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ABSTRACT 

 
 

IOT nodes are inclined to failure in hostile situations subsequently, in this paper, a fault 

tolerant algorithm is portrayed for a IOT network - Concurrent Data Collection Trees. As 

the system becomes broken it ought to be reestablished to its typical working inside a 

effective time period. Be that as it may, if there is an occurrence of fault in Concurrent 

Data Collection trees, the complexity to reproduce the system increases as the quantity of 

parallel streams increases. Concurrent Data Collection Trees offer viable information 

collection and in some cases the information isn't lost totally if a flaw happens. We have 

talked about different cases which shed light on the information that is either totally lost 

or not. Two different network structures to be specific, alpha and beta rings alongside 

their advantages and disadvantages are talked about. We developed an algorithm for fault 

tolerance in both topologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

IX 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 
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INTRODUCTION 

 

1.1  General 

IoT systems are picking up fame in view of their broad and efficient use in everyday 

exercises and their promising future applications. To help urbanization in coming years, it 

is critical for the citizens of the society to get cutting-edge information in an 

advantageous manner by grasping current advances in innovation.  

  

Internet of Things (IoT) is an efficient arrangement among these most recent 

advancements. Different clients will possess and share the IoT frameworks, a course of 

action of sensors and middleware. Different request will be assembled by customers and 

even IoT devices meanwhile, which start concurrent or parallel data streams in same 

framework. 

  

Sensors nodes are battery powered devices. Energy saving is very important to the 

lifetime of a sensor network. The total amount of energy consumed in a transmission is 

directly proportional to the corresponding communication distance. Hence, long distance 

communication between nodes and base station are usually not encouraged. The energy 

consumption can be reduced by adopting the clustering algorithm, where a group of 

clusters are formed and each cluster has its own sub-cluster head to which it send the 

gathered information. These sub- cluster heads in turn are connected to the cluster head 

which controls all clusters and finally is connected and sends data to the base station. We 

have carried out our work on the network structures presented by Cheng et. al. in “Delay-

Aware Data Collection Network Structure for Wireless Sensor Networks” and 

“Concurrent Data Collection Trees for IoT Applications”. 

  

Remote sensor systems are utilized in a variety of applications; accordingly they have 

various qualities which are essential for their effective working. There have been 

numerous kinds of systems around for remote sensors however considering Cheng's et. al. 

Concurrent Data Collection Trees, can improve information collection productivity as 

they utilize parallel information streams for information transmission. 
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Be that as it may, energy saving gets vital to the part of battery controlled devices. In IoT 

systems there are various devices working together, interconnected to one another and 

require a great deal of energy while working. In this manner a system must be developed 

so that it utilizes less power while simultaneously has less delay in transmitting 

information. Concurrent Data Collection Trees offer this possibility by using parallel data 

streams for effective data collection and slightly undermining the energy parameter. 

Previous network structures that communicated in parallel did not take into account both 

of the above variables/factors. However good they may seem, every network has its own 

limitations of working in hostile environments.  

  

One such obstruction is fault in systems where we have been talked about node becomes 

faulty. However, in the event of parallel systems and as complex as Concurrent Data 

Collection Trees the task of making them fault tolerant gets difficult. In this manner, in 

this undertaking report we have described an effective fault-tolerant scheme for 

concurrent data collection trees along with various other cases that can effectively restore 

the networks to its normal working in a timely manner.  

  

Other than the algorithm we have examined various cases regarding which system 

structure is better and the various potential outcomes of its rebuilding at various time slots 

related with it. Our results have been verified using simulations carried out using the code 

we are going to develop in Java. 
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1.2  Problem Statement 

 

•  To support fast development of urban communities it is significant for urban areas 

to convey modern data to its occupants in a timely manner.  

 

• Among the advances, Internet of Things (IoT) is very much perceived as a 

promising solution.  

 

• Currently, most existing smart urban communities are presently furnished with 

non-interoperable isolated IoT frameworks.  

 

• For future IoT system, a lot of sensors and middleware will be possessed and 

shared by different clients.  

 

• Users or even IoT devices may present their inquiries all the while, which trigger 

different parallel information streams in the same system.  

 

• Parallel information streams acquaint new difficulties with the delay optimization 

in IoT frameworks.  

 

• Therefore concurrent data collection trees are proposed to keep the general 

information collection term short.  

 

• Efficient data collection processes have been very much concentrated on tangible 

frameworks with static topologies and single data extraction point.  

 

• Smart devices in IoT frameworks are frequently shared by various parties; in this 

manner concurrent data collection processes are constantly anticipated.  

 

• It is demonstrated that, contrasting and a existing single-client data collection 

structure, frameworks with the proposed tree structures can fundamentally 

abbreviate their concurrent data collection processes. 
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1.3  Project Objective 

 

 

To design an algorithm for fault-tolerance for Concurrent Data Collection Tree network 

structure. 

 

 

1.4  Methodology 

We started by comparing the two data collection methods that is DADCNS (Delay Aware 

Data Collection Network Structure) and Concurrent data collection trees. We found that 

Concurrent Data Collection Trees is a more efficient method for collecting data 

simultaneously using parallel data streams. 

  

However IoT devices being low power devices, we face an issue of faulty nodes. So in 

this project we are trying to reconstruct our network whenever any fault arises so that data 

is collected in a timely manner.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 
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LITERATURE OVERVIEW (I) 

 
 

2.1 “A Delay Aware Data Collection Network Structure for Wireless 

Sensor Networks” 

 

2.1.1    Abstract 

In any system to save energy is extremely critical. Here in this paper i.e.  "Delay aware 

data  collection network structure for wireless sensor networks” is proposed, two 

algorithms are suggested and actualized to manage this very issue of limiting energy to 

increase longer life time, for that even the efficiency of gathering information is ignored. 

Wireless sensor networks use enormous quantities of wireless sensor nodes to gather data 

from their detecting territory. Wireless sensor nodes are battery-fueled devices. Energy 

saving is constantly critical to the lifetime of a wireless sensor network. As of late, 

numerous algorithms are proposed to handle the energy saving issue in wireless sensor 

systems. In these algorithms, in any case, information collection efficiency is typically 

undermined in return for increasing longer system lifetime. There are solid needs to create 

wireless sensor network algorithms which take care of optimization priorities other than 

energy saving. 

 

In this paper, a delay-aware data collection network structure for wireless sensor 

networks is proposed. The target of the proposed system structure is to limit delays in the 

data collection procedures of wireless sensor networks. Two network development 

algorithms are designed to build the proposed system structure in a brought together and a 

decentralized methodology. Performances of the proposed system structure are assessed 

utilizing computer simulations. Simulations results show that, when contrasting with 

other common network structures in wireless sensor network, the proposed system 

structure can abbreviate the delay  in the data collection process altogether. 
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LITERATURE OVERVIEW (II) 

2.2 “Concurrent Data Collection Trees for IoT Applications” 

2.2.1   Abstract 

In IoT networks many devices work together. They create huge measures of data 

subsequently data collection process turns into a central worry in large systems. Data 

collection processes must use least measure of time while gathering information. Hence 

another system structure – Concurrent Data Collection Trees for IoT systems has been 

proposed in this paper. This system limits information assortment time to a acceptable 

value. Another worry is that if a large system, as huge as IoT network experiences any 

issue. Base Station or a node in a system may become flawed on account of numerous 

reasons – natural conditions, battery run out, inappropriate taking care of, and so on. To 

take care of this issue we are attempting to plan a methodology for adaptation to internal 

failure in – Concurrent Data Collection Trees network structure. 

 

2.2.2    Concurrent Data Collection Trees 

It is a network structure N = {n1, n2, n3, ……,n|N|} nodes and S = {s1, s2, s3, ….., s|S|} 

base stations assuming that all IoT nodes communicate with each other and base station. 

Data fusion strategy fuses numerous packets of information (from IoT nodes) into one 

single packet before it is sent to one's parent node. For concurrent data collection 

processes it must utilize equivalent number of data streams and base stations – "Each 

concurrent data aggregation process will utilize an alternate base station (BS) to get to the 

IoT network and total number of parallel data streams is k". Concurrent data streams must 

utilize equivalent number of nodes dictated by condition (1). This condition decides most 

extreme number of streams a node must use with the goal that data collection time is 

minimum.
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This networks structure has a constraint:   |N|≥k 

 

The following equation represents number of hubs used by an information stream in i
th

 

vacancy. 

 

     = floor(|N| / k)             (1) 

  

ui  = min[     , |N| − ∑ −1    ]              (2) 

 

where     is number of nodes that have completed transmission of data after j
th

 time slot. 

If ui is odd then one of the nodes is involved in node-to-base transmission, else it is a 

node-to- node transmission. 

Time-slot is a particular slot in which each data stream helps to communicate with nodes 

and base stations. During a particular time slot only some nodes (maximum 3) and some 

concurrent data streams become active. This is what justifies the parallel behavior of the 

given network structure. 

In Ƭ1 time slot all nodes and base stations communicate in concurrent fashion, but in Ƭ2 

time slot the left over nodes communicate using DADCNS.  

 

The leftover nodes are calculated using | | −  1⌈    ⌉ . 
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Therefore overall duration of k concurrent data collection processes is T = Ƭ1 + Ƭ2 . 

 

2.2.3   Topologies   

A) The α-ring 

A ring structure for concurrent data collection with |Nα| nodes and |Nα| ≥ 2k. An  α-ring 

case is legitimate just for      = 2. "A data stream in a α-ring Nα will require Ƭ1 time 

slots to aggregate information from |Nα| nodes onto a single node. Such a node will take 

one time slot to report the fused information to the BS". On the off chance that nodes are 

numbered arbitrarily, at any point whenever two nodes that will communicate (during Ƙth 

data collection process) i.e. node nc1 transmits information to node nc2 

 

                                         c1 = (1 + mod(2(Ƙ-1) + t-1, |Nα|)), 

                                             c2 = (1 + mod(2(Ƙ-1) + t, |Nα|)) 

 

Data fusion will be performed on nodes nc2.Overall duration can be calculated using T1 

and T2 from above equations. 
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o The circles represent the nodes 

o The triangles represent the base stations. 

o A particular stream of arrows represents a particular concurrent data stream. 

 

In this case: 

o We have 6 nodes with 3 base stations. 

o Red arrows- A stream 

o Blue arrows- B stream 

o Green arrows –C stream 

Fig 1    Alpha ring 
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B)  The β-ring 

For u max = 3 and |Nβ| ≥ 3k the network is known as β-ring. 2 nodes will communicate 

utilizing node to-node (N2N) communication while the other node will communicate 

utilizing node to-base (N2BS) communication. In the event that nodes are numbered 

subjectively, at that point at a specific time slot of Ƙth data collection process node nc3 

will be engaged with node to-base station communication and nc4 will transmit data nc5.  

                                      c3 = (1 + mod(3(Ƙ-1) + 2(t-1), |Nβ|)) 

c4 = (1 + mod(3(Ƙ-1) + 2(t-1) + 1, |Nβ|)) 

c5 = (1 + mod(3(Ƙ-1) + 2(t-1) + 2, |Nβ|)) 

Data fusion will be performed on node nc5. 

 

Fig. 2     Beta ring 

T = Ƭ1 + Ƭ2 = 4 + 1 = 5 
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C) Multiple Rings 

I) umax ≥ 4:   =     /2 α-rings are formed. Each of the α-rings formed will initially 

be allowed 2k nodes. The rest |N|-nα(2k) nodes will at that point be granted to those nα 

rings individually. Each α-ring will work autonomously as depicted previously. 

 

II)            ≥ 5: A single β-ring with  ′ =  (     −3) / 2 number of α-rings are formed. 

At first, β-ring will be allowed 3k nodes, while each α-ring will be conceded 2k nodes. 

The rest |N|-3kBS – n'α(2kBS) node will be allowed to the β-ring until |Nβ| = 2ƭ1 + 1. The 

rest of the nodes will be circulated to α-rings individually.  

 

2.2.4      Result and Analysis 

The duration of data collection process T (absolute number of spaces required by base 

stations of various data streams) is utilized as a performance indicator. The reference 

structure utilized for performance comparison is DADCNS. DADCNS is sued in form of 

a single cluster. The performance parameter of concurrent data collection  tree network 

structure is relatively low in contrast with DADCNS.  

 

 

• As k increases, the value of T increments lineraly in DADCNS while in the concurrent 

data collection tree structure with increment in  |N|, estimation of u    likewise increases 

but the total value of T increases slightly. In this way with increment in |N| and k the 

performance gap between two system structures likewise enlarges.  

 

• When value of k or |N| is expanded, estimation of      additionally changes. This 

adjustment in the estimation of u max prompts variations in the number of α and β rings. 

Accordingly it is seen that when k or |N| increases value of T doesn't increment 

monotonically. 
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LITERATURE OVERVIEW (III) 

2.3  “Fault tolerance in Concurrent Data Collection Trees” 

              2.3.1       Abstract 

In this paper, we address topology control in heterogeneous wireless sensor networks 

(WSNs) comprising of two kinds of remote devices: asset compelled wireless sensor 

nodes conveyed arbitrarily in a huge number and an a lot more smaller number of 

resource rich supernodes put at known locations.  

The supernodes have two transceivers: one interfaces with the WSN, and the other 

associates with the supernode network. The supernode network gives better QoS and is 

utilized to rapidly advance sensor information packets to the client. With this setting, 

information assembling in heterogeneous WSNs has two stages. To begin with, sensor 

nodes transmit and relay measurements on multihop ways toward any supernode. At that 

point, when an information packet is forwarded to a supernode, it is sent utilizing quick 

supernode-to-supernode communication toward the client application. Moreover, 

supernodes could process sensor information before sending. 

An examination by Intel shows that utilizing a heterogeneous architecture brings about 

improved network performance, for example, a lower information gathering delay and a 

more extended system lifetime. Hardware parts of the heterogeneous WSNs are currently 

economically available. We model topology control as a range task issue, for which the 

communication scope of every sensor node must be processed. The goal is to limit the 

absolute transmission control for all sensors while keeping up k-vertex disjoint 

communication ways from every sensor to the set of supernodes. Along these lines, the 

system can endure the failure of up to k - 1 sensor nodes. Conversely with extend task in 

specially appointed remote systems; this issue isn't worried about connectivity between 

any two nodes.  

Our concern is explicitly custom fitted to heterogeneous WSNs, in which information is 

sent from sensors to supernodes. The commitments of this paper are the following: 1) we 

formulate the k-degree Anycast Topology Control ðk-ATCÞ issue for heterogeneous 

WSNs, 2) we propose three answers for taking care of the k-ATC issue, an) a k-

approximation algorithm, b) a concentrated greedy algorithm that limits the sensor most 

extreme transmission range, and c) a distributed and localized, and 3) we examine the 

performance of these algorithms through simulations.
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CHAPTER 3 
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SYSTEM DEVELOPMENT 

 
3.1    Fault Tolerance Algorithm for Data Collection Trees 

 

A) Fault tolerance algorithm for concurrent data collection trees: 

When single node becomes faulty :  

 

 

  Start 

  Calculate umax= ⌊ n/k   ⌋  

  uTemp = umax 

  Calculate T1,T2 

  Calculate nAlpha, nBeta 

  Calculate nAlphaNodes, nBetaNodes 

  nAlpha_temp = nAlpha,    nBeta_temp= nBeta 

  nAlphaNodes_temp= nAlphaNodes,    nBetaNodes_temp= nBetaNodes 

  while (1) 

  { 

  if(Nnew == N) 

{  

  Calculate umax= ⌊ n-1/k   ⌋  

 Calculate T1,T2 

 Calculate Nalpha, Nbeta 

 Calculate Nalphanodes ,Nbetanodes 

 

 If umax== temp 
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If  umax%2==0    

If fnode exits in alpha max 

Delete(fnode) 

Else if fnode exists in alpha min 

    Delete(fnode) 

new=alphamax.lnode 

insert new in alphamin end 

delete (alphamax.lnode) 

  Else 

if N>3k 

If ( nBetaNodes < nBetaNodes_temp) 

Delete(fnode) 

If( nBetaNodes < 3k) 

        i. Check alpha rings with > 2k nodes  

        ii. new=alphamax.lnode 

        iii. insert new in beta end 

        iv. delete (alphamax.lnode) 

 

   

   Else 

If(alphamax==alphamin) 

Delete(fnode) 
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      if(nAlphaNodes<2k*nAlpha)                 

        new=beta.lnode 

         insert new in alphamin end   

            delete (beta.lnode) 

          

          Else if fnode exits in alpha max 

Delete(fnode) 

 

         Else if fnode exists in alpha min 

                       Delete(fnode) 

new=alphamax.lnode 

insert new in alphamin end 

delete (alphamax.lnode) 

 

 

Else   // umax changes 

If uTemp %2 !=0 

delete(fnode) 

reconstructA(N-1) 

else 

delete(fnode) 

reconstructB(N-1) 

} 
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} 

 

Delete(fnode) 

If fnode->next==NULL     

Fnode=null 

Else  

fnode->next->prev=fnode->prev 

fnode->prev->next=fnode->next 

Fnode=null 

End 

 

 

 

Fnode: faulty node 

enode:extra node 

cnode:child node 

lnode:last node 
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Performance Analysis 

 
4.1 Fault Tolerance algorithm (Theoretical explanation) 

 
 

 

a) Alpha Ring: 

Assume as given in the figure beneath, the fault happens during some underlying time 

slot then there is either practically no loss at all and the system can be reproduced once 

more. This outcomes in less time complexity since the system where the issue happens is 

recreated promptly accordingly reestablishing its typical working. In any case, in the 

intermediate time slots, a fault may bring about noteworthy loss of information with it 

remunerating to recreate it from the beginning. The concluding time slot scenario works 

like the "Base Station Faulty" circumstance. 

 

 

b) Beta Ring: 

 

In this system the information loss is altogether more in contrast with alpha ring as certain 

nodes have already transferred information to the base station and during failure even the 

information aggregation nodes are not ready to completely recoup the information as they 

are loosely associated on account of their network communication structure. 
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4.2 Theoretical examples with mathematical analysis 

 

In this section we will take some theoretical examples and see how these will 

work with our algorithm 

 

4.2.1 Cases where umax does not change 

 

When umax doesn’t change after deletion of the faulty node and there is no 

transition from α-ring to β-ring and vice-versa. Only re-arrangement in the 

structures take place. 

 

4.2.1.1 Example-1 

 

|N|=25     k=4   umax = ⌊ 25/4 ⌋=6 

 

4.2.1.1 a) Structure formation 

 

 umax is even (only α- rings would be formed). 

 umax /2 α- rings i.e. 3 α-rings will be formed 

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes 

 

8  8  8     (8+8+8=24) 

 

 One node is still left so it will be assigned to the first α-ring. 

 

8  8  8 

+1 

 9   8   8 

 

 First  α-ring becomes the alpha_max ring with maximum number of nodes i.e. 9 

 Other two are alpha_min rings with 8 nodes each. 

 T1=7, T2=2; T1+T2=9 

 The α-ring structures will be like following 
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Fig. 3    First α-ring with 9 nodes (alpha_max) 

 

 
 

Fig. 4      2
nd

 α-ring with 8 nodes (alpha_min) 
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Fig. 5     3

rd
 α-ring with 8 nodes (alpha_min) 

 

 The tree structures of the above three rings would be as following figures 

 

 

Fig. 6     First ring (apha_max) tree structure 

 

 
 

                                 Fig. 6 a)     First concurrent data stream tree 

 
 

Fig. 6 b)     Second concurrent data stream tree 

 

 
 

          Fig. 6 c)     Third concurrent data stream tree 
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Fig. 6 d)       Fourth concurrent data stream tree 

 

 

 

Fig. 7   Second ring (alpha_min) tree structures 

 

 
Fig. 7 a)      First concurrent data stream tree 

 

 

 

 
Fig. 7 b)     Second concurrent data stream tree 

 

 

 
Fig. 7 c)     Third concurrent data stream tree 

 

 

 

 
Fig. 7 d)      Fourth concurrent data stream tree 
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 Structure of third ring α-ring is exactly same as second ring(since both contain 

same number of node 

  

4.2.1.1 b) Node-Fault 

Cases: 

1. If node fault occurs in alpha_max (1
st
 α-ring), for example –node fault occurs at 

node 4 of alpha_max. 

o Simply the faulty node will be deleted 

o Now the structure of all the alpha_max ring would be like following 

 

Fig. 8     After faulty node deletion apha_max ring tree structures   

 

 

 
Fig. 8 a)     First concurrent data stream tree 

 

 

 

 
Fig. 8 b)     Second concurrent data stream tree 

 

 

 

 
Fig. 8 c)      Third concurrent data stream tree 
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Fig. 8 d)       Fourth concurrent data stream tree 

 

 

o The structure of rest of the two rings will remain same. 

 

2. Else If the fault occurs in one of the alpha_min rings. For example the fault occurs 

in 3
rd

 ring at node 6. 

o The faulty node will be deleted. 

o The last node from the alpha_max ring will be inserted at the end of the faulty 

ring and deleted from the original ring. 

o The tree structure of the 3
rd

 ring would be as following figure. 

 

Fig. 9     After faulty node deletion 3
rd

 ring’s tree structures (apha_min)  

 

 
Fig. 9 a)      First concurrent data stream tree 

 

 

 
Fig. 9 b)     Second concurrent data stream tree 
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Fig. 9 c)     Third concurrent data stream tree 

 

 

 
Fig. 9 d)     Fourth concurrent data stream tree 

 

 

 

 

o The tree structure of the 1
st
 ring (apha_max) would be as following figure. 

 

 

Fig. 10    After faulty node deletion tree structures of the alpha_max ring 

 

 

 
Fig. 10 a)     First concurrent data stream tree 

 

 
Fig. 10 b)     Second concurrent data stream tree 
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Fig. 10 c)     Third concurrent data stream tree 

 

 
Fig. 10 d)      Fourth concurrent data stream tree 

 

o The structure of the 3
rd

 α-ring would not be changed 

 

4.2.1.2  Example 2 

|N|=29     k=4   umax= ⌊ 29/4 ⌋=7 

4.2.1.2 a) Structure formation 

 umax is odd (multiple rings (both α andβ rings would be formed). 

 1β-ring with be formed. 

 The β-ring  with 3k nodes will be formed i.e. 12 nodes 

 (umax-3)/2 α- rings i.e. 2 α-rings will be formed. 

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes 

    12  8  8     (12+8+8=28) 

 One node is still left so it will be assigned to the β-ring until Nβ=2T1+1. 

12  8  8 

+1 

    13  8  8 

  β-ring contains 13 nodes 

 Other two α-rings contain 8 nodes each. 

 T1=6, T2=3; T1+T2=9. 

 The ring structures will be as follows: 



 

 

29 

 

 
Fig. 11      β-ring structure with 13 node 

 

 
Fig. 12      α-ring structure with 8 nodes 
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o Both the 2
nd

 and 3
rd

 rings (α-rings) have same number of nodes. Therefore, the 

ring structure of both the rings would be same. 

o The tree structures that can be formed from the ring structures of the above are 

as follows 

 

Fig. 13      Tree structures of the β-ring(1
st
 ring) 

 

 

 

 
 

Fig. 13 a)      First concurrent data stream tree 

 

 

 

 
Fig. 13 b)      Second concurrent data stream tree 
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Fig. 13 c)      Third concurrent data stream tree 

 

 

 

 
Fig. 13 d)      Fourth concurrent data stream tree 

 

 

Fig. 14      Tree structures of the α-ring (2
nd

 &3
rd

 ring) 

 

 

 
Fig. 14 a)      First concurrent data stream tree 
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Fig. 14 b)      Second concurrent data stream tree 

 

 

 
Fig. 14 c)      Third concurrent data stream tree 

 

 

 

 
Fig. 14 d)      Fourth concurrent data stream tree 

 

 

 Structure of both the α-rings will be same as above as they have same number of 

nodes. 

 

 

4.2.1.2. b) Node fault 

Cases: 

1. If fault occurs in one of the node of β-ring. For example node 11 of β-ring gets 

faulty: 

o The faulty node will be deleted. 

o We will compute whether β-ring still have minimum of 3k nodes because 

this the necessary conditions for β-ring to be formed. 

i. In this case the condition is met. 
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ii. Even after deletion of the faulty nodes, the number of nodes left are 

12 which is equal to 3k (where k=4). 

iii. Therefore, we just have to re-arrange the structure without any 

computations. 

o The tree structure after deletion of the nodes will be as follow 

 

Fig. 15       Tree structures of β-ring after deletion of faulty node  

 

 

 
Fig. 15 a)       First concurrent data stream tree 

 

 

 

 
Fig. 15 b)       Second concurrent data stream tree 
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Fig. 15 c)      Third concurrent data stream tree 

 

 

 

 

 
Fig. 15 d)      Fourth concurrent data stream tree 

 

 

 
o There will be no change in rest of the two rings 
o The structures of both the α-rings will be same. 
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2. Else if node fault occurs in one of the α-ring. For example node 4 of 2
nd

 ring(α-

ring) gets faulty 

o Since both the α-rings have same number of nodes 

i. The last node of the β-ring will be inserted at the end of the 2
nd

 ring 

and will be deleted from its original ring. 

o  The tree structures of the all the rings after deletion of the faulty node will 

be as follows: 

Fig. 16     Tree structures of the β-ring after deletion of faulty ring 

 

 Fig. 16 a)      First concurrent data stream tree 

 

 

 
Fig. 16 b)      Second concurrent data stream tree 
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Fig. 16 c)      Third concurrent data stream tree 

 

 

 

 

 

 

 
 

Fig. 16 d)       Fourth concurrent data stream tree 
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Fig. 17     Tree structures of the α-ring after deletion of faulty ring 

 

 
 

Fig. 17 a)      First concurrent data stream tree 

 

 
Fig. 17 b)     Second concurrent data stream tree 

 

 

 
Fig. 17 c)      Third concurrent data stream tree 

 

 

 
Fig. 17 d)      Fourth concurrent data stream tree 

 
o There will be no change in 3

rd
 ring (α-ring)  

o Therefore the structure of the 3
rd

 ring remains unchanged. 
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4.2.1.3 Example 3 

 

 

|N|=30     k=4   umax= ⌊ 30/4 ⌋=7 

 

4.2.1.3 a) Structure formation  

 

 umax is odd (multiple rings (both α and β rings would be formed). 

 T1=6, T2=3; T1+T2=9. 

 1β-ring with be formed. 

 The β-ring  with 3k nodes will be formed i.e. 12 nodes 

 (umax-3)/2 α- rings i.e. 2 α-rings will be formed. 

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes 

    12  8  8     (12+8+8=28) 

 

 Two nodes are still left so it will be assigned to the β-ring until Nβ=2T1+1. 

12   +1  8  8 

    13  8  8     (13+8+8=29) 

 

 After assigning one more node to β-ring, Nβ=13. Therefore we cannot assign the 

remaining node to the β-ring. 

 We need to assign the last node to first of the α-ring. 

13  8   +1  8 

    13  9  8 

 

  β-ring contains 13 nodes 

 1
st
 α-rings contain 9 nodes (alpha_max). 

 2
nd

 α-rings contain 8 nodes (alpha_min). 

 The ring structures will be as follows: 
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Fig. 18        β-ring structure with 13 nodes 

 

 

 
                                 Fig. 19 α-ring structure with 9 nodes 
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Fig. 20      α-ring structure with 8 nodes 

 

 

 

 

 

Fig. 21      Tree structures of β-ring 

 

 

 

 

 
Fig. 21 a)        First concurrent data stream tree 
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Fig. 21 b)  Second concurrent data stream tree 

 

 

 

 
Fig. 21 c)  Third concurrent data stream tree 

 

 
              Fig. 21 d)  Fourth concurrent data stream tree 
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Fig. 22          Tree structures of 1
st
 α-ring (alpha_max) 

 

 
Fig. 22 a)     First concurrent data stream tree 

 

 

 

 

 
Fig. 22 b)        Second concurrent data stream tree 

 

 

 

 

 
Fig. 22 c)       Third concurrent data stream tree 

 

 

 

 

 
Fig. 22 d)        Fourth concurrent data stream tree 

 

 

 

 

Fig. 23       Tree structures of 2
nd

 α-ring (alpha_min) 

 

 

 

 
Fig. 23 a)      First concurrent data stream tree 
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Fig. 23 b)       Second concurrent data stream tree 

 

 

 
Fig. 23 c)      Third concurrent data stream tree 

 

 

 

 
   Fig. 23 d)       Fourth concurrent data stream tree 

 

 

 
4.2.1.3. b) Node fault 

Cases: 

1. If fault occurs in one of the node of β-ring. For example node 11 of β-ring gets 

faulty: 

o This would be same as Example 2: Case1 

o The tree structure after deletion of the nodes will be same as figure 

2. Else if fault occurs in one of the node of alpha_max i.e. 1
st
 α-ring. For example 

node 4 gets faulty: 

o Simply the faulty node is deleted. 

o The α-ring is re-arranged with one node less. 

o The tree structures of all the rings after deletion of faulty node is as 

follows 
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Fig. 24    After faulty node deletion tree structures of the apha_max ring 

 

 
Fig. 24 a)     First concurrent data stream tree 

 

 

 
Fig.24 b)      Second concurrent data stream tree 

 

 

 
Fig. 24 c)       Third concurrent data stream tree 

 

 
Fig. 24 d)        Fourth concurrent data stream tree 

 

 

 

 

o The structure of rest of the two rings will remain same. 
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3. Else if fault occurs in one of the node of alpha_min i.e. 2
nd

 α-ring. For example 

node 6 gets faulty: 

o We will delete the faulty node. 

o If after deletion the number of nodes in alpha_min is less than 2k: 

i. In this case after deletion the number of nodes in alpha_min is 

equal to 7 which is less than 2k nodes (8 nodes). 

ii. Therefore, the last node of alpha_max has to be inserted at the end 

of alpha_min and has to deleted from the orifinal tree to which it 

belongs. 

iii. Now the apha_max will have equal number of nodes to alpha_min 

i.e. 8 in this case. 

o The tree structures of all the rings after deletion of faulty node is as 

follows: 

 

 

Fig. 25     After faulty node deletion tree structures of the apha_min ring 

 

 

 
Fig. 25 a)      First concurrent data stream tree 

 

 

 
Fig. 25 b)       Second concurrent data stream tree 
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Fig. 25 c)      Third concurrent data stream tree 

 
Fig. 25 d)      Fourth concurrent data stream tree 

 

 

Fig. 26     After faulty node deletion tree structures of the alpha_max ring 

 

 
Fig. 26 a)      First concurrent data stream tree 

 
Fig. 26 b)       Second concurrent data stream tree

 

 
Fig. 26 c)       Third concurrent data stream tree 

 

 
Fig. 26 d)      Fourth concurrent data stream tree 

 

 

o The structure of the β-ring would be same, without any change. 
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4.2.1.4 Example 4 

 

|N|=28     k=3   umax= ⌊ 28/3 ⌋=9 

 

4.2.1.4. a) Structure formation 

 umax is odd (multiple rings (both α and β rings would be formed). 

 T1=4, T2=4; T1+T2=8. 

 1 β-ring  with 3k nodes will be formed i.e. 9 nodes 

 (umax-3)/2 α- rings i.e. 3 α-rings will be formed. 

 Each α-ring will contain minimum of 2k nodes i.e. 6 nodes 

 

9 6 6 6     (9+6+6+6=27) 

 

 One node is still left so it will be assigned to the β-ring until Nβ=2T1+1. 

 But in this case Nβ=9 which is == 2T1+1. 

 Therefore, the remaining node will be assigned to the 1
st
 α-ring. 

 

9 6+1  6 6  

      

9 7 6 6  

 

  β-ring contains 9 nodes 

 1
st
 α-ring (alpha_max) contains 7 nodes. 

 Other two α-rings (apha_min) contain 6 nodes each.  

 The ring structures will be as follows: 
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Fig. 27     β-ring with 9 nodes 

 

 

 

 
 

Fig. 28      1
st
 α-ring (alpha_max) with 7 nodes 
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Fig. 29      2

nd
 α-ring (alpha_min) with 6 nodes 

 

 

 Structure of 3
rd

 and 4
th

 α-rings would be same as 2
nd

 α-ring since the number of 

nodes are same and equal to 6. 

 Tree structures of all the rings are as follows: 

 

Fig. 30       Tree structures of the β-ring 

 

 

 

 
 

Fig. 30 a)      First concurrent data stream tree 
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Fig. 30 b)      Second concurrent data stream tree 

 

 

 
Fig. 30 c)      Third concurrent data stream tree 

 

Fig. 31       Tree structures of 1
st
 α-ring (alpha_max) 

 

 
Fig. 31 a)      First concurrent data stream tree 

 

 

 
Fig. 31 b)       Second concurrent data stream tree 

 

 
Fig. 31 c)      Third concurrent data stream tree 
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Fig. 32      Tree structures of 2
nd

 α-ring (alpha_min) 

 

 
Fig. 32 a)      First concurrent data stream tree 

 

 

 
Fig. 32 b)      Second concurrent data stream tree 

 

 

 
Fig. 32 c)     Third concurrent data stream tree 

 

 

 Tree structures of the remaining 2 α-rings would be same as 2
nd

 α-ring 

(alpha_min) due to the same number of nodes. 

 

4.2.1.4. b) Node faulty 

Cases: 

1. If fault occurs in one of the node of β-ring. For example node 8 of β-ring gets 

faulty: 

o The faulty node will be deleted. 

o We will compute whether β-ring still have minimum of 3k nodes because 

this the necessary conditions for β-ring to be formed. 

i. In this case the condition is not met. 

ii. After deletion of the faulty nodes, the number of nodes left are 8 

which is less than 3k (where k=3). 

iii. Therefore, the last node of the alpha_max ring will be inserted at 

the end of β-ring and will be deleted from its original ring. 
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o The tree structure after deletion of the nodes will be as follow 

 

Fig. 33       Tree structures of β-ring after deletion of faulty node 

 
Fig. 33 a)      First concurrent data stream tree 

 

 

 

 
Fig. 33 b)       Second concurrent data stream tree 

 

 

 
Fig. 33 c)       Third concurrent data stream tree 
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Fig. 34      After deletion of faulty node 1
st
 α-ring’s tree structures 

 

 

 
Fig. 34 a)      First concurrent data stream tree 

 

 

 

 
Fig. 34 b)      Second concurrent data stream tree 

 

 

 

 
Fig. 34 c)      Third concurrent data stream tree 

 

o The structures of rest of the rings will remain as before. 

2. Else if fault occurs in one of the node of 1
st
 α-ring i.e. alpha_max.  

o This would be same as Example 3: Case 2 

o Simply the faulty node is deleted. 

o The α-ring is re-arranged with one node less. 

o The working and re –arrangement would be similar to Example 3: Case 2 

3. Else if node fault occurs in one of the node of 2
nd

 or 3
rd

 α-rings i.e. alpha_min. 

o This would be same as Example 3: Case 2 

o We will delete the faulty node. 

o If after deletion the number of nodes in alpha_min is less than 2k, like in 

this case 

i. The working and re –arrangement would be similar to Example 3: 

Case 3 
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4.2.2 Cases where umax changes 

When umax changes after deletion of the faulty node and therefore, there is a transition 

from α-ring structure to β-ring/Multiple ring structure and vice-versa. 

4.2.2.1 Example 5  (Multiple ring to α-ring) 

|N|=27     k=3   umax= ⌊ 27/3 ⌋=9 

4.2.2.1. a) Structure Formation 

 umax is odd (multiple rings (both α andβ rings would be formed). 

 T1=4, T2=3; T1+T2=7. 

 1β-ring  with 3k nodes will be formed i.e. 9 nodes 

 ( umax-3)/2 α- rings i.e. 3 α-rings will be formed. 

 Each α-ring will contain minimum of 2k nodes i.e. 6 nodes 

9 6 6 6     (9+6+6+6=27) 

  β-ring contains 9 nodes 

 All the α-rings contain 6 nodes each.  

 The ring structures will be as follows: 

 

 

 

 
 

Fig. 35       β-ring with 9 nodes 
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Fig. 36        1
st
 α-ring (alpha_min) with 6 nodes 

 

 

 Structure of rest of the α-rings would be same as 1
st
 α-ring since the number of 

nodes is same that is equal to 6. 

 Tree structures of all the rings are as follows: 

 

Fig. 37        Tree structures of the β-ring  

 

 

 
 

Fig. 37 a)      First concurrent data stream tree 
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Fig. 37 b)      Second concurrent data stream tree 

 

 

 
Fig. 37 c)     Third concurrent data stream tree 

 

 

 

Fig. 38      Tree structures of 2
nd

 α-ring (alpha_min) 

 

 
Fig. 38 a)     First concurrent data stream tree 

 

 

 
Fig. 38 b)      Second concurrent data stream tree 

 

 

 
Fig. 38 c)      Third concurrent data stream tree 
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 Tree structures of the remaining α-rings would be same as 1
st
 α-ring due to the 

same number of nodes. 

 

4.2.2.1. b) Node faulty 

o If single node becomes faulty in any of the ring:  

i. umax changes from odd to even. 

ii. When umax is even, only α-rings would be formed  

iii. Therefore, there is a transition from multiple rings to only α-rings. 

Formation of α- rings 

|N|=26    k=3   umax = ⌊ 26/3 ⌋=8 

 

o T1=5, T2=3; T1+T2=8. 

o umax /2 α- rings i.e. 4 α-rings will be formed. 

o Each α-ring will contain minimum of 2k nodes i.e. 6 nodes 

 

6               6    6        6     (6+6+6+6=24) 

 

o The remaining 2 nodes will be assigned to the α-rings one by one. 

 

6 +1         6+1    6        6     (7+7+6+6=26) 

 

o The 1
st
 and 2

nd
 α-rings contain 7 nodes each (alpha_max). 

o The 3
rd

 and 4
th

 α-rings contain 6 nodes each (alpha_min). 

o The ring structures will be as follows: 
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Fig. 39      1
st
 α-ring (alpha_max) with 7 nodes 

 

 

 

o The ring structure of 2
nd

 α-ring (alpha_max) would be same as 1
st
 α-ring because 

they have same number of nodes. 

 

 

 

 
Fig. 40      3

rd
 α-ring (alpha_min) with 6 nodes 
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o The ring structure of 4
th

 α-ring (alpha_min) would be as same as 3
rd

 α-ring 

because they have same number of node. 

o The tree structures of the rings are as follows: 

 

 

 
Fig. 41      Tree structures of 1

st
 α-ring (alpha_max) 

 

 
 

Fig. 41 a)     First concurrent data stream tree 

 

 
 

Fig. 41 b)      Second concurrent data stream tree 

 

 
 

Fig. 41 c)      Third concurrent data stream tree 

 

 

o The tree structure of 2
nd

 α-ring (alpha_max) would be same as 1
st
 α-ring because 

they have same number of nodes. 

 

 

Fig. 42      Tree structures of 3
rd

 α-ring (alpha_min) 

 

 

 
Fig. 42 a)      First concurrent data stream tree 
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Fig. 42 b)      Second concurrent data stream tree 

 

 

 
Fig. 42 c)      Third concurrent data stream tree 

 

 

o The ring structure of 4
th

 α-ring (alpha_min) would be as same as 3
rd

 α-ring 

because they have same number of node. 

 

 

 

 

4.2.2.2 Example 6  (α-ring to Multiple ring ) 

 

|N|=24     k=4   umax = ⌊ 24/4 ⌋=6 

4.2.2.1. a) Structure formation 

 umax is even (only α- rings would be formed). 

 umax /2 α- rings i.e. 3 α-rings will be formed 

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes 

 

    8  8  8     (8+8+8=24) 

 

 All the α-rings will have 8 nodes each. 

 T1=7, T2=2; T1+T2=9 

 The α-ring structures will be like following 
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Fig. 43     1
st
 α-ring structure 

 

 

 

o The ring structure of rest of the α-rings would be same due to same number of 

nodes. 

 

o The tree structure of the rings would be as follows: 

 

Fig. 44      Tree structures of  1
st
 α-ring 

 

 
Fig. 44 a)      First concurrent data stream tree 
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Fig. 44 b)       Second concurrent data stream tree 

 

 

 

 
 

Fig. 44 c)       Third concurrent data stream tree 

 

 

 

 
Fig. 44 d)        Fourth concurrent data stream tree 

 

 

o The tree structure of rest of the α-rings would be same due to same number of 

nodes. 

 

 

4.2.2.2. b) Node faulty 

 

o If single node becomes faulty in any of the ring:  

i. umax changes from even to odd. 

ii. When umax is odd, multiple rings i.e both α and β rings would be 

formed. 

iii. Therefore, there is a transition from only α-rings to multiple rings. 
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o Formation of Multiple rings 

 

|N|=23     k=4   umax = ⌊ 23/4 ⌋=5 

 

 umax is odd (multiple rings (both α andβ rings would be formed). 

 T1=7, T2=2; T1+T2=9. 

 1 β-ring  with 3k nodes will be formed i.e. 12 nodes 

 (umax -3)/2 α- rings i.e. 1 α-ring will be formed. 

 Each α-ring will contain minimum of 2k nodes i.e. 8 nodes 

 

 

12              8           (12+8=20) 

 

 

 Two nodes are still left so it will be assigned to the β-ring until Nβ=2T1+1. 

 

 

12   +1            8      (13+8=21) 

              

13   +1            8      (14+8=22) 

 

 14   +1           8      (15+8=23) 

 

  β-ring contains 15 nodes 

 Both the α-rings contain 8  nodes each  

 

 The ring structures will be as follows: 
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                                    Fig. 45       β-tree with 15 nodes 

 

 
 

Fig. 46       α-ring with 8 nodes 
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CONCLUSION AND FUTURE SCOPE 
 

 

 

With consistently expanding interest of IoT devices it gets hard to keep up a system with 

minimum delay and in certifiable fault free. Therefore in this undertaking I have 

effectively conceived an algorithm for concurrent data collection trees that guarantee 

information collection time with least delay. This algorithm directs the issue of a faulty 

node. Also I developed an algorithm for fault tolerance (where a single node becomes 

faulty) and developed mechanism through which I can handle the fault without much 

overhead. In the following stage if any opportunity is available I will work upon the 

implementation of the algorithm.  
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