
Balance API Creation on AWS

Project report submitted in partial fulfilment of the requirement for the degree of

Bachelor of Technology

in

Computer Science and Engineering/Information Technology

by

Ayush Patel (161478)

Under the supervision of

Rizwan Ur Rehman

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

ii

Candidate’s Declaration

We hereby declare that the work presented in this report entitled “Balance API

Creation on AWS” in partial fulfilment of the requirements for the award of the

degree of Bachelor of Technology in Information Technology submitted in the

department of Computer Science and Engineering and Information Technology,

Jaypee University of Information Technology Waknaghat is an authentic record

of my own work carried out over a period from March 2020 to May 2020 under

the supervision of (Rizwan Ur Rehman) (Assistant Professor, Computer Science

& Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

Ayush Patel (161478)

This is to certify that the above statement made by the candidate is true to the best

of my knowledge.

Rizwan Ur Rehman.

Assistant Professor Mentor

Department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology

Dated:

Gaurav Foujdar

25/05/2020

iii

ACKNOWLEDGEMENT

Foremost, we would like to express our sincere gratitude to our project guide

Rizwan Ur Rehman (Assistant Professor) for the continuous support in our

project, for their patience, motivation, enthusiasm, and immense knowledge.

Their guidance has helped us in all the time of this study and writing of this report.

We could not have imagined having a better advisor and mentor for our project.

We would also like to thank them for lending us their precious time.

I would also like to thank my Mentor Gaurav K Foujdar for his help in making

me understand the systems and providing support all the way throughout the

Project.

We are also very thankful to all the faculty members of the department, for their

constant encouragement during the project.

Last but not least we would like to thank our parents, who taught us the value of

hard work by their own example.

Date: …………….

Ayush Patel (161478)

25/05/2020

iv

Contents

Candidate’s Declaration .. ii

ACKNOWLEDGEMENT ... iii

List of Figures ... v

List of Abbreviations ... vi

ABSTRACT.. 2

CHAPTER 1: INTRODUCTION ... 3

1.1 Introduction ... 3

1.3) OBJECTIVE .. 18

1.4) METHODOLOGY .. 19

Chapter 2: Literature survey ... 22

2.1 Books and publication ... 22

3.2 High Level Sequence Diagram for the API .. 27

Chapter4: Performance Analysis .. 30

4.1 Evaluation ... 30

Chapter5: CONCLUSIONS .. 32

5.1 Conclusion: ... 32

52. Future Scopes: ... 32

For the future scope we can try to add more functionalities to this API and bring down its latencies

even further ... 32

References ... 33

v

List of Figures

Fig 1 : Kinesis Stream [7]

Fig 2: Git Operations Sequence Diagram

Fig 3: Git Branching

Fig 4: Spring Framework

Fig 5: Without Dependency Injection Explanation

Fig 6: With Dependency Injection Explanation

Fig 7: Example of Class Injection

Fig 8: Methodology

Fig 9: GET Balance Sequence Diagram

Fig 10:UPDATE Balance Sequence Diagram

vi

List of Abbreviations

AWS – Amazon Web Services

REST – Representational State Transfer

API -Application Program Interface

SDLC- Software development Life Cycle

SIT-System Integrated Testing

SOA- Service Oriented Architecture

ABSTRACT

Legacy based Services are old and run on old technologies that are much difficult

to maintain and if an issue occurs in a legacy service, the customer can face a

longer downtime which is a bad customer experience. The connections to

Database using these Services to the Database takes a longer time and again

contributes to a bad Customer Experience in terms of Longer Time to Load a

particular Page.

AWS Stack comes as a Solution to this. Not only is it easy to maintain and has

more Availability and Reliability but connections to databases take considerably

less time than using Legacy Based Architecture.

The pros of using this is a reduction in latency of Service, a Higher Availability

and a lower Downtime for The Service and maintenance becomes a lot easier.

And for these reasons we will be our Service would be created on the AWS Stack

3

CHAPTER 1: INTRODUCTION

1.1 Introduction

As a customer the one thing that we look forward while using any service or any

part a service is that it is fast enough even on a high latent network connection.

Another thing that we look forward is that when we hit the service ,it should be

available. No matter how fast a service is if it has a high failure ratio the customers

are not likely to use it. While Designing these services we should also think about

Scalability. Even a small change in Production is presented to potentially millions

and millions of customers and a downtime as low as a minute is a bad idea.

Furthermore there are bound to be issues in Service at some point which needs to

be fixed. We should have the ability to quickly rollback the changes/mirror the

service onto another Host while we are fixing the issue or doing some internal

migration/update on the Service

Current Legacy Services take a lot of time to be replicated onto a different host

that can serve the customer with traffic while we investigate an issue. The setup

itself can take up hours. Most of this setup and could be easily avoided if we move

the current service stack to AWS as it has most of the automation already in place

to deal with these kind of issues. Setup also is more or less a one click kind of

setup.

While doing the migration ,we should ensure that there are no internal or external

teams that are currently using the current APIs in the legacy services face any

issues. The newly designed APIs in the new service should be able to mirror the

Request /Response parameters of our Original APIs in the legacy Service so that

no changes are required on the partner team’s side in their current implementation

as this will cause a chain of changes that will affect a huge number of partner

teams and all of them will not be aligned to go forward with the changes that are

proposed by our team. Since the migration will take a considerable amount of

4

time, separate hosts needs to be setup which have the Replicated Deployment as

in our current Production servers ,while the current hosts keep serving the

customers and all partner teams till we are done with the migration

Request Response structure for Update Balance

Request:

{

Operation: UpdateBalance

TableName: Tables where Balance Information is stored

customerID: customerId of person trying to add the money

payment method: Payment method for the current transaction (Credit card/net

Banking/UPI)

}

Response:

{

Transaction Status: Success/Failure

Balance: Updated Balance for the customer post transaction

OrderId: A Unique OrderID associated with the transaction

}

Request Response structure for GET Balance

Request:

{

5

Operation: GetBalance

customerID:customerId of user whose balance needs to be known

}

Response:

{

Transaction Status: Success/Failure

Balance: Updated Balance for the customer post transaction

}

6

Tools and Technologies Used

AWS is the Amazon’s Cloud Services much like Azure or Google Cloud

Platform. It Provides a large range of services like Compute, Storage ,Security

and Scalability. The Services running on AWS can be easily Scaled Up or Scaled

Out based on the traffic and compute requirements. It provides easy connection

with efficient Databases Like DynamoDB

DynamoDB

DynamoDB is a NOSQL database that has a major advantage over most other

NOSQL Database Services. One major advantage of using this is that we don’t

have to worry about restructuring our Service when we start to receive a higher

Traffic than we anticipate. It can be automatically scaled up and frees us from

worrying about hardware side of things. It is also very reliable due to replication

of data onto its clusters. In case if a single node falls ,the service request is

forwarded to another node holding the data. Another major concern while using

a particular DB is from a security standpoint. DynamoDB Provides encryption at

rest . It can handle a large amount of traffic (39000TPS) very easily. Any tables

created can be restored back to any commit back to the last 35 days. It provides

integration with all major languages like Python, Ruby, Java etc

Apart from the sheer Security, Reliability and availability, DynamoDB provides

latency reduction mechanisms using Caching Mechanisms like DAX

DAX

DynamoDB Accelerator or DAX is an in memory Caching System that can

provide read speeds in microseconds. In Scenarios like these the Latency of a

Service mainly depends on the network latency because the read, write and update

latency is almost negligible. Another major Benefit of using DAX is that standard

API calls to DynamoDB Do not need to be Modified in any way. By adding DAX

7

to our DynamoDB instance AWS automatically ensures the managing and

fetching data from DAX when a call to DynamoDB is made

Due to its very low latency features DAX is being used by customers like Tinder,

Canon, Twilio and Expedia

Since our Service involve High Reads and high write operations ,We will try to

use DAX in our DynamoDB Application.

Kinesis Stream

Kinesis Data Stream is a real Time Data Capturing and Streaming Service and

can be used to take thousands of bytes of data from here to there within minutes

.It can be used for Real Time Data Analytics and collecting data from millions

of devices.

FIG 1:KINESIS STREAM

8

AWS Lambda

AWS Lamda is a serverless compute service that runs our code without us having

to worry about anything else. There is an out of the box Support for Java, C#

Python and Other Programming Languages. It deploys all our code, and we don’t

have to worry about adding more servers etc as the usage starts to increase. It

takes care of maintenance. Most of the things are automated that can be monitored

using CloudWatch. While this is an extremely useful resource it is a very costly

one too ,So we should try to find optimizations wherever possible and try to

reduce the number of lambda functions by as much as possible

Git

Git is a version control System that is used to check the status of files overtime

and provides capabilities like Rolling back the changes to a previous version in

case of any issues with the current changes and provides the capability to allow

Multiple people working on it

Here is how it works as explained by a Sequence diagram

9

FIG 2: GIT OPERATIONS SEQUENCE DIAGRAM

The working Directory is where we are currently making the changes, i.e the

location of the current file that we are working on. Before we can push our

changes to the git remote ,we need to get those changes into a staging area which

is essentially tracks what changes were done to the file and creates a difference

between already existing files in the directory vs new things added or deleted post

last commit.

Post this a git commit helps to commit the changes that we have just made , create

a version difference and add it to the history of previous changes that we have

done and get it ready for the deployment onto a centralized repository system like

Github.

10

The main benefit that comes from using git is for a Very Large Single project that

requires some common base dependencies is its ability to allow people to work

on different branches

Since we do not want to pollute the mainline which pushes features already used

by our customers. We can create a separate Branch and test all our features on to

that branch and once we are sure that it won’t break any existing feature and is

working fine we can merge it finally into the master branch and Deploy it as a

new Feature to the Customers

Fig 3:Git Branching

Language/Framework Used:

Spring Framework

Spring is a very popular Open Source Framework built on top of Java. It can be

used to develop Applications based on Java language very easily and in a fast and

efficient manner. The one major good thing of spring is its Modularity Nature.

11

Instead of Designing whole Big Services we can break it down into small small

modules that can be Reused. Ideally We want as little Interdependency of

modules as Possible.

Fig 4: Spring Framework

Whatever Application or API we build ,we want to divide it into 3 Subsections

Client Layer:

The one That Actually makes a request to our API and is mainly Responsible for

Displaying the data onto UI to the Client and makes request to the Backend

Architecture. It contains absolutely No Data and No Business Logic. It is more of

an abstract layer that can be used to just display and render the final state of the

data post Business Logic

Business Logic Layer:

This is the Layer that is actually Responsible for the Processing of the Data. It

takes in Data From the Database and according to our needs it Processes it and

converts it into a form where it can be send to the Client Layer To Be Rendered.

Now the Logic of having this Business Layer Separately is that in future if our

Requirements change, we can simply make changes to this Layer without

12

affecting any other Changes and thus No change would need to be propagated to

any other Layers.

Database Layer:

This is the Layer which actually Stores the Data in a Secure Way .It is the

authoritative source of data for the business layer to do its processing on and is

usually maintained by an administrator. Having all these Three Layers, allows

incremental changes to be delivered to customer without them having to do

anything on their end. Ideally we want the customer to be able to use a feature as

easily as possible and the separation of our entire Structure into Three Layers

helps Achieve that. It is also good from a point of Security as the customers

directly cannot access the data in any way or form other than calling our Backend

Business Logic Layer which In Turn Calls the database layer

The main reason that we are going to use Spring is because of one particular

feature that it provides called Dependency Injection

Why is there any need of Dependency Injection

Imagine a Scenerio where One Class needs some other class’s object in some way

or form to proceed with its Operation. This essentially means that class one is

dependent on another class. Now while this dependency seems completely normal

,on a large scale System this Dependency can Be very Fatal. Imagine Having one

component Break down in a real world Scenario could be the cause that entire

System Goes Down. But at the Same Time its impossible to not use object of

another class .Let us understand it a more by using the following Example

13

Fig 5: Without Dependency Injection Explanation

Why is this a bad Practice

1) So in this Example PublishLogsToDatabase class has a hidden dependency

on Logger class. What that basically means is that this dependency is not

that obvious without us having to peek deep into the code

2) If at a later stage we decide not to use this Logger Class but a completely

Different one called Balance Logger. Now this would essentially mean

changing that we will have to edit PublishLogstoDatabase class or other

places where our previous Logger is Used. It could mean making changes

to a large amount of files. Imagine if that class becomes deprecated for

Some reason then whoever was using it would have to make changes in its

class

3) To test out our PublishLogstoDatabase class ,we would need a functioning

class and we cannot just do it if it hasn’t been Implemented Yet.

Now lets Look at another example

14

Fig. 6: Explanation Dependency Injection

In this Implementation instead of creating an object for the InfoLogger class, we

need to pass it in form of a constructor argument. Now there are a lot of

Observable Difference that can be seen in this particular version of

Implementation

1) By just Looking at the Constructor of the PublishLogstoDatabase class, we

can see that it has a Dependency on Other Class. Unlike in the last version

where a deep dive is needed into the code to figure out this dependency, its

pretty apparent in this one

2) InfoLogger is just an Abstract Interface, It can be easily swapped out with

any other thing that has an InfoLogger type Implementation without having

to change the code of PublishLogstoDatabase class

3) We can easily Mock InfoLogger and test our PublishLogstoDatabase class.

That means we don’t even need the other class to be fully functional to

write the Tests for our current class.

It also allows us to swap different implementations of InfoLogger based on

our Business Logic. So one way of Explaining the advantage of this in very

plain and simple English would be to think about a remote and the battery that

it operates on. Now the remote needs the battery to provide its functionality

15

and that is what could be termed as a dependency. Now Imagine a remote that

only works on Brand X battery and if we want to use any other brand we would

have to make changes to the structure of remote that. That itself is a problem.

Compare it to what we use, we can swap battery of any brand in our remote

and that works just fine. So this practical example could be used to understand

a bit about why having a rigid coupiling is always a bad idea especially in a

very large scale system

As we can see Dependency Injection covers some of the pit falls that we have

when there is a not loose coupling between modules and they are dependent

on each other via Rigid Class Implementations. Not only that it makes

different people less working on different parts of a project less dependent on

each other to deliver a fully functional and tested module that they are working

on. We can easily mock out the result of the Dependencies and can even write

cases verifying that they indeed are interacting with one another and have a

much greater flexibility with our Modules. This also leads to a more cleanable

and maintainable code and one indirect benefit of this could be the Single

Ownership Principle wherein One person can entirely own a module and be

responsible for the changes he makes in that module. If the entire API starts to

behave Abnormally, like getting higher response time or Getting more

Timeouts etc ,The module that is causing those issues can be easily tracked

and the person who owns the module can work on fixing it without entire

teams making changes to their respective modules.

An example flow of Injection in Spring Framework can be Seen Below

16

Fig7: Example flow of injection of class instance

17

1.2) PROBLEM STATEMENT

The Balance API and its operations are a very crucial part of any payment based

Systems . The Basic Thing for any Payment System is the ability to be able to add

and withdraw money using various payment modes. What is more important is

keeping in constraints that people who will be using these APIs might also have

a very slow and unreliable Internet and keeping all these things in mind ,our API

should be able to handle a variety of error case Scenarios and should have a lower

response time and a minimum of Downtime. Any Service or API that is created

is bound to have some amount of Downtime, we should be able to minimise this.

It should also be scalable for potentially millions and millions of Customers and

provide accurate results.

Keeping these above constraints in mind, we should come up with an API that

can seamlessly be integrated with other services while maintaining the above

factors in mind. It should also have the capability to block requests from

unauthorised services and should only expose the endpoints to services that have

had registered to use this service. While designing we should also follow the best

principles like having a proper variable name, breaking the modules into as

smaller parts as possible and following a modular approach. The code that we

create should be easy to understand and Debug and not only that its ownership

should be easily transferable and should have a loose coupling with its

dependencies.

18

1.3) OBJECTIVE

The main objective is to create a Balance API that can update and fetch the

Balance of a Customer from the Backend while showing properties of low

latency, high availability and an ability to handle an unusually amount of high

traffic. It should be scaled enough to handle any major traffic spikes that come

along and should not crash down in those situations.

It should have a very low downtime and should be easy to manage and provide

an easy integration to services who register to use this API.The API should also

block unauthorized services that try to access the Endpoints and shoudn’t allow

any transactions without the authorization.This is to reduce any misuse that might

be caused due to a third party service that is not supposed to access the API

resources

While keeping the above things in mind,we should also come up with design that

is viable in the longterm and makes any future API Integration seamless

19

1.4) METHODOLOGY

FIG 8: METHODOLOGY

We first start off by setting up the AWS Architecture that we will be Deploying

our Service.

This mainly Involves

• Getting the console access to the hosts that we will be Deploying to

• Configuring the Code Deploy Console and setting it up

• Creating the instance

• Creating the Application onto the Instance

• Granting AWS Permissions to edit, and deploy the application

• Deployment and Iterative Development

We begin by getting ssh access to the hosts that we will contain our compiled files

and other dependencies.This ssh access can be later used to log in to host and can

be useful in a lot of scenerios like debugging,checking logs etc.Post that we need

to specify the services that we need .for us the come in form of

DynamoDb,Lambda and other similar services like stream.

Post having all these things setup we require to create our application onto AWS

.This application will host all our APIs that will be working on and requires

some further setup like configuring the endpoints and the Server Endpoints and

post this we can do a Sample deployment of a Hello World to have a sanity

check of our endpoints and our overall Architecture

20

Deployment commands for the Deployment of App onto AWS

Post the creation of a Deployment Group we can deploy it to our ec2 instance by

using

21

1.5 Organization

The steps required for the project is:

Chapter 1

In this we provide a brief introduction to the project and the tools and

Technologies Used

Chapter 2

In this chapter we did a literature survey of various sources to understand things

like Spring, MVC Dependency Injection and AWS Services

Chapter 3

In this we go through with the High Level Generic Design that is being followed

to build the API along with the Development Model Followed to create it

Chapter 4

In this Chapter we go through System Development in Brief and Look at Some

High Level Components

Chapter 5

We decide on what the future work on this could look like

22

Chapter 2: Literature survey

2.1 Books and publication

To understand various things related to the Spring Framework I went through the

following Resources which basically got a lot of things cleared up for me before

I could move onto the implementation phase:

1) Spring Microservices in Action by John Carne

It got me to understand the very basics of different architecture types like

monolithic architecture and microservices and helped me in understanding the

differences between the two as well as pros and cons of each other. Then It also

introduced to Spring Microservices that could be used

2) Amazon Web Services in Action

This resource helped me a lot in understanding various Amazon Web Service

Resources that are available and how should we think about each one in designing

our Services. Not only did it introduced us to various Services like Lambda and

DynamoDB but also had in depth practical explanation of when should we be

using those and also focused on reducing the costs for the Services that we use by

Optimizing on our Resources

3) Java 9 Dependency Injection: Write Loosely Coupled Code with Spring 5

and Guice

This book introduced me to the fundamental concepts of Dependency Injection

and had examples that can be easily related. Although the topic itself is very

complicated to grasp in first go ,this book helped me understand it in and out with

a large amount of Practical Examples

23

4) RESTful Web APIs: Services for a Changing World

This Helped me understand the Basics of a REST Service and best practices

to follow while designing one.It has in depth explanation of what to do and

what not to do and has helped me getting a strong grasp on the REST

Principals

24

Chapter 3: System Development

3.1 SDLC Model Chosen

Fig 9:Incremental Model

We followed an Incremental Model while developing the feature.In an

Incremental Model ,every time we do do 4 phases of Software Development that

is Analysis,Design,Code and Test and after each Iteration whatever we release is

known as an Increment.

25

It can be thought of as breaking a major project into several deliverables and each

increment is one such deliverable.In this Project Validating the Authentication

header came as one of the maximum priority as without this we won’t be able to

provide access to any External Service.Not only this ,our API could have Been

easily Misused if this feature was not present.So in the first Increment we created

this specific module. Then I started working upon the Feature that can fetch the

Balance and return the fetched balance to the required Service.This came of

Second Priority as the Update Balance will also require this one post it has done

the changes and updated the balance in the DB. And then in the third and Final

Increment,We started working on Update Balance feature which takes in an input

from the Service and updates the Balance in DB

Here are the Advantages and Disadvantages of using this SDLC model

26

This model was chosen because the design for the API was already in place and

minor changes that might occur were though of and accommodated in the design

itself.

27

3.2 High Level Sequence Diagram for the API

Fig: 9 GET Balance Sequence Diagram

There are mainly three major things that we should think of while designing our

Service

1) External Service

These are the Services that will register to use our API, We don’t want any

unauthenticated service accessing this API in any way, but at the same time we

want a mechanism in place that allows this API to be called from/integrated with

any service that is registered to call it without much hassle and for that we come

up with the Authentication Header. This Authentication Header mainly contains

a uniquely generated String to identify the Service. When the Service first makes

28

this Request we first validate in our DB that if this particular ID is allowed to

access the resources/operations that we have within the API

Without this authentication header we decide to terminate the Service and not go

forward with any request from that ID. Post this validation we allow the Service

to request our API with an encrypted customer ID

2) Balance API

Balance API consists of two major Operations

• Get Balance – Fetch the Balance of a Customer provided CustomerID

• Update balance – Update the Balance of a Customer Provided Amount

After we receive a customerID ,we first Unencrypt it and then encrypt it again by

a different key value pair. Post this we convert our existing request to an Object

Type and send that request to DynamoDB to Look up and Fetch the Balance

3) DynamoDB

DynamoDB is the Database that will eventually store the Information that we will

need. It is highly secure and scalable for our task. At the same time it provides

with very low read and write latencies and is therefore integrated with our API.

Update Balance Request Call

Update Balance request call again proceeds in a similar way to GET Balance Call.

First the authentication header should be verified by our Service post which we

need to send the External Service an response which Basically tells it if it has the

29

permission to proceed with the request. If it proceeds with the request without

permission, its request will be Blocked

In case where an authentication is provided to the service, it makes a service Call

to our Balance API, Sending it the amount and customerID ,which basically tells

it to update the balance of customerId x to Balance Amount Rs .X. Our API listens

for this and before proceeding with any other thing we encrypt the customer ID

Fig 10:Update Balance Sequence Diagram

Post this we Do an Update Request on the Database and it returns us with a

success or a failure Response .In Case of any Failure we invalidate the transaction

and return nothing to the External Service and if it succeeds we update our API

30

with a success Response .After our API gets the Update Signal, it goes through

with a get balance Request from the Backend Database. The DynamoDB in turn

Responds with a Balance Object which is then Send back to The Balance API and

json parsing of the object is done to fetch the balance from it and Return the

calling Service an updated balance along with a transaction id that uniquely

identifies the Transaction

Testing and Debugging

Unit tests for the following modules were written in Mockito

Mockito is based on JAVA and is usually used for the unit testing of a particular

module.The Dependencies for that module can easily be mocked with some

dummy functionality and tests can be written for the Module .

Chapter4: Performance Analysis

4.1 Evaluation:

The way that any Particular API could be Evaluated is dependent mainly on these

basic factors:

• The Latency of the API/Service

• The Availability of the Service

• The Amount of traffic it can serve

• How easy is it to integrate with the Services that register to use it

For the Latency part ,we have a very low latency (in ms) because of the design

that we chose and followed. The fact that we chose our architecture on the AWS

31

Stack made sure that it has very high availability and any downtime could be

quickly recovered. It is also very scalable and while it can serve normal traffic

with its current architecture designs, whenever there is a peak in traffic ,the

Resources can be Scaled up to meet those Demands

Exact figures could not be added because they are confidential in nature

32

Chapter5: CONCLUSIONS

5.1 Conclusion:

In this project we have created a Balance API an deployed it onto an AWS Stack

architecture. The API has a low latency, High availability and can be easily

integrated with other Services

52. Future Scopes:

For the future scope we can try to add more functionalities to this API and bring

down its latencies even further.

33

References

H. Y. Yang, E. Tempero and H. Melton, "An Empirical Study into Use of Dependency Injection in
Java," 19th Australian Conference on Software Engineering (aswec 2008), Perth, WA, 2008, pp. 239-
247, doi: 10.1109/ASWEC.2008.4483212.

S. Roubtsov, A. Serebrenik and M. van den Brand, "Detecting Modularity "Smells" in Dependencies
Injected with Java Annotations," 2010 14th European Conference on Software Maintenance and
Reengineering, Madrid, 2010, pp. 244-247, doi: 10.1109/CSMR.2010.45.

S. Mostafa and X. Wang, "An Empirical Study on the Usage of Mocking Frameworks in Software
Testing," 2014 14th International Conference on Quality Software, Dallas, TX, 2014, pp. 127-132, doi:
10.1109/QSIC.2014.19.

H. Cinis, "Improving the Definition of Software Development Projects Through Design

Thinking Led Collaboration Workshops," 2018 IEEE/ACM 40th International Conference on

Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), Gothenburg,

2018, pp. 254-255.

34

