

Analysis of Imbalanced Data

Project report submitted in partial fulfilment of the requirement for the degree

of

Bachelor of Technology

in

Information Technology

Under the supervision of

Dr. Hari Singh

Assistant Professor (Senior Grade)

` By

Chandan Partap Singh (151456)

to

 Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat, Solan-173234,

Himachal Pradesh

May 2019

i

Certificate

I hereby declare that the work presented in this report entitled “Analysis of Imbalanced

Data” in partial fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Information Technology submitted in the Department of Computer Science

& Engineering and Information Technology, Jaypee University of Information Technology,

Waknaghat is an authentic record of my own work carried out over a period from January

2019 to May 2019 under the supervision of Dr. Hari Singh.

The work done embodied in the report has not been appeased for the award of any other

degree or diploma.

11

…………………………..

(Student Signature)

Chandan Partap Singh

(151456)

This is to certify that the above affirmation made by the candidate is true to the best of my

knowledge.

………………………….

Dr. Hari Singh

Assistant Professor (Senior Grade)

Department of Computer Science and Engineering and Information Technology

Dated: ………………….

ii

Acknowledgement

I would like to take the opportunity to thank and express my deep sense of gratitude to my

mentor and project guide Dr. Hari Singh for his immense support and valuable guidance

without which it would not have been possible to reach this stage of my final year project.

I am also obliged to all my faculty members for their valuable support in their respective

fields which helped me in reaching at this stage of my project. My thanks and appreciations

also go to my colleagues who have helped me out with their abilities in developing the

project.

Date………………. Chandan Partap Singh (151456)

iii

Table of Contents

Certificate i

Acknowledgement ii

Table of Contents iii

List of Figures v

List if Tables vi

Abstract vii

Chapter 1. Introduction 1

1.1 Introduction 2

1.2 Problem Statement 3

1.3 Objective 4

1.4 Methodology 4

1.5 Organization of Thesis 5

Chapter 2. Literature Survey 6

2.1 Learning from Imbalanced Data Sets using various techniques 7

2.2 Using Random Forest to Learn Imbalanced Data 8

2.3 A Survey on Performance Measures in Machine Learning 9

Chapter 3. System Development 11

3.1 System Requirements 12

3.1.1 Software Requirements 12

3.1.2 Hardware Requirements 13

3.2 Existing Methodologies 13

3.2.1 Resampling Techniques 13

3.2.1.1 Random Under-Sampling 14

3.2.1.2 Random Over-Sampling 15

iv

3.2.1.3 Synthetic Minority Over Sampling Technique 16

3.2.2 Algorithmic Ensemble Techniques 17

3.2.2.1 Logistic Regression 19

3.2.2.2 Random Forest 20

3.2.2.3 Naïve Bayes 21

3.3 Feature scaling 22

3.3.1 Methods 22

3.3.1.1 Min-Max Normalization 22

3.3.1.2 Mean-Normalization 23

3.3.1.3 Standardization 23

3.4 Combination of resampling and ensemble methods 23

Chapter 4. Implementation and Results 24

4.1 Dataset Used 25

4.2 Performance Parameters 26

4.2.1 F1 Score 26

4.3 Implementation 26

4.4 Results 28

4.5 Code 33

4.5.1 Without Feature Scaling 33

4.5.2 With Feature Scaling 36

Chapter 5. Conclusions 41

5.1 Conclusion 42

5.2 Future Scope 42

References 43

v

List of Figures:

Figure Number Caption Page Number

Figure 1.1 Visual representation of

Imbalanced Data

2

Figure 1.2
Confusion Matrix

3

Figure 2.1 Example of an RUC Curve 10

Figure 3.1 Visual representation of Under

and Over Sampling

13

Figure 3.2 Working of SMOTE 17

Figure 3.3 Basic Decision Tree working 18

Figure 3.4 Ensemble based methodologies

working

18

Figure 3.5 Linear Regression 19

Figure 3.6 Graphs of Linear and Logistic

Regression

20

Figure 3.7
How a Random Forest works?

21

Figure 4.1 Credit card Dataset Snapshot 25

Figure 4.2 Snapshot of the F1 scores of

different algorithms without

Feature scaling.

29

Figure 4.3 Confusion Matrix without

Feature scaling

29

Figure 4.4 Snapshot of the F1 scores of

different algorithms with

Feature scaling

31

vi

List of Tables:

Table Number Caption Page Number

Table 4.1 Table showing the F1 scores

of different algorithms

withoutFeature scaling

28

Table4.2 Table showing the F1 scores

of different algorithms with

Feature scaling

30

Table 4.3 Table showing the F1 scores

with Feature Scaling and

withour Feature Scaling

32

vii

ABSTRACT

Due to the expansion of data in large scale organizations, it has become crucial to upgrade the

data mining techniques for decision making. In some scenarios such as medical diagnosis,

fraudulent detection, imbalanced data is not a unique feature. Any dataset can be identified as

an imbalanced dataset if the number of instances in one class are significantly higher than the

other one (around 10:1). For example, in a dataset, there are 100 instances in under Class A

and 2 instances under Class B. Though many existing classification algorithms are there, but

most of them are biased towards the majority class. In any normal scenario, it is normal, but in

the areas such as medical diagnosis and fraud detection, the minority class is ignored and

hence wrong outcomes are deduced. Resampling is a very popular method to tackle this issue.

It involves generating synthetic instances (known as over-sampling) or removing instances

(known as under-sampling). Some modern algorithms such as the Ensemble Classifiers such as

Random Forest are also explained. In this report, I have demonstrated the existing algorithms

and I have proposed a new model whose accuracy (calculated on the basis of F1 score) is

better than the traditional models.

1

Chapter 1:

 Introduction

2

Chapter 1: Introduction

1.1 Introduction

Imbalanced data set happens when there is an unequal portrayal of classes. Imbalanced data

isn't generally an awful thing, and in genuine data sets, there is in every case some level of

imbalance. There may not have a huge effect on your model execution if the dimension of

irregularity is generally low. But, in specific regions, for example, fraud detection, medicinal

determination and risk management, serious imbalanced class dispersion is normal, and in this

way, is a concerning issue.

 An vital task arises whilst we strive to analyse from imbalanced dataset in which the number

of example of 1 (majority) class outnumbers the others. Conventional machine learning

algorithms are usually biased to the class with higher instances, therefore generating poor

predictive accuracy over the minority magnificence. In this report, a comparative study and a

brand new technique that combines one of a kind algorithm is applied.

Figure 1.1: Visual representation of Imbalanced Data

3

1.2 Problem Statement

Companies that get affected by the problem of imbalanced datasets are working towards

advanced analytics and machine learning algorithms to find the backdoor of this problem and

eliminate it.

That said, the expansion of data at a very fast speed increases its size and distribution. The

ratio of fraudulent transactions to the ordinary transactions is very low (1-2% from the

dataset). The challenge is to increase the accuracy to identify a fraudulent transaction so that

the loss users are facing can be minimized by the organizations/banks.

Traditional classifier algorithmic Decision Tree and Logistic Regression are biased to the class

which as higher number of instances. The accuracy of such classifiers are hence reliable for

majority class. Minority class, which has lower number of instances are usually ignores.

Henceforth, the probability of misclassification is higher in case of such classifiers.

Confusion Matrix is one the criteria on which we can evaluate any algorithm. Information of

actual class and predicted class is represented in confusion matrix.

Figure 1.2: Confusion Matrix

Accuracy=(TN+TP)/(TN+FP+FN+TP)

4

Having said that, accuracy is not an appropriate performance criterion if we are dealing with

imbalanced dataset. For example: We have a dataset in which 98 instances are in Class A and

2 in Class B. A classifier can predict if an instance belongs to class A with 98% accuracy, but

in case of imbalanced data, the remaining 2% is what matters.

1.3 Objective

Two broad objectives of this report are given below:

1. To detect a faulty transaction with higher accuracy:

Out of the most popular classification and resampling methods, the aim is to compare

the combinations of resampling and classification techniques and to identify which of

the combinations performs the best in terms of accuracy.

2. To further improve the computation speed of the algorithms used in the first objective.

1.4 Methodology

1. To complete the first objective. I will perform Logistic Regression with Synthetic

Minority Over-Sampling Technique (SMOTE), Logistic Regression with Random-

Under-Sampling, Logistic Regression without SMOTE, Naïve Bayes with SMOTE,

Naïve Bayes with Random-Under-Sampling, Naïve Bayes without SMOTE, Random

Forest with SMOTE, Random Forest with Random-Under-Sampling, Random Forest

without SMOTE.

2. To improve the computation speed, normalizing/standardizing the dataset in some

cases proves to be beneficial.

5

1.5 Organization of Thesis

In Chapter 2, I have discussed the literature survey. I have looked upon the various

existing approaches that have been used for handling imbalanced data. Each one of

them has its own unique features which distinguishes it from the rest .

In Chapter 3, I have explained the traditional algorithms that I have used in proposing

my new model by integrating those algorithms.

In Chapter 4, I have explained my proposed strategy to handle imbalanced data in case

of a credit card dataset and the comparative table results is shown.

In Chapter 5, I have thereby concluded my report and discussed the future scope of this

project.

6

Chapter 2:

 Literature Survey

7

Chapter 2: Literature Survey

2.1 Usamma Fayad, Gregorry Patetsky Sapiro and Pahraic Smith: Learning from

Imbalanced Data Set using various techniques, Volume 39, Nov. 2015,

Page 29-34

Resampling of the dataset has been a solution of handling imbalanced data since the problem

came into existence. Resampling means either to increase the number of instances in the

minority class (class with less number of objects under it) or removing instances from the

majority class (class with more number of objects under it. There are many techniques under

Resampling, mainly Random Over Sampling, Random Under-Sampling, Synthetic Minority

Over Sampling Technique etc...

The advantage of using resampling techniques is that it is very easy to implement. However,

some modern resampling techniques such as SMOTE, MSMOTE etc. have complex

implementation which gives good results.

The limitations of Resampling techniques are that only the classification accuracy is improved.

But the problem lies in the fact that classification accuracy is one of the most outdated

performance criteria which is simply calculated by identifying how many of the predictions are

correct without keeping in account the minority class.

Logistic Regression is a classification algorithm which is used to predict outcome using the

sigmoid function. Sigmoid function takes real numbers as the input and the output lies in the

range of 0 to 1 as probability lies in the range of 0 to 1.

Logistic Regression is easy to implement an is very efficient to train, also the conditional

probabilities are calculated which can be useful in many scenarios.

However, Logistic regression shows poor results if the dimensionality of the dataset is high.

8

2.2 Xindongg Wou, Xigquan Zuh, Gongg-Xing Wuh, and Wey Dingh: “Using

Random Forest to Learn Imbalanced Data” IEEE Transactions on Imbalanced

Data Engineering, Volume26 Issue 1, January 2014 Pages 97-107

Random Forest is an ensemble method which can be used for both classification as well as

regression analysis. It constructs multiple decision trees when the models re getting trained and

the final outcome are decided on the basis of the individual results of the decision trees.

Basic parameters that are needed in Random Forest can be the total number of trees to be

generated and the splitting criteria.

Random Forests has less variance than a single decision tree. They have high accuracy than

existing classification algorithms. The disadvantage of using random forest is its complexity.

They are much harder and time consuming to build than single decision trees.

Naïve Bayes is another type of classifier which is used to predict outcomes on the basis of

probability. It is based on the Bayes theorem.

A Naïve Bayes model is easy to build which requires no complicated development, hence

making it effective for large datasets with high dimensionality. Machine Learning revolves

around in finding the best hypothesis, h, for the given data d. For classification, h could

be the in which we want to add a new instance d. Using Bayes Theorem, the probability

of a hypothesis can be calculated if the prior knowledge is given.

If the dataset is small, the Naïve Bayes does not come up very well. The precision and recall

are set low and hence the F1 score is low, which does not make the Naive Bayes a reliable

algorithm.

9

2.3 Apoorva Aggarwal, Boy Xi Ila Vosha, Oven Rambov Rebeca: “A Survey on

Performance Measures in Machine Learning” IJCSMC, Vol. 4, Issue. 11,

November 2015, pg.338 – 343.

To correctly evaluate the performance of any model, different performance metrics are

available.

1. Confusion Matrix:

Confusion Matrix displays the complete performance of a model in the form of a

matrix

There are 4 important terms:

 True Positives: Prediction is YES and actual output is also YES

 True Negative: Prediction is NO and actual output is also NO

 False Positive: Prediction is YES and actual output is NO

 False Negative: Prediction is NO and actual output is YES

2. F Score:

For datasets that have two classes, F1 score can be good performance criterion to score

your model. It is defined as the harmonic mean of precision (fraction of relevant

instances among the retrieved instances and recall (fraction of relevant instances that

have been retrieved over the total amount of relevant instances).

F score lies in the range of 0 to 1. 0 for the worst model and 1 for the best one.

3. AUC-ROC Curve:

Area Under the Curve-Receiver Operating Characteristics curve is a performance

measurement criterion for checking a classification model’s performance. ROC is a

10

probability curve and AUC represents the area under the curve. Greater the AUC,

better is the model.

In ROC curve, True Positive Rate (TPR) is on y-axis and False Positive Rate (FPR) is

on x-axis. Similar to F Score, 1 is for an excellent model and 0.5 for the worst, as it

means that the model has no capability to classify a single instance correctly.

Calculation Formulae:

 TPR=TP/(FN+TP)

 FPR=FP/(FP+TN)

Figure 2.1: Example of an RUC Curve

However, the AUC does not interprets predictions as probabilities as AUC only cares about the

ranking of your prediction scores and not their actual values. Therefore, you will not be able to

express your uncertainty of a prediction, or simply speaking, AUC is insensitive to imbalanced

datasets.

11

 Chapter 3:

 System Development

12

Chapter 3: System Development

3.1 System Requirements

To run this project on a machine, the following software and hardware requirements are

mandatory to meet:

3.1.1 Software Requirements:

1. Windows 10 (64-bit) or Windows 8/8.1 (x64 or x86 or Linux (tested on Ubuntu

Linux)

2. I have used Python language for this project as Python contains unique libraries for machine

learning such as SciPy or NumPy which makes it efficient for creating models based on linear

algebra. The language is fun to use when working with machine learning algorithms and has

easy syntax relatively. Training datasets can be done more efficiently than R.

3. Spyder

It is open source Integrated Development Environment (IDE) made for programming in

Python. It is also an open-source platform, which invites a lot of programmers to test new

features.

Spyder provides inbuilt important packages including NumPy, SciPy, Matplotlib, pandas, as

well as other open source software.

Spyder is very easy to install compared to its alternatives (e.g., PyCharm). Spyder can be

installed using Pip. It is also part of many Linux distributions package manager. The Variable

Explorer in Spyder makes it very user-friendly.

Some other alternatives: PyCharm, VSCode

13

3.1.2 Hardware Requirements:

 Windows 8/8.1/10, Linux, Mac OSX

 Intel Core i3, i5, or i7 CPU with 2 or more cores, or AMD equivalent.

 1.8 GHz or faster processor.

 Minimum 20 GB free space (depending on the features installed)

 Minimum 4 GB RAM

3.2 Existing Methodologies

3.2.1 Resampling Techniques:

A very popular technique for dealing with highly unbalanced datasets is called

resampling. Resampling removes/add virtual samples to the original dataset.

Figure 3.1: Visual representation of Under-Sampling and Oversampling

Though these techniques help in balancing the class, but they do have their limitations.

The very basic implementation of Over-Sampling is to duplicate the records randomly

from the minority class, which in some cases may cause overfitting. In under -sampling,

14

the basic method is removing records randomly from the minority class, which usually

causes loss of information.

The main idea behind balancing classes is to either increase the frequency of the

minority class or decrease the frequency of majority class, hence making the dataset

balanced.

 A few resampling techniques are given below:

3.2.1.1 Random Under-Sampling:

This method randomly removes instances from the majority class in order to make it

balanced. This is done iteratively until the class becomes balanced.

For example,

T (total number of instances) = 100

F (fraudulent instances) =2

NF Non Fraudulent instances = 98

Rate = 2 %

NF instances sampling (taking 10% samples) = 10 % of 98 =9.8

After integrating all instances, total instances= 2+9.8 which comes around 12.

New Event Rate = 2/12 = 17%

Advantages:

 In some cases, it can improve the run rime and memory problems as it reduces the

number of samples when the training dataset is large.

15

Disadvantages:

 It can dispose of conceivably valuable data which could be significant for

building classifiers.

 There are chances that the sample which is chosen is a biased sample, and hence

it will not be the actual representation of the population, hence resulting in

inaccurate results.

3.2.1.2 Random Over-Sampling:

Random Over-Sampling involves adding synthetic data with multiple copies of some of

the minority classes. Over-Sampling can also be iteratively. This is one the method that

has been in existence since a very long time. Over-Sampling can be done either by

adding values with mean value or adding values randomly in the minority class.

For example,

T (total number of instances) = 100

F (fraudulent instances) =2

NF Non Fraudulent instances = 98

Rate = 2 %

Duplicating 10 fraud observations 10 times.

Total Observations after oversampling=100+98=198

New Event Rate = 100/198 = 49.9 %

Benefits of using Oversampling:

 Main benefit of Over-Sampling over Under-Sampling is that there is no loss of

information, hence outperforms Under-Sampling

16

Limitations:

 As Over-Sampling replicates from the minority class chances of overfitting

increases.

3.2.1.3 Synthetic Minority Over Sampling Technique:

In this algorithm, synthetic samples are generated and then added to the original

dataset. The synthetic samples are created by joining a line between the instances of the

minority class and from this line, the synthetic samples are picked. These synthetic

instances are afterwards added to the original dataset.

For example,

T (total number of instances) = 100

F (fraudulent instances) =2

NF Non Fraudulent instances = 98

Rate = 2 %

5 Instances are taken from the minority class and are iterated 10 times.

After generating the samples:

Fraudulent Observations = 50

Non-Fraudulent Observations = 98

Event rate= 50/148= 33.7 %

Advantages:

 No loss of useful information.

 Solves the problem of overfitting which was caused by random Over-Sampling as the

instances were generated more intelligently.

Disadvantages:

 SMOTE is not very efficient if the dataset has high number of dimension.

 When SMOTE is generating samples, it does takes neighbouring points from the other

classes, which can sometimes increase noise.

17

Figure 3.2: Working of SMOTE

3.2.2 Algorithmic Ensemble Techniques

Algorithmic ensemble methods are a technique in machine learning that unites different

models to make one optimal predictive model. To better understand this, let me remind

you the main idea behind machine learning as I will discuss some examples to why

ensemble methods are used. Decision Trees can be used to make the definition clearer.

The key idea behind these is to train multiple models in which each decision tree will

predict or classify.

Ensemble methods help us increase stability of our final model and hence the individual

models getting created will make one optimum model.

18

Figure 3.3: Basic decision tree working.

The basic working of decision tree is that it predicts a value based on the set of

questions and conditions. In ensemble methods, instead on getting dependent on one

Decision Tree, the prediction is made on the basis of multiple decision trees,

determines what features are asked and makes a final predictor which is based on the

integrated outcomes of the Decision Trees.

Figure 3.4: Ensemble based methodologies working

19

3.2.2.1 Logistic Regression

If the response variable is categorical, Logistic Regression can be used as a classifier.

The role of Logistic Regression to find an association between probability of any

random outcome and its features.

For example, if we want to know whether a student passed or fail in an examination in

which we have the number of hours given as a feature.

Figure 3.5 Linear Regression

3.2.2.2 Difference between Linear and Logistic Regression:

Logistic Regression is a classification algorithm, in which the outcome can have values

from a limited set, i.e., only a limited number of possible values and in Linear

Regression, the outcome is always continuous. Linear regression is actually a

regression model, meaning it’ll always give the output which will be continuous (not

discrete).

20

Figure-3.6: Graphs of Linear and Logistic Regression

3.2.2.3 Random Forest

Random Forest is a type if ensemble algorithm, meaning that it combines more than one

algorithm for classification. For example, running SVM, Naïve Bayes and Decision

Tree and the final consideration of class for an object is done on the bases of vote.

A random forest becomes more accurate if the number of decision trees is higher. One

unique feature that Random Forest has is that it can work well both for classifications

and regression analysis, which contributes to a large portion of Machine Learning.

What makes Random Forest robust is that while growing the trees, it silently

contributes to increasing randomness of a model. Rather than splitting from the most

important feature, it chooses the splitting point based on the best feature among a set of

features.

Total number of decision trees which are to be generated is the basic parameter to the

Random Forest. Other parameters include minimum split, split criteria etc.

21

Figure 3.7: How a Random Forest works?

3.2.2.4 Naïve Bayes

Machine Learning revolves around in finding the best hypothesis, h, for the given data

d. For classification, h could be the in which we want to add a new instance d. Using

Bayes Theorem, the probability of a hypothesis can be calculated if the prior

knowledge is given.

Bayes Theorem:

Here,

 P(c|x) is the posterior probability of target given attribute.

22

 P(x) is the prior probability of predictor.

 P(c) is the probability of class,

3.3 Feature scaling

The features that are used to train the model have a deep relationship with the

performance one can achieve. Feature scaling is a core topic of Data Science as it can

affect the performance of the model. Feature Scaling is used to standardize the

variables of a dataset. There are some features that are irrelevant/partially relevant and

can hinder your model’s performance. Feature scaling in some cases can be proved to

be very beneficial.

Disadvantages:

 Feature scaling doesn’t guarantee improved performance.

 In some cases, the performance/accuracy of your model may decrease

3.3.1 Methods

3.3.1.1 Min-Max Normalization:

It rescales the range of features in the range of [--1, 1] or [0, 1]. It is one of the easiest

implementation in which the range we want to target depends on the nature of the data.

General Formula:

,

Where x is an original value and x’ is the normalized value

23

3.3.1.2 Mean Normalization:

General Formula:

,

where x is an original value and x’ is the normalized value.

3.3.1.3 Standardization:

It is a way of normalization in which we require mean, standard deviation as inputs,

General Formula:

Where x is the original feature vector, is the sum of mean of that

feature and σ is its standard deviation.

3.4 Combination of resampling and ensemble methods:

In my project. I have combined some of the resampling techniques with ensemble

classifiers as resampling of imbalanced dataset will improve the overall accuracy of the

classifiers. The classifier that I have made are listed below:

1. Logistic regression with SMOTE

2. Logistic Regression with Random-Under-Sampling

3. Logistic regression without SMOTE

4. Naïve Bayes regression with SMOTE

5. Naïve Bayes with Random-Under-Sampling

6. Naïve Bayes without SMOTE

7. Random Forest with SMOTE

8. Random Forest with Random-Under-Sampling

9. Random Forest without SMOTE

24

Chapter 4:

 Implementations and Results

25

Chapter 4: Implementations and Results

4.1 Dataset Used

The datasets contain transactions made by credit cards in September 2013 by European

cardholders. This dataset shows transactions that happened in two days, where 492

transactions out of 284,807 transactions are fraudulent. The dataset is profoundly unbalanced;

the positive class represent 0.172% all things considered.

It contains just numerical information variables which are the consequence of a PCA

transformation. Due to security issues of the users, the background information about the data

is not provided. The only features which have not been converted with PCA are ‘Amount’ and

‘Time’.

Total 31 features are present in this dataset:

1. V1, V2, …. V28 features are the principal components obtained after applying

PCA.

2. Amount is the transaction amount.

3. Time represents the seconds elapsed between nth transaction and the first

transaction in the dataset.

Figure 4.1: Sample (Credit card Dataset Snapshot)

26

4.2 Performance Parameters

Evaluating a machine learning algorithm is necessary. Simply calculating the classification

accuracy is not a valid criterion to judge our model. I have discussed two techniques below

which are more reliable in evaluating my models:

4.2.1 F1 Score

Also known as F Score or F measure, it is used to test a model’s accuracy. It takes into account

the precision, p, and recall, r to calculate an overall score, which is done by taking the

harmonic mean of p and r. p can be formulated as the number of correct positive results

divided by the number of all positive results which are returned by the classifiers.

Mathematically,

.

One drawback of F1 score is that it gives equal importance to both precision and recall, which

in many datasets is not always true.

4.3 Implementation

In my implementation I have combined different resampling and classification

algorithms and then I have calculated the F1 scores and a comparative table is shown in

the results section. Case 1 includes all the combinations of algorithms without Feature

Scaling and in Case 2, Feature Scaling of the dataset were done first.

Case 1: Without Feature Scaling-

 Logistic Regression with SMOTE:

 Applying resampling over the dataset using Synthetic Minority Over-Sampling

Technique and then classifying it using Logistic Regression.

27

 Logistic Regression with Random-Under-Sampling:

Applying random Under-Sampling over the dataset and then classifying it using

Logistic Regression.

 Logistic Regression without SMOTE:

Applying random over sampling over the dataset and then classifying it using Logistic

Regression.

 Naïve Bayes with SMOTE:

Applying resampling over the dataset using Synthetic Minority Over-Sampling

Technique and then classifying it using Naïve Bayes.

 Naïve Bayes with Random-Under-Sampling:

Applying random Under-Sampling over the dataset and then classifying it using Naïve

Bayes.

 Naïve Bayes without SMOTE:

Applying random over sampling over the dataset and then classifying it using Naïve

Bayes.

 Random Forest with SMOTE:

Applying resampling over the dataset using Synthetic Minority Over-Sampling

Technique and then classifying it using Random Forest. This combination performs

really well (comparison given in Results section).

 Random Forest with Random-Under-Sampling:

Applying random Under-Sampling over the dataset and then classifying it using

Random Forest.

 Random Forest without SMOTE:

Applying random over sampling over the dataset and then classifying it using Random

Forest.

28

Case 2: All the above mentioned algorithms were run again after normalizing the data

using Feature Scaling. Results are shown in section 4.4.

4.4 Results

Case 1: Without Feature scaling-

Algorithm

F1 score

Logistic Regression with SMOTE

0.15113350125944586

Logistic Regression with Random-Under-

Sampling

0.07468553459119497

Logistic Regression without SMOTE

0.6404494382022472

Naïve Bayes with SMOTE

0.25517241379310346

Naïve Bayes with Random-Under-

Sampling

0.2375601926163724

Naïve Bayes without SMOTE

0.22752293577981647

Random Forest with SMOTE 0.85

Random Forest with Random-Under-

Sampling

0.10296586457750419

Random Forest without SMOTE 0.8324324324324324

Table 4.1: Table showing the F1 scores of different algorithms without Feature scaling.

29

Figure 4.2: Snapshot of the F1 scores of different algorithms without Feature scaling.

Important Points to consider:

4. In case of Random Forest with SMOTE, the F1 score comes out to be the highest

with 0.85; meaning that it will successfully identify a fraudulent transaction with an

accuracy of 85%. This is followed by Random Forest without SMOTE which has an

accuracy of 83%, which itself is impressive.

5. Logistic Regress ion with Random-Under-Sampling performs poorest with only 7%

accuracy, followed by Random Forest with Random-Under-Sampling with 15%

accuracy.

6. Logistic Regression performs best when combined without SMOTE (F1 score comes

to be 0.64), Naïve Bayes performs best with SMOTE (0.25 f1 score) and Random

Forest performs best with SMOTE (0.85 f1 score).

Figure 4.3: Confusion Matrix without Feature scaling

30

Case 2: With Feature Scaling:

Algorithm

F1 score

Logistic Regression with SMOTE

0.003708327213981495

Logistic Regression with Random-Under-

Sampling:

0.0042449459925188076

Logistic Regression without SMOTE

0.7356321839080459

Naïve Bayes with SMOTE

0.003539947076038764

Naïve Bayes with Random-Under-

Sampling

0. 003539947076038764

Naïve Bayes without SMOTE

0.12436731742588576

Random Forest with SMOTE 0.01663108214406113

Random Forest with Random-Under-

Sampling

0.00401838110963019

Random Forest without SMOTE 0.8324324324324324

Table 4.2: Table showing the F1 scores of different algorithms with Feature scaling.

31

Figure 4.4 : Snapshot of the F1 scores of different algorithms with Feature scaling.

The accuracy of this model is significantly deteriorated when I applied feature scaling

using mean normalization. Below are some important deductions:

1. Random Forest with SMOTE, that performed best without feature scaling with 0.85

F1 score showed extremely poor results with feature scaling with only 0.016 F1 score.

In case of Random Forest without SMOTE, the F1 score comes out to be the highest

with 0.83.

2. Random Forest without SMOTE is unaffected with feature scaling and performs

equivalent in both the cases.

3. Naïve Bayes with SMOTE and Naïve Bayes with Random-Under-Sampling

performed poorest with 0.35% accuracy (i.e. 0.0035 F1 score).

We have seen that feature scaling is giving poor results in this case. A table is given in

the next page for easier analysis.

32

Comparative table showing F1 scores:

Algorithm

F1 score

(Without Feature Scaling)

F1 score

(With Feature Scaling)

Logistic Regression with

SMOTE

0.15113350125944586 0.003708327213981495

Logistic Regression with

Random-Under-Sampling:

0.07468553459119497 0.0042449459925188076

Logistic Regression

without SMOTE

0.6404494382022472 0.7356321839080459

Naïve Bayes with SMOTE

0.25517241379310346 0.003539947076038764

Naïve Bayes with Random-

Under-Sampling

0.2375601926163724 0. 003539947076038764

Naïve Bayes without

SMOTE

0.22752293577981647 0.12436731742588576

Random Forest with

SMOTE

0.85 0.01663108214406113

Random Forest with

Random-Under-Sampling

0.10296586457750419 0.00401838110963019

Random Forest without

SMOTE

0.8324324324324324 0.8324324324324324

Table 4.3: Table showing the F1 scores with Feature Scaling and withour Feature

Scaling

33

4.5 Code

4.5.1 Without Feature scaling:

import pandas as pd

dataset=pd.read_csv('creditcard.csv')

x=dataset.iloc[:,:-1].values

y=dataset.iloc[:,-1].values

#splitting the dataset

from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.20,random_state=0)

#implementing logistic regression

from sklearn.linear_model import LogisticRegression

classifierLOG_woSMOTE=LogisticRegression(random_state=0)

classifierLOG_woSMOTE.fit(xtrain,ytrain)

#implementing naive bayes

from sklearn.naive_bayes import GaussianNB

classifierNB_woSMOTE=GaussianNB()

classifierNB_woSMOTE.fit(xtrain,ytrain)

#implementing random forest

from sklearn.ensemble import RandomForestClassifier

classifierRF_woSMOTE=RandomForestClassifier(n_estimators=10,criterion='entropy',r

andom_state=0)

classifierRF_woSMOTE.fit(xtrain,ytrain)

#predicting test results

ypredRF_woSMOTE=classifierRF_woSMOTE.predict(xtest)

ypredNB_woSMOTE=classifierNB_woSMOTE.predict(xtest)

34

ypredLOG_woSMOTE=classifierLOG_woSMOTE.predict(xtest)

#confusion matrix

from sklearn.metrics import confusion_matrix

cmRF_woSMOTE=confusion_matrix(ytest,ypredRF_woSMOTE)

cmNB_woSMOTE=confusion_matrix(ytest,ypredNB_woSMOTE)

cmLOG_woSMOTE=confusion_matrix(ytest,ypredLOG_woSMOTE)

#implementing f1 score

from sklearn.metrics import f1_score

scoreRF_woSMOTE = f1_score(ypredRF_woSMOTE, ytest)

scoreNB_woSMOTE = f1_score(ypredNB_woSMOTE, ytest)

scoreLOG_woSMOTE = f1_score(ypredLOG_woSMOTE, ytest)

#implementing SMOTE

from imblearn.over_sampling import SMOTE

sm = SMOTE(random_state=2)

xtrain_SMOTE, ytrain_SMOTE = sm.fit_sample(xtrain, ytrain.ravel())

#implementing random forest

classifierRF_SMOTE=RandomForestClassifier(n_estimators=10,criterion='entropy',ran

dom_state=0)

classifierRF_SMOTE.fit(xtrain_SMOTE,ytrain_SMOTE)

#implementing naive bayes

classifierNB_SMOTE=GaussianNB()

classifierNB_SMOTE.fit(xtrain_SMOTE,ytrain_SMOTE)

#implementing logistic regression

classifierLOG_SMOTE=LogisticRegression(random_state=0)

classifierLOG_SMOTE.fit(xtrain_SMOTE,ytrain_SMOTE)

#predicting test results

35

ypredRF_SMOTE=classifierRF_SMOTE.predict(xtest)

ypredNB_SMOTE=classifierNB_SMOTE.predict(xtest)

ypredLOG_SMOTE=classifierLOG_SMOTE.predict(xtest)

#confusion matrix

cmRF_SMOTE=confusion_matrix(ytest,ypredRF_SMOTE)

cmNB_SMOTE=confusion_matrix(ytest,ypredNB_SMOTE)

cmLOG_SMOTE=confusion_matrix(ytest,ypredLOG_SMOTE)

#implementing f1 score

scoreRF_SMOTE = f1_score(ypredRF_SMOTE, ytest)

scoreNB_SMOTE = f1_score(ypredNB_SMOTE, ytest)

scoreLOG_SMOTE = f1_score(ypredLOG_SMOTE, ytest)

#implementing Under-Sampling

from imblearn.under_sampling import RandomUnderSampler

us = RandomUnderSampler(random_state=0)

xtrain_US, ytrain_US = us.fit_sample(xtrain, ytrain.ravel())

#implementing naive bayes

classifierNB_US=GaussianNB()

classifierNB_US.fit(xtrain_US,ytrain_US)

#implementing logistic regression

classifierLOG_US=LogisticRegression(random_state=0)

classifierLOG_US.fit(xtrain_US,ytrain_US)

#implementing random forest

classifierRF_US=RandomForestClassifier(n_estimators=10,criterion='entropy',random_

state=0)

classifierRF_US.fit(xtrain_US,ytrain_US)

#predicting test results

36

ypredRF_US=classifierRF_US.predict(xtest)

ypredNB_US=classifierNB_US.predict(xtest)

ypredLOG_US=classifierLOG_US.predict(xtest)

#confusion matrix

cmRF_US=confusion_matrix(ytest,ypredRF_US)

cmLOG_US=confusion_matrix(ytest,ypredLOG_US)

cmNB_US=confusion_matrix(ytest,ypredNB_US)

#implementing f1 score

scoreRF_US = f1_score(ypredRF_US, ytest)

scoreLOG_US = f1_score(ypredLOG_US, ytest)

scoreNB_US = f1_score(ypredNB_US, ytest)

4.5.2 With Feature scaling:

-*- coding: utf-8 -*-

import pandas as pd

dataset=pd.read_csv('creditcard.csv')

x=dataset.iloc[:,:-1].values

y=dataset.iloc[:,-1].values

#splitting the dataset

from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.20,random_state=0)

#feature scaling

from sklearn.preprocessing import StandardScaler

sc=StandardScaler()

xtrain=sc.fit_transform(xtrain)

xtest=sc.fit_transform(xtest)

37

#implementing naive bayes

from sklearn.naive_bayes import GaussianNB

classifierNB_woSMOTE=GaussianNB()

classifierNB_woSMOTE.fit(xtrain,ytrain)

#implementing logistic regression

from sklearn.linear_model import LogisticRegression

classifierLOG_woSMOTE=LogisticRegression(random_state=0)

classifierLOG_woSMOTE.fit(xtrain,ytrain)

#implementing random forest

from sklearn.ensemble import RandomForestClassifier

classifierRF_woSMOTE=RandomForestClassifier(n_estimators=10,criterion='entropy',r

andom_state=0)

classifierRF_woSMOTE.fit(xtrain,ytrain)

#predicting test results

ypredRF_woSMOTE=classifierRF_woSMOTE.predict(xtest)

ypredNB_woSMOTE=classifierNB_woSMOTE.predict(xtest)

ypredLOG_woSMOTE=classifierLOG_woSMOTE.predict(xtest)

#confusion matrix

from sklearn.metrics import confusion_matrix

cmRF_woSMOTE=confusion_matrix(ytest,ypredRF_woSMOTE)

cmNB_woSMOTE=confusion_matrix(ytest,ypredNB_woSMOTE)

cmLOG_woSMOTE=confusion_matrix(ytest,ypredLOG_woSMOTE)

#implementing f1 score

from sklearn.metrics import f1_score

scoreRF_woSMOTE = f1_score(ypredRF_woSMOTE, ytest)

scoreNB_woSMOTE = f1_score(ypredNB_woSMOTE, ytest)

scoreLOG_woSMOTE = f1_score(ypredLOG_woSMOTE, ytest)

38

#implementing SMOTE

from imblearn.over_sampling import SMOTE

sm = SMOTE(random_state=2)

xtrain_SMOTE, ytrain_SMOTE = sm.fit_sample(xtrain, ytrain.ravel())

#feature scaling

sc_SMOTE=StandardScaler()

xtrain_SMOTE=sc_SMOTE.fit_transform(xtrain_SMOTE)

#implementing naive bayes

classifierNB_SMOTE=GaussianNB()

classifierNB_SMOTE.fit(xtrain_SMOTE,ytrain_SMOTE)

#implementing logistic regression

classifierLOG_SMOTE=LogisticRegression(random_state=0)

classifierLOG_SMOTE.fit(xtrain_SMOTE,ytrain_SMOTE)

#implementing random forest

classifierRF_SMOTE=RandomForestClassifier(n_estimators=10,criterion='entropy',ran

dom_state=0)

classifierRF_SMOTE.fit(xtrain_SMOTE,ytrain_SMOTE)

#predicting test results

ypredRF_SMOTE=classifierRF_SMOTE.predict(xtest)

ypredNB_SMOTE=classifierNB_SMOTE.predict(xtest)

ypredLOG_SMOTE=classifierLOG_SMOTE.predict(xtest)

#confusion matrix

cmRF_SMOTE=confusion_matrix(ytest,ypredRF_SMOTE)

cmNB_SMOTE=confusion_matrix(ytest,ypredNB_SMOTE)

cmLOG_SMOTE=confusion_matrix(ytest,ypredLOG_SMOTE)

#implementing f1 score

39

scoreRF_SMOTE = f1_score(ypredRF_SMOTE, ytest)

scoreNB_SMOTE = f1_score(ypredNB_SMOTE, ytest)

scoreLOG_SMOTE = f1_score(ypredLOG_SMOTE, ytest)

#implementing Under-Sampling

from imblearn.under_sampling import RandomUnderSampler

us = RandomUnderSampler(random_state=0)

xtrain_US, ytrain_US = us.fit_sample(xtrain, ytrain.ravel())

sc_US=StandardScaler()

xtrain_US=sc_US.fit_transform(xtrain_US)

#implementing naive bayes

classifierNB_US=GaussianNB()

classifierNB_US.fit(xtrain_US,ytrain_US)

#implementing logistic regression

classifierLOG_US=LogisticRegression(random_state=0)

classifierLOG_US.fit(xtrain_US,ytrain_US)

#implementing random forest

classifierRF_US=RandomForestClassifier(n_estimators=10,criterion='entropy',random_

state=0)

classifierRF_US.fit(xtrain_US,ytrain_US)

#predicting test results

ypredRF_US=classifierRF_US.predict(xtest)

ypredNB_US=classifierNB_US.predict(xtest)

ypredLOG_US=classifierLOG_US.predict(xtest)

40

#confusion matrix

cmRF_US=confusion_matrix(ytest,ypredRF_US)

cmNB_US=confusion_matrix(ytest,ypredNB_US)

cmLOG_US=confusion_matrix(ytest,ypredLOG_US)

#implementing f1 score

scoreRF_US = f1_score(ypredRF_US, ytest)

scoreNB_US = f1_score(ypredNB_US, ytest)

scoreLOG_US = f1_score(ypredLOG_US, ytest)

41

Chapter 5:

Conclusions

42

Chapter 5: Conclusions

5.1 Conclusions

Credit cards have become a great source of money for fraudsters. This is due to the

increase in the use of credit cards. Everyone prefers using credit cards because it makes

our life easy. These methods that I have explained prove accurate in deducting

fraudulent transaction and minimizing the number of false alert. If this algorithm is

applied into bank credit card fraud detection system, the probability of fraud

transactions can be predicted soon after credit card transactions. And a series of anti -

fraud strategies can be adopted to prevent banks from great losses and reduce risks .

Data imbalance is the most common problem. Existing classification algorithms

underperform on the imbalance data, so we need to pre-process the data and make it

balanced. Methods for making data balance are Sampling and Cost sensitive learning.

At data level, sampling is the most common approach to deal with imbalanced data.

over- sampling clearly appears as better than under-sampling for local classifiers,

whereas some under-sampling strategies outperform Over-Sampling when employing

classifiers with global learning.

However, making a hybrid model by combining a classification algorithm with

resampling (any method) shows some positive results.

5.2 Future Scope

The findings obtained here may not be generalized to the global fraud detection

25problem. As future work, some effective algorithm which can perform well for the

classification problem with variable misclassification costs could be developed.

43

References

1. Usamma Fayad, Gregorry Patetsky Sapiro and Pahraic Smith:

“Learning from Imbalanced Data Set using various techniques”, Volume 39, Nov.

2015, Page 29-34

2. Xindongg Wou, Xigquan Zuh, Gongg-Xing Wuh, and Wey Dingh:

“Using Random Forest to Learn Imbalanced Data” IEEE Transactions on Imbalanced

Data Engineering, Volume26 Issue 1, January 2014 Pages 97-107

3. Apoorva Aggarwal, Boy Xi Ila Vosha, Oven Rambov Rebeca:

 “A Survey on Performance Measures in Machine Learning” IJCSMC, Vol. 4, Issue.

11, November 2015, pg.338 – 343.

4. C. Phuah, D. Lee, P. Smith, A. Gayler:

 “A quick introduction to Feature Scaling” Proceedings of the International Conference

on System Science, 2005.

5. . Chao Chenn:

“Using Random Forest to Learn Imbalanced Data”, March 2013

6. H. Han, W. Y. Wang, B. H. Mao:

“SMOTE: A new Over-Sampling method in imbalanced data sets learning,”

International Conference on Intelligent Computing (ICIC 2005), Aug. 2005, pp. 878-

887

7. David A. Cieslak, Nitesh V. Chawla:

“Learning Decision Trees for Unbalanced Data”, 2008

