
AOTA-Advanced Over The Air

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

 in

Information Technology

By

Udit Pilania (151470)

Under the supervision of

Mr. Vikash Kumar

To

Department of Computer Science & Engineering and Information

Technology

1

TABLE OF CONTENTS

SNO. Page No.

Student Declaration iii

Certificate iv

Acknowledgement v

Summary vi

List of Tables and Figures vii

1. Introduction 1-3

1.1 General Introduction

1.2 Relevant current/open problems

1.3 Problem Statement

2. Literature Survey 4-18

3. Analysis, Design and Modeling 19-26

3.1 Overall description of the project

3.2 Functional requirements

3.3 Non Functional requirements

3.4 Logical database requirements

3.5 Design Diagrams

3.5.1Use Case diagrams

3.5.2 Class diagrams / Control Flow Diagrams

3.5.3 Sequence Diagram/Activity diagrams

2

4. Implementation details and issues 27-35

4.1 Implementation details

4.2 Implementation Issues

4.4 Risk Analysis and Mitigation

5. Testing 36-37

5.1 Testing Plan

5.2 Component decomposition and type of testing required

5.3 List all test cases in prescribed format

6. Findings and Conclusion 38

6.1 Findings

6.2 Conclusion

7. Appendix 39

A. References in IEEE style

3

 DECLARATION

I hereby declare that this submission is our own work and that, to the best of my knowledge

and belief, it contains no material previously published or written by another person nor

material which has been accepted for the award of any other degree or diploma of the

university or other institute of higher learning, except where due acknowledgment has been

made in the text.

Place: Noida Name: Udit Pilania

 Enrolment No: 151470

4

 CERTIFICATE

This is to certify that the project entitled, “AOTA" submitted by "Udit Pilania" in partial

fulfillment of the requirements for the award of " Bachelor of Technology" in "Information

Technology" at the "Jaypee University of Information Technology" is an authentic work

carried out by him under my supervision and guidance.

Mr.Vikash Kumar

(Technical Lead, Thales)

5

ACKNOWLEDGEMENT

Perseverance, inspiration and motivation have played a great role in the success of any

venture. It would be incomplete to submit this report without acknowledging the people

behind this endeavor and without this report without acknowledging the people behind this

endeavor and without whose support I wouldn’t have able to achieve this. It gives us

immense pleasure to express our gratitude to everyone who shared with me their precious

time and effort during the project. A mammoth job like this calls for both intellectual

nourishment and encouragement. I would like to thank Mr. Vikash Kumar(Technical Lead,

Thales) for giving me an opportunity to work on such a fabulous project.

Signatures of Students:

Udit Pilania(151470)

6

SUMMARY

The Advanced Over The Air (AOTA) enables telecom operators to manage 2G, 3G and LTE

operations of push and pull modes to the cards (UICC). It is a solution which allows

upgrading from the 2G/3G to 4G solution and manage cards remotely on the field. The

operations that can be performed on the cards are remote application management (RAM)

and remote file management (RFM) through push and pull mode. The push mode sends

APDU commands immediately to the card which are triggered by OTA and the pull mode is

triggered by the card, where automatic request is sent from the card to the server on regular

intervals for remote management of the card. Push mode refers to SMS bearer and Pull mode

refers to HTTP bearer.

OTA Manager Migration Tool is a standalone Java application which is used to migrate data

from earlier versions of OTA Manager (versions 4.x and 5.x) database to OTA Manager V6.5

database. This tool is based on a generic architecture which supports data migration for

different pairs of source and target data systems. It is basically provided so that the data can

be transferred from OTA to AOTA for all customers.

RUM is the processing module of AOTA which carries out a lot of major functionalities of

AOTA including the generation of APDU commands for UICC management. This is the

principle objective of RUM and because it manages a lot of functions for remotely managing

the cards, it is the central processing engine of AOTA. It is also used for other functions like

in activating a card, updating file or application in card and send a force polling SMS.

7

8

 LIST OF TABLES AND FIGURES

Fig/Table no. Contents Page no.

Fig 2.1 UICC Provisioning 4

Fig 2.2 Life Cycle of Subscription 5

Fig 2.3 Mass Management 5

Fig 2.4 Apdu analyze 14

Fig 2.5 SRM2SRM Migration Tool Architecture 16

Fig 2.6 Execution of a Migration Plan 17

Fig 3.3.1 Installation and Integrity requirement 22

Fig 3.5.1 Subscription management use case diagram 24

Fig 3.5.2 RUM Service Activation use case diagram 25

Fig 3.5.3 Provision OTA diagram 25

Fig 3.5.4 Activation diagram 26

Fig 3.5.5 Life cycle diagram 26

Fig 4.1.1 Architecture Diagram 27

Fig 4.1.2 Push mode diagram 28

Fig 4.1.2 Pull mode diagram 29

Fig 4.1.4 RUM APDU functionality 31

Table 4.3.1 Risk Analysis and Mitigation plan 35

Table 5.1.1 CMM Traffic using MySQL 37

Table 5.1.2 MMGT traffic using MySQL 38

Table 5.2.1 Type of tests 39

9

Table 5.3.1 Test cases 39-40

 INTRODUCTION

 General Introduction

A smart card contains many applications and files which are needed to be managed by the

mobile network operators. Advanced OTA (Over the Air) is a solution to manage UICC

remotely and in a short term other Secure Elements such as Embedded Secure Element or

Secure Memory Card. UICC (Universal Integrated Circuit Card) is a telecom dedicated

secure element (previously called smart card). This secure element is capable of executing

security critical functions and contains authentication secrets for connecting to GSM/LTE

networks. AOTA is first a solution based on RoH (Remote management over HTTP) based

on Pull mode. The operations that can be performed on the cards are remote application

management (RAM) and remote file management (RFM) through push and pull mode. The

push mode sends APDU commands immediately to the card which are triggered by OTA and

the pull mode is triggered by the card, where automatic request is sent from the card to the

server on regular intervals for remote management of the card. Earlier, there was only OTA

and now with the development of AOTA, all the telecom customers also need to migrate all

of their data from OTA to AOTA which brings in the use of migration tool. The migration

tool provides the application which enables the transfer of all the data of customer from OTA

to AOTA. This data is huge and takes a lot of time to migrate, thus the performance and

accuracy both are handled in this tool efficiently. AOTA has many components but the

central component is RUM. It manages a lot of functionalities for card management such as

provisioning of the card, activation and deactivation, active retry and network detection.

RUM can also generate APDU commands for executing all the functions which may also

include sending any update through different services. It also communicates with almost all

of the components of AOTA. The MIOS services are added to provide the changing of IMSI.

These services have the capability to change the IMSI when required. The Multi IMSI Applet

is a UICC-based application that manages a set of two to ten IMSIs for the subscriber. There

are three services added while the other were previously available.

10

 Relevant current/open problems

Remote card management is a necessity for all mobile network operators. The smart card

contains many applications and files that need to be activated or updated at certain times, as

needed. For that, the solution provided was OTA (Over The Air) which had the push mode.

This means that all orders could be sent to the card via SMS support, which also facilitates

the immediate sending of orders and the execution of the corresponding task. But, there may

be times when the card is not present in the network and would not receive the SMS sent by

the server. This SMS would expire before the card again comes back in the network. In order

to provide a better solution, AOTA (Advanced Over The Air) was provided which also had

the pull mode. This pull mode would be using the http bearer and it allows the card to request

the server for commands and remotely manage it. This way, it would be insured that the card

was in network when command was sent from the server. Now the telecom operators had all

their huge amount of data in OTA which needs to be migrated to AOTA, and thus the

migration tool provides this data transformation. The RUM being the main component of

AOTA, communicates with many components and has many services which does the task of

updating and other functions. These functions are improved by adding the new services to

provide a better solution.

11

 Problem Statement

The problem of remotely managing cards in order to send remote application management

and remote file management commands is solved by the AOTA solution. It makes it possible

to go from the 2G / 3G solution to the 4G solution and to manage the remote cards in the

field. It has push mode as well as pull mode. The solution provided by the OTA had only the

push mode which had the disadvantage of the expiry of the SMS if the card was off-network.

This is solved using the AOTA Pull mode. The migration tool is required to migrate all data

from the OTA Manager database (versions 4.x and 5.x) to the OTA Manager V6.5 database.

It includes the application that provides migration and scripts to help it. This is a need for the

clients because the data is very large and, in order to use the AOTA, the migration to its

database is necessary. Among many components of AOTA, RUM is the central processing

component and helps in the remote management of the card through many functions. It is

necessary to help communicate with many components and provide the services to update

files or applications. RUM also generates APDU commands that are sent to the card for any

service.

12

Literature Survey (Including Products & Technologies)

UICC and non-UICC preloading The UICC element must be provisioned before performing

any operation. This pre-provisioning consists of providing information about map profile

attachments, 03.48 security keys, and IMSI and ICCID information about 2G / 3G cards. For

4G cards, pre-provisioning is the same as for 2G / 3G cards, with the exception of TLS-PSK

security information (the UICC card is on the operator's premises but has not been sold ,

modified or used). Subsequently, an operator (backend) will assign a MSISDN to the

existingsubscription to activate it, platform side.

Fig 2.1 UICC Provisioning

Subscription Life Cycle (Device change)

A subscription can have various states during its life cycle. Card can be lost/damaged. In such

cases, a UICC replacement is required and run pre-provisioning and activation at switch on.

13

Another Use case can happen if the mobile equipment is damaged. In that case, end user will

probably change it. Advanced OTA Solution V6.5.2 needs to be informed of the ME change

to reflect it in the subscription. This use case has a prerequisite which is to have DDE applet

installed and activated in the UICC whatever the protocol used will be (sms or http)

Fig 2.2 Life Cycle of Subscription

Mass Management in Polling Mode

Fig 2.3 Mass Management

1. The UICC, according to a schedule timer or an SMS push, connects and gets an update

from the AOTA server by sending an HTTP post.

2. The AOTA server responds by sending APDU commands according to the request.

14

3. A session can have several exchanges from several products, so the card sends another

request and the server responds.

4. In mass management, multiple campaigns can be handled in parallel. An MMGT campaign

is capable of sending all types of RAM and RFM updates, filter different targets by Card

profile, Handset profile, or subscriber profile, and do various monitoring activities with

features such as progress rates, estimated end dates, and graphs of http polling requests

received.

Single Campaign Management in Push Mode (via SMS)

In Advanced OTA Solution V6.5.2, administrator builds a scenario based on RAM/RFM

services and loads a target MSISDN file in the system. After defining the campaign duration,

planning and validity period, the campaign met the required criteria, then the campaign starts.

Subsequently, all SMS MT messages are sent to the end user for the update.

1. Define the scenario and the target file for the campaign.

2. Create the campaign and tune the related parameters such as campaign duration and

validity period.

3. Perform an update of the pending RFM and RAM operations for the cards belonging to the

segment.

4. Device receives the update and will notifies the ESME that MT is correctly received.

5. Monitor the percentage of subscribers in which the campaign has been applied.

Last Polling Date Campaign Management in Push Mode: For users who wants to select all

the UICC LTE cards that are not polling after a defined date.

1 From Operation workspace, Pull Campaign widget, Manage Target Groups page, create a

group.

2 Create the scenario in Campaign management and define the period of time in which the

campaign is valid.

3 Receive the update.

4 Monitor the percentage of subscribers in which the template has been applied.

15

Device Detection: Device Detection Management is used to monitor the presence of the

device and tracks the changes in the smartcard parameters. For example, smart card

parameters such as

IMEISV/IMEI/MEID, Terminal Profile and additional smart card information.

What is HTTP Protocol?

The HyperText Transfer Protocol (HTTP) is a communication protocol used between a client

and a server. In the OTA world, the UICC card is a client, and the Advanced OTA is a server.

It is always the client that sends requests to a server and always the server that responds.

HTTP request is composed of a header where the command type and the address of the server

are defined, and the data in the message body.

A status code of the request is returned to the client in the message body.

When the client sends a request to the server:

● The request is defined in a message composed of a header and a body.

● The header starts with a method (command) which defines a requested action such as

the access to a resource

● The targeted server is identified by a URI (or URL) available in the header.

Depending on the command used, Parameters/data may be contained in the body.

When the targeted server returns a response with:

The header contains the status code (for example, Server reached, or not).

The body contains a response.

There are seven types of HTTP requests (or methods) available:

● GET: Requests the specified resource (without a message body).

● PUT: Uploads (add or replace) a resource (with a message body) on the server.

● POST: Submits data (with a message body) to be processed to the identified resource.

● DELETE: Removes the specified resource (with a message body) on the server.

● HEAD: Requests meta-information on a resource (without a message body).

16

● OPTION: Returns the HTTP methods supported by specific URI (for debugging

purposes).

● TRACE: Echoes back the received requests (for debugging purposes).

Note: The last three methods are typically used by developers.

There are five groups of HTTP response status codes that can be returned by AOTA server:

Informational message, Command executed successfully, Redirection, Client error (such as

the “404 error! Page requested doesn't exist”), Server error. Card retry can only be performed

on the status errors.

Why Does AOTA Use HTTP?

● The HTTP protocol is chosen to manage the cards on LTE networks mainly because:

● The Internet is widely available.

● Cost reduction from reusing existing tools and knowledge.

● HTTP is easy to be deployed to existing operator networks.

● HTTP has field-proven protocols and architecture (Internet protocols) to achieve

performance, reliability, and scalability.

Main Principles:

The following lists the conditions for the successful operation of OTA over HTTP:

● The UICC card is an HTTP client.

● The AOTA server is an HTTP server.

● The protocol with a remote server is based on HTTP POST.

● Connection is at the initiative of the UICC card.

● The general dialog mechanism is based on the following: The UICC card requests the

OTA server for the next commands (next URI) to be executed.

● HTTP POST messages are sent by the Admin Agent to the AOTA server to request

for commands to be executed by the Admin Agent. The same HTTP POST request is

also used to return the results of the command executed.

● The Content-Type field specifies the type of message to indicate the RFM/RAM

commands or responses that are transported.

● The body contains the data associated to the type of message. The content of the body

is dependent on the Content-Type of the communication. The APDU and POR are

include in the body of the message.

17

● The Next-URI is provided by AOTA to Agent in HTTP POST response if additional

commands have to be executed.

Next URI Mechanism: The Next-URI mechanism allows the use of POST method only. The

following shows the process flow of how the connection is established between the server

and the card. As the card is the client, it is responsible to open the connection. It can be

triggered by an internal event from an application such as polling or by an external event

such as an SMS.

1 The card opens the connection.

2 Once the connection has been established, an HTTP request is sent to the server with

the address of the server and the name of the application to target the corresponding

use case.

3 The server responds with a status code and a result in the body including the APDU

commands.

4 The APDU commands are executed by the card and the result is sent to the server.

The result (for example, the POR) is in the body.

5 If some commands still have to be executed, a new response is sent.

6 The server indicates that there are no more commands to execute on the card when

the status code is 204 and there is no Next URI.

OTA over HTTPS: In order to secure communication between the AOTA server and the

UICC card, the cryptographic protocol is used—Transport Layer Security Pre-Shared

Key(TLS/PSK).

Note: Only the message body is encrypted.

● Encryption and decryption techniques are used for secure transfer.

● The security keys are generated corresponding to each card using algorithms.

● It is custom for the card.

This means that the secret key exchanged between the card and the server is unique for each

connection.

18

Retry Mechanism

The Admin Agent is responsible for the connection to the AOTA server and for the

accomplishment of the session.

If a communication error occurs during the processing of the administration flow, the Admin

Agent will try to reconnect according to a card issuer specific retry policy:

The Admin Agent makes several attempts for resuming the administration session. A waiting

period between two attempts and the maximum number of attempt is specified by the retry

policy. If the communication is re-established, the Admin Agent tries to resume the HTTP

dialog by navigating the last URI of this administration session and setting a Resume HTTP

header tag.

If the maximum number of attempts has been reached, the administration session request will

be abandoned.

If the TLS session failed to establish the connection for security/authorization reason, the

administration session will be immediately discarded.

Mass Management Pull Mode: AOTA is the industry’s first platform to enable the pull mode

for campaign updates whereby a fleet of UICCs are updated at once to reflect subscription

changes. For example, to refresh roaming preferences.

In other words, the UICC in the mobile device also initiates the connection for an update

automatically, based on a preplanned schedule. This delivers much more efficient update

campaigns, another important benefit to operators.

The pull approach optimizes the success rate by reaching all active subscribers virtually. It

reduces the burden on OTA server and eliminates the need to create a large campaign team.

It concentrates server resources on connected devices, unlike the push mode which often

attempts to initiate the update to mobile devices that are unconnected which results in the

waste of server resources and causing many useless retries.

In addition, AOTA relies on a connected mode that significantly reduces the number of

problems caused when a mobile device loses its network connection in the middle of an

update, and recovers seamlessly when it does happen. The features in this solution are

designed for optimum efficiency for a better MNO experience across all networks.

19

Campaign Management Push Mode: AOTA relies on its proven campaign managers to

perform push campaigns on cards that are not using pull mode for some reasons.

AOTA facilities the combination of push and pull approaches in order for mass management

of dynamic updates on cards.

Unified Campaign Management: In addition of the two campaign engines described in the

previous sections, Advanced OTA Solution V6.5.2 Mass Manager allows the combining of

push and pull modes in a single campaign to manage a heterogeneous set of cards using

multiple bearers (SMS and HTTP) taking advantage of pull mode as often as possible.

This conciliation introduces the mechanism of automatic bearer selection simplifying

operations in terms of monitoring and reporting.

WebLogic is a server software application that runs on a middle tier, between back-end

databases and related applications and browser-based thin clients. WebLogic is a leading

e-commerce online transaction processing (OLTP) platform, developed to connect users in a

distributed computing environment and to facilitate the integration of mainframe applications

with distributed corporate data and applications.

WebLogic server is based on Java 2 Platform, Enterprise Edition (J2EE), the standard

platform used to create Java-based multi-tier enterprise applications. J2EE platform

technologies were developed through the efforts of BEA Systems and other vendors in

collaboration with the main developer, Sun Microsystems. Because J2EE applications are

standardized modules, WebLogic can automate many system-level tasks that would

otherwise have demanded programming time.

The main features of WebLogic server include connectors that make it possible for any

legacy application on any client to interoperate with server applications, Enterprise JavaBean

(EJB) components, resource pooling, and connection sharing that make applications very

scalable. An administration console with a user interface makes management tasks more

efficient and features such as Secure Sockets Layer (SSL) support for the encryption of data

transmissions, as well as authentication and authorization mechanisms, make applications and

transactions secure.

20

https://whatis.techtarget.com/definition/server
https://whatis.techtarget.com/definition/tier
https://searchdatacenter.techtarget.com/definition/back-end
https://searchsqlserver.techtarget.com/definition/database
https://searchwindevelopment.techtarget.com/definition/browser
https://searchnetworking.techtarget.com/definition/thin-client
https://searchcio.techtarget.com/definition/e-commerce
https://searchdatacenter.techtarget.com/definition/OLTP
https://whatis.techtarget.com/definition/distributed
https://searchdatacenter.techtarget.com/definition/mainframe
https://www.theserverside.com/definition/J2EE-Java-2-Platform-Enterprise-Edition
https://www.theserverside.com/definition/Java
https://whatis.techtarget.com/definition/tier
https://searchitoperations.techtarget.com/definition/legacy-application
https://searchsecurity.techtarget.com/definition/authentication

Jenkins is a software that allows continuous integration. Jenkins will be installed on a server

where the central build will take place. The following flowchart demonstrates a very simple

workflow of how Jenkins works.

Continuous integration is a development practice that requires developers to embed code in a

shared repository at regular intervals. This concept was intended to eliminate the problem of

subsequent detection of problems in the generation lifecycle. Continuous integration requires

developers to frequently use versions. The common practice is that every time code

validation takes place, a construct must be triggered. Continuous deployment is a software

engineering approach in which teams produce software in short cycles, ensuring reliable

software release at all times. Its goal is to create, test and publish software with a higher

speed and frequency. This approach helps reduce the costs, time, and risks of making changes

by allowing incremental updates to production applications. A simple and repeatable

deployment process is important for continuous delivery.

SCI – Is the framework for AOTA. AOTA groups operational SCI pages and CCI related in

the “Operation” workspace.

This workspace contains several pages which exist in the default SCI framework:

Advanced Campaigns is used for HTTP campaigns which allow you to operate a

21

Classic Campaigns is used for SMS campaigns which allow you to operate an SMS

campaign.

Template Management is used for RUM Template Management which allows you to create

template for pull campaign usage, and also to send single HTTP request from there.

Unitary Push Management is used for SMS Push requests which allows you to send single

SMS request to card.

Provisioning Management is used for cards and security related provisioning which allows

you to create cards in batches via SSO/CCI.

Subscriber Repository is used for data reference (such as MNO, model and brand)

management and subscriber viewing which allows you to view devices belong to the

particular subscriber and operations made.

UICC-SE Repository is used for card instance viewing, card profile viewing and creation. It

includes both the CRM and CCI card management parts as well.

Applet Repository is used for applet management which allows you to view and create

applets.

OTA Service Repository is used for 2G/SG services definition and management which allows

you to create/remove 2G/3G services.

Record History Service is used for HTTP operation History recording in which you can find

the detailed information (such as start/end time, ending status and service executed) of

HTTP operation. Device Tracking is used for Device Detection Manager which records the

DM event such as changing mobile of subscriptions.

RUM Template Manager is an SCI-based application used by administrators to easily manage

the RUM templates. Depending on the access rights, the user can create, delete, or update

templates. A template contains a set of predetermined parameters to be applied remotely to

the SIM card files by using the selected RUM service.

The template defined by the Template Manager is used in MMGT scenario.

Services: To create a template, from the Operation workspace, select Template Management

page, followed by RUM-Template Manager. The Template Manager Widget is displayed.

The purpose of RUM Services are to produce APDUs for Sim Cards

One RUM Service is responsible for managing one entity (file or application) in the card.

● A RUM Service performs two main tasks.

22

● Produce APDUS requests for cards

● Process response APDUs received from cards

In code level, RUM service is a Java class that client can execute

● Customer can provide parameters for the service

● Generated APDU changes depending on the provided parameters

● Response from the card is also processed by the same service

● Service may perform modifications to the card file image on the AOTA database so it

is in line with the file on the card.

Fig 2.4 Apdu analyze

RFM & RAM Management: A service manages File or Applet on the card by sending APDU.

RFM = Remote File Management: Management of files under SIM, USIM, ISIM and CSIM

applications. Based on ETSI, 3GPP standards

RAM = Remote Applet Management. Management of Load File and Application/Security

Domain Based on Global Platform standard.

A service can also manages card content on server side (image of content of the card).All

services can be invoked SOAP & J2EE APIs Several kinds of services

Unitary: service parameters shall be repeated at each invocation

Template: service parameters are stored and the service invocation just refers to the template

defining them.

Template is used to apply same updates for a huge list of targets)

23

● Or both

● Several implementations of services

● Basic (simple update) RAM, RFM without capacity to support communication lost.

● High-level (scenario) A high-level service splits execution into basic services and

adapts the execution depending on the SE response.

● High-level services are able to manage REENTRANCE (communication lost).

RUM supports a lots of services for RFM

● For all interpreters SIM, USIM, ISIM, CSIM

● Some ‘SIM’ services,can be targeted through USIM

● One update service manages only 1 file (true for 90% of services).

● RAM services can manage Load File and Application:

● Some generic services (createApplication, LockApplication…).

● Some services for applet configuration.

● Some services for applet life cycle (enable, disable).

● Some specific services for dedicated applet (Polling, DDE, …)

SRM2SRM Migration Tool is a standalone Java application which is used to migrate data

from earlier versions of Subscriber Repository Manager database to

Subscriber Repository Manager database. This tool is based on a generic architecture which

supports data migration for different pairs of source and target data systems.

The following are the two major components of SRM2SRM Migration Tool:

● Migration Framework

This component provides the core functionalities of the migration process. This is

independent from the data system being migrated.

● Migration Plug-in:This is the pluggable component which is specific to each source

and target of the system being migrated. It sits on top of the Migration Framework

and handles the reading, transformation, and writing tasks for the migration process.

The following figure shows the high-level architecture of SRM2SRM Migration Tool.

24

Fig 2.5 SRM2SRM Migration Tool Architecture

SRM2SRM Migration Tool executes the migration process as defined in a migration plan. A

migration plan is composed of orders and steps.

An order is a collection of migration process definitions (known as steps) and it is

independent from the other orders. SRM2SRM Migration Tool executes all the orders

defined in the migration plan in parallel, hence, orders must be mutually exclusive and there

should be no conflicts.

A step is a sequence of migration processes which comprise an order. A step is dedicated to

migrate one data object model (which may include all its references) from the source system

to a new data object model on the target system. Steps within the order are executed

sequentially one after another.

25

The migration plan for earlier Subscriber Repository Manager versions to Subscriber

Repository Manager has only one order for each migration phase of which is mapped to the

schema that is to be migrated. The following table lists the orders along with the

corresponding schemas in the source and target databases

Fig 2.6 Execution of a Migration Plan

Delta data refers to the parallel changes of the data records in the source solution during

migration. In the migration context, these are referred as “dirty” data because the migrated

data in the target system is not the latest. For each parent table (corresponding to a step in the

migration plan), the tool creates a database trigger and a Delta table. The trigger records any

updates or deletions of the parent table records in the Delta table. During the execution of a

26

step, once all rows in the parent table has been processed (that is, no rows with

GUMI_STATUS

= UNPROCESSED), the tool processes the Delta table for that particular step.

To process each delta record, the following tasks are performed:

1 Search the GUMI table with record having the status to be MIGRATED and find them in

the target database based on its unique constraint value.

2 Perform update on all the record's attribute in the target table.

3 Reset the migration status to UNPROCESSED.

4 Read the parent table to migrate any remaining UNPROCESSED records. Any new

insertions to the parent table will also be picked up.

5 Delta processing continues until there are no more UNPROCESSED delta records.

The Multi IMSI Applet is a UICC-based application that manages a set of two to ten IMSIs

for the subscriber.

This application can be installed using a specific file system or internal buffers to store its

configuration parameters.

Once the application is deployed, it is necessary to provide the possibility to fully

administrate the application.

The Home IMSI is used in the subscriber’s home country and during roaming to any country

where the operator has a bilateral agreement in place. The International IMSI is used when

abroad for connection to a roaming hub. The first two IMSIs are mandatory, in addition, the

operator can also configure up to nine International IMSIs that will be used when the

subscriber travels to a specific country, provided the operator has a partnership with the local

operator in that country.

27

ANALYSIS, DESIGN AND MODELING

 Overall description of the Project

Advanced OTA Solution is part of a fully-integrated software solution providing you with a

robust, reliable and scalable infrastructure to manage your (U)SIM installed base.

AOTA Solution allows you to:

● Deliver new applications directly to your subscribers.

● Easily adapt your service portal for diverse subscriber types.

● Control your subscribers' mobile environment.

AOTA is Gemalto’s latest generation of over-the-air platform which enables mobile network

operators to manage 2G, 3G and LTE benefits of push and pull modes to the cards. Pull mode

is an important innovation introduced by AOTA in which the UICC initiates the dialogue.

The main characteristics of the AOTA platform are:

● Reliability and excellent performance with a proven technology of more than 15

years.

● Capability to offer the most appropriate bearer (SMS, CATTP and HTTP) for each

use case.

Each card is dependent on its environment (type of card, device capabilities and subscription

characteristics).

28

The AOTA platform is also involved in the instant activation of subscriptions at the first

switch-on using HTTP channel.

The architecture contains the various machines and components installed on each machine

either in a WebLogic or Veritas Cluster (shown in grey dotted background and hatched

background respectively) that are required in the AOTA Solution. The following figure

shows the global architecture of the solution in a typical deployment and its dependencies to

one another.

OTA Manager Migration Tool executes the migration process as defined in a migration plan.

The AOTA and OTA vary so much in the architecture that we need a separate tool to

automate the entire migration process, this is where the OTA Manager Migration Tool

comes into play. OTAM tool is a standalone Java application which is used to migrate data

from earlier versions of OTA Manager (versions 4.x and 5.x) database to OTA Manager V6.3

database. This tool is based on a generic architecture which supports data migration for

different pairs of source and target data systems.

The following are the two major components of OTA Manager Migration Tool:

● Migration Framework: This component provides the core functionalities of the

migration process. This is independent from the data system being migrated.

● Migration Plug-in: This is the pluggable component which is specific to each source

and target of the system being migrated. It sits on top of the Migration Framework

and handles the reading, transformation, and writing tasks for the migration process.

A migration plan is composed of orders and steps.

● An order is a collection of migration process definitions (known as steps) and it is

independent from the other orders. OTA Manager Migration Tool executes all the

orders defined in the migration plan in parallel, hence, orders must be mutually

exclusive and there should be no conflicts.

29

● A step is a sequence of migration processes which comprise an order. A step is

dedicated to migrate one data object model (which may include all its references)

from the source system to a new data object model on the target system. Steps within

the order are executed sequentially one after another.

Two important terms with data migration are the Gumi table and Delta Data. The Gumi tables

are the status tables on the source and destination, which has the ending status of the

migration of each parent table in the migration plan and Delta data refers to the parallel

changes of the data records in the source solution during migration. In the migration context,

these are referred as “dirty” data because the migrated data in the target system is not the

latest. For each parent table which referenced by the GUMI table (corresponding to a step in

the migration plan), the tool creates a database trigger and a Delta table.

The processing module of AOTA is RUM and it is third component that I got to work on, in

Gemalto. Also there are several other services which are provided by RUM.

● Subscription provisioning in AOTA

● Activate card for the first time

● Handle Device Change of a Card (SIM card switching mobile phone)

● Update file / application in a card

● Send a force polling SMS (request an immediate polling request from the card)

Functional requirements

Functional requirements for AOTA (since AOTA V6.1).

● Common database repository for all cards (2G/3G/4G) (since AOTA V6.1).

● Introduction of the new Unified Mass Manager (since AOTA V6.2).

● Introduction of new SMS features—Subscription Activation, Push Profile, and Active

Retry (since AOTA V6.3).

● Integration of Roaming Module with Advanced OTA Solution V6.5.2.1

30

The following are the new RUM API introduced:

● Get Subscription Information With Interpreted Content.

● Get Detailed History of Services.

● Get Detailed Processing Services.

Non Functional requirements

1. Software/System Architecture: The application software architecture shall be realized

in a way that enables user to do their maintenance jobs, trouble shooting etc. in an

efficient way.

2. Virtual Environment: Moving the virtual machine on the fly to a different hardware.

Moving the used disk space of a virtual machine on the fly to another data store.

Automatic distribution of virtual machines on different hosts for load optimization.

The following demands must not be used by applications.

● Special hardware requirements and interfaces (e.g. X25 and so on…)

● Hardware Dongles

● External storage media in continuous access (e.g. USB-Stick, CD-ROM,

Discs,…..)

● Access to physical interfaces

● Direct access to PCI Bus

● Disk Mirroring

● Firm connection to special blades

3. Installation And Integration Requirement:

31

 Fig 3.3.1 Installation and Integrity requirement

4. Service Monitoring:

● Performance Measurement Interval

● PM Data Alarming

● Specific Counter for KPI Measuring

● Explanation of PM Data & Counters

● Service Affecting Alarms

● Alarm Auto Clearing

5. Operation Requirements:

● Access

● Full Access for system administrators

● Remote access

● Access via encrypted protocols only

● File transfer

● Graphical user interfaces and command line interfaces.

● Creation and administration of users

32

6. Usability:

● Operational System must be linux or unix

● Standard OS behaviour

● Availability of Tools

8. Configuration:

The operating company might have the need to change certain parameters.

 Logical database requirements

● MySQL Version 6.3

● Oracle Version 11g

The database for all the schemas should be added in the workbench according to different dbs

and SID for different machines. The data is automatically added to these schemas on running

the automated installation of db script. The connection should be proper and all of the JPA

code should be able to insert and retrieve from these tables. The data could be compatible

according to the kind of db installed in the machine, i.e with MySQL or Oracle.

 Design Diagrams

Use Case Diagram

33

Subscription Management:

Fig 3.5.1 Subscription management use case diagram

RUM Service Activation:

Fig 3.5.2 RUM Service Activation use case diagram

34

Control Flow Diagram:

First Step: Provision OTA

Fig 3.5.3 Provision OTA diagram

Second Step: Activation

35

Fig 3.5.4 Activation diagram

Life-Cycle of RUM Services:

Fig 3.5.5 Life cycle diagram

IMPLEMENTATION DETAILS AND ISSUES

Implementation details

The Advanced OTA (AOTA) enables mobile network operators to manage 2G, 3G and LTE

operations of push and pull modes to the cards (UICC). The operations that can be performed

on the cards are remote application management (RAM) and remote file management (RFM).

Push mode refers to SMS bearer and Pull mode refers to HTTP bearer.

36

Fig 4.1.1 Architecture Diagram

For pull mode, the UICC initiate HTTP(s) request to AOTA to check if there are any

operations to be executed on the UICC. If there are operations to be executed on the UICC,

APDU commands would be returned as part of the HTTP(s) response. The HTTP(s) request

can be for activation, polling use cases.

For Polling:

● The client submits an invocation to AOTA by invoking an AOTA API to register the

services to be executed on the UICC. AOTA may wait for the next HTTP polling

request from UICC or send a force polling SMS to UICC to trigger an immediate

polling request.

● UICC performs a HTTP polling request to AOTA. Since services are registered,

APDU commands would be returned as part of HTTP response to UICC.

UICC performs the execution of the APDU commands and send another HTTP

request to AOTA with the APDU responses of the executed commands.

37

● If there are more commands to be executed, AOTA would returned the set of

commands to be executed as part of the HTTP response to UICC.

This process continues till there are no more commands to be executed on UICC.

● The client would be notified with the results of the invocation.

Fig 4.1.2 Push mode diagram

For push mode, AOTA initiate the execution by sending SMS messages containing the

APDU commands to be executed on the UICC. Classic OTAM is used to perform the

operations if the bearer is SMS.

● The client submits an invocation to AOTA by invoking an AOTA API.

● The invocation immediately triggers the execution of the service to generate the

command packets (CP) containing a list of APDU commands.

The CPs are split into SMS messages accordingly if required, and then they are sent to

UICC.

● The APDU responses of the executed commands are returned as a PoR to AOTA.

● The client would be notified with the results of the invocation.

38

Fig 4.1.3 Pull mode diagram

UICC needs to be provisioned first before performing any operations. This pre-provisioning

consists of providing card profile attachment information. For 4G cards, pre provisioning is

the same as 2G/3G cards except for security information.

A subscription can have various states during its life cycle. Card can be lost/damaged. In such

cases, a UICC replacement is required and run pre-provisioning and activation at switch on.

Another Use case can happen if the mobile equipment is damaged. In that case, end user will

probably change it. Advanced OTA Solution V6.5.2 needs to be informed of the ME change

to reflect it in the subscription. This use case has a prerequisite which is to have DDE applet

installed and activated in the UICC whatever the protocol used will be (sms or http).

In mass management, multiple campaigns can be handled in parallel. An MMGT campaign is

capable of sending all types of RAM and RFM updates, filter different targets by Card

profile, Handset profile, or subscriber profile, and do various monitoring activities with

features such as progress rates, estimated end dates, and graphs of http polling requests

received.

In Advanced OTA Solution V6.5.2, administrator builds a scenario based on RAM/RFM

services and loads a target MSISDN file in the system. After defining the campaign duration,

planning and validity period, the campaign met the required criteria, then the campaign starts.

Subsequently, all SMS MT messages are sent to the end user for the update.

Device Detection Management is used to monitor the presence of the device and tracks the

changes in the smartcard parameters.

OTA Manager Migration Tool is a standalone Java application which is used to migrate data

from earlier versions of OTA Manager (versions 4.x and 5.x) database to OTA Manager V6.5

database. This tool is based on a generic architecture which supports data migration for

different pairs of source and target data systems.

The following are the two major components of OTA Manager Migration Tool:

39

● Migration Framework

This component provides the core functionalities of the migration process. This is

independent from the data system being migrated.

● Migration Plug-in

This is the pluggable component which is specific to each source and target of the system

being migrated. It sits on top of the Migration Framework and handles the reading,

transformation, and writing tasks for the migration process.

The Migration tool has reader, transformer and writer as a high level architecture. The reader

reads the data from the database and passes it on to the transformer. The transformer then

transforms the data, with or without the use of file system. Then the writer would write the

transformed data to the target database.

OTA Manager Migration Tool executes the migration process as defined in a migration plan.

A migration plan is composed of orders and steps.

● An order is a collection of migration process definitions (known as steps) and it is

independent from the other orders. OTA Manager Migration Tool executes all the

orders defined in the migration plan in parallel, hence, orders must be mutually

exclusive and there should be no conflicts.

● A step is a sequence of migration processes which comprise an order. A step is

dedicated to migrate one data object model (which may include all its references)

from the source system to a new data object model on the target system. Steps within

the order are executed sequentially one after another.

Delta data refers to the parallel changes of the data records in the source solution during

migration. In the migration context, these are referred as “dirty” data because the migrated

data in the target system is not the latest. For each parent table, the tool creates a database

trigger and a Delta table. The trigger records any updates or deletions of the parent table

records in the Delta table. During the execution of a step, once all rows in the GUMI table

has been processed, the tool processes the Delta table for that particular step.

To process each delta record, the following tasks are preformed:

40

1 Delete the dirty record from the target database.

2 Reset the migration status to UNPROCESSED.

3 Read the GUMI table to migrate any remaining UNPROCESSED records. Any new

insertions to the parent table will also be picked up.

4 Delta processing continues until there are no more UNPROCESSED delta records.

RUM is the processing modules of AOTA and carries out lots of major functionalities of

AOTA.

The goal of AOTA is to perform file or application updates on the card. This update

commands are sent in the form of APDUs.

Fig 4.1.4 RUM APDU functionality

There are 4 main step in a successful service execution:

1. Create a Subscription in AOTA

2. Activate it on both AOTA side and on the real card

3. Provision some services to be executed in AOTA

4. Card Visit - Polling workflow (HTTP exchanges)

Service is basically an entity which generates APDUs for SIM Cards. Services can be simply

categorized into two groups.

41

1. RFM services (Remote File Management)

2. RAM Services (Remote Application Management)

Basic Service is also referred as a simple updates, a service which performs update on RAM,

RFM without capacity to support communication loss.

High-level Service is also referred as scenario.

A high-level service splits execution into several Basic Services and adapts the execution

depending on the SE response.

High-level services are able to manage REENTRANCE (communication loss).

Templates are preconfigured services which can be created from the GUI (new SCI).

Generally, C-APDU generation is done at creation time or first usage.

Only Service Templates can be targeted by the Mass Manager.

RUM Service Templates are linked to CRM content templates which can be Card File

Template or Application configuration Template

Templates provides import/export methods which could be CSV, binary. There are three

major step that shall be done to create a new RUM service.

1. Creation of the service / template service

2. Add the service configuration to the database

3. Creation of the RUM widget to allow creation of the template for the service

To create the new service as a template service, some extra work shall be done. The service

implementation class (stateless EJB) needs to have an EJB remote interface which extends

the interface. All required methods defined in the interface needs to be implemented. In RUM

Template Management in SCI, it is necessary to allow the user to create the template

containing the service data for a new service. This feature is not available for all the services

and shall depend on the customer requirement.

42

The MIOS services were added to provide new functionality. MIOS stands for Multi Imsi

OTA Services. These services have the capability to change the IMSI when required. The

Multi IMSI Applet is a UICC-based application that manages a set of two to ten IMSIs for

the subscriber.

The Home IMSI is used in the subscriber’s home country and during roaming to any country

where the operator has a bilateral agreement in place. The International IMSI is used when

abroad for connection to a roaming hub. The first two IMSIs are mandatory, in addition, the

operator can also configure up to nine International IMSIs that will be used when the

subscriber travels to a specific country, provided the operator has a partnership with the local

operator in that country.

This application can be installed using a specific file system or internal buffers to store its

configuration parameters.

Once the application is deployed, it is necessary to provide the possibility to fully

administrate the application.

The Multi IMSI OTA Services is offering deployment choice between 2 set of OTA services

dedicated to manage Multi IMSI Applet:

- MIOS Multi-Bearer services (SMS & HTTP)

- MIOS SMS services based on legacy AOTA (SMS only)

Multi Imsi Forced Switch Imsi service

This is a RAM Multi service (template and unitary), done as “simple service” (which means

only a simple generator), with support to HTTP and SMS, available from SOAP and Java

API and it can be used to trigger the applet to perform the Automatic IMSI Switching –

Triggered on Status Event process or Manual IMSI Selection depending on the type of

Forced Switch Command sent. There are three types of Forced Switch command:

● Forced Switch Command – Automatic

● Forced Switch Command – Manual

● Forced Switch Command – Retain

43

As a template, this service shall support an import/export mechanism with csv format.

To do that, it is necessary to create the translator associated to this service.

Multi Imsi Set Default Imsi service

This is a RAM Multi service (template and unitary), done as “simple service” (which means

only a simple generator), with support to HTTP and SMS, available from SOAP and Java

API and it can be used to trigger the appl7et to set the default IMSI.

As a template, this service shall support an import/export mechanism with csv format.

To do that, it is necessary to create the translator associated to this service.

Multi Imsi Get applet’s configuration parameters service

This is a RAM Unitary service only, done as “simple service” (which means only a simple

generator), with support to HTTP and SMS, available from SOAP and Java API. This service

does not have a UI and is a unitary service. The template cannot be created as it does not

support the template part through the UI.

Implementation issues

The issues faced during the implementation were related to the migration tool and the RUM

services that were added:

● Logging was to be inserted

● PL/SQL script to be created for correcting an issue of duplicate entries.

● Some scripts to be made compatible with new OpenDJ 3.

● Combined duplicate scripts and made required changes to script files.

● Made the files for online and offline mode compatible to different versions of jars.

● The apdu to be sent was to be corrected.

● The test cases which were supposed to check the restriction, needed to have try catch

to succeed and show the expected.

44

● While creating a new service, xsd were not correctly updated.

Risk Analysis and Mitigation Plan

I

d

Description Risk

Area

Proba

bility

Impact RE(P*I) Risk

Selected

for

Mitigatio

n

Mitigation

Plan

1 An API is not

compatible with

lower python

versions

Versi

on

0.1 (0.9+0.

4+0.2)/

3= 0.5

0.1*0.5

= 0.05

Y Use the

alternative API

provided.

2 A script may

hang during the

deletion process

if it is done after

migration of a

certain part.

Data

base

0.2 (0.9+0.

7+0.2)/

3 = 0.6

0.2*0.6

= 0.12

Y Manually delete

from db or use

the other part

provided instead

of the API.

3 Does not handle

the updated and

deleted devices if

it was already

migrated before.

Algor

ithm

0.3 (0.8+0.

5+0.2)/

3=0.5

0.3*0.5=

0.15

Y Quick fix

4. The new services

will support new

version of applet

instance and not

the first one.

Algor

ithm

0.1 (0.9+0.

4+0.2)/

3= 0.5

0.1*0.5

= 0.05

N Just support for

new version.

45

Table 4.3.1 Risk Analysis and Mitigation plan

TESTING

Type of testing required

Functional testing: Unit testing, JATS regression testing and end-to-end testing. Each service

will have unit testing which is one of the earliest testing efforts performed on the code and the

earlier defects are detected, the easier they are to fix and automated JATS regression testing to

ensure that the packaging of the project, its execution and its impact on all other services is

void .There should be no new regressions. The final component is the end-to-end testing

where we use card issued by Gemalto and run the JATS to see, how they do in actual cards.

Apart from the functional testing, the performance of the tools and the services also need to

be tested.

Type Of Test Will Test be Performed?

Requirements Testing Yes

Unit Yes

Performance Yes

Stress No

Compliance Yes

Security Yes

Load Yes

Table 5.2.1 Type of tests

Test cases in prescribed Format

46

For Meta Data Services in RUM , we test the cases when the SMS address is of odd length, if

the user doesn’t have a password, for SMS transport , with AID specific, max length of user

name, password and network access name. In case of MIOS services,

S.No. List Of Various

Components

Type of Testing Required Technique for

writing test

Cases

1. RUM ● Requirement

● Unit

● Integration

● End-to-end

● System

● Performance Load

● SONAR*

Black Box Testing:

expected values of

APDUS in XML, the

computed value is

compared, to check

if they are the same.

The SCI is the

presentation layer

and needs to be

validated. The

business logic

isolation and logic

layer implementation

needs to be checked.

2. AOTA Migration Tool ● Requirement

● Unit

● Integration

● System

● Performance Load

Validation testing: to

check the flow of the

code

Table 5.3.1 Test cases

Using the Jenkins CD job, we run the regression testing on all the JATS. The expected error

are compared with the actual outputs.

47

* Sonar is a web based code quality analysis tool for Maven based Java projects. It covers a wide

area of code quality check points which include: Architecture & Design, Complexity, Duplications,

Coding Rules, Potential Bugs, Unit Test etc.

Findings and Conclusion

 Findings

AOTA provides an important solution to its customers by providing UICC processing,

including all applications and files. The project has both push and pull modes, which

eliminates the card's disadvantage of not receiving SMS when not in the server and also

supports the immediate action that might be needed to switch to push mode. The migration

tool is particularly important because it allows the transformation of the database from the

previous version to the most recent one. Given the amount of data, performance is kept high

to avoid production problems. The migration tool also handles delta data, which is the data

that can be changed during the migration process itself. To do this, it deletes this type of

data from the target database, resets the migration status, reads all unprocessed records,

and migrates them again. This happens until there are no delta data left. RUM is the main

component of AOTA and communicates with almost all other components. Its most important

task is to generate an APDU via which an order can be sent to the card. It also has other

features that it can provide through different services.

Conclusion

48

The project itself is a great solution and has many components. The main feature is to

manage the smart card remotely. The previous version of OTA only supported the extraction

mode. Now the AOTA supports both modes, extraction and thrust, which helps to manage

things effectively. It uses SMS support and HTTP support for these purposes. The migration

tool would help turn data from an old database into a new one. Different schemas are defined

and several scripts are used to perform the task. It covers all aspects such as changing data

during migration and also gives importance to performance. The most important component,

RUM, has many tasks and provides many features such as updating or deleting a file or

applet. He has many services through which he can send orders. The APDU generation is the

main part that contains exactly what kind of commands should be sent and where they should

be sent and what needs to be done.

References

[1] http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

[2] https://en.wikipedia.org/wiki/Oracle_WebLogic_Server

[3] https://jenkins.io/doc/

[4] https://www.tutorialspoint.com/jenkins/jenkins_overview.htm

[5] https://en.wikipedia.org/wiki/Jenkins_(software)

[6] https://en.wikipedia.org/wiki/Spring_Framework

[7] https://www.tutorialspoint.com/maven/maven_overview.htm

[8] Internal Documents of Gemalto

49

