Dx- Weelkon Th.

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST-2 EXAMINATION – April 2019

B.TechVIIIth Semester (All Branches)

COURSE CODE: 11B1WMA832

MAX. MARKS: 25

COURSE NAME: Linear Programming and Applications

COURSE CREDITS: 03

MAX. TIME: 1.5HR

Note: All questions are compulsory. Carrying mobile phone during examinations will be treated as a case of unfair means.

Q1. Solve the LPP using simplex method

$$Max Z = 4x_1 + 3x_2 + 5x_3$$

s/t
$$x_1 + 2x_2 + x_3 \le 480$$
, $2x_1 + x_2 \le 540$, $x_1 + 3x_3 \le 510$

$$x_1, x_2, x_3 \ge 0$$

Q2. Solve the LPP using big M method.

[5](CO-2)

$$Max Z = 5x_1 - 2x_2 + 3x_3$$

$$s/t 2x_1 + 2x_2 - x_3 \ge 2$$
, $3x_1 - 4x_2 \le 3$, $x_2 + 3x_3 \le 5$

$$x_1, x_2, x_3 \ge 0$$

Q3. Write the dual of
$$Max Z = 30x_1 + 23x_2 + 29x_3$$

[5](CO-3)

s/t
$$6x_1 + 5x_2 + 3x_3 \le 26$$
, $4x_1 + 2x_2 + 5x_3 \le 7$

$$x_1, x_2, x_3 \ge 0$$

Also show that dual of the dual is primal problem for the above example.

Q4. Solve the LPP using Dual simplex method

[5](CO-3)

$$Min Z = 2x_1 + x_2$$

$$s/t 2x_1 + x_2 \ge 3$$
, $4x_1 + 3x_2 \ge 6$, $x_1 + 2x_2 \ge 3$

$$x_1, x_2 \ge 0$$

Q5.Solve the assignment problem

[5](CO-4)

Persons/Jobs	1	2	3	4	5	6
A	12	10	15	22	18	8
В	10	18	25	15	16	12
C	11	10	3	8	5	9
D	6	14	10	13	13	12
E	8	12	11	7	13	10