
FAULT TOLERANCE IN IOT

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

In

Computer Science and Engineering

By

Aruba Sood (161245)

Under the supervision of

Mr. Arvind Kumar

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

I

CERTIFICATE

I hereby declare that the work presented in this report entitled “Fault Tolerance in IoT ”

in partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my own work carried out

over a period from January 2020 to May 2020 under the supervision of

 Mr. Arvind Kumar (Assistant Professor (Grade-II) Department of Computer Science

Engineering & IT).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Aruba Sood

161245

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Arvind Kumar

Assistant Professor (Grade-II)

 Department of Computer Science Engineering & IT

Dated:

II

ACKNOWLEDGEMENT

First of all, I would like to express our deep gratitude to my project guide Mr. Arvind

Kumar (Assistant Professor (Grade II), Department of Computer Science Engineering &

IT) for providing me an opportunity to work under his supervision and guidance.

He has always been my motivation for carrying out the project. His constant

encouragement at every step was a precious asset during my project work.

I express my deep appreciation and sincere thanks to Dr. Hemraj Saini (Computer

Science Engineering & IT Department) for providing all kinds of possible help and

encouragement during my project work.

I am thankful to Mr. Ravi Raina for providing endless support and entertaining all my

problems. Also I am thankful to the faculty and staff of Department of Computer Science

Engineering & IT, Jaypee University of Information Technology for providing me all the

facilities required for experimental work.

I would like to thank my parents for their continuous support and motivation. Finally

I would like to thank those who directly or indirectly helped me in completing this

project.

Aruba Sood

III

TABLE OF CONTENTS

CAPTION PAGE NO.

CERTIFICATE i

ACKNOWLEDGEMENT ii

LIST OF ACRONYMS AND ABBREVIATIONS v

LIST OF FIGURES vi

ABSTRACT viii

CHAPTER-1: INTRODUCTION 1

1.1 General 1

1.2 Problem Statement 3

1.3 Project Objectives 4

1.4 Methodology 4

CHAPTER-2: LITERATURE OVERVIEW 5

2.1 A Delay Aware Data Collection Network for WSN 6 \6

 2.1.1 Abstract 6

2.2 Concurrent Data Collection Trees 7

 2.2.1 Abstract 7

 2.2.2 Concurrent Data Collection Trees 7

 2.2.3 Topologies 9

 2.2.4 Results and Analysis 12

2.3 Fault-Tolerant in Concurrent Data Collection Tree 13

2.3.1 Abstract 13

CHAPTER-3: SYSTEM DEVELOPMENTS 14

3.1 Fault Tolerance Algorithm for Data Collection Trees 15

IV

CHAPTER-4: PERFORMANCE ANALYSIS 19

4.1 Fault Tolerance algorithm 20

4.2 Theoretical examples 21

 4.2.1 Cases where umax does not change 21

 4.2.1.1 Example – 1 21

 4.2.1.2 Example - 2 28

 4.2.1.3 Example – 3 38

 4.2.1.4 Example – 4 47

 4.2.2 Cases where umax change 54

 4.2.2.1 Example – 5 54

 4.2.2.2 Example – 6 60

CHAPTER-5: CONCLUSION AND FURTURE SCOPE 65

REFERENCES 66

APPENDIX 67

PLAGIARSIM REPORT 68

V

LIST OF ACRONYMS AND ABBREVIATIONS

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

WSN Wireless Sensor Network

DADCNS Delay-Aware Data Collection Network Structure

MST Minimum Spanning Tree

MAC Media Access Control

CDMA Code Division Multiple Access

DCT Data Collection Time

N2N Node to Node

N2BS Node to Base Station

VI

LIST OF FIGURES

DESCRIPTION PAGE NO.

Fig. 1 Alpha Ring 10

Fig. 2 Beta Ring 11

Fig. 3 First α-ring with 9 nodes (alpha_max) 22

Fig. 4 2
nd

 α-ring with 8 nodes (alpha_min) 22

Fig. 5 3
rd

 α-ring with 8 nodes (alpha_min) 23

Fig. 6 First ring (apha_max) tree structure 23

Fig. 7 Second ring (alpha_min) tree structures 24

Fig. 8 After faulty node deletion apha_max ring tree structures 25

Fig. 9 After faulty node deletion 3
rd

 ring’s tree structures (apha_min) 26

Fig. 10 After faulty node deletion tree structures of the alpha_max ring 27

Fig. 11 β-ring structure with 13 node 29

Fig. 12 α-ring structure with 8 nodes 29

Fig. 13 Tree structures of the β-ring(1
st
 ring) 30

Fig. 14 Tree structures of the α-ring (2
nd

 &3
rd

 ring) 31

Fig. 15 Tree structures of β-ring after deletion of faulty node 33

Fig. 16 Tree structures of the β-ring after deletion of faulty ring 35

Fig. 17 Tree structures of the α-ring after deletion of faulty ring 37

Fig. 18 β-ring structure with 13 nodes 39

Fig. 19 α-ring structure with 9 nodes 39

Fig. 20 α-ring structure with 8 nodes 40

Fig. 21 Tree structures of β-ring 40

Fig. 22 Tree structures of 1
st
 α-ring (alpha_max) 42

Fig. 23 Tree structures of 2
nd

 α-ring (alpha_min) 42

Fig. 24 After faulty node deletion tree structures of the apha_max ring 44

Fig. 25 After faulty node deletion tree structures of the apha_min ring 45

Fig. 26 After faulty node deletion tree structures of the alpha_max ring 46

Fig. 27 β-ring with 9 nodes 48

VII

Fig. 28 1
st
 α-ring (alpha_max) with 7 nodes 48

Fig. 29 2
nd

 α-ring (alpha_min) with 6 nodes 49

Fig. 30 Tree structures of the β-ring 49

Fig. 31 Tree structures of 1
st
 α-ring (alpha_max) 50

Fig. 32 Tree structures of 2
nd

 α-ring (alpha_min) 51

Fig. 33 Tree structures of β-ring after deletion of faulty node 52

Fig. 34 After deletion of faulty node 1
st
 α-ring’s tree structures 53

Fig. 35 β-ring with 9 nodes 54

Fig. 36 1
st
 α-ring (alpha_min) with 6 nodes 55

Fig. 37 Tree structures of the β-ring 55

Fig. 38 Tree structures of 2
nd

 α-ring (alpha_min) 56

Fig. 39 1
st
 α-ring (alpha_max) with 7 nodes 58

Fig. 40 3
rd

 α-ring (alpha_min) with 6 nodes 58

Fig. 41 Tree structures of 1
st
 α-ring (alpha_max) 59

Fig. 42 Tree structures of 3
rd

 α-ring (alpha_min) 59

Fig. 43 1
st
 α-ring structure 61

Fig. 44 Tree structures of 1
st
 α-ring 61

Fig. 45 β-tree with 15 nodes 64

Fig. 46 α-ring with 8 nodes 64

VIII

ABSTRACT

IOT nodes are inclined to failure in hostile situations subsequently, in this paper, a fault

tolerant algorithm is portrayed for a IOT network - Concurrent Data Collection Trees. As

the system becomes broken it ought to be reestablished to its typical working inside a

effective time period. Be that as it may, if there is an occurrence of fault in Concurrent

Data Collection trees, the complexity to reproduce the system increases as the quantity of

parallel streams increases. Concurrent Data Collection Trees offer viable information

collection and in some cases the information isn't lost totally if a flaw happens. We have

talked about different cases which shed light on the information that is either totally lost

or not. Two different network structures to be specific, alpha and beta rings alongside

their advantages and disadvantages are talked about. We developed an algorithm for fault

tolerance in both topologies.

IX

CHAPTER 1

1

INTRODUCTION

1.1 General

IoT systems are picking up fame in view of their broad and efficient use in everyday

exercises and their promising future applications. To help urbanization in coming years, it

is critical for the citizens of the society to get cutting-edge information in an

advantageous manner by grasping current advances in innovation.

Internet of Things (IoT) is an efficient arrangement among these most recent

advancements. Different clients will possess and share the IoT frameworks, a course of

action of sensors and middleware. Different request will be assembled by customers and

even IoT devices meanwhile, which start concurrent or parallel data streams in same

framework.

Sensors nodes are battery powered devices. Energy saving is very important to the

lifetime of a sensor network. The total amount of energy consumed in a transmission is

directly proportional to the corresponding communication distance. Hence, long distance

communication between nodes and base station are usually not encouraged. The energy

consumption can be reduced by adopting the clustering algorithm, where a group of

clusters are formed and each cluster has its own sub-cluster head to which it send the

gathered information. These sub- cluster heads in turn are connected to the cluster head

which controls all clusters and finally is connected and sends data to the base station. We

have carried out our work on the network structures presented by Cheng et. al. in “Delay-

Aware Data Collection Network Structure for Wireless Sensor Networks” and

“Concurrent Data Collection Trees for IoT Applications”.

Remote sensor systems are utilized in a variety of applications; accordingly they have

various qualities which are essential for their effective working. There have been

numerous kinds of systems around for remote sensors however considering Cheng's et. al.

Concurrent Data Collection Trees, can improve information collection productivity as

they utilize parallel information streams for information transmission.

2

Be that as it may, energy saving gets vital to the part of battery controlled devices. In IoT

systems there are various devices working together, interconnected to one another and

require a great deal of energy while working. In this manner a system must be developed

so that it utilizes less power while simultaneously has less delay in transmitting

information. Concurrent Data Collection Trees offer this possibility by using parallel data

streams for effective data collection and slightly undermining the energy parameter.

Previous network structures that communicated in parallel did not take into account both

of the above variables/factors. However good they may seem, every network has its own

limitations of working in hostile environments.

One such obstruction is fault in systems where we have been talked about node becomes

faulty. However, in the event of parallel systems and as complex as Concurrent Data

Collection Trees the task of making them fault tolerant gets difficult. In this manner, in

this undertaking report we have described an effective fault-tolerant scheme for

concurrent data collection trees along with various other cases that can effectively restore

the networks to its normal working in a timely manner.

Other than the algorithm we have examined various cases regarding which system

structure is better and the various potential outcomes of its rebuilding at various time slots

related with it. Our results have been verified using simulations carried out using the code

we are going to develop in Java.

3

1.2 Problem Statement

• To support fast development of urban communities it is significant for urban areas

to convey modern data to its occupants in a timely manner.

• Among the advances, Internet of Things (IoT) is very much perceived as a

promising solution.

• Currently, most existing smart urban communities are presently furnished with

non-interoperable isolated IoT frameworks.

• For future IoT system, a lot of sensors and middleware will be possessed and

shared by different clients.

• Users or even IoT devices may present their inquiries all the while, which trigger

different parallel information streams in the same system.

• Parallel information streams acquaint new difficulties with the delay optimization

in IoT frameworks.

• Therefore concurrent data collection trees are proposed to keep the general

information collection term short.

• Efficient data collection processes have been very much concentrated on tangible

frameworks with static topologies and single data extraction point.

• Smart devices in IoT frameworks are frequently shared by various parties; in this

manner concurrent data collection processes are constantly anticipated.

• It is demonstrated that, contrasting and a existing single-client data collection

structure, frameworks with the proposed tree structures can fundamentally

abbreviate their concurrent data collection processes.

4

1.3 Project Objective

To design an algorithm for fault-tolerance for Concurrent Data Collection Tree network

structure.

1.4 Methodology

We started by comparing the two data collection methods that is DADCNS (Delay Aware

Data Collection Network Structure) and Concurrent data collection trees. We found that

Concurrent Data Collection Trees is a more efficient method for collecting data

simultaneously using parallel data streams.

However IoT devices being low power devices, we face an issue of faulty nodes. So in

this project we are trying to reconstruct our network whenever any fault arises so that data

is collected in a timely manner.

5

CHAPTER 2

6

LITERATURE OVERVIEW (I)

2.1 “A Delay Aware Data Collection Network Structure for Wireless

Sensor Networks”

2.1.1 Abstract

In any system to save energy is extremely critical. Here in this paper i.e. "Delay aware

data collection network structure for wireless sensor networks” is proposed, two

algorithms are suggested and actualized to manage this very issue of limiting energy to

increase longer life time, for that even the efficiency of gathering information is ignored.

Wireless sensor networks use enormous quantities of wireless sensor nodes to gather data

from their detecting territory. Wireless sensor nodes are battery-fueled devices. Energy

saving is constantly critical to the lifetime of a wireless sensor network. As of late,

numerous algorithms are proposed to handle the energy saving issue in wireless sensor

systems. In these algorithms, in any case, information collection efficiency is typically

undermined in return for increasing longer system lifetime. There are solid needs to create

wireless sensor network algorithms which take care of optimization priorities other than

energy saving.

In this paper, a delay-aware data collection network structure for wireless sensor

networks is proposed. The target of the proposed system structure is to limit delays in the

data collection procedures of wireless sensor networks. Two network development

algorithms are designed to build the proposed system structure in a brought together and a

decentralized methodology. Performances of the proposed system structure are assessed

utilizing computer simulations. Simulations results show that, when contrasting with

other common network structures in wireless sensor network, the proposed system

structure can abbreviate the delay in the data collection process altogether.

7

LITERATURE OVERVIEW (II)

2.2 “Concurrent Data Collection Trees for IoT Applications”

2.2.1 Abstract

In IoT networks many devices work together. They create huge measures of data

subsequently data collection process turns into a central worry in large systems. Data

collection processes must use least measure of time while gathering information. Hence

another system structure – Concurrent Data Collection Trees for IoT systems has been

proposed in this paper. This system limits information assortment time to a acceptable

value. Another worry is that if a large system, as huge as IoT network experiences any

issue. Base Station or a node in a system may become flawed on account of numerous

reasons – natural conditions, battery run out, inappropriate taking care of, and so on. To

take care of this issue we are attempting to plan a methodology for adaptation to internal

failure in – Concurrent Data Collection Trees network structure.

2.2.2 Concurrent Data Collection Trees

It is a network structure N = {n1, n2, n3, ……,n|N|} nodes and S = {s1, s2, s3, ….., s|S|}

base stations assuming that all IoT nodes communicate with each other and base station.

Data fusion strategy fuses numerous packets of information (from IoT nodes) into one

single packet before it is sent to one's parent node. For concurrent data collection

processes it must utilize equivalent number of data streams and base stations – "Each

concurrent data aggregation process will utilize an alternate base station (BS) to get to the

IoT network and total number of parallel data streams is k". Concurrent data streams must

utilize equivalent number of nodes dictated by condition (1). This condition decides most

extreme number of streams a node must use with the goal that data collection time is

minimum.

8

This networks structure has a constraint: |N|≥k

The following equation represents number of hubs used by an information stream in i
th

vacancy.

 = floor(|N| / k) (1)

ui = min[, |N| − ∑ −1] (2)

where is number of nodes that have completed transmission of data after j
th

 time slot.

If ui is odd then one of the nodes is involved in node-to-base transmission, else it is a

node-to- node transmission.

Time-slot is a particular slot in which each data stream helps to communicate with nodes

and base stations. During a particular time slot only some nodes (maximum 3) and some

concurrent data streams become active. This is what justifies the parallel behavior of the

given network structure.

In Ƭ1 time slot all nodes and base stations communicate in concurrent fashion, but in Ƭ2

time slot the left over nodes communicate using DADCNS.

The leftover nodes are calculated using | | − 1⌈ ⌉ .

9

Therefore overall duration of k concurrent data collection processes is T = Ƭ1 + Ƭ2 .

2.2.3 Topologies

A) The α-ring

A ring structure for concurrent data collection with |Nα| nodes and |Nα| ≥ 2k. An α-ring

case is legitimate just for = 2. "A data stream in a α-ring Nα will require Ƭ1 time

slots to aggregate information from |Nα| nodes onto a single node. Such a node will take

one time slot to report the fused information to the BS". On the off chance that nodes are

numbered arbitrarily, at any point whenever two nodes that will communicate (during Ƙth

data collection process) i.e. node nc1 transmits information to node nc2

 c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)),

 c2 = (1 + mod(2(Ƙ-1) + t, |Nα|))

Data fusion will be performed on nodes nc2.Overall duration can be calculated using T1

and T2 from above equations.

10

o The circles represent the nodes

o The triangles represent the base stations.

o A particular stream of arrows represents a particular concurrent data stream.

In this case:

o We have 6 nodes with 3 base stations.

o Red arrows- A stream

o Blue arrows- B stream

o Green arrows –C stream

Fig 1 Alpha ring

11

B) The β-ring

For u max = 3 and |Nβ| ≥ 3k the network is known as β-ring. 2 nodes will communicate

utilizing node to-node (N2N) communication while the other node will communicate

utilizing node to-base (N2BS) communication. In the event that nodes are numbered

subjectively, at that point at a specific time slot of Ƙth data collection process node nc3

will be engaged with node to-base station communication and nc4 will transmit data nc5.

 c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|))

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|))

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|))

Data fusion will be performed on node nc5.

Fig. 2 Beta ring

T = Ƭ1 + Ƭ2 = 4 + 1 = 5

12

C) Multiple Rings

I) umax ≥ 4: = /2 α-rings are formed. Each of the α-rings formed will initially

be allowed 2k nodes. The rest |N|-nα(2k) nodes will at that point be granted to those nα

rings individually. Each α-ring will work autonomously as depicted previously.

II) ≥ 5: A single β-ring with ′ = (−3) / 2 number of α-rings are formed.

At first, β-ring will be allowed 3k nodes, while each α-ring will be conceded 2k nodes.

The rest |N|-3kBS – n'α(2kBS) node will be allowed to the β-ring until |Nβ| = 2ƭ1 + 1. The

rest of the nodes will be circulated to α-rings individually.

2.2.4 Result and Analysis

The duration of data collection process T (absolute number of spaces required by base

stations of various data streams) is utilized as a performance indicator. The reference

structure utilized for performance comparison is DADCNS. DADCNS is sued in form of

a single cluster. The performance parameter of concurrent data collection tree network

structure is relatively low in contrast with DADCNS.

• As k increases, the value of T increments lineraly in DADCNS while in the concurrent

data collection tree structure with increment in |N|, estimation of u likewise increases

but the total value of T increases slightly. In this way with increment in |N| and k the

performance gap between two system structures likewise enlarges.

• When value of k or |N| is expanded, estimation of additionally changes. This

adjustment in the estimation of u max prompts variations in the number of α and β rings.

Accordingly it is seen that when k or |N| increases value of T doesn't increment

monotonically.

13

LITERATURE OVERVIEW (III)

2.3 “Fault tolerance in Concurrent Data Collection Trees”

 2.3.1 Abstract

In this paper, we address topology control in heterogeneous wireless sensor networks

(WSNs) comprising of two kinds of remote devices: asset compelled wireless sensor

nodes conveyed arbitrarily in a huge number and an a lot more smaller number of

resource rich supernodes put at known locations.

The supernodes have two transceivers: one interfaces with the WSN, and the other

associates with the supernode network. The supernode network gives better QoS and is

utilized to rapidly advance sensor information packets to the client. With this setting,

information assembling in heterogeneous WSNs has two stages. To begin with, sensor

nodes transmit and relay measurements on multihop ways toward any supernode. At that

point, when an information packet is forwarded to a supernode, it is sent utilizing quick

supernode-to-supernode communication toward the client application. Moreover,

supernodes could process sensor information before sending.

An examination by Intel shows that utilizing a heterogeneous architecture brings about

improved network performance, for example, a lower information gathering delay and a

more extended system lifetime. Hardware parts of the heterogeneous WSNs are currently

economically available. We model topology control as a range task issue, for which the

communication scope of every sensor node must be processed. The goal is to limit the

absolute transmission control for all sensors while keeping up k-vertex disjoint

communication ways from every sensor to the set of supernodes. Along these lines, the

system can endure the failure of up to k - 1 sensor nodes. Conversely with extend task in

specially appointed remote systems; this issue isn't worried about connectivity between

any two nodes.

Our concern is explicitly custom fitted to heterogeneous WSNs, in which information is

sent from sensors to supernodes. The commitments of this paper are the following: 1) we

formulate the k-degree Anycast Topology Control ðk-ATCÞ issue for heterogeneous

WSNs, 2) we propose three answers for taking care of the k-ATC issue, an) a k-

approximation algorithm, b) a concentrated greedy algorithm that limits the sensor most

extreme transmission range, and c) a distributed and localized, and 3) we examine the

performance of these algorithms through simulations.

14

CHAPTER 3

15

SYSTEM DEVELOPMENT

3.1 Fault Tolerance Algorithm for Data Collection Trees

A) Fault tolerance algorithm for concurrent data collection trees:

When single node becomes faulty :

 Start

 Calculate umax= ⌊ n/k ⌋

 uTemp = umax

 Calculate T1,T2

 Calculate nAlpha, nBeta

 Calculate nAlphaNodes, nBetaNodes

 nAlpha_temp = nAlpha, nBeta_temp= nBeta

 nAlphaNodes_temp= nAlphaNodes, nBetaNodes_temp= nBetaNodes

 while (1)

 {

 if(Nnew == N)

{

 Calculate umax= ⌊ n-1/k ⌋

 Calculate T1,T2

 Calculate Nalpha, Nbeta

 Calculate Nalphanodes ,Nbetanodes

 If umax== temp

16

If umax%2==0

If fnode exits in alpha max

Delete(fnode)

Else if fnode exists in alpha min

 Delete(fnode)

new=alphamax.lnode

insert new in alphamin end

delete (alphamax.lnode)

 Else

if N>3k

If (nBetaNodes < nBetaNodes_temp)

Delete(fnode)

If(nBetaNodes < 3k)

 i. Check alpha rings with > 2k nodes

 ii. new=alphamax.lnode

 iii. insert new in beta end

 iv. delete (alphamax.lnode)

 Else

If(alphamax==alphamin)

Delete(fnode)

17

 if(nAlphaNodes<2k*nAlpha)

 new=beta.lnode

 insert new in alphamin end

 delete (beta.lnode)

 Else if fnode exits in alpha max

Delete(fnode)

 Else if fnode exists in alpha min

 Delete(fnode)

new=alphamax.lnode

insert new in alphamin end

delete (alphamax.lnode)

Else // umax changes

If uTemp %2 !=0

delete(fnode)

reconstructA(N-1)

else

delete(fnode)

reconstructB(N-1)

}

18

}

Delete(fnode)

If fnode->next==NULL

Fnode=null

Else

fnode->next->prev=fnode->prev

fnode->prev->next=fnode->next

Fnode=null

End

Fnode: faulty node

enode:extra node

cnode:child node

lnode:last node

19

CHAPTER 4

20

Performance Analysis

4.1 Fault Tolerance algorithm (Theoretical explanation)

a) Alpha Ring:

Assume as given in the figure beneath, the fault happens during some underlying time

slot then there is either practically no loss at all and the system can be reproduced once

more. This outcomes in less time complexity since the system where the issue happens is

recreated promptly accordingly reestablishing its typical working. In any case, in the

intermediate time slots, a fault may bring about noteworthy loss of information with it

remunerating to recreate it from the beginning. The concluding time slot scenario works

like the "Base Station Faulty" circumstance.

b) Beta Ring:

In this system the information loss is altogether more in contrast with alpha ring as certain

nodes have already transferred information to the base station and during failure even the

information aggregation nodes are not ready to completely recoup the information as they

are loosely associated on account of their network communication structure.

21

4.2 Theoretical examples with mathematical analysis

In this section we will take some theoretical examples and see how these will

work with our algorithm

4.2.1 Cases where umax does not change

When umax doesn’t change after deletion of the faulty node and there is no

transition from α-ring to β-ring and vice-versa. Only re-arrangement in the

structures take place.

4.2.1.1 Example-1

|N|=25 k=4 umax = ⌊ 25/4 ⌋=6

4.2.1.1 a) Structure formation

 umax is even (only α- rings would be formed).

 umax /2 α- rings i.e. 3 α-rings will be formed

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes

8 8 8 (8+8+8=24)

 One node is still left so it will be assigned to the first α-ring.

8 8 8

+1

 9 8 8

 First α-ring becomes the alpha_max ring with maximum number of nodes i.e. 9

 Other two are alpha_min rings with 8 nodes each.

 T1=7, T2=2; T1+T2=9

 The α-ring structures will be like following

22

Fig. 3 First α-ring with 9 nodes (alpha_max)

Fig. 4 2
nd

 α-ring with 8 nodes (alpha_min)

23

Fig. 5 3

rd
 α-ring with 8 nodes (alpha_min)

 The tree structures of the above three rings would be as following figures

Fig. 6 First ring (apha_max) tree structure

 Fig. 6 a) First concurrent data stream tree

Fig. 6 b) Second concurrent data stream tree

 Fig. 6 c) Third concurrent data stream tree

24

Fig. 6 d) Fourth concurrent data stream tree

Fig. 7 Second ring (alpha_min) tree structures

Fig. 7 a) First concurrent data stream tree

Fig. 7 b) Second concurrent data stream tree

Fig. 7 c) Third concurrent data stream tree

Fig. 7 d) Fourth concurrent data stream tree

25

 Structure of third ring α-ring is exactly same as second ring(since both contain

same number of node

4.2.1.1 b) Node-Fault

Cases:

1. If node fault occurs in alpha_max (1
st
 α-ring), for example –node fault occurs at

node 4 of alpha_max.

o Simply the faulty node will be deleted

o Now the structure of all the alpha_max ring would be like following

Fig. 8 After faulty node deletion apha_max ring tree structures

Fig. 8 a) First concurrent data stream tree

Fig. 8 b) Second concurrent data stream tree

Fig. 8 c) Third concurrent data stream tree

26

Fig. 8 d) Fourth concurrent data stream tree

o The structure of rest of the two rings will remain same.

2. Else If the fault occurs in one of the alpha_min rings. For example the fault occurs

in 3
rd

 ring at node 6.

o The faulty node will be deleted.

o The last node from the alpha_max ring will be inserted at the end of the faulty

ring and deleted from the original ring.

o The tree structure of the 3
rd

 ring would be as following figure.

Fig. 9 After faulty node deletion 3
rd

 ring’s tree structures (apha_min)

Fig. 9 a) First concurrent data stream tree

Fig. 9 b) Second concurrent data stream tree

27

Fig. 9 c) Third concurrent data stream tree

Fig. 9 d) Fourth concurrent data stream tree

o The tree structure of the 1
st
 ring (apha_max) would be as following figure.

Fig. 10 After faulty node deletion tree structures of the alpha_max ring

Fig. 10 a) First concurrent data stream tree

Fig. 10 b) Second concurrent data stream tree

28

Fig. 10 c) Third concurrent data stream tree

Fig. 10 d) Fourth concurrent data stream tree

o The structure of the 3
rd

 α-ring would not be changed

4.2.1.2 Example 2

|N|=29 k=4 umax= ⌊ 29/4 ⌋=7

4.2.1.2 a) Structure formation

 umax is odd (multiple rings (both α andβ rings would be formed).

 1β-ring with be formed.

 The β-ring with 3k nodes will be formed i.e. 12 nodes

 (umax-3)/2 α- rings i.e. 2 α-rings will be formed.

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes

 12 8 8 (12+8+8=28)

 One node is still left so it will be assigned to the β-ring until Nβ=2T1+1.

12 8 8

+1

 13 8 8

 β-ring contains 13 nodes

 Other two α-rings contain 8 nodes each.

 T1=6, T2=3; T1+T2=9.

 The ring structures will be as follows:

29

Fig. 11 β-ring structure with 13 node

Fig. 12 α-ring structure with 8 nodes

30

o Both the 2
nd

 and 3
rd

 rings (α-rings) have same number of nodes. Therefore, the

ring structure of both the rings would be same.

o The tree structures that can be formed from the ring structures of the above are

as follows

Fig. 13 Tree structures of the β-ring(1
st
 ring)

Fig. 13 a) First concurrent data stream tree

Fig. 13 b) Second concurrent data stream tree

31

Fig. 13 c) Third concurrent data stream tree

Fig. 13 d) Fourth concurrent data stream tree

Fig. 14 Tree structures of the α-ring (2
nd

 &3
rd

 ring)

Fig. 14 a) First concurrent data stream tree

32

Fig. 14 b) Second concurrent data stream tree

Fig. 14 c) Third concurrent data stream tree

Fig. 14 d) Fourth concurrent data stream tree

 Structure of both the α-rings will be same as above as they have same number of

nodes.

4.2.1.2. b) Node fault

Cases:

1. If fault occurs in one of the node of β-ring. For example node 11 of β-ring gets

faulty:

o The faulty node will be deleted.

o We will compute whether β-ring still have minimum of 3k nodes because

this the necessary conditions for β-ring to be formed.

i. In this case the condition is met.

33

ii. Even after deletion of the faulty nodes, the number of nodes left are

12 which is equal to 3k (where k=4).

iii. Therefore, we just have to re-arrange the structure without any

computations.

o The tree structure after deletion of the nodes will be as follow

Fig. 15 Tree structures of β-ring after deletion of faulty node

Fig. 15 a) First concurrent data stream tree

Fig. 15 b) Second concurrent data stream tree

34

Fig. 15 c) Third concurrent data stream tree

Fig. 15 d) Fourth concurrent data stream tree

o There will be no change in rest of the two rings
o The structures of both the α-rings will be same.

35

2. Else if node fault occurs in one of the α-ring. For example node 4 of 2
nd

 ring(α-

ring) gets faulty

o Since both the α-rings have same number of nodes

i. The last node of the β-ring will be inserted at the end of the 2
nd

 ring

and will be deleted from its original ring.

o The tree structures of the all the rings after deletion of the faulty node will

be as follows:

Fig. 16 Tree structures of the β-ring after deletion of faulty ring

 Fig. 16 a) First concurrent data stream tree

Fig. 16 b) Second concurrent data stream tree

36

Fig. 16 c) Third concurrent data stream tree

Fig. 16 d) Fourth concurrent data stream tree

37

Fig. 17 Tree structures of the α-ring after deletion of faulty ring

Fig. 17 a) First concurrent data stream tree

Fig. 17 b) Second concurrent data stream tree

Fig. 17 c) Third concurrent data stream tree

Fig. 17 d) Fourth concurrent data stream tree

o There will be no change in 3

rd
 ring (α-ring)

o Therefore the structure of the 3
rd

 ring remains unchanged.

38

4.2.1.3 Example 3

|N|=30 k=4 umax= ⌊ 30/4 ⌋=7

4.2.1.3 a) Structure formation

 umax is odd (multiple rings (both α and β rings would be formed).

 T1=6, T2=3; T1+T2=9.

 1β-ring with be formed.

 The β-ring with 3k nodes will be formed i.e. 12 nodes

 (umax-3)/2 α- rings i.e. 2 α-rings will be formed.

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes

 12 8 8 (12+8+8=28)

 Two nodes are still left so it will be assigned to the β-ring until Nβ=2T1+1.

12 +1 8 8

 13 8 8 (13+8+8=29)

 After assigning one more node to β-ring, Nβ=13. Therefore we cannot assign the

remaining node to the β-ring.

 We need to assign the last node to first of the α-ring.

13 8 +1 8

 13 9 8

 β-ring contains 13 nodes

 1
st
 α-rings contain 9 nodes (alpha_max).

 2
nd

 α-rings contain 8 nodes (alpha_min).

 The ring structures will be as follows:

39

Fig. 18 β-ring structure with 13 nodes

 Fig. 19 α-ring structure with 9 nodes

40

Fig. 20 α-ring structure with 8 nodes

Fig. 21 Tree structures of β-ring

Fig. 21 a) First concurrent data stream tree

41

Fig. 21 b) Second concurrent data stream tree

Fig. 21 c) Third concurrent data stream tree

 Fig. 21 d) Fourth concurrent data stream tree

42

Fig. 22 Tree structures of 1
st
 α-ring (alpha_max)

Fig. 22 a) First concurrent data stream tree

Fig. 22 b) Second concurrent data stream tree

Fig. 22 c) Third concurrent data stream tree

Fig. 22 d) Fourth concurrent data stream tree

Fig. 23 Tree structures of 2
nd

 α-ring (alpha_min)

Fig. 23 a) First concurrent data stream tree

43

Fig. 23 b) Second concurrent data stream tree

Fig. 23 c) Third concurrent data stream tree

 Fig. 23 d) Fourth concurrent data stream tree

4.2.1.3. b) Node fault

Cases:

1. If fault occurs in one of the node of β-ring. For example node 11 of β-ring gets

faulty:

o This would be same as Example 2: Case1

o The tree structure after deletion of the nodes will be same as figure

2. Else if fault occurs in one of the node of alpha_max i.e. 1
st
 α-ring. For example

node 4 gets faulty:

o Simply the faulty node is deleted.

o The α-ring is re-arranged with one node less.

o The tree structures of all the rings after deletion of faulty node is as

follows

44

Fig. 24 After faulty node deletion tree structures of the apha_max ring

Fig. 24 a) First concurrent data stream tree

Fig.24 b) Second concurrent data stream tree

Fig. 24 c) Third concurrent data stream tree

Fig. 24 d) Fourth concurrent data stream tree

o The structure of rest of the two rings will remain same.

45

3. Else if fault occurs in one of the node of alpha_min i.e. 2
nd

 α-ring. For example

node 6 gets faulty:

o We will delete the faulty node.

o If after deletion the number of nodes in alpha_min is less than 2k:

i. In this case after deletion the number of nodes in alpha_min is

equal to 7 which is less than 2k nodes (8 nodes).

ii. Therefore, the last node of alpha_max has to be inserted at the end

of alpha_min and has to deleted from the orifinal tree to which it

belongs.

iii. Now the apha_max will have equal number of nodes to alpha_min

i.e. 8 in this case.

o The tree structures of all the rings after deletion of faulty node is as

follows:

Fig. 25 After faulty node deletion tree structures of the apha_min ring

Fig. 25 a) First concurrent data stream tree

Fig. 25 b) Second concurrent data stream tree

46

Fig. 25 c) Third concurrent data stream tree

Fig. 25 d) Fourth concurrent data stream tree

Fig. 26 After faulty node deletion tree structures of the alpha_max ring

Fig. 26 a) First concurrent data stream tree

Fig. 26 b) Second concurrent data stream tree

Fig. 26 c) Third concurrent data stream tree

Fig. 26 d) Fourth concurrent data stream tree

o The structure of the β-ring would be same, without any change.

47

4.2.1.4 Example 4

|N|=28 k=3 umax= ⌊ 28/3 ⌋=9

4.2.1.4. a) Structure formation

 umax is odd (multiple rings (both α and β rings would be formed).

 T1=4, T2=4; T1+T2=8.

 1 β-ring with 3k nodes will be formed i.e. 9 nodes

 (umax-3)/2 α- rings i.e. 3 α-rings will be formed.

 Each α-ring will contain minimum of 2k nodes i.e. 6 nodes

9 6 6 6 (9+6+6+6=27)

 One node is still left so it will be assigned to the β-ring until Nβ=2T1+1.

 But in this case Nβ=9 which is == 2T1+1.

 Therefore, the remaining node will be assigned to the 1
st
 α-ring.

9 6+1 6 6

9 7 6 6

 β-ring contains 9 nodes

 1
st
 α-ring (alpha_max) contains 7 nodes.

 Other two α-rings (apha_min) contain 6 nodes each.

 The ring structures will be as follows:

48

Fig. 27 β-ring with 9 nodes

Fig. 28 1
st
 α-ring (alpha_max) with 7 nodes

49

Fig. 29 2

nd
 α-ring (alpha_min) with 6 nodes

 Structure of 3
rd

 and 4
th

 α-rings would be same as 2
nd

 α-ring since the number of

nodes are same and equal to 6.

 Tree structures of all the rings are as follows:

Fig. 30 Tree structures of the β-ring

Fig. 30 a) First concurrent data stream tree

50

Fig. 30 b) Second concurrent data stream tree

Fig. 30 c) Third concurrent data stream tree

Fig. 31 Tree structures of 1
st
 α-ring (alpha_max)

Fig. 31 a) First concurrent data stream tree

Fig. 31 b) Second concurrent data stream tree

Fig. 31 c) Third concurrent data stream tree

51

Fig. 32 Tree structures of 2
nd

 α-ring (alpha_min)

Fig. 32 a) First concurrent data stream tree

Fig. 32 b) Second concurrent data stream tree

Fig. 32 c) Third concurrent data stream tree

 Tree structures of the remaining 2 α-rings would be same as 2
nd

 α-ring

(alpha_min) due to the same number of nodes.

4.2.1.4. b) Node faulty

Cases:

1. If fault occurs in one of the node of β-ring. For example node 8 of β-ring gets

faulty:

o The faulty node will be deleted.

o We will compute whether β-ring still have minimum of 3k nodes because

this the necessary conditions for β-ring to be formed.

i. In this case the condition is not met.

ii. After deletion of the faulty nodes, the number of nodes left are 8

which is less than 3k (where k=3).

iii. Therefore, the last node of the alpha_max ring will be inserted at

the end of β-ring and will be deleted from its original ring.

52

o The tree structure after deletion of the nodes will be as follow

Fig. 33 Tree structures of β-ring after deletion of faulty node

Fig. 33 a) First concurrent data stream tree

Fig. 33 b) Second concurrent data stream tree

Fig. 33 c) Third concurrent data stream tree

53

Fig. 34 After deletion of faulty node 1
st
 α-ring’s tree structures

Fig. 34 a) First concurrent data stream tree

Fig. 34 b) Second concurrent data stream tree

Fig. 34 c) Third concurrent data stream tree

o The structures of rest of the rings will remain as before.

2. Else if fault occurs in one of the node of 1
st
 α-ring i.e. alpha_max.

o This would be same as Example 3: Case 2

o Simply the faulty node is deleted.

o The α-ring is re-arranged with one node less.

o The working and re –arrangement would be similar to Example 3: Case 2

3. Else if node fault occurs in one of the node of 2
nd

 or 3
rd

 α-rings i.e. alpha_min.

o This would be same as Example 3: Case 2

o We will delete the faulty node.

o If after deletion the number of nodes in alpha_min is less than 2k, like in

this case

i. The working and re –arrangement would be similar to Example 3:

Case 3

54

4.2.2 Cases where umax changes

When umax changes after deletion of the faulty node and therefore, there is a transition

from α-ring structure to β-ring/Multiple ring structure and vice-versa.

4.2.2.1 Example 5 (Multiple ring to α-ring)

|N|=27 k=3 umax= ⌊ 27/3 ⌋=9

4.2.2.1. a) Structure Formation

 umax is odd (multiple rings (both α andβ rings would be formed).

 T1=4, T2=3; T1+T2=7.

 1β-ring with 3k nodes will be formed i.e. 9 nodes

 (umax-3)/2 α- rings i.e. 3 α-rings will be formed.

 Each α-ring will contain minimum of 2k nodes i.e. 6 nodes

9 6 6 6 (9+6+6+6=27)

 β-ring contains 9 nodes

 All the α-rings contain 6 nodes each.

 The ring structures will be as follows:

Fig. 35 β-ring with 9 nodes

55

Fig. 36 1
st
 α-ring (alpha_min) with 6 nodes

 Structure of rest of the α-rings would be same as 1
st
 α-ring since the number of

nodes is same that is equal to 6.

 Tree structures of all the rings are as follows:

Fig. 37 Tree structures of the β-ring

Fig. 37 a) First concurrent data stream tree

56

Fig. 37 b) Second concurrent data stream tree

Fig. 37 c) Third concurrent data stream tree

Fig. 38 Tree structures of 2
nd

 α-ring (alpha_min)

Fig. 38 a) First concurrent data stream tree

Fig. 38 b) Second concurrent data stream tree

Fig. 38 c) Third concurrent data stream tree

57

 Tree structures of the remaining α-rings would be same as 1
st
 α-ring due to the

same number of nodes.

4.2.2.1. b) Node faulty

o If single node becomes faulty in any of the ring:

i. umax changes from odd to even.

ii. When umax is even, only α-rings would be formed

iii. Therefore, there is a transition from multiple rings to only α-rings.

Formation of α- rings

|N|=26 k=3 umax = ⌊ 26/3 ⌋=8

o T1=5, T2=3; T1+T2=8.

o umax /2 α- rings i.e. 4 α-rings will be formed.

o Each α-ring will contain minimum of 2k nodes i.e. 6 nodes

6 6 6 6 (6+6+6+6=24)

o The remaining 2 nodes will be assigned to the α-rings one by one.

6 +1 6+1 6 6 (7+7+6+6=26)

o The 1
st
 and 2

nd
 α-rings contain 7 nodes each (alpha_max).

o The 3
rd

 and 4
th

 α-rings contain 6 nodes each (alpha_min).

o The ring structures will be as follows:

58

Fig. 39 1
st
 α-ring (alpha_max) with 7 nodes

o The ring structure of 2
nd

 α-ring (alpha_max) would be same as 1
st
 α-ring because

they have same number of nodes.

Fig. 40 3

rd
 α-ring (alpha_min) with 6 nodes

59

o The ring structure of 4
th

 α-ring (alpha_min) would be as same as 3
rd

 α-ring

because they have same number of node.

o The tree structures of the rings are as follows:

Fig. 41 Tree structures of 1

st
 α-ring (alpha_max)

Fig. 41 a) First concurrent data stream tree

Fig. 41 b) Second concurrent data stream tree

Fig. 41 c) Third concurrent data stream tree

o The tree structure of 2
nd

 α-ring (alpha_max) would be same as 1
st
 α-ring because

they have same number of nodes.

Fig. 42 Tree structures of 3
rd

 α-ring (alpha_min)

Fig. 42 a) First concurrent data stream tree

60

Fig. 42 b) Second concurrent data stream tree

Fig. 42 c) Third concurrent data stream tree

o The ring structure of 4
th

 α-ring (alpha_min) would be as same as 3
rd

 α-ring

because they have same number of node.

4.2.2.2 Example 6 (α-ring to Multiple ring)

|N|=24 k=4 umax = ⌊ 24/4 ⌋=6

4.2.2.1. a) Structure formation

 umax is even (only α- rings would be formed).

 umax /2 α- rings i.e. 3 α-rings will be formed

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes

 8 8 8 (8+8+8=24)

 All the α-rings will have 8 nodes each.

 T1=7, T2=2; T1+T2=9

 The α-ring structures will be like following

61

Fig. 43 1
st
 α-ring structure

o The ring structure of rest of the α-rings would be same due to same number of

nodes.

o The tree structure of the rings would be as follows:

Fig. 44 Tree structures of 1
st
 α-ring

Fig. 44 a) First concurrent data stream tree

62

Fig. 44 b) Second concurrent data stream tree

Fig. 44 c) Third concurrent data stream tree

Fig. 44 d) Fourth concurrent data stream tree

o The tree structure of rest of the α-rings would be same due to same number of

nodes.

4.2.2.2. b) Node faulty

o If single node becomes faulty in any of the ring:

i. umax changes from even to odd.

ii. When umax is odd, multiple rings i.e both α and β rings would be

formed.

iii. Therefore, there is a transition from only α-rings to multiple rings.

63

o Formation of Multiple rings

|N|=23 k=4 umax = ⌊ 23/4 ⌋=5

 umax is odd (multiple rings (both α andβ rings would be formed).

 T1=7, T2=2; T1+T2=9.

 1 β-ring with 3k nodes will be formed i.e. 12 nodes

 (umax -3)/2 α- rings i.e. 1 α-ring will be formed.

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes

12 8 (12+8=20)

 Two nodes are still left so it will be assigned to the β-ring until Nβ=2T1+1.

12 +1 8 (13+8=21)

13 +1 8 (14+8=22)

 14 +1 8 (15+8=23)

 β-ring contains 15 nodes

 Both the α-rings contain 8 nodes each

 The ring structures will be as follows:

64

 Fig. 45 β-tree with 15 nodes

Fig. 46 α-ring with 8 nodes

65

CONCLUSION AND FUTURE SCOPE

With consistently expanding interest of IoT devices it gets hard to keep up a system with

minimum delay and in certifiable fault free. Therefore in this undertaking I have

effectively conceived an algorithm for concurrent data collection trees that guarantee

information collection time with least delay. This algorithm directs the issue of a faulty

node. Also I developed an algorithm for fault tolerance (where a single node becomes

faulty) and developed mechanism through which I can handle the fault without much

overhead. In the following stage if any opportunity is available I will work upon the

implementation of the algorithm.

66

LIST OF REFERENCES

[1] C-T. Cheng, N. Ganganath, and K. Fok, “Concurrent data collection trees for IoT

applications, ”IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 793– 799,

September 2017.

[2] C.-T. Cheng, C. K. Tse, and F. C. M. Lau, “A delay-aware data collection network

structure for wireless sensor networks,” IEEE Sensors J., vol. 11, no. 3, pp. 699–710,

Mar. 2011.

[3] X. M. Huang, J. Deng. J. Ma, and Z. Wu;, "Fault tolerant routing for wireless sensor grid

networks," In Proceedings of the IEEE Sensors Applications Symposium, pp. 66-

-70, 2006.

[4] G. Alari, J. Beauquier, J. Chacko, A.K. Datta, S. Tixeuil, A fault-tolerant distributed

sorting algorithm in tree networks, 26 A. Sasaki / Information Processing Letters 83

(2002) 21–26 in: Proc. 1998 IEEE Internet. Performance, Computing and

Communications Conf., 1998, pp. 37 -43.

[5] Mihaela Cardei , Shuhui Yang , Jie Wu, Algorithms for Fault-Tolerant Topology in

Heterogeneous Wireless Sensor Networks, IEEE Transactions on Parallel and Distributed

Systems, v.19 n.4, p.545-558, April 2008

[6] Y. Zeng, L. Xu, Z. Chen, "Fault-tolerant algorithms for connectivity restoration in

wireless sensor networks", Sensors, vol. 16, no. 1, pp. 3, 2016.

[7] K. Rajeswari and S. Neduncheliyan, “Genetic algorithm based fault tolerant clustering

inwireless sensor network,” IET Communications, vol. 11, no. 12, pp. 1927–1932, 2017.

[8] Elmira Moghaddami Khalilzad, Sanam Hosseini, "Recovery of Faulty Cluster Head

Sensors by Using Genetic Algorithm (RFGA) ", International Journal of Computer

Science Issues,Vol.9, No. 4, pp. 141-145, 2012.

[9] Ghaffari, A., & Nobahary, S. (2015). FDMG: Fault detection method by using genetic

algorithm in clustered wireless sensor networks. Journal of AI and Data Mining, 3(1),

47–57.

https://dl.acm.org/citation.cfm?id=1399334
https://dl.acm.org/citation.cfm?id=1399334
https://dl.acm.org/citation.cfm?id=1399334
https://dl.acm.org/citation.cfm?id=1399334

67

APPENDIX

I) Case A - When Node becomes faulty

68

PLAGIARSIM REPORT

69

70

71

72

73

Please send your complete Thesis/Report in (PDF) & DOC (Word File) through your Supervisor/Guide at
plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: 14-07-2020

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ARUBA SOOD Department: CSE Enrolment No: 161245

Contact No.7018384939/9418914512 E-mail. arubasoo@gmail.com

Name of the Supervisor: MR. ARVIND KUMAR

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): FAULT TOLERANCE IN IOT

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
− Total No. of Pages =77 (EXCLUDING PLAGIARISM REPORT)
− Total No. of Preliminary pages =10
− Total No. of pages accommodate bibliography/references =2

 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at 17%. Therefore, we are
forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE
The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Abstract & Chapters Details

• All Preliminary

Pages
• Bibliography/

Images/Quotes
• 14 Words String

 Word Counts

Character Counts

Report Generated on
 Submission ID Page counts

 File Size

Checked by
Name & Signature Librarian
 ..………

mailto:plagcheck.juit@gmail.com�

	Final Project Report -Aruba Sood (161245)
	Plagiarism Form.-Aruba Sood (161245)

