
i

E-BOOK CREATE & STORE

A Project Report

Submitted by:

Minal Aggarwal(161218)

Under the guidance of: Dr. Amit Kumar

Assistant Professor (Senior Grade)

June 2020

Submitted”in partial fulfilment for the award of the degree of”

“BACHELOR OF TECHNOLOGY”

IN

COMPUTER”SCIENCE & ENGINEERING”

“Department of Computer Science &“Engineering

JAYPEE”UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, SOLAN-173234, HIMACHAL”PRADESH

ii

“DECLARATION”

I hereby declare that the project entitled “E-BOOK CREATE & STORE”“submitted for the B.

Tech. (CSE) degree is my original work and the project has not formed the basis for the award of

any other degree, diploma, fellowship or any other similar titles.”

Minal Aggarwal(161218)

Signature”of”the”Student

Place: Jaypee University of Information Technology, Solan(H.P.)

Date: 24 - 08 - 2020

iii

“CERTIFICATE”

This is to certify that the work titled “E-BOOK CREATE & STORE” submitted by

“Minal Aggarwal(161218)”“in partial fulfilment for the award of degree of B-Tech of

Jaypee University of Information Technology, Solan has been carried out under my

supervision. As per best of my knowledge and belief there is no infringement of intellectual

property right and copyright. Also,”this work”has not been submitted partially or wholly to

any other University or Institute for the award of this or any other degree or diploma. In case

of any violation concern student will solely be responsible.”

Signature”of”Supervisor

(Dr. Amit Kumar)

Designation: Assistant”Professor (Senoir”Grade)

Date:

iv

“ABSTRACT”

In”today’s digital world where there is an endless variety of content to be consumed like books,

videos, articles, movies etc. and finding the content of one’s liking has become a difficult task.

On the other hand digital content providers want to engage as many users on their service as

possible for the maximum time. This is where e-book system comes into picture where the content

providers recommend users the content according to the users like. In this report we have proposed

a E-book system”and”this report provides a detailed summary of the project. Our objective is to

provide best e-books to users for reading or creating their own e-books. The report includes a

description of the topic, system architecture, and provides various approaches and tools used so

far.”

v

ACKNOWLEDGEMENT

When undergoing through the making of a certain project, there exists a lot of contribution and

guidance of other people who support us in achieving what lies in front. Not only do they guide

our path, but also play a vital role in the establishment and understanding of what we really want

to achieve.

Thus, this is to show our gratitude towards our Mentor, Dr. Amit Kumar for guiding us through

our entire Report. He supported us immensely in the better understanding of the project, guiding

us towards the better knowledge of the project we were working on. The weekly interaction with

him brought to us more clarification on the topic and thus simplifying our task.

vi

LIST OF FIGURES

S.NO. CAPTION PAGE NO.

Figure 1.1 MEAN Stack 3

Figure 1.2 MongoDB data scheme 5

Figure”4.1 Workflow”Diagram” 39

Figure”4.2 Dataflow”Diagram Level-0” 40

Figure”4.3 Dataflow”Diagram Level-1” 41

vii

CONTENTS

 CAPTION

PAGE”NO.

 Title”Page i"

 Declaration”of”the”Student” ii"

 Certificate”of”the”Guide iii"

 Abstract” iv"

 Acknowledgement” v"

 List”of”Figures vi"

1. INTRODUCTION 1-2

 1.1 Overview 1

2. BACKGROUNF MATERIAL 3-9

 2.1 MEAN Stack

2.2 Introduction to NodeJS

2.3 Introduction to Express

2.4 Introduction to Angular

3

 3

 4

 5

 2.5 Introduction to MongoDB 5

 2.6 Introduction to GITHUB and GIT 6

 2.7 Introduction to Docker

2.8 Introduction to Modern Web Applications

6

8

3. CONTRIBUTIONAL WORK 10-37

4. REQUIREMENT ANALYSIS& DESIGN 38-41

 4.1 Requirement Specification

 4.1.1 Soft Skills

 4.1.2 Tools Used

4.2”Workflow”Diagram

4.3”Dataflow”Diagram

 4.3.1”Level-0

38

 38

 38

 39

 40

 40

viii

6. REFERENCES 43

 4.3.2 Level-1 41

5. CONCLUSION 42

1

CHAPTER 1 – INTRODUCTION

Websites are one of the most effective ways to present and propagate information to people around the

world. The web browser is a software application for retrieving, presenting and traversing information

resources on the World Wide Web. More than ten years ago, a website was constructed with raw HTML

document and served by simple HTTP request. The birth of CSS and JavaScript made web application

become more and more convenient in displaying information. In this period, developing server side of a

web application required developer know one of many programming languages, which are PHP, Java,

C#. Otherwise, JavaScript is the primary scripting language to make reactive website. The development

process is not an easy task for junior developers because they have to learn many programming

languages along with client-side mark-up language.

1.1 PROJECT OVERVIEW

E-book create and store is a web-based application based on NodeJS, Angular & MongoDB. The main

aim of our project to provide a platform for the user to read books that are available by using the reader

in our web application, they can upload the book & they can write their book using the editor that we

are providing on our web application.

The web application contains several features like login, signup, dashboard, reader, editor and uploader

page. The web application has two main parts first one is the reader & another one is the editor. Readers

of the book can rate and read the book. The web application contains one of the important feature is to

track the progress percentage to user dashboard the aim of this feature is to notify the user how much

content of the book he or she had read.

Our Editor is a word processor which means it is to designed for text-based documents. These can be a

business report, student papers, informal notes for a call, lecture notes, letter to a friend, relative or it

can be an official letter. Editor aimed to target that user who is either poet or author of the book, students,

professors, teachers, office staff, etc. so that they can write their book and publish their e-book on the

platform and other uses too. The editor can be used to enter text, format text, save the document and

maintain compatibility.

The Dashboard is an information management page. It plays a crucial role in our web-application that

can track the reading progress, rating of the books or several PDF available on the platform and it also

2

shows all the available books to the user on the application. It is user-friendly, easily understandable

dashboard, real-time updates, save time & resources and decision making of users.

 Our web application is hosted on the AWS Cloud platform by using its service known as EC2 stands

for Elastic Compute Cloud that provides scalable computing capacity in the amazon web services cloud.

The domain name of our web-based application is http://ebookcs.bewithrits.tech.

Travis CI is a hosted, distributed continuous integration service used to build and test projects hosted at

GitHub. Travis CI automatically detects when a commit has been made and pushed to a GitHub

repository that is using Travis CI, and each time this happens, it will try to build the project and run tests.

TravisCI is used to build docker images for the frontend and backend services, which are then pushed

to Docker Hub Container Registry for storage.

Our AWS Server can then be manually updated to use the latest images.

3

CHAPTER 2 - BACKGROUND MATERIAL

E-book create and store is a web-based application based on NodeJS, Angular & MongoDB which is

MEAN stack based project, it also includes some cloud features, continuous integration and continuous

deploymentfor hosting the application the application on AWS.

2.1. MEAN STACK

In a full stack web application, JavaScript is the consistent language and syntax. The MEAN stack is

comprised of four main JavaScript oriented technologies. MongoDB is the database, Express is back-

end web framework, AngularJS is front-end web framework and Node.js is the back-end runtime

environment. The reason why the stack is selected because developers will have improved view of

greater picture by understanding the different areas and how they fit together. Frameworks and libraries

are no longer limited in supporting user interfaces but also can be combined with other layers of

applications. However, wrong architecture, low-level design and unbalance foundation in initial

construction can dramatically affect the development process (Linnovate, 2014).

Fig 1.1: MEAN Stack

2.2. INTRODUCTION TO NodeJs

Node.js is a software platform allowing developers to create web servers and build web applications on

it. Meanwhile PHP needs to run separate web server program such as Apache or Internet Information

Services, Node.js server can be configured when building an application. However, it is not limited in

web projects. More phone apps and desktop applications are built on top of Node.js. (Node.js Founda-

tion, 2012).

4

Node.js provides many utilities’ packages in order to create a powerful web server that runs JavaScript

on the server side, for example, asynchronous I/O, single-threaded or multi-threaded, sockets, and HTTP

connections. When building web applications using other server-side programming languages, such as

Java, PHP, and .NET, the server creates a new thread for each new connection. Assumed that there is a

popular website receiving more than two million requests daily, developers probably need more servers

or even to invest in more hardware. This approach works well as long as the server has enough hardware

infrastructure to provide services to the customers. When the number of clients exceed the server’s

ability, it starts to slow down and the customers have to wait (Holmes, 2015).

The single threaded, non-blocking I/O changes how a request is handled by the server. Instead of creating

a new thread for each connection, the web server receives client requests and places them in a queue,

which is known as Event Queue. The Event Loop picks up one client request from the queue and starts

process it. If the request does not include any blocking I/O operation, the server process everything,

creates a response and sends it back to the client. In the case that the request can block the I/O operation,

there is a different approach. An available thread from the thread pool will be picked up and assigned to

the client request. That thread has then processed the blocking I/O, processed the request and created a

response to send back to the client (Jörg, 2016). Node servers can support tens of thousands of

simultaneous connections. It does not allocate one thread per connection model, but uses a model process

per connection, creating only the memory that is required for each connection (Monteiro 2014, 32). Grap

3 explains single threaded application.

2.3 INTRODUCTION TO EXPRESS

Even though Node.js is a great choice to make a web server, it is just a run time environment with many

built-in modules. The default Node API is not able to handle complex applications as route management.

A web framework is needed to do the heavy work. Express is a mature and flexible web framework to

build web applications on top of the Node eco system. By default, the Express framework uses the Pug

engine for supporting templates (Node.js Foundation, 2010).

Furthermore, Express reduces difficulties in setting up a webserver to handle incoming requests and

return relevant response. That is the reason why it is the best choice to render HTML on the server side

for large-scale application. It still provides an elegant set of features to deal with including SPA, the

RESTful API, and the MEAN stack. Express follows good development practices, an oriented RESTful

5

architecture that uses the main methods of the HTTP protocol (such as GET, POST, PUT, and DELETE),

and very difficult-to-build complex web applications (Monteiro, 2014, 39).

2.4. INTRODUCTION TO ANGULAR

At the moment, there is a enormous amount of front end libraries and frameworks supporting front end

web development. AngularJS is one of them, which is designed to work with data directly in the front

end. It allows developers to use HTML as template language and extend HTML’s syntax. There are two

core features: Data binding and Dependency injection. AngularJS reduces most of codes, which are

needed to write. Developers can use Node.js, Express, MongoDB to build a data-drive web application

and pass data via HTTP protocols. Angular works with data directly in the frontend and puts the HTML

templates together based on the provided data. Developers need less resources with this approach

(Google, 2010).

2.5. INTRODUCTION TO MONGO DB

MongoDB is one of the most popular open source NoSQL databases written by C++. In 02/2015,

MongoDB ranked at 4th in list of common databases. MongoDB is document-oriented, and it stores data

in the key-value format, using binary JSON (BSON). It is agile, scalable and high performance. Node.js.

and MongoDB unleashed all the power for high-performance web applications with Express (MongoDB

Inc, 2008)

Fig 1.2: MongoDB data scheme (MongoDB Inc, 2008)

Document in MongoDB has the same structure as JSON, which means developers can map data as a

key-value. We can understand the document as a record in MYSQL. Because MongoDB is written in

C++, it is able to make a high-speed calculation, unlike other database management systems. Instead of

writing a massive amount of SQL commands, MongoDB supports fairly complex and powerful queries

in most use cases (MongoDB Inc, 2008).

6

2.6 INTRODUCTION TO GITHUB AND GIT

GitHub is a code hosting platform for version control and collaboration. It lets you and others work

together on projects from anywhere.A repository is usually used to organize a single project.

Repositories can contain folders and files, images, videos, spreadsheets, and data sets – anything your

project needs. We recommend including a README, or a file with information about your project.

GitHub makes it easy to add one at the same time you create your new repository.

Branching is the way to work on different versions of a repository at one time.

By default, our repository has one branch named master which is considered to be the definitive branch.

We use other branches to experiment and make edits before committing them to master.

A version Control system is a system which maintains different versions of your project when we work

in a team or as an individual. (system managing changes to files) As the project progresses, new features

get added to it.

Distributed Version control system means every collaborator(any developer working on a team

project)has a local repository of the project in his/her local machine unlike central where team members

should have an internet connectionto every time update their work to main central repository.

Some commands we mostly had used :

 git add .

 git commit -m “message”

 git push origin master

2.7. INTRODUCTION TO DOCKER

Docker, represented by a logo with a friendly looking whale, is an open source project that facilitates

deployment of applications inside of software containers. Its basic functionality is enabled by resource

isolation features of the Linux kernel, but it provides a user-friendly API on top of it. The first version

was released in 2013, and it has since become extremely popular and is being widely used by many big

players such as eBay, Spotify, Baidu, and more. In the last funding round, Docker has landed a huge $95

million, and it’s on track to become a staple of DevOps services.

At a quick glance, virtual machines and Docker containers may seem alike.Applications running in

virtual machines, apart from the hypervisor, require a full instance of the operating system and any

supporting libraries. Containers, on the other hand, share the operating system with the host. Hypervisor

is comparable to the container engine (represented as Docker on the image) in a sense that it manages

7

the lifecycle of the containers. The important difference is that the processes running inside the

containers are just like the native processes on the host, and do not introduce any overheads associated

with hypervisor execution. Additionally, applications can reuse the libraries and share the data between

containers.

As both technologies have different strengths, it is common to find systems combining virtual machines

and containers.

By default, the main registry is the Docker Hub which hosts public and official images. Organizations

can also host their private registries if they desire. On the right-hand side we have images and containers.

Images can be downloaded from registries explicitly (docker pull imageName) or implicitly when

starting a container. Once the image is downloaded it is cached locally.

Containers are the instances of images - they are the living thing. There could be multiple containers

running based on the same image.

There is the Docker daemon responsible for creating, running, and monitoring containers. It also takes

care of building and storing images. Finally, on the left-hand side there is a Docker client. It talks to the

daemon via HTTP. Unix sockets are used when on the same machine, but remote management is possible

via HTTP based API.

Before jumping in and building your own Docker image, it’s a good practice to first check if there is an

existing one in the Docker Hub or any private registries you have access to. For example, instead of

installing Java ourselves, we will use an official image: node.9 .

To build an image, first we need to decide on a base image we are going to use. It is denoted

by FROM instruction. Here, it is an official image for Java 8 from the Docker Hub. We are going to

copy it into our Java file by issuing a COPY instruction. Next, we are going to compile it

with RUN. EXPOSE instruction denotes that the image will be providing a service on a particular

port. ENTRYPOINT is an instruction that we want to execute when a container based on this image is

started and CMD indicates the default parameters we are going to pass to it.

https://www.toptal.com/java/why-you-need-to-upgrade-to-java-8-already

8

Specifies the base image we're extending

FROM node:9

Create base directory

RUN mkdir /src

Specify the "working directory" for the rest of the Dockerfile

WORKDIR /src

Install packages using NPM 5 (bundled with the node:9 image)

COPY ./package.json /src/package.json

COPY ./package-lock.json /src/package-lock.json

RUN npm install --silent

Add application code

COPY ./app /src/app

COPY ./bin /src/bin

COPY ./public /src/public

Add the nodemon configuration file

COPY ./nodemon.json /src/nodemon.json

Set environment to "development" by default

ENV NODE_ENV development

Allows port 3000 to be publicly available

EXPOSE 3000

The command uses nodemon to run the application

CMD ["node", "node_modules/.bin/nodemon", "-L", "bin/www"]

2.8 INTRODUCTION MODERN WEB APPLICATIONS

The strategy in web development has changed dramatically in the recent years, thanks to the

improvement of information technology. The browser is no longer used to serve static information.

JavaScript is used heavily to serve dynamic elements in the browser. The browser is becoming a kind of

mini-operating system, which avails itself in the net of various data sources- the services of developer’s

servers.

The modern web application, which is called web app, connects to the server to retrieve data

dynamically. It only exists in the browser. When users approach the app for the first time, the app is

rendered by the server and supports its services such as database access or transaction. Deriving from

9

modern web application, E-book create & store project is designed to build application service provider

called an APIs (Application Programming Interfaces) and use JSON (JavaScript Object Notation) as

formatting language.

Atwood (2017), as a collar to Tim Barnes-Lee’s Rule of Least Power, proposed Atwood’s Lay which

states that any application that can be written in JavaScript, will eventually be written in JavaScript.

Ryan Dahl (2009), wrote Node.js, an open-source, cross-platform JavaScript runtime environment. After

several years of enhancement, it has combined with Google’s V8 JavaScript engine, an event loop and

low-level I/O API, and has supported executing JavaScript code in the server side.

10

CHAPTER 3 - CONTRIBUTIONAL WORK

Our project E-book create and store is divided into Front-end, Back-end, deployment and hosting the

project on the internet. We had create our project repository on github.

3.1.DOCKER FILE

File - \Dockerfile

FROM node:8.16.0 as backendBuilder

WORKDIR /apps/ah

COPY package.json ./

RUN npm install

COPY . .

RUN npm run sdk

CMD ["npm", "start"]

FROM node:10.12.0-alpine as clientBuilder

WORKDIR /apps/ah

COPY ./client/package.json ./

RUN npm install

COPY ./client ./

COPY --from=backendBuilder/apps/ah/client/src/app/shared/lb-sdk ./src/

app/shared/lb-sdk

RUN npm run build

FROM nginx:stable as rpBuilder

WORKDIR /usr/share/nginx/html

COPY --from=clientBuilder/apps/ah/dist/usr/share/nginx/html

COPY ./reverse-proxy/ngnix.prod.conf/etc/nginx/conf.d/default.conf

File - \.travis.yml

3.2.TRAVIS YML

language: ruby

services:

11

- docker

matrix:

fast_finish: true

env:

global:

- COMMIT=${TRAVIS_COMMIT::8}

script:

- echo "Ritik@123" | docker login -u "161b178" --password-stdin

- docker build --target backendBuilder -t 161b178/ebook-backend:${

COMMIT} -t 161b178/ebook-backend:latest .

- docker build --target rpBuilder -t 161b178/ebook-proxy:${COMMIT} -t

161b178/ebook-proxy:latest .

- docker push 161b178/ebook-backend:${COMMIT}

- docker push 161b178/ebook-backend:latest

- docker push 161b178/ebook-proxy:${COMMIT}

- docker push 161b178/ebook-proxy:latest

3.3. PACKAGE.JSON FILE

File - \package.json

{

"name": "ebook-create-store",

"version": "1.0.0",

"main": "server/server.js",

"engines": {

"node": ">=6"

},

"scripts": {

"lint": "eslint .",

"start": "node .",

"install:server": "npm install",

"install:client": "cd client && npm install",

12

"dev": "./node_modules/nodemon/bin/nodemon.js --ignore 'docker/' --

ignore 'uploads/' --ignore 'client/' server/server.js",

"sdk": "DEBUG=boot:,common:models:,server:* SKIP_SEEDING=true ./

node_modules/.bin/lb-sdk server/server.js client/src/app/shared/lb-sdk -i

enabled -w enabled",

"setup": "run-s install:serverinstall:clientsdk"

},

"dependencies": {

"@mean-expert/loopback-sdk-builder": "^2.3.1",

"compression": "^1.0.3",

"cors": "^2.5.2",

"font-awesome": "^4.7.0",

"helmet": "^3.10.0",

"html-pdf": "^2.2.0",

"loopback": "^3.22.0",

"loopback-boot": "^2.6.5",

"loopback-component-explorer": "^6.2.0",

"loopback-connector-mongodb": "^5.2.0",

"loopback-ds-timestamp-mixin": "^3.4.1",

"multer": "^1.4.2",

"serve-favicon": "^2.0.1",

"strong-error-handler": "^3.0.0"

},

"devDependencies": {

"eslint": "^3.17.1",

"eslint-config-loopback": "^8.0.0",

"nodemon": "^2.0.1",

"npm-run-all": "^4.1.5"

},

"repository": {

"type": "",

13

"url": ""

},

"license": "UNLICENSED",

"description": "ebook-create-store"

}

File - \docker-compose.yml

3.4 DOCKER COMPOSE FILE

version: "3.2"

services:

client:

image: node:10.12.0-alpine

working_dir: /apps/ah

command: npm start -- --host 0.0.0.0 --disable-host-check

ports:

- "4200:4200"

volumes:

- type: bind

source: ./client

target: /apps/ah

reverse-proxy:

image: nginx:stable

ports:

- "80:80"

volumes:

- type: bind

source: ./reverse-proxy/nginx.ah.conf

target: /etc/nginx/conf.d/default.conf

- type: bind

source: ./wait-for

target: /wait/wait-for

14

depends_on:

- web

- client

web:

image: node:8.16.0

working_dir: /apps/ah

ports:

- "3000:3000"

environment:

NODE_ENV: local

env_file: .env

command: npm run dev

volumes:

- type: bind

source: .

target: /apps/ah

depends_on:

- db

db:

image: mongo:4.1

ports:

- "27017:27017"

volumes:

- type: bind

source: ./docker/volumes/mongo

target: /data/db

File - \client\src\index.html

3.5.ANGULAR – COMPONENTS FILE

<!doctype html>

<html lang="en">

15

<head>

<meta charset="utf-8">

<title>EBook - Create And Store</title>

<base href="/">

<meta content="width=device-width, initial-scale=1" name="viewport">

<link href="favicon.ico" rel="icon" type="image/x-icon">

</head>

<body>

<app-root></app-root>

</body>

</html>

File - \client\src\styles.scss

$enable-flex: true;

$enable-grid-classes: true;

@import '~bootstrap/scss/bootstrap-grid';

@import '~ngx-bar-rating/themes/br-default-theme';

//@import "~bulma/css/bulma.min.css";

.ngx-editor-textarea {

min-height: 300px !important;

background-color: white !important;

}

.router-link-active{

color: blueviolet;

}

File - \client\src\app\app.module.ts

import {BrowserModule} from '@angular/platform-browser';

import {NgModule} from '@angular/core';

import {NgxEditorModule} from 'ngx-editor';

import {PdfViewerModule} from 'ng2-pdf-viewer';

16

import {AppRoutingModule} from './app-routing.module';

import {AppComponent} from './app.component';

import {SharedModule} from './shared/shared.module';

import {ReaderComponent} from './reader/reader.component';

import {DashboardComponent} from './dashboard/dashboard.component';

import {BookComponent} from './dashboard/book/book.component';

import {EditorComponent} from './editor/editor.component';

import {BarRatingModule} from "ngx-bar-rating";

import {FormsModule} from '@angular/forms';

import {TabModule} from "angular-tabs-component";

@NgModule({

declarations: [

AppComponent,

ReaderComponent,

DashboardComponent,

BookComponent,

EditorComponent

],

imports: [

BrowserModule,

AppRoutingModule,

SharedModule,

PdfViewerModule,

NgxEditorModule,

BarRatingModule,

FormsModule,

TabModule

],

providers: [],

exports: [],

bootstrap: [AppComponent]

17

})

export class AppModule {

}

File - \client\src\app\auth.guard.ts

import {Injectable} from '@angular/core';

import {ActivatedRouteSnapshot, CanActivate, Router, RouterStateSnapshot,

UrlTree} from '@angular/router';

import {Observable} from 'rxjs';

import {LoopBackAuth} from './shared/lb-sdk/services/core';

@Injectable({

providedIn: 'root'

})

export class AuthGuardimplements CanActivate {

constructor(private authService: LoopBackAuth,

private router: Router,

) {

}

canActivate(

next: ActivatedRouteSnapshot,

state: RouterStateSnapshot): Observable<boolean> | Promise<

boolean> | boolean {

return this.isAuthenticated(state.url, next);

}

isAuthenticated(url, route: ActivatedRouteSnapshot): boolean {

constuserId = this.authService.getCurrentUserId();

if (!userId) {

this.router.navigate(['auth', 'login'], {queryParams: {

redirectUrl: url}});

} else {

if (route.data&&route.data.roles) {

constrole = this.authService.getCurrentUserData().roles[

18

0].name;

constisAuthorized = route.data.roles.includes(role);

// if (!isAuthorized)

// this.router.navigate(['/']);

return isAuthorized;

}

return true;

}

}

}

File - \client\src\app\app.component.ts

import {Component, OnInit} from '@angular/core';

import {LoopBackAuth} from './shared/lb-sdk/services/core';

import {UserModelApi} from './shared/lb-sdk/services/custom';

import {UserModel} from './shared/lb-sdk/models';

import {NavigationEnd, Router} from '@angular/router';

import { LoopBackConfig } from './shared/lb-sdk';

@Component({

selector: 'app-root',

templateUrl: './app.component.html',

})

export class AppComponentimplements OnInit {

isAuthenticated: boolean = false;

user: UserModel;

navExpanded = true;

constructor(

private authService: LoopBackAuth,

private userApi: UserModelApi,

private router: Router

) {

19

}

ngOnInit(): void {

LoopBackConfig.setBaseURL(location.origin);

this.isAuthenticated = !!this.authService.getCurrentUserId();

this.user = <UserModel>this.authService.getCurrentUserData();

this.router.events.subscribe((val) => {

if (valinstanceofNavigationEnd) {

this.isAuthenticated = !!this.authService.

getCurrentUserId();

this.user = <UserModel>this.authService.

getCurrentUserData();

}

});

}

logout() {

this.authService.clear();

this.router.navigate(['auth', 'login'])

}

}

File - \client\src\app\auth\signup\signup.component.

<div *ngIf="error" class="notification is-danger">

{{error}}

</div>

<progress *ngIf="!!loading" class="progress is-small is-primary" max="100

">15%

</progress>

<div class="box">

<h3 class="subtitle is-3">

Sign Up

</h3>

<div class="container">

20

<label for="uname" class="subtitle is-6">First Name</label>

<input [(ngModel)]="firstName" class="input is-info" type="text"

placeholder="First Name" name="uname" required>

<label for="uname" class="subtitle is-6">Last Name</label>

<input [(ngModel)]="lastName" class="input is-info" type="text"

placeholder="Last Name" name="lname" required>

<label for="email" class="subtitle is-6">Email</label>

<input [(ngModel)]="email" class="input is-info" type="text"

placeholder="Email" name="email" required>

<!--<p *ngIf="/^\w+([\.-]?\w+)*@\w+([\.-]?\w+)*(\.\w{2,3})+$/.test(

email) == false">

enter correct email

</p> -->

<label for="psw" class="subtitle is-6">Password</label>

<input [(ngModel)]="password" class="input is-info" type="password"

placeholder="Password" name="psw" required>

<label for="cpsw" class="subtitle is-6">Confirm Password</

label>

<input [(ngModel)]="confirmPass" class="input is-info" type="password

" placeholder="Confirm Password" name="cpsw" required>

<p *ngIf="password!=confirmPass">

password doesn't match

</p>

<p *ngIf="password.length< 8">

password length must be greater than or equal to 8.

</p>

21

<button *ngIf="password == confirmPass&&password.length>= 8" class

="button is-success is-light" type="submit" (click)="registerUser()">Sign

Up</button>

</div>

</div>

3.6.BACKEND

constmulter = require('multer');

constfs = require('fs');

constpath = require('path');

var pdf = require('html-pdf');

var options = {format: 'Letter'};

module.exports = function(Books) {

var uploadedFileName = '';

var storage = multer.diskStorage({

destination: function(req, file, cb) {

// checking and creating uploads folder where files will be

uploaded

var dirPath = 'uploads/';

if (!fs.existsSync(dirPath)) {

var dir = fs.mkdirSync(dirPath);

}

cb(null, dirPath + '/');

},

filename: function(req, file, cb) {

// file will be accessible in `file` variable

var ext = file.originalname.substring(file.originalname.lastIndexOf

('.'));

var fileName = Date.now() + ext;

uploadedFileName = 'uploads/' + fileName;

22

cb(null, fileName);

},

});

Books.remoteMethod('addByPDF', {

accepts: [

{arg: 'title', type: 'string', required: true},

{arg: 'req', type: 'object', 'http': {source: 'req'}},

{arg: 'res', type: 'object', 'http': {source: 'res'}},

],

returns: {root: true, type: 'object'},

http: {path: '/addByPDF', verb: 'post'},

});

Books.addByPDF = function addByPDF(title, req, res, cb) {

var upload = multer({

storage: storage,

onError: function(err, next) {

console.log('error', err);

next(err);

},

}).single('file');

upload(req, res, function(err) {

if (err) {

// An error occurred when uploading

console.log(err);

return cb(err);

}

return Books.create({

title: title,

url: '/api/' + uploadedFileName,

rating: 0,

})

23

.then(book => {

console.log(book);

cb(null, book);

})

.catch(err => {

File - \common\models\books.js

Page 2 of 2

console.log(err);

cb(err);

});

});

};

Books.remoteMethod('addByContent', {

accepts: [

{arg: 'title', type: 'string', required: true, http: {source: 'form

'}},

{arg: 'content', type: 'string', required: true, http: {source: '

form'}},

],

returns: {root: true, type: 'object'},

http: {path: '/addByContent', verb: 'post'},

});

Books.addByContent = function addByContent(title, content, cb) {

constbookName = Date.now() + '.pdf';

pdf.create(content, options).toFile(path.join(__dirname, '..', '..',

'uploads', bookName), function(err, res) {

if (err) {

return cb(err);

}

console.log(res); // { filename: '/app/businesscard.pdf' }

Books.create({

24

title: title,

url: '/api/uploads/' + bookName,

rating: 0,

})

.then(book => {

console.log(book);

cb(null, book);

})

.catch(err => {

console.log(err);

cb(err);

});

});

};

};

File - \common\models\books.json

{

"name": "Books",

"base": "PersistedModel",

"idInjection": true,

"options": {

"validateUpsert": true

},

"properties": {

"title": {

"type": "string",

"required": true

},

"content": {

"type": "string"

25

},

"url": {

"type": "string",

"required": true

},

"rating": {

"type": "number"

}

},

"validations": [],

"relations": {

"userModel": {

"type": "belongsTo",

"model": "UserModel",

"foreignKey": ""

},

"userBookProgress": {

"type": "hasMany",

"model": "UserBookProgress",

"foreignKey": "booksId"

}

},

"mixins": {

"TimeStamp": true

},

"acls": [],

"methods": {}

}

File - \common\models\user-model.js

'use strict';

26

module.exports = function(UserModel) {

UserModel.remoteMethod('markBookRead', {

accepts: [

{arg: 'id', type: 'string', required: true}, // get the id of the

frog to save image to

{arg: 'bookId', type: 'string', required: true}, // pass the

request object to remote method

],

returns: {root: true, type: 'object'},

http: {path: '/:id/markBookRead', verb: 'post'},

});

UserModel.markBookRead = async function upload(id, bookId) {

constuserBook = await UserModel.app.models.UserBookProgress.findOne(

{

where: {

booksId: bookId,

userModelId: id,

},

});

console.log(userBook);

if (!userBook) {

return UserModel.app.models.UserBookProgress.create({

userModelId: id,

booksId: bookId,

});

} else {

return Promise.resolve(userBook);

}

};

};

File - \common\models\user-model.json

27

{

"name": "UserModel",

"base": "User",

"idInjection": true,

"options": {

"validateUpsert": true

},

"properties": {

"firstName": {

"type": "string",

"required": true,

"default": ""

},

"lastName": {

"type": "string",

"required": true,

"default": ""

}

},

"validations": [],

"relations": {

"userBookProgress": {

"type": "hasMany",

"model": "UserBookProgress",

"foreignKey": "userModelId"

},

"books": {

"type": "hasMany",

"model": "Books",

"foreignKey": "userModelId"

28

}

},

"acls": [

{

"principalType": "ROLE",

"principalId": "$owner",

"permission": "ALLOW",

"property": "*"

},

{

"principalType": "ROLE",

"principalId": "$everyone",

"permission": "ALLOW",

"property": "create"

},

{

"principalType": "ROLE",

"principalId": "$everyone",

"permission": "ALLOW",

"property": "login"

},

{

"principalType": "ROLE",

"principalId": "$owner",

"permission": "ALLOW",

"property": "__get__userBookProgress"

}

],

"methods": {}

}

File - \common\models\user-book-progress.js

29

'use strict';

module.exports = function(UserBookProgress) {

UserBookProgress.observe('after save', async function(ctx, next) {

let id;

if (ctx.instance) {

id = ctx.instance.id;

} else {

id = ctx.where.id;

}

console.log({id});

if (id) {

constprogress = await UserBookProgress.findOne({

where: {

id,

},

});

console.log({progress});

constratings = await UserBookProgress.find({

where: {

booksId: progress.booksId,

},

fields: 'rating',

});

constrating = ratings.reduce((total, num) => {

return {rating: total.rating + num.rating}; // returns object

with property x

}).rating / ratings.length;

console.log({rating});

await UserBookProgress.app.models.Books.update({

id: progress.booksId,

30

}, {

rating: rating ? rating : 0,

});

return Promise.resolve();

}

});

};

File - \common\models\user-book-progress.json

{

"name": "UserBookProgress",

"base": "PersistedModel",

"idInjection": true,

"options": {

"validateUpsert": true

},

"properties": {

"progress": {

"type": "number",

"default": 0

},

"rating": {

"type": "number"

}

},

"validations": [],

"relations": {

"userModel": {

"type": "belongsTo",

"model": "UserModel",

"foreignKey": ""

31

},

"books": {

"type": "belongsTo",

"model": "Books",

"foreignKey": ""

}

},

"acls": [],

"methods": {}

}

File - \server\server.js

// Copyright IBM Corp. 2016. All Rights Reserved.

// Node module: loopback-workspace

// This file is licensed under the MIT License.

// License text available at https://opensource.org/licenses/MIT

'use strict';

var loopback = require('loopback');

var boot = require('loopback-boot');

var app = module.exports = loopback();

app.start = function() {

// start the web server

return app.listen(function() {

app.emit('started');

var baseUrl = app.get('url').replace(/\/$/, '');

console.log('Web server listening at: %s', baseUrl);

if (app.get('loopback-component-explorer')) {

var explorerPath = app.get('loopback-component-explorer').mountPath

;

console.log('Browse your REST API at %s%s', baseUrl, explorerPath);

}

32

});

};

// Bootstrap the application, configure models, datasources and

middleware.

// Sub-apps like REST API are mounted via boot scripts.

boot(app, __dirname, function(err) {

if (err) throw err;

// start the server if `$ node server.js`

if (require.main === module)

app.start();

});

File - \server\config.json

{

"restApiRoot": "/api",

"host": "0.0.0.0",

"port": 3000,

"remoting": {

"context": false,

"rest": {

"handleErrors": false,

"normalizeHttpPath": false,

"xml": false

},

"json": {

"strict": false,

"limit": "100mb"

},

"urlencoded": {

"extended": true,

"limit": "100mb"

33

},

"cors": false

}

}

File - \server\middleware.json

{

"initial:before": {

"loopback#favicon": {}

},

"initial": {

"compression": {},

"cors": {

"params": {

"origin": "*",

"credentials": true,

"maxAge": 86400

}

},

"helmet#xssFilter": {},

"helmet#frameguard": {

"params": {

"action": "deny"

}

},

"helmet#hsts": {

"params": {

"maxAge": 0,

"includeSubdomains": true

}

},

34

"helmet#hidePoweredBy": {},

"helmet#ieNoOpen": {},

"helmet#noSniff": {},

"helmet#noCache": {

"enabled": false

}

},

"session": {},

"auth": {},

"parse": {},

"routes": {

"loopback#rest": {

"paths": [

"${restApiRoot}"

]

}

},

"files": {},

"final": {

"loopback#urlNotFound": {}

},

"final:after": {

"strong-error-handler": {}

}

}

File - \server\datasources.json

{

"db": {

"host": "db",

"port": 27017,

35

"database": "ebook",

"name": "db",

"connector": "loopback-connector-mongodb"

}

}

File - \server\boot\root.js

'use strict';

module.exports = function(server) {

// Install a `/` route that returns server status

var router = server.loopback.Router();

router.get('/', server.loopback.status());

server.use(router);

};

File - \server\boot\03_rest-api.js

constpath = require('path');

constfileName = path.basename(__filename, '.js'); // gives the filename

without the .js extension

module.exports = function mountRestApi(server) {

var restApiRoot = server.get('restApiRoot');

constdir = path.join(__dirname, '..', '..', 'uploads');

server.use('/api/uploads', server.loopback.static(dir));

server.use(restApiRoot, server.loopback.rest());

};

File - \server\boot\01_authentication.js

'use strict';

module.exports = function enableAuthentication(server) {

// enable authentication

server.enableAuth();

};

36

3.8. REVERSE PROXY – NGINX FILE

File - \reverse-proxy\nginx.ah.conf

upstream webbackend {

server web:3000;

}

upstream clientdev {

server client:4200;

}

server {

listen 80 default;

server_name _;

client_max_body_size 200M;

location /explorer/ {

proxy_pass http://webbackend/explorer/;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection 'upgrade';

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Proto $scheme;

proxy_cache_bypass $http_upgrade;

}

location /api/ {

proxy_pass http://webbackend;

proxy_http_version 1.1;

#This deals with the Aggregating issue

chunked_transfer_encoding off;

proxy_buffering off;

proxy_cache off;

37

#This deals with the connection closing issue

proxy_read_timeout 13000;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection 'upgrade';

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Proto $scheme;

proxy_cache_bypass $http_upgrade;

}

location / {

proxy_pass http://clientdev/;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection 'upgrade';

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Proto $scheme;

proxy_cache_bypass $http_upgrade;

}

}

38

CHAPTER 4-REQUIREMENT ANALYSIS AND DESIGN

System analysis is a process of collecting and interpreting facts, identifying the problems, and

decomposition of a system into its components. System analysis is conducted for the purpose of studying

a system or its parts in order to identify its objectives. It is a problem-solving technique that improves

the system and ensures that all the components of the system work efficiently to accomplish their

purpose. Analysis specifies what the system should do.

System design is a process of planning a new business system or replacing an existing system by defining

its components or modules to satisfy the specific requirements. Before planning, you need to understand

the old system thoroughly and determine how computers can best be used in order to operate efficiently.

System Design focuses on how to accomplish the objective of the system.

4.1 REQUIREMENT SPECIFICATION

4.1.1 Soft Skills:

1. Web development

2. Angular

3. NodeJs

4.1.2 Tools used:

1. Docker

2. NGINX

3. AWS

4.2 WORK FLOW DIAGRAM

Workflow diagram depicts a series of actions that define a job or how work should be done. A

workflow diagram visualizes how tasks will flow between resources, whether they're machines

or people and what conditions allow the sequence to move forward. This workflow can be

illustrated or described with a flowchart using abstract boxes and diamonds or it can be created

with depictions of real-life objects using graphics and pictures that represent customers, forms,

finance, products, shipping, payments, and more. For software development, a workflow diagram

defines a series of steps a process must execute consistently.

A workflow chart is commonly used for documentation and implementation purposes since it

provides a general overview of a business process. It's often the foundation for other

documentation including flowcharts, data flow diagrams, projects, and more.

39

Each step in the workflow is represented with a pictorial symbol or an abstract shape like a box.

The steps are connected with arrows that indicate the flow from beginning to end.

Work flow diagram for user is shown in figure4.1

• New user: The user is logged in/ registered. If he/she is a registered user then they’ll be taken

to E-BOOK CREATE & STORE Dashboard else login page will appear.

• E-BOOK CREATE & STORE Dashboard:This will list out all the books available that can be

read or edited.

FIGURE 4.1 WORK FLOW DIAGRAM FOR USER

4.3 DATA FLOW DIAGRAM

A data flow diagram (DFD) maps out the flow of information for any process or system. It

uses defined symbols like rectangles, circles and arrows, plus short text labels, to show data

inputs, outputs, storage points and the routes between each destination. Data flowcharts can

range from simple, even hand-drawn process overviews, to in-depth, multi-level DFDs that

dig progressively deeper into how the data is handled. They can be used to analyze an existing

system or model a new one. Like all the best diagrams and charts, a DFD can often visually

“say” things that would be hard to explain in words, and they work for both technical and

nontechnical audiences, from developer to CEO. That’s why DFDs remain so popular after all

these years. While they work well for data flow software and systems, they are less applicable

nowadays to visualizing interactive, real-time or database-oriented software or systems.

4.3.1LEVEL 0: DFD Level 0 is also called a Context Diagram. It’s a basic overview of the whole system

or process being analysed or modelled. It’s designed to be an at-a-glance view, showing the system as a

40

single high-level process, with its relationship to external entities. It should be easily understood by a

wide audience, including stakeholders, business analysts, data analysts and developers.

Data flow diagram- level 0 is shown in figure 4.4

FIGURE 4.2 DATA FLOW DIAGRAM- LEVEL 0

4.4.2 LEVEL 1: DFD Level 1 provides a more detailed breakout of pieces of the Context Level

Diagram. You will highlight the main functions carried out by the system, as you break down the high-

level process of the Context Diagram into its sub processes.

Data flow diagram- level 1 is shown in figure 4.5

FIGURE 4.3 DATA FLOW DIAGRAM- LEVEL 1

42

CHAPTER 5 - CONCLUSIONS

The aim of the thesis was to express the idea how to make a JavaScript-oriented application. It

was a challenge, but contained a massive number of tasks needs to be finished. The system was

built from scratch as it was the best opportunity to learn MEAN stack. The key features when

building a Web based application were user-friendly interface and easy to use API.

The application took two months to finish before deployment. The application successfully covered

three main sections of the company’s website. The primary features of Simple application are user

authentication, fast and responsive web interface, editable content, and it is easy to use the REST

API. This project will be useful for both non-technical users and developers.

43

CHAPTER 6 - REFERENCES

[1] Movie Lens Data Sets .LocationGroup Lens Research Project at theUniversity of Minnesota.

URL: https://grouplens.org/datasets/

[2] Costin-Gabriel Chiru, Vladimir-Nicolae Dinu ,CtlinaPreda, MateiMacri ; “Movie

Recommender

System Using the User's Psychological Profile” in IEEE International Conference on ICCP,

2015.

[3] By IJIRAE - International Journal of Innovative Research in Advanced Engineering

[4] Brent Smith(Amazon.com) ,Greg Linden(Microsoft) "Two Decades of Recommender

Systems at

Amazon.com" Published by the IEEE Computer Society 2017 IEEE INTERNET

COMPUTING.

[5] Tejal Arekar, Mrs. R.S. Sonar, Dr. N. J. Uke, IT Dept./Pune University “ A Survey on

Recommendation System ” International Journal of Innovative Research in Advanced

Engineering (IJIRAE) ISSN: 2349-2163Volume 2 Issue 1 (January 2015)

https://grouplens.org/datasets/

6%
SIMILARITY INDEX

6%
INTERNET SOURCES

0%
PUBLICATIONS

5%
STUDENT PAPERS

1 3%

2 2%

3 2%

Exclude quotes On

Exclude bibliography On

Exclude matches < 10 words

E-BOOK CREATE & STORE
ORIGINALITY REPORT

PRIMARY SOURCES

www.dietms.org
Internet Source

Submitted to University of Greenwich
Student Paper

Submitted to University of Bahrain
Student Paper

06

	Final Report
	Plag Report Signed (1)

