the front,

or by onStop() if it becomes

invisible to the user.

Yes

onResume()

or

onStop()

onStop()

Called when the activity is no

longer visible to the user. This may

happen because it is being

destroyed, or because another

activity (either an existing one or a

new one) has been resumed and is

covering it.

Followed either by onRestart() if the

activity is coming back to interact

with the user, or by onDestroy() if

this activity is going away.

Yes

onRestart()

or

onDestroy()

https://developer.android.com/reference/android/app/Activity.html#onPause()
https://developer.android.com/reference/android/app/Activity.html#onStop()

28

onDestroy()

Called before the activity is

destroyed. This is the final call that

the activity will receive. It could be

called either because the activity is

finishing (someone called finish()

on it), or because the system is

temporarily destroying this instance

of the activity to save space. You

can distinguish between these two

scenarios with the isFinishing()

method.

Yes

nothing

Table 1. A summary of the activity lifecycle's callback methods.

The column labeled "Killable after?" indicates whether or not the system can kill the process hosting

the activity at any time after the method returns, without executing another line of the activity's code.

Three methods are marked "yes": (onPause(), onStop(), and onDestroy()). Because onPause() is the

first of the three, once the activity is created, onPause() is the last method that's guaranteed to be called

before the process can be killed—if the system must recover memory in an emergency, then onStop()

and onDestroy() might not be called. Therefore, you should use onPause() to write crucial persistent

data (such as user edits) to storage. However, you should be selective about what information must be

retained during onPause(), because any blocking procedures in this method block the transition to the

next activity and slow the user experience.

https://developer.android.com/reference/android/app/Activity.html#onDestroy()

29

Methods that are marked "No" in the Killable column protect the process hosting the activity from

being killed from the moment they are called. Thus, an activity is killable from the time onPause()

returns to the time onResume() is called. It will not again be killable until onPause() is again called and

returns.

Note: An activity that's not technically "killable" by this definition in table 1 might still be killed by

the system—but that would happen only in extreme circumstances when there is no other recourse.

When an activity might be killed is discussed more in the Processes and Threading document.

Saving activity state

The introduction to Managing the Activity Lifecycle briefly mentions that when an activity is paused

or stopped, the state of the activity is retained. This is true because the Activity object is still held in

memory when it is paused or stopped—all information about its members and current state is still

alive. Thus, any changes the user made within the activity are retained so that when the activity returns

to the foreground (when it "resumes"), those changes are still there.

However, when the system destroys an activity in order to recover memory, the Activity object is

destroyed, so the system cannot simply resume it with its state intact. Instead, the system must recreate

the Activity object if the user navigates back to it. Yet, the user is unaware that the system destroyed

the activity and recreated it and, thus, probably expects the activity to be exactly as it was. In this

situation, you can ensure that important information about the activity state is preserved by

implementing an additional callback method that allows you to save information about the state of

your activity: onSaveInstanceState().

The system calls onSaveInstanceState() before making the activity vulnerable to destruction. The

system passes this method a Bundle in which you can save state information about the activity as

name-value pairs, using methods such as putString() and putInt(). Then, if the system kills your

application process and the user navigates back to your activity, the system recreates the activity and

passes the Bundle to both onCreate() and onRestoreInstanceState(). Using either of these methods, you

can extract your saved state from the Bundle and restore the activity state. If there is no state

information to restore, then the Bundle passed to you is null (which is the case when the activity is

created for the first time).

Note: There's no guarantee that onSaveInstanceState() will be called before your activity is destroyed,

because there are cases in which it won't be necessary to save the state (such as when the user leaves

your activity using the Back button, because the user is explicitly closing the activity). If the system

calls onSaveInstanceState(), it does so before onStop() and possibly before onPause().

30

However, even if you do nothing and do not implement onSaveInstanceState(), some of the activity

state is restored by the Activity class's default implementation of onSaveInstanceState(). Specifically,

the default implementation calls the corresponding onSaveInstanceState() method for every View in

the layout, which allows each view to provide information about itself that should be saved. Almost

every widget in the Android framework implements this method as appropriate, such that any visible

changes to the UI are automatically saved and restored when your activity is recreated. For example,

the EditText widget saves any text entered by the user and the CheckBox widget saves whether it's

checked or not. The only work required by you is to provide a unique ID (with the android:id attribute)

for each widget you want to save its state. If a widget does not have an ID, then the system cannot save

its state.

Figure 2. The two ways in which an activity returns to user focus with its state intact: either the activity

is destroyed, then recreated and the activity must restore the previously saved state, or the activity is

stopped, then resumed and the activity state remains intact.

Although the default implementation of onSaveInstanceState() saves useful information about your

activity's UI, you still might need to override it to save additional information. For example, you might

need to save member values that changed during the activity's life (which might correlate to values

restored in the UI, but the members that hold those UI values are not restored, by default).

Because the default implementation of onSaveInstanceState() helps save the state of the UI, if you

override the method in order to save additional state information, you should always call the superclass

implementation of onSaveInstanceState() before doing any work. Likewise, you should also call the

31

superclass implementation of onRestoreInstanceState() if you override it, so the default

implementation can restore view states.

Note: Because onSaveInstanceState() is not guaranteed to be called, you should use it only to record

the transient state of the activity (the state of the UI)—you should never use it to store persistent data.

Instead, you should use onPause() to store persistent data (such as data that should be saved to a

database) when the user leaves the activity.

A good way to test your application's ability to restore its state is to simply rotate the device so that the

screen orientation changes. When the screen orientation changes, the system destroys and recreates the

activity in order to apply alternative resources that might be available for the new screen configuration.

For this reason alone, it's very important that your activity completely restores its state when it is

recreated, because users regularly rotate the screen while using applications.

Handling configuration changes

Some device configurations can change during runtime (such as screen orientation, keyboard

availability, and language). When such a change occurs, Android recreates the running activity (the

system calls onDestroy(), then immediately calls onCreate()). This behavior is designed to help your

application adapt to new configurations by automatically reloading your application with alternative

resources that you've provided (such as different layouts for different screen orientations and sizes).

If you properly design your activity to handle a restart due to a screen orientation change and restore

the activity state as described above, your application will be more resilient to other unexpected events

in the activity lifecycle.

The best way to handle such a restart is to save and restore the state of your activity using

onSaveInstanceState() and onRestoreInstanceState() (or onCreate()), as discussed in the previous

section.

For more information about configuration changes that happen at runtime and how you can handle

them, read the guide to Handling Runtime Changes.

Coordinating activities

When one activity starts another, they both experience lifecycle transitions. The first activity pauses

and stops (though, it won't stop if it's still visible in the background), while the other activity is created.

In case these activities share data saved to disc or elsewhere, it's important to understand that the first

activity is not completely stopped before the second one is created. Rather, the process of starting the

second one overlaps with the process of stopping the first one.

32

 The order of lifecycle callbacks is well defined, particularly when the two activities are in the

same process and one is starting the other. Here's the order of operations that occur when

Activity A starts Acivity B:

 Activity A's onPause() method executes.

 Activity B's onCreate(), onStart(), and onResume() methods execute in sequence. (Activity B

now has user focus.)

Then, if Activity A is no longer visible on screen, its onStop() method executes.

This predictable sequence of lifecycle callbacks allows you to manage the transition of information

from one activity to another. For example, if you must write to a database when the first activity stops

so that the following activity can read it, then you should write to the database during onPause()

instead of during onStop().

1.6 Intents and Intent Filters

An Intent is a messaging object you can use to request an action from another app component.

Although intents facilitate communication between components in several ways, there are three

fundamental use-cases:

To start an activity:

An Activity represents a single screen in an app. You can start a new instance of an Activity by

passing an Intent to startActivity(). The Intent describes the activity to start and carries any necessary

data.

If you want to receive a result from the activity when it finishes, call startActivityForResult(). Your

activity receives the result as a separate Intent object in your activity's onActivityResult() callback. For

more information, see the Activities guide.

To start a service:

A Service is a component that performs operations in the background without a user interface. You can

start a service to perform a one-time operation (such as download a file) by passing an Intent to

startService(). The Intent describes the service to start and carries any necessary data.

If the service is designed with a client-server interface, you can bind to the service from another

component by passing an Intent to bindService(). For more information, see the Services guide.

To deliver a broadcast:

33

A broadcast is a message that any app can receive. The system delivers various broadcasts for system

events, such as when the system boots up or the device starts charging. You can deliver a broadcast to

other apps by passing an Intent to sendBroadcast(), sendOrderedBroadcast(), or

sendStickyBroadcast().

Intent Types

There are two types of intents:

 Explicit intents specify the component to start by name (the fully-qualified class name). You'll

typically use an explicit intent to start a component in your own app, because you know the

class name of the activity or service you want to start. For example, start a new activity in

response to a user action or start a service to download a file in the background.

 Implicit intents do not name a specific component, but instead declare a general action to

perform, which allows a component from another app to handle it. For example, if you want to

show the user a location on a map, you can use an implicit intent to request that another

capable app show a specified location on a map.

When you create an explicit intent to start an activity or service, the system immediately starts the app

component specified in the Intent object.

34

Figure 1. Illustration of how an implicit intent is delivered through the system to start another activity:

(1) Activity A creates an Intent with an action description and passes it to startActivity(). (2) The

Android System searches all apps for an intent filter that matches the intent. When a match is found,

(3) the system starts the matching activity (Activity B) by invoking its onCreate() method and passing

it the Intent.

When you create an implicit intent, the Android system finds the appropriate component to start by

comparing the contents of the intent to the intent filters declared in the manifest file of other apps on

the device. If the intent matches an intent filter, the system starts that component and delivers it the

Intent object. If multiple intent filters are compatible, the system displays a dialog so the user can pick

which app to use.

An intent filter is an expression in an app's manifest file that specifies the type of intents that the

component would like to receive. For instance, by declaring an intent filter for an activity, you make it

possible for other apps to directly start your activity with a certain kind of intent. Likewise, if you do

not declare any intent filters for an activity, then it can be started only with an explicit intent.

Caution: To ensure your app is secure, always use an explicit intent when starting a Service and do

not declare intent filters for your services. Using an implicit intent to start a service is a security hazard

because you cannot be certain what service will respond to the intent, and the user cannot see which

service starts. Beginning with Android 5.0 (API level 21), the system throws an exception if you call

bindService() with an implicit intent.

Building an Intent

An Intent object carries information that the Android system uses to determine which component to

start (such as the exact component name or component category that should receive the intent), plus

information that the recipient component uses in order to properly perform the action (such as the

action to take and the data to act upon).

The primary information contained in an Intent is the following:

Component name

The name of the component to start.

This is optional, but it's the critical piece of information that makes an intent explicit, meaning that the

intent should be delivered only to the app component defined by the component name. Without a

component name, the intent is implicit and the system decides which component should receive the

35

intent based on the other intent information (such as the action, data, and category—described below).

So if you need to start a specific component in your app, you should specify the component name.

Note: When starting a Service, you should always specify the component name. Otherwise, you

cannot be certain what service will respond to the intent, and the user cannot see which service starts.

This field of the Intent is a ComponentName object, which you can specify using a fully qualified class

name of the target component, including the package name of the app. For example,

com.example.ExampleActivity. You can set the component name with setComponent(), setClass(),

setClassName(), or with the Intent constructor.

Action

A string that specifies the generic action to perform (such as view or pick).

In the case of a broadcast intent, this is the action that took place and is being reported. The action

largely determines how the rest of the intent is structured—particularly what is contained in the data

and extras.

You can specify your own actions for use by intents within your app (or for use by other apps to

invoke components in your app), but you should usually use action constants defined by the Intent

class or other framework classes. Here are some common actions for starting an activity:

 ACTION_VIEW

Use this action in an intent with startActivity() when you have some information that an

activity can show to the user, such as a photo to view in a gallery app, or an address to view in

a map app.

 ACTION_SEND

Also known as the "share" intent, you should use this in an intent with startActivity() when you

have some data that the user can share through another app, such as an email app or social

sharing app.

See the Intent class reference for more constants that define generic actions. Other actions are defined

elsewhere in the Android framework, such as in Settings for actions that open specific screens in the

system's Settings app.

36

You can specify the action for an intent with setAction() or with an Intent constructor.

If you define your own actions, be sure to include your app's package name as a prefix. For example:

static final String ACTION_TIMETRAVEL = "com.example.action.TIMETRAVEL";

Data

The URI (a Uri object) that references the data to be acted on and/or the MIME type of that data. The

type of data supplied is generally dictated by the intent's action. For example, if the action is

ACTION_EDIT, the data should contain the URI of the document to edit.

When creating an intent, it's often important to specify the type of data (its MIME type) in addition to

its URI. For example, an activity that's able to display images probably won't be able to play an audio

file, even though the URI formats could be similar. So specifying the MIME type of your data helps

the Android system find the best component to receive your intent. However, the MIME type can

sometimes be inferred from the URI—particularly when the data is a content: URI, which indicates the

data is located on the device and controlled by a ContentProvider, which makes the data MIME type

visible to the system.

To set only the data URI, call setData(). To set only the MIME type, call setType(). If necessary, you

can set both explicitly with setDataAndType().

Caution: If you want to set both the URI and MIME type, do not call setData() and setType() because

they each nullify the value of the other. Always use setDataAndType() to set both URI and MIME

type.

Category

A string containing additional information about the kind of component that should handle the intent.

Any number of category descriptions can be placed in an intent, but most intents do not require a

category. Here are some common categories:

 CATEGORY_BROWSABLE

The target activity allows itself to be started by a web browser to display data referenced by a

link—such as an image or an e-mail message.

 CATEGORY_LAUNCHER

The activity is the initial activity of a task and is listed in the system's application launcher.

37

See the Intent class description for the full list of categories.

You can specify a category with addCategory().

These properties listed above (component name, action, data, and category) represent the defining

characteristics of an intent. By reading these properties, the Android system is able to resolve which

app component it should start.

However, an intent can carry additional information that does not affect how it is resolved to an app

component. An intent can also supply:

Extras

Key-value pairs that carry additional information required to accomplish the requested action. Just as

some actions use particular kinds of data URIs, some actions also use particular extras.

You can add extra data with various putExtra() methods, each accepting two parameters: the key name

and the value. You can also create a Bundle object with all the extra data, then insert the Bundle in the

Intent with putExtras().

For example, when creating an intent to send an email with ACTION_SEND, you can specify the "to"

recipient with the EXTRA_EMAIL key, and specify the "subject" with the EXTRA_SUBJECT key.

The Intent class specifies many EXTRA_* constants for standardized data types. If you need to declare

your own extra keys (for intents that your app receives), be sure to include your app's package name as

a prefix. For example:

static final String EXTRA_GIGAWATTS = "com.example.EXTRA_GIGAWATTS";

Flags

Flags defined in the Intent class that function as metadata for the intent. The flags may instruct the

Android system how to launch an activity (for example, which task the activity should belong to) and

how to treat it after it's launched (for example, whether it belongs in the list of recent activities).

For more information, see the setFlags() method.

Example explicit intent

An explicit intent is one that you use to launch a specific app component, such as a particular activity

or service in your app. To create an explicit intent, define the component name for the Intent object—

all other intent properties are optional.

For example, if you built a service in your app, named DownloadService, designed to download a file

from the web, you can start it with the following code:

38

// Executed in an Activity, so 'this' is the Context

// The fileUrl is a string URL, such as "http://www.example.com/image.png"

Intent downloadIntent = new Intent(this, DownloadService.class);

downloadIntent.setData(Uri.parse(fileUrl));

startService(downloadIntent);

The Intent(Context, Class) constructor supplies the app Context and the component a Class object. As

such, this intent explicitly starts the DownloadService class in the app.

For more information about building and starting a service, see the Services guide.

Example implicit intent

An implicit intent specifies an action that can invoke any app on the device able to perform the action.

Using an implicit intent is useful when your app cannot perform the action, but other apps probably

can and you'd like the user to pick which app to use.

For example, if you have content you want the user to share with other people, create an intent with the

ACTION_SEND action and add extras that specify the content to share. When you call startActivity()

with that intent, the user can pick an app through which to share the content.

Caution: It's possible that a user won't have any apps that handle the implicit intent you send to

startActivity(). If that happens, the call will fail and your app will crash. To verify that an activity will

receive the intent, call resolveActivity() on your Intent object. If the result is non-null, then there is at

least one app that can handle the intent and it's safe to call startActivity(). If the result is null, you

should not use the intent and, if possible, you should disable the feature that issues the intent.

// Create the text message with a string

Intent sendIntent = new Intent();

sendIntent.setAction(Intent.ACTION_SEND);

sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);

sendIntent.setType(HTTP.PLAIN_TEXT_TYPE); // "text/plain" MIME type

// Verify that the intent will resolve to an activity

if (sendIntent.resolveActivity(getPackageManager()) != null) {

 startActivity(sendIntent);

}

39

Note: In this case, a URI is not used, but the intent's data type is declared to specify the content carried

by the extras.

When startActivity() is called, the system examines all of the installed apps to determine which ones

can handle this kind of intent (an intent with the ACTION_SEND action and that carries "text/plain"

data). If there's only one app that can handle it, that app opens immediately and is given the intent. If

multiple activities accept the intent, the system displays a dialog so the user can pick which app to

use..

Figure 2. A chooser dialog.

Forcing an app chooser

When there is more than one app that responds to your implicit intent, the user can select which app to

use and make that app the default choice for the action. This is nice when performing an action for

which the user probably wants to use the same app from now on, such as when opening a web page

(users often prefer just one web browser) .

However, if multiple apps can respond to the intent and the user might want to use a different app each

time, you should explicitly show a chooser dialog. The chooser dialog asks the user to select which

app to use for the action every time (the user cannot select a default app for the action). For example,

when your app performs "share" with the ACTION_SEND action, users may want to share using a

40

different app depending on their current situation, so you should always use the chooser dialog, as

shown in figure 2.

To show the chooser, create an Intent using createChooser() and pass it to startActivity(). For example:

Intent sendIntent = new Intent(Intent.ACTION_SEND);

...

// Always use string resources for UI text.

// This says something like "Share this photo with"

String title = getResources().getString(R.string.chooser_title);

// Create intent to show the chooser dialog

Intent chooser = Intent.createChooser(sendIntent, title);

// Verify the original intent will resolve to at least one activity

if (sendIntent.resolveActivity(getPackageManager()) != null) {

 startActivity(chooser);

}

This displays a dialog with a list of apps that respond to the intent passed to the createChooser()

method and uses the supplied text as the dialog title.

Receiving an Implicit Intent

To advertise which implicit intents your app can receive, declare one or more intent filters for each of

your app components with an <intent-filter> element in your manifest file. Each intent filter specifies

the type of intents it accepts based on the intent's action, data, and category. The system will deliver an

implicit intent to your app component only if the intent can pass through one of your intent filters.

Note: An explicit intent is always delivered to its target, regardless of any intent filters the component

declares.

An app component should declare separate filters for each unique job it can do. For example, one

activity in an image gallery app may have two filters: one filter to view an image, and another filter to

edit an image. When the activity starts, it inspects the Intent and decides how to behave based on the

information in the Intent (such as to show the editor controls or not).

Each intent filter is defined by an <intent-filter> element in the app's manifest file, nested in the

corresponding app component (such as an <activity> element). Inside the <intent-filter>, you can

specify the type of intents to accept using one or more of these three elements.

41

<action>

Declares the intent action accepted, in the name attribute. The value must be the literal string value of

an action, not the class constant.

<data>

Declares the type of data accepted, using one or more attributes that specify various aspects of the data

URI (scheme, host, port, path, etc.) and MIME type.

<category>

Declares the intent category accepted, in the name attribute. The value must be the literal string value

of an action, not the class constant.

Note: In order to receive implicit intents, you must include the CATEGORY_DEFAULT category in

the intent filter. The methods startActivity() and startActivityForResult() treat all intents as if they

declared the CATEGORY_DEFAULT category. If you do not declare this category in your intent

filter, no implicit intents will resolve to your activity.

For example, here's an activity declaration with an intent filter to receive an ACTION_SEND intent

when the data type is text:

<activity android:name="ShareActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="text/plain"/>

 </intent-filter>

</activity>

It's okay to create a filter that includes more than one instance of <action>, <data>, or <category>. If

you do, you simply need to be certain that the component can handle any and all combinations of those

filter elements.

When you want to handle multiple kinds of intents, but only in specific combinations of action, data,

and category type, then you need to create multiple intent filters.

42

Restricting access to components

Using an intent filter is not a secure way to prevent other apps from starting your components.

Although intent filters restrict a component to respond to only certain kinds of implicit intents, another

app can potentially start your app component by using an explicit intent if the developer determines

your component names. If it's important that only your own app is able to start one of your

components, set the exported attribute to "false" for that component.

An implicit intent is tested against a filter by comparing the intent to each of the three elements. To be

delivered to the component, the intent must pass all three tests. If it fails to match even one of them,

the Android system won't deliver the intent to the component. However, because a component may

have multiple intent filters, an intent that does not pass through one of a component's filters might

make it through on another filter. More information about how the system resolves intents is provided

in the section below about Intent Resolution.

Caution: To avoid inadvertently running a different app's Service, always use an explicit intent to start

your own service and do not declare intent filters for your service.

Note: For all activities, you must declare your intent filters in the manifest file. However, filters for

broadcast receivers can be registered dynamically by calling registerReceiver(). You can then

unregister the receiver with unregisterReceiver(). Doing so allows your app to listen for specific

broadcasts during only a specified period of time while your app is running.

43

Example filters

To better understand some of the intent filter behaviors, look at the following snippet from the

manifest file of a social-sharing app.

<activity android:name="MainActivity">

 <!-- This activity is the main entry, should appear in app launcher -->

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

<activity android:name="ShareActivity">

 <!-- This activity handles "SEND" actions with text data -->

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="text/plain"/>

 </intent-filter>

 <!-- This activity also handles "SEND" and "SEND_MULTIPLE" with media data -->

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <action android:name="android.intent.action.SEND_MULTIPLE"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="application/vnd.google.panorama360+jpg"/>

 <data android:mimeType="image/*"/>

 <data android:mimeType="video/*"/>

 </intent-filter>

</activity>

The first activity, MainActivity, is the app's main entry point—the activity that opens when the user

initially launches the app with the launcher icon:

44

The ACTION_MAIN action indicates this is the main entry point and does not expect any intent data.

The CATEGORY_LAUNCHER category indicates that this activity's icon should be placed in the

system's app launcher. If the <activity> element does not specify an icon with icon, then the system

uses the icon from the <application> element.

These two must be paired together in order for the activity to appear in the app launcher.

The second activity, ShareActivity, is intended to facilitate sharing text and media content. Although

users might enter this activity by navigating to it from MainActivity, they can also enter ShareActivity

directly from another app that issues an implicit intent matching one of the two intent filters.

Note: The MIME type, application/vnd.google.panorama360+jpg, is a special data type that specifies

panoramic photos, which you can handle with the Google panorama APIs.

Using a Pending Intent

A PendingIntent object is a wrapper around an Intent object. The primary purpose of a PendingIntent

is to grant permission to a foreign application to use the contained Intent as if it were executed from

your app's own process.

Major use cases for a pending intent include:

Declare an intent to be executed when the user performs an action with your Notification (the Android

system's NotificationManager executes the Intent).

Declare an intent to be executed when the user performs an action with your App Widget (the Home

screen app executes the Intent).

Declare an intent to be executed at a specified time in the future (the Android system's AlarmManager

executes the Intent).

Because each Intent object is designed to be handled by a specific type of app component (either an

Activity, a Service, or a BroadcastReceiver), so too must a PendingIntent be created with the same

consideration. When using a pending intent, your app will not execute the intent with a call such as

startActivity(). You must instead declare the intended component type when you create the

PendingIntent by calling the respective creator method:

PendingIntent.getActivity() for an Intent that starts an Activity.

PendingIntent.getService() for an Intent that starts a Service.

PendingIntent.getBroadcast() for a Intent that starts an BroadcastReceiver.

Unless your app is receiving pending intents from other apps, the above methods to create a

PendingIntent are the only PendingIntent methods you'll probably ever need.

Each method takes the current app Context, the Intent you want to wrap, and one or more flags that

specify how the intent should be used (such as whether the intent can be used more than once).

45

More information about using pending intents is provided with the documentation for each of the

respective use cases, such as in the Notifications and App Widgets API guides.

Intent Resolution

When the system receives an implicit intent to start an activity, it searches for the best activity for the

intent by comparing the intent to intent filters based on three aspects:

 The intent action

 The intent data (both URI and data type)

 The intent category

The following sections describe how an intents are matched to the appropriate component(s) in terms

of how the intent filter is declared in an app's manifest file.

Action test

To specify accepted intent actions, an intent filter can declare zero or more <action> elements. For

example:

<intent-filter>

 <action android:name="android.intent.action.EDIT" />

 <action android:name="android.intent.action.VIEW" />

 ...

</intent-filter>

To get through this filter, the action specified in the Intent must match one of the actions listed in the

filter.

If the filter does not list any actions, there is nothing for an intent to match, so all intents fail the test.

However, if an Intent does not specify an action, it will pass the test (as long as the filter contains at

least one action).

Category test

To specify accepted intent categories, an intent filter can declare zero or more <category> elements.

For example:

<intent-filter>

46

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 ...

</intent-filter>

For an intent to pass the category test, every category in the Intent must match a category in the filter.

The reverse is not necessary—the intent filter may declare more categories than are specified in the

Intent and the Intent will still pass. Therefore, an intent with no categories should always pass this test,

regardless of what categories are declared in the filter.

Note: Android automatically applies the the CATEGORY_DEFAULT category to all implicit intents

passed to startActivity() and startActivityForResult(). So if you want your activity to receive implicit

intents, it must include a category for "android.intent.category.DEFAULT" in its intent filters (as

shown in the previous <intent-filter> example.

Data test

To specify accepted intent data, an intent filter can declare zero or more <data> elements. For

example:

<intent-filter>

 <data android:mimeType="video/mpeg" android:scheme="http" ... />

 <data android:mimeType="audio/mpeg" android:scheme="http" ... />

 ...

</intent-filter>

Each <data> element can specify a URI structure and a data type (MIME media type). There are

separate attributes — scheme, host, port, and path — for each part of the URI:

<scheme>://<host>:<port>/<path>

For example:

content://com.example.project:200/folder/subfolder/etc

In this URI, the scheme is content, the host is com.example.project, the port is 200, and the path is

folder/subfolder/etc.

47

Each of these attributes is optional in a <data> element, but there are linear dependencies:

 If a scheme is not specified, the host is ignored.

 If a host is not specified, the port is ignored.

 If both the scheme and host are not specified, the path is ignored.

 When the URI in an intent is compared to a URI specification in a filter, it's compared only to

the parts of the URI included in the filter. For example:

 If a filter specifies only a scheme, all URIs with that scheme match the filter.

 If a filter specifies a scheme and an authority but no path, all URIs with the same scheme and

authority pass the filter, regardless of their paths.

 If a filter specifies a scheme, an authority, and a path, only URIs with the same scheme,

authority, and path pass the filter.

Note: A path specification can contain a wildcard asterisk (*) to require only a partial match of the

path name.

The data test compares both the URI and the MIME type in the intent to a URI and MIME type

specified in the filter. The rules are as follows:

 An intent that contains neither a URI nor a MIME type passes the test only if the filter does not

specify any URIs or MIME types.

 An intent that contains a URI but no MIME type (neither explicit nor inferable from the URI)

passes the test only if its URI matches the filter's URI format and the filter likewise does not

specify a MIME type.

 An intent that contains a MIME type but not a URI passes the test only if the filter lists the

same MIME type and does not specify a URI format.

 An intent that contains both a URI and a MIME type (either explicit or inferable from the URI)

passes the MIME type part of the test only if that type matches a type listed in the filter. It

passes the URI part of the test either if its URI matches a URI in the filter or if it has a content:

or file: URI and the filter does not specify a URI. In other words, a component is presumed to

support content: and file: data if its filter lists only a MIME type.

This last rule, rule (d), reflects the expectation that components are able to get local data from a file or

content provider. Therefore, their filters can list just a data type and do not need to explicitly name the

content: and file: schemes. This is a typical case. A <data> element like the following, for example,

tells Android that the component can get image data from a content provider and display it:

<intent-filter>

 <data android:mimeType="image/*" />

48

 ...

</intent-filter>

Because most available data is dispensed by content providers, filters that specify a data type but not a

URI are perhaps the most common.

Another common configuration is filters with a scheme and a data type. For example, a <data> element

like the following tells Android that the component can retrieve video data from the network in order

to perform the action:

<intent-filter>

 <data android:scheme="http" android:type="video/*" />

 ...

</intent-filter>

Intent matching

Intents are matched against intent filters not only to discover a target component to activate, but also to

discover something about the set of components on the device. For example, the Home app populates

the app launcher by finding all the activities with intent filters that specify the ACTION_MAIN action

and CATEGORY_LAUNCHER category.

Your application can use intent matching in a similar way. The PackageManager has a set of query...()

methods that return all components that can accept a particular intent, and a similar series of

resolve...() methods that determine the best component to respond to an intent. For example,

queryIntentActivities() returns a list of all activities that can perform the intent passed as an argument,

and queryIntentServices() returns a similar list of services. Neither

method activates the components; they just list the ones that can respond. There's a similar method,

queryBroadcastReceivers(), for broadcast receivers.

49

 Chapter 2

 TransFarmers

What farmers are lacking today is need of transportation as they can’t afford to buy a vehicle to carry

their yield to cities or other places. Due to this problem, they send their yield through a mediocre who

keeps the maximum profit cut and farmer gets nothing.

Another issue is, when trucks are carrying goods from one place to another, after the work is done, the

truck returns empty without carrying anything, thus wastage of fuel.

So to overcome this problem, this application is designed, called TransFarmers.

Project “TransFarmer ” is aimed at developing an Android application to help in terms of

transportation and resource usability of an individual farmer or transporter. It is android based

application that can be accessed by all authorized user farmer and transporter. This app claims to add

and maintain vehicle records anywhere and anytime. It will provide an online way of accessing the

vehicle . It provides online procedure to add new transporter vehicle and make them share to other

farmer.

It will act as a complete resource for user to gain access of travelling vehicle at low cost and its

source destination cost of transporting and date , details list of all available records .

50

TransFarmers is an android application which is designed to help farmers in terms of transportation.

This application works the similar way as other applications like CAB SHARING SERVICE.

In this application, user can be a farmer and a transport company representative.

Both the user and transport company representative can sign up and create their accounts. Now, what

happens is, if there’s a truck going from place A to place B, he will post his route and time of journey

on the application. Now this detail will be broadcasted to all the other users of the application. After

receiving the message containing the route and time of truck, if the farmer falls on the same route, he

will be able to send his yield with the help of truck.

Farmer will contact the transport company representative and they will mutually decide a meeting

point if the farmer falls in between that route A to B, say at C.

After deciding that meeting point, they both meet and farmer loads the good.

This is the way the application works and it is very similar to CAB SHARING SERVICE.

51

 CAB SHARING SERVICE

City transportation is an increasing problem. Public transportation is cost effective, but do not provide

door to door transportation; This makes the far more expensive cabs attractive and scarce.

The paper proposes a location-based Cab-Sharing Service (CSS), which reduces cab fare costs and

effectively utilizes available cabs.

HOW CAB SHARING SERVICE WORKS?

 Before using the CSS, a user signs up with the CSS and creates a prepaid user account to pay

for the service.

 A registered user sends a cab request in the form of an source–destination pair and an optional

validity period of the request. In case no validity period is specified, the cab request is assumed

to be valid from the time it is received until some default time limit has been reached.

 The requests are submitted via a mobile device by sending two address lines to a premium

SMS service, called Premium Cab–Sharing Service.

 Once received, the Premium Cab–Sharing Service sends the two address lines to a Geocoding

Service, which validates them and returns the exact coordinates for them.

 Then these source and destination coordinates, along with a user identifier are sent to a Cab–

Sharing Engine.

 The Cab–Sharing Engine then automatically groups “close by” requests to minimize the total

transportation cost, thereby providing significant savings to the users of the service.

 Once a cab–share is constructed, the cost of the share is deducted from the account of every

participant of the cab–share.

 Then, after receiving the information about the cab–share, the CSS forwards the information to

the Cab–Scheduling / Cab–Routing Engine. Finally, the CSS sends an SMS to the user about

the cab fare, such as cost and schedule of the fare.

52

 WORK FLOW

All the farmers and the transport company representatives can sign-up on the application.

Then the transport company can post their timing and the route of travel on the

application.

Security is given priority in this application. Every user who signs-up for application has to scan the

QR-code on their aadhar cards. In this way no one can sign-up twice or with fake ID.

The farmer that falls on that route can see the timing of all the trucks and click on any particular truck

to select it. Then the transport company will be informed about the farmer and the size of the goods he

will sending. They will be informed about the timing of the truck and will mutually decide a pick up

point where they will load all the goods.

This is the main work flow:

1)Register by giving your details.

2) Search for existing trucks.

3) Select an existing truck.

4) Create your own truck post.

5) View on Map

53

 BLOCK DIAGRAM

54

 IMPLEMENTATION

1. MainActivity(Code)

package com.example.gcmserver;

import static com.example.gcmserver.CommonUtilities.DISPLAY_MESSAGE_ACTION;

import static com.example.gcmserver.CommonUtilities.EXTRA_MESSAGE;

import static com.example.gcmserver.CommonUtilities.SENDER_ID;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.AsyncTask;

import android.os.Bundle;

import android.util.Log;

import android.widget.TextView;

import android.widget.Toast;

import com.google.android.gcm.GCMRegistrar;

public class MainActivity extends Activity {

 // label to display gcm messages

 TextView lblMessage;

55

 // Asyntask

 AsyncTask<Void, Void, Void> mRegisterTask;

 // Alert dialog manager

 AlertDialogManager alert = new AlertDialogManager();

 // Connection detector

 ConnectionDetector cd;

 public static String fname;

 public static String lname;

 public static String phone;

 public static String add;

 public static String qrcode;

 public static String email;

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 cd = new ConnectionDetector(getApplicationContext());

 // Check if Internet present

 if (!cd.isConnectingToInternet()) {

 // Internet Connection is not present

 alert.showAlertDialog(MainActivity.this, "Internet Connection Error",

 "Please connect to working Internet connection", false);

 // stop executing code by return

 return;

 }

 // Getting name, email from intent

 Intent i = getIntent();

56

 fname = i.getStringExtra("fname");

 lname = i.getStringExtra("lname");

 phone = i.getStringExtra("phone");

 add = i.getStringExtra("add");

 qrcode = i.getStringExtra("qrcode");

 email = i.getStringExtra("email");

 // Make sure the device has the proper dependencies.

 GCMRegistrar.checkDevice(this);

 // Make sure the manifest was properly set - comment out this line

 // while developing the app, then uncomment it when it's ready.

 GCMRegistrar.checkManifest(this);

 lblMessage = (TextView) findViewById(R.id.lblMessage);

 registerReceiver(mHandleMessageReceiver, new IntentFilter(

 DISPLAY_MESSAGE_ACTION));

 // Get GCM registration id

 final String regId = GCMRegistrar.getRegistrationId(this);

 // Check if regid already presents

 if (regId.equals("")) {

 // Registration is not present, register now with GCM

 GCMRegistrar.register(this, SENDER_ID);

 } else {

 // Device is already registered on GCM

 if (GCMRegistrar.isRegisteredOnServer(this)) {

 // Skips registration.

 Toast.makeText(getApplicationContext(), "Already registered with GCM",

Toast.LENGTH_LONG).show();

 } else {

57

 // Try to register again, but not in the UI thread.

 // It's also necessary to cancel the thread onDestroy(),

 // hence the use of AsyncTask instead of a raw thread.

 final Context context = this;

 mRegisterTask = new AsyncTask<Void, Void, Void>() {

 protected Void doInBackground(Void... params) {

 // Register on our server

 // On server creates a new user

 ServerUtilities.register(context,fname, lname, phone, add, qrcode, email, regId);

 return null;

 }

 protected void onPostExecute(Void result) {

 mRegisterTask = null;

 }

 };

 mRegisterTask.execute(null, null, null);

 }

 }

 }

 /**

 * Receiving push messages

 * */

 private final BroadcastReceiver mHandleMessageReceiver = new BroadcastReceiver() {

 public void onReceive(Context context, Intent intent) {

 String newMessage = intent.getExtras().getString(EXTRA_MESSAGE);

 // Waking up mobile if it is sleeping

 WakeLocker.acquire(getApplicationContext());

58

 /**

 * Take appropriate action on this message

 * depending upon your app requirement

 * For now i am just displaying it on the screen

 * */

 // Showing received message

 lblMessage.append(newMessage + "\n");

 Toast.makeText(getApplicationContext(), "New Message: " + newMessage,

Toast.LENGTH_LONG).show();

 // Releasing wake lock

 WakeLocker.release();

 }

 };

 protected void onDestroy() {

 if (mRegisterTask != null) {

 mRegisterTask.cancel(true);

 }

 try {

 unregisterReceiver(mHandleMessageReceiver);

 GCMRegistrar.onDestroy(this);

 } catch (Exception e) {

 Log.e("UnRegister Receiver Error", "> " + e.getMessage());

 }

 super.onDestroy();

 }

}

2. RegisterActivity(Code)

59

package com.example.gcmserver;

import static com.example.gcmserver.CommonUtilities.SENDER_ID;

import static com.example.gcmserver.CommonUtilities.SERVER_URL;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

public class RegisterActivity extends Activity {

 // alert dialog manager

 AlertDialogManager alert = new AlertDialogManager();

 // Internet detector

 ConnectionDetector cd;

 // UI elements

 EditText efname;

 EditText elname;

 EditText eadd;

 EditText ephone;

 EditText eemail;

 // Register button

 Button btnRegister;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_register);

60

 cd = new ConnectionDetector(getApplicationContext());

 // Check if Internet present

 if (!cd.isConnectingToInternet()) {

 // Internet Connection is not present

 alert.showAlertDialog(RegisterActivity.this,

 "Internet Connection Error",

 "Please connect to working Internet connection", false);

 // stop executing code by return

 return;

 }

 // Check if GCM configuration is set

 if (SERVER_URL == null || SENDER_ID == null || SERVER_URL.length() == 0

 || SENDER_ID.length() == 0) {

 // GCM sernder id / server url is missing

 alert.showAlertDialog(RegisterActivity.this, "Configuration Error!",

 "Please set your Server URL and GCM Sender ID", false);

 // stop executing code by return

 return;

 }

 efname = (EditText) findViewById(R.id.fname);

 elname = (EditText) findViewById(R.id.lname);

 eemail = (EditText) findViewById(R.id.email);

 ephone = (EditText) findViewById(R.id.phone);

 btnRegister = (Button) findViewById(R.id.submit);

 /*

 * Click event on Register button

 * */

 btnRegister.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View arg0) {

61

 // Read EditText dat

 String fname = efname.getText().toString();

 String lname = elname.getText().toString();

 String phone = ephone.getText().toString();

 String email = eemail.getText().toString();

 // Check if user filled the form

 if(fname.trim().length() > 0 && email.trim().length() > 0){

 // Launch Main Activity

 Intent i = new Intent(getApplicationContext(), MainActivity.class);

 // Registering user on our server

 // Sending registraiton details to MainActivity

 i.putExtra("fname", fname);

 i.putExtra("lname", lname);

 i.putExtra("phone", phone);

 i.putExtra("add", "IIITH");

 i.putExtra("qrcode", "1 1");

 i.putExtra("email", email);

 startActivity(i);

 finish();

 }else{

 // user doen't filled that data

 // ask him to fill the form

 alert.showAlertDialog(RegisterActivity.this, "Registration Error!", "Please enter your

details", false);

 }

 }

 });

 }

}

62

In RegisterActivity code, user is asked to fill the form and Register event is invoked. All the entries

made by user are saved and an account is created.

63

 Chapter 3

 Screenshots

Image1-Welcome screen

64

Image 2- Select your category

65

Image 3-Login Screen

66

Image 4-List of details bus service

67

Image 5-Transporter details

68

 Chapter 4

 Hardware and Software Requirements

 1.Hardware Requirements:

 Android Phone

CPU : 768MHz

RAM : 512 MB

Display : Any

2. Software Requirements:

 OS : Android

 Software : Eclipse

69

 Chapter 5

 CONCLUSION

This application, if properly used by farmers will surely help them and it will also benefit the

transportation company as their trip doesn’t gets wasted i.e.

When they go from one place to another carrying goods, they comeback with their trucks empty, hence

there is wastage of fuel. So if they carry these farmer goods in their trip or in roundtrip, farmers get

benefited and transport company as well.

Technologies Used:

 Android SDK(for android development)

 Google cloud messaging(for push notification to all farmers that truck is coming)

 Google maps api(for location of trucks and farmers)

 Apache server(for maintaining database)

 mySql(for querying database)

70

 REFRENCES

[1] G. Gidófalvi and T.B. Pedersen. “Cab–sharing: An effective, door–to–door, on–demand

transportation service,” in Proc. of ITS, 2007.

[2] http://developer.android.com/training/basics/firstapp/index.html

[3] http://www.tutorialspoint.com/android/

http://developer.android.com/training/basics/firstapp/index.html

