

`

COMPARATIVE ANALYSIS OF AUTOMATIC TEXT

SUMMARIZERS

Project report submitted in partial fulfillment of the requirement for the degree of

Bachelor of Technology

in

Computer Science and Engineering/Information Technology

by

Janvijay Singh Bisht (151308)

Under the supervision of

Mr. Nitin Kumar

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat

Solan-173234, Himachal Pradesh

`I

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “COMPARATIVE

ANALYSIS OF AUTOMATIC TEXT SUMMARIZERS” in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science

and Engineering submitted in the department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from August 2018 to December

2018 under the supervision of Mr. Nitin Kumar, Assistant Professor, Department of

Computer Science & Engineering and Information Technology.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Janvijay Singh Bisht

(151308)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Mr. Nitin Kumar

Assistant Professor

Computer Science & Engineering and Information Technology

Dated:

`II

ACKNOWLEDGEMENT

I would like to present our heartfelt gratitude to our mentor and guide Mr. Nitin

Kumar, Assistant Professor, Computer Science & Engineering and Information

Technology for giving invaluable intellectual inputs and suggestions right from choosing

the appropriate project for commencement to its fruitful culmination.

I would also like to take this opportunity to offer our sincerest thanks to Dr. S.P.

Ghrera, Head, Computer Science & Engineering and Information Technology for

giving us the opportunity to work under his guidance in Jaypee University of Information

Technology, Waknaghat, enabling us to gain an immensely enriching professional

experience. I would also like to thank him for his endless support and relentless supervision

without which this could not have been possible.

I would also like extend my deep gratitude to the lab assistant, Mr. Ravi Raina for

his endless support throughout the length of our project.

Last but not the least, the successful completion of this project would not have been

possible without the consistent backing of our mentors, family and friends.

`III

Table of Content

I. Table of Abbreviations

II. List of Figures

III. List of Graphs

IV. List of Tables

V. Abstract

1. INTRODUCTION 1

1.1. Introduction.. 1

1.2. Problem Statement... 2

1.3. Objectives .. 2

1.4. Methodology.. 3

1.5. Organization... 5

2. Literature Survey 6

2.1. Early work.. 6

2.2. LexRank based Text Summarization................................... 6

2.3. Machine Learning Approach

2.3.1. Word Embeddings ... 10

2.3.2. Encoder .. 11

2.3.3. Decoder .. 12

2.3.4. Attention Mechanism ... 13

2.3.5. Machine Learning Summarization using RNN 14

2.3.6. Text Summarization using seq2seq 17

3. System Development 20

3.1 Software Specifications ... 20

3.2 Hardware Specifications .. 21

3.3 Data Pre-Processing ... 21

3.4 Codes and Sources ... 24

 3.4.1 LexRank ... 24

 3.4.2 NLP Score Based Ranking ... 25

`IV

3.4.3 Seq2Seq .. 25

3.4.4 Recursive RNN ... 25

4. Algorithms 26

4.1. Algorithms.. 26

4.1.1 Extractive .. 30

4.1.2 Abstractive

5. Test Plan 32

5.1. Dataset .. 32

5.2. Result Analysis.. 32

5.3. Efficiency Metrics

5.3.1. ROUGE... 32

5.3.2. BLEU.. 33

6. Results and Performance Analysis 35

5.1 Sample Input and Output ... 35

7. Conclusion and Future Work 40

7.1. Conclusions .. 41

7.2. Scope of the Project .. 41

References 42-43

`V

Table of Abbreviations

ATS Automatic Text Summarization

CNN Convolutional Neural Network

IDF Inverse Document Frequency

LSTM Long Short Term Memory

NLP Natural Language Processing

RNN Recursive Neural Network

TF-IDF Term Frequency - Inverse Document Frequency

TS Text Summarization

`VI

List of Figures

Fig 1.1 Flowchart: Project Development... 4

Fig 2.1 Bidirectional Dynamic RNN [1] ... 12

Fig 2.2 Beam search decoder for k value 3 [1] ... 13

Fig 2.3 Bahadanau word attention layer [10] .. 14

Fig 2.4 Recursive Neural Network [11] .. 15

Fig 2.5 Error estimation and optimisation .. 16

Fig 2.6 Encoding-Decoding in RNN Architecture ... 18

Fig 2.7 Sequence to Sequence Encoder-Decoder Architecture 19

Fig 3.1 IDF modified-modified-cosine-formula.. 22

Fig 3.2 Flowchart: LexRank Summarization... 23

Fig 3.3 Working of Algorithm... 24

Fig 4.1 Encoder-Decoder Model with Attention Mechanism [1] 31

Fig 6.1 Sample Article 1……………….……………………………………………….... 35

Fig 6.2 Sample Summary 1…………………………………………………………….... 36

Fig 6.3 ROUGE Scores (Summary 1) ... 36

Fig 6.4 ROUGE Scores (Summary 1.1)... 36

Fig 6.5 Sample Article 2…………………………………………………….……........... 37

Fig 6.6 Sample Summary 2……………………………………………………………... 38

Fig 6.7 ROUGE Scores (Summary 2) .. 38

Fig 6.8 Sample Summary for extractive Seq2Seq approach .. 39

Fig 6.9 Sample Summary using recursive RNN approach ... 39

Fig 6.10 Sample summary for Global Warming Wikipedia page using NLP score Based

Ranking .. 40

`VII

List of Graphs

Graph 2.1 Example of lighted Cosine Similarity Graph... 8

Graph 2.2 Example of similarity graph with threshold 0.1………………………………. 9

Graph 2.3 Example of similarity graph with threshold 0.2………………………………. 9

`VIII

List of Tables

Table 2.1 Example of Intra-sentence similarity matrix………………………………….. 7

Table 2.2 Example of degree centrality score matrix…………………………………..... 9

Table 6.1 ROUGE scores comparison ... 40

`IX

ABSTRACT

In view of the intense time crunch faced by humans in today’s time, the idea of

information being presented to people in the most concise and crisp manner possible is

pretty much a necessity. This project entitled “COMPARATIVE ANALYSIS OF

AUTOMATIC TEXT SUMMARIZERS” aims to summarize text documents automatically

using software drawing from the concepts of machine learning and neural networks.

There are two major kinds of Automatic Text Summarization (ATS) techniques,

Extractive Text Summarization and Abstractive Text Summarization. Extractive ATS

refers to picking out more important sentences, ones that more central to the chief idea of

the document and stringing them together to give a summarised document. Abstractive

ATS, on the other hand, deals with rephrasing the sentences in the original document and

expressing them differently. These algorithms are generally more difficult to implement as

this challenges the system to strain itself with complex skills such as paraphrasing and

abstraction.

In this project, Extractive ATS is done using lexical analysis. The results and a

detailed analysis has been presented in this report. The project will later use machine

learning algorithms to achieve ATS both extractive and abstractive in nature along with

presenting a structured study of the difference in efficiencies among the various algorithms.

I will also integrate the project to a front-end user interface that shall be user friendly and

responsive.

This report is a summary of the tasks accomplished by us on the project entitled

“Automatic Text Summarization and Analysis” in partial fulfilment. It contains all the

details pertaining to the technical, functional and non-functional aspects of the partial

completion of the project aimed at summarizing documents followed by a comprehensive

comparison of the efficiency of the same. It also gives an in-depth explanation of the

methodology, procedure and algorithms used, where the data is being extracted from, how

it is being worked upon along with test plans for the future, models and flowcharts

1

CHAPTER 1: INTRODUCTION

1.1. INTRODUCTION

 Natural Language Processing (NLP) is the application of computational techniques

to the analysis and synthesis of natural language and speech. It refers to the ability of a

machine to comprehend language as I speak. The idea behind NLP is to bridge the gap

between how instructions are fed into the computer (in a precise and structured manner)

and how humans actually talk, with no organized linguistic structure.

In today’s time, the amount of information available to us has increased multiple

folds and continues multiply exponentially. Most information, academic or otherwise is

available in electronic form. Now-a-days, I face an unnatural abundance of textual data and

paired with a lack of disposable time, there is an urgent need to create automated ways of

presenting information in the most concise yet meaningful form. The idea is to summarize

a document by shortening its length or volume without losing the meaning of the original

text. The summarized text must still convey the entire idea that the original text did, but in

a more concise manner.

Automatic Text Summarization is the process of creating a synopsis of a text

document retaining only the more central and significant phrases or sentences to give a

coherent version of the original document. The objective is to produce a synopsis by

reducing either the size or volume of the original text without actually changing the

meaning of it.

The process of TS may be grouped into two broad categories, Extractive and

Abstractive Summarization.

Extractive Text Summarization consists of picking out important sentences and

piecing them together in a relevant and consequential manner. The key component of this

type of summarization is to select important statements or phrases. The prominence of a

sentence is evaluated by putting it through a predefined procedure that may be syntactic

and/or semantic in nature. Sentences are put through a pre-established function and the ones

that explain all ideas salient to the original document are extracted as a subset of those in

the original document. These sentences or phrases are then concatenated together to form

the summarized document.

 Abstractive Text Summarization, on the other hand, refers to actually generating a

synopsis by paraphrasing, not just extracting central segments word by word. This approach

2

generates new statements, even substituting phrases or statements for other, more relevant

ones. A sentence is reconstructed based on the semantic interconnections among the words.

Creating abstractive summaries are a tougher job to accomplish, as the system must

incorporate capabilities like understanding of the text and the ability to rephrase it. Difficult

as they may be to implement, abstractive summarization techniques are by and large free

of most restrictions and confinities that extractive methods suffer from.

The pressing need to summarize textual data has become extremely prominent in

the past few years. The very little time that people have to spare, they most certainly do not

wish to spend it going through extensively lengthy documents only to find a small section

of the text to be relevant. Hence, an interesting and probably viable solution to the above

problem is the development of a program that automatically summarizes lengthy text

documents into smaller versions retaining the phrases and sentences of higher centrality

and relevance.

1.2. PROBLEM STATEMENT

 To design a software to automatically summarize textual documents to produce a

synopsis that retains relatively more central and significant information, using Lexical

analysis and different machine learning algorithms, along with a thorough comparative

study of the efficiencies of the same. The software must be supported by an interactive user

interface so that it is easy and convenient to use. It must be stable, time efficient and

considerably accurate.

1.3. OBJECTIVES

 The project entitled “Comparative Study of Automated Text Summarisers” has the

following objectives:

● To summarize a text document extractively using lexical analysis.

● To realise automated text summarization with the help of various machine learning

and neural network algorithms.

● To conduct a detailed in-depth comparative study of the effectiveness and

productivity of the different algorithms used previously.

● To create an interactive and responsive front-end user interface to make the

software more accessible and usable by different classes of user.

3

The project will realise these objectives by using algorithms for summarizing single

document and generating summaries using extractive summarization techniques and

generate headlines using extractive summarization techniques.

1.4. METHODOLOGY

In this section, the procedure adopted while undertaking this project is explained in

detail, step by step. Fig 1.1 shows the plan of action for completion of the project.

● Commencement of the project begins with the identification of the problem. The

difficulty of tackling TS with automation and a considerable amount of efficiency

is extremely apparent. As students, I face the issue of abundance of information and

with the evolution of the internet, things have only become graver. I needed a

system to give us a concise outlook to all the textual data I have. Hence, figuring

out the objectives our project was not a hassle.

● The next step is to carve out the problem statement and a list of objectives.

Requirement Analysis is also done in this step.

● Then, I review relevant and freely available literature relating to text

summarization. Various research papers are examined and looked through in the

process, a review of which has been presented in this report.

● In the next phase, a structured plan to implement the functionalities and achieve the

goals set for the project is formulated and a rough skeleton of the process of

completion of the project is drawn out.

● The data is collected and worked upon at this point. The algorithms developed or

chosen are used to process the data.

● Once irrefutable results are achieved, they are analysed and a final report is filled

up in detail. This report may contain a study of the efficiency of the developed

software, both in terms of time and accuracy.

4

Fig 1.1 Flowchart: Project Development

 The documents to be summarized will be inputted from the user and the words will

be vectorised and weighted by using word embeddings and will then be used in our machine

learning models to generate headlines, whereas in the case of summary generation the

5

document given by the user will act as the input for the algorithm words and sentences will

be weighted and extractive summary will be generated using tf-idf values and weighing the

words to generate vectorised form to learn the important words needed to generate the

summary.

1.5. ORGANIZATION

 This section gives a brief introduction of what each chapter of this report contains

along with all the relevant information.

Chapter 1: Introduction

This chapter contains a brief account of what the project is about, the

problem statement, objectives and the methodology adopted for the study.

Chapter 2: Literature Survey

This section reviews and examines the various research papers and freely

available information that form the basis of the study and provides an insight on the

relevant literature.

Chapter 3: System Development

This chapter describes the processes and steps involved in the development

of an automatic text summarizer. It includes different diagrams and flowcharts to

explain the development and working of the summarizer.

Chapter 4: Algorithms

This section includes various algorithms that have been used in the project.

There is an explanation of what the algorithm does, the input it takes, steps included

and the output that it produces.

Chapter 5: Test Plan

This segment contains information about the data sets, list of requirements

for the successful functioning of the Automatic Text Summarizer and details

pertaining to efficiency calculation and the metrics involved.

Chapter 6: Results and Analysis

This chapter includes a description of the results of our study so far and an

analysis of the same.

Chapter 7: Conclusion and Future Work

This section contains a description of the conclusions that can be drawn

from the results obtained and their analysis. It also has information about the scope

of expansion of the project.

6

CHAPTER 2: LITERATURE SURVEY

This section reviews and examines the various research papers and freely available

information that form the basis of the study and provides an insight on the relevant

literature.

2.1. Early Work

 Automated Text Summarization has been a popular topic of interest for researchers

over the world for decades now. Extractive Text Summarization was first performed by

Hans Peter Luhn [3] in 1958. Known as the father of Information retrieval, Luhn primarily

aimed to summarize technical works based on the frequency and positioning of significant

words. Sentences are graded and the ones with the top scores are picked. A novel approach

was later provided by H.P. Edmundson [4] in 1969, where four methods namely, Cue, Title,

Location and Key method Ire used to identify the centrality score of a sentence and produce

a ranking in the order of importance. A neural net model used to pre-process an input data

and match with a string already defined by the user was proposed by A. Das et al [5].

Featured words are extracted from the article at hand with the user defined words and in

case they match, the score of the word is increased. Repetition of the process gives us an

overall sentence score, which can then be used to extract a summary out of the original

document. Single Document Summarization based on Extraction techniques was proposed

by J Jagadeesh et al [6] in 2005. Arman Kiani and M. R. Akbarzadeh [7] proposed the use

of Hybrid Fuzzy systems for text summarization in 2006.

Numerous other notable approaches have been employed in realising and improving

the process of automatic text summarization, both extractive and abstractive in nature.

2.2. LexRank based Text Summarization

 LexRank [1] based Text Summarization involves using graph-based methods for

Natural Language Processing. It uses sentence based graphs to summarize a text document

using extractive methods of summarization. Extractive summarization assess the

importance of a sentence, phrase or words using various predefined methods and central

sentences are taken into the summary that is produced as output.

 A widely used metric for computation of the importance of a word in a sentence is

IDF [1]. It is calculated as:

Idf = log (Ni/N)

7

Where, N is the total number of documents and Ni is the number of documents in which

the term i is present. Rare words have large IDF values while common ones like ‘a’, ‘the’,

etc. have smaller IDF.

 The scores of words is calculated by calculating TF-IDF values of the words (tf X

idf) and if it is above a preset threshold, the word is entered into the centroid. Centroid is a

pseudo document with a list of words that have their TF-IDF values above the preset

threshold.

 Similarity of two sentences is defined in vector space by the idf-modified cosine.

𝑖𝑑𝑓 − 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝑐𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑡𝑓𝑤,𝑥𝑡𝑓𝑤,𝑦(𝑖𝑑𝑓𝑤)

2
𝑤∈𝑥,𝑦

√∑ (𝑡𝑓𝑥𝑖,𝑥𝑖𝑑𝑓𝑥𝑖)2𝑥𝑖∈𝑥 × √∑ (𝑡𝑓𝑦𝑖,𝑦𝑖𝑑𝑓𝑦𝑖)2𝑦𝑖∈𝑦

IDF-modified-cosine formula [1]

 The corresponding values in a similarity matrix (N X N dimensions) is the measure

of similarity between any two sentences.

 1 2 3 4 5

1 1.0 0.45 0.02 0.17 0.03

2 0.45 1.0 0.16 0.27 0.03

3 0.02 0.16 1.0 0.03 0.00

4 0.17 0.27 0.03 1.0 0.01

5 0.03 0.03 0.00 0.01 1.0

Table 2.1 Example of Intra-sentence similarity matrix

Depending on the values in the similarity matrix, weighted graph with N vertices is

created (Graph 2.1) This graph is further filtered by setting different threshold values (as

shown in Graph 2.2 and Graph 2.3)

8

Graph 2.1 Example of weighted cosine similarity graph

Graph 2.2 Example of similarity graph with threshold 0.1

9

Graph 2.3 Example of similarity graph with threshold 0.2

Constructing a degree centrality score matrix shows us the most central sentence in

the text. Table 2.2 is the degree centrality score matrix for Graph 2.2 and 2.3.

 deg(0.1) deg(0.2)

1 3 2

2 4 3

3 2 1

4 4 2

5 1 1

Table 2.2 Example of degree centrality score matrix

 The problem with the degree centrality method is that each vote accounts for equal

weightage while in reality that is seldom the case. It may happen, in this situation that, two

non-important sentences support each other and move up the centrality ladder. This

situation is avoided by taking a note of the centrality of the node that is supporting the node

that is being examined. This is done using the following formula:

𝑝(𝑢) = ∑
𝑝(𝑣)

deg(𝑣)
𝑣∈𝑎𝑑𝑗[𝑢]

Formula for calculation of centrality of a node [1]

where p(u) is the centrality of node, adj[u] is a set of nodes that are adjacent to node u,

deg(u) is the degree of node u.

10

 Equation in Fig 2.2 is written in matrix notation and mathematical calculations on

Markov chain are done with a Stochastic Matrix and after assigning equal probability of

jumping to each node in graph, a modified version (called PageRank) of the equation in

Fig 2.2 is obtained as shown in Fig 2.3.

𝑝(𝑢) =
𝑑

𝑁
+ (1 − 𝑑) ∑

𝑝(𝑣)

deg(𝑣)
𝑣∈𝑎𝑑𝑗[𝑢]

Formula of PageRank [1]

Unlike the original PageRank[1] method, the similarity graph for sentences is

undirected as cosine similarity is a symmetric relation. However, this does not change much

about how the computations are made. This new metric can be called ‘LexRank’ and is

used for centrality evaluation. The LexRank value of the sentences may be affected by the

threshold that has been set.

Minor improvements can be made in the original LexRank formula can be made by

looking at the similarity strength of the links. It is called continuous LexRank [1] and can

be computed as:

𝑝(𝑢) =
𝑑

𝑁
+ (1 − 𝑑) ∑

𝑖𝑑𝑓 −𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝑐𝑜𝑠𝑖𝑛𝑒(𝑢, 𝑣)

∑ 𝑖𝑑𝑓 − 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝑐𝑜𝑠𝑖𝑛𝑒(𝑧, 𝑣)𝑧∈𝑎𝑑𝑗[𝑣]
𝑝(𝑣)

𝑣∈𝑎𝑑𝑗[𝑢]

Formula of Continuous LexRank [1]

Both the methods: classical LexRank [1] and continuous LexRank [1] are used in

this project and the results are documented in this report.

2.3 Machine Learning Approach

 Machine Learning approach for the text summarization decides the importance of

words in the document by recurrent regressive training. Various pre-trained models will be

used to learn the way these algorithms work and to get a comparative analysis between

them to use the best learning algorithm to summarize the document.

2.3.1 Word Embeddings

 I can see that the right starting point for word vector learning may be really with

ratios of probabilities rather than the probabilities themselves. In GloVe's instance, the

counts matrix is pre-processed by normalizing the counts and log-smoothing them.

Compared to word2vec, GloVe permits for execution, meaning that it's easier to train over

11

more info. Both words co-occur frequently with water (as it is their shared land) and rarely

-- together with the unrelated word style. Almost all unsupervised procedures for studying

word representations utilize the statistics of word occurrences in a corpus as the primary

source of information, yet the question remains as to how I can create meaning from such

figures, and how the resulting word vectors might represent that significance. On the project

page it's stated that GloVe is a log-bilinear model with a Lighted least-squares objective.

The design rests that ratios of probabilities have the potential for encoding some type of

meaning which could be analysed as vector differences. Hence, the training objective is to

learn word vectors for example their dot product equals the logarithm of the words'

probability of co-occurrence. This goal and vector gaps from the term vector space

associate the ratios of probabilities that are co-occurrence Since the logarithm of a ratio

equals the difference of logarithms. It creates the term vectors that perform Ill on similarity

tasks and on both word analogy activities and named entity recognition.

By doing reduction on a count matrix, generally speaking, vectors are learnt by count-based

models. First they construct a large matrix of co-occurrence info, which includes the info

on how frequently each "word" (stored in rows), can be viewed in certain "context" (the

columns). The number of "contexts" needs be big, since it is basically combinatorial in size.

They factorize this matrix to yield a multi-dimensional matrix of attributes and phrases,

where every row creates a vector representation for each term. It is accomplished by

minimizing a “reconstruction loss” which looks for multi-dimensional representations

which could explain the variance from the high-dimensional data.

2.3.2 Encoder

 For the Project basically 2 types of encoder were used:

Dynamic RNN

Dynamic RNN is preferred over static RNNs because of the fact that

the static RNN cannot work on variable sequence lengths and variable input.

The input in the project are documents and sentence length in a document

cannot be fixed to a certain constant. When using static RNN the correct

number of time steps in the sequence may be smaller or greater than the

constant provided for the training.

Bidirectional Dynamic RNN [12]

 Bidirectional Dynamic RNN can be visualised as using one RNN in

general time and another one at same time but from the opposite direction

and the outputs of both the RNNs are then summed up at every time step.

12

Using bidirectional dynamic RNNs are difficult task due to input confusion

but give better results because the model now has both forward and

backward information about the sequence we are learning about. The

backward and forward iteration works in the same way as backward and

forward propagation works in regression techniques. This in turn helps in

generating the summaries as well as verifying that what we are generating

is correct or not.

Fig 2.1 Biderectional Dynamic RNN

The major implications lie on the fact that LSTM cell provided in this RNN for

every step are twice than that of the Dynamic RNN so the attention mechanism and

the output are better for every document but the time taken by the biderctional

dynamic RNN is more than Dynamic RNN.

2.3.3 Decoder

 For the Project we used 2 decoders:

• LSTM Basic Decoder for training

The prediction using sequence-to-sequence learning heaves more

difficulties for encoding as well as decoding because of the size of input

data and also their may be a considerable difference between the size of

input and output sequence. Using LSTM cell in the training procedure of

the decoder helps the model to retain information about the sequence

inputted as text file. The LSTM cell largely improves the learning

capabilities of the decoder used in the training period.

• Beam Search Decoder for inference

Another decoder used for the project is the Beam Search Decoder

and this decoder is used for inference from the trained model. Beam Search

13

decoder is a step ahead on the greedy search decoder and instead of greedily

choosing the next step, the beam search algorithm expands the next steps in

the sequence instead of choosing one step it chooses next k steps in the

sequence. The variable k is user inputted. This make number of parallel

beams through sequence of probabilities. The algorithm stops when on out

of the k sequences is the output sequence, hence is used for inference.

Fig 2.2 Beam Search Decoder for k value 3

2.3.4 Attention Mechanism

 Attention Mechanism retains the knowledge gained during the training part of the

mode. After each iteration attention mechanism finds the next variable.

• Bahadanau Attention [12]

Attention is necessary for any encoder-decoder model for

generalizing the test data. Using attention mechanism helps the model to

learn how to efficiently minimise the cost function by looking up where to

find the variables instead of just regressively training the model. This

attention mechanism check how we weight hidden input vectors. Words

align to their individual meaning but in reality, number of words sequenced

together can give different meaning to the sentence with comparison to their

individual meanings. Bahadanau Attention mechanism pairs words which

occur together and also pairs words with their meanings. The two pairs are

then compared with each other to justify the meaning the phrase really

holds.

14

Fig 2.3 Bahadanau word attention layer. [10]

2.3.5 Machine Learning Summarization using RNN

 Automatic Text Summarization using Recurrent Neural Network is one of the

leading models used for giving abstractive summary of any document. Recurrent Neural

Network is one of the oldest and most robust machine learning algorithms. They Ire

established in the early 1980's but on account of many decades of individual research now

have LSTM cell from the 1990's innovation. As a result of the memory cell RNN's are in a

position to keep in memory things about the input they've received, which allows them to

give accurate outputs due to the presence of RNN’s. Recurrent Neural Networks generate

predictive improvements in the output from consecutive statistics which other calculations

cannot. This really is why they truly have been preferred algorithm for linear information

such as some time collection, text, speech, monetary info, sound, movie clip, audio files

since they could produce a lot deeper comprehension of an arrangement plus its own

particular instance, in comparison to additional calculations. Recurrent Neural Networks

(RNN) certainly really are a robust and powerful kind of neural networks and also appeal

into the absolute most promising calculations out there in the present time since they're the

sole ones using memory cell.

 RNN works as an iterative memory cell unit, in a Recursive Neural Network the

input given to node cycles through these loops. When giving an output of a cell, it takes

consideration the input from the previous node and from the current input given to it by the

user.

15

Fig 2.4 Recurrent Neural Network architecture [11]

A customary RNN includes a short-term memory. In conjunction with a LSTM that they

also possess a long-term memory, however, I'll discuss this further below. Another

Fantastic way to exemplify the Notion of a RNN's memory would be to describe it with an

example: Imagine you get a typical feed-forward neural network and then provide it the

phrase "neuron" as an input and it processes the term character by nature. A Recurrent

Neural Network can recall exactly that, due to its internal memory. It generates output

signal, copies that loops and output it back in the network. Hence a Recurrent Neural

Network includes 2 inputs, the current and the recent past. This is vital because the

arrangement of information includes crucial information about what's coming, which

explains exactly why a RNN can do things other calculations cannot. A Feed-Forward

Neural Network assigns, such as most of other Deep Learning boosters, a light matrix into

its inputs and produces the output. Be aware that RNN's use weights to the present and to

the former input.

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)

Formula for calculating the current state [2]

Where

Ht = Current State

Ht-1 = Previous State

Xt = Input State

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑤ℎℎℎ𝑡−1 + 𝑤𝑥ℎ𝑥𝑡)

Formula for applying Activation Function [2]

16

Where:

Whh = weight at recurrent neuron

Wxh = weight at input neuron

𝑦𝑡 = 𝑤ℎ𝑦ℎ𝑡

Formula for calculating output [2]

Yt = Output

Why = weight at output layer

Recurrent Neural Network work on the concept of forward propagation and

backward propagation for error correction. In general, neural networks forward propagation

is used to get the output of the input given to any particular node. To check whether the

output to the given problem is correct or not I check the output of the program and if the

output of the program is faulty, I do backward propagation. In backward propagation for

every error at any node of the model I find the partial derivative this in turn helps to

diminish the error by subtracting this value from the previously given weights. Then the

given function is recursively minimized by using gradient descent tu find the local minima

and absolute minima. What I do while backward propagation is use these derivatives to

modify the weights of our model while training the model itself. This concept of forward

and backward propagation helps in minimising the error in the model while training the

model and I do not rely on iteratively checking the model and its output to get the errors I

may find in the program.

Fig 2.5 Error estimation and optimization [11]

17

The main reason behind using backward propagation is to minimise error in every sentence.

Whereas forward propagation involves only weighing the vectors and summarizing the

document, backward propagation checks the summary generated as well verifies the weight

at each hidden layer node optimises it if any error occurs and reiterates the neural network.

2.3.5 Text Summarization using Seq2Seq model

 Text summarization is considered as a task of creating some outline plus a headline

composed of the couple paragraphs which catches the notions of the given sentences and/or

the document or a short write-up. I utilize the adjective 'abstractive' to define the summary

generated by the model as holding the meaning of the document the summary is not

generated by splitting the sentences in the document however also a compacted

paraphrasing of the principal contents of this record, most likely employing language

hidden from the origin file. This task may be cast as mapping an input set of phrases at a

resource file to your target chain of phrases. At the frame of sequence-to-sequence versions,

an exact important model for our task would be that your attentional Recurrent Neural

Network (RNN) encoder-decoder version suggested (Bahdanau et al.)[10]. Despite of the

similarities, the abstractive summarization is actually an exact various problem in MT. In

contrast to in MT, the aim (outline) is normally quite quick and will not rely greatly around

the length of the foundation (record) from summarization. Whereas at MT, the translation

is forecast to be more loss less. In addition, a barrier in summarization will be always to

compress the record in a mode such as the concepts within the record are maintained. In

summarization, it really is clear, although there is really just a belief of almost intervention

between purpose and origin. I create the subsequent primary contributions within the job:

(i) I employ the off the shelf attentional encoder-decoder RNN which has been initially

produced for system interpretation into summarization, also reveal it outperforms state of-

the-art strategies on just two separate English corpora. (ii) encouraged by tangible issues

from summarization which aren't satisfactorily addressed from the system interpretation

established version, we suggest publication versions and reveal they supply additional

advancement in operation. (iii) we suggest a new Data Set for your Job of abstractive

18

summarization of the record right into several paragraphs and set benchmarks.

Fig 2.6 Encoding Decoding in RNN Architecture [10]

In the seq2seq model hidden layer is present in this layer I add embeddings, this embedding

layer consist of vectorised vocabulary words, all the words present in the document after

removing the Stopwords from the document. Each word in the embedding layer has an ID

associated with it.

During the pre-processing of the data I do certain things for smooth implementation

of the algorithm.

• Of every word not repeated previously in the document I add it into the

vocabulary.

• Count how many numbers of time these words have occurred in the document.

• I calculate term frequency, i.e., a low frequency value to easily apply functions

and calculations on the vectorised words.

• After replacing these vocabularies by their IDs, I create a copy of the document

for training purposes.

Unlike the RNN, seq2seq [9] model does not have this embedding layer in between the

encoder’s output and decoder’s input. Embeddings are a separate file where the words,

19

their IDs, their frequency and vectorised sentences are stored.

Fig 2.7 Seq2Seq Encoder Decoder Model Architecture [8]

Sequence-to-Sequence model maps input of sequence to an output of sequence, it uses two

RNNs for predicting how the previous sequence of words map to the next sequence.

Sequence-to-Sequence model also works perfectly fine with attention mechanism and

decoding models both beam search and LSTM cell. Word embedding layer in the seq2seq

model weighs the vectorised words to arrange a N*N matrix.

CONCLUSION

We learnt about different types of text summarization techniques, namely,

Abstractive and Extractive Text Summarization. We learnt about how these techniques

work and major algorithms used for implementing these techniques. In this project, we will

apply these algorithms and by comparative analysis select best one for implementing out

of the algorithms used in the project. We will implement best abstractive and extractive

summarization technique for headline generation and text summarization respectively.

20

CHAPTER 3: SYSTEM DEVELOPMENT

This section describes the processes and steps involved in the development of an

automatic text summarizer. The current work is focussed on extractive summarization of a

text document using LexRank computations [1].

3.1. Software Specifications

 Each the calculations are composed in python-3.6, be it in Jupyter laptops (*.ipnyb

documents) in addition to the .py files. This is a conscious choice due to python interpreter-

- that allows for debugging that is effortless and code implementation. Not just that, the

syntax helps to ensure that the details unique to a programming language does not bogged

down the reader.

Python-3.6 additionally ensures quick monitoring and instantaneous execution within

Jupyter laptops with no necessity for compiling the app time and with each slight change.

In addition, the learning frame TensorFlow, as its title implies has been composed for

python. Rather than being a different library TensorFlow is created using code for

integration. Some Benefits of TensorFlow along with other learning frameworks have been

recorded under:

• TensorFlow creates the most from CPUs and the computation may also be hastened

by employing graphical processing units (GPUs).

• TensorFlow is optimized advertising incurs computation is the fact that it supports

dynamic networks. This can be essential when I want the behaviour to change in

run-time of our network.

• It's not hard to learn and use for learning algorithms and system learning.

• Open source.

Other outside libraries include--

Numpy: This is a high-performance processing bundle.

Matplotlib: This bundle is a library that arouses plots, high quality graphs, characters in a

number of formats such as Jupyter laptops.

Pickle: This bundle indicates the progress of a loop for a progress bar, which may crucial

when training word sensors to appraise the progress and classifiers.

21

These packages have to be installed from the machine where the calculations are analysed

or to be implemented. With no bundles, the applications may not cause the behaviour that

is desirable. They are vital for making sure that the modules operate explained here and as

anticipated.

These packs are installed and also the code could be implemented.

3.2 Hardware Specifications

The algorithms which Ire implemented are independent, they could operate on all

platforms. That having been said, that the power on those machines might be adequate to

meet GPU requirements and the RAM. It is suggested that the Jupyter Notebooks to be

used or the algorithms provided lest your system may crash because of inadequate memory

requirements, should be implemented on Google Collaboratory.

3.3 Data Pre-processing

LexRank [1] (fig 3.2) is distinguished by PageRank technique. This strategy works

right off the bat by producing a diagram, linking all the different sentences in the article,

book or review. Each sentence speaks to another sentence or point in the corpus, and the

edges signifies the semantic similarity between different sets pieces of lines in the corpus.

In this exploration, the similarity between sentences is measured by considering each

sentence as a matrix of words. It also implies similitude measure between a matrix of words

is registered by recurrence of a single word event in two different matrices. The essential

estimation utilizes TF-IDF plan, in which TiF adds to the similitude quality of the value as

the quantity of individual element in the matrix events gets higher. Then again, the

backwards record recurrence respects low recurrence words conversely adds to increase in

incentive to the estimation. This TF-IDF detailing is later utilized as an estimation for

likeness between the word matrices by using it in the idf adjusted cosine formula (fig 3.1).

𝑖𝑑𝑓 − 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝑐𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑡𝑓𝑤,𝑥𝑡𝑓𝑤,𝑦(𝑖𝑑𝑓𝑤)

2
𝑤∈𝑥,𝑦

√∑ (𝑡𝑓𝑥𝑖,𝑥𝑖𝑑𝑓𝑥𝑖)2𝑥𝑖∈𝑥 × √∑ (𝑡𝑓𝑦𝑖,𝑦𝑖𝑑𝑓𝑦𝑖)2𝑦𝑖∈𝑦

IDF-modified-cosine formula [1]

22

This computation is estimating the 'separation' between two sentences x and y, the

more comparable two sentences, the less redundant their connection becomes, i.e., they

hold a certain degree of similarity between them and can be used in the summarization

process.

This similitude value is used to generate a closeness lattice, which is utilized as a

comparability chart between different matrices. The LexRank calculation measure the

significance of word matrix in the diagram by thinking about its relative significance to its

adjacent matrices, where a positive commitment will raise the significance of a matrix's

neighbor, while a negated value commitment will bring down the significance estimation

of a matrix's neighbor.

To distinguish the most imperative sentences from the subsequent closeness grid, I

apply a thresholding component. An edge esteem is utilized to sift through the connections

between matrices whose value fall beneath the set threshold value. The outcome is a subset

of aforementioned likeness chart, from where I can pick one aggregation that has the

maximum degree. This collection is viewed as central or speaks to a rundown sentence of

the text.

Fig 3.1 Flowchart: LexRank based Summarization [1]

23

LexRank picks up sentences having top most IDF values to choose the similar word

matrices to form the most accurate summary of any corpus. Document is fetched from the

database, which is then tokenized into words and subsequently sentences which are ranked

on the basis of similarity between them and are then chained together to form the summary.

Fig 3.2 System Architecture for LexRank [1]

Documents are fetched from the database text pre-processing takes place. Pre-processing

includes identifying rhetorical roles and initiating stop words and punctuations. The words

are tokenized and given as input to the algorithm for the process of sentence scoring. A

threshold value is stated for the process of sentence extraction for the summarization

process to initiate. The fetched summary is then compared with its parent article to generate

index score.

24

Fig 3.3 Working of Algortihm

Document are fetched from the database and/or input is taken from the user. The words are

from the document are sliced and transformed into vectors, These vectors are then given as

a input in the encoder layer of our encoder decoder model, where iteratively output of the

encoder model is used as input of decoder model then weights on the vectorised words are

put by word embeddings this process iteratively runs for each sentence formation.

3.4 Code and Sources

 The work on the project has been done on python language. Various modules like

numpy, tensorflow, nltk, pickle, GloVe and word2vec were used, argparse was used for

parsing the documents. For comparision of the project different models were used. Out of

the models some of the models were pre-trained others were implemented using spyder ide

was used and for better representation of the project jupyter notebooks were used.

25

3.4.1 LexRank

 LexRank algorithm uses PageRank method, summarizes documents by using a

graph based method using all the sentences present in the corpus. The code for LexRank

was implemented using LexRank module, specifically importing the STOPWORDS sub-

module.

3.4.2 NLP Score Based Ranking

 NLP score based ranking for coded in python using BeautifulSoup, nltk, urllib and

heapq modules. From nltk module stopwords were imported, BeautifulSoup was used to

convert html file to .txt file. The algorithm works by scoring sentences by the number of

occurrences of words which are previously scored and then discreted by counting their

number of occurence in the corpus. This model works by taking input from the users as a

webpage. Parses the webpage using BeautifulSoup parser which converts the html

document into text file and using score based ranking summarises the document. External

codes were not used while implementing this model.

3.4.3 Seq2Seq Model

 Sequence-to-Sequence was implemented seq2seq module with seq2seq encoder

decoder model to generate headlines. The model was not coded but was trained and tested.

Weights were optimised. Two models were used for word embeddings, vector wighted

model and GloVe pre-trained module. The cod was used form github repository [13] .

3.4.4 Recursive RNN

 Recursive RNN model was implemented using keras, numpy and os module. This

model uses keras backend and RNN encoder-decoder module to train and test data. The

module for trained RNN model was imported from github repository [14]. The code

contains the model. It was trained and tested for different epochs and weights were

optimised.

CONCLUSION

 We learnt what hardware and software will be needed for smooth functioning of

our system also how the system will take input and it will function once input is provided.

We have taken into consideration the how precisely the data has to be preprocessed and

26

learnt what preprocessing actuallly does to the data and why is it necessary? We defined

our system architecture and working of the algorithms.

27

CHAPTER 4: ALGORITHMS

4.1. Algorithms

This section includes various algorithms that have been used in the project. There

is an explanation of what the algorithm does, the input it takes, steps includes and the output

it produces.

 4.1.1. Extractive Approach

This includes picking out sentences or phrases that are more central to the

document at hand and give a synopsis that is more concise and relevant. Extractive

Text Summarization is relatively easier but suffers from more restrictions than its

counterpart, Abstractive Summarization. Extractive Text Summarization is realised

by using LexRank[1]. It is a graph-based method used to compute the importance

of text, sentences or phrases for NLP. This technique is used extensively for

Extractive Text Summarization of an article, utilising the centrality of a sentence in

the article to get the most relevant and significant pieces in the documents at hand.

● INPUT [1]: The input for a LexRank algorithm is a text document.

● STEPS [1]:

○ Slice the Text Document into the sentences.

○ Tokenize the words in the document into vector space.

○ Calculate the Inverse Document Frequency of the Words.

○ Divide the document into clusters.

○ Find the most central sentence in the cluster to give a general

information related to main theme.

○ Centrality is defined by looking into the centrality of the words, i.e.,

find centroid of the cluster in the vector space.

○ The centroid of a cluster is a pseudo-document which consists of

words that have tf X idf scores above a predefined threshold, where

tf is the frequency of a word in the cluster, and idf values are

typically computed over a much larger and similar genre data set.

28

Input: An array S of n sentences, cosine threshold t

Output: An array C of centroid scores

Hash WordHash;

Array C;

/* compute tf x idf scores for each word */

 for i -->1 to n do

for each word w of S[i] do

WordHash {w}{“tfidf”} = WordHash{w}{“tfidf”} + idf{w};

 end

end

 /* construct the centroid of the cluster */

/* by taking the words that are above the threshold */

for each word w of WordHash do

if WordHash{w}{“tfidf”}>t then

WordHash{w}{“centroid”} = WordHash{w}{“tfidf”};

end

else

WordHash{w}{“centroid”} = 0;

end

end

/* compute the score for each sentence */

for I 1 to n do

C[i] = 0;

foreach word w of S[i] do

C[i] = C[i] + WordHash{w}{“centroid”};

end

end

return C;

Algorithm to compute centroid scores [1]

○ We hypothesize that the sentences that are more central (important)

to the topic are present near this centroid in the vector space.

○ To define similarity, I represent each sentence as an N-dimensional

vector, where N is number of all possible words in the target

29

document. With each occurrence the, the value of the corresponding

word is changed:

vector value = (the number of occurrence) * (idf value)

Then idf-modified-cosine is calculated to generate the similarity between corresponding

vectors.

𝑖𝑑𝑓 − 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 𝑐𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑡𝑓𝑤,𝑥𝑡𝑓𝑤,𝑦(𝑖𝑑𝑓𝑤)

2
𝑤∈𝑥,𝑦

√∑ (𝑡𝑓𝑦𝑖,𝑦𝑖𝑑𝑓𝑥𝑖)2𝑥𝑖∈𝑥 × √∑ (𝑡𝑓𝑦𝑖,𝑦𝑖𝑑𝑓𝑦𝑖)2𝑦𝑖∈𝑦

IDF-modified-cosine formula [1]

○ For only getting significant sentences in the summary I set a very

stringent threshold because most of the sentences in the centroid of

the document will be related to the topic and the summary of the

document.

○ Adjacency Matrix is constructed by these idf-modified-cosine.

Input: A stochastic, irreducible and aperiodic matrix M

Input: matrix size N, error tolerance t

Output: eigen vector P

Algorithm for Power Method for computing the stationary distribution of Markov

Chain.

𝑝0 =
1

𝑁
1;

T = 0;

repeat

 T=t+1

 𝑃𝑡 = 𝑀𝑇𝑝𝑡−1;

 ƍ = ||𝑝𝑡 − 𝑝𝑡−1 ||;

until ƍ < t;

return pt;

o I calculate the LexRank of by summing the elements of the Cosine

Matrix/Degree.

30

Input: an array S of n sentences, cosine threshold t

Output: An array L of LexRank scores

Algorithm for Computing LexRank scores [1]

Array CosineMatrix[n][n];

Array Degree[n];

Array L[n];

for I – 1 to n do

 for j – 1 to n do

 CosineMatrix[i][j] = idf-modified-cosine(S[i],S[j]);

 if CosineMatrix[i][j] > t then

 CosineMatrix[i][j] = 1;

 Degree[i]++;

 end

 else

 CosineMatrix[i][j] = 0;

 end

 end

end

for I 1 to n do

 for j 1 to n do

CosineMatrix[i][j] = CosineMatrix[i][j]/Degree[i];

 end

end

L = PowerMethod(cosineMatrix,n,e);

return L;

● OUTPUT [1]: The output of the algorithm is a summarized version of the

original text document.

31

4.1.2 Abstractive Summary

This task includes generating a summary of a document or can generate

headlines for the document by capturing the features of that passage. The summary

generated from the ‘Abstractive’ summarization algorithm [9] does not contain the

already present sentences in the source, but either spins the vocabulary or rephrase

in a compressed yet effective way keeping the main contents of the source using

words not used in the document.

• INPUT: Input is a text document.

• STEPS:

o Input sequence is mapped to vectorised vocabulary in the

embedding layer.

o Embedding layer state size is similar to the vector matrix of

the vocabulary.

o The words are ranked according to the embedding layer

using pre-trained model such as GloVe or Word2Vec.

o Feature rich encoder is used to get a better preliminary

output from the encoder layer of the model.

o This output is used as the input for the decoder layer.

Encoder uses POS tagging and word sense disambiguation

to get better meaning for the words.

o The encoder decoder model iteratively collects the salient

ideas of that particular document.

o LSTM cell is used as memory unit for temporary memory

allocation during iteration of one single sentence in the

encoder decoder model.

o Continuous values such as TF and IDF are converted into

discrete value for better use in the vectorised words

embedding layer.

o For every word we find its embedding in the feature matrix

and from all of its other tags and add up all these words for

a longer matrix.

32

Fig 4.1 Encoder 4-Decoder Model with Attention Mechanism [10]

CONCLUSION

 In this chapter we learnt about different algorithms we will use in the given project

for Extractive and Abstractive Summarization respectively, how these algorithms will work

and generated a sample summary for extractive summarization techniques. The algorithm

used for comparison have been pre-trained and were just implemented. One algorithm each

for Abstractive and Extractive approach each were implemented and executed, others were

used for comparative analysis only.

33

CHAPTER 5: TEST PLAN

5.1. Dataset

● BBC news articles dataset

The data set includes 2225 documents (text files) derived from BBC database of

news articles corresponding to various topical areas.

● Amazon Fine Food reviews

A data set of 568,454 food reviews, with Amazon users left upto 2012.

5.2. Results Analysis

● The resultant text must be a shorter version of the original text document.

● Sentences or phrases with higher degree of centrality must be picked to create a

summary.

● The system must withstand any number of lines of data provided to it.

● It must work on alphanumeric data of all types.

● The model must be time efficient along with not losing its efficiency in the

meantime.

● It must run smoothly on all platforms (Operating Systems) like Windows, UNIX

based systems etc.

5.3. Performance Metrics

Two kinds of systems of measurement that are used to compute the efficiency of

summarization in the project.

5.3.1. ROUGE:

ROUGE [12] is a set of metrics that is used for evaluating machine-based

(Automatic) summarization of text as Ill as natural language translation.

The main two aspects that impact the evaluation are:

● Fluency of the summary, which is more prominent in the abstractive

summarization.

● Adequacy of the summary

ROUGE only try to assess the adequacy of the summary not the fluency of

the summary being generated by the machine, it carries out this task by counting

the number of n-grams generated in the summary which match the n-grams in your

34

reference summary (or summaries, because ROUGE support many numbers of

corpus for reference.) And for these multiple corpora references, the ROUGE scores

of all references are averaged.

It cannot determine the fluency, whether the summarized content is coherent

or whether the sentences flow in sensible manner because it is only based on content

overlap. But some high-order n-gram to some extent judge fluency of the generated

summary.

Recall: How much of the reference summary is the machine generated

summary recovering. It is, in case of individual words computed as:

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑤𝑜𝑟𝑑

𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑑𝑠𝑖𝑛𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑢𝑚𝑚𝑎𝑟𝑦

Precision: How much of the machine generated summary was relevant to

the summary to be generated. It is, in case of individual words computed as:

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑤𝑜𝑟𝑑

𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑑𝑠𝑖𝑛𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑢𝑚𝑚𝑎𝑟𝑦

5.3.2. BLEU:

BLEU [11] is one of the algorithms used for evaluating text summary which

has been machine generated and stands for Bilingual Evaluation Understudy.

Quality is considered by cross checking the validation of the summary with that of

a human. “Machine generated summary should be as close as possible to a human

summary of same document to be better” – BLEU algorithm is built around this

idea. BLEU can be regarded as the very first metric to be have a high correlation

with quality of human summarization and judgement as such, being free to use

BLEU still remains one of the most popular metric for Text Summarization.

Calculation:

● Translated segments are taken as a single unit.

● These segments are generally set of summarized sentences.

● These translated segments are compared to a set of good quality reference

translations.

35

● To check the overall quality of the summary, these individual scores are then

averaged over the whole corpus.

● Grammatical errors as well as intelligibility are not taken into account.

CONCLUSION

 In this chapter we defined our test plan, our requirements and our metrics on which

the summarized documents will be checked for accuracy, precision and recall. We learnt

how these efficiency metrics work and calculate theses scores for summarized documents.

36

CHAPTER 6: RESULTS AND PERFORMANCE ANALYSIS

6.1. Results and Discussion

The output of summarization consists of two summaries, one with the classical

LexRank [1] computations and other with continuous LexRank [1] computations. The

following are two sets of sample outputs for two distinct articles.

Fig 6.1 has a piece of text which when processed through the summariser results

in two summaries, one through classical LexRank [1] and another through continuous

LexRank [1], as shown in fig 6.2.

Fig 6.1 Sample Article 1 [7]

37

Fig 6.2 Sample Summary 1 [2]

Fig 6.3 shows ROUGE score for the article 1 and summary 1 shown in the fig 6.1 and fig

6.2 respectively.

Fig 6.3 ROUGE Scores (Summary 1.1) [5]

Fig 6.4 ROUGE Scores (Summary 1.2) [5]

38

Fig 6.4 has a piece of text which when processed through the summariser results

in two summaries, one through classical LexRank [1] and another through continuous

LexRank [1], as shown in fig 6.5.

Fig 6.5 Sample Article 2 [7]

39

Fig 6.6 Sample Summary 2 [7]

Fig 6.6 shows ROUGE score for the article 2 and summary 2 shown in the fig 6.4 and fig

6.5 respectively.

Fig 6.7 ROUGE Scores (Summary 2) [5]

40

Fig 6.8 Sample Summary for extractive seq2seq approach [9]

Fig 6.9 Sample Summary using Recursive RNN approach [9]

41

Fig 6.10 Sample Summary for Global Warming Wikipedia page using NLP Score Based

Ranking [4]

Method
Document Comment

RG-1 RG-2 RG-W RG-1 RG-2 RG-W

Sentence Lead 0.495 0.420 0.214 - - -

LexRank 0.506 0.432 0.219 0.348 0.198 0.127

RNN 0.497 0.440 0.218 0.374 0.212 0.140

Seq2Seq 0.422 0.357 0.172 0.111 0.062 0.041

Seq2Seq-Glove 0.562 0.519 0.234 0.455 0.291 0.165

Score-based ranking 0.577 0.524 0.246 0.462 0.309 0.176

CNN 0.576 0.523 0.246 0.467 0.319 0.178

Tab 6.1 ROUGE Score Comparison

Above mentioned screenshots are the summaries of the documents using different

algorithms learned and implemented during the project period. We learned that the

extractive summaries are easier to implement and quite nicely upholds the information

given the text document provided. Extractive approach gives better results for larger

documents because data provided for scoring the words and sentences is quite big hence

the scoring is more legitimate. For smaller documents, extractive approach doesn’t heed

good results. The values calculated are not dependable because due to small size of corpus

non-essential words may get a good rating also. For smaller documents extractive summary

mostly gives better results. Extractive summary is more difficult to implement and need

42

regressive training to improve its memory cell and attention mechanism. Training data and

test data was split into 80:20. Keras and TensorFlow were used for training the models.

Abstractive summaries work better for smaller documents, for larger documents the

training time is more and the memory cells are not able to efficiently retain data. Although

for smaller document the abstractive approach works better than the extractive approach.

Also, for headline generation extractive approach works very poorly compared to

abstractive approach.

43

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1. Conclusion

LexRank and continuous LexRank can be calculated using Eigenvector and Markov

chain computations based on TF-IDF and IDF-modified-cosine to determine the

importance of a sentence in the text document. More important sentences from the original

document are retained in the summary. Efficiency of LexRank has been calculated using

ROUGE metrics and it can be concluded that LexRank can be used effectively for

Extractive Text Summarization of a document. Different Machine Learning Models have

been used to compute the summary of any given document using GloVe and Word2Vec

pre-trained word embeddings. Efficiency of these algorithm has been calculated using

ROGUE metrics and it can be concluded that RNN with LSTM cell can be used effectively

for the Abstractive Text Summarization.

We learnt about different types of text summarization techniques, namely,

Abstractive and Extractive Text Summarization. We learnt about how these techniques

work and major algorithms used for implementing these techniques. In this project, we will

apply these algorithms and by comparative analysis select best one for implementing out

of the algorithms used in the project. We will implement best abstractive and extractive

summarization technique for headline generation and text summarization respectively.

7.2. Scope

● The scope of our project is confined to summarising a single text document and can

be expanded to working on multiple documents that are related to one another.

● The project can also be extended to include features like the ability to read from

images and other formats.

● The functionalities of the project can be applied to various domains where time is

of the essence and documents need to be skimmed through quickly and efficiently

(for example, legal or police affairs.)

44

REFERENCES

[1] G. Erkan, D. Radev, “LexRank: Graph-based Lexical Centrality as Salience in Text

Summarization”, Journal of Artificial Intelligence Research 22, 2004.

[2] Selvani Deepthi Kavila, Dr. Radhika Y, “Extractive Text Summarization Using

Modified Iighing and Sentence Symmetric Feature Methods”, I.J. Modern Education and

Computer Science, 2015.

[3] H.P.Luhn, “The Automatic Creation of Literature Abstracts”. IBM Journal of Research

and Development, 1958.

[4] H.P. Edmundson, “New Methods in Automatic Extracting”, Journal of the Association

for Computing Machinery, April 1969.

.[5] A.Das, M.Marko, A.Probst, M.A.Portal, C.Gersheson ―Neural Net Model For

Featured Word Extraction‖, 2002.

[6] Jagadeesh J, Prasad Pingali, Vasudeva Varma, “Sentence Extraction based single

Document Summarization”, Workshop on Document Summarization, 19th and 20th

March, 2005, IIIT Allahabad.

[7] Arman Kiani B, M. R. Akbarzadeh ―Automatic Text Summarization Using: Hybrid

Fuzzy GA-GP‖, IEEE International Conference on Fuzzy Systems. Juky 16-21, 2006.

[8] R. Mihalcea, and P. Tarau, "Textrank: Bringing order into texts,". In Proceedings of the

2004 Conference on Empirical Methods in Natural Language Processing, 2004.

 [9] R. Nallapati, B. Zhou, C. dos Santos, C. Gulcehre, and B. Xiang, "Abstractive text

summarization using sequence-to-sequence RNNs and beyond,". In Computational Natural

Language Learning, 2016.

45

[10] D. Bahadanau, K. Cho Yoshua Bengio “Neural Machine translation by jointly to align

and translate”, Conference paper at ICLR, 2015

[11] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu “ BLEU: a Method

for Automatic Evaluation of Machine Translation”, 40th Annual meeting of the Association

for Computer Linguistics, 2002

[12] Chin-Yew Lin “ ROUGE: A Package for Automatic Evaluation of Summaries” DUC

Conference, 2004

[13] Lee, Dongjun (2018) TensorFlow Text Summarization using seq2seq. Retrieved from,

https://github.com/dongjun-Lee/text-summarization-tensorflow

[14] Chen, Xianshun (2018) Keras Text Summarization. Retrieved from,

https://github.com/chen0040/keras-text-summarization

https://github.com/dongjun-Lee/text-summarization-tensorflow
https://github.com/chen0040/keras-text-summarization

