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INTRODUCTION

1.1 Introduction

Data compression is a process that reduces the data size, removing the excessive  information
and redundancy. Why shorter data sequence is more suitable? —the answer is simple it reduces
the cost. Data compression is a common requirement for most of the computerized application
. Data compression has important application in the area of file storage and distributed system.
Data compression is used in multimedia field, text documents and data  base table. Data
compression methods can be classified in several ways. One of the most important criteria of
classification is whether the compression algorithms remove some part of data, which cannot
be recovered during decompression. The algorithm, which removes some part of data, is
called loss data compression. And the algorithm that achieve the same what we compressed
after decompression is called lossless data compression. The loss data compression algorithm
isusually used when aperfect consistency with the original data is not necessary after
decompression. Example ofloss data compression is compression of video or picture data.
Lossless data compression is used in text file, database tables and in medical image because
law ofregulations. Various losslessdata compression algorithm havebeen proposed
and used. Some of main techniques are Huffman Coding, Run Length Encoding, Arithmetic
Encoding and Dictionary Based Encoding. In this report we examine Arithmetic Encoding
and Dictionary-based Algorithm and give comparison between them according to their

performances.

Compression isused justabout everywhere. Allthe images youget onthe web are
compressed, typically in the JPEG or GIF formats, most modems use
compression, HDTV will be compressed using MPEG-2, and several file systems
automatically compress files when stored, and the rest of us doit by hand. The neat thing
about compression, as with the other topics wewill coverin this course,is that the
algorithms used in the real world make heavy useofa wide set of algorithmic tools,
including sorting, hash tables, tries, and FFTs. Furthermore, algorithms with strong theoretical

foundations play a critical role in real-world applications.



The genericterm message for theobjects wewant tocompress willbe used,
which could be either files or messages. The task of compression consists of two components,
an encoding algorithm  that  takesa  message and generates a “compressed”
representation (hopefully with fewer bits), and a decoding algorithm that reconstructs the
original message or some approximation of it from the compressed representation. These two
components are typically intricately tied together since they both have to understand the
shared compressed representation. We distinguish between lossless algorithms, which can
reconstruct the original message exactly from the compressed message, and loss algorithms,
which can only reconstruct an approximation of the original message. Lossless algorithms
are typically used fortext, andloss forimages andsound wherea little bit oflossin
resolution is often undetectable, or atleast acceptable. Loss is used in an abstract
sense, however, and does not mean random lost pixels, but instead means loss of a quantity
such as a frequency component, or perhaps lossof noise. For example, one  might
think that loss text compression would be unacceptable because they are imagining missing or
switched characters.  Consider instead asystem thatreworded sentences  into a more
standard form,  orreplaced words = withsynonymsso  thatthe filecan  be better
compressed. Technically the compression would be loss since the text has changed, but the
“meaning” and clarity of the message might be fully maintained, or even improved. In fact

Shrunk and White might argue that good writing is the art of loss text compression.

Isthere a lossless algorithm that can compress all messages? There has been at least one
patent application thatclaimedto beable tocompressall files (messages)—Patent
5,533,051 titled “Methods for Data Compression”. The patent application claimed that if
it was applied recursively, a file could be reduced to almost nothing. With a little thought you
should convince yourselfthatthis is  notpossible, atleast ifthesource messages
can contain any bit-sequence. We can see this by a simple counting argument. Let’s consider
all 1000 bit messages, as an example. There are 21000 different messages we can send, each,
which needs to be distinctly identified by the decoder. It should be clear we can’t represent
that many different messages by sending 999 or fewer bits for all the messages — 999 bits
would only allow us to send 2999 distinct messages. The truth is that if an algorithm shortens

any one message, then some other message needs to be lengthened. You can verify this in



practice by running GZIP on a GIF file. It s, in fact, possible to go further and show that for a
set of input messages of fixed length, if one message is compressed, then the average length of
the compressed messages over all  possible inputs is always goingto be longer than
the original input messages. Consider, for example, the 8 possible 3 bit messages. If one is
compressed to two bits, itis not hard to convince yourself that two messages will have to
expand to 4 bits, giving an average of 31/8 bits. Unfortunately, the patent was granted.

Data Compressionis  the procedure  ofencoding informationto  fewer bits than the
first representation so it consumes less storage space and less transmissiontime while
conveying more than a system. Data compression algorithms are classified in two ways 1i.e.
loss and lossless data compression algorithm. Compression algorithm is utilized to change
over information from a simple to-utilize arrangement to one advanced for smallness. In like

manner, an uncompressing system gives back the data to its unique structure.

File version 1 -
Original data

Compress

‘llllll

File version 2 -
Compressed data

Decompress (open
- the file)
v

Decompressed

Compress

‘llllll

File version 3 -
Re-compressed data

Decompress (open

the file)

‘Illlll

Decompressed

Compress

Qronnny

File version 4 -
Re-compressed data

Process continues

Figure 1.1: basic principle of Data Compress
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1.2 Problem Statement

The fundamental problem of lossless compression is to decompose a data set (for example, a
text file or an image) into a sequence of events, then to encode the events using as few bits as
possible. The idea is to assign short code words to more probable events and longer code
words to less probable events. Data can be compressed whenever some events are more
likely than others. Statistical coding techniques use estimates of the probabilities of the
events to assign the code words. Given a set of mutually distinct events e, €2, €3, €,
and an accurate assessment of the probability distribution P of the events, Shannon proved
that the smallest possible expected number of bits needed to encode an event is the entropy of
P, denoted by

H (P) = Xi=; —pfe;}log, p {ej}

Where p {e,} is the probability that event e, occurs. An optimal code outputs log, p bits to
encode an event whose probability of occurrence is p. Pure arithmetic codes supplied with
accurate probabilities provide optimal compression. In theory, arithmetic codes assign one
"code word" to each possible data set. The code words consist of half-open subintervals of the
half-open unit interval [0,1), and are expressed by specifying enough bits to distinguish the
subinterval corresponding to the actual data set from all other possible subintervals. Shorter
codes correspond to larger subintervals and thus more probable input data sets. In practice, the
subinterval is refined incrementally using the probabilities of the individual events, with
bits being outputassoon as theyare known. Arithmetic codes almost always give better
compression than prefix codes, but they lack the direct correspondence between the events in
the input data set and bits or groups of bits in the coded output file.

A statistical coder must work in conjunction with a modeler that estimates the probability of
each possible event at each point in the coding. The probability model need not describe the
process that generates the data; it merely has to provide a probability distribution for the data
items. The probabilities do not even have to be particularly accurate, but the more accurate
they are, the better the compression will be. Ifthe probabilities are wildly inaccurate, the
filemay evenbe expandedrather than compressed, but the original datacan still be
recovered. To obtain maximum compression of a file, we need both a good probability model

and an efficient way of representing (or learning) the probability model.
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Lossless data compression is aprocedure that permits the utilization of data compression
calculations to pack the content data further more permits the precise unique datato be
remade from the compacted data. This is in as opposed to the loss data compression in which
the careful unique datacan't berecreated from the compacted data. The prevalent
ZIP record organize that is being utilized for the compression ofdata documents is
likewise ause oflossless data compression approach. Lossless compression is utilized
whenitis vital that the first dataand the decompressed data be indistinguishable. Lossless
content data compression calculations typically abuse factual excess in such a path in order to
speak to the sender's data all the more briefly with noblunder or any kind of loss of
vital data contained inside of the content information data. Since the majority of this present
reality data has factual excess, thusly-lossless data compression is conceivable. Case in point,
In English content, the letter "an" isa great deal more basic than theletter 'z', and the
likelihood that the letter “z” will trail the letter “t” is little. So this sort of repetition can
be evacuated utilizing lossless compression. Lossless compression techniques may
be classified by kind of datatheyare intended to pack.Compression calculations are
essentially utilized for the compression of content, pictures and sound. Most lossless
compression projects utilize two various types of calculations: one which creates a factual
model for the info data and another which maps the information data to bit strings utilizing
this model as a part of such a route, to the point that soften as possible experienced data will
deliver shorter yieldthan improbable (less continuous)data. The upside of lossless
techniques over loss systems is thatLossless compression results arein a
closer representation of the first info data. The execution of calculations can be thought about
utilizing the parameters, for example, Compression Ratio and Saving Percentage. In lossless
data compression document the first message can be precisely decoded.

Lossless data compression lives up to expectations by discovering rehashed examplesin a
message and encoding those examples in an effective way. Thus, lossless data compression is
likewise alluded to as repetition decrease. Since repetition decrease is reliant on examples in
the message, it doesn't function admirably on arbitrary messages. Lossless data compression

is perfect for content.
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1.3 Objective

Our objectiveitto implement the Huffman codingalgorithms, LZW, run length-
encoding algorithm and compare the results obtained to maximize the compression ratio and

minimize the compression time.

1.4 Methodology
1.4.1 Huffman Coding

Huffman Data Compression algorithm works in three phases to compress the text data. In the
first phase data is compressed with the help of dynamic bit reduction technique and in second
phase unique words are to be found to compress the data further and in third and final phase
Huffman coding is used to compress the data further to produce the final output. Following
are the main steps of algorithm for compression and decompression:

Step I: Input the text data to be compressed.

Step II: Apply Dynamic bit Reduction method to compress the data.

Step III: Find the unique symbol to compress the data further.

Step IV: Create the binary tree with nodes representing the unique symbols

Step V: Apply Huffman coding to Finally compress the data.

Step VI: Display the final result obtained in previous step.

Huffman coding is an entropy-encoding algorithm used for lossless data compression in
computer science and information theory. The term refers to the use of variable-length code
table for encoding a source symbol (such as a characterin a file) where the variable-length
code table has been derivedin a particular way based on the estimated probability of
occurrence for each possible value of the source symbol.

Huffman coding uses a specific method for choosing there presentation for each symbol,
resulting in a prefix-free code (that is, the bit string representing some particular symbol is
never a prefix of the bitstring representing another symbol)thatexpresses the most
common characters using shorter stringsof bits than are wusedfor less common
source symbols. Huffman was able to design the most efficient compression method of this

type: mnoother mapping of individual source symbolstounique strings of bits
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will produce a smaller average output size when the actual symbol frequencies agree with
those used to create

The code. A method was later found todo this in linear time if input probabilities (also
known as weights) are sorted. For a set of symbols with a uniform probability distribution and
a number of members which isa power of two, Huffman coding is equivalent to simple

binary block encoding [e.g., ASCII coding.

Assume you havea source generating4 different symbols {al,a2, a3, and a4} with
probability {0.4;0. 35;0.2;0.05}. Generate a binary tree from left toright taking the
two less probable symbols, putting them together to form another equivalent symbol having
a probability that equals the sum of the two symbols. Keep on doing it until you have just one
symbol. Then read the tree backwards, from righ to left, assigning different bits to different
branches. The final Huffman code is:

SYMBOL CODE

Al0

A2 10

A3111

A4 110

The technique works by creatinga binary tree of nodes. These can be storedin a regular
array, the size of which depends on the number of symbols (N). A node can be either a leaf
node or an internal node. Initially, all nodes are leaf nodes, which contain the symbol itself,
the weight (frequency of appearance) of the symbol and optionally, Link to aparent node
which makes it easy toread the code (inreverse) starting from aleaf node. Internal nodes
contain symbol weight, links to two child nodes and the optional link to a parent node. As a
common convention, bit'0' represents following the left child and bit 'l'represents following
the right child. A finished tree has Leaf nodes and N—1 internal nodes. A linear-time* method
to create a Huffman tree is to usetwo queues, the firstone containing the initial weights
(along with pointers to the associated leaves), and combined weights (along with pointers
to the trees) being put in the back of the second queue. This assures that the lowest weight

is always kept at the front of one of the two queues.
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1.42LZW

LZW compression replaces strings of characters with single codes. It doesnot do any
analysis of the incoming text .Instead, it just adds every new string of characters it sees to
atable of strings .Compression occurs when a single code is output instead ofa string of
characters LZW also performs well when presented with extremely redundant data files,
such as tabulated numbers, computer source code, and acquired signals.

When the LZW program starts to encode a file, the code table contains only the first 256
entries, with the remainder of the table being blank. This means that the first codes going into
the compressed file are simply the single bytes from the input file being converted to 12
bits. As the encoding continues, the LZW algorithm identifies repeated sequences in the data,
and adds themto the code table. Compression startsthe second time asequence is
encountered. The key point is that a sequence from the input file is not added to the code table
until it has already been placed in the compressed file as individual characters (codes 0 to
255). This is important because it allows the uncompressing program to reconstruct the code
table directly from the compressed data, without having to transmit the code table separately.
The decoding algorithm works by reading a value from the encoded inputand outputting
the corresponding string from the initialized dictionary. In order to rebuild the dictionary in
the same way as it was built during encoding, it also obtains the next value from the input
and adds to the dictionary the concatenation of the current string and the first character of the
string obtained by decoding the next input value, or the first character of the string just output
if the next value can not be decoded (If the next value is unknown to the decoder, then it must
be the value that will be added to the dictionary this iteration, and so its first character must be
the same as the first character of the current string being sent to decoded output). The decoder
then proceeds to the nextinput value (which was already read in as the "next value" in the
previous pass) and repeats the process until there is no more input, at which point the final
input value is decoded without any more additions to the dictionary.

In this way the decoder builds up a dictionary, which is, identical to that used by the encoder,
and uses it to decode subsequent input values. Thus the full dictionary does not need be sent
with the encoded data; justthe initial dictionary containing the single-character strings is
sufficient (and is typically defined beforehand withinthe encoder and decoder rather than

being explicitly sent with the encoded data.
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1.4.3 Run Length Encoding

This algorithm consists of replacing large sequences of repeating data with only one item
of this data followed by a counter showing how many times this item is repeated.

The algorithm works as follow:

a) Pick the first character from source string.

b) Append the picked character to the destination string.

c¢) Count the number of subsequent occurrences of the picked character and append the count
to destination string.

d) Pick the next character and repeat steps b) ¢) and d) if end of string is NOT reached.

16



Chapter-2
LITERATURE SURVEY

2.1 Huffman Coding

The Huffman coding procedure finds the optimum (least rate) uniquely decodable, variable
length entropy codeassociated with a setof events given their probabilities of
occurrence. The procedure is simple enough that we can present it here.

The Huffman coding method isbased on the construction of whatis known asa binary
tree. The path from the top or root of this treeto a particular event will determine the code
group we associate with that event.

Suppose, for example, that we have six events with names and probabilities given in the table

below.

Event Name Probability

0.30

0.30
0.13
0.12

0.10

oo™ g Q) W o>

0.05

Our first step is to order these from highest (on the left) to lowest (on the right) probability as
shown in the following figure, writing out next to each event its probability for since this

value will drive the process of constructing the code.

03 03 0.13 0,12 0.1 0.05
Evenr A Event B Evenc 2 Evenc [} Event E Event E

Figure 2.1 preparing for Huffman code construction
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Now we perform a construction process in which we will pair events to form a new single
combined event, which will replace the pair members. This step will be repeated many
times, until there are no more pairs left.

First we findthe two events withleast combined probability. The first timewe do
this, the answer will always be the two right hand events. We connect them together, as
shown in Figure = 2.1 callingthisa  combined event(EFin thiscase)and noting
its probability (which is the sum of those of E and F in this case.) We also place a 0 next to the
left hand branch and a 1 next to the right hand branch of the connection of the pair as shown

in the figure. The 0 and 1 make up part of the code we are constructing for these elements.

0.13
EF
0 1
0.3 0.3 0.13 0.12 0.1 0.03
Fvenl A FEveni B Eveni C Eveni D Eveni B Eveni F

Figure2.2 list all event in descending order of probability

Now we repeat the last step, dealing only with the remainingevents and the combined
event. This time combining Cand D createsa combined event with less probability than

combining any others.

0.25 0.15
CD EF
0 1 0 1
0.3 0.3 0.13 0.12 0.1 0.05
Evenl A Eveni B Evenl C Evenl D Evenli E Eveni F

Figure 2.3 combining C and D

18



Again we repeat the process. This time, combining the combined events CD and EF create

the new combined event with least probability.

0.4
CDEF
0
0.25 0.15
D EF
0 1 0 1
0.3 0.3 0.13 0.12 0.1 0.05
Evenl A Eveni B Evenli C Evenl D Evenli B Eveni F
Figure2.4 combining CD and EF
The next time around the best combination is of A and B.
0.6 0.4
AR CDEF
0 1 0
0.25 0.15
CD EF
0 1 0 1
0.3 0.3 0.13 0.12 0.1 0.05
Fvenl A FEveni B Eveni C Eveni D Eveni E Evenl F

Figure 2.5 combining A and B

Finally there is only one pair left, which we simply combine.

19



0.6 0.4
AB CDEF
0 1 0 1
0.25 0.15
CD EF
0 1 0 1
0.3 0.3 0.13 0.12 0.1 0.05
Evenl A Eveni B Evenl C Evenl D Evenli E Eveni F

Figure 2.6 combining AB and CDEF

Having finished our connection tree, we are ready to read off of the diagram the codes that
we will associate with each of the original events. To obtain the code, we start at the top level
of the tree and make our way to the eventwe wish tocode. The series of 0's and 1's we
encounter along the wayon the branches ofthe tree comprise our code. Doingso for

each event in this case yields the following result.

Event Name Probability Code Length

0.3 00 2
B 0.3 01 2
C 0.13 100 3
D 0.12 101 3
E 0.1 110 3
F 0.05 111 3

If wesum the productsof the event probabilities and the code lengths for this case

we obtain an average bitrate of 2.4 bits per event. If we compute the true minimum bit

20



rate, that is the information rate, of these events as we did with the previous example, we
obtain 2.34 bits.

Suppose that we had been originally planning to code our events originally as all 3-bit codes
in afixed length code scheme. Then, if we code a document, which is long enough so that
we obtain the average promised by this new scheme instead, we will find that we will obtain a
compression ratio over the original scheme of 2.4/3 = 80% whereas the ultimate possible
compression ratio is 2.34/3 = 78%.

It can be shown that the Huffman code provides the best compression for any communication
problem for a given grouping of the events. In this problem we chose not to group events, but
to codethem individually. Ifwe wereto createthe 36 events we would get by forming
pairs of the above events, we would get substantially closer to the optimum rate suggested by

the information rate calculation.

-¢— tree,meanwhile calculate the
sum of their probabilities as the
probability of the new
generated symbol (mark as p)

insert p in the -

probabilities array probabilities array

array)>1?

Start
Pre-handle (if the length of the
given probabilities array (mark
as s) does not full-fill the
Initialize the coder b Sbc?lal':.ﬂ\e 1" ec:)uaatic;r! s=(:.aﬁ Initialize the cod
5 L probabilities array n+base),in which base nitialize the code-
properties (symbol- | in desscending > stands for the number of the B tree-map
set,features,etc). .
order symbols for coding and n
stands for any none-negati
integer.then fill in the least
zeros to full-fill it).
Y 1
| Y 1
I Adjust the code- :
! Insert p into the . | tree-map and put o | Putthe code-tree into W oneet |
: probabilities array | the new code-tree = the code-tree-map = |
| into it 1
I
: A 1
1 Y !
1 I
! |
: Code the last [base] elements ]
] and put the corodinate code- :
: Find the index to Reduce the Size(of the probabilities symbols into the code- H
I
: i
1 I
1 I
1 I
1 I
1 I
1 I
1 1
1 I

Figure 2.7 functioning of Huffman algorithm
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22LZW

The LZW algorithm is a greedy algorithm in thatittries to recognize increasingly longer
and longer phrases that are repetitive, and encode them. Each phrase is defined
to have a prefix that is equal toapreviously encoded phrase plus one  additional
character in the alphabet. Note “alphabet” means the set of legal characters in the file. For a
normal text file, this is the acai character set. For a gray level image with 256 gray levels, it is
an 8-bit number that represents the pixel’s gray level.

For an instance the compression forthe phrase “the/rain/in/spain/falls/mainly/on/the/plain

will be as follows :

$.n0 Char String+char | In table Output Add to New comment
table string

1 t t no t first
charno
action

2 h tg no t 256 h

3 e he no h 257 e

4 / e/ no e 258 /

5 r /r no / 259 r

6 a ra no r 260 a

7 i ai no a 261 i

8 n in no i 262 n

9 / n/ no n 263 /

10 1 /i no / 264 1

11 n in yes(262) in first match
found

12 / in/ no 262 265 /

13 ] /s no / 266 ]

14 p sp no S 267 p

15 a pa no p 268 a

22




16 i ai yes(261) ai

17 n ain no 261 269 n

18 / n/ yes(263) n/

19 f n/f no 263 270 f

20 a fa no f 271 a

21 1 al no a 272 1

22 1 11 no 1 273 1

23 ] Is no 1 274 ]

24 / s/ no ] 275 /

25 m /m no / 276 m

26 a ma no m 277 a

27 1 ai yes(261) ai match ai

28 n ain yes(269) ain match
longer
string,ain

29 1 ainl no 269 278 1

30 y ly no 1 279 y

31 / y/ no y 280 /

32 0 /o no / 281 0

33 n on no 0 282 n

34 n/ yes(263) n/

35 t n/t no 263 283 t

36 h th yes(256) th matches
th,the is
not in
table yet

37 e the no 256 284 e the added
to table

38 / e/ yes() e/

39 p e/p no 258 285 p

23




40 1 pl no p 286 1

41 a la no 1 287 a

42 i ai yes(261) ai matches ai

43 n ain yes(261) ain matches
longer
string ain

44 / ain/ no 269 /

45 EOF / / 288 end of
file,output
STRING

2.3 run length encoding

Run-length encoding is an information pressure calculation thatis upheld by most bitmap
document arrangements, for example, TIFF, BMP, and PCX. RLE is suited for compacting
any sort ofinformation paying little respectto its datacontent, yet the substance of
the information will influence the pressure proportion accomplished by RLE. Albeit most
RLE calculations can't accomplish the high pressure proportions of the more propelled
pressure techniques, RLE is both simple to actualize and brisk to execute, making it a decent
other option to either utilizing a perplexing pressure calculation or leaving your picture

information uncompressed.

RLE works by decreasing the physical size of a rehashing series of characters. This rehashing
string, called arun, is ordinarily encoded into two bytes. The primary byte speaks to the
quantity of characters in the run and is known as the run number. By and by, an encoded run
may contain 1 to 128 or 256 characters; the run consider more often thannot contains the
quantity of characters short one (an incentive in the scope of 0 to 127 or 255). The second
byte is the estimation of the character inthe run, which is inthe scope of 0 to 255, andis
known as the run esteem.

Run length encoding (RLE) is a very simple form of lossless data compression which runs on
sequences having same value occurring many consecutive times and it encode the sequence to

store only a single value and its count.
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For example,

Consider ascreen containing plain black text on asolid white background. There
will be many long runs of white pixels in the blank space, and many short runs of black pixels
within the text.
WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWW
WWWWWWWWWWWWBWWWWWWWWWWWWWW

Witharun length encoding (RLE) data compression algorithm applied to the above
hypothetical scan line, it can be rendered as follows:

12WI1B12W3B24WI1B14W

This can be interpreted as a sequence of twelve Ws, one B, twelve Ws, three Bs, etc.

25



Chapter-3
SYSTEM DEVELOPMENT

3.1 Huffman Coding
3.1.1 Compression Algorithm

shortcreate tree()

{
voidfind lowest freqs(void);
shortonly one up ptr left(void);
doublemaxfreq =0 ;
structchardata *new_node = NULL;
fprintf(fpp,"Creating tree from frequencies...");
while (maxfreq< 0.99999 )

{
find lowest freqs();
if ((new_node = (structchardata *)malloc(sizeof
(structchardata)) )

== NULL

)

{

printf(fpp,"Insufficient memory, malloc()
failed in create tree().")
return FALSE;

}
new_node->up = NULL;
new_node->left = ptr2;

new_node->right = ptrl;
new_node->charnum = -1;

ptrl->up = new_node;
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ptr2->up = new_node;
new_node->frequency = ptrl->frequency + ptr2-
>frequency;
maxfreq = new_node->frequency;
#ifdef VERBOSE
fprintf(fpp,"Newly created freq == %f\n",
maxfreq);
#endif
}
root = new_node;
if (only one up ptr left())
{
fprintf(fpp,"Done creating tree.");
#ifdef verbose
fprintf(fpp,"Win: apparently only one remaining
up-pointer.");
#endif
}

else

{

fprintf(fpp,"Lose: apparently more than one remaining up-pointer.");

return FALSE;

}
return TRUE;

}
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3.1.2 Model Developement

The technique works by creating a binary tree of nodes. These can be stored in a regular array,
the size of which depends on the number of symbols, <math>n</math>. A node canbe

either a leaf node or an internal node. Initially, all nodes are leaf nodes, which contain

the symbol itself, the weight (frequency of appearance) of the symbol and optionally, a link to
a parent node which makes it easy to read the code(in reverse)starting from aleaf
node. Internal nodes contain symbol weight, links to two child nodes and the optional link to
a parentnode. As a common convention, bit'0' represents following the left child and bit 'l'
represents following the right child. A finished tree has up to <math>n</math> leaf nodes and
<math>n-1</math> internal nodes. A Huffman tree that omits unused symbols produces the
most optimal code lengths.
The process essentially begins with the leaf nodes containing the probabilities of the symbol
they represent, then anew node whose children are the 2 nodes with smallest probability is
created, such that the new node's probability is equal to the sum of the children's probability.
With the previous 2 nodes merged into one node (thus not considering them anymore), and
with the new node being now considered, the procedure isrepeated until only one node
remains, the Huffman tree.
The simplest construction algorithm uses a priority queue where thenode with lowest
probability is given highest priority:

* Create a leaf node for each symbol and add it to the priority queue.

*  While there is more than one node in the queue:

* Remove the two nodes of highest priority (lowest probability) from the queue.

* Create a new internal node with these two nodes as children and with probability equal

to the sum of the two nodes' probabilities.

* Add the new node to the queue.

* The remaining node is the root node and the tree is complete.
Since efficient priority queue data structures require O(logn) time per insertion, and a tree
withn leaves has2n—1 nodes, this algorithm operates in O(nlogn)time, where nis the

number of symbols.
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Ifthe symbols are sorted by probability, there is a linear-time (O(n)) method to create a
Huffman tree using two queues, the first one containing the initial weights (along with
pointers tothe associated leaves), and combined weights (along with pointers to the trees)
being put in the back of the second queue. This assures that the lowest weight is always kept
at the front of one of the two queues:
+ Start with as many leaves as there are symbols.
* Enqueue all leafnodes into the first queue (by probability in increasing order so that
the least likely item is in the head of the queue).
While there is more than one node in the queues:
* Dequeuethetwo nodes with the lowestweightbyexamining the fronts
of both queues.
* Create a new internal node, with the two just-removed nodes as children (either node
can be either child) and the sum of their weights as the new weight.
* Enqueue the new node into the rear of the second queue.
* The remaining node is the root node; the tree has now been generated.
Although linear-time given sorted input, in the general case of arbitrary input, using this
algorithm requires pre-sorting. Thus, since sorting takes O(n logn) time in the general case,
both methods have the same overall complexity.
Inmany cases, time complexity is not veryimportantin the choice ofalgorithm here,
since n here is the number of symbols in the alphabet, which is typically a very small number
(comparedtothe lengthof themessageto be encoded); whereas complexity
analysis concerns the behavior when n grows to be very large.
It is generally beneficial to minimize the variance of codeword length. Forexample, a
communication buffer receiving Huffman-encoded data may need to be larger to deal with
especially long symbols ifthe treeis especially unbalanced. To minimize variance, simply
break ties between queues by choosing the item inthe first queue. This modification will
retain the mathematical optimality of the Huffman coding while both minimizing variance

and minimizing the length of the longest character code.
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3.1.3 Analysis of Huffman coding
Although Huffman's original algorithm isoptimal for a symbol-by-symbol coding
(i.e.,astream of unrelated symbols) with aknown input probability distribution, itis not

optimal when the symbol-by-symbol restriction is dropped, or when the probability mass

functions are unknown. Also, if symbols are not independent and identically distributed, a

singlecode may beinsufficient for optimality. Other methods such as arithmetic

codingand LZW coding often have better compression capability: Both of these methods can

combine an arbitrary number of symbols for more efficient coding, and generally adapt to the
actual input statistics, useful when input probabilities are not precisely known or vary
significantly ~ within the stream. However, these methods have higher computational
complexity. Also, both arithmetic codingand LZW were historically a subject of some
concern over patent issues. However, as of mid-2010, the most commonly used techniques for
these alternatives to Huffman coding have passed into the public domain as the early patents
have expired.

However, the limitations of Huffman coding should not be overstated;itcan be used
adaptively, accommodating unknown, changing, or context-dependent probabilities. In the
case of known independent and identically distributed random variables, combining symbols
("blocking") reduces inefficiency in a way thatapproaches optimality as the number of
symbols combined increases. Huffman coding is optimal when each input symbol is a known
independent and identically distributed random variable having a probability that is an the
inverse of a power of two.

Prefix codes tend to have inefficiency on small alphabets, where probabilities often fall
between these optimal points. The worst case for Huffman coding can happen when the
probability of a symbol exceeds 2" = 0.5, making the upper limit of inefficiency unbounded.
These situations often respond well to a form of blocking called run-length encoding ; for the
simple case of Bernoulli processes, Golomb coding is a provably optimal run-length code.

For a set of symbols with a uniform probability distribution and a number of members which
isapower of twoHuffmancoding is equivalentto simple binaryblock encoding,

e.g., ASCII coding. This reflects the fact that compression is not possible with such an input.
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Most often, the weights used in implementations of Huffman coding represent numeric
probabilities, but the algorithm given above does notrequirethis; it requires only
that the weights form a totally ordered commutative monoid, meaning a way to order weights
and to add them. The Huffman template algorithm enables one touse any kind of weights
(costs, frequencies, pairs of weights, non-numerical weights) and one of many combining
methods (not just addition). Such algorithms can solve other minimization problems, such as
minimizing<math>\max_i\left{w_{i}+\mathrm {length}\left(c_{i}\right)\right]</math>a
problem first applied to circuit design.

In the standard Huffman coding problem, it is assumed that each symbol in the set that the
code words are constructed from has an equal cost to transmit: acode word whose length
is N digits will always have a cost of N, no matter how many of those digits are Os, how many
are 1s, etc. When working under this assumption, minimizing the total cost of the message
and minimizing the total number of digits are the same thing.

Huffman coding with unequal letter costs is the generalization without this assumption: the
letters of the encoding alphabet may have non-uniform lengths, due to characteristics of the
transmission medium. An example is the encoding alphabet of Morse code, where a 'dash’
takes longer tosend than a 'dot', and therefore the cost ofadash in transmission time is
higher. The goal is still to minimize the weighted average codeword length, but it is no longer
sufficient just to minimize the number of symbolsused by the message. No algorithm is
known to solve this in the same manner or with the same efficiency as conventional Huffman

coding.
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32.LZW

3.2.1 compression algorithm

w = NIL;
while ( read a character k )
{

if wk exists in the dictionary

w = wk;

else
add wk to the dictionary;
output the code for w;

w=Kk;

input fivst byte,
store in STRING

[5)

is
STRING+CHAR
in table?

Y

output the code 4 STRING = 7
for STRING STRING + CHAR

add entry in table for 5
STRING=CHAR

more bytes
to mput?

ouput the coda
for STRING

Figure 3.1 flowchart of LZW compression
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3.2.2 decompression algorithm
read a character k;
output k;
w=Kk;
while ( read a character k )
/* k could be a character or a code. */
{
entry = dictionary entry for k;
output entry;
add w + entry[0] to dictionary;
W = entry;

}

output translation
of OCODE

input next code,
store m NCODE

STRING

translation of NCODE

CHAR = the first
character in STRING

dd entry in table for 10

B z
OCODE + CHAR

11
OCODE=NCODE

more codes
to input?

Figure 3.2 flowchart of LZW decompression
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3.2.3 model development

When the LZW program starts to encode a file, the code table contains only the first
256 entries, with the remainder of the table being blank. This means that the first codes going
into the compressed file are simply the single bytes from the input file being converted to 12
bits. As the encoding continues, the LZW algorithm identifies repeated sequences in the data,
and addsthemto the code table. Compression startsthe second time asequence is
encountered. The key point is that a sequence from the input file is not added to the code table
until it has already been placed in the compressed file as individual characters (codes O to
255). This is important because it allows the uncompression program to reconstruct the code
table directly from the compressed data, without having to transmit the code table separately.
The decoding algorithm works by reading a value from the encoded input and outputting the
corresponding string from the initialized dictionary. In order to rebuild the dictionary in the
same way as it was built during encoding, it also obtains the next value from the input and
adds to the dictionary the concatination of the current string and the first character of the
string obtained by decoding the next input value, or the first character of the string just output
if the next value can not be decoded (If the next value is unknown to the decoder, then it must
be the value that will be added to the dictionary this iteration, and so its first character must be
the same as the first character of the current string being sent to decoded output). The decoder
then proceeds to the nextinput value (which was already readinasthe "next value" in
the previous pass) and repeats the process until there is no more input, at which point the final
input value is decoded without any more additions to the dictionary.

In this way thedecoderbuilds up a dictionary whichisidentical to thatused by the
encoder, and uses it to decode subsequent input values. Thus the full dictionary does not need
be sent with the encoded data; just the initial dictionary containing the single-character strings
is sufficient (and is typically defined beforehand within the encoder and decoder rather than

being explicitly sent with the encoded data.

3.2.4 Analysis

LZW algorithm is larger than the Huffman algorithm because the scanning window or the
LZW algorithm takes more time in order to fill up the dictionary inside the LZW. Although

the compression time islonger,it takes a shortertime to decompressusing the LZW
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algorithm than the Huffman algorithm. This is because the decoding process only needs to

decode the data by matching the LZW code with the code inside the library.

3.3 Run length encoding

3.3.1 compression algorithm

/I tor mput b with length 1
mdex =0
while( mndex <1)

{
min = blindex|
length =0
it run = b|++index|

Wwhile run = blindexlength)
wdex++. length++

output (run, length);
}

3.3.2 decompression algorithm
// for input b with length 1
index=0
while( index < 1)

{
run = b[index++]
length = b[index++]
Quiput (run, length+1)
}

3.3.3 model development

Run-length encoding is a data compression algorithm that is supported by most bitmap file

formats, such as TIFF, BMP, and PCX. RLE is suited for compressing any type ofdata

regardless of its information content, but the content of the data will affect the compression
ratio achieved by RLE. Although most RLE algorithms cannot achieve the high compression

ratios ofthe more advanced compression methods, RLEisboth easy to implement
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and quick to execute, makingit a good alternative to either usinga complex compression
algorithm or leaving your image data uncompressed.

RLE works by reducing the physical size of a repeating string of characters. This repeating
string, called a run, is typically encoded into two bytes. The first byte represents the number
of characters in the run and is called the run count. In practice, an encoded run may contain 1
to 128 or 256 characters; the run count usually contains as the number of characters minus
one (a value in the range of 0 to 127 or 255). The second byte is the value of the character in

the run, which is in the range of 0 to 255, and is called the run value.

RunCount=0

v

Read RunValue A

v

> Read RunValue B Increment RunCount

End of data stream?

Write RunCount Value

Is
RunCount at
maximum?

Is
RunValueA = =
RunValueB?

Write RunValue A

v

EXIT y
Write RunCount Value

v

Write RunValueA

v

RunValueA =
RunValueB

v

RunCount=0
J

Figure 3.3 flowchart of run length encoding
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3.3.4 analysis

The parts of run-length encoding algorithms that differ are the decisions that are made based
on the type of data being decoded such as the length of data runs. RLE schemes used to encode
bitmap graphics are usually divided into classes by thetype of atomic (thatis, most
fundamental) elements that they encode. The three classes used by most graphics file formats
are bit-, byte-, and pixel-level RLE.

Bit-level RLE schemes encode runs of multiple bits in a scan line and ignore byte and word
boundaries. Only monochrome (black and white), 1-bit images contain a sufficient number of
bit runs to make this class of RLE encoding efficient. A typical bit-level RLE scheme encodes
runs of one to 128 bits in length in a single-byte packet. The seven least significant bits contain
the run count minus one, and the most significant bit contains the value of the bit run, either 0
or 1. A run longer than 128 pixels is split across several RLE-encoded packets.

Byte-level RLE schemes encode runs of identical byte values, ignoring individual bits and
word boundaries within a scan line. The most common byte-level RLE scheme encodes runs
of bytes into 2-byte packets. The first byte contains the run count of 0 to 255, and the second
byte contains the value of the byte run. It is also common to supplement the 2-byte encoding
scheme with the ability to store literal, unencoded runs of bytes within the encoded data
stream as well.

In such a scheme, the seven least significant bits of the first byte hold the run count minus
one, and the most significant bit of the first byte is the indicator of the type of run that
follows the run count byte. If the most significant bit is set to 1, it denotes an encoded run.
Encoded runs are decoded by reading the run value and repeating it the number of times
indicated by the run count. If the most significant bit is set to 0, a /iteral run is indicated,
meaning that the next run count bytes are read literally from the encoded image data . The
run count byte then holds a value in the range of 0 to 127 (the run count minus one). Byte-
level RLE schemes are good for image data that is stored as one byte per pixel.

Pixel-level RLE schemes are used when two or more consecutive bytes of image data are
used to store single pixel values. At the pixel level, bits are ignored, and bytes are counted
only to identify each pixel value. Encoded packet sizes vary depending upon the size of the
pixel values being encoded. The number of bits or bytes per pixel is stored in the image file

header. A run of image data stored as 3-byte pixel values encodes to a 4-byte packet.
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Chapter-4
PERFORMANCE ANALYSIS

Performance analysis of compression algorithms can be done by various factors. However,
the main concern has always been the space efficiency and time efficiency. We are using
different factors to analyze the algorithm.

4.1 Compression Ratio

Compression ratio, also known as compression power, is used to quantify the reduction in
data-representation  size produced by a data compression algorithm. The data  compression

ratio is analogous to the physical compression ratio used to measure physical compression of

substances.
Data compressionratio is  defined asthe ratio  between the uncompressed

size and compressed size.

Uncompressed Size

Compression Ratio = :
Compressed Size

Thus a representation that compresses a 10 MB file to 2 MB has a compression ratio of 10/2
= 5, often notated as an explicit ratio, 5:1 (read "five" to "one"), or as an implicit ratio, 5/1.
Note that this formulation applies equally for compression, where the uncompressed size is
that of the original; and for decompression, where the uncompressed size is that of the
reproduction.

Sometimes the space savings is given instead, which is defined as the reduction in size

relative to the uncompressed size:

Compressed Size

Space Savings = 1 —
P 8 Uncompressed Size

Thus a representation that compresses a 10MB file to 2MB would yield a space savings of 1

- 2/10 = 0.8, often notated as a percentage, 80%.
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For signals ofindefinite size, such as streaming audio and video, the compression ratio is

defined in terms of uncompressed and compressed data rates instead of data sizes:

Uncompressed Data Rate
Compression Ratio = s

Compressed Data Rate

Instead of space savings, one speaks of data-rate savings, which is defined as the data-rate

reduction relative to the uncompressed data rate:

Compressed Data Rate
Uncompressed Data Rate

Data Rate Savings = 1 —

For example, uncompressed songs in CD format have a datarate of 16 bits/channel x 2
channels x44.1 kHz = 1.4 Mbit/s, whereas AAC files on an iPod are typically compressed to
128 Kbit/s, yielding a compression ratio of 10.9, for a data-rate savings of 0.91, or 91%.

When the uncompressed data rate is known, the compression ratio can be inferred from the

compressed data rate.

4.2 Compression Speed

Compression speed is related to the data format and the machine type. The relationship
between application performance and host machine parametersisa research topic that is
outside  ofthe scope of this paper. During the experiments, we keep using the same machine
for all the compressions, and make sure that our application is the only workload. This way,
we can think of compression speed as a function of compression algorithm. The compression
speed is also affected by compression buffer size, but we omit this factor by using the
“Compression is an important technique in the multimedia computing field. This is because
we can reduce the size of data and transmitting and storing the reduced data on the Internet
and storage devices are faster and cheaper than uncompressed data. Many image and video
compression standards such as JPEG, JPEG2000, and MPEG-2, and MPEG-4 have been

proposed and implemented. In all of them entropy coding, arithmetic and Huffman
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algorithms are almost used. In other words, these algorithms are important parts of the
multimedia data compression standards. In this paper we have focused on these algorithms in
order to clarify their differences from different points of view such as implementation,
compression ratio, and performance.” We have explained these algorithms in detail,
implemented, and tested using different image sizes and contents.” From implementation
point of view, Huffman coding is easier than arithmetic coding. Arithmetic algorithm yields
much more compression ratio than Huffman algorithm while Huffman coding needs less
execution time than the arithmetic coding. This means that in some applications that time is
not so important we can use arithmetic algorithm to achieve high compression ratio, while
for some applications that time is important such as real-time applications, Huffman

algorithm can be used.””

same size of buffer, which is 16KB.

When evaluating data compression algorithms, speed is always interms of uncompressed
data handled per second.

Some applications use data compression techniques even when they have so much RAM and
disk space that there'sno real need tomake files smaller. File compressionand delta
compression are often used to speed up copying files from one end of a slow connection to
another. Even on a single computer, some kinds of operations are significantly faster when
performed on compressed versions of data rather than directly on the uncompressed data. In
particular, some compressed file formats are designed so that compressed pattern matching --
searching for a phrase in acompressed version ofa text file -- is significantly faster than

searching for that same phrase in the original uncompressed text file.

Uncompressed bits

speed =
seconds to compress

In a few applications, the compression speed is critical. If a particular implementation of an
audio compressor running on a prototype voice recorder cannot sustain 7 bits/sample/channel
x 1 channel x 8 kSamples/s = 56 kbit/s from the microphones to storage, then it is unusable.

No one wants their recorded voice to have silent gaps where the hardware could not keep up.
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No one will buy it unless you switch to a different implementation or faster hardware (or both)
that can keep up with standard telephone-quality voice speeds.

The speed varies widely from one machine to another, from one implementation to another.
Even on the same machine and same benchmark file and same implementation source code,
using a different compiler may make a decompressor run faster.The speed of a compressor is
almost always slower than the speed of its corresponding decompressor.

Even with a fast modern CPU, compressed file system performance is often limited by the

speed of the compression algorithm. Many modern embedded systems -- as well as many of
the early computers that data compression algorithms were first developed on -- are heavily

constrained by speed.

4.3 Results of Huffman coding

1384 bytes 771 bytes 4901 bits 22 ms 1.795
2768 bytes 1542 bytes 9802 bits 91.6 ms 1.645
5992 bytes 3313 bytes 21425 bits 442.1 ms 1.808

Table 1: result of Huffman coding
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4.4 Results of LZW

|

1360 bytes 1067 bytes 293 bytes 3.00ms 1.274
2719 bytes 1730 bytes 989 bytes 6.001 ms 1.571
4079 bytes 2396 bytes 1683 bytes 8.04ms 1.702

Table 2: result of LZW

4.5 Results of run length encoding

1856 bytes 633 bytes 1223 bytes

1398 bytes 407 bytes 991 bytes 0.0l6ms 3.434

8760 bytes 2737 bytes 6023 bytes 0.019  3.200

Table 3:result of RLE
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4.6 comparison of different compression techniques

794 bytes

428 bytes 366 bytes
795 bytes 701 bytes 94 bytes 3ms 1.134

795 bytes 511 bytes 284 bytes 1 ms 1.555

Table 4:comparison of different techniques
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Chapter-5
CONCLUSION

5.1 Conclusion

Compression is an important technique in the multimedia computing field. This is because we
can reduce the size of data and transmitting and storing the reduced data on the Internet and
storage devices are faster and cheaper than uncompressed data. Many image and video
compression standards such as JPEG, JPEG2000, and MPEG-2, and MPEG-4 have been
proposed and implemented. In all of them entropy coding, arithmetic and Huffman algorithms
are almost used. In other words, these algorithms are important parts of the multimedia data
compression standards. In this paper we have focused on these algorithms in order to clarify
their differences from different points of view such as implementation, compression ratio, and
performance. We have explained these algorithms in detail, implemented, and tested using
different image sizes and contents. From implementation point of view, Huffman coding is
easier than arithmetic coding. Arithmetic algorithm yields much more compression ratio than
Huffman algorithm while Huffman coding needs less execution time than the arithmetic
coding. This means that in some applications that time is not so important ~we  can  use
arithmetic algorithm to achieve high compression ratio, while for some applications that time
is important such as real-time applications, Huffman algorithm can be used.

LZW algorithm is larger than the Huffman algorithm because the scanning window or the
LZW algorithm takes more time in order to fill up the dictionary inside the LZW. Although
the compression time is longer, it takes a shorter time to decompressusing the LZW
algorithm than the Huffman algorithm. This is because the decoding process only needs to

decode the data by matching the LZW code with the code inside the library.

5.2 Future scope

LZW is Easy to implement , Fast compression, Dictionary based technique.

Produce a lossless compression of images

With the advancements in compression technology, it is now very easy and efficient to

compress video ,text ,images or standard data files
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LZW compression became the first widely used universal data compression method on
computers

text file can typically be compressed via LZW to about half its original size.

LZW became very widely used when it became part of the GIF , TIFF and pdf file.

Huffman is widely used in all the mainstream compression formats that you might encounter
- from GZIP, PKZIP (winzip etc) and BZIP2, to image formats such as JPEG and PNG.

All  compression schemes have pathological data-sets that cannot be meaningfully
compressed; the archive formats I listed above simply 'store' such files uncompressed when
they are encountered.

Newer arithmetic and range coding schemes are often avoided because of patent issues

meaning Huffman remains the work-horse of the compression industry.

5.3 application contribution

Compression isused justabout everywhere. Allthe images youget onthe web are
compressed, typically in the JPEG or GIF formats, most modems use
compression, HDTV will be compressed using MPEG-2, and several file systems
automatically compress files when stored, and the rest of us doit by hand. The neat thing
about compression, as with the other topics we will coverin this course,is that the
algorithms used in the real world make heavy useofa wide set of algorithmic tools,
including sorting, hash tables, tries, and FFTs. Furthermore, algorithms with strong theoretical
foundations play a critical role in real-world applications.

The genericterm message for theobjects wewant tocompress willbe used,
which could be either files or messages. The task of compression consists of two components,
an encoding algorithm that takes a message and generates a “compressed”
representation (hopefully with fewer bits), and a decoding algorithm that reconstructs the
original message or some approximation of it from the compressed representation. These two
components are typically intricately tied together since they both have to understand the
shared compressed representation. We distinguish between lossless algorithms, which can
reconstruct the original message exactly from the compressed message, and loss algorithms,

which can only reconstruct an approximation of the original message. Lossless algorithms
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are typically used fortext, andloss forimages andsound wherea little bit oflossin
resolution is often undetectable, or atleast acceptable. Loss is used in an abstract
sense, however, and does not mean random lost pixels, but instead means loss of a quantity

such as a frequency component, or perhaps loss of noise..
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