De Tayhohree Ramanna

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION - MAY 2019

B.Tech VIth Semester (Bioinformatics)

COURSE CODE: 10B11BI612

MAX. MARKS: 35

COURSE NAME: Machine Learning for Bioinformatics

COURSE CREDITS: 4

MAX. TIME: 2HRS

Note: All questions are compulsory. Carrying mobile phone during examinations will be treated as a case of unfair means.

1. (a) Perform one forward pass on the given neural network. $w_{AD} = 0.4$, $w_{AD} = 0.4$, $w_{BC} = 0.8$, $w_{BD} = 0.4$. $w_{CE} = 0.3$, $w_{DE} = 0.9$. (3)

- (b) Perform a reverse pass on the network (target =0.5). (5)
- (c) Perform a further reverse pass on this network. Comment on the results. (2)
 - 2. Explain and illustrate the following concepts with respect to HMM and transformational grammars. (10)
 - (a) Finite state automaton with example
 - (b) Deterministic and non-deterministic automaton
 - (c) Decoding and evaluation
 - (d) Forward variable
 - (e) Regular grammar

3. Real DNA sequences are inhomogeneous and can be described by a HMM with hidden states representing different types of nucleotide composition. Consider and HMM that includes two hidden states H and L for higher and lower C+G content respectively. Initial probabilities for both H and L are equal to 0.5., while transition probabilities are as follows: a_{HH}=0.5, a_{HL}=0.5, a_{LL}=0.6, a_{LH}=0.4. Nucleotides T, C, A and G are emitted from states H and L with probabilities 0.2, 0.3, 0.3 and 0.3, and 0.3, 0.2, 0.3, 0.2, respectively. For the sequence x= GGCAC, predict the most likely state at position 3 using posterior decoding. (10)

4. Describe how will you use HMM to identify CpG islands from the given set of sequences. (5)