
1

Using CDN To Increase The Scalability Of

The Server

Project Report submitted in partial fulfillment of the requirement for

the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

 Mr. Punit Gupta

By

 Harsh Verma

 111215

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

 Certificate

This is to certify that project report entitled ―Using CDN to increase the scalability of the

server‖, submitted by Harsh Verma (111215) in partial fulfillment for the award of degree of

Bachelor of Technology in Computer Science & Engineering to Jaypee University of

Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: Supervisor’s Name :Punit Gupta

 Designation: Asst.Professor

3

 Acknowledgement

I am highly indebted to Jaypee University of Information Technology for their guidance and

constant supervision as well as for providing necessary information regarding the project &

also for their support in completing the project.

I would like to express my gratitude towards my parents & Project Guide for their kind co-

operation and encouragement which help me in completion of this project.

I would like to express my special gratitude and thanks to industry persons for giving me

such attention and time.

My thanks and appreciations also go to my colleague in developing the project and people

who have willingly helped me out with their abilities

Date: Name of the student: Harsh Verma

4

Table of Content

S. No. Topic Page No

1 Abstract 6

2 Motivation 7

3 Chapter 1: Introduction 8

 1.1 performance 8

 1.2 Availability 11

 1.3 Scalability 12

 1.4 Reliability 12

4 Chapter 2: Problem Statement 13

5 Chapter 3: Related Models 14

 3.1 Global Server Load Balancing 14

 3.2 .Hierarchical Load balancing 18

 3.3 Virtual Organization Based Peering Content 21

 Delivery Network

 3 4 Energy aware load balancing in CDN 28

 3.5 Optimized balancing algorithm for CDN 34

5 Chapter 4: Proposed model 40

 4.1 Tomcat 40

 4.2 Tomcat Clustering 40

 4.3 Apache httpd Web Server 42

6 Chapter 5: Experiments and results 61

7 Chapter 6: Conclusion 63

8 References 64

5

List of Figures

S.No. Title Page No.

1 Difference between the regular and cdn servers 8

2 Comparison of two different CDNs and two different 11

 test types

3 Distributed content service network 14

4 Content network load balancing system structure 15

5 Content subnet load balancing system 17

6 Optimal subnet selection procedure 18

7 Optimal content service node selection procedure 20

8 A simple model of CDN 21

9 Group content distribution 22

10 Number of clients Vs Mean response time 24

11 Number of requests Vs bit ratio percentage 25

12 Number of requests Vs Mean response time 26

13 Server load Vs expected waiting time 27

14 Load Vs time 33

15 FSOB topology 37

16 FSOB algorithm 38

17 Apache load balancing between servers and users 39

18 Load balancer controlling 3 servers 40

19 Configured tomcat instances 56

20 Use of tomcat instance 1 57

21 Working of all tomcat servers 58

22 Web page of instance 1 61

23 Webpage of instance 2 62

24 Webpage of instance 3 62

6

 Abstract

A content delivery network or content distribution network (CDN) is a large

distributed system of servers deployed in multiple data centres across the Internet It

deliver WebPages and other Web content to a user based on the geographic locations

of the user, the origin of the webpage and a content delivery server.CDN serve a large

fraction of the Internet content today, including web objects ,downloadable objects

, live streaming media, on-demand streaming media, and social networks. A CDN

(content delivery network) is a network of servers located in different parts of a country (or

the globe) that stores files to be used by your website visitors. The reason they exist is

because there is a measurable amount of latency (waiting time) for a website user who is

visiting a page that is hosted thousands of miles away. There are also routing issues that can

occur when a user is seeing such a webpage. If someone in New York is using a webpage

that is hosted in Los Angeles they are seeing a slower version of that webpage because of

the above mentioned routing issues and sheer distance the files have to travel. By having

your files on several servers across a geographical area you can make sure the user is

loading files that are near them, not all the way across the country or ocean.

7

 Motivation

A content delivery network or content distribution network (CDN) is a large

distributed system of servers deployed in multiple data centres across the Internet.

There are several reasons why a CDN could benefit your website and company.

 1. Different domains
Browsers limit the number of concurrent connections (file downloads) to a single

domain. Most permit four active connections so the fifth download is blocked until

one of the previous files has been fully retrieved. You can often see this limit in

action when downloading many large files from the same site.

CDN files are hosted on a different domain. In effect, a single CDN permits the

browser to download a further four files at the same time.

2. Files may be pre-cached
jQuery is ubiquitous on the web. There‘s a high probability that someone visiting your

pages has already visited a site using the Google CDN. Therefore, the file has already

been cached by your browser and won‘t need to be downloaded again.

3. High-capacity infrastructures
You may have great hosting but I bet it doesn‘t have the capacity or scalability

offered by Google, Microsoft or Yahoo. The better CDNs offer higher availability,

lower network latency and lower packet loss.

4. Distributed data centers
If your main web server is based in Dallas, users from Europe or Asia must make a

number of trans-continental electronic hops when they access your files. Many

CDNs provide localized data centers which are closer to the user and result in faster

downloads.

5. Built-in version control
It‘s usually possible to link to a specific version of a CSS file or JavaScript library.

You can often request the ―latest‖ version if required.

6. Usage analytics
Many commercial CDNs provide file usage reports since they generally charge per

byte. Those reports can supplement your own website analytics and, in some

cases, may offer a better impression of video views and downloads.

7. Boosts performance and saves money
A CDN can distribute the load, save bandwidth, boost performance and reduce your

existing hosting costs — often for free.

8

 Chapter 1

Introduction

A content delivery network (CDN) is a system of geographically distributed servers around

the world. These servers maintain replicas of the content. The primary benefits of a CDN are

about speed and high-availability, but a CDN brings an entire range of other advantages. First

of all a CDN accelerates websites or data delivery. A CDN significantly reduces the loading

time and improves the preserved user experience. Content is served from the closest edge

server available. A so-called edge server lowers latency as it is closer to end-users and the

closer a server is, the less congestion is along the way.

 Figure 1: Difference between regular and CDN servers

9

First figure shows the multiple users accessing data from the single server while the second

figure shows the data being taken from multiple servers

When it comes to select a Content Delivery Networks (CDN) there are many factors you

need to consider such as performance, availability, scalability, reliability, pricing model,

features, SLA etc. performance and pricing are key in the decision making process.

1.1 Performance

CDN performance is measured in terms of speed of DNS resolution and content delivery.

Normally performance measurement includes both,

1. How quickly CDN‘s DNS system supply the address of the best CDN content server?

DNS resolution is based on latency, geo-graphic location or price class. It has been

reported that many CDNs employ a huge number of DNS servers that are co-located

with their content servers.

2. How quickly content is delivered from CDN server to client?

Quantifying performance of a CDN at large scale requires the ability to either capture traffic

on the CDN‘s servers or control a large number of globally distributed clients.

For CDN performance testing there are not any standard protocols to measure the

performance across CDN. Each CDN vendors tends to use different methodologies to

measure performance. Given that under laying architecture and network distribution is neither

same nor very visible so it is really hard to compare CDN vendors in terms of performance.

Geographic location of CDN data centers plays a big role in performance measurements.

Having said that, CDN performance testing can be segment based on delivery path and main

Internet bottlenecks

 First mile testing (CDN server level)

 Backbone testing (Internet hubs)

 Last mile testing

10

Backbone testing:

There are two quite different types of network performance measurement techniques. The test

most popular amongst CDNs is called ―Backbone‖ testing. ―Backbone‖ tests demonstrate

how fast your site loads at major Internet hubs. The test ignores the CDN‘s performance from

the Internet hub to the specific device a customer is using, thus the test is not measuring the

true customer experience. Most CDNs use this test because it is easier to implement, takes

less time and costs less money.

Of course the problem with this method, as mentioned before, is that it‘s not a real-world

result. Customers don‘t live in data centers, and this testing method ignores the most

important element of incorporating a CDN into your IT infrastructure: improving customer

experience by more rapidly delivering content to user‘s devices. The other problem with

testing the

performance of a network on the ―Backbone‖ and at the data center level is that vendors can

do some tricks to optimize performance results, such as strategically placing CDN servers at

specific locations near known ―Backbone‖ testing agents, thus ensuring optimal tests and

results

 Last mile testing:

The alternative type of CDN performance measurement is called ―Last Mile‖ testing. While

some may want to debate which measurement method is better, there is no question that ―Last

Mile‖ measurement of CDN performance is a much more realistic interpretation of end-user

experience. ―Last Mile‖ testing incorporates measurement of how quickly content is

delivered from the CDN‘s server to the consumer‘s device, incorporating the last leg of

connectivity services required to deliver content from an Internet service provider (ISP) to the

customer. For any customer or enterprise user looking to get real-world network performance

results from any vendor, they should insist that the vendor‘s methodology includes testing the

―Last Mile‖ of delivering content to consumers.

There are two different ways that you can measure results to the user‘s device. The first is to

use independent performance testing companies such as Compuware Gomez that can be

configured to perform objective ―Last Mile‖ testing of CDN performance. Using a third-party

performance testing company is the most common way that CDN vendors measure their own

latency for delivering objects to real-world users located around the globe.

A second valid method of ―Last Mile‖ testing can be conducted by incrementing a client

application or website to collect real latency statistics from actual users or visitors. This

approach is typically used by CDN customers to understand the actual performance they are

getting from their CDN provider or providers.

Neither of these approaches is inherently better or worse than the other. Both provide

accurate observations that precisely capture end-users‘ experiences. Below, we will look at

data collected by each of these two ways of measuring ―Last Mile‖ performance..

11

 Figure 2: Comparison of two different CDNs and two different test types

1.2 Availability

Although speed of content delivery is quite important, CDN availability and

uptime cannot be ignored. For availability and uptime evaluation, both cluster

availability and server availability are measured where ―cluster‖ refers to a

collection of CDN servers in the same location. As you may expect that clusters

have better availability than individual content servers. Often CDN vendors

employ auto-scaling techniques which provisions new content servers during

high-load conditions.

1.3 Scalability

Load testing is a way to measure scalability and elasticity of a CDN service.

Unfortunately traditional load testing methods don‘t work well with CDNs. For

instance if you test by sending requests from a single client to just one of the IP

addresses that DNS returns, your requests may resolve to a single server in one

12

CDN edge location. Often load testing is not very straightforward as each CDN

network uses different load handling techniques. Especially due to auto-scaling,

clustering of content servers and geo-location based DNS resolution - it is not

easy to use something like Apache Benchmark. Moreover IP address range also

keeps changing due to adding and removing of the content server as part

of auto-scaling.

To perform load testing with CDNs one must,

1. Send client requests from multiple geographic regions (Load testing at

edge location level based on DNS resolution).

2. For each geographic region, use multiple measurement clients with each

client making an independent DNS request so that each client will receive

a different set of IP addresses from DNS (Load testing at cluster level).

3. Now for each client that is making requests, spread your client requests

across the set of IP addresses that are returned by DNS, which ensures

that the load is distributed across multiple servers (Load testing at

server level).

1.4 Reliability

Packet-loss measurements are used to determine the reliability of a CDN. High

reliability indicates that a CDN incurs less packet loss and is always available to

the clients

13

Chapter 2:Problem Statement

Introduction:

As the explosive growth of internet users continues, internet service providers must quickly

adapt and scale their network infrastructures in order to provide high quality service to their

users According to recent predictions, global IP traffic will increase by 4 times from 2009 to

2014 reaching 64 Exabyte's per month in 2014. However this fast-growing network traffic

causing occasional problems in telephone service has been triggering some significant

concerns that it might lower the competitiveness of the IT industry in the long run. Even with

the current network infrastructure needed to be extended and upgraded to cope with the

upcoming traffic explosion, network providers are unwilling to invest on establishing more

network infrastructure due to unsatisfactory returns

for all their efforts and costs. So, we are now facing a new phase to come up with new eco

system to bring about a win-win situation for all providers in network, content and

application as well as service users in need of enhanced user experiences from the network.

Responding to various needs from the ever-growing internet user, future network should offer

alternative promising service more than end-to-end connection to the network end users. To

guarantee the fast connection for the end users when they are using the internet is not only

role of network anymore. Future network should focus more on what users want to get from

the network rather than

where users want to make a connection through the network . For the purpose of providing

optimized high

quality service, especially for the content service to network users directly, the service

network is equipped with storages and servers inside the network The content service

network consists of several content service nodes and each node is a combination of server,

storage and network devices altogether. The network device of the node performs both

interconnections amongst network nodes and combining server and storage into the network

device to build up the content service node. Another network element for the content service

network is the content service network manager performing network monitoring,

coordination and portal server of the content or application service. Authentication, consent

and path provisioning functions are also embedded in the content service network manager .

The rest of this paper is organized as follows. Section II summarizes global server load

balancing functional architecture for the distributed content service network. Then, Section

III presents hierarchical load balancing operational procedures for the content service

network.

14

Chapter 3: Related Models

3.1Global Server Load Balancing

Global Server Load Balancing (GSLB) is originally created to minimize the damage

from the natural disasters such as earthquakes or tornados Its main role is maintaining

consistency for the datum in data center safely using backup servers or remote

recovery data center. In distributed content delivery network shown in

Figure 1 where a multitude of contents are distributed over the network a special

method to manage all of the contents is required. To do this we subdivided the whole

network into subnets connecting clients with content servers based on regional locality

 Figure 3: An example of Distributed Content Service Network

15

 A. Content Network Management

Content Network Manager (CNM) performs service gateway for the clients who want

to get content service from the network by informing content server address to the

clients. CNM has abstract knowledge of subnets in the content network and selects

optimal subnet to provide the content requested. Content Network Manager taking

care of whole content network cooperates with CNLB (Contents Network Load

Balancing) to find the optimal subnet and Content Server for connection between

the client subnet which the client sits in and server subnet which holds the requested

content in it. It is also needed for service DNS function to translate the content name

into IP address for the user side in cooperation with the web server which provide the

users web service interfaces it shows structure of Content Network Load Balancing.

The gathering function of the subnet abstract information on each subnet resides in the

Subnet Information Gateway (SIG) joint with the CSLB in each subnet.

 Figure 4: Content Network Load Balancing System Structure

16

The Subnet Abstract Information includes condensed information about contents

directory and status for each subnet to identify which subnet contains the requested

content without unnecessary information of the subnet.

Inter Subnet Path Evaluator estimates the costs between the server subnets to

determine the optimized subnet when multiple server subnets were founded. Also,

searching for the content and finding the subnet including the content are the role of

Content Location Finder. To sum up these functions Global Load Balancer returns the

optimal subnet in response to the content service request.

 B. Content Subnet Management

In each subnet, there are a group of service nodes composing the subnet and Contents

Subnet Manager (CSM) for the purpose of collecting and manage the information of

network and contents distributed over the subnet. CSM has the CSLB (Contents

Subnet Load Balancing) function that finds the optimal content service node in the

subnet. Content Router function takes responsibility of connection between the client

service node and content service node. The structure of Contents Subnet Load

Balancing (CSLB) element in CSM Subnet Monitoring Element (SME) gathers

information of the subnet by monitoring the network nodes, interfaces and links in the

subnet. It generates network traffic load status information as well as content server

load status. And also SME produce content routing information base by monitoring on

content location over the network

 Figure 5: Content Subnet Load Balancing System Structure

17

Confirmation process to decide whether the requested content belongs to its

subnet is performing at the Content Browsing Element. Subnet Path Calculation

Element computes optimal path from the content service node to the user node

using collected information: Network Topology Information, Server Load

Information and Traffic Load Information. Subnet Load Balancer controls

CSLB procedures after receiving the content service request through Subnet

Gateway. Firstly it checks whether its subnet contains the requested content or

not with Content Browsing Element and if so, it computes the path using Subnet

Path Calculation Element. Finally Subnet Load Balancer returns the optimal

content service node to the Subnet Gateway. Preparing for the case that the

requested content was not in the corresponding subnet user resides Subnet

Gateway notify Subnet Information Gateway in the CNLB of the abstract

information of the subnet

18

3.2 .HIERARCHICAL LOAD BALANCING

A. Optimal Subnet Selection

The optimal subnet selection procedure is shown in the figure below. First of all

CNLB confirms if the subnet that a user resides has the content that user wants to get.

If exists there is sno need to access other subnet deliberately. Because the content

network is composed of several subnets duplicate data could be spread over the entire

network. After the CNLB selects the subnet it sends the identification number of the

subnet to the Content Server in the CNM. Then Content Router in the corresponding

subnet starts to find the content service node according to the request of the Content

Server with the content information and IP address of the client.

 Figure 6: Optimal Subnet Selection Procedure

19

B. Optimal Content Node Selection

As a response to the request Content Router inquires the CSLB to find the content

service node available to offer the service to the client. CSLB uses node information

table and real-time streaming flow table keeping content routing information and

network topology maps. Figure 5 illustrates the procedure to select optimal content

service node. With the information provided candidate nodes providing the requested

content will be extracted. An optimal node will be chosen according to the costs for

connecting the server nodes with the client node when multiple content service nodes

are qualified. Content server node as well as cache node could be given selection as a

content service node in the subnet. F or the general content service such as massive

file transfer or VoD services content service node will be served using the network

caching capability. But, in case of real-time streaming more information should be

required to serve streaming service to the client. Real-time streaming service has a

feature that it requires to convey the real-time content flow to the destination with

minimum delay without saving or caching through the network. Real-time content

request from the client node look up the node information table to distinguish real-

time streaming server node in the subnet

The available content service node among the corresponding real-time streaming flow

that capable of streaming with a higher proximity to the client will be selected for

real-time streaming service. With the address of the content service node selected

finally, client could make a reliable connection to receive the content from that

network. However, the requested content was not found within the subnet which the

requested client connected with CNLB will check whether other subnets own the

requested content or not. The next step to enable inter-subnet connection for the

content is to confirm the connectivity between the client subnet where the client sits

and the server subnet where the content belongs to. Upon holding a reliable

connection between the subnets in terms of traffic overload and network topology

Content Server requests the path provisioning over the server subnet from the content

service node in that subnet to the gateway node interconnecting the server subnet with

the client subnet. In the client subnet, a path from the gateway node connected to the

server subnet to the client node should be established to provide the content from

another subnet to the client.

20

For the effective content network provisioning client network manager have to

determine whether the client subnet stores the corresponding content as its own

content while the content transit cache node or server node in the client subnet. And

also the optimal cache node should be on the path that the content should drop by in

terms of operator's policy and network optimization.

 Figure 7. Optimal Content Service Node Selection Procedure

21

3.3 CONTENT DISTRIBUTION TECHNIQUE WITH IN

VIRTUAL ORGANIZATION(vo) BASED PEERING CONTENT

DELIVERY NETWORK

Day by day Internet is facing the problem of unmanageable amount of traffic flow which

results many requests are being lost. Content Delivery Network replicates the same content or

services over several mirrored Web servers strategically placed at various locations to

improve performance and scalability. The user's request is redirected to the nearest server and

this approach helps to reduce network impact on the response time of the user

 Figure 8: A simple model of CDN

In this figure , a user from Australia is requesting for contents from the origin server in USA.

As the distance between these two continents is huge it takes a greater response time for the

user. In this situation CDN provides a surrogate server (replica of origin server) in Australia

to serve the end-user. A CDN focuses on building its network infrastructure to provide the

following services and functionalities: storage and management of content, distribution of

content among surrogates, cache management, delivery of static, dynamic and streaming

content, backup and disaster recovery solutions, and monitoring, performance measurement

and reporting.

22

 A. Problems of existing CDN

 We have found some problems in existing CDN (especially commercial CDN) based on our

observation. Existing commercial CDNs are proprietary in nature, Each of them has created

its own closed delivery network, which is expensive to setup and maintain, Running a global

CDN is even more costly, requiring an enormous amount of capital and labor, Content

providers typically subscribe to one CDN and thus cannot use the resources of multiple

CDNs at the same time, which may cause Service Level Agreements (SLA, An SLA is a

contract between the service provider and the customer to describe provider's commitment

and to specify penalties if those commitments are not met violation in many cases. To solve

these problems Virtual Organization (VO) based peering CDN may be a possible solution

B.VObased Peering

The main purpose of CDN is to provide necessary distributed computing and network

infrastructure so that SLAs are met with customers. Better SLAs can be met by groups of

cooperating CDN. Cooperation among the peering CDNs is achieved through a Virtual

Organization (VO). Virtual organizations are composed of a number of semi-independent

 Figure 9: Group content distribution

23

C. Proposed Similar Content distribution

technique

According to similar content distribution technique similar types (e.g. video, audio, images

etc) of contents will be grouped together and cached in same surrogate in a virtual

organization based CDN. Here the similarity will depend on the weight of the contents. In a

VO the place from where most requests are coming will be measured first and will be

considered as a cluster. Then distance of the surrogates from the cluster will be calculated. It

may be done by measuring number of routers (Hop count) in case of same capacity link.

Depending on the distance different types of grouped content will be placed in surrogates.

The contents having highest weight will be placed in the closest surrogate and lighter

contents will be placed in the distant surrogates. As contents having more weights needs

more time to transfer, placing them in closer surrogates will reduce server load. In this

technique surrogates can provide faster transfer of content and bandwidth consumption will

be less.

II. Performance evaluation

Experiment Setup
We took two approaches in our experiment. In the first approach different weighted contents

are placed in each surrogate (Random Content Distribution Technique). In the second

approach we placed almost similar weighted contents in a surrogate. In both case we placed

surrogates in random distance from the user but for similar content distribution surrogates

having heavier contents are placed closer to the user.

A. Performance criteria
Here we briefly present the performance criteria used in the experiments, namely

 mean response time

 response time CDF

 hit ratio and

 byte hit ratio

These criteria have been used since they are the most indicative ones for performance

evaluation.

 Mean response time. This is the expected time for a request to be satisfied. It is the

summation of all request times divided by their quantity. Low values denote that

content is close to the end-user.

 Response time CDF. The Cumulative Distribution Function (CDF) in our experiments

denotes the probability of having a response times lower or equal to a given response

time. The goal of a CDN is to increase the probability of having response times

around the lower bound of response times.

 Hit ratio. It is defined as the fraction of cache hits to the total number of requests. A

high hit ratio indicates an effective cache replacement policy and defines an increased

user servicing, reducing the average latency.

24

- Byte hit ratio. It is the hit ratio expressed in bytes. It is defined as the fraction of the total

number of bytes that were requested and existed in cache to the number of bytes that were

requested. A high byte hit ratio improves the network performance (i.e. bandwidth savings,

low congestion etc.).

B. Performance Measurement
For performance measurement we have compared our proposed similar content distribution

technique with general random content distribution, where content is distributed in random

basis and unstructured way .autonomous entities (including different individuals,

departments, and organizations) that come together to share resources and to collaborate on

shared goal

 Figure 10: Number of clients Vs Mean response time

Another finding is, when client numbers are fixed in a network and the number of requests

increases then the mean response time of similar content distribution is always less than

random content distribution.

25

 Figure 11: Number of requests Vs Mean response time

The reasons that make mean response time of similar content distribution less: M/G/1 queue:

M/G/1 queue can be used to show model of a general CDN (Shown in Figure 5). An MlG/!

queue consists of a FIFO buffer with requests arriving randomly according to a Poisson

process at rate I and a processor, called a server, which retrieves requests from the queue for

servicing. We assume that the total processing of the Web servers of a CDN is accumulated

through the server and the service time is a general distribution. User requests are serviced at

a first-come-first-serve (FCFS) order [8]. When multiple request comes at the same time then

those request are inserted in this queue of that surrogate and requests are served as first come

first serve basis. In this way in random content distribution technique surrogates may have

long queue of requests . For this surrogate needs more time to serve multiple requests in

random content distribution technique . But in similar content distribution there will be less

number of requests in each surrogate due to request distribution between different surrogates.

So queue size is reduced. That's why it takes less response time.

26

Parallelism: In general clients request for different types of contents. In random content

distribution different types of content can be placed in same surrogate. So it needs more time

to serve because it is a sequential process. But in similar content distribution different content

are placed in different surrogates based on similarity. So those surrogates can serve the client

in parallel basis. The reasons that make mean response time of similar content distribution

less:

M/G/1 queue: M/G/1 queue can be used to show model of a general CDN (Shown in Figure

5). An MlG/! queue consists of a FIFO buffer with requests arriving randomly according to a

Poisson process at rate I and a processor, called a server, which retrieves requests from the

queue for servicing. We Generally surrogates serve contents from its cache. Hit ratio

percentage is the ratio between the number of contents a surrogate is serving and the number

of content request it is receiving. A high hit ratio indicates an effective cache management

policy. It improves network performance and bandwidth saving. From Figure 6 we can see

that for particular number of request, hit ratio percentage of similar content distribution is

always higher than hit ratio percentage of random content distribution.

 Figure 12: Number of requests Vs hit ratio percentage

Less number of redirection: In similar content distribution most of the time the surrogates are

able to serve the request as load is almost equally balanced, so redirection probability is less.

But in random content distribution redirection this probability is higher, and in worst case it

may happen that there is no requested content in a surrogate. So the surrogate redirects the

requests to other surrogates that have those contents. Figure 7 shows that when server load is

in increase the expected waiting time also increases . But in similar content distribution

technique expected time is less in compared with random content distribution technique.

27

 Figure 13: Server load Vs Expected waiting time

P-K formula for calculating expected waiting time :

E (W) = AE(x)/ 2(l -p)

E(W)

E(x)

A,

J!

P

Expected waiting time

Mean service time

Mean arrival rate

Mean service rate

Load OJ J!)

According to P-K formula when server load increases the mean service time and mean arrival

rate also increases proportionally. In the parallel content distribution mean service time is less

in compared with random content distribution due to M/G/l queue.

28

3.4 Energy-Aware Load Balancing in Content

Delivery Networks

Large Internet-scale distributed systems deploy hundreds of thousands of servers in

thousands of data centers around the world. Such systems currently provide the core

distributed infrastructure for many popular Internet applications that drive business, e-

commerce, entertainment, news, and social networking. The energy cost of operating an

Internet-scale system is already a significant fraction of the total cost of ownership . The

environmental implications are equally profound. A large distributed platform with 100,000

servers will expend roughly 190,000 MWH per year, enough energy to sustain more than

10,000 households. In 2005, the total data center power consumption was already 1% of the

total US power consumption while causing as much emissions as a midsized nation such as

Argentina. Further, with the deployment of new services and the rapid growth of the Internet,

the energy consumption of data centers is expected to grow at a rapid pace of more than 15%

per year in the foreseeable future . These factors necessitate a complete rethinking of the

fundamental architecture of Internet-scale systems to include energy optimization as a first-

order principle. An important Internet-scale distributed system to have

evolved in the past decade is the content delivery network (CDN, for short) that delivers web

content, web and IPbased applications, downloads, and streaming media to end-users around

the world A large CDN, such as that of a commercial provider like Akamai, consists of

hundreds of thousands of servers located in over a thousand data centers around the world

and account for a significant fraction of the world‘s enterprise-quality web and streaming

media traffic today The servers of a CDN are deployed in clusters where each cluster

consists of servers in a particular data center in a specific geographic location. The clusters

are typically widely deployed on the ―edges‖ of the Internet in most major geographies and

ISPs around the world so as to be proximal to clients. Clusters can vary in size from tens of

servers in a small Tier-3 ISP to thousands of servers in a large Tier-1 ISP in a major metro

area. A CDN‘s servers cooperatively deliver content and applications to optimize the

availability and performance experienced by the clients Specifically, each client request is

routed by the CDN‘s load balancing system to an ―optimal‖ server that can serve the content

with high availability and performance. Content and applications can typically be replicated

on demand to any server of the CDN. The load balancing system ensures high

availability by routing each client request to an appropriate server that is both live and not

overloaded. Further, the load balancing system ensures good performance by routing each

client request to a cluster that is proximal to that client. For instance, a client from a given

metro area would be routed to a server cluster in the same metro area or perhaps even the

same last-mile network. The proximity (in a network sense) of the client and the server

ensures a communication path with low latency and loss. A comprehensive discussion of the

rationale and system architecture of CDNs

Problem Description. In this paper, we focus on reducing the energy consumption of large

Internet-scale distributed systems, specifically CDNs. Energy reduction in CDNs is a multi-

faceted problem requiring advances in the power usage effectiveness (PUE) of data centers,

improvements in server hardware to make them more ―energy proportional‖ [4], as well as

advances in the architecture of CDN itself. Our focus is on the CDN architecture, and more

specifically, on its load balancing system. Recent work in server energy management

29

has suggested the technique of utilizing deep-sleep power saving modes or even completely

turning off servers during periods of low load, thereby saving the energy expended by idle

servers. We explore the potential applicability of this technique in the CDN context where it

is important to understand the interplay of the three objectives below.

• Maximize energy reduction. Idle servers often consume more than 50% of the power of a

fully-loaded one This provides the opportunity to save energy by ―rebalancing‖ (i.e.,

redirecting) the request traffic onto fewer servers and turning the remaining servers off.

• Satisfy customer SLAs. Content providers who are the CDN‘s customers would like their

content and applications to be served with a high level of availability and performance to

their clients. Availability can be measured as the fraction of client requests that are

successfully served. A typical SLA would require at least ―four nines‖ of end-to-end

availability (i.e., 99.99%). To achieve this end-to-end SLA goal, we estimate that any

acceptable technique for powering off servers should cause no more than a loss of 0.1 basis

points of availability in the data center, leading us to target 99.999% server availability with

our techniques. In addition to the availability SLA, the content providers also require good

performance. For instance, clients downloading http content should experience small

download times and clients watching media should receive high quality streams with high

bandwidth and few freezes. Since turning off servers to save energy reduces the live server

capacity used for serving the incoming request load, it is important that any energy saving

technique minimizes the impact of the decreased capacity on availability and performance.

• Minimize server transitions. Studies have shown that frequently turning an electronic device

on and off can impact its overall lifetime and reliability. Consequently, CDN operators are

often concerned about the wear and tear caused by excessive on-off server transitions that

could potentially decrease the lifetime of the servers. Additionally, when a server is turned

off, its state has to be migrated or replicated to a different live server. Mechanisms for

replicating content footprint and migrating long-standing TCP connections exist in the CDNs

today as well as in other types of Internet scale services. However, a small degree of client

visible performance degradation due to server transitions is inevitable. Consequently an

energy saving technique should limit on-off server transitions in order to reduce wear and

tear and the impact on client-visible performance. The three objectives above are often in

conflict. For instance, turning off too many servers to maximize energy reduction can

decrease the available live capacity of the CDN. Since it takes time to turn on a server and

bring it back into service, an unexpected spike in the load can lead to dropped requests and

SLA violations. Likewise, turning servers on and off frequently in response to load variations

could enhance energy reduction but incur too many server transitions. Our goal is to design

energy-aware techniques for CDNs that incorporate all three objectives and to understand

how much energy reduction is realistically achievable in a CDN. Since CDNs are yet to be

aggressively optimized for energy usage today, our work hopes to guide the future

architectural evolution that must inevitably incorporate energy as a primary design objective.

While we focus on CDNs, our work also applies to other CDN-like distributed systems that

replicate services within and across server clusters and employ some form of load balancing

to dynamically route requests to servers. On a different dimension, it is also important to note

that our focus is energy usage reduction rather than energy cost reduction. Note that energy

cost reduction can be achieved by dynamically shifting the server load to locations with lower

energy prices without necessarily decreasing the total energy usage Research Contributions.

30

Our work is the first to propose energy-aware mechanisms for load balancing in CDNs with a

quantification of the key practical tradeoffs between energy reduction, hardware wear-and-

tear due to server transitions, and service availability that impacts customer SLAs. The load

balancing system of a CDN operates at two levels . The global load balancing component

determines a good cluster of the CDN for each request, while the local load balancing

component chooses the right server for the request within the assigned cluster. We design

mechanisms for energy savings, both from the local and global load-balancing standpoint.

Further, we evaluate our mechanisms using real production workload traces collected over 25

days from 22 geographically distributed clusters across the US from a large commercial

CDN. Our specific key contributions are as follows.

• In the offline context when the complete load sequence for a cluster is known ahead of time,

we derive optimal algorithms that minimize energy usage by varying the number of live

servers required to serve the incoming load

• On production CDN workloads, our offline algorithm achieves a significant system-wide

energy reduction of 59.5%. Further, even if the average transitions is restricted to be below 1

transition per server per day, an energy reduction of 58.66% can be achieved, i.e., 98.6% of

the maximum energy reduction can be achieved with minimal server wear and- tear.

• We propose a load balancing algorithm called Hibernate that works in an online fashion that

makes decisions based on past and current load but not future load, much like a real life

load balancing system. Hibernate achieves an energy reduction of 56%, i.e., within 94% of

the offline optimal.

• By holding an extra 10% of the servers as live spares, Hibernate achieves the sweet spot

with respect to all three metrics. Specifically, the algorithm achieves a system-wide energy

reduction of 51% and a service availability of at least five nine‘s (99.999%), while incurring

an average of at most 1 transition per server per day. The modest decrease in energy

reduction due to the extra pool of live servers is well worth the enhanced service availability

for the CDN.

• In a global flash crowd scenario when the load spikes suddenly across all clusters of the

CDN, Hibernate is still able to provide five nine‘s of service availability and maintain

customer SLAs as long as the rate at which load increases is commensurate with the

percentage of server capacity that the algorithm keeps as live spares.

• Energy-aware global load balancing can redistribute traffic across clusters but had only a

limited impact on energy reduction. Since load can only be redistributed between proximal

clusters for reasons of client performance, these clusters had load patterns that are similar

enough to not entail a large energy benefit from load redistribution. However, a 10% to 25%

reduction in server transitions can be achieved by redistributing load across proximal clusters.

But, perhaps the key benefit of global load balancing is significantly increased service

availability. In our simulations, global load balancing enhanced service availability to almost

100%. In situations where an unpredictable increase in load would have exceeded the live

capacity of a cluster causing service disruption, our global load balancing spread the load

increase to other clusters with available live capacity. In summary, our results show that

significant energy reduction is possible in CDNs if they are rearchitected with energy

awareness as a first-order principle. Further, our work also allays the two primary fears in the

mind of CDN operators regarding turning off servers for energy savings: the ability to

31

maintain service availability, especially in the presence of a flash crowd, and the impact of

server transitions on the hardware lifetimes and ultimately the capital expenditures associated

with operating the CDN. Roadmap. After formulating our models and methodology , we

study local load balancing in an offline setting with the assumption that the entire traffic load

pattern is known in advance and then extend it to the more realistic online situation where

future traffic is unknown . Then, we explore the gains to be had by moving traffic between

clusters via global load balancing

. Finally, we discuss related work and offer conclusions .

II. MODEL FORMULATION AND METHODOLOGY

CDN Model :

Our work assumes a global content delivery network (CDN) that comprises a very large

number of servers that are grouped into thousands of clusters. Each cluster is deployed in a

single data center and its size can vary from tens to many thousands of servers. We assume

that incoming requests are forwarded to a particular server in a particular cluster by the

CDN‘s load balancing algorithm. Load balancing in a CDN is performed at two levels: global

load balancing, where a user request is sent to an ―optimum‖ cluster, and local load

balancing, where a user request is assigned a specific server within the chosen cluster. Load

balancing can be implemented using many mechanisms such as IP Any cast, load balancing

switches, or most commonly, the DNS lookup mechanism [14]. We do not assume any

particular mechanism, but we do assume that those mechanisms allow load to be arbitrarily

re-divided and re-distributed among servers, both within a cluster (local) and across clusters

(global). This is a good assumption for typical web workloads that form a significant portion

of a CDN‘s traffic.

Energy Model:

 Since our goal is to minimize energy usage, we model how servers consume energy as a

function of load. Based on our own testing of typical off-the-shelf server configurations used

by CDNs, we use the standard linear model where the power (in Watts) consumed by a server

serving load λ is

power(λ) Δ=

Pidle + (Ppeak − Pidle)λ, (1)

where the load 0 ≤ λ ≤ 1 is the ratio of the actual load to the peak load, Pidle is the power

consumed by an idle server, and Ppeak is the power consumed by the server under peak

load.We use typical values of 92 Watts and 63 Watts for Ppeak and Pidle respectively.

Though we use the linear energy model above in all our simulations, our algorithmic results

hold for any power function that is convex.

In addition to the energy consumed by live servers that are serving traffic, we also capture the

energy consumed by servers that are in transition, i.e., either being turned off or tuned on.

Servers in transition cannot serve load but consume energy; this energy consumption is due to

a number of steps that the CDN must perform during shutdown or startup. When a server

is turned off, the load balancing system first stops sending any new traffic to the server.

Further, the CDN must wait until existing traffic either dies down or is migrated off the

server. Additionally, the control responsibilities of the server would need to be migrated out

by performing leader election and other relevant processes. Once the server has been

completely isolated from the rest of the CDN, it can be powered down. When a server is

turned on, these same steps are executed in the reverse. In both cases, a server transition takes

32

several minutes and can be done automatically by the CDN software To capture the energy

spent during a transition, we model a fixed amount of energy usage of α Joules for each

server transition, where α typically corresponds to 38 kilo Joules.

Workload Model:

 The workload entering the load balancing system is modeled as a discrete sequence λt, 1 ≤ t

≤ n, where λt is the average load in the tth time slot. We always express load in the

normalized unit of actual load divided by peak server capacity.1 Further, we assume that each

time slot is δ seconds long and is large enough for the decisions made by the load balancing

algorithm to take effect. Specifically, in our experiments, we choose a typical δ value of 300

seconds.

Algorithmic Model for Load Balancing:

 While a real-life load balancing system is complex , we model only those aspects of such a

system that are critical to energy usage. For simplicity, our load balancing algorithms

redistribute the incoming load rather than explicitly route incoming requests from clients to

servers. The major determinant of energy usage is the number of servers that need to remain

live (i.e., turned on) at each time slot to effectively serve the incoming load. The exact

manner in which load is distributed to those live servers is less important from an energy

standpoint. In fact, in the linear energy model described in Equation 1, the precise manner in

which load is distributed to the live servers makes

no difference to energy consumption.2 In reality, the precise manner in which the load is

distributed to the live servers does matter greatly from the perspective of managing footprint

and other server state. However, we view this a complementary problem to our own and

methods exist in the research literature to tackle some of these issues. The local load

balancing algorithm of a CDN balances load between live servers of a given cluster. In each

time interval t, the algorithm distributes the load λt that is incoming to that cluster. Let mt

denote the number of live servers in the cluster. Servers are typically not loaded to capacity.

But rather a target load threshold Λ, 0 < Λ ≤ 1, is set such that the load balancing algorithm

attempts to keep the load on each server of the CDN to no more than the fraction Λ of its

capacity. Mathematically, if li,t is the load assigned to live server i at time t, then _i=mt

i=1 li,t = λt and li,t ≤ Λ, for 1 ≤ i ≤ mt. In addition to serving the current load, the load

balancing algorithm also decides how many additional servers need to be turned on or off.

The changes in the live server count made in time slot t is reflected in mt+1 in the next time

slot.

The global load balancing algorithm works in an analogous fashion and distributes the global

incoming load to the various server clusters. Specifically, the global incoming load is

partitioned between the server clusters such that no cluster receives more than a fraction Λ of

its capacity. Further, clients are mapped to proximal clusters to ensure good performance.

Online versus Offline. The load balancing algorithms work in an online fashion where

decisions are made at time t without any knowledge of the future load λt_ , t_ > t. However,

our work also considers the offline scenario where the load balancing algorithm knows the

entire load sequence λt, 1 ≤ t ≤ n ahead of time and can use that knowledge to make

decisions.

33

The offline algorithms provide the theoretically best possible scenario by making future

traffic completely predictable. Thus, our provably-optimal offline algorithms provide a key

baseline to which realistic online algorithms can be compared.

Metric Definitions:

 We are interested in the interplay of three metrics: energy reduction, service availability as it

relates to customer SLA‘s, and server transitions. The energy reduction achieved by an

algorithm that can turn servers on or off equals the percentage energy saved in comparison to

a baseline where all servers remain turned on for the entire period. Since most CDNs today

are not aggressively optimized for energy, the baseline is representative of the actual energy

consumption of such systems. A server cluster that receives more load than the total capacity

of its live servers cannot serve that excess load which must be dropped. The client requests

that correspond to the dropped load experience a denial of service. The service availability

over a time period is computed as 100 ∗ (total served load)/(total input load). Finally, the

server transitions are expressed either as total amount over the time period, or as an average

amount expressed as the number of transitions per server per day.

 Figure 14: Load Vs Time

Fig. 1: Average load per server measured every 5 minutes across 22 Akamai clusters in the

US over 25 days. Note load variations due to day, night, weekday, weekend, and holidays

(such as low load on day no. 8, which was Christmas Empirical Data from the Akamai

Network. To validate our algorithms and to quantify their benefits in a realistic manner, we

used extensive load traces collected over 25 days from a large set of Akamai clusters (data

centers) in the US. The 22 clusters captured in our traces are distributed widely within the US

and had 15439 servers in total, i.e., a representative sampling of Akamai‘s US deployments.

Our load traces account for a peak traffic of 800K requests/second and an aggregate of 950

million requests delivered to clients. The traces consist of a snapshot of total load served by

each cluster collected every 5-minute interval from Dec 19th 2008 to January 12th 2009, a

time period that includes the busy holiday shopping season for e-commerce traffic .

34

 3.5 Optimised balancing algorithm for content

delivery networks

Introduction

A content delivery network (CDN) represents a popular and useful solution to

effectively provide contents to users by adopting a distributed overlay of servers. By

replicating content on several servers, a CDN is capable of partially solving

congestion issues owing to high client request rates, thus reducing latency at the same

time increasing content availability. Usually, a CDN consists of an original server

(called ‗backend server‘) containing new data to be diffused, together with one or

more distribution servers, called ‗surrogate servers‘. Periodically, the surrogate servers

are actively updated by the back-end server. Surrogate servers are typically used to

store static data, whereas dynamic information (i.e. data that change in time) is just

stored in a small number of back-end servers. In some typical scenarios there is a

server called ‗redirector‘, which dynamically redirects client requests based on

selected policies. CDNs were born to improve accessibility, while maintaining

correctness: this is achieved through content replication. They involve an orchestrated

combination of heterogeneous techniques, such as content delivery, request routing,

information spreading and accounting. The most important performance

improvements derived from the adoption of such networks concern two aspects: (i)

overall system throughput, that is the average number of requests served in a time unit

(optimised also on the basis of the processing capabilities of the available servers);

and (ii) response time experienced by clients after issuing a request The decision

process about these two aspects could be in contraposition. As an example, a ‗better

response time‘ server is usually chosen based on geographical distance from the

client, that is network proximity; on the other hand, the overall system throughput is

typically optimised through load balancing across a set of servers. Although the exact

combination of factors employed by commercial systems is not clearly defined in the

literature, evidence suggests that the scale is tipped in favour of reducing response

time. Akamai, LimeLight and CDNetworks are wellknown commercial CDN

projects, which provide support to the most popular Internet and media companies,

including BBC, Microsoft, DreamWorks, EA and Yahoo. Several academic projects

have also been proposed, such as CoralCDN at New York University and CoDeeN at

Princeton University, both running on the PlanetLab (http:// www.planet-lab.org/)

testbed. A critical component of a CDN architecture is the request routing mechanism.

It allows to direct users‘ requests for a content to the appropriate server, based on a

specified set of parameters. The proximity principle, by means of which a request is

always served by the server which is closest to the client, can sometime fail. Indeed,

the routing process associated with a request might take into account several

parameters (such as traffic load, bandwidth and servers‘ computational capabilities) in

order to provide the best performance in terms of time of service, delay etc.

Furthermore, an effective request routing mechanism should

35

be able to face temporary, and potentially localised, high request rates (the so-called

‗flash crowds‘) in order to avoid affecting the quality of service perceived by other

users. Depending on the network layers and mechanisms involved in the process,

generally request routing techniques can be classified in domain name system (DNS)

request routing, transport-layer request routing, and application-layer request routing .

In a DNS-based approach, a specialised DNS server is able to provide a request

balancing mechanism based on well defined policies and metrics . For every address

resolution request received, the DNS server selects the most appropriate surrogate

server in a cluster of available servers and replies to the client with both the selected

internet protocol (IP) address and a time-to-live. The latter allows to define a period of

validity for the mapping process. Typical implementations of this approach can

provide either a single surrogate address or a record of multiple surrogate addresses, in

the last case leaving to the client the choice of the server to contact (e.g. in a round-

robin fashion). With transport-layer request routing, a layer 4 switch usually inspects

information contained in the request header in order to select the most appropriate

surrogate server. Information about the client‘s IP address and port (and

more generally all layer 4 protocol data) can be analysed. Specific policies and traffic

metrics have been defined for a correct server selection. Generally, the routing to the

server is achieved either by rewriting the IP destination of each incoming packet, or

by a packet tunnelling mechanism, or by a forwarding mechanism at the MAC layer.

With application-layer request routing, the task of selecting the surrogate server is

typically carried out by a layer 7 application, or by the contacted web-server itself. In

particular, in the presence of a web-server routing mechanism the server can decide to

either serve or redirect a client request to a remote node. Differently from the previous

mechanism, which usually needs a centralised element, a web-server routing solution

is usually designed in a distributed fashion. ‗URL rewriting‘ and ‗HTTP redirection‘

are typical solutions based on this approach. In the former case, a contacted server can

dynamically change the links of embedded objects in a requested page in order to let

them point to other nodes. The latter technique, instead, exploits the redirection

mechanism of the HTTP protocol to appropriately balance the load on several nodes.

In the following of this paper we will focus our attention on the application-layer

request routing mechanism. More precisely, we will provide a solution for load

balancing in the context of the HTTP redirection approaches. We present a new

mechanism for redirecting incoming client requests to the most appropriate server,

thus balancing the overall system requests load. Our mechanism leverages local

balancing in order to achieve global balancing. This is carried out through a periodic

interaction among the system nodes. The rest of the paper is organised as follows. We

will briefly describe some interesting solutions for load balancing in Section 2. Our

solution for request balancing will be described in Section 3. Simulation results of the

algorithm will be provided in Section 4. We will provide concluding remarks in

Section 5.

36

Fictitiously starred optimised balancing (FSOB)

In this section we will present a novel algorithm for balancing client requests among

several servers: the FSOB algorithm. Before describing the details of our algorithm

we briefly discuss some models for distributed load balancing. With a distributed

approach, every node usually consists of a scheduler, a buffer for holding requests and

a processor. A request might either be served locally or assigned to a remote server

based on the specific balancing strategy. Depending on how the scheduler interacts

with the other components of the node, it is possible to classify the balancing

algorithms in three fundamental models : a ‗queue-adjustment model‘, a ‗rate-

adjustment model‘ and a ‗hybrid-adjustment model‘ (Fig. 1). In a queue-adjustment

strategy the scheduler is located after the queue and just before the server. The

scheduler might assign the request pulled out from the queue to either the local server

or a remote server depending on the status of the system queues: if an unbalancing

exists in the network with respect to the local server, it might assign part of the queued

requests to the most unloaded remote server. In this way the algorithm tries to equally

balance the requests in the system queues. It is clear that in order to achieve an

effective load balancing the scheduler needs to periodically retrieve information about

remote queue lengths. In a rate-adjustment model, instead, the scheduler is located

just before the local queue: upon arrival of a new request the scheduler decides

whether to assign it to the local queue or send it to a remote server. Once a request is

assigned to a local queue no remote rescheduling is allowed. Such strategy usually

balances the request rate arriving at every node independently from the current state of

the queue. No periodical information exchange, indeed, is requested. In a hybrid-

adjustment strategy for load balancing the scheduler is allowed to control both the

incoming request rate at a node and the local queue length. Such approach allows to

have a more efficient load balancing in a very dynamic scenario, but at the same time

it requires a more complex algorithm. In the context of a hybrid-adjustment

mechanism, the queue adjustment and the rate adjustment might be considered,

respectively, as a fine-grained and a coarse-grained process. The algorithm for load

balancing proposed in this paper falls in the class of rate-adjustment approaches.

Differently from most of the previous algorithms, we propose a highly dynamic

distributed strategy based on the periodical exchange of information about the status

of the nodes, in terms of load. By exploiting the multiple redirection mechanism

offered by HTTP, our algorithm tries to achieve a global balancing through a local

request redistribution process. Upon arrival of a new request, indeed, a CDN server

can either elaborate locally the request or redirect it to other servers according to an

optimised decision rule, which is based on the state information exchanged among the

servers. Let us consider several CDN servers which are ‗virtually‘ connected into an

overlay network. We remark that the consistency of the contents is out of the scope of

this paper: we suppose that any server is able to serve a request independently from its

specific content. FSOB is implemented locally at any node. With such algorithm, the

server assumes itself to be the centre (i.e. the ‗master‘) of a ‗fictitious star topology‘.

In Fig. 2, for example, the star topology for the master node B is reported Any time a

request arrives at a server, it can decide to either elaborate it or redistribute it, based

37

on a proper policy, to one of the peers (i.e. the ‗slaves‘) in the above described

fictitious star topology. Under the assumptions above, any master is capable to ‗trace

out‘ the loads of the slaves, since, in the master‘s view, they exclusively serve

requests redirected from it. In this way, an optimised rule for load balancing can be

implemented for each fictitious star topology. Since we assume that all servers have

the same service rate, we can distribute the load among them based just on the queue

length at each server: a new request is assigned by the master to the server, including

itself, which has the least queue length value at that point in time . Periodically, the

slaves report to the master their queue length. For each request assigned, the master

updates the expected value of the queue length of the server which the request is sent

to by incrementing it by one. Yet, the real behaviour of the load of each server is

different as we assumed fictitious assumptions. In particular, the queue length can

significantly change over time with respect to the expected value, owing to local

requests traffic at the slave node. The periodic information provided by the servers in

the CDN allows to restore the correct value of the slave loads. Although the

redistribution mechanism always assigns a new request to the least loaded (in terms of

queue length) server, it is possible to identify two alternative behaviours of

the algorithm with respect to network load conditions: an ‗equalising‘ phase and a

‗cycling‘ phase.

 Figure 15 :FSOB Topology

38

In the former the algorithm tends to equalise the estimated server loads in the presence

of an unbalanced distribution of queue lengths, by assigning new requests to the server

with the least loaded queue. Once the load is supposed to be equally distributed

among all the servers in the network, the algorithm assumes a ‗cycling‘ behaviour,

where the master tends to assign new incoming requests in a manner which

approximates a round-robin policy. Once done with server updates, the

master enters again the equalising phase. The sequence of the two phases and their

respective durations depend on the existing degree of unbalancing among the master

and the slaves. The distinctive feature of this algorithm is its intrinsic capability to

adjust itself to the initial condition of the server loads. Indeed, if the load is already

balanced the algorithm exhibits a round-robin behaviour for the requests distribution,

thus simply preserving the initial equilibrium. Otherwise, if the initial load is

extremely unbalanced, the algorithm tends to equalise it by assigning new incoming

requests to the least loaded server. To further improve the estimation of the slaves

load, we add to FSOB an additional estimation of the expected queue behaviour

relying also on the arrival and service rates experienced locally at the server. Any

server in the CDN, indeed, might experience different arrival rates as well as service

rates over time. Such information is ‗sampled‘ locally at any slave node and sent

during the updating process together with the queue length value. The master node can

use this information to optimally estimate the supposed behaviour of the slaves load.

 Figure 16: FSOB Algorithm

39

Any slave computes both its expected arrival and service rates by an exponential

weighted moving average

ˆr(kT) = (1 −a)ˆr((k − 1)T) +ar(kT) (1)

where ˆr is the expected rate, r is the rate sampled by the slave and T is the updating

time. Based on such values the slave computes the difference

Dˆr(kT) = ˆl(kT) −mˆ (kT) (2)

where ˆland ˆ m are, respectively, the estimations of arrivaland service rates computed

by formula (1). After every interval of duration T, the slave provides the master with

the local load and Dˆr measures. Such information is exploited to estimate the

expected load ˆq of the slave at time kT + Dt by means of the following equation

ˆq(kT + Dt) = qs(kT) + Ns

[kT,kT+Dt]

+ Dˆr(kT)Dt (3)

where qs is the queue length provided by the slave during the updating process at time

kT, and Ns

[kT,kT+Dt] is the number of requests assigned to such a slave during the interval

[kT, kT + Dt].

In Fig. 4 we report the pseudo-code of the FSOB algorithmby highlighting its main

events.

40

 Chapter 4: Proposed model

4.1Tomcat:

Tomcat is an application server from the Apache Software Foundation that executes

Java servlets and renders Web pages that include Java Server Page coding. Described

as a "reference implementation" of the Java Servlet and the Java Server Page

specifications, Tomcat is the result of an open collaboration of developers and is

available from the Apache Web site in both binary and source versions. Tomcat can

be used as either a standalone product with its own internal Web server or together

with other Web servers, including Apache, Netscape Enterprise Server, Microsoft

Internet Information Server (IIS), and Microsoft Personal Web Server. Tomcat

requires a Java Runtime Enterprise Environment that conforms to JRE 1.1 or later.

4.2 Tomcat Clustering:

Apache Tomcat is a great performer on its own, but if you're expecting more traffic as

your site expands, or are thinking about the best way to provide high availability,

you'll be happy to know that Tomcat also shines in a clustered environment. With

built-in support for both synchronous and asynchronous in-memory and external

session replication, cluster segmentation, and compatibility with all common load

balancing solutions, your Tomcat servers are ready for the cluster right out of the box.

Although clustering can seem like a complicated topic, the premise is quite simple. A

clustered architecture is used to solve one or more of the following problems:

 A single server cannot handle the high number of incoming requests efficiently

 A stateful application needs a way of preserving session data if its server fails

 A developer requires the capability to make configuration changes or deploy updates

to their applications without discontinuing service.

A clustered architecture solves these problems using a combination of load balancing,

multiple server "workers" to process the balanced load, and some kind of session

replication. Depending on the needs of the application, only some of these

components may be used, or additional components such as caching and compression

engines

Each tomcat has deployed the same web application. so any tomcat can process the

client request. If one tomcat is failed, then other tomcat in the cluster to proceeds the

request.

http://searchsqlserver.techtarget.com/definition/application-server
http://searchsoa.techtarget.com/definition/servlet
http://searchsoa.techtarget.com/definition/Java-Server-Page
http://searchcio-midmarket.techtarget.com/definition/Apache
http://whatis.techtarget.com/definition/Web-server
http://searchcio-midmarket.techtarget.com/definition/Apache
http://searchwindowsserver.techtarget.com/definition/IIS
http://searchsoa.techtarget.com/definition/Personal-Web-Server
http://www.mulesoft.com/tomcat-deploy

41

Here one big problem is arrive. each tomcat instances are running in dedicated

physical machine or many tomcat instances are running in single machine so each

tomcat running on different port and may be in different IP.

The problem is in client perspective, to which tomcat we need to make the request?

because there are lots of tomcat part of clustering is running. each tomcat we need to

make IP and Port combination. like http://192.168.56.190:8080/

or http://192.168.56.191:8181/

To add one server in-front of all tomcat clusters. to accept all the request and

distribute to the cluster. so this server acts as a load balancer. There is lots of server

is available with load balancing capability. here we are going to use Apache httpd web

server as a load balancer. with mod_jk module. so now all clients to access the load

balancer (Apache http web server) and don't bother about tomcat instances

 Figure 17: Apache load balancer between servers and the user

42

4.3 Apache httpd Web Server

Here we are going to use Apache httpd web server as a Load Balancer. To provide the

load balancing capability to Apache httpd server we need to include the either

mod_proxy module or mod_jk module. here we are using mod_jk module.

4.4 How to setup the Simple Load Balancer

 For simplicity purpose I am going to run 3 tomcat instances in single machine(we can

run on dedicated machine also) with Apache httpd web server. and single web

application is deployed in all tomcat instances.

 Figure 18: load balancer controlling three servers

43

Here we use mod_jk module as the load balancer. by default its use the round robin

algorithm to distribute the requests. now we need to configure the workers.properties

file like virtual host concept in Apache httpd server.

worker.tomcat1.type=ajp13

worker.tomcat1.port=8009

worker.tomcat1.host=localhost

worker.tomcat2.type=ajp13

worker.tomcat2.port=8010

worker.tomcat2.host=localhost

worker.tomcat3.type=ajp13

worker.tomcat3.port=8011

worker.tomcat3.host=localhost

worker.list=tomcat1,tomcat2,tomcat3

here i configure the 3 tomcat instances in workers.properties file. here type is ajp13

and port is ajp port (not http connector port) and host is IP address of tomcat instance

machine.

there are couple of special workers we need add into workers.properties file.

First one is add load balancer worker, here the name is balancer (u can put any name).

worker.balancer.type=lb

worker.balancer.balance_workers=tomcat1,tomcat2,tomcat3

here this worker type is lb, ie load balancer. its special type provide by load balancer.

and another property is balance_workers to specify all tomcat instances

like tomcat1,tomcat2,tomcat3 (comma separated)

Second one, add the status worker, Its optional. but from this worker we can

get statistical of load balancer.

.

http://www.ramkitech.com/2012/03/virtual-host-apache-httpd-server-tomcat.html

44

worker.list=balancer,stat

so from outside there are 2 workers are visible (balancer and stat). so all request

comes to balancer. then balancer worker manage all tomcat instances.

Complete workers.properties file

 worker.list=balancer,stat

 worker.tomcat1.type=ajp13

 worker.tomcat1.port=8009

 worker.tomcat1.host=localhost

 worker.tomcat2.type=ajp13

 worker.tomcat2.port=8010

 worker.tomcat2.host=localhost

 worker.tomcat3.type=ajp13

 worker.tomcat3.port=8011

 worker.tomcat3.host=localhost

 worker.balancer.type=lb

 worker.balancer.balance_workers=tomcat1,tomcat2,tomcat3

 worker.stat.type=status

Now workers.properties confiuration is finished. now we need to send the all request

to balancer worker.so modify the httpd.conf file of Apache httpd server

45

LoadModule jk_module modules/mod_jk.so

 JkWorkersFile conf/workers.properties

 JkLogFile logs/mod_jk.log

 JkLogLevel emerg

 JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

 JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

 JkRequestLogFormat "%w %V %T"

 JkMount /* balancer

the above code is just boiler plate code. 1st line load the mod_jk module, 2nd line

to specified the worker file (workers.properties file). all others are just logging

purpose.

The last 2 lines are important.

JkMount /status stat means any request to match the /status then that request

forward to stat worker. Its status type worker. so its shows status of load balancer.

JkMount /* balancer this line matches all the request, so all request is forward to

balancer worker. In balancer worker is uses the round robin algorithm to distribute the

request to other tomcat instances.

That's it.

now access the load balancer from the browser. each and every request is distribute to

3 tomcat instances. If one of the tomcat instances are failed then load

balancer dynamically understand and stop to forward the request to that failed tomcat

instances. Other tomcat instances are continue to work. If that failed tomcat is

recovered from failed state to normal state then load balancer add to cluster and

forward the request to that tomcat

Here big question is How Load balancer knows when one tomcat instance is failed or

tomcat is just recovered from failed state?

Ans : when one tomcat instance is failed, load balancer don't know

about that instances is failed. so its try to forward the request to all tomcat instances. If

load balancer try to forward the request to failed tomcat instance, its will not respond.

so load balancer understand and marked the state as a failed and forward the same

request to another tomcat instances. so client perspective we not feel one tomcat

instances are failed.

when tomcat instances recovered from failed state. that time also load balancer don't

46

know that tomcat is ready for processing. Its still marked the state is failed.

In periodic interval load balancer checks the health status of all tomcat instances. (by

default 60 sec). after checking health status then only load balancer came to know that

tomcat instance is ready. and its update the status is OK.

4.5 Session Affinity Load Balancer

This second part of the Tomcat Clustering Series . In my first part we discuss about

how to setup simple load balancer. and we seen how load balancer distribute the

request to tomcat instance in round robin fashion.

Now we will discuss about, what is the problem that occurs in simple load balancer

when we introduce sessions in our web application. and we will see how to resolve

this issue.

How Session works in Servlet/Tomcat?

 Before going into problem, let see the session management in Tomcat .If any if the

page/servlet create the session then Tomcat create the Session Object nd attached into

group of session (Hash Map kind structure) and that session can identify using ssion-

id, it's just random number generated through any one of the hash algorithm. then

respond to client with cookie header field. That cookie header field are key value pair.

so tomcat create jsessioid is the key and random session-id is the value.

Once response reached to client (Web Browser) its update the cookie value. If already

exist, then its overrides the cookie value. Then all further communication browser

send the cookie attached with request to that server.

HTTP is stateless protocol. so server can't find the client session usual way. so server

reads the header of the request and extract the cookie value and server got the Random

session - id. then it search through group of session maintained by the tomcat.

(It usually hash-map). then tomcat got perfect Session of that particular client (Web

Browser).

If client cookie value doesn't match with group of sessions then tomcat create the

completely new session and send the new cookie to browser. then browser update it.

this index.jsp code to deploy all tomcat instances

http://www.ramkitech.com/search/label/tomcat%20clustering
http://www.ramkitech.com/2012/10/tomcat-clustering-series-simple-load.html

47

<%@page import="java.util.ArrayList"%>

<%@page import="java.util.Date"%>

<%@page import="java.util.List"%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

 Instance 1

 <hr style="background-color:transparent;border-bottom-style:none;border-bottom-

width:0px;border-left-style:none;border-left-width:0px;border-right-style:none;border-right-

width:0px;border-top-style:none;border-top-

width:0px;margin:1px 1px 1px 1px;"><span style="font-size:12px;background-

color:transparent;line-height:16px; word-break:break-word; ">

Session Id : <%=request.getSession().getId()%>

Is it New Session : <%=request.getSession().isNew()%>

Session Creation Date : <%=new Date(request.getSession().getCreationTime())%>

Session Access Date : <%=new Date(request.getSession().getLastAccessedTime())%>

<b style="background-color:transparent;font-weight:bold;">Cart List

 <hr style="background-color:transparent;border-bottom-style:none;border-bottom-

width:0px;border-left-style:none;border-left-width:0px;border-right-style:none;border-right-

width:0px;border-top-style:none;border-top-width:0px;margin:1px 1px 1px 1px;">

Details:

1. User request one web page, in that web page its used sessions (like shopping

cart).

2. Load balancer intercept the request and use the round robin fashion its send to

one of the tomcat. suppose this time its send to tomcat1.

3. tomcat1 create the session and respond with cookie header to client

4. load balancer just act as relay. its send back to client

5. next time user request again the shopping cart to server. this time user send the

cookie header also

48

6. .Load balancer intercept the request and use the round robin fashion its send to

one of the tomcat. this time its send to tomcat2.

7. Tomcat 2 receive the request and extract the session-id. and this session id is

doesn't match with their managed session. because this session is available only

in tomcat1. so tomcat 2 is create the new session and send new cookie to

client

8. Client receive the response and update the cookie(Its overwrite the old cookie).

9. Client send one more time to request that page and send the cookie to server.

10. Load balancer intercept the request and use the round robin fashion its send to

one of the tomcat. this time its send to tomcat3.

11. Tomcat 3 receive the request and extract the session-id. and this session id is

doesn't match with their managed session. because this session is available only

in tomcat2. so tomcat3 is create the new session and send new cookie to client

12. Client receive the response and update the cookie. (Its overwrite the old

cookie).

13. Client send one more time to request that page and send the cookie to server.

14. Load balancer intercept the request and use the round robin fashion its send to

one of the tomcat. this time its send to tomcat1.

15. Tomcat 1 receive the request and extract the session-id. and this session id is

doesn't match with their managed session. because client session id is updated

by tomcat 3 last time. so even though tomcat 1 have one session object created

by this client. but client session id is wrong. So tomcat1 is create the new

session and send new cookie to client

16. Client receive the response and update the cookie.

this sequence is continue ...

as the result every request one session is created. instead of continue with old one.

Here root cause is Load balancer . If load balancer redirect the request correctly then

this problem is fixed. but how load balancer know in advance about this client before

is processed by particular tomcat.

HTTP is stateless protocol. so HTTP doesn't help this situation. and other information

is jsessionid cookie. its good but its just random value. so we can't take decision based

on this random value.

ex:

Cookie: JSESSIONID=40025608F7B50E42DFA2785329079227

49

Session affinity/Sticky Session

Session affinity overrides the load-balancing algorithm by directing all requests in a

session to a specific tomcat server. so when we setup the session affinity our problem

is solved. but how to setup because session values are random value. so we need to

generate the session value some how identify the which tomcat generate response.

jvmRoute

 Tomcat configuration file (server.xml) caontain <Engine> tag have jvmRoute

property for this purpose. so edit the config file and update the <Engine > tag

like this

 <Engine name="Catalina" defaultHost="localhost― jvmRoute=―tomcat1‖ >

 Here we mention jvmRoute="tomcat1" here tomcat1 is worker name of this

tomcat. check the workers.properties file in last post.

 Add this line to all tomcat instances conf/server.xml file and change the

jvmRoute value according to workers name and restart the tomcat instances.

 Now all tomcat generate the session-id pattern like this

 <Random Value like before>.<jvmRoute value>

 ex: tomcat1 generate the session id like

 Cookie:JSESSIONID=40025608F7B50E42DFA2785329079227.tomcat1

here tail have which tomcat generate the session. so load balancer easily find out to

where we need to delegate the request. in this case its tomcat1.

so update all tomcat instances conf/server.xml file to add the jvmRoute property to

appropriate worker name values. and restart the instances. all problem is fixed and

entire load balance works fine even session based application.

but there is still one drawback

if 5 user acessing the website. In session affinity is setup. here

http://www.ramkitech.com/2012/10/tomcat-clustering-series-simple-load.html

50

tomcat 1 serves 2 user,

tomcat 2 serves 2 user,

tomcat 3 serves 1 user, then suddenly one of instance is failed, then what happen?

suppose instance 1 (tomcat1) is failed, then those 2 users lost their session. but their

request are redirect to one of the remaining tomcat instances (tomcat2,tomcat3). so

they still access the web page. but they lost previous sessions. this is one of the draw

back. but its compare to last post load balancer. its works in session based web

applicationalso.

Next post we will see how to set up the session replication in load balancer.

Session Replication

Hi this is my third part of the Tomcat Clustering Series . In this post we are going to

discuss the how to setup session replication in tomcat clustering environment. Session

replication makes High availability and full fail-over capability to our clustering

environment.[

In my previous post we discussed about setup simple load balancer and how to

makesession affinity concepts.

How to setup Session Replication in tomcat

 before going to session replication we need to understand 2 important concepts

 Multicast

 Session Manager in Tomcat

Multicast

 Multicast is To transmit a single message to a select group of recipients.

here multicast used by tomcat cluster to identify the instances those part of cluster.

There is 2 types of cluster

 Static Tomcat Cluster

 Dynamic Tomcat Cluster

In static cluster there is no need multicast, because each tomcat we statically

defined/configured the other instances. But dynamic Cluster we are

not defined anything. so each tomcat in that cluster some how to identify the other

tomcat instances.

http://www.ramkitech.com/search/label/tomcat%20clustering
http://www.ramkitech.com/2012/10/tomcat-clustering-series-simple-load.html
http://www.ramkitech.com/2012/10/tomcat-clustering-series-part-2-session.html
http://en.wikipedia.org/wiki/Multicast

51

so here multicast concepts is used. each and every tomcat first joining to

single multicast group. and send the heartbeat signals in periodic interval. so other

tomcat instances received these signal and add the member to the cluster.

Session Manager in Tomcat

 Session Manager is used to create and manage the session behalf the application. In

Servlet Specification request.getSession(); line is mention that container (tomcat) is

responsible for create the session. here tomcat use the Session Manager for this

purpose.

there is 4 types of Session Manager

 Standard Manager

 Persistent Manager

 Delta Manager

 Backup Manager

Standard Manager

It is the default manager used by tomcat. Even though we are not mention in our web

application tomcat use this manager for managing our session. If u want to customize

the this standard manager then add <Manager> tag in context.xml file.

<Manager className=―org.apache.catalina.session.StandardManager‖ />

here org.apache.catalina.session.StandardManager is fully qualified class name of the

Standard Manager.

Persistent Manger

This manger is to sote the session information into persistent place after some interval.

here two types of store is available.

 File Store

 JDBC Store

File Store

It helps to store all session information in separate files in underlying file system

(local HDD or shared file-system like NFS,..)

JDBC Store

52

It helps to store the session information to relational database. so using the

Persistent Manager we can achieve the tomcat cluster. but its not swapped out in real

time. its pushes the information after certain interval. so if anything badly

happen(crash) before that interval then in-memory session data is gone.

Delta Manger

In this post we are going to use this manager. Its replicate the session to all other

instances. so this manager usually used clustered environment. but not good for large

cluster.

Backup Manager

This manager usually used clustered environment. It's like delta manger. but it will

 replicate to exactly one other instance(backup instance). Its acted like one instance is

Primary and another instance as backup

Steps to make Session Replication in Tomcat Clustering

1. Enable Multicast routing

2. Add <Cluster> Entries in conf/server.xml file for all instances.

3. Enable the Web Application as distributable

1. Enable Multicast routing

In Linux Environment most of the system kernel is capable to process the multicast

address. but we need to add route entry in kernel routing table.

sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

Here eth0 is my Ethernet interface. so change according to your interface

In multicast address is belong to Class D address Range (224.0.0.0 to

239.255.255.255).so we inform to kernel if any one access these address then it goes

through eth0 interface.

2. Add <Cluster> Entries in conf/server.xml file for all instances.

This very important part for tomcat clustering. We need to Add <Cluster> tag

inconf/server.xml file in all tomcat instances.

<Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/>

We can add this <Cluster> tag in either inside the<Engine> tag or <Host> tag.

here SimpleTcpCluster is Tomcat Cluster implementation

53

This tag is looks like simple but its has many inner tags. if we omitted then its takes

the default values. if we want do any cutomization (like change multicat address,

receving address port) we need to use complete <Cluster> tag

this is complete <Cluster>

<Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"

 channelSendOptions="8">

 <Manager className="org.apache.catalina.ha.session.DeltaManager"

 expireSessionsOnShutdown="false"

 notifyListenersOnReplication="true"/>

 <Channel className="org.apache.catalina.tribes.group.GroupChannel">

 <Membership className="org.apache.catalina.tribes.membership.McastService"

 address="228.0.0.4"

 port="45564"

 frequency="500"

 dropTime="3000"/>

 <Sender className="org.apache.catalina.tribes.transport.ReplicationTransmitter">

 <Transport

className="org.apache.catalina.tribes.transport.nio.PooledParallelSender"/>

 </Sender>

 <Receiver className="org.apache.catalina.tribes.transport.nio.NioReceiver"

 address="auto"

 port="4000"

 autoBind="100"

 selectorTimeout="5000"

 maxThreads="6"/>

 <Interceptor

className="org.apache.catalina.tribes.group.interceptors.TcpFailureDetector"/>

 <Interceptor

className="org.apache.catalina.tribes.group.interceptors.MessageDispatch15Intercep

tor"/>

 </Channel>

54

 <Valve className="org.apache.catalina.ha.tcp.ReplicationValve" filter=""/>

 <Valve className="org.apache.catalina.ha.session.JvmRouteBinderValve"/>

 <ClusterListener

className="org.apache.catalina.ha.session.JvmRouteSessionIDBinderListener"/>

 <ClusterListener

className="org.apache.catalina.ha.session.ClusterSessionListener"/>

</Cluster>

here most of the code are boiler plate code. just copy and paste. if we need we can

customize. for example we can change the multicat address and port number.

<Manager className="org.apache.catalina.ha.session.DeltaManager"/>

here Manager tag define the delta manager. Delta manager means replicate to all

instances.

 <Channel className="org.apache.catalina.tribes.group.GroupChannel">

Tomcat Clustering use the Apache Tribes communication framework . This group

commnication framework is responsible for dynamic membership (using multicast) ,

send and receive the session delta information using uni-cast (normal TCP

connection).

<Membership className="org.apache.catalina.tribes.membership.McastService"

 address="228.0.0.4"

 port="45564"

 frequency="500"

 dropTime="3000"/>

This is Membership definition. here address is multicast address. we can pick any

address from Class D address range (224.0.0.0 to 239.255.255.255)and any port

number.

55

Each and every tomcat send the heart beat signal to multicast address

in periodic (frequency) interval. all other tomcat whose joined the multicast address

they can receive these signals and add the membership to the cluster. if heat beat

signal is not revive some particular interval (dropTime) from any one of the tomcat,

then we need to consider that tomcat is failed.

Note:-

 All tomcat instances which is part of the clustering, should have

same multicast address and port number.

<Sender className="org.apache.catalina.tribes.transport.ReplicationTransmitter">

 <Transport

className="org.apache.catalina.tribes.transport.nio.PooledParallelSender"/>

 </Sender>

here sender use the PooledParallelSender have pooled connections to use the send the

session information concurrently. so its speedup the session replication process.

 <Receiver className="org.apache.catalina.tribes.transport.nio.NioReceiver"

 address="auto"

 port=" 4000 "

 autoBind="100"

 selectorTimeout="5000"

 maxThreads="6"/>

here we define which port Receiver can bind and used for receiving the session

replicate information. here two properties are important. address and port. here

address is ur system IP address and port is any unused port. here address="auto" its

automatically pick the system IP address.

We have some interceptor

TcpFailureDetector -Its ensure that instance are dead. In some

case multicast messages are delayed, all tomcat instances are think about that tomcat

is dead. but this interceptor to make tcp unicast to failed tomcat and ensure that

instances is actually failed or not

another important listener is JvmRouteSessionIDBinderListener, we talk about later

56

3. Enable the Web Application as distributable

 We need to make the our web application distribuable. its simple add <distributable/>

tag in web.xml file. In according to servlet specification <distributable/> tag in

web.xml mention that any container to consider this application can work

in distributed environment.

Note:

All session in our web application must me serializable.

Do these steps to all tomcat instances and start the tomcat and httpd server. check my

configuration in my github repo or get as ZIP

Figure 19: Configured Tomcat instances

This is my configuration. all 3 tomcat instances are configured in delta manager and i

deployed the distributed web application. all tomcat use the multicast to maintain the

membership.

now client make the request and first tomcat process and create the session, then looks

like this

https://github.com/ramkicse/tomcat-clustering-session-replication-
https://github.com/ramkicse/tomcat-clustering-session-replication-/archive/master.zip
http://1.bp.blogspot.com/-ZfR6DhJ_vpg/UKsf-Dgx5CI/AAAAAAAACrQ/ly1ToOlibr0/s1600/session-repicate1.png

57

 Figure 20: Use of Tomcat 1

then tomcat 1 is responsible to replicate the session using Apache tribes

group communication framework to replicate the session to all instances.

Figure 21: Working of all tomcat servers

http://4.bp.blogspot.com/-H8t6z1PlfJk/UKsf4WH8oLI/AAAAAAAACrA/Ti25yR5i5Fw/s1600/session-replicate2.png
http://3.bp.blogspot.com/-lnVwldNtunU/UKsf5lA6mRI/AAAAAAAACrI/GcnN5qFlHaA/s1600/session-replicate3.png

58

Now all tomcat instance have exact copy of the session. so if tomcat 1 crashed or

shutdown, then any other tomcat still can process the request [see the video below]

We used session affinity like previous post . based on that cookie id contain the

tomcat name (worker name). so when first tomcat1 return the session id end with

tomcat1. but when tomcat 1 is failed and tomcat 2 take the responsible for all further

request. but session id still contain the tomcat1. so its makes the load

balancer difficult. because tomcat1 is down. and load balancer pick any other tomcat.

but actually tomcat2 takes the responsible. so we need to reflect these changes in

session id.

JvmRouteSessionIDBinderListener take care to change the client session id to

tomcat2 when failure is occurred so load balancer redirect to tomcat2 without

confusing.

Check the git hub for all configuration files and tomcat clustering setup is available.

Session Replication using Backup Manager

Hi this is my fourth part of the Tomcat Clustering Series . In this post we are going to

discuss the how to setup session replication using Backup Manager in tomcat

clustering environment. Session replication makes High availability and full fail-over

capability to our clustering environment.

Its continuation of the last post (session replication using Delta Manager) . In delta

manager each tomcat instance need to replicate the session information to all other

tomcat instances. Its take more time and replication if our cluster size is increased. so

there is alternative manager is there. Its Backup Manager.

Backup Manager is replicate the copy of session data to exactly one other tomcat

instances. This big difference between both managers. here which tomcat creates that

is primary copy of the session. and another tomcat whose hold the replicate session is

backup copy . If any one of the tomcat is down. back up tomcat serve the session.

Its achieve the fail over capability.

The setup process of backup manager is same as Delta manager. except we need to

mention the Manager as BacupManager

(org.apache.catalina.ha.session.DeltaManager) inside <Cluster> element.

Suppose we have 3 tomcat instances like previous post . and i configured into backup

manager.

Now user try access the page. User request comes to load balancer, and load balancer

redirect the rquest to suppose tomcat1. Now tomcat one create the session, now

tomcat1 is responsible to replicate exactly one copy to any one of the tomcat.

so tomcat1 picks any tomcat which is part of the cluster (multicast). here tomcat1

picks tomcat3 as a backup. so tomcat3 hold the backup copy of the session.

http://www.ramkitech.com/2012/10/tomcat-clustering-series-part-2-session.html
https://github.com/ramkicse/tomcat-clustering-session-replication-
http://www.ramkitech.com/search/label/tomcat%20clustering
http://www.ramkitech.com/2012/11/tomcat-clustering-series-part-3-session.html
http://www.ramkitech.com/2012/11/tomcat-clustering-series-part-3-session.html

59

we run the load balancer in sticky session mode. so all further request from that

particular user is redirect to tomcat1 only. all modification in tomcat1 is replicate to

tomcat3.

now tomcat1 is crashed/shutdown for some reason

Now same user try to access the page. this time load balancer try to redirect to

tomcat1. but tomcat1 is down. so load-balancer pick one tomcat from the remaining

tomcats. here interestingly 2 case are there.

Case 1:

 Suppose Load balancer pick the tomcat3 then tomcat3 receive the request and

tomcat3 itself hold the backup copy of the session. so tomcat3 make that session as

primary copy and tomcat3 pick any one tomcat as backup copy. so here remaining

only one tomcat is there. so tomcat3 replicate the session to tomcat2. so now tomcat3

hold primary copy and tomcat2 hold the backup copy. now tomcat3 give the response

to user. all further request is handled by tomcat3 (sticky session).

case 2:

 Suppose Load balancer pick the tomcat2 then tomcat2 receive the request and

tomcat2 don't have the session. so tomcat2 session manager (Backup Manager) ask to

all other tomcat manager "hi anybody hold the session for this user (based on session

id [cookie])". Actually tomcat 3 have the backup session. so tomcat3 inform to

tomcat2. and replicate the session to tomcat2. now tomcat2 make that session as

primary copy and tomcat3 whose already have copy of session as remains as a backup

copy of that session. so now tomcat2 hold primary copy and tomcat3 hold the backup

copy. now tomcat2 give the response to user. all further request is handled by tomcat2

(sticky session).so in either case our session is replicate and maintained by backup

manager. It's good for large cluster.

Note:

Load balancer also faces single point failure . to resolve this we need to put

another load balancer with public address and update the new IP to DNS server

with same URL. so our URL like example.com query resolves the 2 IP address

for 2 load balancer.

 How its work:

 If browser want to access http://example.com then it first ask DNS server.

 DNS server gives 2 IP address to browser

 Browser take the first IP address and try to connect.

 If in the case that server is failed to respond then browser side make timeout

60

 Then browser contact second IP address, now second load balancer is works

fine.

This kind of adding more load balancer makes to our website

more scalable and reliable in case of tragedy

It gives 11 IP address. these all are google load balancer's located in

various geographic locations

Another thing this DNS servers not return same order of IP list to browser. each an

every time its rotate(round robin) the IP list. so in 2 different machine ask google.com

get different order of IP list. so these 2 different machine connect different Google

load balancer. so here DNS server also play little role for distribute the

requests(loads).to verify use same command twice. and verify the IP order.

61

Chapter 5: Experiments and Results

I have created three tomcat servers by the name of instance 1 , instance 2 and instance

3.Each server has its own session id and session time out. All the three servers can

work on the single system at the same time ,without affecting the performance of

other server. Each server has a session time out of one minute.I have created the web

page for each server to enter the data, as you can see in these three figures

 Figure 22 : Web page of instance 1

62

 Figure 23: Web page for instance 2

 Figure 24:Web page for instance 3

Here you can see that each server has its own session id . Session access date will be

updated , each time we enter the data

63

Chapter 6 :

 Conclusion

With the proliferation of the Internet it is clear that CDN is playing a verge role, but

due to huge cost it is still far away from third world countries. In this regards VO

based CDN could be a desired solution considering its better QoS in service delivery

to end-users and also cost cutting efficiency.

Physics determines how fast one computer can contact another over physical

connections, and so attempting to access a server in China from a computer in the

United States will take longer than trying to access a U.S. server from within the U.S.

To improve user experience and lower transmission costs, large companies set up

servers with copies of data in strategic geographic locations around the world. This is

called a CDN, and these servers are called edge servers, as they are closest on the

company‘s network to the end-user.

This is a good time to be a site owner. A few short years ago, content delivery

solutions were a luxury that only deep-pocketed mega-sites could afford. Now there‘s

a growing selection of competitive products backed by innovative companies offering

newer technology that plays well with other technologies such as real user monitoring

(RUM)..In order to decrease the traffic load, CDN can be a optimal path

64

 6. References

1. http://www.ramkitech.com/

2. http://www.rackspace.com/

3. en.wikipedia.org

4. http://www.tutorialspoint.com/

5. http://www.javacodegeeks.com/

6. http://code.tutsplus.com/

7. http://www.mulesoft.com/

8. serverfault.com

