
Implementation of Methods of Stream Mining

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

In

Computer Science and Engineering/Information Technology

By

Abhimanyu Singh Gehlot (131319)
Rishav Kumar (131292)

Under the supervision of

Dr. Pardeep Kumar

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat, Solan-
173234, Himachal Pradesh

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “Implementation of Methods

of Stream Mining” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic record

of my own work carried out over a period from July 2015 to May 2016 under the supervision

of Dr. Pardeep Kumar Professor, Department of Computer Science And Engineering. The

matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature) (Student Signature)

Abhimayu Singh Gehlot(131319) Rishav Kumar(131292)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr. Pardeep Kumar

Department of Computer Science And Engineering

Dated:15/12/2016

2

ACKNOWLEGEMENT

We are grateful and indebted to Dr. Pardeep Kumar, Department of Computer Science And

Engineering for his help and advice in completion of this project report. We also express our

deep sense of gratitude and appreciation to our guide for his constant supervision, inspiration

and encouragement right from the beginning of this Seminar report. We also want to thank

our parents and friends for their immense support and confidence upon us. We deem it a

pleasant duty to place on record our sincere and heartfelt gratitude to our project guide for his

long sightedness, wisdom and co-operation which helped us in tackling crucial aspects of the

project in a very logical and practical way.

Abhimanyu Singh Gehlot Rishav Kumar

(131319) (131292)

Computer Science and Engineering

3

Table of Contents

Acknowledgement iii

Table of Contents iv

List of Figuresvi

List of Tables vii

List of Abbreviations viii

1. Introduction1

1.1 Data Stream Mining 1

1.2 Problem Statement 10

1.3 Aims and Objective 10

1.4 Methodology 10

1.5 Organization 11

2. Literature Survey 12

2.1 Volatile Data 4

2.1.1 Categorization 5

2.1.2 Privacy Control 6

2.2 Timing and Availability of Information 7

2.2.1 Dealing with incomplete information 7

2.2.2 Handling delayed Information 8

2.3 Entity Stream Mining 8

2.4 Evlauating Stream mining algorithms 9

3. System Development 12

3.1 Algorithms 12

3.1.1 C 4.5 Algorithm 12

3.1.2 Algorithm details 12

3.1.3 Pseudocode 13

3.1.4 Improvements in C 5.0 Algorithm 14

3.2 K-means Stream mining Algorithm 15

3..2.1 K- means pseudocode 16

3.2.2 Why use K-means Algorithm 17

3.2.3 K-means example 18

4. Performance Analysis 21

4.1 Advantages (k-means Algorithm)………………………………………………………. 21
4.1.2 Disadvantages (k-means Algorithm) 22

4.2 Advantages(C4.5 algorithm) 23

4

4.2.1 Disadvantages (C4.5 Algorithm) 23

5. Conclusions ……………………………………………………………………………….24
6. References 24

7. Appendices 28

7.1 Code snippets 28

5

List of Figures

1. Introduction 1
2. Literature Survey 4

3. System Development 12

3.1.C4.5 Algorithm Tree 14

4. Performance Analysis 21

6

List of Tables

3. System Development 12

3.2.3 K-Means Algo Example Table 1 17

3.2.3 K-Means Algo Example Table 2 18

3.2.3 K-Means Algo Example Table 3 18

3.2.3 K-Means Algo Example Table 4 18

3.2.3 K-Means Algo Example Table 5 19

3.2.3 K-Means Algo Example Table 6 19

7

List of Abbreviations

1. IP--Internet Protocol
2. IEEE------------------------------------Institute of Electrical and Electronics

Engineers
3. LLN-------------------------------------Low power and lossy network
4. DIO-------------------------------------DODAG Information Object
5. DAO------------------------------------Destination Advertisement Object
6. TCP-------------------------------------Transmission Control Protocol

8

1. INTRODUCTION

1.1 Data Stream Mining

1.1.1About Data Stream Mining

Data Stream Mining is the process of extracting knowledge structures from

continuous, rapid data records. A data stream is an ordered sequence of instances that

in many applications of data stream mining can be read only once or a small number

of times using limited computing and storage capabilities. Examples of data streams

include computer network traffic, phone conversations, ATM transactions, web

searches, and sensor data. Data stream mining can be considered a subfield of data

mining, machine learning, and knowledge discovery.

In many data stream mining applications, the goal is to predict the class or value of

new instances in the data stream given some knowledge about the class membership

or values of previous instances in the data stream. Machine learning techniques can be

used to learn this prediction task from labeled examples in an automated fashion.

Often, concepts from the field of incremental learning, a generalization of Incremental

heuristic search are applied to cope with structural changes, on-line learning and real-

time demands. In many applications, especially operating within non-stationary

environments, the distribution underlying the instances or the rules underlying their

labeling may change over time, i.e. the goal of the prediction, the class to be predicted

or the target value to be predicted, may change over time. This problem is referred to

as concept drift.

1

1.2 Problem Statement

Every day, huge volumes of sensory, transactional, and web data are continuously

generated as streams, which need to be analyzed online as they arrive. Streaming

data can be considered as one of the main sources of what is called big data. While

predictive modeling for data streams and big data have received a lot of attention

over the last decade, many research approaches are typically designed for well-

behaved controlled problem settings, overlooking important challenges imposed by

real-world applications. Our goal is to identify gaps between current research and

meaningful applications, highlight open problems, and define new application-

relevant research directions for data stream mining.

1.3 Aims And Objectives

Our goal is to identify gaps between current research and meaningful applications,

highlight open problems, and define new application-relevant research directions for

data stream mining.

1.4 Methodology
In this project we simulate different methods of data stream mining using MOA a free

open-source software specific for mining data streams. It has several machine learning

algorithms (classification, regression, clustering, outlier detection and recommender

systems).

1.5 Organisation

In Chapter 1 we have discussed about Data Stream Mining basics, the current growth

in this field, the common challenges being faced in implementing the Stream mining

algorithms.

In Chapter 2 we would be providing with the basic terminology about the different

research paper read by us. We would be providing with facts and figures about

different concepts we studied in those research papers.

2

In Chapter 3 we are going to provide a model of how the project is done on the basis

of developments:-

• Analytical

• Experimental

• Statistical

In Chapter 4 we have given a proper analysis on Stream Mining algorithms on basis

of which we will be implementing this project

3

2. LITERATURE SURVEY

 2.1. Volatile Data

 The volumes of automatically generated data are constantly increasing. According to the

Digital Universe Study,over2.8ZB of data were created and processed in 2012, with a

projected increase of 15 times by 2020. This growth in the production of digital data results

from our surrounding environment being equipped with more and more sensors. People

carrying smartphones produce data, database transactions are being counted and stored ,

streams of data are extracted from virtual environments in the form of logs or user generated

content. A significant part of such data is volatile, which means it needs to be analyzed in real

time as it arrives. Data stream mining is a research field that studies methods and algorithms

for extracting knowledge from volatile streaming data.

Although data streams, online learning, big data, and adaptation to concept drift have become

important research topics during

the last decade, truly autonomous, self-maintaining, adaptive data mining systems are rarely

reported. This paper identifies real-world challenges for data stream research that are

important but yet unsolved. Our objective is to present to the community a position paper that

could inspire and guide future research in data streams. This article builds upon discussions at

the International Workshop on Real-World Challenges for Data Stream Mining (Real

Stream)1 in September 2013, in Prague, Czech Republic. Several related position papers are

available. Dietterich[10]presents a discussion focused on predictive modeling techniques, that

are applicable to streaming and non-streaming data. Fan and Bifet[12] concentrate on

challenges presented by large volumes of data. Zlio baite et al. [48] focus on concept drift and

adaptation of systems during online operation. Gaber et al. [13] discuss ubiquitous data

mining with attention to collaborative data stream mining. In this paper, we focus on research

challenges for streaming data inspired and required by real-world applications. In contrast to

existing position papers, we raise issues connected not only with large volumes of data and

concept drift, but also such practical problems as privacy constraints, availability of

information, and dealing with legacy systems.

4

2.1.1 Categorisation

• Smoothness of concept transition:

Transitions between concepts can be sudden or gradual. The former is sometimes also

denoted in literature as shift or abrupt drift.

• Singular or recurring contexts:

In the former case, a model becomes obsolete once and for all when its context is replaced by

a novel context. In the latter case, a model’s context might reoccur at a later moment in

time ,for example due to a business cycle or seasonality, therefore, obsolete models might

still regain value.

• Systematic or unsystematic:

In the former case, there are patterns in the way the distributions change that can be exploited

to predict change and perform faster model adaptation. Examples are subpopulations that can

be identified and show distinct, trackable evolutionary patterns. In the latter case ,no such

patterns exist and drift occurs seemingly at random. An example for the latter is fickle

concept drift.

• Real or virtual:

While the former requires model adaptation, the latter corresponds to observing outliers or

noise, which should not be incorporated into a model. Stream mining approaches in general

address the challenges posed by volume, velocity and volatility of data. However, in real-

world applications these three challenges often coincide with other, to date insufficiently

considered ones.

The next sections discuss eight identified challenges for data stream mining, providing

illustrations with real world application examples, and formulating suggestions for

forthcoming research.

5

2.1.2 Privacy Control

Data streams present new challenges and opportunities with respect to protecting privacy and

confidentiality in data mining. Privacy preserving data mining has been studied for over a

decade (see. e.g. [3]). The main objective is to develop such data mining techniques that

would not uncover information or patterns which compromise confidentiality and privacy

obligations. Modeling can be done on original or anonymized data, but when the model is

released, it should not contain information that may violate privacy or confidentiality. This is

typically achieved by controlled distortion of sensitive data by modifying the values or

adding noise. Ensuring privacy and confidentiality is important for gaining trust of the users

and the society in autonomous, stream data mining systems. While in offline data mining a

human analyst working with the data can do a sanity check before releasing the model, in

data stream mining privacy preservation needs to be done online. Several existing works

relate to privacy preservation in publishing streaming data (e.g. [46]), but no systematic

research in relation to broader data stream challenges exists. We identify two main challenges

for privacy preservation in mining data streams. The first challenge is incompleteness of

information. Data arrives in portions and the model is updated online. Therefore, the model is

never final and it is difficult to judge privacy preservation before seeing all the data. For

example, suppose GPS traces of individuals are being collected for modeling traffic situation.

Suppose person A at current time travels from the campus to the airport. The privacy of a

person will be compromised, if there are no similar trips by other persons in the very near

future. However, near future trips are unknown at the current time, when the model needs to

be updated. On the other hand, data stream mining algorithms may have some inherent

privacy preservation properties due to the fact that they do not need to see all the modeling

data at once, and can be incrementally updated with portions of data. Investigating privacy

preservation properties of existing data stream algorithms makes another interesting direction

for future research.

2.2 Timing and Availability of Information

6

Most algorithms developed for evolving data streams make simplifying assumptions on the

timing and availability of information. In particular, they assume that information is

complete, immediately available, and received passively and for free. These assumptions

often do not hold in real-world applications, e.g., patient monitoring ,robot vision ,or

marketing[43]. This section is dedicated to the discussion of these assumptions and the

challenges resulting from their absence. For some of these challenges, corresponding

situations in offline, static data mining have already been addressed in literature. We will

briefly point out where a mapping of such known solutions to the online ,evolving stream

setting is easily feasible, for example by applying windowing techniques. However, we will

focus on problems for which no such simple mapping exists and which are therefore open

challenges instream mining.

2.2.1 Dealing with Incomplete Information

Completeness of information assumes that the true values of all variables, that is of features

and of the target, are revealed eventually to the mining algorithm. The problem of missing

values, which corresponds to incompleteness of features, has been discussed extensively for

the offline, static settings. A recent survey is given in [45]. However, only few works address

data streams ,and in particular evolving data streams. Thus several open challenges remain,

some are pointed out in the review by [29]: how to address the problem that the frequency in

which missing values occur is unpredictable, but largely affects the quality of imputations?

How to (automatically) select the best imputation technique? How to proceed in the trade-off

between speed and statistical accuracy? Another problem is that of missing values of the

target variable. It has been studied extensively in the static setting as semi-supervised

learning (SSL, see [11]). A requirement for applying SSL techniques to streams is the

availability of at least some labeled data from the most recent distribution. While first

attempts to this problem have been made, e.g. the online manifold regularization approach in

[19] and the ensembles-based approach suggested by [11],improvements in speed and the

provision of performance guarantees remain open challenges. A special case of incomplete

information is “censored data” in Event History Analysis(EHA),which is described in section

5.2. A related problem discussed below is active learning (AL, see [38]).

2.2.2 Handling Delayed Information

7

Latency means information becomes available with significant delay. For example, in the

case of so-called verification latency, the value of the preceding instance’s target variable is

not available before the subsequent instance has to be predicted. On evolving data streams,

this is more than a mere problem of streaming data integration between feature and target

streams, as due to concept drift patterns show temporal locality [2]. It means that feedback on

the current prediction is not available to improve the subsequent predictions, but only

eventually will become available for much later predictions. Thus, there is no recent sample

of labeled data at all that would correspond to he most-recent unlabeled data, and semi

supervised learning approaches are not directly applicable. A related problem in static, offline

data mining is that addressed by unsupervised rans ductive transfer learning(or un supervised

domain adaptation): given labeled data from a source domain, a predictive model is sought

for a related target domain in which no labeled data is available. In principle, ideas from

transfer learning could be used to address latency in evolving data streams, for example by

employing the minac hunk-based approach, as suggested in [43]. However, adapting them for

use in evolving data streams has not been tried yet and constitutes a non-trivial, open task, as

adaptation in streams must be fast and fully automated and thus cannot rely on iterated

careful tuning by human experts. Furthermore, consecutive chunks constitute several

domains, thus the transitions between several subsequent chunks might provide exploitable

patterns of systematic drift. This idea has been introduced in [27], and a few so-called drift-

mining algorithms that identify and exploit such patterns have been proposed since then.

However, the existing approaches cover only a very limited set of possible drift patterns and

scenarios.

2.3 Entity Stream Mining

Let T be a stream of entities, e.g. customers of a company or patients of a hospital. We

observe entities over time, e.g. on a company’s website or at a hospital admission vicinity: an

entity appears and re-appears at discrete time points, new entities show up. At a time point t,

an entity e ∈ T is linked with different pieces of information- the purchases and ratings

performed by a customer, the anamnesis, the medical tests and the diagnosis recorded for the

patient. Each of these information pieces ij(t) is a structured record or an unstructured text

from a stream Tj, linked toe via the foreign key relation.

8

Thus, the entities in T are in 1-to-1 or 1-to-n relation withentitiesfromfurtherstreamsT1,...,Tm

(stream of purchases, stream of ratings, stream of complaints etc). The schema describing the

streams T,T1,...,Tm can be perceived as a conventional relational schema, except that it

describes streams instead of static sets. In this relational setting, the entity stream mining task

corresponds to learning a model ζT over T, thereby incorporating information from the

adjoint streams T1,...,Tm that ”feed” the entities in T. Albeit the members of each stream are

entities, we use the term ”entity” only for stream T –the target of learning, while we denote

the entities in the other streams as ”instances”. In the unsupervised setting ,entity stream

clustering encompasses learning and adapting clusters over T, taking account the other

streams that arrive at different speeds. In the supervised setting, entity stream classification

involves learning and adapting a classifier ,not withstanding the fact that an entity’s label may

change from one time point to the next, as new instances referencing it arrive.

2.4 Evaluating Data Stream mining Algorithms

All of the aforementioned challenges are milestones on the road to better algorithms for real-

world data stream mining systems. To verify if these challenges are met, practitioners need

tools capable of evaluating newly proposed solutions. Although in the field of static

classification such tools exist, they are insufficient in data stream environments due to such

problems as: concept drift, limited processing time, verification latency, multiple stream

structures, evolving class skew, censored data, and changing misclassification costs. In fact,

the myriad of additional complexities posed by data streams makes algorithm evaluation a

highly multi-criterial task, in which optimal trade-offs may change over time. Recent

developments in applied machine learning [6] emphasize the importance of understanding the

data one is working with and using evaluation metrics which reflect its difficulties. As

mentioned before, data streams set new requirements compared to traditional data mining and

researchers are beginning to acknowledge the shortcomings of existing evaluation metrics.

For example, Gama et al. [16] proposed a way of calculating classification accuracy using

only the most recent stream examples, therefore allowing for time-oriented evaluation and

aiding concept drift detection. Methods which test the classifier’s robustness to drifts and

noise on a practical, experimental level are also starting to arise [34; 47]. However, all these

evaluation techniques focus on single criteria such as prediction accuracy or robustness to

drifts, even though data streams make evaluation a constant trade-off between several criteria

[7]. Moreover, in data stream environments there is a need for more advanced tools for

9

visualizing changes in algorithm predictions with time. The problem of creating complex

evaluation methods for stream mining algorithms lies mainly in the size and evolving nature

of data streams. It is much more difficult to estimate and visualize, for example, prediction

accuracy if evaluation must be done online, using limited resources, and the classification

task changes with time. In fact, the algorithm’s ability to adapt is another aspect which needs

to be evaluated, although information needed to perform such evaluation is not always

available. Concept drifts are known in advance mainly when using synthetic or benchmark

data, while in more practical scenarios occurrences and types of concepts are not directly

known and only the label of each arriving instance is known. Moreover ,in many cases the

task is more complicated ,as labeling information is not instantly available. Other difficulties

in evaluation include processing complex relational streams and coping with class imbalance

when class distributions evolve with time. Finally ,not only dowe need measures for

evaluating single aspects of stream mining algorithms, but also ways of combining several of

these aspects into global evaluation models, which would take into account expert knowledge

and user preferences. Clearly, evaluation of data stream algorithms is a fertile ground for

novel theoretical and algorithmic solutions. In terms of prediction measures, data stream

mining still requires evaluation tools that would be immune to class imbalance and robust to

noise. In our opinion, solutions to this problem should involve not only metrics based on

relative performance to baseline (chance) classifiers, but also graphical measures similar to

PR-curves or cost curves. Furthermore, there is a need for integrating information about

concept drifts in the evaluation process. As mentioned earlier ,possible ways of considering

concept drifts will depend on the information that is available. If true concepts are known,

algorithms could be evaluated based on: how often they detect drift, how early they detect it,

how they react to it, and how quickly they recover from it. Moreover, in this scenario,

evaluation of an algorithm should be dependent on whether it takes place during drift or

during times of concept stability. A possible way of tackling this problem would be the

proposal of graphical methods, similar to ROC analysis, which would work online and

visualize concept drift measures alongside prediction measures. Additionally, these graphical

measures could take into account the state of the stream, for example, its speed, number of

missing values, or class distribution. Similar methods could be proposed for scenarios where

concepts are not known in advance, however, in these cases measures should be based on

drift detectors or label-independent stream statistics. Above all, due to the number of aspects

which need to be measured, we believe that the evaluation of data stream algorithms requires

a multi-criterial view. This could be done by using inspirations from multiple criteria decision

10

analysis ,where trade-offs between criteria are achieved using user-feedback. In particular, a

user could showcase his/her criteria preferences (for example, between memory consumption,

accuracy, reactivity, self-tuning, and adaptability) by deciding between alternative algorithms

for a given data stream. It is worth noticing that such a multi-criterial view on evaluation is

difficult to encapsulate in a single number, as it is usually done in traditional offline learning.

This might suggest that researchers in this area should turn towards semi-qualitative and

semi-quantitative evaluation, for which systematic methodologies should be developed.

Finally, a separate research direction involves rethinking the way we test data stream mining

algorithms. The traditional train, cross validate ,test work flow in classification is not

applicable for sequential data, which makes, for instance, parameter tuning much more

difficult. Similarly ground truth verification in unsupervised learning is practically impossible

in data stream environments. With these problems in mind, it is worth stating that there is still

a shortage of real and synthetic benchmark datasets. Such a situation might be a result of non-

uniform standards for testing algorithms on streaming data. As community, we should decide

on such matters as: What characteristics should benchmark datasets have? Should they have

prediction tasks attached? Should we move towards online evaluation tools rather than

datasets? These questions should be answered in order to solve evaluation issues in controlled

environments before we create measures for real-world scenarios.

3. SYSTEM DEVELOPMENT

11

There exists a plethora of work in the area of distributed data stream mining. The existing

literature provides an excellent starting point for our main topic of discussion in this chapter.

Not only have the distributed data mining and databases community contributed to the

literature, a bulk of the work also comes from the wireless and sensor networks community.

In this section we discuss some of the related papers with pointers for further reading.

Computation of complex functions over the union of multiple of streams has been studied

widely in the stream mining literature .

Our objective scope is to provide a working mechanism, which will take as an argument a

phrase or a sub-sentence and it will return a sentiment score to this particular part of speech.

A prerequisite for this to happen is the development of another mechanism that will take a

piece of text (a tweet for example), and will break it into as many sub sentences as the

different ontologies that are contained in it. This is something that is already the subject of

research of another dissertation that is conducted at our university alongside this current

dissertation.

3.1 Algorithms

3.1.1 C 4.5 Data Stream Mining Algorithm

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan.C4.5

is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can

be used for classification, and for this reason, C4.5 is often referred to as a statistical

classifier.

It became quite popular after ranking #1 in the Top 10 Algorithms in Data Mining pre-

eminent paper published by Springer LNCS in 2008.

3.1.2 The Algorithm

C4.5 builds decision trees from a set of training data in the same way as ID3, using
the concept of information entropy. The training data is a set of already classified samples.
Each sample consists of a p-dimensional vector, where the represent attribute values or
features of the sample, as well as the class in which falls.

At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its

set of samples into subsets enriched in one class or the other. The splitting criterion is the

normalized information gain (difference in entropy). The attribute with the highest

normalized information gain is chosen to make the decision. The C4.5 algorithm then recurs

on the smaller sublists.

12

This algorithm has a few base cases.

 All the samples in the list belong to the same class. When this happens, it simply

creates a leaf node for the decision tree saying to choose that class.

 None of the features provide any information gain. In this case, C4.5 creates a

decision node higher up the tree using the expected value of the class.

 Instance of previously-unseen class encountered. Again, C4.5 creates a decision node

higher up the tree using the expected value.

3.1.3 Pseudocode

In pseudocode, the general algorithm for building decision trees is:

1. Check for the above base cases.

2. For each attribute a, find the normalized information gain ratio from splitting on a.

3. Let a_best be the attribute with the highest normalized information gain.

4. Create a decision node that splits on a_best.

5. Recur on the sublists obtained by splitting on a_best, and add those nodes as children

of node.

13

C 4.5 Algorithm Decision Tree example

3.1.4 Improvements in C5.0 algorithm

Quinlan went on to create C5.0 and See5 (C5.0 for Unix/Linux, See5 for Windows) which he

markets commercially. C5.0 offers a number of improvements on C4.5. Some of these are:

 Speed - C5.0 is significantly faster than C4.5 (several orders of magnitude)

 Memory usage - C5.0 is more memory efficient than C4.5

 Smaller decision trees - C5.0 gets similar results to C4.5 with considerably smaller

decision trees.

 Support for boosting - Boosting improves the trees and gives them more accuracy.

 Weighting - C5.0 allows you to weight different cases and misclassification types.

 Winnowing - a C5.0 option automatically winnows the attributes to remove those that

may be unhelpful.

14

3.2 K-means Data mining clustering Algorithm

K-Means is a simple learning algorithm for clustering analysis. The goal of K-Means

algorithm is to find the best division of n entities in k groups, so that the total distance

between the group's members and its corresponding centroid, representative of the group, is

minimized. Formally, the goal is to partition the n entities into k sets Si, i=1, 2, ..., k in order

to minimize the within-cluster sum of squares (WCSS), defined as:

where term provides the distance between an entity point and the cluster's centroid.

The most common algorithm, described below, uses an iterative refinement approach,

following these steps:

1. Define the initial groups' centroids. This step can be done using different strategies. A

very common one is to assign random values for the centroids of all groups. Another

approach is to use the values of K different entities as being the centroids.

2. Assign each entity to the cluster that has the closest centroid. In order to find the

cluster with the most similar centroid, the algorithm must calculate the distance

between all the entities and each centroid.

3. Recalculate the values of the centroids. The values of the centroid's fields are updated,

taken as the average of the values of the entities' attributes that are part of the cluster.

4. Repeat steps 2 and 3 iteratively until entities can no longer change groups.

The K-Means is a greedy, computationally efficient technique, being the most popular

representative-based clustering algorithm.

15

3.2.1 Pseudocode

Note that the last line of the pseudocode should be either:

while c h a n g e d = t r u e and i t e r ≤ M a x I t e r s

16

; or

until c h a n g e d = f a l s e or i t e r > M a x I t e r s.

3.2.2 Why Use k means algorithm

The key selling point of k-means is its simplicity. Its simplicity means it’s generally faster

and more efficient than other algorithms, especially over large datasets.

It gets better:

k-means can be used to pre-cluster a massive dataset followed by a more expensive cluster

analysis on the sub-clusters. k-means can also be used to rapidly “play” with k and explore

whether there are overlooked patterns or relationships in the dataset.

It’s not all smooth sailing:

Two key weaknesses of k-means are its sensitivity to outliers, and its sensitivity to the initial

choice of centroids. One final thing to keep in mind is k-means is designed to operate on

continuous data — you’ll need to do some tricks to get it to work on discrete data.

3.2.3 K-means example illustration

As a simple illustration of a k-means algorithm, consider the following data set consisting of

the scores of two variables on each of seven individuals:

Subject A B

1 1.0 1.0

2 1.5 2.0

3 3.0 4.0

4 5.0 7.0

5 3.5 5.0

6 4.5 5.0

7 3.5 4.5

17

This data set is to be grouped into two clusters. As a first step in finding a sensible initial

partition, let the A & B values of the two individuals furthest apart (using the Euclidean

distance measure), define the initial cluster means, giving:

 Individual

Mean

Vector

(centroid)

Group 1 1 (1.0, 1.0)

Group 2 4 (5.0, 7.0)

The remaining individuals are now examined in sequence and allocated to the cluster to

which they are closest, in terms of Euclidean distance to the cluster mean. The mean vector is

recalculated each time a new member is added. This leads to the following series of steps:

 Cluster 1 Cluster 2

Step Individual

Mean

Vector

(centroid)

Individual

Mean

Vector

(centroid)

1 1 (1.0, 1.0) 4 (5.0, 7.0)

2 1, 2 (1.2, 1.5) 4 (5.0, 7.0)

3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0)

4 1, 2, 3 (1.8, 2.3) 4, 5 (4.2, 6.0)

5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7)

6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4)

Now the initial partition has changed, and the two clusters at this stage having the following

characteristics:

 Individual

Mean

Vector

(centroid)

Cluster 1 1, 2, 3 (1.8, 2.3)

Cluster 2 4, 5, 6, 7 (4.1, 5.4)

18

But we cannot yet be sure that each individual has been assigned to the right cluster. So, we

compare each individual’s distance to its own cluster mean and to

that of the opposite cluster. And we find:

Individual

Distance to

mean

(centroid)

of Cluster

1

Distance to

mean

(centroid)

of Cluster

2

1 1.5 5.4

2 0.4 4.3

3 2.1 1.8

4 5.7 1.8

5 3.2 0.7

6 3.8 0.6

7 2.8 1.1

Only individual 3 is nearer to the mean of the opposite cluster (Cluster 2) than its own

(Cluster 1). In other words, each individual's distance to its own cluster mean should be

smaller that the distance to the other cluster's mean (which is not the case with individual 3).

Thus, individual 3 is relocated to Cluster 2 resulting in the new partition:

 Individual

Mean

Vector

(centroid)

Cluster 1 1, 2 (1.3, 1.5)

Cluster 2 3, 4, 5, 6, 7 (3.9, 5.1)

19

The iterative relocation would now continue from this new partition until no more relocations

occur. However, in this example each individual is now nearer its own cluster mean than that

of the other cluster and the iteration stops, choosing the latest partitioning as the final cluster

solution.

Also, it is possible that the k-means algorithm won't find a final solution. In this case it

would be a good idea to consider stopping the algorithm after a pre-chosen maximum of

iterations.

20

4. PERFORMANCE ANALYSIS

K-means is one of the simplest unsupervised learning algorithms that solve the well

known clustering problem. The procedure follows a simple and easy way to classify a given

data set through a certain number of clusters (assume k clusters) fixed apriori. The main

idea is to define k centers, one for each cluster. These centers should be placed in a cunning

way because of different location causes different result. So, the better choice is to place

them as much as possible far away from each other. The next step is to take each point

belonging to a given data set and associate it to the nearest center. When no point is

pending, the first step is completed and an early group age is done. At this point we need to

re-calculate k new centroids as barycenter of the clusters resulting from the previous step.

After we have these k new centroids, a new binding has to be done between the same data

set points and the nearest new center. A loop has been generated. As a result of this loop we

may notice that the k centers change their location step by step until no more changes are

done or in other words centers do not move any more. Finally, this algorithm aims at

minimizing an objective function know as squared error function.

4.1 Advantages (k-means algorithm)

1) Fast, robust and easier to understand.

2) Relatively efficient: O(tknd), where n is # objects, k is # clusters, d is # dimension of each

object, and t is # iterations. Normally, k, t, d << n.

3) Gives best result when data set are distinct or well separated from each other.

4.1.2 Disadvantages (k-means algorithm)

21

1) The learning algorithm requires apriori specification of the number of cluster centers.

2) The use of Exclusive Assignment - If there are two highly overlapping data then k-means

will not be able to resolve that there are two clusters.

3) The learning algorithm is not invariant to non-linear transformations i.e. with different

representation of data we get

 different results (data represented in form of cartesian co-ordinates and polar co-ordinates

will give different results).

4) Euclidean distance measures can unequally weight underlying factors.

5) The learning algorithm provides the local optima of the squared error function.

6) Randomly choosing of the cluster center cannot lead us to the fruitful result.

7) Applicable only when mean is defined i.e. fails for categorical data.

8) Unable to handle noisy data and outliers.

9) Algorithm fails for non-linear data set.

4.2 Advantages (C4.5 algorithm)

The advantages of the C4.5 are:

• Builds models that can be easily interpreted

• Easy to implement

• Can use both categorical and continuous values

• Deals with noise

4.2.1 Disadvantages (C4.5 Algorithm)

22

The disadvantages are:

• Small variation in data can lead to different decision trees (especially when the variables

are close to each other in value)

• Does not work very well on a small training set

23

5. CONCLUSIONS AND FUTURE WORK

C4.5 is used in classification problems and it is the most used algorithm for builing

DT.

It is suitable for real world problems as it deals with numeric attributes and missing

values. The algorithm can be used for building smaller or larger, more accurate

decision trees and the algorithm is quite time efficient.

Compared to ID3, C4.5 performs by default a tree pruning process, which leads to

smaller trees, more simple rules and more intutive interpretations.

K-means algorithm is also used in classification problems as it is Fast, robust and

easier to understand.

Relatively efficient: O(tknd), where n is # objects, k is # clusters, d is # dimension of

each object, and t is # iterations. Normally, k, t, d << n.

 Gives best result when data set are distinct or well separated from each other.

6. REFRENCES.

B.V., B. M. (2013). Open Dover. (Byelex Multimedia Products B.V.) Retrieved

Oktober 2013, from http://www.opendover.nl/

Antoniou, G. C. (2012). Creation of a Twitter web-hint system that propose tweets

based on the user preferences. Thessaloniki, Greece: Dept. of Electrical and Computer

Engineering, Aristotle University of Thessaloniki .

Barbosa, L., & Feng, J. (2010, August). Robust Sentiment Detection on Twitter from

Biased and Noisy Data. Coling 2010: Poster Volume, pp. 36-44.

Brody, S., & Elhadad, N. (2010). An Unsupervised Aspect-Sentiment Model for

Online Reviews. Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the ACL (pp. 804-812). Los Angeles: Association for

Computational Linguistics.

24

Cavnar, W. B., & John, T. M. (1994). N-Gram-Based Text Categorization.

Environmental Research Institute of Michigan.

Cerini, S., Compagnoni, V., Demontis, A., Formentelli, M., & Gandini, G. (2007).

MicroWNOp: A gold standard for the evaluation of automatically compiled lexical

resources for opinion mining. Andrea Sans , ed., Language Resources and Linguistic

Theory: Typology, Second Language Acquisition, English Linguistics.

Cianciullo, J. (n.d.). SocialMention. Retrieved Oktober 2013, from

http://www.socialmention.com/

Bakliwal, A., Foster, J., van der Puil, J., O’Brien, R., Tounsi, L., & Hughes, M.

(2013). Sentiment Analysis of Political Tweets: Towards an Accurate Classifier.

Proceedings of the Workshop on Language in Social Media (LASM 2013), (pp. 49-

58). Atlanta, Georgia.

Davidov, D., Tsur, O., & Rappoport, A. (2010, August). Enhanced Sentiment Learning

Using Twitter Hashtags and Smileys. Coling 2010: Poster Volume, pp. 241-249.

Dergiades, T. (2012). Do investors’ sentiment dynamics affect stock returns? Evidence

from the US economy. Economics Letters, 116(3), pp. 404-407.

Esuli, A., & Sebastiani, F. (2006). SENTIWORDNET: A Publicly Available Lexical

Resource.

Ganter, B. B., & Wille, R. (1999). Formal concept analysis, mathematical foundation.

Berlin: Springer Verlag.

Gruber, T. R. (1993, June). A translation approach to portable ontology specifications.

Knowledge Acquisition 5 (2), pp. 199-220.

Hall, M., & Frank, E. (2001). A Simple Approach to Ordinal Classification. 12th

European Conference on Machine Learning, (pp. 145-156).

Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of

the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, (pp. 168–177).

25

John G. Cleary, L. E. (1995). K*: An Instance-based Learner Using an Entropic

Distance Measure. 12th International Conference on Machine Learning, (pp. 108-

114).

Kontopoulos, E., Berberidis, C., Dergiades, T., & Bassiliades, N. (2013).

Ontologybased sentiment analysis of twitter posts. Elsevier(Expert Systems with

Applications 40 (2013)), pp. 4065–4074.

Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter Sentiment Analysis: The

Good the Bad and the OMG! Association for the Advancement of Artificial.

Kumar, S., Morstatter, F., & Liu, H. (2013). Twitter Data Analytics. Springer.

Liu, B. (2012). Sentiment Analysis and Opinion Mining. AAAI-2011, EACL-2012,

and Sentiment Analysis Symposium.

Liu, Y., Huang, X., An, A., & Yu, X. (2007). ARSA: A Sentiment-Aware Model for

Predicting Sales (Vol. SIGIR’07). Amsterdam.

Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the

ACM 38(11), pp. 39–41.

Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A User Friendly Guide to

Multivariate Calibration and Classification. NIR Publications.

Nebhi, K. (2012). Ontology-Based Information Extraction from Twitter. Proceedings

of the Workshop on Information Extraction and Entity Analytics on Social Media

Data (pp. 17-22). Mumbai: COLING.

Pang, B., & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using

Subjectivity. ACL ’04, (pp. 271–278).

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification

using Machine Learning. Proceedings of EMNLP, (pp. pp. 79–86).

Park, S., Ko, M., Kim, J., Liu, Y., & Song, J. (2011). The Politics of Comments:

26

Predicting Political Orientation. ACM 978-1-4503-0556-3/11/03. Hangzhou.

Stanford University. (2013). The Stanford Natural Language Processing Group.

Retrieved from http://nlp.stanford.edu/software/corenlp.shtml

Stone, P. J., Dunphry, D., Smith, M., & Ogilvie, D. (1966). The General Inquirer: A

Computer Approach to Content Analysis. Cambridge: MIT Press. Tsoumakas, G., &

Vlahavas, I. (n.d.). Effective Stacking of Distributed Classifiers.

Thessaloniki: Dept. of Informatics, Aristotle University of Thessaloniki.

Tweet Sentiment Visualization. (n.d.). Retrieved Oktober 2013, from Sentiment Viz:

http://www.csc.ncsu.edu/faculty/healey/tweet_viz/tweet_app/ Waikato, D. o. (2013,

Oktober). Weka 3: Data Mining Software in Java. Retrieved from

http://www.cs.waikato.ac.nz/~ml/weka/

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining, Practical Machine

Learning Tools and Techniques (3rd ed.). U.S.A.: Morgan Kaufmann Publishers.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg, D.

(2007). Top 10 algorithms in data mining. Springer-Verlag.

Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., & Liu, B. (2011). Combining

Lexiconbased and Learning-based Methods for Twitter. HP Laboratories(HPL-2011-

89).

Zhang, L., Xu, W., & Li, S. (2012). Aspect identification and sentiment analysis based

on NLP. Network Infrastructure and Digital Content (IC-NIDC), 2012 3rd IEEE

International Conference on, (pp. 660 - 664). Beijing.

7. APPENDIX

 7.1 Code Snippets:-

#include <iostream>

27

#include <conio.h>

#include <stdlib.h>

using namespace std;

int main()

{

 int numbers, k, kvals[25], prevKvals[25], steps = 1, addition[25][100], count = 0, groups[25]

[100], min, groupnum, value, sum, ok = 1, nums[100];

 cout << "How many numbers you want to enter: ";

 cin >> numbers;

 cout << "Enter value of k: ";

 cin >> k;

 //get numbers

 for(int i = 0; i < numbers; i++)

 {

 cout << "Enter Number " << i+1 << ": ";

 cin >> nums[i];

 }

 // set values of C's

 for(int i = 0; i < 3; i++)

 {

 kvals[i] = nums[i];

 }

 //show values of user

 cout << "You have entered: ";

 for(int i = 0; i < numbers; i++)

 {

 cout << nums[i] << ", ";

 }

28

 //while(steps < 10)

 while(ok == 1)

 {

 cout << endl << "Itration Number: " << steps;

 //make calculations (C - bla bla bla)

 for(int i = 0; i < k; i++)

 {

 for(int j = 0; j < numbers; j++)

 {

 addition[i][j] = abs(kvals[i] - nums[j]);

 }

 }

 //make groups of number(C)

 for(int i = 0; i < numbers; i++)

 {

 min = 100000;

 for(int j = 0; j < k; j++)

 {

 if(addition[j][i] < min)

 {

 min = addition[j][i];

 value = nums[i];

 groupnum = j;

 }

 }

 groups[groupnum][i] = value;

 }

 //show results of calculations (C - bla bla bla)

 cout << endl << "Calculations" << endl;

 for(int i = 0; i < numbers; i++)

 {

 for(int j = 0; j < k; j++)

29

 {

 cout << addition[j][i] << "\t";

 }

 cout << endl;

 }

 // show groups and get new C's

 cout << endl << "Gruops" << endl;

 for(int i = 0; i < k; i++)

 {

 sum = 0;

 count = 0;

 cout << "Group " << i+1 << ": ";

 for(int j = 0; j < numbers; j++)

 {

 if(groups[i][j] != NULL)

 {

 cout << groups[i][j] << "\t";

 sum += groups[i][j];

 count++;

 }

 }

 prevKvals[i] = kvals[i];

 kvals[i] = sum/count;

 cout << "\t=\t" << kvals[i] << endl;

 }

 //make empty array of groups

 for(int i = 0; i < 25; i++)

 {

 for(int j = 0; j < 100; j++)

 {

 groups[i][j] = NULL;

 }

 }

30

 //check condition of termination

 ok = 0;

 for(int i = 0; i < k; i++)

 {

 if(prevKvals[i] != kvals[i])

 {

 ok = 1;

 }

 }

 if(ok != 1)

 {

 getch();

 }

 steps++;

 } // end while loop

 getch();

 return 0;

}

31

