Pure Random Number Generator

Project Report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology.

in
Computer Science and Engineering/Information Technology

By

Abhijit Srivastava (131307)

under the Supervision of
Dr. Yashwant Singh

to

*og \h‘ OR\."’,
%

5’:4'55 u’“"(,
%
/)

1 L)
oo'lnuu'f—\"

%
J
=

lt
Epe s
et

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Candidate’s Declaration

| hereby declare that the work presented in this report entitled “Pure Random
Number Generator” in partial fulfillment of the requirements for the award of
the degree of Bachelor of Technology in Computer Science and
Engineering submitted in the department of Computer Science & Engineering
and Information Technology, Jaypee University of Information Technology
Waknaghat is an authentic record of my own work carried out over a period
from August 2016 to May 2017 under the supervision of Dr. Yashwant Singh,
Associate Professor Computer Science Department. The matter embodied in
the report has not been submitted for the award of any other degree or
diploma.

Abhijit Srivastava
131307

This is to certify that the above statement made by the candidate is true to the
best of my knowledge.

Dr. Yashwant Singh Associate Professor
Department of Computer Science

Dated:

Acknowledgement

| take this opportunity to express my profound gratitude and deep regards to my guide Mr.
Yashwant Singh for his exemplary guidance, monitoring and constant encouragement throughout
the course of this project. The blessing, help and guidance given by his time to time shall carry

me a long way in the journey of life on which I am about to embark.

The in-time facilities provided by the Computer Science department throughout the project

development are also equally acknowledgeable.

At the end | would like to express my sincere thanks to all my friends and others who helped me

directly or indirectly during this project work.

Date: April 30th, 2017 Abhijit Srivastava
131307

Table of Contents

Serial Topics Page
Number Numbers
1 Chapter-1. Introduction 1
2 1.1 About Random Number Generators 2
2 1.1.1 Random Number Generators (RNGs) 2
3 1.1.2 Pseudo-Random Number Generators (PRNGs) 3
4 1.1.3 True Random Number Generators (TRNGs) 5
5 1.1.4 Cascade Construction RNGs 6
6 1.2 Problem Statement 7
7 1.3 Objective 7
8 1.4 Methodology 7
9 2. Literature Survey 8
10 2.1. Intel® Digital Random Number Generator (DRNG) 8
11 2.2. Quantis Random Number Generator 13
12 2.3. True Ra?ndom Number Generator With a Metastability- 15
Based Quality Control

13 2.4. True Random Number Generator based on compact 15
chaotic oscillator

14 25 A truly random number generator based on thermal 15
noise

15 2.6. Simple true random number generator for any 16
semiconductor technology

16 2.7. True Random Number Generator Based on ROPUF 16
Circuit

17 2.8. A True Random Number Generator algorithm from 16
digital camera image noise for varying lighting conditions

18 2.9 The Mersenne Twister is a pseudorandom number 17
generator

19 2.10 Yarrow algorithm 18

23 Chapter-3 System Development 22

24 3.1 Broad-Scale Distribution of Working Process 22

25 3.2 Modular Distribution 23

26 3.2.1 MODULE 1: Android Application for Sensor Data 23

Collection

27 3.2.2 MODULE 2: Recording Data Using SQLite 24
)8 3.2.3 MODULE 3: Server-Side Scripting for extraction of 25
meaningful information.
29 3.2.4 MODULE 4: Entropy pool generator 27
30 3.2.5 MODULE 5: Range optimization 27
31 Chapter-4 Performance Annalysis 29
32 4.1 Algorithmic Complexity 29
33 4.2 Resource Utilization at runtime 29
39 4.3 Applications Contributions 30
40 4.3.1 Caesar Cipher 30
41 4.3.2 Games 32
42 4.3.3 Science 32
34 Chapter-5 Conclusion 34
35 5.1 Conclusions 34
43 5.2 References 35

List of Figures, Graphs and tables

Page
S. No. Tables, Figures and Graphs Number
1 Table 1.1: Comparison between PRNG and TRNG 2
2 Figure 1 : Digital Random Generator Overview 9
3 Figure 2 : Digital Random Generator Component Architecture 10
4 Figure 3 : Robustness and Self-Validation 12
5 Figure 4 : Quantium based Random Number Generator 13
6 Figure 5 : Android code snippit 23
7 Figure 6 : Android App Live Graph 24
8 Figure 7 : Android App Ul 24
9 Figure 8 : Sampling Database Screenshot 25
10 Figure 9 : Screenshot of range optimizer Ul 28
11 Figure 10 : Resource Utilization at Runtime 29
Graph 1 : Raw sensor data of Game Rotation Vector [While
12 Climbing Stairs] 25
Graph 2 : Raw sensor data of GeoMagnetic Rotation Vector
13 [While Walking] 26
Graph 3 : Processed data of Game Rotation Vector [While
14 Climbing Stairs] 26
Graph 4 : Processed sensor data of GeoMagnetic Rotation
15 Vector [While Walking] 27

Vi

Chapter-1. Introduction

As we all know computer based "von Neumann Architecture” are designed to achieve
100% efficiency, i.e. Generation of any random data states that the computation went wrong.
That is why for the generation of random numbers, programmers and mathematicians have
been designing complex algorithms with a large period for the generation of pseudo-random

numbers.

The word ‘pseudo’ means the pseudo-random numbers are not purely random in a
way you might expect, at least not if it is compared to dice rolls or lottery tickets. Essentially,
pseudo-random numbers generators are algorithms that use some kind of mathematical
formula or just a pre-calculated tables to generate sequences of numbers that appear to be
randomly generated. An example of a pseudo-random numbers generator can be the linear

congruential methodology.

In comparison with pseudo-random numbers generators, true random numbers
generators take into account randomness from some physical phenomena and introduce its
reading into the computer. You can imagine an example of a trivial die connected to a
computer, but generally, people use a phenomenon that is simple to connect to the computer
as compared to a die. The physical phenomenon can be very general, like the slight variations
in the movement of mouse or time lag between keystrokes while typing on the keyboard.
But, you should be careful about which source you are choosing. For instance, it can be
difficult to use keystrokes in this fashion, the reason being keystrokes are often buffered into
the computer's operating system memory, that means several keystrokes are collected into the
buffer before they can be sent to the program waiting for data to process. From the side of
program waiting for the keystroke data, it might seem as all the keys are pressed almost at the

same time, and there will now not be a lot of difference there after all.

The table below provides a characteristic comparison between the Pseudo-Random Number

Generators and Pure-Random Number Generators.

Table 1.1: Comparison between PRNG and TRNG

Characteristic

Features PRNG TRNG
Efficiency of Generation Excellent efficiency Poor efficiency
Determinism of Numbers Deterministic in nature Nondeterministic in nature
Periodicity in data Periodic in nature Aperiodic in nature

These features thus make True-Random Number Generators suitable for roughly the
set of applications that Pseudo-Random Number Generators are not suitable for, for instance
data encryption, games, and gambling. Although, the poor generation efficiency and
nondeterministic nature of True-Random Number Generators make them less suitable for
simulation and modeling type of applications, which often needs more data than it is feasible

to computes with any True-Random Number Generator.
1.1 About Random Number Generators
This section explains the basic concepts behind the random number generation.
1.1.1 Random Number Generators (RNGs)
A random Number Generators is a software or hardware of any type that can produce
a sequence of numbers between any interval [min, max] such that values appear are pure not

deterministic in nature .

Each and every new value has to be mathematically independent of any previous

value or data. l.e. given a computed sequence of numbers, a particular data is not more likely

2

to follow after it as the next value of the Random Number Generator's random sequence. The
overall series of numbers chosen between the interval shall be uniformly distributed. In other
words, all the numbers(or values) should be equally likely and none should be more
"popular” or occur more occasionally within the Random Number Generator’s output than

the others.

The sequence should also be unpredictable in nature. An attacker should not be able
guess some or all of the numbers in a computed sequence. Predictability can take some form

of forward prediction and backtracking.

As the computing systems are deterministic by nature, producing quality random
numbers that have these features is much more tougher than it might look. Taking the
second's value from the computer system clock, a general method, may seem random, but the
method of process scheduling and other system effects may lead in some values occurring far
more occasionally than the others. External data sources as the interval between keystrokes
or movement of the mouse may likewise, upon extensive analysis, show that numbers do not
distribute evenly across the interval of all possible. Beyond these characteristics, some other

desirable random number generator features include:

e The random number generator should be quick in computing a value and can cater a
large number of requests in a short interval of time.

e The random number generator should secure against attackers.

1.1.2 Pseudo-Random Number Generators (PRNGSs)

One broadly used approach for getting good Random Number Generators statistical
behavior is to leverage statistical modeling in the creation of a Pseudo-Random Number
Generator. A Pseudo-Random Number Generators is a predictable algorithm, typically
implemented in software that generates a series of numbers that looks random. A Pseudo-

Random Number Generators needs a seed value that has to be used to set the state of the

given model. Once seeding is done, it can then compute a series of value that exhibit a better
statistical behavior.

Pseudo-Random Number Generators exhibit periodicity that is size dependent on its internal
state model. I.e., after computing a long series of values, all variations in the internal state
will be exhausted and the series of values to follow shall reoccur an earlier series. The best
Pseudo-Random Number Generators algorithms available today, too large and complex that
this drawback could practically be unseen. For example, the Mersenne Twister MT19937
Pseudo-Random Number Generator has 32-bit word length has a high periodicity of 219937-
1.A key feature of all Pseudo-Random Number Generators is that they are predictable. I.e,
given a certain seed value, the same Pseudo-Random Number Generators will always
produce the exact same series of "random” values. The reason behind this is that, a Pseudo-
Random Number Generators is computing the successive value based upon a certain internal
state and a pre-defined algorithm. So, while a generated series of numbers exhibits the
mathematical properties of randomness, the cumulative behavior of the Pseudo-Random

Number Generators is entirely deterministic.

In situations, the deterministic nature of Pseudo-Random Number Generators is an
advantage. For instance, in some simulation and experimental, researchers would may want
to examine the outcome of different approaches using the same series of input values.
Pseudo-Random Number Generators provide a way to compute a large series of random data
inputs that are repeatable by using the same Pseudo-Random Number Generator, seeded with

the repeated value.

In other situations, however, this determinism is highly unwanted. for instance a server
application that computes random numbers that are to be used as cryptographic keys in
information exchanges among client applications over secure communication network. An
attacker who knows the Pseudo-Random Number Generator in use and also knew the seed
value would quickly be able to guess each and every key that is being generated by the
Pseudo-Random Number Generator. Even with a highly sophisticated seeding algorithms, an

attacker who has the information about the Pseudo-Random Number Generator in use can

deduce the state of the Pseudo-Random Number Generator by observing the series of

generated values.

Pseudo-Random Number Generators researchers have researched to solve this problem by
creating what are known as Cryptographically Secure Pseudo-Random Number Generator or
the CSPRNGs. Many complex techniques have been designed in this field, ~ for instance,
applying a cryptographic hash to a series of consecutive integer numbers, using a block cipher
to encrypt a series of consecutive integer numbers, and XORing a stream of Pseudo-Random
Number Generator generated numbers with plaintext. Such methods improve the problem of
inferring a Pseudo-Random Number Generator and its state by exponentially increasing its
computational complexity, but the final values may or may not have the correct statistical
features needed for a good random number generator. Further, an attacker can find any
deterministic algorithm by a number of methods (e.g., memory attacks, sophisticated, a
disgruntled employee, disassemblers etc). Even more simpler, attackers can find or infer
Pseudo-Random Number Generator seeding by narrowing down its range of possible
numbers or by surfing the memory in any manner. Once the algorithm in use and its seed
values are known, an attacker is be able to guess each and every random number computed,

both in past as well as in future.

1.1.3 True Random Number Generators (TRNGS)

For situations where the predictable nature of Pseudo-Random Number Generators is a
problem to be avoided (for example, computer security and gaming), a better way is that of
True Random Number Generators.

Instead of implementing a any mathematical model to deterministically compute numbers
that look random and have the correct statistical features, a True Random Number Generators
extracts entropy from any physical phenomenon and then uses the values to generate random
values. The physical phenomenon is also called an entropy source and can be selected among
a wide range of physical phenomenon that are naturally available, or is made usable, to the

computing device using the True Random Number Generators. For example, one can try to

5

use the time interval between users consecutive keystrokes or movement of mouse as an
entropy source. As stated earlier, this method is crude in practice and resulting value series
usually fail to meet desired features. Selection of an entropy source in a True Random
Number Generators is a key problem facing True Random Number Generators designers.

Beyond desired features, True Random Number Generators should be scalable and fast. This
poses a serious challenge for many True Random Number Generators, the reason for that is
sampling an entropy source that is external to the computing device usually needs device 1/0
and large delay relative to the computing efficiency of today's computers. Thus, sampling
any entropy source in True Random Number Generators is slow with respect to the
computation needed by a Pseudo Random Number Generators to simply compute its
successive random value. Unlike Pseudo Random Number Generators, however, True
Random Number Generators are not predictable. That is, a True Random Number Generators
need not be seeded, and its selection of random numbers in any given series is almost
unpredictable. An attacker cannot observe of a particular random value series to guess
successive values in an efficient way. This feature also implies that True Random Number
Generators have no periodicity. Although repeats in the random values are possible, they

cannot be guessed in any manner.

1.14 Cascade Construction RNGs

A general method implemented by modern operating systems and cryptographic algorithms
is to take input values from an entropy source to create pool of entropy. This entropy pool is
used to supply non-deterministic random values that regularly seeds a Cryptographically
Secure Pseudo Random Number Generators. This Cryptographically Secure Pseudo Random
Number Generators generates cryptographically secure random values that appear truly

random.

The main advantage of this method is performance efficiency. It was previously stated that
sampling of any entropy source is usually slow and generally additional waiting for a real-

time sampling work to transpire. In comparison, Cryptographically Secure Pseudo Random

6

Number Generators computations are efficient since they are computation-based and
sidelines entropy source delays. This method usually leads to improved performance: a slow
entropy source periodically sending a fast Cryptographically Secure Pseudo Random Number
Generators capable of computing a large number of random numbers from a single seed

value.

1.2 Problem Statement

As discussed in introduction the pseudo-random number generation is not a full proof
method of generation of random number because of its property of reverse engineering
ability. Random numbers generators should not use a seed value and generated a number
which cannot be predicted at all costs.

1.3 Objective

1. Study of the existing Random number generators.
2. Todesign a "Pure Random Number Generator *.
3. To study a performance analysis of designed "Pure Random Number Generator ".

1.4 Methodology
The data is first collected from a physical phenomenon probably non periodic and
storing it as entropy poll. This entropy poll is then accessed by an algorithm to generate

random numbers as per requirements of a system of a user.

1.5 Organization

Chapter 2 deals with the first objective of study of existing Random number generator
and finding a comparative statistics of advantages and drawbacks. Chapter 3 shows the
system development of pure random number generated designed in the project. Chapter 4
deals with the performance analysis and applications of Pure Random Number Generator.

Chapter 5 defines the final conclusion followed by Appendix.

Chapter-2. Literature Survey
2.1. Intel® Digital Random Number Generator (DRNG)

The "Digital Random Number Generator" or DRNG is an efficient and innovative hardware
approach for generation of high-quality, high-performance entropy and random number. It
comprises of the new Intel 64 Architecture instructions the 'RDRAND' and the 'RDSEED'
and an underlying Digital Random Number Generator hardware implementation.

In context to the Random Number Generator taxonomy stated above, the Random Number
Generator follows the cascade construction Value Generator model, using a processor
resident entropy source to periodically seed a hardware-implemented Cryptographically
Secure Pseudo Random Number Generators. Unlike the software methods, it includes a high-
quality entropy source usage that can be sampled quickly enough to repeatedly seed the
Cryptographically Secure Pseudo Random Number Generators with high-quality entropy
values. It also represents a self-stationed hardware module that is isolated from any king of
software attacks on its internal state. This results in a solution that achieves Random Number
Generator objectives with considerable features.

This method of digital random number computation is not same in its process with respect to
true random number computation in that it is implemented into the processor and can be
accessed using Intel 64 instruction set. The response times are comparable to those of
competing Pseudo-Random Number Generators approaches implemented in any software.
This method is scalable enough for the demanding applications to use it as an extensive
source of random values and not merely a high quality seed for a software-based Pseudo-
Random Number Generators. Software running at all privilege levels can access random
values through the instruction set, ignoring any intermediate software or libraries.

Applications for the Digital Random Number Generator

Information security is a key application that utilizes the DRNG. Cryptographic protocols
rely on RNGs for generating keys and fresh session values (e.g., a nonce) to prevent replay
attacks. In fact, a cryptographic protocol may have considerable robustness but suffer from
widespread attack due to weak key generation methods underlying it (e.g., the
Debian*/OpenSSL* fiasco (3)). The DRNG can be used to fix this weakness, thus
significantly increasing cryptographic robustness.

Closely related are government and industry applications. Due to information sensitivity,
many such applications must demonstrate their compliance with security standards like
FISMA, HIPPA, PCIAA, etc. RDRAND has been engineered to meet existing security
standards like FIPS 140-2 and NIST SP800-90 and thus provides an underlying RNG solution
that can be leveraged in demonstrating compliance with information security standards.

Other uses of the D-Random Number Generator include:

. Communication protocols
. Bulk entropy applications like secure disk wiping or document shredding
. Monte Carlo simulations and scientific computing

. Gaming applications
. Protecting online services against Random Number Generator attacks

. Seeding software-based Pseudo-Random Number Generators of arbitrary width

Digital Random Number Generator Overview

. . . . Processor Chi
This section, describes in 3

Some detall the Components Digital Random Number Generator ;w:(;c:t

of the DRNG using the)

"RDRAND" and "RDSEED" Hardware Hardware pres

. . R Entropy P9 AES-CBC-MAC —— 1

instructions and their Source Based Conditioner °‘L

. . Hardware

Interaction. SPS00-90 B & C }—
ENRNG

Processor View: Figure
provides a high-level

schematic of the RDRAND 22 L smnetten | [
and RDSEED Random ')%
Number Generators. As : A
shown, the DRNG appears as CoreN -1 il .-J
a hardware module on the

processor. An interconnect

bus connects it with each
core.

Figure 1 : Digital Random Generator Overview

The RDRAND and RDSEED instructions (detailed in section 4) are handled by microcode on
each core. This includes an RNG microcode module that handles interactions with the DRNG
hardware module on the processor.

Component _Architecture: As shown in figure the DRNG can be thought of as three logical
components forming an asynchronous production pipeline: an entropy source (ES) that
produces random bits from a nondeterministic hardware process at around 3 Giga bits per sec,
a conditioner that uses AES in CBC-MAC mode to distill the entropy into high-quality
nondeterministic random numbers, and two parallel outputs:

Hardware
Entropy
Source

Nondeterministic Random Numbers

i

Hardware
AES-CBC-MAC
Based Conditioner

1
High Quality, Nondeterministic Random Seeds

|

o

v - ¢

Hardware Hardware
$P800-90 A
AES CTR Based |~ SPS‘::::: &C
DRBG

Cryptographically Secure High Quality, Nondeterministic
Random Numbers Random Seeds

Figure 2 : Digital Random Generator Component Architecture

1. The random bit generator which is seeded from the conditioner.

2. Anenhanced, nondeterministic random number generator that provides seeds from the
entropy conditioner.

10

Note that the conditioner does not send the same seed valuesto boththe DRBG and the
ENRNG. This pathway can be thought of as an alternating switch, with one seed going to the
DRGB and the next seed going to the ENRNG. This construction ensures that a software
application can never obtain the value used to seed the DRBG, nor can itinitiate a Denial of
Service attack against the DRBG through repeated executions of the RDSEED instruction.

The conditioner can be equated to the entropy pool in the cascade construction RNG described
previously. However, since itis fed bya high-quality, high-speed, continuous stream of
entropy that is fed faster than downstream processes can consume, it does not need to maintain
an entropy pool. Instead, it is always conditioning fresh entropy independent of past and
future entropy.

The final two stages are:

. A hardware CSPRNG that is based on AES in CTR mode and is compliant with SP800-90A.
In SP800-90A terminology, thisis referredtoas a DRBG, a term used throughout the
remainder of this document.

. An ENRNG that is compliant with SP800-90B and C.

Entropy Source (ES)

The all-digital Entropy Source also known as a non-deterministic random bit generator
(NRBG), provides a serial stream of entropic data in the form of zeroes and ones.

The ES asynchronously runs on a circuit which is self-timed and uses thermal noise to output a
random stream of bitsat the rate of 3 Giga Hertz. The Entropy Source does not need any
dedicated external power supply. The Entropy Source is designed to function properly over a
wide range of operating conditions, exceeding the normal operating range of the processor.

Bits from the ES are passed to the conditioner for further processing.

The Deterministic Random Bit Generator

The primary role of this generator is to spread a conditioned entropy sample into a large set of
random values, thus increasing the amount of random numbers available by the hardware

module. This is done by employing a standards-compliant DRBG and continuously reseeding
it with the conditioned entropy samples.

11

The DRBG chosen for this function is the CTR_DRBG defined in section 10.2.1 of NIST SP
800-90A (6), using the AES block cipher. Values that are produced fill a FIFO output buffer
that is then used in responding to RDRAND requests for random numbers.

The DRBG autonomously decides when it needs to be reseeded to refresh the random number
pool in the buffer and is both unpredictable and transparent to the RDRAND caller. An upper
bound of 511 128-bit samples will be generated per seed. That is, no morethan ~ 511*2=1022
sequential DRNG random numbers will be generated from the same seed value.

Enhanced Non-deterministic Random Number Generator

The role of the enhanced non-deterministic random number generator is to make conditioned
entropy samples directly available to software for use as seeds to other software-based
DRBGs.

Values coming out of the ENRNG have multiplicative brute-forceprediction resistance, which
means that samples can be concatenated and the brute-force prediction resistance will scale
with them. When two 64-bit samples are concatenated together, the resulting 128-bit value
will have 128 bits of brute-force prediction resistance (254 * 2% = 2128) This operation can
be repeated indefinitely and can be used to easily produce random seeds of arbitrary size.
Because of this property, these values can be used to seed a DRBG of any size.

Robustness and Self-Validation

To ensure the DRNG functions with a high degree of reliability and robustness, validation
features have been included that operate inan ongoing manner at system startup. These
include the DRNG Online Health Tests (OHTSs) and Built-In Self Tests (BISTs), respectively.
Both are shown.

DRBG

v

Entropy | I Entropy | b—>| Conditioner j—o—

Source ealth Tests L

ENRNG >

Figure 3 : Robustness and Self-Validation

12

Online Health Tests (OHTYS)

Online Health Tests (OHTSs) are designed to measure the quality of entropy generated by the
ES using both per sample and sliding window statistical tests in hardware.

Per sample tests compare bit patterns against expected pattern arrival distributions as specified
by a mathematical model of the ES. An ES sample that fails thistestis marked "unhealthy."
Using this distinction, the conditioner can ensure that at least two healthy samples are mixed
into each seed. This defends against hardware attacks that might seek to reduce the entropic
content of the ES output.

Sliding window tests look at sample health across many samples to verify they remain above a
required threshold. The sliding window size is large (65536 bits) and mechanisms ensure that
the ES is operating correctly overall before it issues random numbers. In the rare event that the
DRNG fails during runtime, it would cease to issue random numbers rather than issue poor
quality random numbers.

2.2. Quantium based Random Number Generator

There are two primary sources of

ractical uantum mechanical . -
P a Bl Coo
randomness: thermal noise and quantum | ool ¢

Made # Setintend

mechanics at the sub-atomic or atomic e St o 3

S Y

level. Quantum mechanics guesses that
various physical phenomena, such as the
nuclear decay of an atoms, are
fundamentally random in nature and
cannot exactly be predicted. And, as we
live at a temperature above 0 Kelvin or

the absolute zero, every single system has

slight random variation; for inStanC91 Figure 4 : Quantium based Random Number Generator
molecules of gasses constituting air
constantly bounce off each other in a random fashion. This randomness is one of the quantum

phenomenon and thus unpredictable.

13

Because the final state value of quantum events cannot in principle be computation, they are
the perfect standard for random number generation. Some quantum phenomena used are as

follows:

e Shot noise: A quantum noise source in electronic circuits. A simple instance can be a
photodiode biased lamp shine. Arriving photons generate noise in the implemented
circuit, according to the principle of uncertainty_in quantum mechanics.

e A nuclear decay radiation source:

e Photons traveling through a semi-transparent mirror. It is a mutually exclusive
event (reflection/transmission) are detected and clubbed together as ‘0’ or ‘1’ bit to
represent values respectively.

e Signal amplification on the base of a reverse-biased transistor. The emitter of the
transistor is saturated with electrons and once in a while they will pass through the
band-gap and exit via the base of the transistor. This signal is then further amplified
using a few more transistors and the result fed into a computer to represent zeros and
ones.

e Schmitt trigger. In a degenerate optical parametric oscillator, the binary phase state
selection due to spontaneous parametric down-conversion leading to the binary phase

state selection.

First pointed out in 2001, and certified to the highest levels of entropy testing, Quantis
delivers reliable randomness at rates up to 16 Mega bits per second. It is a family of random
number generating hardware which use the random nature of quantum physics as a source of

true randomness.

The product version in existence compatible with most platforms are:
1. USB device
2. PCI Express (PCle) board

14 |

2.3. True Random Number Generator Using a Metastability-Based Quality Control

It is a true random number generator based on metastability that achieves high entropy
and passes randomness tests. By measuring the metastable resolution time the generator meas
ures the degree of randomness regardless of the output bits. The system computes the original r
andom noise level at the time of metastability and tunes itself to a chieve a high probability of

randomness. Dynamic control enables the system to respond to deterministic noise and a qual
ifier module grades the individual metastable events to produce a high-entropy random bit-

stream.

The grading module allows the user to trade off output bitrate with the quality of the bitstream.
A fully integrated true random number generator was fabricated ina 0.13 mom bulk CMOS

technology with an area of 0.145 mm?,

2.4. True Random Number Generator based on compact chaotic oscillator

True Random Number Generator (TRNG) based on CMOS designed compact discrete-
time chaotic oscillator is presented. The chaotic oscillator was designed using 3 transistors
ap circuit in order toconstruct anapproximate V shape characteristic (inverse tent map
). Simulation of the chaotic oscillator was described and examined in terms of bifurcation diagr
am and transient waveform to show that it has a desirable output and suitability for TRNG. The
TRNG has been used a chaotic oscillator to generate a random signal and increase the random-
ness of the output signal through a dual oscillator sampling method and XOR. The circuit was
designed and simulated in 0.18um CMOS technology with 1.8 voltage supply. Furthermore, it
was tested to be functional for output bit rate 23 Mbps and passed all test methods in NIST suit
standard. The proposed TRNG exposes a potential alternative in both compact and robust rand

om bit sequence that suitable to various other applications in security.
2.5. A truly random number generator based on thermal noise
A simple circuit to generate truly random numbers, which is based on the thermal noise

of the resistor, is presented, as well as some simulation results. The circuit can be fabricated
usingstandard CMOS process.

15

2.6. Simple true random number generator for any semiconductor technology

True random number generators (TRNGS) are needed in cryptography for key generati
on, in challenge response authentication procedures and for countermeasures against power an
alysis attacks. Such true randomness requires utilizing random physical hardware effects. It is
the goal to make the TRNG usable for different semiconductor technologies. This approach is
based on ring oscillators with multiple taps in combination with a simple post processing by
exclusive OR ambivalence (XOR) compression. Verifications with a test chip and several
FPGA implementations showed that standard digital library elements and the digital design
flow can be used without any constraints for compilation and special layout rules. A proper
choice of sampling frequency and compression coefficient ensures arandom output with an
extremely low bias for different technologies which can be checked online easily. It was show
n that for passing the online test witha given bias limit the generated random data passes the

statistical tests.

2.7. TRNG Based on ROPUF Circuit

The method of generating true random numbers utilizing the circuit primarily designed as PUF

based on ring oscillators. The goal is to prove that it is possible to designthe universal
cryptosystem, that can be used for various applications the PUF can be utilized for asymmetric
cryptography and generating asymmetric keys, TRNG for symmetric cryptography, nonce's

andsalts.
2.8. A TRNG algorithm from digital camera image noise for varying lighting conditions

This True Random Number Generator (TRNG) using the images taken by the web or
mobile phone cameras. The three RGB color channels to obtain the random numbers whereas
previous studies used only one. The algorithm excludes each pixel's saturated values to get its
unbiased bits. An additional transposing operation shuffles the raw sequence to achieve better

randomness.

16

The final sequence passes all of the NIST randomness tests. The algorithm involves very few
calculations and is especially suitable for smartphones. With modern mobile cameras, it can
work on the go and achieve a fast bit rate. With readily available commodity hardware with
no hardware changes, we observe a random number generate a rate of 60 Mbps.

2.9 The Mersenne Twister

The Mersenne Twisterisa pseudo random number generator (PRNG). It is by far the most
widely used general purpose PRNG. Its name derives from the fact that its period length is

chosen tobeaMersenneprime.

The Mersenne Twister was developed in 1997 by Makoto Matsumoto and Takuji Nishimura. It
was designed specificallyto rectify most of the flaws found in older PRNGs. It was the first

PRNG to provide fast generation of high-quality pseudorandom integers.

The most commonly used version of the Mersenne Twister algorithm is based on the Mersenne

prime 219937—1. The standard implementation of that, MT19937, uses a 32-bitword length.
There is another implementation that uses a 64-bit word length, MT19937-64; it generates a
differentsequence.

Advantages

The commonly used version of Mersenne Twister, MT19937, which producesasequence of 32-
bitintegers, hasthefollowingdesirableproperties:

1. 1l.thasaverylong period of 219937 — 1. While a long period is not a guarantee of
qualityinarandomnumber generator, short periodscanbe problematic.
2. 2.1tis k-distributed to 32-bit accuracy for every 1 <k <623 (see definition below).

3. 3.It passes numeroustests for statistical randomness, includingthe Diehardtests.
Disadvantages

The large state space comes with a performance cost: the 2.5 KiB state buffer will place a load
on the memory caches. In2011, Saito & Matsumoto proposeda version of the Mersenne

Twister to address this issue. The tiny version, TinyMT, uses just 127 bits of state space.

17

By today's standards, the Mersenne Twister is somewhat slow unless the SFMT
implementation is used . It passes most, but not all, of the stringent TestU01 randomness tests.
Multiple Mersenne Twister instances that differ only in seed value (but not other parameters)
are not generally appropriate for Monte Carlo simulations that require independent random

numbergenerators,though there exists amethod for choosing multiple sets of parameters.

It can take a long time to start generating output that passes randomness tests, if the initial state
is highly non random particularly if the initial state has many zeros. A consequence of this is
that two instances of the generator, started with initial states that are almost the same, will
usually output nearly the same sequence for many iterations, before eventually diverging. The
2002 update to the MT algorithm has improved initialization, so that beginning with such

a stateis veryunlikely.
2.10 Yarrow algorithm

The Yarrow algorithm is a family of cryptographic pseudorandom number generators devised

by John Kelsey, Bruce Schneier and Niels Ferguson. The Yarrow algorithm is explicitly unpat

ented,royalty free and open source; no license is required to use it. Yarrow is incorporated in
i0OS and Mac OS X for their /dev/random devices, as did FreeBSD in the past.

An improved design from Ferguson and Schneier, Fortuna, is described in their book, Practical

Cryptography,and FreeBSD has now moved to using this.
Principles

One of the most important principles of Yarrow isto make a PRNG that is better at resisting

real world attack. The former widely used designs such as ANSI X9.17, RASREF 2.0 PRNG,
have loopholes that provide attackers opportunities under some circumstances. Some of the
m are not intentionally designed to face real world attacks. Another principle of Yarrow is that
system designers with little knowledge about how the PRNG works can incorporate it into

their own real world product fairly easily.

Components

18

The design of Yarrow consists of four major components including an entropy a ccumulator

, reseed mechanism, generation mechanismandreseed control.

Yarrow accumulates entropy into two pools: the fast pool, which provides frequent reseeds of
the key to keep the duration of key compromises as shortas possible;the slow pool, which
provides rare but conservative reseeds of the key. This makes sure that the reseed is secured

even when the entropy estimates are very very optimistic in nature.

The reseed mechanism connects the entropy accumulator to the generating mechanism
.Reseeding from the fast pool uses the current key and the hash of all inputs to the fast pool

since startup to generate a new key; reseeding from the slow pool behaves similarly, except it
also uses the hash of all inputs to the slow pool to generate a new key. Both of the reseedings

reset the entropy estimation of the fast pool to zero, but the last one also sets the estimation of
the slow pool to zero. The reseeding mechanism updates the key constantly, so that even if the
key of pool information is known to the attacker before the reseed, they will be unknown to the

attacker after the reseed.

The reseed control component is leveraging between frequent reseeding, which is desirable
but might allowiterative guessing attacks, and infrequent reseeding, which compromises more
information for an attacker who has the key.Yarrow uses the fast pool to reseed whenever the
source passes some threshold values, and uses the slow pool to reseed whenever at least two of
its sources pass some other threshold value. The specific threshold values are mentioned in the
Yarrow-160 section.

Generation

Yarrow160 uses threekey tripleDES in counter mode to generate outputs. C isan nbit counter
value; K is the key. In order to generate the next output block, Yarrow follows the functions

shown here.

Yarrow keeps count of the output block, because once the key is compromised, the leak of the
old output before the compromised onecan be stopped immediately. Once some system
security parameter Pg is reached, the algorithm will generate k bits of PRNG output and use
them as the new key. In Yarrow160, the system security parameter is set to be 10, which means

19

Pg = 10. The parameter is intentionally set to be low to minimize the number of outputsthat can
be backtracked.

Reseed

The reseed mechanism of Yarrow160 uses SHA1 and tripleDES as the hash function and block

cipher. The details steps are in the original paper.
Implementation of Yarrow-160

Yarrow160 can be implemented in Java, and FreeBSD. The examples can be found in "An imp
lementation of the Yarrow PRNG for FreeBSD" by Mark R. V. Murray.

Pros and cons of Yarrow

*Yarrow reuses existing building blocks.

*Compared to previous PRNGs, Yarrow is reasonably efficient.

*Yarrow can be used by programmers with no cryptography background in a reasonably
secure way. Yarrow is portable and precisely defined. The interface issimple and clear.
These features somewhat decrease the chances of implementation errors.

*Yarrow was created using an attack-oriented design process.

*The entropy estimation of Yarrow is very conservative, thus preventing exhaustive search
attacks. It is very common that PRNGs fail in real world applications due to entropy
overestimation and guessable starting points.

*The reseeding process of Yarrow is relatively computationally expensive, thus the cost of
attempting to guess the PRNG’s key is higher.

*Yarrow uses functions to simplify the management of seed files, thus the files are constantly
updated.

*To handle cryptanalytic attacks, Yarrow is designed to be based on a block cipher that is
secured. The level of security of the generation mechanism depends on the block cipher.

*It tries to avoid data dependent execution paths. This is done to prevent side channel
attacks such as timing attacks and power analysis. This is an improvement compared to earlier
PRNGs, for example RSAREF 2.0 PRNG, that will completely fall apart once additional

information about the internal operations are no longer secured in nature.

20

*Yarrow uses cryptographic hash functions to process input samples, and then uses a secure up
date function to combine the samples with the existing key. This makes sure that the attacker
cannot easily manipulate the input samples. PRNGs such as RSAREF 2.0 PRNG do not have
the ability to resist this kind of chosen-input attack.

*Unlike ANSI X9.17 PRNG, Yarrow has the ability to recover from a key compromise. This m
eans that even when the key is compromised, the attacker will not be able to predict future
outputs forever. This is due to the reseeding mechanism of Yarrow.

*Yarrow has the entropy samples pool separated from the key, and only reseeds the key when t
he entropy pool content is completely unpredictable. This design prevents iterative guessing at
tacks, where an attacker with the key guess the next sample and checks the result by observing
the next output.

Cons

«Since the outputs of Yarrow are cryptographically derived, the systems that use those outputs
can only be as secure as the generation mechanism itself. That means the attacker who can
break the generation mechanism will easily break a system that depends on Yarrow’s outputs.
This problem cannot be solved by increasing entropy accumulation.

*Yarrow requires entropy estimation, which is a very big challenge for implementation. It is
hard to be sure how much entropy to collect before using it to reseed the PRNG. This problem
is solved by Fortuna (PRNG), an improvement of Yarrow. Fortuna has 32 pools to collect
entropy and removed the entropy estimator completely.

*Yarrow's strength is limited by the size of the key. For instance, Yarrow160 has an effective

key size of 160 bits. If the security requires 256 bits, Yarrow160 is not capable of doing the job

21

Chapter-3SYSTEM DEVELOPMENT

The System development of "Pure Random Number Generator are as follows;

3.1 Broad-Scale Distribution of Working Process

The process starts with data collection from the mobile sensors. Then the data is recorded on
the mobile device in csv format and then moves over to the server for analysis and
processing. Once the processing is done the data is moved to the entropy pool, which is used
as the source for the random number generation. the flowchart below on this page depicts

the flow of data from mobile sensors to the entropy pool.

Calibrate Sensor

Is
Calibrated

Record Sensor Data /

y

Is Data Correct

Move Data to server

Genetate Entropy Pool >
3.1.1 Stepl: Data Collection

An android application is used to read the values returned from the sensor of a mobile
handset.
The program then segregates and transforms the data into a comma separated values (.csv)

format. And stores it over the mobile storage on each cellular unit.

22

3.1.2 Step2: Moving Database to Server

This data set is then passed on to the A MySQL Server for processing. The data will be

processed and passed as requested by the user.

3.1.3 Step3: Extraction of meaningful information

PHP is used and a server side language. The algorithm on the server side splits the decimal
sensor value and takes 3 to 7 the digit making it the random number for that sensor at that

point of time.

3.1.4 Step4: Range Optimization

This random number is processed by a ranged algorithm that forces it to lie in a given
interval keeping the unpredictability intact. Now this generated random number is made to
fall on the graph and results are shown as below The code for each shall be included in the

last section of the report.

3.2 Modular Distribution]
Sensor Suite

3.21 MODULE 1: Android Application for Sensor Data |

Update Interval

Collection

D LSM6DS3 Accelerometer (m/s*2)

Each mobile nowadays is equipped with some sensors even if it [————
D YAS537 Magnetometer Uncalibrated (uT)

ranges as low as 3000 bucks. The android application uses specific

[[] LsMeDS3 Gyroscope (rad/s)
classes to extract data from the handset's Sensor. (2} LM 60E3 Byncecope Usoaflemod)
D stk3x1x alsprx (cm)

[] stk3x1x alsprx (Ix)

D LSM6DS3 Accelerometer -Wakeup Secondary (m/
s"2)

D YAS537 Magnetometer -Wakeup Secondary (uT)

D YAS537 Magnetometer Uncalibrated -Wakeup
Secondarv (uT)

START

Figure 5 : Android App Ul

23

MainActivity.java X

Figure 6 : Android code snippit

The Android Application asks for the
sampling rated from the user in seconds and
the data recording interval. It also gives a list
of sensors in the form of a checklist of sensors
to be chosen for data recording. This session is
recorded corresponding to a specific session

ID.

1 backage simplicial.software.sensor suite.application;
2

& import android.annotation. SuppressLint:

4 import android.app.fctivity:

] import android.app.flertDialog.Builder;

& import android.app.FragmentManager;

7 import android.app.FragmentIransaction;

8 import android.o=s.Build.VERSICH;

9 import android.os.Bundle;
10 import android.os.Environment;
11 import android.view.Menu;
1z import android.view.MenuInflater:
13 import android.view.Menultem;
14 import android.view.View:
15 import java.io.File;
16 import java.io.ICException:;
17 import java.util.aArrayList:
18 import java.util.List;
18 import simplicial.software.sensor suite.models.b:
20 import simplicial.software.sensor suite.models.1:
21 import simplicial.software.sensor suite.models.or
22 import simplicial.software.sensor suite.models. s;
T2

Sensor Suite

[[] vAS537 Magnetometer Uncalibrated

[LsM6DS3 Gyroscope

D LSM6DS3 Gyroscope Uncalibrated

Figure 7 : Android App Live Graph

3.2.2 MODULE 2: Recording Data Using SQL.ite

What is SQLite?

SQL.ite is open source Structured Query Language database that stores values to a text file on

any device. Android devices already comes in with built in SQLite. It supports all the

24

RDBMS features. In order to access this database, you do not need any kind of connections
for it like JDBC,ODBC etc

Database - Package

The main package is "android.database.sqlite’. The package contains the classes to manage

your databases in form of tables.

Elapseq 1ime [SeConas). LU.U

Sensor

stk3x1x alsprx

AMD

YASE3T Magnetometer

YASH3T Magnetometer Uncalibrated
LSMEDS3 Accelerometer

YASE3T Magnetometer

YAS53T Magnetometer Uncalibrated
LSMEDS3 Accelerometer

LSMEDS3 Accelerometer -Wakeaup
Secondary

YASE3T Magnetometer
YAS53T Magnetometer Uncalibrated

YASH3T Magnetometer -Wakeup
Secondary
VWASRIT Mannntamatar Hinealibeatad

Timestamp
(seconds)

-3.986483887
-0.1292146
0.022

0.022
0.023770019
0.032040283
0.032040283
0033413574
0033413574

0.042111084
0042111084
0.042111084

ANA7444004

Figure 8 : Sampling Database Screenshot

NULL
NULL

Data 1

80.0

20

7.83538818350375

1.093994140625
6.4453125

167 48046875
1.093994140625
1.093994140625

62744140625
167.3095703125
6.2744140625

4RT INNRTATAR

NULL NULL
NULL NULL
Data 2 Data 3
nia nia
0.0 0.0

-47 92633056640625 17.93670654296875
168.87054443359375 -56.1004638671875 -75.30059814453125
6.32257080078125 6.5353546142578125
-47 92633056640625 17.93670654296875
-56.1004638671875 -75.30059814453125
6.32257080078125 6.5353546142578125
6.32257080078125 6.5353546142578125

-40. 12567138671

-57. 2008046875

-49 12567138671

ET I0NCNARSTR

875 18.83607500765625
-74.40032058984375
875 18.83697509765625

FA ANNZIINFROOTATITR

NULL
NULL
Data 4

n/a
0.0
n/a
161.03515625
n/a
nia
161.03515625
nia
n/a

nia
161.03515625
nia

4R4 NIRARRTR

NULL
NULL
Data 5

n/a
0.0
n/a
-B.17413330078125
n/a
nla
-B.17413330078125
nla
n/a

nia
-B.17413330078125
nla

247442 FIINNTOATR

NULL NULL WNULL

NULL NULL NULL
Data 6 Primary

Unit

nia Ix
0.0
nfa uT
-03.237304687 uT
nia mish2
nla uT
-93.237304587 uT
nia mish2
nia mish2
nla uT
-93.237304587 uT
nla uT

07 2I7INARLT 0T

After completion of working of this module the data is stored locally to the device and is

ready to be transferred to server for processing.

3.2.3 MODULE 3: Server-Side Scripting for extraction of meaningful information.

Once the server receives the data it processes it is ready to be process.

Instances of Raw data is as follows.
1. Game Rotation Vector [While Climbing Stairs]

0.4

0.2 — Series2
0 -C:. — Series3

-0.2 Fi= 20 40 60 sgcories4

-0.4

Graph 1 : Raw sensor data of Game Rotation Vector [While Climbing Stairs]

25

2. GeoMagnetic Rotation Vector [While Walking]

0.5
e Series2
0t ' —)
0 20 40 60 Series3
-0.5
e Seriesd
-1

Graph 1 : Raw sensor data of GeoMagnetic Rotation Vector [While Walking]

As we can observe that though this data is not predictable in any sense but it is not scattered
in a range and has some of the other pattern . This tells us that the raw data needs to be

processed more than this.

if (Sdatatype=—="FProce=ssed"

{
list(S%pl, 5p2) = explede(".", Srow[Sloop 1]);
Sdigits = substr(Sp2, 2, 5);
echo Sdigits;

}

T -

The above codes stripes the numeric data and take some of the digits. Lets observe the
behavior and pattern of the data after processing.

1. Game Rotation Vector [While Climbing Stairs]

150000
100000 e Seriesl
50000 e Series2
= Seriesd
O T T T T 1
0 10 20 30 40 50 60

Graph 3 : Processed data of Game Rotation Vector [While Climbing Stairs]

26

2. GeoMagnetic Rotation Vector [While Walking]

120000
100000
80000
60000
40000
20000
0

= Seriesl

e Series2

e Series3

0.2 0.4 0.6 0.8 1

Graph 4 : Processed sensor data of GeoMagnetic Rotation Vector [While Walking]

Similar results were obtained while walking running and stationary device. and thus can be

used for to fill the entropy pool.

3.2.4 MODULE 4: Entropy pool generator

Entropy pool helps us to work in offline mode i.e. when sensors are offline.Entropy generator

picks up the values from sensor database lists it in a table.

$query_2=“IZ\TSERT INTZ pool (sno,value) VALUES -::$pool_c:o'unt, "Sdigits")";
Sdigits!=""?my=ql query(Squery 2):Spool count——;

" Showing rows 0 - 24 (3858 total, Cuery took 0.0000 seconds.) |

-

ete
ete
ete
ete
ete
ete
ete
ete
ete

ete

SN0 & 1

o o~ @ o s oW R

-
=

-
a

value
75025

76718
75068
75025
75073
36828
64106
98507
01916

93538

onne4

This entropy pool is used to get random number as per requirement.

The count flag keeps a count of used and used data.

il - flag wvalue
& Edit %e Copy @ Delete count 132

3.2.5 MODULE 5: Range optimization

27

The purpose of this module is to generate the value under a give interval.

Enter Lower Range1
Enter Upper Fanges
| Generate |

2

Figure 9 : Screenshot of range optimizer Ul

The above interface takes the upper range and lower range, optimizes the seed within the

range and displays the output.

The code snippet shows a how the number has been manipulated.
S5rand seed=intval (Srow[1l]);

Snormalizer=S%rand seed% (Smax—-5min+l) ;
Snumber=5min+S$normalizer;

echo Snumber;

28

Chapter-4 PERFORMANCE ANALYSIS

4.1 Algorithmic Complexity

All the algorithms used in any module of the project is O(n) for n random numbers. This
shows the random number generating algorithms are not CPU intensive. And as the server is
multithread it can cater to large number of requests at the same time. The feature out rules the

drawback of low data rate of pre-existing Pure Random number generators

4.2 Resource Utilization at Runtime

This stress testing tells us the processor requirement of entropy collection algorithm when
implemented in a mobile device under load. Here we can see that 20% of Ram is required to
collect data for 10 seconds at very high sampling rate of 0.002 sec/sample. Data collection

for 10 seconds gives a set of 4000 random numbers.

M8K/s 2 O I . JiodG 4C 1809 & »

Free: 1.08 GB Free: 1.63GB

Used: 1.70GB Used: 1.14GB

84 84

Sampling Rate : 0.002sec

Figure 10 : Resource Utilization at Runtime

29

4.3 Applications and Contributions

4.3.1 Caesar Cipher

In cryptography, a Caesar cipher, also known as shift cipher, Caesar's cipher, Caesar's code or
Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type
of substitution cipher in which each letter in the plaintext is shifted' a certain number of places
down the alphabet. For instance, with a shift of 1, A would be replaced by B, B would become
C, and so on. The method is named after Julius Caesar, who apparently used it to communicate
with his generals.

More complex encryption schemes such as the vigenere cipher employ the Caesar cipher as
one element of the encryption process. The widely known ROT13 encryption' is simply a
Caesar cipher with an offset of 13. As with all single-alphabet substitution ciphers, the Caesar

cipheris easily broken and in modern practice offers essentially no communication security.

The encryption of Caesar cipher can be represented using modular arithmetic by first
transforming the letters into numbers, according to the scheme, A =0, B =1,..., Z = 25.

Encryption of a letter x by a shift n can be described mathematically as,
E.(z)=(xr+n) mod 26.
Decryption is performed similarly,

D,(z)=(r —n) mod 26.

Instance:

To pass an encrypted message from one person to another, it is first necessary that both parties
have the key' for the cipher, so that the sender may encrypt it and the receiver may decrypt it.

For the Caesar cipher, the key is the number of characters to shift the cipher alphabet.

30

Here is a quick instance for the encryption and decryption of Caesar cipher. The telkt we will

encryptis'cryptography’, with a shift (key) of 3.

Plain Text c r v p t o g r a P h v

Alphabet Number +
2+3 17+3|24+3|15+3|19+3|14+3|6+3(17+3|0+3(15+3|7+3|24+3
Key

Cipher Text f u b s w r i u d 5 k b

Decryptionis just as easy, by using an offset of -3.

Cipher Text f u b 5 w r i u d 5 k b

Alphabet Number - Key 5-3|120-3(1-3|18-3|22-3(17-3|9-3|20-3|3-5|18-3|10-3(1-3

Plain Text c r v P t o g r a P h M
Security:

Caesar cipher is not a secure cryptosystem because there are only 26 possible keys to try out,
we can simply try each possibility and see which one results in a piece of readable text. If you
happen to know what a piece of the ciphertext is, or you can guess a piece, then this will allow

you to immediately find the key.

If this is not possible, a more systematic approach is to match up the frequency distribution of
the letters. By graphing the frequencies of letters in the ciphertext, and by knowing the
expected distribution of those letters in the original language of the plaintext,a human can
easily spot the value of the shift by looking at the displacement of particular features of the
graph. his is known as frequency analysis. For instance, in the English language the
plaintext frequencies of the letters E, T, (usually most frequent), and Q, Z (typically least frequ

ent) are particularly distinctive.

Implementation:

31

We can use the randomly generated value as encryption key for Caesar cipher or and other

similar encryption algorithm.
4.3.2 Games

Unpredictable were first investigated in the context of gambling developing, sometimes,
pathological forms like apophenia. Many randomizing devices such as dice, shuffling playing
cards wheels seem to have been developed for use in games of chance.Electronic gambling
equipmentcannot use these and so theoretical problems are less easy to avoid; methods of

creating them are sometimes regulated by governmental gaming commissions.

Modern electronic casino games contain often one or more random number generators which
decide the outcome of a trial in the game. Even in modern slot machines, where mechanical
reels seem to spin on the screen, the reels are actually spinning for entertainment value only.
They eventually stop exactly where the machine's software decided they would stop when
the handle was first pulled. It has beenalleged thatsome gaming machines' software is
deliberately biased to prevent true randomness, in the interests of maximizing their owners'
revenue; the history of biased machines in the gambling industry is the reason government insp
ectors
attempt to supervise the machines electronic equipment has extended the range of supervision.
Some thefts from casinos have used clever modifications of internal software to bias the outco
mes of the machines at least inthose which have been discovered. Gambling establishments
keep close track of machine payouts in an attempt to detect such alterations. Random draws are
often used to make a decision where no rational or fair basis exists for making a deterministic

decision.
4.3.3 Science

Many methods of statistical analysis, such as the bootstrap method, require random numbers.

Monte Carlo methods in physics and computer science require random numbers.
Random numbers are often used in parapsychology as a test of precognition.

Statisticalsampling

32

Statistical practice is based on statistical theory which is, itself, founded on the concept of
randomness. Many elements of statistical practice depend on randomness via random
numbers. Where those random numbers fail to be actually random, any subsequent statistical
analysis may suffer from systematic bias. Elements of statistical practice that depend on
randomness include: choosing a representative sample of the population being examined,
disguising the protocol of a study from a participant (see randomized controlled trial) and

Monte Carlosimulation.

These applications are useful in auditing (for determining samples such as invoices) and
experimental design (for instance in the creation of double-blind trials).

Analysis

Many experiments in physics rely on a statistical analysis of their output. For instance, an
experiment might collect Xrays from an astronomical source and then analyze the result for
periodic signals. Since random noise can be expected to appear to have faint periodic signals
embedded in it, statistical analysis is required to determine the likelihood that a detected signal
actually represents a genuine signal. Such analysis methods requires the generation of random
numbers. If the statistical method is extremely sensitive to patterns in the data (such as those
used to search for binary pulsars), very large amounts of data with no recognizable pattern are

needed.
Simulation

In many scientific and engineering fields, computer simulations of real phenomena are
commonly used. When the real phenomena are affected by unpredictable processes, such as
radio noise or day-to-day weather, these processes can be simulated using random or pseudo-

random numbers.

Pseudo random numbers are frequently used in simulation of statistical events, a very simple
instance being the outcome of tossing a coin. More complicated situations are simulation
of population genetics, or the behavior of subatomic particles. Such simulation methods, often
called stochastic methods, have many applications in computer simulation of real-world

processes.

33

Chapter-5 Conclusion

5.1 Conclusions

The above developed model successfully generates pure random numbers for any give finite
range. It is not fully dependent on online connectivity with the physical phenomenon i.e.
random numbers can be generated at any point of time. The model also shows the ability to
use these random number as per requirements. The model also over comes the major

drawback of low bit rate with no extra load on the processor as the algorithm used is O(1).

34

5.3 References

1. Intel® Digital Random Number Generator (DRNG)

Reference URL.: https://software.intel.com/en-us/articles/intel-digital-random-
number-generator-drng-software-implementation-guide.

Revision 2.0 : May 15, 2014

Accessed on: September 7th, 2016

2. Quantis Random Number Generator

Reference URL.: http://www.idquantique.com/random-number-
generation/quantis-random-number-generator/

Data of Issue: 2015-01-29

Accessed on: September 7th, 2016

3. Carlos Tokunaga; David Blaauw; Trevor Mudge, "True Random Number
Generator With a Metastability-Based Quality Control”, IEEE Journal of Solid-
State Circuits, Volume: 43, Issue: 1, Pages: 78 - 85,

4. Huang Zhun; Chen Hongyi, "A truly random number generator based on
thermal noise™ ASICON 2001. 2001 4th International Conference on ASIC
Proceedings, Volume: 35, Issue: 1, Pages: 862 - 864, Year: 2001

5. Simona Buchovecka; Robert Lorencz; Filip Kodytek; Jiri Bucek, " True
Random Number Generator Based on ROPUF Circuit", 2016 Euromicro
Conference on Digital System Design (DSD), Volume: 31, Issue: 1, Pages: 519
- 523, Year: 2016

6. C.S. Petrie, J.A. Connelly, "noise-based random bit generator IC for
applications in cryptography", Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems, Cat. N0.98CH36187, Year: 1998

35

Chapter -6. Appendix

6.1 Android Application [MainActivity.java]

package simplicial.software.sensor_suite.application;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.app.AlertDialog.Builder;

import android.app.FragmentManager;

import android.app.FragmentTransaction;

import android.os.Build.VERSION;

import android.os.Bundle;

import android.os.Environment;

import android.view.Menu;

import android.view.Menulnflater;

import android.view.Menultem;

import android.view.View;

import java.io.File;

import java.io.|OException;

import java.util.ArrayList;

import java.util.List;

import simplicial.software.sensor_suite.models.b;
import simplicial.software.sensor_suite.models.l;

import simplicial.software.sensor_suite.models.o;
import simplicial.software.sensor_suite.models.s;

public class MainActivity
extends Activity
implements ak

{
public List a = new ArrayList();
public double b = 0.1D;
public's ¢ = null;
public I d = null;

public void a()
{
if (this.d != null) {
this.d.a(System.currentTimeMillis());
}
}

protected void onCreate(Bundle paramBundle)
{
simplicial.software.sensor_suite.models.a.b().a(this);
0.a = new ofthis);
super.onCreate(paramBundle);
setContentView(2130903040);
if (paramBundle == null) {
getFragmentManager().beginTransaction().add(2131296256, new p()).commit();
}
}

public boolean onCreateOptionsMenu(Menu paramMenu)

1 | APPENDIX

{
getMenulnflater().inflate(2131230720, paramMenu);
return true;

}

protected void onDestroy()

{
simplicial.software.sensor_suite.models.a.b().b(this);
super.onDestroy();

}

@SuppressLint({"InlinedApi", "NewApi"})
public boolean onOptionsltemSelected(Menultem paramMenultem)
{
Object localObject;
switch (paramMenultem.getltemId())
{
default:
case 2131296296:
case 2131296299:
case 2131296298:
for (;;)
[
return super.onOptionsltemSelected(paramMenultem);
if (findViewByld(2131296258).getVisibility() != 8) {
findViewByld(2131296258).setVisibility(8);
}
for (;;)
{
return true;
findViewByld(2131296258).setVisibility(0);
}
getFragmentManager().beginTransaction().replace(2131296256, new u(al.a(this))).addToBackStack(null).commit();
return true;
if (this.c == null) {
break;
}
b.a(this, this.c);
}
if (!simplicial.software.a.a.a.a())
I
paramMenultem = new AlertDialog.Builder(this);
paramMenultem.setTitle("Error");
paramMenultem.setMessage("External storage is not writeable.");
paramMenultem.show();
return false;
}
if (Build.VERSION.SDK_INT >= 19) {}
for (localObject = new File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS) + "/Exported Sensor
Data/");; localObject = new File(Environment.getExternalStorageDirectory() + "/Exported Sensor Data/"))
{
((File)localObject).mkdirs();
localObject = new File((File)localObject, "sensor_data.db");
try
{

simplicial.software.a.a.a.a(getDatabasePath("sensor_data.db"), (File)localObject);

2 | APPENDIX

AlertDialog.Builder localBuilder = new AlertDialog.Builder(this);
localBuilder.setTitle("Exported");
localBuilder.setMessage("Database copied to:\n" + localObject);
localBuilder.show();
}
catch (IOException paramMenultem)
{
localObject = new AlertDialog.Builder(this);
((AlertDialog.Builder)localObject).setTitle("Error");
((AlertDialog.Builder)localObject).setMessage(paramMenultem.getMessage());
((AlertDialog.Builder)localObject).show();
return false;
}
}
case 2131296297:
new ac(this).show(getFragmentManager(), null);
return true;
case 2131296300:
getFragmentManager().beginTransaction().replace(2131296256, new ag()).addToBackStack(null).commit();
return true;
}
inti=0;
for (;;)
{
if (i >= getFragmentManager().getBackStackEntryCount()) {
return true;
}
getFragmentManager().popBackStack();
i+=1;
}
}
}

6.2 Entopy Pool Developer

<?php
set_time_limit(1000);

Shost="localhost";
Susername="root";
.

;

Spassword=
Sdatabase="project";

Ssensor=array("Game Rotation Vector", "Game
Rotation Vector -Wakeup Secondary",

"GeoMagnetic Rotation Vector",

"GeoMagnetic Rotation Vector -Wakeup Secondary",

"Gravity","Gravity -Wakeup Secondary",

"Linear Acceleration",

"Linear Acceleration -Wakeup Secondary",

"LSM6DS3 Accelerometer”,

"LSM6DS3 Accelerometer -Wakeup Secondary",

"LSM6DS3 Gyroscope",

"LSM6DS3 Gyroscope -Wakeup Secondary"”,

3 | APPENDIX

"LSM6DS3 Gyroscope Uncalibrated”,

"LSM6DS3 Gyroscope Uncalibrated -Wakeup Secondary"”,
"Motion Acce",

"Orientation",

"Orientation -Wakeup Secondary",

"Rotation Vector",

"Rotation Vector -Wakeup Secondary",
"SensorTimestamp (seconds)",

"Step Counter",

"Step Counter -Wakeup Secondary",

"stk3x1x alsprx",

"stk3x1x alsprx -Non Wakeup Secondary",

"stk3x1x alsprx -Wakeup Secondary",

"YAS537 Magnetometer",

"YAS537 Magnetometer -Wakeup Secondary",

"YAS537 Magnetometer Uncalibrated”,

"YAS537 Magnetometer Uncalibrated -Wakeup Secondary");

mysql_connect(Shost,Susername,$password);
@mysql_select_db(Sdatabase) or die("Unable to select database");

Sdatatype="Processed";
Spool_count=0;

for(Sloop_2=0;Sloop_2<=19;Sloop_2++)

{
Squery="select * from test_4 where "COL 1'='Ssensor[Sloop_2]"";
Srun=mysql_query(Squery);

echo "<center><table border=\"01\" width=\"100%\">";
while (Srow=mysql_fetch_array(Srun))

{
echo "<tr>";
for(Sloop_1=2;Sloop_1<=4;Sloop_1++)
{
echo "<td>";
if(Sloop_1>1)

{
if(Sdatatype=="Processed")

{
Spool_count++;
list(Sp1, $p2) = explode(".", Srow[Sloop_1]);
Sdigits = substr($p2, 2, 5);
echo $digits;

Squery_2="INSERT INTO pool (sno,value) VALUES
(Spool_count,'Sdigits')";

Sdigits!=""?mysql_query(Squery_2):Spool_count--;

else

echo Srow[Sloop_1];

4 | APPENDIX

else
{
echo Srow[Sloop_1];
}
echo "</td>";
}
echo "</tr>";

}

echo "</table></center>";

echo "</br></br>";

>

2.3 Range Optimizer

Smin= intval($_GET['min']);
Smax= intval(S_GET['max']);

if(Smin >= Smax)
echo " redefine range ";
else
{
Shost="localhost";
Susername="root";
$password="";
$database="project";
mysql_connect(Shost,Susername,$Spassword);
@mysql_select_db(Sdatabase) or die("Unable to select database");

Squery="select * from flag where 1";
Srun=mysql_query(Squery);

Srow=mysql_fetch_array(Srun);
//echo Srow[1];

Sflag=intval(Srow[1])+1;

Sflagg=(string)Sflag;

Ssql = "UPDATE “flag® SET value = $flagg WHERE flag = 'count'";
mysql_query($sql);

Squery="select * from pool where sno = $flagg";
Srun=mysql_query(Squery);

Srow=mysql_fetch_array(Srun);

Srand_seed=intval(Srow[1]);

Snormalizer=Srand_seed%(Smax-Smin+1);
Shumber=$min+$normalizer;

5 | APPENDIX

echo Snumber;

>

2.4 Cipher

require_once('rand.php');

Sobj = new true_random();
Srand_key = Sobj->true_rand(1,26);

function Cipher(Sch, Skey)

{
if (Ictype_alpha(Sch))
return Sch;
Soffset = ord(ctype_upper(Sch) ? 'A' : 'a');
return chr(fmod(((ord(Sch) + $key) - Soffset), 26) + Soffset);
}
function Encipher(Sinput, Skey)
{
Soutput="";
SinputArr = str_split(Sinput);
foreach (SinputArr as Sch)
Soutput .= Cipher(Sch, Skey);
return Soutput;
}

function Decipher(Sinput, Skey)
return Encipher(Sinput, 26 - Skey);

Sstr="A b7jh*o";
echo "Random Key : ".Srand_key."</br>";
echo "String : ".Sstr."</br>";

Senc = Encipher(S$str, Srand_key);
echo "Encipher : ".Senc."</br>";

Sdec = Decipher($enc, Srand_key);
echo "Decipher : ".Sdec."</br>";
>

6 | APPENDIX

